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Preface 
 
 
The aim of the workshop is to bring together researchers in the field of XML retrieval who 
participated in the Initiative for the Evaluation of XML retrieval (INEX) during 2003. The 
aim of the INEX initiative is to provide means, in the form of a large XML test collection and 
appropriate scoring methods, for the evaluation of XML retrieval systems. During the past 
year participating organisations contributed to the building of a large-scale XML test 
collection by creating topics, performing retrieval runs and providing relevance assessments 
along two relevance dimensions for XML components of varying granularity. The workshop 
concludes the results of this large-scale effort, summarises and addresses encountered issues 
and devises a workplan for the evaluation of XML retrieval systems. 
 
The workshop is organised into presentation and workshop sessions. During the presentation 
sessions participants have the opportunity to present their approaches to XML indexing and 
retrieval. The workshops serve as discussion forums to review issues related to:  the creation 
of the INEX topics; the definition of the two relevance dimensions; the use of the on-line 
assessment system; and the development of evaluation metrics. Finally, a track proposals 
workshop will identify new tasks for INEX’04. 
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Schloss Dagstuhl 
 
 
Schloss Dagstuhl or Dagstuhl manor house was built in 1760 by the then reigning prince 
Count Anton von Öttingen-Soetern-Hohenbaldern. After the French Revolution and 
occupation by the French in 1794, Dagstuhl was temporarily in the possession of a Lorraine 
ironworks. In 1806 the manor house along with the accompanying lands was purchased by the 
French Baron Wilhelm de Lasalle von Louisenthal. In 1959 the House of Lasalle von 
Louisenthal died out, at which time the manor house was then taken over by an order of 
Franciscan nuns, who set up an old-age home there. In 1989 the Saarland government 
purchased the manor house for the purpose of setting up the International Conference and 
Research Center for Computer Science. The first seminar in Dagstuhl took place in August of 
1990. Every year approximately 2,000 research scientists from all over the world attend the 
30-35 Dagstuhl Seminars and an equal number of other events hosted at the center. 
 
 
 

 
                                              

http://www.dagstuhl.de/ 

klas
III

klas
III

klas
III



Table of Contents 
   
  
Xpath Inverted File for Information Retrieval 
Shlomo Geva, Murray Leo-Spork (Queensland University of Technology) 
 

1 

Distributed XML Information Retrieval 
Wayne Kelly , Shlomo Geva , Tony Sahama, Wengkai Loke (Queensland University of Technology) 
 

9 

RMIT INEX experiments: XML Retrieval using Lucy/eXist  
Jovan Pehcevski, James Thom (RMIT University), Anne-Marie Vercoustre (CSIRO-ICT Centre)  
 

 17 

An Evaluation of INEX 2003 Relevance Assessments  
Kenji Hatano ( Nara Institute of Science and Technology ), Hiroko Kinutani  (Japan Science and 
Technology Agency), Masahiro Watanabe (The National Institute of Special Education), Yasuhiro Mori, 
Masatoshi Yoshikawa (Nogoya University), Shunsuke Uemura ( Nara Institute of Science and 
Technology ) 
 

 25 

XXL @ INEX 2003    
Ralf Schenkel, Anja Theobald, Gerhard Weikum (Max-Planck Institüt für Informatik) 
 

33 

Applying the IRStream Retrieval Engine to INEX 2003 
Andreas Henrich, Günter Robbert (University of Bayreuth) Volker Lüdecke (University of Bamberg)
   

41 

HyREX at INEX 2003 
Mohammad Abolhassani, Norbert Fuhr, Saadia Malik  (University of  Duisburg-Essen) 
 

49 

The SearX-Engine at INEX’03: XML enabled probabilistic retrieval 
 Holger Flörke  (doctronic GmbH) 
 

57 

Retrieving the most relevant XML components 
Yosi Mass, Matan Mandelbrod (IBM Research Lab) 
 
Searching in an XML Corpus Using Content and Structure   
Yiftah Ben-Aharon, Sara Cohen, Yael Grumbach, Yaron Kanza, Jonathan Mamou,  Yehoshua Sagiv, 
Benjamin Sznajder,  Efrat Twito (The Hebrew University)  
 

58 
 
   

65 

The TIJAH XML-IR System at INEX 2003 (DRAFT)   
J.A. List(CWI), V.Mihajlovic (University of Twente) ,A.P. De Vries(CWI), G. Ramírez (CWI), 
D.Hiemstra (University of Twente) 
 

72 

The University of Amsterdam at INEX 2003 
Jaap Kamps, Maarten de Rijke, Börkur Sigurbjörnsson (University of Amsterdam) 

 

80 

Bayesian Networks  and INEX’03    
Benjamin Piwowarski, Huyen-Trang Vu, Patrick Gallinari (LIP6)  
 

87 

IRIT at INEX 2003 
Karen Sauvagnat , Gilles Hubert, Mohand Boughanem, Josiane Mothe(IRIT) 

  

91 

Using Language Models for Flat Text Queries in XML Retrieval  
Paul Ogilvie, Jamie Callan (Carnegie Mellon University)  
 
 

97 

klas
IV

klas
IV



   
 
Cheshire II at INEX'03: Component and Algorithm Fusion at XML Retrieval   
Ray R. Larson (University of California, Berkeley)  
 

104 

Identifying and  Ranking Relevant Document Elements 
Andrew Trotman, Richard A. O’Keefe (University of Otago)  
 

112 

The Simplest Query Language That Could Possibly Work 
Andrew Trotman, Richard A. O’Keefe (University of Otago)  
 

117 

Helsinki's EXTIRP @ INEX  
Antoine Doucet, Lili Aunimo, Miro Lehtonen, Renaud Petit (University of Helsinki) 
 

125 

Using value-added document representations in INEX 
Birger Larsen, Haakon Lund, Jacob K. Andresen and Peter Ingwersen (Royal School of Library and 
Information Science) 

 

132 

Adapting the Extended Vector Model for XML Retrieval 
Carolyn J. Crouch, Sameer Apte (University of Minnesota  Duluth), Harsh Bapat (Persistent Systems 
Pvt. Ltd.) 
 

138 

Cooperative XML (CoXML) Query Answering at INEX 03   
Shaorong Liu, Wesley W. Chu  (UCLA Computer Science Department ) 
 

142 

 
 
Appendix  
 

 

INEX’03 Guidelines for Topic Development 
 

150 

INEX’03 Retrieval Task and Run Submission Specification 
 

158 

INEX’03 Relevance Assessment Guide 162 
  
Workshop Schedule 168 
  
  
  
  
  
  

 
  
 
 

klas
V

klas
V



XPath Inverted File for Information Retrieval

Shlomo Geva
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
s.geva@qut.edu.au

Murray Leo-Spork
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
m.spork@qut.edu.au

ABSTRACT
In this paperwe describethe implementationof
a searchenginefor XML documentcollections.
The systemis keywordbasedand is built upon
an XML inverted file system.We describethe
approach that was adopted to meet the
requirementsof Strict Content and Structure
queries (SCAS) and Vague Content and
Structure queries (VCAS) in INEX 2003.  

Keywords: Information Retrieval, Inverted
File, XML, XPath, INEX, Assessment,
Evaluation, Search Engine

1. Introduction
File Inversionis probablythe mostwidely used
technique in text retrieval systems. In an
invertedfile, for eachterm in the collection of
documents,a list of occurrencesis maintained.
Information about each occurrenceof a term
includes the document-id and term position
within the document. Maintaining a term
positionin theinvertedlistsallowsfor proximity
searches,the identificationof phrases,andother
context-sensitivesearchoperators.This simple
structure,combinedwith basic operationssuch
as set-union and set-intersect, support the
implementation of rather powerful keyword
based search engines.  

XML documentscontainrich informationabout
documentstructure. The objectiveof the XML
InformationRetrievalSystemthatwedescribein
this paperis to facilitate accessto information
that is based on both content and structural
constraints.We extendtheInvertedFile scheme
in a naturalmanner,to storeXML contextin the
inverted lists. 

2. XML File Inversion
In ourschemeeachtermin anXML documentis
identified by 3 elements. File path, absolute
XPath context, and erm position within the
XPath context.

The file path identifies documents in the
collection; for instance:

C:/INEX/ex/2001/x0321.xml

The absoluteXPath expressionidentifies a leaf
XML elementwithin the document,relative to
the file’s root element: 

/article[1]/bdy[1]/sec[5]/p[3]

Finally, term position identifies the ordinal
position of the term within the XPath context.  

One additional modification that we adopted
allowed us to support queries on XML tag
attributes. This is not a strictly contentsearch
feature, but rather structure oriented search
feature.For instance,it allowsusto queryon the
2nd namedauthorof an article by imposingthe
additional query constraintof looking for that
qualificationin theattributeelementof theXML
authorelement. The representationof attribute
values is similar to normal text with a minor
modificationto theXPathcontextrepresentation
– the attributenameis appendedto the absolute
XPath expression.  For instance: 

    article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]

Here the character‘@’ is usedto flag the fact
that “rid” is not an XML tag, but rather an
attribute of the preceding tag <ref>.  

An inverted list for a given term, omitting the
File path and the Term position, may look
something like this:

Context
XPath

article[1]/bdy[1]/sec[6]/p[6]/ref[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@type[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/da
y[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/@id[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/ti[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/obi[1]

In principle at least,a single table can hold the
entire cross referencelist (our inverted file).
Suitable indexing of terms can support fast
retrieval of term inverted lists. However, it is
evidentthat there is extremeredundancyin the
specification of partial absolute XPath
expressions(substrings). Thereis also extreme
redundancyin full absoluteXPath expressions
where multiple terms in the same document
sharethe sameleaf context (e.g. all terms in a
paragraph). Furthermore, many XPath leaf
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contextsexist in almost every document(e.g.
/article[1]/fm[1]/abs[1]).

We have chosento work with certain imposed
constraints. Specifically, we aimed at
implementingthesystemon a PCandbaseit on
theMicrosoft Accessdatabaseengine. This is a
widely availableoff-the-shelfsystemandwould
allow thesystemto be usedon virtually any PC
running under any variant of the standard
Microsoft Windows operating system. This
choiceimplied a strict constrainton the sizeof
the database– the total size of an Access
databaseis limited to 2Gbyte. This constraint
implied that a flat list structurewas infeasible
andwe hadto normalisetheinvertedlist tableto
reduce redundancy.  

3. Normalized Database Structure
The structureof the databaseusedto store the
invertedlists is depictedin Figure1. It consists
of 4 tables. TheTerms tableis thestartingpoint
of aqueryon a giventerm. Two columnsin this
table are indexed- The Term column and the
Term_Stem column. The Term_Stem column
holdsthe Porterstemof the original term. The
List_Position is a foreign key from the Terms
tableinto theList Table. It identifiesthestarting
positionin theinvertedlist for thecorresponding
term. The List_Length is the number of list
entries correspondingto that term. The List
table is (transparently)sortedby Term so that
the inverted list for any given term is
contiguous. As an aside,the maintenanceof a
sorted list in a dynamic databaseposessome
problems,but theseare not asseriousasmight
seemat first, and althoughwe have solvedthe
problemit is outsidethe scopeof this paperand
is not discussedany further. A searchproceeds
as follows. Given a searchterm we obtain a
startingpositionwithin the List table. We then
retrieve the specified number of entries by
reading sequentially.

The invertedlist thus obtainedis Joined (SQL)
with the Document andContext tablesto obtain
the completede-normalisedinvertedlist for the
term.The XPathcontextis thencheckedwith a
regular expression parser to ensure that it
satisfies the topic’s <Title> XPath constraints.

Theretrievalby Term_Stem is similar. First we
obtain the Porter stem of the search term.

Figure 1: DatabaseSchemafor XML Inverted
File.

Thenwe searchthelist by Term_Stem – usually
getting duplicatematches. All the lists for the
duplicate hits on the Terms table are then
concatenated. Phrasesand other proximity
constraintscanbe easilyevaluatedby using the
Context_Position of individual termsin the List
table.

We have not compressedXPath expressionsto
minimise the extreme redundancyof XPath
substrings in the Context table. With this
normalizationthe databasesize was reducedto
1.6GByte and within the Microsoft Access
limits. 

5. The CASQuery Engine
Beforediscussingthe implementationdetailsof
the CASQuery engine it is necessary to
introducesometerminology. We then describe
the implementation of the search engine.

5.1 Terminology
• XPath Query: An XPathQuery is a query

that meetsthe criteria of the INEX query
specification.It can be considereda subset
of the W3C’s XPath language.

• Step: A Step is a componentof an XPath
query that specifies some Axis (child,
descendant, descendant-or-self etc.) a
NodeTest(e.g. a NameTextthat tests the
nameof an element)and optionally some
Predicate

• Path: A Path is a sequential list of Steps
• Predicate: A predicatecontainsa filter that

specifiessomecondition that a node must
meetin-orderto satisfyit. This filter maybe
an “about” function or an equality
expression.

• Context: The context for an elementis an
absoluteXPathexpressiondenotedby a list
of child stepswith a numerical index e.g.
“/article[1]/bdy[1]/sec[1]/p[4]”

• ReturnElement: A ReturnElementis an
element(qualified by the documentname
and a context) that satisfies the full path
expressionof a query (or query fragment)
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not including any path expression in a filter.
The context of the ReturnElement is the one
returned by the query engine to the user.

• SupportElement: A SupportElement is an
element (qualified by the document name
and a context) that satisfies the full path
expression of a query (or query fragment)
including any path expression in a filter.
The context of the ReturnElement not
returned to the user but can be used to
“support” the validity of the ReturnElement
(in other words: shows why the
ReturnElement was in fact returned).

The search engine was designed to operate on
the <Title> element of CAS topics. It operates
in the same manner for both strict (SCAS) and
vague (VCAS) interpretation of the queries. The
only difference is in the definition of
equivalence tags: 
    SCAS Equivalent tags:

• Article,bdy
• p|p[1-3]|ip[1-5]|ilrj|item-none
• sec|ss[1-3]
• h|h[1-2]a?|h[3-4]
• l[1-9a-e]|dl|list|numeric-list|numeric-

rbrace|bullet-list
    VCAS Equivalent tags:

• Article,bdy,fm
• sec|ss[1-3]|p|p[1-3]|ip[1-5]|ilrj|    item-

none
• h|h[1-2]a?|h[3-4]
• yr|pdt 
• snm|fnm|au
• bm|bibl|bib|bb
• l[1-9a-e]|dl|list|numeric-list|numeric-

rbrace|bullet-list

5.2 Parsing the Query
We used the Programmar[2] parser development
toolkit to generate a parser for XPath[3] queries.
Programmar accepts a Backus Naur Form (BNF)
grammar as input and is able to generate a parser
that can parse an instance of that query into a
parse tree. The Programmar library then
provides an API to access and walk the parse
tree that it constructed.

We used the XPath BNF grammar as defined by
the W3C as input to the Programmar IDE. Some
small modification to the BNF syntax was made
in order to make the task of walking the parse
tree and gathering the required information
simpler. 

Our approach was to walk the parse tree and
construct an abstract syntax tree, which
represents that same query but at a higher level
of abstraction than the parse tree generated by
the Programmer toolkit. Representing the query
at a higher level of abstraction meant that

implementing the query engine that processes
that query was made simpler.

5.3 The Abstract Syntax
The abstract syntax was contained within a
separate module that is kept independent of the
QueryEngine that processes it. Thus we allow
for the possibility that the abstract syntax for
XPath queries may be utilised in other
applications. For example it would be possible to
implement a more traditional XPath processor
on top of this abstract syntax. Therefore there is
a dependency from the Query Engine to the
Abstract Syntax package but no reverse
dependency.

The basic structure of an XPath query (in the
abstract syntax) is that it consists of a Path that
contains a list of Steps. This is consistent with
the terminology used by the XPath standard.
Steps must contain a node test – and may also
contain zero to many filters (or predicates).

5.4 Evaluateable Fragments
Once the XPath parser has constructed the
abstract syntax, the query engine performs one
further transformation on the query before
executing. The path, or list of steps, must be
broken down into EvaluateablePathFragments.
Each step in the query that contains an
EvaluatableExpression will be treated as the last
step in an EvaluateablePathFragment.

An EvaluatableExpression is a step filter that
can be evaluated by the QueryEngine. 

In our implementation we are using an index of
inverted lists that map a term to a list of contexts
(full absolute XPath path plus document name).
Therefore, for a filter to be evaluateable it must
filter based on some term that can be looked up
in the index. For example the filter:

/article/bdy[count()=1]
would not be evaluateable in our system as no
terms is given in the filter. However the filter:

/article//yr[. = “1999”]  

is evaluateable as the term “1999” will be in the
index.

As an example, the query:

//article[//yr=’1999’]//sec[about(./,‘DEHOMAG')]

   would be broken down into two fragments:

1. //article[//yr = “1999”)] 
2. //article//sec[about(//p, 'DEHOMAG')]
Notice that the second fragment contains the full
path including the “article” step.

Next each EvaluatablePathFragment is evaluated
– the eval() method will return a set of nodes
whose contexts match the full path for that
fragment. For example fragment 2 above may
return a node with the context:

/article[1]/bdy[1]/sec[2]
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5.5 Merging Fragments
After each fragment is evaluated independently,
we will have a list of node sets (one for each
fragment) that must be merged. For example
when merging the two sets from the above
fragments, we will wish to include only those
elements returned from the first fragment if they
also have a descendent node contained in the set
returned from the second fragment. In fact, what
we need to return are elements with a context
that matches the full path of the last fragment (in
the case above they must have a context that
matches //article//sec – the last named element in
the context must be “sec”). What is meant by
“including elements from the first fragment” is
that the SupportElements for those
ReturnElements in the first set will be added to a
descendant ReturnElement (if it exists) in the 2nd

set.

For example: let us say that the first set contains
a ReturnElement with the context “/article[1]”
and that ReturnElement has an attached
SupportElement of “/article[1]/fm[1]/yr[1]” (for
the purposes of this example assume that all
contexts are in the same document. Then let us
say that the second set contains a ReturnElement
of “/article[1]/bdy[1]/sec[2]”. This element is
supported by /article[1]/bdy[1]/sec[2]/p[3]. In
this case the ReturnElement in the 2nd is a
descendant of the ReturnElement in the 1st set –
so we can merge the supports from the 1st

ReturnElement into the supports of the 2nd and
we will end up with a ReturnElement
(“/article[1]/bdy[1]/sec[2]”) that has 2 supports
(“/article[1]/fm[1]/yr[1]” and
“/article[1]/bdy[1]/sec[2]/p[3]”).

When merging sets we must determine whether
to do a strict merge or a union merge. For
example if we need to merge the 2 fragments
above, fragment 1 is “strict” – all elements that
we merge from fragment 2 must also have an
ancestor “article” element that contains a “yr”
element for “1999”. 

The last fragment will always require a strict
merge. This is because of the requirement stated
above, that all elements returned by the query
must have a context that satisfies the full path of
the query.

However, a Union merge can be appropriate
when we are merging two fragments where
neither are the last fragment in the query, and
both are non-strict (for example both only
contain “about()” filters. In this case all
ReturnElements will be retained, whether an
element returned from the second fragment is a
descendant of some element from the first
fragment or not.

5.6 Support Elements
Support elements are elements that were found
to contain at least one instance of a term that was

specified in the filter. The element that contains
this term must satisfy the full path for that filter
including the context path. 

In our example above the first filter (first
fragment) looks for occurrences of the term
“1999” in elements whose context matches the
path “//article//yr”. If we find that the term
“1999” occurs in an element with the context
“/article[1]/bdy[2]/sec[1]/p[1]” this is not a valid
support for this filter. However, if we find a
single occurrence of “1999” in the context
“/article[1]/fm[1]/yr[1]” this would be a valid
support. 

Once we have removed all supports that do not
represent valid supports (according to the filter),
we then can create the return elements for this
filter. In this case the return path is “//article” so
the return element would have the context
“/article[1]” with an attached support element
with the context “/article[1]/fm[1]/yr[1]” and
having one “hit” for the term “1999”. It is
possible that a return element contains more than
one support element. For example, if within the
same document we find another element with
the context “/article[1]/fm[1]/yr[2]” that contains
2 hits on the term “1999” we would add another
support element to the return element and record
2 hits on it. (This example is spurious as in the
case of an equality constraint you actually only
want to find one hit on the term. However it
would make sense in the context of the “about()”
filter).

5.7 Ranking
The approach we adopted in ranking was a
multi-stage sorting process. 

• First sort by filter satisfaction.
• For ReturnElements that satisfy the same

number of filters - sort by number of
distinct terms and phrases that were hit.

• For ReturnElements with the same number
of filters satisfied and the same number of
distinct terms -  calculate a score based on
total number of terms hit adjusted by a
factor that penalises terms that are very
common in the document collection.

5.7.1 Filter Satisfaction
A ReturnElement is considered to have satisfied
a filter where it is a valid ReturnElement for that
filter, and it has a least one SupportElement that
has recorded a hit for at least one term in the
filter. A valid ReturnElement is one whose
context matches the path expression of the filter.

In its simplest form, the filter satisfaction
algorithm will rank higher a ReturnElement that
has satisfied a greater number of filters. There
are a number of refinements to this rule:

• Where two filters appear as Predicates
to different Steps in the query
expression (e.g. //article[//yr = “1999”]
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//sec[about(./, 'DEHOMAG')] ), each
one of these filters that is satisfied will
count towards the overall  filter
satisfaction count. 

• Where two filters appear in the same
Predicate and they are and-ed together
(e.g. //article//sec[[//yr = “1999”]  AND
about(./, 'DEHOMAG')] ),  each one of
these filters that is satisfied will count
towards the overall  filter satisfaction
count. 

• Where two filters appear in the same
Predicate and they are or-ed together
(e.g. //article//sec[[//yr = “1999”]  OR
about(./, 'DEHOMAG')] ),  if both
filters are satisfied only one will be
counted towards the overall  filter
satisfaction count. 

• If any unwanted terms are hit in a
SupportElement for the ReturnElement,
then the filter satisfaction count will be
reduced by a count of 2.

5.7.2 Distinct terms and
phrases 

This algorithm is a second stage sort after the
filter satisfaction sort. Where two
ReturnElements have the same filter satisfaction
count, the distinct terms algorithm is applied to
determine their relative rank. Here we rank
ReturnElements based on the number of distinct
terms and phrases that they satisfy. 

If a SupportElement has recorded hits for a
particular term, its containing ReturnElement
will have it’s distinct terms and phrases count
incremented by one. Take for example the
query: 

//article[about(.//st,'+comparison') and 

     about(.//bib,'"machine learning"')]

Let us take the case where we have two
ReturnElements that satisfy both filters. The first
ReturnElement has supports that hit the terms
“comparison” and “machine”. The second
ReturnElement has supports that hit the terms
“comparison”, “machine” and “learning”. In this
case the second ReturnElement will be ranked
higher. Note that it does not matter how many
times each term is hit – it only matters if a term
was hit at least once, or not at all.

The distinct terms and phrases count secondly
takes into account the number of phrases that a
ReturnElement has supports for. For example,
take the query and the second ReturnElement we
discussed above. If this ReturnElement also
contained a support for the phrase “machine
learning” - that is to say a context was found
where the words “machine” and “learning”
appear directly adjacent to each other – the
distinct terms and phrases count algorithm will
increment the count by one.

5.7.3 Scorer penalizes
frequent terms

The final stage algorithm of the 3 stage sort is
only invoked where two ReturnElements have
the same filter satisfaction count and distinct
terms and phrases count. This algorithm
calculates a score based on the total number of
instances that terms were hit by
SupportElements. The total number of hits for a
term is normalized based on heuristic that takes
into account how frequently that term occurs in
the entire documents collection. This
normalization factor is calculated as follows:

• Hits: Total number of instances that this
term appears in the ReturnElements
supports.

• TermFrequency: Count of number of
times this term appears in total
document collection

• TermFrequencyConstant: A constant
(determined using heuristics)

• Score: The ranking score for this
ReturnElement

• Terms: The set of terms the score is
based on

• i:   Denotes the term 

• ScarcityMultiplier = 

1 + (TermFrequency /
TermFrequencyConstant)

• Score =
� i in Terms (hitsi * ( 1 /

ScarcityMultiplieri))

5.8 Discussion on Ranking
Our overall ranking strategy was based
on a series of heuristics. 
5.8.1 Filter Satisfaction 

It is clear that our strategy places a high degree
of importance to whether a particular collection
of query terms are aggregated into one filter or if
they are put in separate filters. For example, let
us take the following two queries:

//article[about(.,'clustering distributed') and about(.,
'java')]

  //article[about(.,'clustering distributed java')]

Whilst these filters may appear logically
equivalent, our filter satisfaction algorithm will
mean that lists returned from each query
formulation will vary significantly in how they
are sorted. With the first query, the term “java”
is raised to the same level of importance as that
of both the other terms (“clustering” and
“distributed”). By contrast, with the second
query, a result that hits “clustering” and
“distributed” (but not “java”) will rank equal to a
result that hits “distributed” and “java” (but not
“clustering”). However, if the first query
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formulation is usedthe secondresult would be
rankedhigher as it satisfiestwo filters whereas
the first result only satisfies one.

We believethis rankingstrategyworkswell due
to thepsychologyinvolved in creatingthesetwo
filters. It can be inferred that when a query
writer aggregatesterms into one filter he/she
considers all terms so aggregatedof equal
importance.In contrast,where a query writer
puts termsin separatefilters they are indicating
that whilst eachfilter shouldbe treatedof equal
importance,terms containedin separatefilters
are not necessarily of equal importance.

The secondthing worth discussingabout the
filter satisfactionalgorithm is the way it treats
or-ed filters versus the treatment for and-ed
filters. Let us takeanothertwo filters by way of
example:

//article[about(.,'clustering) and
             about(.,’distributed')]//sec[(about(‘ja
va’)]
//article[about(.,'clustering) or
             about(.,’distributed')]//sec[(about(‘ja
va’)]

Further,let us assumewe have returnElement1
thathits the terms“clustering” and“distributed”
and returnElement2 that hits the terms
“clustering” and “java”. 

In thiscasequery1 will rankreturnElement1and
returnElement2 equal (both with a filter
satisfaction count of 2). However query 2 will
treatthesequite differently. The returnElement2
will still havea filter satisfaction count of 2 but
thereturnElement1 will havea filter satisfaction
count of only one.

Again webelievethis makesintuitive sense.The
secondquery constructionimplies that the user
wantsoneof “clustering” or “distributed” to be
hit – theydon’t carewhich – andif theyareboth
hit then this is not as importantas if “java” is
also hit. It is interesting to note that the
following query would be equivalent to the
second query:

//article[about(.,'clustering distributed')]//
            sec[(about(‘java’)]

One final thing to note about this algorithm is
how it treats unwanted terms (i.e. terms
precededby a minussign).Thealgorithmis very
harsh in how it treats the occurrenceof such
terms (by deducting 2 from the overall filter
satisfaction count). However, We have found
this workswell in practiceasthespecificationof
suchunwantedtermsby thequerywriter appears
to indicate a very strong aversion to that term.

5.8.2 Distinct Terms and
Phrases

The distinct terms and phrases algorithm is
important in two respects:

• It places a greater importance on the
number of distinct terms hit, than on the
total number of instances that a term or
terms are hit. (This can also be said
about the filter satisfaction algorithm). 

• Phrases are given prominence by the
fact that they in effect count as an
additional distinct term.

Let us considerthe consequencesof first point
above. Take as an example the filter
“//article[about(.,'clusteringdistributed java')]”.
Let us saythat a ReturnElementrecordshits on
the term “clustering” and “distributed”; both
termswith 100 instancesof this term occurring
in the return’ssupports– a total of 200recorded
hits.Thenlet ustakeanotherReturnElementthat
recordsjust the one instanceof a hit on eachof
“clustering”, “distributed” and “java”. It may
surprisethat this secondReturnElementwill be
rankedhigher when it only recorded3 separate
hits versus the 200 of the first ReturnElement.

However,we believe this strategyhas worked
quite well in reality. What we have found that
this in effectgivesa greaterprominenceto those
terms that do not occur frequently – that is it
weights infrequent terms more heavily than
frequentterms.This makesintuitive senseasan
infrequentterm that appearsin a query is more
likely to aid the precision of the recall than
frequentterms.The more frequenta term is in
theoverall documentcollection the lessvalueit
has to determining the requirements of the user.

As regards the 2nd point above about giving
phrases prominence, this should be self
explanatory.Phrasesoccurmuchlessfrequently
thanindividual terms,so it makessenseto treat
them with a level of importance equivalent to the
individual terms.

5.8.3 Scorer penalizes
frequent terms

Finally we discussthe algorithmthat is invoked
where the above two algorithms still cannot
separatetwo equally rankedReturnElements.It
is only in this final stagealgorithmthat we take
into accounthow “strong” the supportis for a
ReturnElement– that is how manyinstancesof
hits on terms have been recorded in a
ReturnElement’s SupportElements.

As per our discussionfor the distinct terms and
phrases algorithm,herewe alsowish to penalize
infrequentterms.Thealgorithmwe developedto
do this was refined by running a series of
experimentsandrunningour own assessmenton
the results to see if the modified algorithm
improved the results. The
TermFrequencyConstant gives us the ability to
adjust the normalization factor for penalizing
frequent terms.

klas
6

klas
6

klas
6

klas
6

klas
6



5.9 Exceptions
Some INEX topics included conditions that
could not be easily evaluated in the absence of
external knowledge. For instance, a conditions
such as about[.//yr,2000]. Such a condition can
be easily evaluated if a user, or an external
schema can be consulted, in which the meaning
of “about” in relation to <yr> can be determined.
Furthermore, in practical terms, the
implementation must take account of the type of
the element (e.g, is it numeric or
alphanumeric?).  

The treatment of equality functions involving
years (i.e. a "yr" tag) is straightforward: a string
comparison is made between the value in the tag
and the constant. However, the treatment of
inequality functions (i.e. those involving
inequality operators "<", ">", "<=", ">=") is
more complex. The greater than operator is
undecideable as the upper range of year values
to search the index for is unbounded. The less
than operator may be decideable if we take the
year 1 as the lower bound - but in this case the
practical consequence of having to search the
index for upwards of 1,990 terms is that we need
to define a more reasonable lower bound. As
such, we allowed for the lower and upper bound
of year terms to be configured via our
configuration file. This results in a managable
range of year terms for which we have to search
the index for any reasonable year based
inequality predicate. The “about” was also
defined in a configuration file (3 years either
side of specified “about” year).

6. Experimental Results
The system was only designed for Content and
Structure queries (CAS). Only the <Title>
element was used in topic evaluation. The
system was not designed to take advantage of
information contained in the <Description> and
<Keywords> elements of a Topic.

6.1 Strict Content and Structure
(SCAS)

The best results were obtained with the SCAS
query and strict quantization metric. The average
precision was 0.26 (the submission was ranked
3rd.) With the Generalized quantization metric
the system was ranked 8th. These results are
somewhat surprising given that we only used the
<Title> element of a topic. One would have
expected the use of additional keywords from
the <Description> and <Keywords> elements to
assist retrieval and ranking.

Figure 2: Retrieval results for Strict Content
and Structure (SCAS) topics, quantization
Strict

Figure 3: Retrieval results for Strict Content
and Structure (SCAS) topics, quantization
Generalized.

6.2 Vague Content and Structure
(VCAS)

Results are not available at the time of writing
this pre-workshop paper.
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7. Discussion
Thereis no questionthat the formulationof the
<Title> elementof anXML topic at INEX 2003
is not enduseroriented. However,it doesallow
for exact specificationof structureand content
constraints.We wereableto implementa search
engine that evaluatesCAS <title> expressions
with good accuracy and reasonableresponse
time. Furthermore,we were able to construct
the searchengine on top of a generic XML
invertedfile system. This allows theapplication
of the system to XML collections without
explicit reference to the underlying XML
Schema(or DTD). It seemshoweverthat in the
definition of INEX CAS Topics the authorsdid
not always specify the intent of the topic (as
evident in the topic’s narrative) in an accurate
manner. This ultimately musthaveleadto low
precision (across all submissions from all
participants). 

We were not able to solve the problem in a
completelygenericfashionbecausesometopics’
structural constraints could not be easily
interpretedin a genericmanner(e.gtreatmentof
about conditions over <year>). This problem
canbe overcometo someextentwith the useof
an XML Schema in future evaluations at INEX.  
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ABSTRACT 
In this paper we describe the implementation 
of a distributed search engine for XML 
document collections.  The system is based on 
a generic P2P collaborative computing 
framework.  A central server coordinates query 
and search results distribution. The server 
holds no documents nor does it hold any 
indexes.  The document collection is 
distributed amongst multiple PC based 
workstations, where it is also indexed and 
searched. The system is scalable to databases 
several orders of magnitude larger than the 
INEX collection, by using a system of standard 
networked PCs. 

Keywords: P2P, INEX, XML, Distributed 
Database, Information, Retrieval, Inverted 
File, XPath, Assessment, Evaluation, Search 
Engine 
1. Introduction 
Web search engines such as Google are 
enormously valuable in allowing ordinary 
users to access information on a vast array of 
topics. The enormity of the information being 
searched and the massive number of clients 
wishing to make use of such search facilities 
means, however, that the search mechanisms 
are inherently constrained. The data being 
searched needs to be a priori indexed. 
Searching is limited to finding documents that 
contain at least one occurrence of a word from 
of a list of words somewhere within its body. 
The exact relationship of these words to one 
another cannot be specified. These limitations 
mean that it is often difficult to specify exactly 
what you want, consequently clients are 
overwhelmed by an avalanche of query results 
– if users don’t find what they are looking for 

in the first couple of pages of results they are 
likely to give up. 

XML documents contain rich structural 
information that can be used by information 
retrieval system to locate documents, and part 
thereof, with much greater precision than text 
retrieval systems can.  However, systems 
capable of searching XML collections by 
content are typically resource hungry and are 
unlikely to be supported extensively on central 
public servers for some time to come, if at all. 

Peer to Peer (P2P) file sharing systems such as 
KaZaA, Gnutella and Napster enable 
documents to be searched and accessed 
directly from end user’s PCs, i.e., without 
needing to publish  them on a web server, but 
again the indexing for retrieval is a priori. This 
is fine if you are searching based on well 
defined metadata keys such as song title or 
performer, but not if you are trying to search 
based on the content of the data.  

The greatest degree of search specificity is 
achieved if the search engine can potentially 
access the content of the entire collection for 
each and every query. Obviously this is 
infeasible for huge document collections such 
as the entire WWW. If, however, we limit 
ourselves to smaller collections such as 
documents archived by a “community” of 
individuals that are collaborating on some 
project or share some common interest, then 
such a precise Information Retrieval paradigm 
is feasible and highly desirable.    

The P2P framework that we propose is based 
on search agents that visit the workstations of 
participating individuals to perform custom 
searches. Individuals wishing to perform a 
search can choose from a library of “standard” 
search agents, or they can implement their own 

klas
9

klas
9

klas
9

klas
9

klas
9



agent that implements an arbitrarily 
sophisticated search algorithm. The agents 
execute on the individual workstations within 
our P2P host environment that “sand-boxes” 
them, preventing them from doing “harm” to 
the workstations and allowing the workstation 
owners to control exactly which “resources” 
can be accessed. Resources potentially 
accessed include files, directories and 
databases. The key advantages of our system 
compared to web search engines such as 
Google are: 

- Arbitrarily sophisticated algorithms can be 
used to perform highly selective searches, 
since the query is known before the actual 
document collection is scanned. 
- The documents don’t have to be explicitly 
published to a central server – they are 
accessed in place. This saves time and effort 
and means that working documents can be 
made immediately available from the time they 
are created, and work can continue on those 
documents locally while still being externally 
accessible. 
- Volunteers have the option to only partially 
publish documents. This means they allow a 
client’s search agent to examine their 
documents, but they limit the response that 
such search agents can return to the client. The 
response could be as limited as saying “Yes - I 
have a document that matches your query”. In 
most cases, the agent will return some form of 
URL which uniquely identifies the matching 
document, but our framework doesn’t in itself 
provide a mechanism for the client to retrieve 
that document from the volunteer. The exact 
mechanism by which such documents are 
retrieved is beyond the scope of this paper, but 
it could for example be a manual process, 
whereby the owner of the volunteer 
workstation will access each such client 
request based on the identity of the client and 
the document being retrieved. This might 
happen, for example, in a medical setting with 
doctors requesting patient records from other 
doctors, or in a law enforcement setting with 
police agencies requesting criminal histories 
from other jurisdictions. 
 
The remainder of this paper is organized as 
follows.  In section 2 we describe the system 
underlying the distributed search engine.  In 
section 3 we describe the XML search engine 
that is distributed and executed by search 
agents on the distributed database.  In section 4 
we discuss the results of testing the systems 
against the INEX collection.  In section 5 we 
discuss and summarize the lessons learnt from 
the INEX exercise.  
  
 

2. System Architecture  
Our system is termed P2P in that the actual 
searching is performed on peer nodes. The 
internal architecture of our system is, however, 
client/server based - for a number of reasons. 
The underlying architecture of our system is 
illustrated in Figure 1. The client PCs that 
make up the “leaves” of system belong to the 
individuals in the community and can play two 
distinct roles; they can be a searcher or they 
can volunteer to be searched. A searcher is a 
PC that submits queries to the system. The 
volunteers are the PCs on which the documents 
reside and on which the queries are processed. 
Individual PCs can play either or both of these 
roles at various points in time. PCs volunteer 
themselves to be searched typically only when 
they are otherwise idle. This is a form of cycle 
stealing, as the execution of the search agents 
may consume considerable CPU time and 
memory bandwidth of the machine while it is 
running.  

The clients of the system - the searchers and 
the volunteers come and go over time; the 
search server is the only part  of the system that 
remains constant. It acts as a central point of 
contact for searchers wishing to submit queries 
and for volunteers willing to be searched. It 
also acts as a repository for queries waiting to 
be processed and query results waiting to be 
retrieved. At the point in time when a searcher 
submits a query, there may be some volunteers 
“currently connected” to the server that would 
be willing to process that query immediately. 
In such a case some results may be able to be 
returned to the searcher almost immediately 
(allowing of course, for the time to perform the 
search on the volunteer machines - which can 
be arbitrarily long depending on the 
complexity of the search algorithm and the size 
of the document collection being searched on 
each PC).  

Often, however, the relatively small set of set 
of volunteers that are currently connected, will 
either produce no results for the query, or at 
least will produce no results that are 
satisfactory to the searcher (note that this is 
made more probable by the high degree of 
query specificity that is possible with an agent 
based search framework). In such a case, we 
assume the searcher will often be willing to 
wait (minutes, hours, days or perhaps even 
weeks) for other volunteers to connect to the 
system and hopefully contribute interesting 
new results. This is the key difference between 
our distributed search engine and traditional 
cycle stealing systems. In a traditional cycle 
stealing system, all volunteers are considered 
equal – once a computational task has been 
carried out by one machine there is no point if 
having any other volunteer machine repeat that 
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Figure 1: System Architecture  
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same computation. In our distributed search 
system, however, each PC is assumed to 
archive a  

different set of documents – so even if a query 
has been processed on one volunteer, it still 
makes sense to keep that query around for 
other volunteers to process when they connect 
later.  

Having a query and results repository allows 
the submission of queries and results to be 
separated in time from the fetching and 
processing of those queries and results. Having 
a central server means that once a client has 
submitted a query, it can disconnect from the 
system, and only reconnect much latter when it 
expects to find a significant collection of 
results. More importantly, the wide spread use 
of corporate firewalls will often mean that 
PC’s performing searchers cannot directly 
communicate with many potential volunteers 
and vice versa. Having a central server that is 
able to receive HTTP requests from anywhere 
on the Internet has the effect of providing a 
gateway for searchers and volunteers to work 
together who would otherwise be unable to 
communicate. Note, installing a web server on 
all searcher and volunteer PC’s would not 
achieve the same effect – a HTTP request 
message generally can not be sent to a machine 
behind a firewall, even if that machine hosts a 
web server.   

The search server exposes interfaces to 
searchers and volunteers as SOAP web 
services transported using HTTP. Searchers 
can submit queries and fetch results and 
volunteers can fetch queries and submit results. 
All communication is initiated by either the 
searchers or the volunteers, and connections 

are not left open; i.e, the server can’t push 
either queries or results to the searchers or the 
volunteers - they must request them. From the 
volunteer’s perspective, the server is stateless. 
The server maintains neither a list of currently 
“connected” volunteers, nor a list of all 
potential volunteers. Anyone can volunteer at 
any time (subject to any authentication that the 
server may implement to ensure that the 
volunteer is a member of “the community”). 
When a volunteer connects to the server (after 
having been “disconnected” for a period of 
time) it receives a list of all queries that have 
been submitted to the server since that 
volunteer last connected. Each volunteer is 
responsible for keeping a “time-stamp” (in 
reality a sequence number allocated by the 
server) that represents the point in time at 
which that volunteer last requested queries 
from the server. In this way, the server is 
spared from maintaining information specific 
to each volunteer yet is able to respond to 
requests from individual volunteers in a 
personalized manner. 

The time period that a query remains on the 
server is determined by a number of factors. 
Firstly, the searcher can specify a “time -to-
live” when they submit the query. This may be 
overridden by the server which may dictate a 
system wide maximum “time -to-live” for all 
queries. Individual volunteers may also 
implement their own policies, such as refusing 
to process queries that are older than a certain 
date. Finally, the searcher can manually retract 
a query from the server as soon as they have 
received satisfactory result(s) to their query or 
if they realize that the query was incorrect or 
too inexact.   
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3. The XML Search Engine  
The search engine is based on an XML 
inverted file system, and a heuristic approach 
to retrieval and ranking.  These are discussed 
in the following sections. 

3.1. The XML Inverted File 
In our scheme each term in an XML document 
is identified by 3 elements.  File path, absolute 
XPath context, and term position within the 
Xpath context. 

The file path identifies documents in the 
collection ; for instance : 

C :/INEX/ex/2001/x0321.xml  

The absolute Xpath expression identifies a leaf 
XML element within the document, relative to 
the file’s root element:  

/article[1]/bdy[1]/sec[5]/p[3] 

Finally, term position identifies the ordinal 
position of the term within the Xpath context.   

One additional modification that we adopted 
allowed us to support queries on XML tag 
attributes.  This is not a strictly content search 
feature, but rather structure oriented search 
feature. For instance, it allows us to query on 
the 2nd named author of an article by imposing 
the additional query constraint of looking for 
that qualification in the attribute element of the 
XML author element.  The representation of 
attribute values is similar to normal text with a 
minor modification to the Xpath context 
representation – the attribute name is appended 
to the absolute Xpath expression.  For 
instance:  

   article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1] 

Here the character ‘@’ is used to flag the fact 
that “rid” is not an XML tag, but rather an 
attribute of the preceding tag <ref>.   An 
inverted list for a given term, omitting the File 
path and the Term position, may look 
something like this: 

Context 
Xpath 

article[1]/bdy[1]/sec[6]/p[6]/ref[1] 
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1] 
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@type[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/day[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15] 
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/@id[1] 
 

In principle at least, a single table can hold the 
entire cross reference list (our inverted file).  

Suitable indexing of terms can support fast 
retrieval of term inverted lists.  However, it is 
evident that there is extreme redundancy in the 
specification of partial absolute Xpath 
expressions (substrings).  There is also extreme 
redundancy in full absolute Xpath expressions 
where multiple terms in the same document 
share the same leaf context (e.g. all terms in a 
paragraph).  Furthermore, many Xpath leaf 
contexts exist in almost every document (e.g. 
/article[1]/fm[1]/abs[1]). 

We have chosen to work with certain imposed 
constraints.  Specifically, we aimed at 
implementing the system on a PC and base it 
on the Microsoft Access database engine.  This 
is a widely available off-the-shelf system and 
would allow the system to be used on virtually 
any PC running under any variant of the 
standard Microsoft Windows operating system.  
This choice implied a strict constraint on the 
size of the database – the total size of an 
Access database is limited to 2Gbyte.  This 
constraint implied that a flat list structure was 
infeasible and we had to normalise the inverted 
list table to reduce redundancy.   

3.2 Normalized Database Structure  
The structure of the database used to store the 
inverted lists is depicted in Figure 1.  It 
consists of 4 tables.  The Terms table is the 
starting point of a query on a given term.  Two 
columns in this table are indexed - The Term  
column and the Term_Stem  column.  The 
Term_Stem column holds the Porter stem of 
the original term.  The List_Position is a 
foreign key from the Terms  table into the List 
Table.  It identifies the starting position in the 
inverted list for the corresponding term.  The 
List_Length is the number of list entries 
corresponding to that term.  The List table is 
(transparently) sorted by Term so that the 
inverted list for any given term is contiguous.  
As an aside, the maintenance of a sorted list in 
a dynamic database poses some problems, but 
these are not as serious as might seem at first, 
and although we have solved the problem it is 
outside the scope of this paper and is not 
discussed any further.  A search proceeds as 
follows. Given a search term we obtain a 
starting position within the List table.  We then 
retrieve the specified number of entries by 
reading sequentially. 

The inverted list thus obtained is Joined (SQL) 
with the Document and Context tables to obtain 
the complete de-normalised inverted list for the 
term. The XPath context is then checked with a 
regular expression parser to ensure that it 
satisfies the topic’s <Title> XPath constraints. 

  The retrieval by Term_Stem is similar.  First 
we obtain the Porter stem of the search term. 
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Figure 2: Database Schema for the XPath 
based Inverted XML File . 

Then we search the list by Term_Stem – 
usually getting duplicate matches.  All the lists 
for the duplicate hits on the Terms table are 
then concatenated.  Phrases and other 
proximity constraints can be easily evaluated 
by using the Context_Position of individual 
terms in the List table. 

With this normalization the database size was 
reduced to 1.6GByte and within the Microsoft 
Access limits.  This is of course a trade of in 
performance since costly join operations may 
be necessary for the more frequent terms. 

3.3 Searching the Database 
The database structure enables the 
identification of inverted lists corresponding to 
individual terms.  Each term that appears in a 
filter of an INEX <Title> element has an 
associated Xpath context.  Terms  that appear 
in a <keywords> element of a topic  have the 
default context of /article.  With simple SQL 
statements it is easy enough to retrieve 
inverted lists for terms that satisfy a filter.   

3.3.1 SCAS topics 
Our search strategy for SCAS topics consists 
of several steps, as follows.   

We start by fragmenting the INEX <Title> 
element into several sub-queries, each 
corresponding to a filter on the path.  So, for 
instance: 
<title>//article[about(.//st,'+comparison')/ 
     bm[about(.//bib,'machine learning')]</title> 
 
is transformed to a set of 2 individual queries: 
S|//article|//article//st|+comparison 
R|//article/bm|//article//bm//bib|machine learning 
 
This formulation identifies two sub-queries, 
each with 4 parts delimited by a ‘|’. The S 
denotes a support element and the R denotes a 
Returned Element. The support element has 
the Xpath signature /article. The return 
element has the XPath signature /aticle/bm. 
The support element filter looks for elements 
with the Xpath signature //article//st, containing 
the term “comparison”.  The returned element 

filter looks for elements with the Xpath 
signature //article/bm//bib, containing the 
phrase “machine learning”.   
Strict compliance to the XPath signature of the 
various elements is enforced.  However, this is 
moderated by the use of equivalent tags.  
SCAS Equivalent tags: 

• Article,bdy 
• p|p[1-3]|ip[1-5]|ilrj|item-none 
• sec|ss[1-3] 
• h|h[1-2]a?|h[3-4] 
• l[1-9a-e]|dl|list|numeric-

list|numeric-rbrace|bullet-list 
 

Each of the elements is scored in the following 
way – we count the number of times that each 
term in the filter is found in the element.  If 
more than one term is found then the term 
counts are multiplied together.  This has the 
desired heuristic that elements containing 
many search terms are scored higher than 
elements having fewer search terms.  
The score of a returned element is the sum of 
the scores of all its support elements.  So in the 
example above, the score of a //article/bm  
element is the sum of all the corresponding 
//article//st elements (within the same 
<article>) and all //article/bm//bib elements 
(within the same <article> and same <bm>).  
At one extreme a returned element may be 
supported by numerous elements from all 
filters.  At the other extreme it may only have 
support in one term of the returned element 
filter.  We accept all such return elements as 
candidates for results. However, the returned 
elements are sorted first by the number of 
support filters that they satisfy and then by 
their score. 
Topics that make use of AND clauses and OR 
clauses in the <Title> are handled by 
generating separate query for each clause.  We 
do not distinguish between AND and OR and 
effectively allow ranking to take care of it.  
The heuristic justification is that if all terms 
appear then the score should be higher 
regardless of whether AND or OR were used.  
Also, if AND was specified, but only satis fied 
by some of the terms, we still want the 
partially matching elements as potentially valid 
results – after all, this may be the best that we 
can find.  
The <Keywords> element of topic is also used 
– it defaults to a query on the entire <article> 
and considered a support to all returned 
elements within the same article. 
3.3.2 VCAS topics 

The VCAS queries were treated in exactly the 
same manner as SCAS queries, except that we 
expanded the equivalence tag interpretation.   

VCAS Equivalent tags: 
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• Article,bdy,fm 
• sec|ss[1-3]|p|p[1-3]|ip[1-5]|ilrj|    

item-none 
• h|h[1-2]a?|h[3-4] 
• yr|pdt  
• snm|fnm|au 
• bm|bibl|bib|bb 
• l[1-9a-e]|dl|list|numeric-

list|numeric-rbrace|bullet-list 
 
3.3.2 CO Topics 
The CO topics were handled in the same 
manner as CAS topics.  However, all terms 
from both the <Title> and <Keywords> 
elements of the CO topic were combined to 
form a single query – after removing duplicate 
terms .  The return element was assigned the 
default XPath signature //* which means that 
any element in the article was returnable 
(subject to support).  For instance, topic 91 – 
 
<title>Internet traffic</title> 
<keywords>internet, web, traffic, measurement, 
congestion </keywords> 
 
   is transformed to the following query: 
 
R|//*|//article|Internet,traffic,web,measurement,   
congestion  
 
Every element with the context of //article (this 
includes descendents) and which contains at 
least one of the terms  in the query is suitable 
for return.  However, since only leaf nodes in 
the XML tree contain terms (with very few 
exceptions) there is a need to associate a score 
with other non-leaf elements in the tree in 
order to qualify them for selection.  The search 
engine propagates the score of matching 
elements upwards, recursively, to ancestor 
nodes, in the following manner.  If an ancestor 
has a single child it receives half the child’s 
score.  If it has multiple children it receives the 
sum of their scores.  In this manner, for 
instance, a section with multiple scoring 
paragraphs receives a score higher than any of 
its paragraphs and will be ranked higher.  A 
section having only one scoring paragraph will 
be ranked lower.  
3.3.4 Selection by Year 
Selection by year was treated as an exception. 
The search engine expands conditions with 
respect to years to allow for a range of years.  
It allows up to 5 years below for a Less Than 
condition, up to 5 years above for a Greater 
Than condition, and 2 years either side for an 
about condition.  Equality is treated strictly.  
This is necessary for two reasons. The inverted 
list structure does not support range queries so 
it is necessary to translate such conditions to 
explicit values that can be searched.  It is also 
not possible to interpret the about condition 

over <year> without some pre-conceived idea 
of what might be a reasonable year range. 
3.3.4 Term expansion 
The search engine can optionally expand 
keywords in one of two ways.  It can perform 
plural and singular expansion, or it can use the 
full porter stem (pre-stored in the database).  In 
the case of phrases, the program also attempts 
to construct an acronym.  So for instance, the 
phrase “Information Retrieval” generates the 
additional term “IR”.  A common writing 
technique is to introduce an acronym for a 
phrase and thereafter use the acronym for 
brevity.  For instance, at INEX, we defined 
“Strict Content and Structure” as “VCAS”. 
Subsequent references are to VCAS only.  So 
the idea here is to try and guess acronyms.  We 
use several simple rules that attempt to 
manipulate the phrase initials to construct a 
few acronyms .  If an acronym thus generated is 
found in the inverted list it is used as an 
additional term.   

4. Results 
Two aspects of the system were tested.  The 
precision/recall values were measured through 
the standard INEX evaluation process.  The 
performance of the distributed search engine 
was also tested on a distributed database. 

4.1 Performance 
The system was tested as a stand alone search 
engine in a single PC and on a distributed 
configuration.  On a single PC (Pentium 4, 
1.6GHz, 500MB RAM) the search times for 
topics varied between 5 seconds and one 
minute, depending on the number of terms and 
their frequency in the database.   

The database can be distributed in a logical 
manner by placing each of the 18 journals on a 
different PC.  Each search engine was set to 
return the N best res ults.  We used a threshold 
N=100, but this is a run-time argument.  The 
communications overhead of the system is 
about 5 seconds (pretty much fixed, given a 
reasonably fast connection.)  The search over a 
single journal is very quick and takes less than 
3 seconds. The INEX collection can thus be 
searched in less than 10 seconds even for the 
most elaborate topics. The total search time is 
pretty much upper limited by the longest 
search time on any of the distributed 
components.  Nevertheless, results arrive 
asynchronously, so the user can view early 
results before the entire distributed search is 
complete. 

The system scales up well.  If the full database 
is duplicated on several PCs the search time is 
virtually constant – as long as the number of 
results returned is reasonably capped. 
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Results are ranked independently by each 
distributed search component.  Consequently, 
the results can be displayed in order, either 
globally, or within each Journal.  A difference 
between the single complete database and the 
distributed database results can arise if there 
are useful results in one journal that are ranked 
below the allowed threshold N.  However, this 
difference will only affect the lower end of the 
ranked list and in any case this problem can be 
easily circumvented.  An obvious variation is 
to determine the return threshold by rank rather 
than by count.  In this manner poor results can 
be avoided while better results are allowed to 
arrive in larger numbers from fruitful searches 
of distributed database compartments. 

 

5.2 Precision/Recall 
The better results were obtained in the SCAS 
track with plural/singular term expansion.  It 
scored an average precision (generalized) of 
0.195 (rank 12/38). The Porter stemming 
expansion of terms produced somewhat lesser 
results with an average precision of 0.186.  
Without term expansion the results had an 
even lower score with an average precision of 
0.174.   

VCAS results are not available at the time of 
writing this paper. 

In the CO track results were similar.  The 
better results were obtained with full Porter 
stemming, with an average precision 
(generalized) of 0.0525 (rank 14/56).  
Somewhat lesser, but essentially similar results 
were obtained with plural/singular expansion 
with an average precision of 0.0519.  Without 
term expansion the average precision was 
0.0505. 

 
       Figure 3:  Plural/Singular expansion 

 
       Figure 4:  Full Porter stemming 

 

 
       Figure 5:  Without Term expansion 
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        Figure 6:  Full Porter stemming 

 

          
        Figure 7:  Plural/Singular expansion 

 

 

 
        Figure 8:  Without Term expansion 

 
5. Discussion 

The search engine that was developed and 
tested performs reasonably well in terms of 
precision/recall.  It performs very well in terms 
of speed, and scales almost linearly. 

Inspection of our results suggests that while 
the system was able to retrieve the most 
significant <article> elements, it fell short in 
terms of ranking the various descendents .  
With CAS queries the loose interpretation of 
AND, OR, and equality constraint might have 
contributed to violations of topic <title> XPath 
constraints leading to selection of undesirable 
elements.  With CO queries the ranking 
heuristics that we used were generic.  We only 
took account of abstract tree structure 
considerations.  It might have been 
advantageous to also apply heuristics that are 
specific to the INEX collection and perceived 
intent of topic authors (in general, not 
specifically).  For instance, paragraphs might 
be better units of retrieval than sections.  More 
analysis and experimentation with ranking is 
required. 
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ABSTRACT
This paper reports on the RMIT group’s approach to XML
retrieval while participating in INEX 2003. We indexed
XML documents using Lucy, a compact and fast text search
engine designed and written by the Search Engine Group at
RMIT University. For each INEX topic, up to 1000 highly
ranked documents were then loaded and indexed by eXist,
an open source native XML database. A query translator
converts the INEX topics into corresponding Lucy and eX-
ist query expressions, respectively. These query expressions
may represent traditional information retrieval tasks (un-
constrained, CO topics), or may focus on retrieving and
ranking specific document components (constrained, CAS
topics). With respect to both these expression types, we
used eXist to extract final answers (either full documents
or document components) from those documents that were
judged highly relevant by Lucy. Several extraction strate-
gies were used that differently influenced the ranking order
of the final answers. The final INEX results show that our
choice for a translation method and an extraction strategy
leads to a very effective XML retrieval for the CAS topics.
We observed a system limitation for the CO topics resulting
in the same or similar choice to have little or no impact on
the retrieval performance.

Keywords
XML Search & Retrieval, eXist, Lucy, INEX

1. INTRODUCTION
During INEX 2002, different participants used different ap-
proaches to XML retrieval. These approaches were classified
into three categories [1]: extending well known full-text in-
formation retrieval (IR) models to handle XML retrieval;
extending database management systems to deal with XML
data; and XML-specific, which use native XML databases
that usually incorporate existing XML standards (such as
XPath, XSL or XQuery). Our modular system utilises a
combined approach using traditional information retrieval
features with well-known XML technologies found in most
native XML databases.

Lucy1 is RMIT’s fast and scalable open source full-text search
engine. Lucy follows the content-based information retrieval
approach and supports Boolean, ranked and phrase queries.
However, Lucy’s smallest unit of retrieval is a whole docu-
ment, thus ignoring the structure specified using the doc-
ument schema as in the XML retrieval approach. Indeed,
1http://www.seg.rmit.edu.au/lucy/

when dealing with information retrieval from a large XML
document collection, sections that belong to a document,
or even smaller document components such as paragraphs,
may be regarded as appropriate units of retrieval. Accord-
ingly, it is important to have an IR-oriented XML retrieval
system that will be able to identify and rank these units of
retrieval.

eXist2, an open source XML database, follows the XML-
specific retrieval approach. It is the XML-specific approach
that deals with both the content and the structure of under-
lying XML documents and incorporates keyword, Boolean
and proximity search. Most of the retrieval systems that fol-
low this approach use databases specifically built for XML.
These databases are often called native XML databases. How-
ever, most of these systems do not support any kind of rank-
ing of the final answers, which suggests a need of applying
an appropriate retrieval strategy to determine the relevance
of the answers to a given retrieval topic.

The XML retrieval approach we consider at INEX 2003 is
that for many retrieval topics it appears the only way to ob-
tain satisfactory answers is to use either proximity or phrase
search support in XML retrieval systems. That is, a final
answer is likely to be relevant if it contains (almost) all of
the query terms, preferably in a desired order. The native
XML databases, as explained above, provide all the required
support to enable this functionality. However, when a na-
tive XML database needs to load and index a large XML
collection, the time required to extract the most relevant
answers for a given query is likely to increase significantly.
Moreover, the XML database needs to determine a way to
somehow assign relevance values to the final answers. Ac-
cordingly, it would be more efficient if the XML database
has to index and search a smaller set of XML documents
that may have previously been determined relevant for a
particular retrieval topic. The database would then need
to decide upon the most effective strategy for extracting
and ranking the final answers. We have therefore decided
to build a system that uses a combined IR/XML-specific
retrieval approach. Our modular system effectively utilises
Lucy’s integrated ranking mechanism with eXist’s power-
ful keyword search extensions. The INEX results show that
our system produces effective XML retrieval for the content-
and-structure (CAS) INEX topics.

2http://exist-db.org/
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="117" query_type="CO" ct_no="98">

<title>

Patricia Tries

</title>

<description>

Find documents/elements that describe

Patricia tries and their use.

</description>

<narrative>

To be relevant, a document/element

must deal with the use of Patricia Tries

for text search. Description of the standard

algorithm, optimised implementation and use

in Information retrieval applications are all

relevant.

</narrative>

<keywords>

Patricia tries, tries, text search,

string search algorithm,

string pattern matching

</keywords>

</inex_topic>

Figure 1: INEX Topic 117

2. INEX TOPICS
As in the previous year, INEX 2003 has used the same set
of XML documents that comprises 12107 IEEE Computer
Society articles published within the period 1997-2002 and
stored in XML format. INEX 2003 also introduced a new set
of ad-hoc retrieval topics which in contrast to the previous
year were differently formulated. Revised relevance dimen-
sions, exhaustivity and specificity, for assessing the relevance
of the retrieval topics were also introduced.

Two types of XML retrieval topics are explored in INEX:
content-only (CO) topics and content-and-structure (CAS)
topics. A CO topic does not refer to the existing document
structure. When dealing with CO topics, an XML retrieval
system should follow certain rules that will influence the size
and the granularity of a resulting document component. Not
every document component can be regarded as a meaningful
answer for a given query. Some of them are too short to act
as meaningful answers while some of them are too broad.
Thus, if an XML retrieval system shows poor performance
(in terms of its effectiveness), the rules that decide upon the
answer size and granularity should be changed accordingly.

A CAS topic, unlike a CO topic, enforces restrictions with
respect to the existing document structure by explicitly spec-
ifying the type of the unit of retrieval (section, paragraph,
or other). When dealing with CAS topics, an XML re-
trieval system should (in most cases) follow the structural

constraints described in the topic, which will result in an-
swers having the desired (or similar) structure. In this case,
the size and the granularity of a final answer are determined
in advance.

The rest of this section describes INEX topics 117 and 86,
which are respectively the CO and CAS topics proposed and
assessed by our group. Some issues were observed during our
relevance assessments for these topics. Our final results at
INEX 2003 show that these issues, when addressed correctly,
significantly improve the performance of an XML retrieval
system. We also discuss the implications of these INEX
topics for using the combined Lucy/eXist retrieval system
and report other comments and suggestions.

2.1 INEX Topic 117
Figure 1 shows the INEX CO topic 117. This topic searches
for documents or document components focusing on algo-
rithms that use Patricia tries for text search. A document
or document component is considered relevant if it provides
description of the standard/optimised algorithm implemen-
tation or discusses its usage in information retrieval appli-
cations.

Our first observation is that this topic (unintentionally) turned
out to be a difficult one, since:

• Patricia (usually) represents a person’s first name, rather
than a data structure;

• tries is a verbal form, and

• keywords like text, string, and search appear almost
everywhere in the INEX IEEE XML document collec-
tion.

The relevance assessments were long and difficult, mainly
because there were too many answers (due to Patricia and
tries), there were not many highly relevant answers, and
the few somewhat relevant answers were hard to evaluate
consistently both for exhaustivity and specificity.

For this and similar topics, it appears that the only way to
obtain satisfactory results is to use either proximity opera-
tors or phrase search support in full text retrieval systems.
In the context of XML, an interesting question is whether
the granularity of XML document components can be used
as the proximity constraint. For example, it is more likely
that paragraphs containing few of the query keywords will
be regarded more relevant than a document that contains all
keywords in different sections. On the other side, since users
expect meaningful answers for their queries, the answers are
expected to be rather broad, so retrieved document compo-
nents should at least constitute a section, possibly a whole
document. Accordingly, an XML retrieval system should
follow an effective extraction strategy capable of producing
more relevant answers.

2.2 INEX Topic 86
Figure 2 shows the INEX CAS topic 86. This topic searches
for document components (sections) focusing on electronic
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="86" query_type="CAS" ct_no="107">

<title>

//sec[about(.,’mobile electronic payment system’)]

</title>

<description>

Find sections that describe technologies

for wireless mobile electronic payment systems

at consumer level.

</description>

<narrative>

To be relevant, a section must describe

security-related technologies that exist

in electronic payment systems that can be

implemented in hardware devices.

The main interests are systems that can be

used by mobile or handheld devices.

A section should be considered irrelevant

if it describes systems that are designed

to be used in a PC or laptop.

</narrative>

<keywords>

mobile, electronic payment system,

electronic wallets, e-payment, e-cash,

wireless, m-commerce, security

</keywords>

</inex_topic>

Figure 2: INEX Topic 86

payment technologies implemented in mobile computing de-
vices, such as mobile phones or handheld devices. A section
will be considered highly relevant if it describes technologies
that can be used to securely process electronic payments in
the mobile computing devices.

In order to consistently assess the relevance of the resulting
document components (for this topic, most of these com-
ponents were sections), two assessment rules were applied:
document components focusing only on mobile computing
devices were considered irrelevant, and document compo-
nents focusing on security issues in general were also con-
sidered irrelevant.

It is evident from the above rules that for a document com-
ponent to be considered marginally, fairly or highly relevant,
it should at least contain a combination of some important
words or phrases, such as mobile, security, electronic pay-
ment system, e-payment, and so on. In this sense, the is-
sues encountered while assessing INEX CAS topic 86 were
very similar with the ones discussed earlier for INEX CO
topic 117. The only difference is that for this topic, the unit
of retrieval is known in advance (<sec> identifies the type
of document component to be retrieved), although by no

means this should be regarded as a mandatory constraint,
since the INEX DTD specifies different types of document
components that may be regarded as sections (sec, sec1,
bm, or even bdy). It is therefore reasonable to expect that
the extraction strategy previously applied to the CO top-
ics would lead to more effective results for the CAS topics.
The final INEX results for the CAS topics shown later in
Figure 5 confirm this expectation.

2.3 Implications of INEX topics
It is evident from the previous observations that using ei-
ther Lucy or eXist will partially satisfy the information need
expressed with both the CO and the CAS topics. Lucy sup-
ports phrase search and ranking, however proximity support
is limited, and the unit of retrieval is a whole document. eX-
ist supports proximity operators and phrase search, and ad-
ditionally allows final answers containing any of the query
terms. However, it does not rank the final answers, and
unless explicitly specified in the query, it does not impose
additional constraints on the granularities of the returned
answers. We identify later that this missing feature repre-
sents a serious system limitation for the CO topics. Accord-
ingly, we decided to take into account the positive aspects of
both systems and build a modular system that incorporates
a combined approach to XML retrieval. Section 3 describes
our approach in detail.

2.4 Other comments and suggestions
As a result of our active INEX participation this year, partic-
ularly while creating the INEX topics 86 and 117 and assess-
ing the relevance of corresponding documents and document
components, we observed some additional issues.

• In proposing a retrieval topic, should a participant
make a statement about what XML retrieval feature
he/she is trying to evaluate?

• Should the INEX initiative start making a classifica-
tion of these various features? The features that we
refer here might include, for example, usefulness of ex-
isting links and references in XML documents, prox-
imity search, selection criteria, granularity of answers,
and so on.

Although the INEX 2003 assessment tool was much better
than the one used in 2002, the assessment task is still very
time consuming. We suggest whether less answers could
be pooled for assessment and whether the assessment tool
could be furthermore improved to reduce some interaction
required by users. The last suggestion might for example
include less required “clicks” and the ability to select a group
of answers as irrelevant (regardless whether they represent
documents or document components).

3. MODULAR SYSTEM ARCHITECTURE
For INEX 2003, we decided to build a modular system that
uses a combined approach to XML retrieval, comprising two
modules: the Lucy full-text search engine and the eXist na-
tive XML database. Before we explain our approach in de-
tail, we briefly summarise the most important features of
both modules.
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3.1 Lucy search engine
Lucy is a compact and fast text search engine designed and
written by the Search Engine Group at RMIT University.
Although Lucy primarily allows users to index and search
HTML3 (or TREC4) collections, we have successfully man-
aged to index and search the entire INEX IEEE collection of
XML documents. However, Lucy’s primary unit of retrieval
is a whole document and currently it is not capable of in-
dexing particular document components, such as <author>,
<sec>, and <p>. Lucy has been designed for simplicity as
well as speed and flexibility, and its primary feature, which
is also evident in our case, is the ability to handle a large
amount of text. It implements an inverted index structure,
a search structure well researched and implemented in many
existing information retrieval systems. Witten et al. [8] pro-
vide a detailed explanation for efficient construction of an
inverted index structure such as implemented in Lucy.

Lucy is a fast and scalable search engine, and incorporates
some important features such as support for Boolean, ranked
and phrase querying, a modular C language API for inclu-
sion in other projects and native support for TREC exper-
iments. It has been developed and tested under the Linux
operating system on an Intel-based platform, and is licensed
under the GNU Public License.

3.2 eXist: a native XML database
Since January 2001, when eXist [3] started as an open source
project, developers are actively using this software for vari-
ous purposes and in different application scenarios. We use
eXist as a central part of our modular XML retrieval system.
eXist incorporates most of the basic and advanced native
XML database features, such as full and partial keyword
text searches, search patterns based on regular expressions,
query terms proximity functions and similar features. Two
of eXist’s unique features are efficient index-based query pro-
cessing and XPath extensions for full-text search.

Index-based query processing. For the purpose of evaluating
XPath expressions in user queries, conventional native XML
database systems generally implement top-down or bottom-
up traversals of the XML document tree. However, these
approaches are memory-intensive, resulting in slow query
processing. In order to decrease the time needed for pro-
cessing the queries, eXist uses an inverted index structure
that incorporates numerical indexing scheme for identifying
the XML nodes in the index. This feature enables eXist’s
query engine to use fast path join algorithms for evaluat-
ing XPath expressions. Meier [3] provides detailed techni-
cal explanation of this efficient index-based query processing
implementation in eXist.

XPath extensions for full-text searching. Standard XPath
implementations do not provide very good support for query-
ing document-centric XML documents. Document-centric
documents, as oppose to data-centric ones that usually con-
tain machine-readable data, typically include mixed content
and longer sections of text. eXist implements a number
of XPath extensions to efficiently support document-centric
queries, which overcome the inability of standard XPath

3http://www.w3.org/MarkUp/
4http://trec.nist.gov/

functions (such as contains()) to produce satisfactory re-
sults. For example, the &= operator selects document com-
ponents containing all of the space-separated terms on the
right-hand side of the argument. |= operator is similar, ex-
cept it selects document components containing any of the
query terms. In the next section we provide examples of the
way we used these operators in the INEX topic translation
phase.

eXist is a lightweight database, completely written in Java
and may be easily deployed in several ways. It may run
either as a stand-alone server process, or inside a servlet-
engine, or may be directly embedded into an existing appli-
cation.

3.3 A combined approach to XML retrieval
Section 2 observes the implications of the INEX topics that
influenced our choice for a combined approach to XML re-
trieval. However, due to the advanced retrieval features de-
scribed previously it becomes evident that using eXist alone
should suffice in satisfying the XML retrieval needs. In-
deed, some applications have shown that eXist is already
able to address real industrial needs [3]. Despite all these
advantages, we were not able to use eXist as the only XML
retrieval system for two main reasons: first, we were using
eXist version 0.9.1, which did not manage to load and index
the entire IEEE XML document collection needed for INEX,
and second, although we could retrieve relevant pieces of
information from parts of the IEEE document collection,
eXist does not assign relevance values to the retrieved an-
swers. Accordingly, since ranking of the retrieved answers
is not supported, we decided to undertake a combined XML
retrieval approach that utilises different extraction strate-
gies to rank the answers. With respect to a specific ex-
traction strategy, a document component may represent a
highly ranked answer if it belongs to a document that has
previously been determined relevant for a particular retrieval
topic.

Figure 3 shows our combined approach to XML retrieval.
The system has a modular architecture, comprising two mod-
ules: Lucy and eXist. We use INEX topic 86, as shown in
Figure 2, to explain the flow of events.

First, the INEX topic is translated into corresponding queries
understandable by Lucy and eXist, respectively. Depending
on the type of the retrieval topic (CO or CAS), the topic
translation utility follows different rules. For the INEX CO
topics, such as topic 117 shown in Figure 1, queries that are
sent to both Lucy and eXist include only terms that appear
in the <Keywords> part of the INEX topics. For the INEX
CAS topics, as shown in Figure 3, query terms that appear
in both <Title> and <Keywords> parts of the INEX topics
were used.

For example, we use the query terms from the <Keywords>

part of the INEX topic 86 to formulate the Lucy query:

.listdoc

’mobile "electronic payment system"

"electronic wallets" e-payment e-cash wireless

m-commerce security’
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//sec[. &=’mobile electronic payment system’]
collection(’/db/INEX/CAS/86’)

"electronic wallets" e−payment e−cash wireless
m−commerce security’

Lucy

’mobile "electronic payment system"
.listdoc

eXist

Highly Ranked

Docs by Lucy

TOP 1000

INEX Topic 86

Topic translation

FINAL ANSWERS

(<sec> components)

eXist

Query
Lucy

Answers

Index

Query

Answers Index

document collection
INEX XML

(12107 IEEE  articles)

Figure 3: A modular system architecture.

However, before submitting a query to the system, the INEX
document collection needs to be indexed. We use Lucy to
create an inverted index from all the documents in the large
IEEE XML collection. We then search this indexed data by
entering the queries derived from the translation rules, as
explained above. For the purpose of ranking its answers for
a given query, Lucy uses a variant of the Okapi BM25 [5]
probabilistic ranking formula. Okapi BM25 is one of the
most widely used ranking formula in information retrieval
systems. It is thus expected that, for a given INEX topic,
Lucy will be able to retrieve highly relevant XML docu-
ments early in the ranking. Therefore, for each INEX topic,
we retrieve (up to) 1000 highest ranked XML documents
by Lucy. It is our belief that the information contained
in these documents is sufficient to satisfy the information
need expressed in the corresponding INEX topic. However,
at this phase of development, Lucy’s only unit of retrieval
is a whole document. Accordingly, for a particular INEX
topic, we still have to extract the relevant parts of these
highly ranked documents. Wilkinson [7] shows that sim-
ply extracting components from highly relevant documents
leads to poor system performance. Indeed, there may be
cases when a section belonging to highly ranked document
is irrelevant as opposed to a relevant section belonging to
lowly ranked document. However, we believe that the re-
trieval performance of a given system may be improved us-
ing a suitable extraction strategy. We implemented several
extraction strategies using eXist’s XPath extensions. We
provide examples how we use these XPath extensions while
translating INEX topic 86 as follows.

For INEX CAS topics in general, and INEX topic 86 in
particular, the terms that appear in the <Title> part are
used to formulate eXist queries. However, since a document
component is likely to be relevant if it contains all or most of
the query terms that appear in the <Title>, we undertake
several extraction strategies as described in detail in Section
4, where we explain how we construct our INEX runs. In
general, these strategies depend on the combined usage of
Boolean AND and OR operators, implemented using the &=

and |= operators in eXist, respectively. Accordingly, the

INEX topic 86 may be translated either as:

collection(’/db/INEX/CAS/86’)

//sec[. &=’mobile electronic payment system’]

if one wants all query terms to appear in the resulting sec-
tion, or:

collection(’/db/INEX/CAS/86’)

//sec[. |=’mobile electronic payment system’]

if one wants any of the query term to appear in the resulting
section.

We follow the first translation rule for our example in Fig-
ure 3. Final answers will thus constitute <sec> document
components (if any) that contain all the query terms. By fol-
lowing this rule, we reasonably expect these document com-
ponents to represent relevant answers for the INEX topic
86. On the other hand, it is clear that if the second transla-
tion rule is applied for the same topic, it may produce very
many irrelevant answers as well as some further relevant an-
swers. Accordingly, it is very important to decide upon the
extraction strategy that will yield in highly relevant answers
for a given INEX topic. We discuss the results for different
extraction strategies in the following section.

4. INEX RUNS AND RESULTS
The retrieval task performed by the participating groups at
INEX 2003 was defined as ad-hoc retrieval of XML docu-
ments. In information retrieval literature this type of re-
trieval involves searching a static set of documents using a
new set of topics, which represents an activity very com-
monly used in library systems.

Within the ad-hoc retrieval task, INEX 2003 defines addi-
tional sub-tasks. These represent a CO sub-task, which in-
volves content-only (CO) topics and a CAS sub-task, which
involves content-and-structure (CAS) topics. The CAS sub-
task comprises a SCAS sub-task and a VCAS sub-task. The
SCAS sub-task requests that the structural constraints in
a query must be strictly matched, while VCAS allows the
structural constraints in a query to be treated as vague con-
ditions.

At INEX 2003, for each topic belonging to a particular sub-
task up to 1500 answers (full documents or document com-
ponents) were required to be retrieved by the participating
groups. In order to assess the relevance of the retrieved an-
swers, the revised relevance dimensions (exhaustivity and
specificity) need to be quantized in a single relevance value.
INEX uses two quantization functions: strict and gener-
alised. The strict function can be used to evaluate whether
a given retrieval method is capable of retrieving highly rel-
evant and highly focused document components, while the
generalised function credits document components accord-
ing to their degree of relevance (by combining the two rele-
vance dimensions, exhaustivity and specificity).

Our group submitted 6 official runs to INEX 2003, 3 for each
CO and SCAS sub-task, respectively. Figures 4 and 5 show
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Figure 4: Results for the RMIT CO runs using both strict and generalised quantization functions

the results for both the CO and SCAS runs when both strict
and generalised quantization functions are used. The rank-
ings of the runs are determined according to the average pre-
cision over 100 recall points considering each corresponding
INEX topic. Two of our three runs for each sub-task were
automatically constructed while one was manually. The au-
tomatic runs were constructed using the translation rules
explained in the previous section. We manually constructed
the other runs in order to produce more meaningful queries
for each INEX topic. Each run was constructed by using
elements in the following answer lists: [A] that uses eXist’s
&= (logical AND) operator and enforces strict satisfaction of
logical query conditions (the elements that belong to the an-
swer list [A] will therefore represent document components
containing all the query terms or phrases); [B] that uses
the |= (logical OR) operator, “relaxes” the query conditions
and allows for document components containing any of the
query terms or phrases; and a combined answer list that
contains the elements in the answer list [A] followed by the
elements in the answer list [B–A].

Three retrieval runs were submitted for the CO sub-task.
We constructed the first CO run by retrieving the 1500 high-
est ranked documents for each INEX topic. As described
in the previous section, the <Keywords> part of each INEX
topic was automatically translated as an input query to the
Lucy search engine. The final rank of a document was then
determined by its similarity with the given query as calcu-
lated by Lucy using a variant of Okapi BM25. As shown in
Figure 4 this run performed better than the other two CO
runs in both cases when strict and generalised quantization
functions are used, which suggests that a whole document
is often likely to be considered a preferable answer for an
INEX CO topic.

For the other two runs, for each INEX CO topic we first
used Lucy to extract (up to) the 1000 highest ranked doc-
uments. Then we used eXist to index and retrieve the fi-

nal answers from these documents. We reasonably expected
that the most relevant document components required to
be retrieved for each INEX topic were very likely to appear
within the 1000 highest ranked documents. Since the CO
topics do not impose constraints over the structure of result-
ing documents or document components, we used the //**

eXist construct in our queries. The “**” operator in eXist
uses a heuristic that retrieves answers with different sizes
and granularities. For our second CO run, the <Keywords>

part of each topic was automatically translated as an input
query to the eXist database, and its final answer list includes
only elements from the answer list [B]. We used the manual
translation process for our third run, where the final answer
list includes the elements in the answer list [A] followed by
the elements in the answer list [B–A]. Although we expected
the third run to perform better than the second, Figure 4
shows that both these runs performed poorly in both cases
when strict and generalised quantization functions are used,
regardless of choices for the translation method and the ex-
traction strategy. At this phase of development, the heuris-
tic implemented in the “**” operator in eXist is not able
to determine the most meaningful units of retrieval nor in-
fluence the desired answer granularity for a particular CO
topic. Next we show that this is not the case for the CAS
topics, where the type of the unit of retrieval is determined
in advance and the choices for the translation method and
the extraction strategy have a significant impact on the sys-
tem’s performance.

Three runs were submitted for the SCAS sub-task. As dis-
cussed previously, both <Keywords> and <Title> parts from
INEX CAS topics were used to generate the input queries
for Lucy and eXist, respectively. Our first SCAS run was
automatic and its final answer list includes the elements
in the answer list [A] followed by the elements in the an-
swer list [B-A]. The queries for the second SCAS run were
manually constructed and its final answer list includes the
elements from the same answer lists as for the first run.
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Figure 5: Results for the RMIT SCAS runs using both strict and generalised quantization functions

Figure 5 shows that these runs performed relatively better
when using a strict quantization function compared with the
runs from other participating groups at INEX 2003. Since
the type of the unit of retrieval is determined in advance
for the SCAS runs, the choice of the extraction strategy
implemented in both runs appears to be very effective for
retrieving highly exhaustive and highly specific document
components. It can be observed that our system performs
slightly more effective for the first than for the second run
(6th compared to 7th out of 38 systems), and the first run
performs better for recall values lower than 0.2. However,
the choice of the translation method has an effect on the sys-
tem’s performance for recall values greater than 0.3, where
the second run performs better than the first run. Figure 5
also shows that the choice of the extraction strategy is not
as effective when using a generalised quantization function,
where marginally/fairly exhaustive or marginally/fairly spe-
cific document components are regarded as partly relevant
answers. Indeed, the ranks for both runs when evaluated
using the generalised quantization function are not among
the ten highest ranked INEX runs. In this case, the choice
of the translation method results in second run performing
better than the first run overall.

The third SCAS run was automatic, however its final an-
swer list includes only the elements from the answer list [B].
By choosing this strategy we reasonably expected some ir-
relevant answers in the final answer list, but we hoped to
find more relevant components in highly ranked documents.
Indeed, as Figure 5 shows, irrespective of whether a strict
or a generalised quantization function is used, our retrieval
system is ranked lower for the third SCAS run compared to
the previous two runs.

5. LIMITATIONS OF OUR SYSTEM
Previous sections describe the XML retrieval approach that
we implemented while participating in INEX 2003. How-

ever, during different phases of our INEX involvement, par-
ticularly while constructing the INEX runs and assessing the
relevance of retrieved results, we observed several system
limitations. Although they can and should be considered
as a weakness of our approach, the fact that we are able
to identify them influences our future research directions.
Some of these limitations include the following.

No IR ranking of the final answers. The choice of imple-
menting an extraction strategy that may influence the rank
of a final answer suggests that our system does not consider
an IR ranking score for a particular answer. Although for a
given INEX topic Lucy ranks the XML documents in a de-
scending order of their query similarity, the unit of retrieval
represents a whole document, and there is no support for
existing XML technologies. eXist, on the other hand, has a
tight integration with existing XML development tools and
technologies, but does not rank the final answers according
to their query similarity. We have thus decided that a par-
ticular extraction strategy should influence the final ranking
score for a resulting document or document component. We
have decided upon different extraction strategies while we
constructed our INEX runs, and have shown that for the
CAS topics some of them have a significant impact on the
retrieval performance of our modular system.

Complex usage. Since our system has a modular architec-
ture that incorporates a combined IR/XML-specific oriented
approach to XML retrieval, its usage is very complex. It
comprises two different retrieval modules (Lucy and eXist),
each having different internal architectures and rules of use.
Instead, it would be preferable to have only one system that
incorporates the best features from the above modules.

Significant space overhead. The size of the INEX IEEE XML
document collection takes around 500MB disk space. The
inverted index file maintained by Lucy additionally takes
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20% of that space. For each topic, (up to) 1000 XML docu-
ments are indexed by eXist, which adds up to approximately
12% of the space for the INEX collection. Although both
Lucy and eXist implement efficient retrieval approaches, it
becomes evident that their combination leads to significant
disk space overhead. As for the previous limitation, one
system that can deal with the above issues would also be
preferable.

6. RELATED WORK
Even before INEX, the need for information retrieval from
XML document collections had been identified in the XML
research community. As large XML document collections
become available on the Web and elsewhere, there is a real
need for having an XML retrieval system that will efficiently
and effectively retrieve information residing in these collec-
tions. This retrieval system will need to utilise some form of
an XML-search query language in order to meet the growing
user demand for information retrieval. Thus, the needs and
requirements for such a query language have to be carefully
identified and appropriately addressed [4].

At INEX 2002 the CSIRO group proposed a similar ap-
proach to XML retrieval. Their XML retrieval system uses
a combination of a selection and a post-processing module.
Queries are sent to PADRE, the core of CSIRO’s Panoptic
Enterprise Search Engine5, which then ranks the documents
and document components on the basis of their query simi-
larity. In contrast to Lucy, whose primary unit of retrieval is
a whole document, PADRE combines full-text and metadata
indexing and retrieval and is capable of indexing particular
document components, such as <author>, <sec> and <p>.
Different “mapping rules” determine what metadata field is
used to index the content of a particular document compo-
nent. A post processing module was then used to extract
and re-rank the final answers from documents and document
components returned by PADRE [6].

In an effort to reduce the number of document components
in an XML document that may represent possible answers
for a given query, Hatano et al. [2] propose a method for
determining the preferable units of retrieval from XML doc-
uments. We consider investigating these and similar meth-
ods for improving the effectiveness of our system for the CO
topics.

7. CONCLUSION AND FUTURE WORK
We have described our combined approach to XML retrieval
that we used during the INEX 2003 participation. Our re-
trieval system implements a modular architecture, compris-
ing two modules: Lucy and eXist. For each INEX topic, we
used Lucy, a full-text search engine designed by the Search
Engine Group at RMIT, to index the IEEE XML document
collection and retrieve the top 1000 highly ranked XML doc-
uments. We then indexed those documents with eXist, and
implemented different topic translation methods and extrac-
tion strategies in our INEX runs. The INEX results show
that these methods and strategies result in an effective XML
retrieval for the CAS topics. Since our system is not yet able
to identify the preferred granularities for the final answers,
the methods and strategies are not as effective for the CO

5http://www.panopticsearch.com

topics. Further investigations need to be done in order to
improve this functionality.

We have also observed several limitations of our modular
system. In order to overcome these limitations, we intend
to implement a full XML information retrieval system that
will incorporate the most advanced features of Lucy and
eXist. We believe the resulting system will lead to a more
accurate and interactive XML retrieval.
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ABSTRACT
We have developed a keyword-based XML portion retrieval
system based on statistics of XML documents to enhance
overall performance. Currently, relevance assessments for
keyword-based XML portion retrieval systems are provided
only by INEX project; thus we evaluate our system uti-
lizing CO topics of the INEX 2003 relevance assessments.
However, in the case of using some CO topics, our system
performed poorly in it’s retrieval accuracy; consequently av-
erage precision of our system was not promising. In this
paper, we analyze CO topics of the INEX 2003 relevance as-
sessments based on statistics of answer XML portions and
report our experimental results and requirements to the rel-
evance assessments.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Information retrieval, Performance evaluation

Keywords
Keyword-based XML portion retrieval, Performance evalu-
ation, Analysis of relevance assessments

1. INTRODUCTION
Extensible Markup Language (XML) [5] is becoming widely
used as a standard document format in many application
domains. In the near future, we believe that a great variety
of documents will be produced in XML; therefore, in a simi-
lar way to developing Web search engines, XML information
retrieval systems will become very important tools for users
wishing to explore XML documents on the Internet.

XQuery [4], which is proposed by World Wide Web Con-
sortium (W3C), is known as a standard query language for
retrieving portions of XML documents. Using XQuery, users
can issue a flexible query consisting of both some keywords
and XPath notations1. If users have already known knowl-

1Currently, XML Query working group is just starting to
develop full-text search functions [2, 6].

edge of the structure of XML documents, users can issue
XQuery-style queries. However, there are a lot of XML doc-
uments whose XML schemas are different to each other; thus
nobody can issue such a formulated query into information
retrieval systems. As a result, we believe that XML retrieval
systems should employ a much simpler form of query such
as keyword search services. Keyword search services enable
information retrieval by providing users with a simple inter-
face. It is the most popular information retrieval method
since users need to know neither a query language nor the
structure of XML.

From the aforementioned background on the XML retrieval,
close attention has recently been paid to a keyword-based
XML portion retrieval system. Some keyword-based XML
portion retrieval systems have already been available. They
assume the existence of Document Type Definition (DTD)
or XML schema of XML documents, so that they can deal
with only one type of XML documents. It is true that DTD
and XML schema facilitate enhancing retrieval accuracy and
retrieval speed of keyword-based XML portion retrieval sys-
tems. However, XML documents on the Internet do not
always include DTD or XML schema; thus they cannot deal
with multiple types of XML documents whose structures
are different to each other. XML documents on the Internet
feature many types of document structures; consequently, a
next generation of information retrieval system has to treat
XML documents whose structures are different.

To cope with the problems described above, we have devel-
oped a keyword-based XML portions retrieval system us-
ing statistics of XML documents [13]. In XML portion re-
trieval, we assume that users can explicitly specify query
keywords; thus, we believe that the size of retrieval results
become small compared to document retrieval. Moreover,
retrieval results of XML portion retrieval system should be
semantically consolidated granularity of XML documents.
In short, we believe that extremely small XML portions are
not semantically consolidated. Therefore, we designed our
XML portion retrieval system that can return small and se-
mantically consolidated XML portions as retrieval results.
However, our system performed poorly in its retrieval ac-
curacy based on INEX 2003 relevance assessments; conse-
quently average precision of our system was not promising
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score. According to [15], the INEX 2002 relevance assess-
ments tended to regard large-size XML portions as correct
retrieval results. This fact does not meet the purpose of
our XML portion retrieval; thus it could be that retrieval
accuracy of our system performed poorly if the INEX 2003
relevance assessments have the characteristics similar to the
previous one. Therefore, we have to evaluate validity of the
INEX 2003 relevance assessments.

In this paper, we analyze the INEX 2003 relevance assess-
ments based on their statistics. We believe that the analyses
of the relevance assessments show their own characteristics,
and also help to construct a next version of the relevance
assessments.

The remainder of this paper is organized as follows. First, we
describe our keyword-based XML portion retrieval system
in Section 2. Then, we report analyses of the INEX 2003
relevance assessments in Section 3 and discuss the validity
of them in Section 4. Finally, we conclude this paper in
Section 5.

2. OUR XML PORTION RETRIEVAL SYS-
TEM

In this section, we introduce retrieval model and purpose of
our keyword-based XML portion retrieval system, and also
explain our observation of XML portion retrieval.

2.1 Data Model and Retrieval Model
The data model of our system is similar to the XPath data
model [7] for the sake of simplicity because XML is mod-
eled as a hierarchical tree. The only difference between the
XPath data model and ours is that attribute node is re-
garded as a child of element node2.

In the meanwhile, the retrieval model of our system bears a
resemblance to the proximal nodes model [18] for the sake
of easy understanding. In the simplest terms, our logical
model of an XML portion is a sub-tree whose root node is
an element node. We can identify XML portions by their
reference numbers derived from document order; therefore,
users can obtain retrieval results selected from XML por-
tions, which are identified by their reference number.

2.2 The Purpose of Our System
We can identify two types of keyword-based XML portion
retrieval systems. In this paper, we call these two types
of keyword-based XML portion retrieval systems XML re-
trieval systems and XML search engines for the sake of
convenience. The former is based on structured or semi-
structured database systems with keyword proximity search
functions that are modeled as labeled graphs, where the
edges correspond to the relationship between an element
and a sub-element and to IDREF pointers [1, 12, 14]. Dealing
with XML documents as XML graphs facilitates developing
keyword-based information retrieval systems which are able
to do retrieval processing efficiently. On the other hand, the
latter has been developed in the research field of informa-
tion retrieval [8, 10], and enables us to retrieve XML por-
tions without indicating element name of XML documents.

2If the element node has some attribute nodes that have
brotherhood ties, they are owned by the element node.

The large difference between the XML retrieval systems and
the XML search engines is data characteristics of their re-
trieval targets. In short, we think that the former focuses
mainly on data-centric XML documents, whereas the latter
deals with document-centric ones3. In the meanwhile, both
the XML retrieval systems and the XML search engines as-
sume the existence of DTD or XML schema of XML docu-
ments in either research. It is a fact that DTD and XML
schema facilitate enhancing retrieval accuracy and retrieval
speed of their systems. However, there are some problems of
searching XML portions on the Internet described in Section
1; thus other types of XML retrieval systems are required.
Consequently, the XML retrieval systems in the future have
to deal with XML documents whose structures are different.

In order to meet the needs of new architecture of XML re-
trieval systems, we have developed a keyword-based XML
portions retrieval system using statistics of XML documents
[13]. Our system focuses on retrieval of document-centric
XML documents rather than that of data-centric ones. Our
system does not utilize any information in relation to ele-
ment name of XML documents, whereas the systems intro-
duced above take advantage of the information for querying
and indexing of XML documents. In our approach, XML
documents must be divided into portions in order to develop
a keyword-based XML retrieval system. Because XML is a
markup language, XML documents can be automatically di-
vided into their portions using their markup [16]; however,
the problem which the number of the portions becomes huge
is caused. In other words, it takes very long time to retrieve
XML portions related to a keyword-based query using our
approach. For this reason, we have to determine seman-
tically consolidated granularity of XML documents as re-
trieval targets using the size of XML portions, and have to
reduce the number of XML portions indexed by our XML
retrieval system.

2.3 Evaluating Our System based on INEX
2003 Relevance Assessments

In this section, we report the retrieval accuracy of our keyword-
based XML portion retrieval system based on INEX 2003
relevance assessments. The relevance assessments defined
two metrics, strict and generalized; thus we performed ex-
perimental evaluations based on both metrics. The met-
rics have two criteria, “exhaustiveness” and “specificity,” for
quality metrics of IR applications. The way how recall and
precision is computed is described in a report [9]4. Based on
the metrics, we drew recall-precision curves for evaluation of
XML portion retrieval system. Figure 1 and 2 show recall-
precision curves of our system based on INEX 2003 relevance
assessments. In these figures, n means the minimum num-
ber of tokens which is defined to eliminate extremely small
XML portions from retrieval targets5. In short, as n be-
comes larger, the retrieval accuracy of our system becomes
higher as well as the retrieval speed of our system becomes
faster.

3There is a data-centric and a document-centric view of
XML described in [3].
4Another way is also available described in a technical report
[11]; however, we did not apply it in this paper.
5The size of XML portions is proportional to the number of
tokens contained in the XML portions.
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Figure 1: Evaluation of our system based on INEX
2003 relevance assessments (strict).

As shown in these figures, our keyword-based XML por-
tion retrieval system may be performing poorly, because the
level of the recall-precision curves are relatively low among
the participants of INEX project. Although we recognize
the problems inherent in our system6, it is thought that the
problems may be not only in our system, but also in the
relevance assessments. If the relevance assessments tend to
regard large-size XML portions as correct retrieval results,
our system will be a poorly-performing XML portion re-
trieval system, because our system tends to retrieve small
XML portions except extremely small ones as retrieval re-
sults described in Section 1. As a matter of fact, in the

Table 1: Average precision of our system.
n strict generalized

0 0.0356 0.0390
20 0.0436 0.0476
50 0.0502 0.0505

100 0.0568 0.0568
150 0.0669 0.0525
200 0.0630 0.0503
250 0.0572 0.0416
300 0.0163 0.0130

case of threshold of the number of tokens is between 100
and 150, our system works properly (see Table 1). From our
viewpoint, we think that this number of tokens is very large
for XML portion retrieval. This is because the number of
tokens is comparable to XML portions whose root node is
ss1, ss2, or ss3 as shown in Table 2. We have designed
our XML portion retrieval to enable to retrieve XML por-
tions corresponding to XML portions whose size is less than

6Our system cannot calculate similarities between a query
and XML portions using both contents and structures of
XML documents.
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Figure 2: Evaluation of our system based on INEX
2003 relevance assessments (generalized).

(sub)sections of INEX document collection as retrieval re-
sults. Therefore, retrieval results of our system will be the
XML portions smaller than answer XML portions7.

From the aforementioned points, we choose the relevance as-
sessments suitable for our system, and reevaluate retrieval
accuracy of our system based on revised version of the rele-
vance assessments.

3. ANALYSES OF INEX RELEVANCE AS-
SESSMENTS

3.1 Analyses of the Relevance Assessments
As we described in previous section, we think that the INEX
2003 relevance assessments may work against XML portion
retrieval systems which tend to regard small-size XML por-
tions as correct retrieval results. Consequently, we analyze
statistics of answer XML portions of the relevance assess-
ments. In this section, we define the answer XML portions
as the XML portions whose exhaustiveness and specificity
are 3. Our system can deal with only content-only (CO) top-
ics of the relevance assessments; thus answer XML portions
of CO topics are analyzed.

Figure 3 shows analyses of CO topics of the INEX 2003 rel-
evance assessments. Area charts mean maximum, average,
and minimum number of tokens of answer XML portions,
and a line chart means the number of answer XML por-
tions. As shown in Figure 3, we firstly found that five CO
topics of the relevance assessments (whose topic are #92,
#100, #102, #115, and #121) did not have answer XML
portions whose exhaustiveness and specificity are 3. It is

7Of cause, this is our opinions. In [17], the authors claimed
that 500 words is valid for answer XML portions. The
proper size of answer XML portions depends on retrieval
purposes.
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Figure 3: Analyses of the INEX 2003 relevance assessments.

doubtful that these topics were adopted as the CO topics
of the relevance assessments. Moreover, we also found that
average number of tokens of almost all CO topics was more
than 100. Especially, average number of tokens of the CO
topics whose IDs are #95, #96, #107, #110, and #111 was
500 and above; thus these CO topics distinctly work against
our system. Furthermore, the number of answer XML por-
tions substantially differs with each CO topic. We think
that the CO topics with few answer XML portions are not
inappropriate for the relevance assessments.

From the aforementioned points, we choose 14 CO topics
(#93, #94, #97, #98, #99, #101, #104, #108, #112,
#113, #116, #123, #125, #126) as the topics suitable for
our system, and reevaluate retrieval accuracy of our system
based on revised version of the relevance assessments.

3.2 Reevaluation of Our System
Figure 4 and 5 show recall-precision curves of our system
based on revised versions of INEX 2003 relevance assess-
ments. Moreover, Table 3 shows average precisions of each
recall-precision curve. As compared with previous evalu-
ations described in Section 2.3, retrieval accuracy of our
system is improved about 3.55% on this experiment. This
fact indicates that the INEX 2003 relevance assessments also
tend to regard large-size XML portions as correct retrieval
results; thus our system cannot return the XML portions
relevant to CO topics of the relevance assessments. Need-
less to say, we do not know that retrieval accuracy of our
system is better than that of other INEX participants’ sys-
tems; however, we can confirm controversial points of the
relevance assessments for our system.

To reduce the scope of such arguments, we have to clar-
ify what XML portion retrieval is. It is difficult to define

the granularity of XML documents; however, we think that
determining such a retrieval unit for XML portions is the
most important task for INEX project. Of cause, the re-
trieval unit for XML portions is differ for retrieval purposes
of INEX participants; thus, we should determine the unit
of XML portions for each retrieval purpose. In the case of
our keyword-based XML portion retrieval system, small and
semantically consolidated XML portions are defined as cor-
rect retrieval results; thus, we think that we are just forced
to use the revised relevance assessments.

4. DISCUSSION
As we described in previous section, retrieval targets of INEX
document collection depend on retrieval purpose of XML
portion retrieval systems. In the case of our system, small
and semantically consolidated XML portions are defined as
the retrieval targets. On the other hand, Kamps et al. con-
cluded in [15] that users and assessors of the INEX 2002
relevance assessments regard the XML portions whose root
node is article as retrieval targets of INEX document col-
lections; thus we think that the systems which tend to regard
large-size XML portions as retrieval results gain the upper
hand in retrieval accuracy. That is to say, nobody may be
able to evaluate XML portion retrieval systems accurately
using the relevance assessments.

We think that the INEX 2003 relevance assessments also
contain the problem which the INEX 2002 relevance assess-
ments have. In this section, we make specific mention of the
issues of the INEX 2003 relevance assessments.

4.1 Two Dimensional Evaluation Measure
There are two dimensions of relevant evaluation measures,
exhaustivity and specificity in the INEX 2003 relevance as-
sessments. Exhaustivity describes the extent to which the
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Table 2: Statistical analysis of XML portions

element
# of XML # of tokens

portions average maximum minimum

book 3,612,202 28,897 64,181 6,341
journal 6,314,623 7,342 14,903 3,982
article 11,801,575 974 4,727 29
bdy 9,271,423 765 3,943 11
index 72,993 623 1,593 230
bm 3,125,254 310 2,863 2
dialog 41,317 212 906 19
sec 14,078,415 201 2,613 1
bib 1,662,190 194 1,959 8
bibl 1,662,640 194 1,959 8
app 812,923 138 1,353 2
ss1 7,854,413 127 2,109 1
ss2 1,509,337 92 1,261 1
ss3 11,642 91 325 9
fm 797,123 65 289 9
tgroup 363,102 62 401 2
proof 229,144 60 801 5
vt 1,021,500 55 235 2
dl 18,670 52 745 5
edintro 28,923 50 272 4

Table 3: Average precision of our system based on
revised INEX 2003 relevance assessments.

n strict generalized

0 0.0564 0.0630
20 0.0666 0.0697
50 0.0689 0.0667

100 0.0777 0.0774
150 0.0866 0.0731
200 0.0769 0.0695
250 0.0611 0.0645
300 0.0253 0.0217

XML portion discussed the topic of request: (0: not ex-
haustive, 1: marginally exhaustive, 2: fairly exhaustive, 3:
highly exhaustive). On the other hand, specificity describes
the extent to which the XML portion focuses on the topic
of request: (0: not specific, 1: marginally specific, 2: fairly
specific, 3: highly specific).

Analyzing the relevance assessments, we examined XML
portions which are not only highly exhaustive but also highly
specific to each topic, namely (exhaustivity(E), specificity(S))
equals to (3, 3). Table 4 is an example (topic #125) of our
examinations. As we see in Figure 4, we found that there
are some nested relationships among the XML portions. At
this time, we did not understand how we could interpret the
optimal XML portions. We think that the optimal XML
portions depend on the purpose of XML portion retrieval
systems; therefore there are a lot of interpretations related
to the optimal XML portions. However, criterion for the
optimal XML portions, such as the maximal or the minimal
XML portions, should be defined.

4.2 Two Types of CO Topics
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Figure 4: Evaluation of our system based on revised
INEX 2003 relevance assessments (strict).

As we described in Section 3.1, the size and the number of
answer XML portions related to each CO topic are vary (see
Figure 3). Therefore, we notice that there may be two types
of retrieval purpose in XML portion retrieval. In short, we
think that CO topics of the relevance assessments consist of
the topics for searching specific XML portions (SCO) and
for searching aggregated XML portions (ACO).

• SCO
When a topic has many small-size answer XML por-
tions, we think these XML portions are specific; thus
they will be semantically consolidated. Table 5 shows
the topics of the INEX 2003 relevance assessments that
have less than 500 tokens as the average number of
tokens of answer XML portions whose (E, S) equal to
(3, 3). As for these topics, we think that required XML
portions are more specific because keywords of the top-
ics consist of some proper nouns, such as “Charles Bab-
bage,” “XML” and “Markv.” Moreover, the average
number of tokens of answer XML portions assessed
as (E, S) = (3, 1) or (3, 2) is larger than assessed as
(E, S) = (3, 3).

• ACO
When the topic has many large-size answer XML por-
tions, we think XML portions whose root node is article
are suitable for XML portion retrieval. Table 6 shows
the topics of the INEX 2003 relevance assessments that
have more than 500 tokens as the average number of
tokens of answer XML portions whose (E, S) equal
to (3, 3). We think that these topics are exhaustive
because there is no specific keyword, and we expect
that the answer XML portion should cover informa-
tion on the contents of the topic. As a result, the
XML portion which was assessed as (E, S) = (3, 3)
became aggregated XML portions with comparatively
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Table 4: XML portions evaluated (E, S) = (3, 3) of topic #125

file path # of tokens
co/1999/r1057 /article[1] 1128
co/1999/r1057 /article[1]/bdy[1] 863
co/1999/r1057 /article[1]/bdy[1]/sec[3] 215
co/1999/r1057 /article[1]/bdy[1]/sec[3]/fig[1] 37
co/1999/r1057 /article[1]/bdy[1]/sec[3]/fig[1]/art[1] 11
co/1999/r1057 /article[1]/bdy[1]/sec[3]/fig[1]/fgc[1] 24
co/1999/r1057 /article[1]/bdy[1]/sec[3]/p[1] 63
co/1999/r1057 /article[1]/bdy[1]/sec[3]/p[2] 49
co/1999/r1057 /article[1]/bdy[1]/sec[3]/p[3] 32
co/1999/r1057 /article[1]/bdy[1]/sec[3]/p[4] 33
co/1999/r1057 /article[1]/bdy[1]/sec[3]/p[5] 82
co/1999/r1057 /article[1]/bdy[1]/sec[5] 343
co/1999/r1057 /article[1]/bdy[1]/sec[6] 308
co/1999/r1057 /article[1]/bm[1]/app[1]/p[1] 65
co/1999/r1057 /article[1]/bm[1]/app[1]/p[2] 68
co/1999/r1057 /article[1]/bm[1]/app[3]/p[1] 34
co/1999/r1057 /article[1]/bm[1]/app[3]/p[2] 54
co/1999/r1057 /article[1]/bm[1]/app[3]/p[3] 25
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Figure 5: Evaluation of our system based on revised
INEX 2003 relevance assessments (generalized).

large granularity. Moreover, the average number of
tokens of answer XML portions assessed as (E, S) =
(3, 1), (3, 2), or (2, 3) is almost smaller than assessed
as (E, S) = (3, 3).

4.3 Our classification of INEX topics
We think that it is important to refine the INEX test col-
lection year by year; thus excellent topics should be selected
from the INEX 2002/2003 relevance assessments, and should
be reused in INEX 2004. We attempt to classify the INEX
topics based on the average number of tokens of answer XML
portions.

Figure 6 shows analyses of CO topics of the INEX 2002
relevance assessments with the same way as Figure 3. In
INEX 2002 relevance assessments, there are two dimensions
of relevant evaluation measures, relevance and coverage; thus
we translated (relevance, coverage) = (3, E) into (E, S) =
(3, 3). Compared with these two figures, the INEX 2002
relevance assessments are similar to the INEX 2003 ones.
Therefore, we will be able to classify CO topics into the
following three categories.

1. The topics inappropriate for test collection
The topic which does not have answer XML portions
at all or has a few answer XML portions is inadequate.
To evaluate a performance of the retrieval system, the
test collection should guarantee to have certain degree
of the number of the answer XML portions in order to
emerge into the search results. Therefore, the topics
(whose topic IDs are #31, #33, #49, #91, #92, #100,
#102, #103, #107, #109, #110, #115, #117, #119,
#121 and #124) would be inappropriate for the INEX
test collection.

2. The topics for searching spcific XML portions
We think the topics (whose topic IDs are #32, #26,
#23, #38, #41, #42, #44, #46, #48, #51, #60, #93,
#94, #97, #98, #99, #101, #104, #108, #112, #113,
#116, #123, #125 and #126) are suitable for evalu-
ating XML portion retrieval systems which tend to
regard large-size XML portions as retrieval results.

3. The topics for searching aggregated XML portions
We think that the topics (whose topic IDs are #34,
#39, #40, #43, #45, #47, #52, #53, #58, #95, #96
and #111 ) will be suitable for evaluating XML portion
retrieval systems which tend to regard small-size XML
portions as retrieval results.

These issues are our own opinions. In the INEX workshop,
we hope to discuss these issues in order to construct a valid
test collection for XML portion retrieval.
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Table 5: SCO topics of the INEX 2003 relevance assessments.

topic
# of tokens (average)

ID
title (E, S)

(3, 3) (3,2), (3, 1) (2, 3)
93 “Charles Babbage” -institute -inst 186 3,377 62
94 “hyperlink analysis” +“topic distillation” 232 83 333
97 Converting Fortran source code 186 753 27
98 “Information Exchange” +XML “Information Integration” 383 0 347
99 perl features 69 314 18

101 +“t test” +information 228 364 222
104 Toy Story 114 735 0
108 ontology ontologies overview “how to” practical example 466 872 367
112 +“Cascading Style Sheets” -“Content Scrambling System” 228 332 61
113 “Markov models” “user behaviour” 438 1,010 90
116 “computer assisted art” “computer generated art” 330 702 207
123 multidimensional index “nearest neighbour search” 245 546 48
125 +wearable ubiquitous mobile computing devices 154 249 47
126 Open standards for digital video in distance learning 288 710 455

Table 6: ACO topics of the INEX 2003 relevance assessments.

topic
# of tokens (average)

ID
title (E, S)

(3, 3) (3,2), (3, 1) (2, 3)
95 +face recognition approach 940 593 486
96 +“software cost estimation” 885 1,174 537

107
“artificial intelligence” AI practical application industry

1,487 0 633“real world”

110
“stream delivery” “stream synchronization” audio video

811 669 162streaming applications

111
“natural language processing” -“programming language”

806 474 253-“modeling language” +“human language”

5. CONCLUSION
In this paper, we analyzed the INEX 2003 relevance assess-
ments based on statistics of their answer XML portions of
CO topics, and reported some controversial points of the
relevance assessments for our keyword-based XML portion
retrieval system. From the viewpoint of statistics, we found
that the CO topics unsuitable for our purpose of XML por-
tion retrieval caused low retrieval accuracy of our system;
thus we should fix the relevance assessments for evaluating
our system.

However, we think that fundamental problem has been re-
mained in the relevance assessments. In other words, we
have to clarify what XML portion retrieval is. As we de-
scribed in Section 4, we believe that retrieval purpose of
keyword-based XML portion retrieval is classified into two
types such as searching specific XML portions and aggre-
gated ones. The retrieval purposes of these approaches are
different; thus we think that the relevance assessments for
each approach are required for evaluation. Therefore it is
necessary for the INEX 2004 relevance assessments to define
the SCO and ACO topics. Moreover, the INEX 2002 rele-
vance assessments were not utilized for evaluation in INEX
2003. We think that excellent topics of the relevance as-
sessments should be used for evaluation in every year, and
it helps us to reduce labor of INEX participants. Conse-
quently, we should define the baseline of excellent topics,
and should adopt the topics of INEX 2002/2003 relevance
assessments which meet the baseline as topics of the INEX
2004 ones.
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ABSTRACT
Information retrieval on XML combines retrieval on con-
tent data (element and attribute values) with retrieval on
structural data (element and attribute names). Standard
query languages for XML such as XPath or XQuery support
Boolean retrieval: a query result is a (possibly restructured)
subset of XML elements or entire documents that satisfy the
search conditions of the query. Such search conditions con-
sist of regular path expressions including wildcards for paths
of arbitrary length and boolean content conditions.

We developed a flexible XML search language called XXL
for probabilistic ranked retrieval on XML data. XXL of-
fers a special operator ’∼’ for specifying semantic similar-
ity search conditions on element names as well as element
values. Ontological knowledge and appropriate index struc-
tures are necessary for semantic similarity search on XML
data extracted from the Web, intranets or other document
collections. The XXL Search Engine is a Java–based proto-
type implementation that support probabilistic ranked re-
trieval on a large corpus of XML data.

This paper outlines the architecture of the XXL system and
discusses its performance in the INEX benchmark.

1. INTRODUCTION
The main goal of the initiative for the evaluation of XML
retrieval (INEX) is to promote the evaluation of content–
based and structure–based XML retrieval by providing a
hugh test collection of scientific XML documents, uniform
scoring procedures, and a forum for organisations to com-
pare their results. For that purpose, the INEX committee
provides about 12.000 IEEE journal articles with a rich XML
structure. In cooperation with the participanting groups a
set of content–only queries (CO) and a set of content–and–
structure queries (CAS) was created. Each group evaluated
these queries on the given data with their XML retrieval
system and submitted a set of query results.

In this paper we describe the main aspects of our XXL search
engine. First of all, we present our flexible XML search
language XXL. In addition, we describe our ontology model
which we use for semantic similarity search on structural
data and content data of the XML data graph. Then we
give a short overview how XXL queries are evaluated in
the XXL Search Engine and which index structures used to
support an efficient evaluation. Finally, we present the our
results in the INEX 2003 benchmark.

2. XML DATA MODEL
In our model, a collection of XML documents is represented
as a directed graph where the nodes represent elements, at-
tributes and their values. For identification, each node is
assigned a unique ID, the oid. There is an directed edge
from a node x to a node y if

• y is a subelement of x,
• y is an attribute of x,

• y contains the value of element x or

• y contains the value of attribute x.

Additionally, we model an XLink [7] from one element to
another by adding a special, directed edge between the cor-
responding nodes. We call the resulting graph the XML data
graph for the collection.

Figure 1 shows the XML data graph for a collection of
two XML documents from the INEX collection (adapted
as shown in Section 6): a journal document with an XLink
pointing to an article document. Each node that contains
an element or attribute name is called n–node (shown as
normal nodes in Figure 1), and each node that contains an
element or attribute value is called c–node (dashed nodes
in Figure 1). To represent mixed content, we need a local
order of the child nodes of a given element. In Figure 1 you
can see a sentence which is partitioned into several shaded
c–nodes.

3. THE FLEXIBLE XML QUERY LANG-
UAGE XXL

The Flexible XML Search Language XXL has been designed
to allow SQL-style queries on XML data. We have adopted
several concepts from XML-QL [8], XQuery[3] and similar
languages as the core, with certain simplifications and re-
sulting restrictions, and have added capabilities for ranked
retrieval and ontological similarity. As an example for an
XXL query, consider the following query that searches for
publications about astronomy:

SELECT $T // output of the XXL query

FROM INDEX // search space

WHERE ~article AS $A // search condition

AND $A/~title AS $T

AND $A/#/~section ~ "star | planet"

The SELECT clause of an XXL query specifies the output of
the query: all bindings of a set of element variables. The
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Figure 1: XML data graph

FROM clause defines the search space, which can be a set
of URLs or the index structure that is maintained by the
XXL engine. The WHERE clause specifies the search condi-
tion; it consists of the logical conjunction of path expressions,
where a path expression is a regular expression over elemen-
tary conditions and an elementary condition refers to the
name or content of a single element or attribute. Regular
expressions are formed using standard operators like ’/’ for
concatenation, ’|’ for union, and ’*’ for the Kleene star.
The operator ’#’ stands for an arbitrary path of elements.
Each path expression can be followed by the keyword AS and
a variable name that binds the end node of a qualifying path
(i.e., the last element on the path and its attributes) to the
variable, that can be used later on within path expressions,
with the meaning that its bound value is substituted in the
expression.

In contrast to other XML query languages we introduce a
new operator ’∼’ to express semantic similarity search con-
ditions on XML element (or attribute) names as well as on
XML element (or attribute) contents.

The result of an XXL query is a subgraph of the XML
data graph, where the nodes are annotated with local rele-

vance probabilities called similarity scores for the elementary
search conditions given by the query. These similarity scores
are combined into a global similarity score for expressing the
relevance of the entire result graph. Full details of the se-
mantics of XXL and especially the probabilistic computation
of similarity scores can be found in [17, 18].

4. ONTOLOGY–BASED SIMILARITY
Ontologies have been used as a means for storing and retriev-
ing knowledge about the words used in natural language and
relations between them.

In our approach we consider a term t as a pair t = (w, s)
where w is a word over an alphabet Σ and s is the word
sense (short: sense) of w, e.g.

t1 = (star, a celestial body of hot gases)

t2 = (heavenly body, a celestial body of hot gases)

t3 = (star, a plane figure with 5 or more points)

In order to determine which terms are related, we introduce
semantic relationships between terms that are derived from
common sense. We say that a term t is a hypernym (hy-
ponym) of a term t′ if the sense of t is more general (more
specific) than the sense of t′. We also consider holonyms and
meronyms, i.e., t is a holonym (meronym) of t′ if t′ means
something that is a part of something meant by t (vice versa
for meronyms). Finally, two terms are called synonyms if
there senses are identical, i.e., their meaning is the same.

Based on these definitions we now define the ontology graph
O = (VO, EO) which is a data structure to represent con-
cepts and relationships between them. This graph has con-
cepts as nodes and an edge between two concepts whenever
there is a semantic relationship between them. In addition,
we label each edge with a weight and the type of the un-
derlying relationship. The weight expresses the semantic
similarity of two connected concepts.

To fill our ontology with concepts and releationship we use
the voluminous electronical thesaurus WordNet as backbone.
WordNet organzies words in synsets and presents relation-
ships between synsets without any quantification.

For quantification of relationships we consider freqency–based
correlations of concepts using large web crawls. In our ap-
proach, we compute the similariey of two concepts using cor-
relation coefficients from statistics, e.g. the Dice or Overlap
coefficient [14]. Figure 2 shows an excerpt of an example
ontology graph around the first sense for the word ”star”.

For two arbitrary nodes u and v that are connected by a path
p = 〈u = n0 . . . nk = v〉, we define the similarity simp(u, v)
of the start node u and the end node v along this path to
be the product of the weights of the edges on the path:

simp(u, v) =

length(p)−1∏
i=1

weight(〈ni, ni+1)

where weight(〈ni, ni+1〉) denotes the weight of the edge e =
(ni, ni+1). The rationale for this formula is that the length
of a path has direct influence on the similarity score. The
similarity sim(u, v) of two nodes u and v is then defined as
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star
celestial body
of hot gases

celestial body, heavenly body
natural objects visible in the sky

beta centauri
the second brightest

star in centaurs

sun
Any star around which a 

planetary systems evolves

galaxy, extragalactic nebula
a collection of star systems

milky way, milky way galaxy
the galaxy containing

the solar system

heliosphere
the region inside the heliopause...

hyper
[0.6]

hypo
[0.6]

hyper
[0.85]

hypo
[0.85]

hyper
[0.85]

hypo
[0.85]

hyper
[0.73]

hypo
[0.73]

holo
[0.4]

mero
[0.4]

holo
[0.36]

mero
[0.36]

solar system
the sun with the celstial bodies...

holo
[0.4]

mero
[0.4]

natural object
an object occurring naturally

hyper
[0.2]

hypo
[0.2]

collection, aggregation, 
accumulation, assemblage

several things grouped together

hyper
[0.45]

hypo
[0.45]

Figure 2: Excerpt of an ontology graph O with la-
beled edges

the maximal similarity along any path between u and v:

sim(u, v) = max{simp(u, v) | p path from u to v}

However, the shortest path (the path with the smallest num-
ber of edges) need not always be the path with the highest
similarity, as the triangular inequation does not necessarily
hold. Thus, we need an algorithm that takes into account
all possible paths between two given concepts, calculates
the similarity scores for all paths, and chooses the maxi-
mum of the scores for the similarity of these concepts. This
is a variant of the single–source shortest path problem in a
directed, weighted graph. A good algorithm to find the sim-
ilar concepts to a given concept and their similarity scores is
a variant of Dijkstra’s algorihm [6] that takes into account
that we multiply the edge weights on the path and search
for the path with the maximal weight instead of minimal
weight.

Furthermore, as words may have more than one sense, it is
a priori not clear in which sense a word is used in a query
or in a document. To find semantically similar words, it
is fundamental to disambiguate the word, i.e., to find out
its current sense. In our work we compute the correlation
of a context of a given word and the context of a potential
appropriate concept from the ontology using correlation co-
efficients as described above. Here, the context of a word
are other words in the proximity of the words in the query
or document, and the context of a concept is built from the
words of the neighbor nodes of the concept. See [15] for
more techical details on the disambiguation process.

5. THE XXL SEARCH ENGINE
5.1 Architecture of the XXL Search Engine
The XXL Search Engine is a client-server system with a
Java-based GUI. Its architecture is depicted in Figure 3.
The server consists of the following core components:

• service components: the crawler and the query proces-
sor, both Java servlets

• algorithmic components: parsing and indexing docu-
ments, parsing and checking XXL queries

• data components: data structures and their methods
for storing various kinds of information like the el-
ement path index (EPI), the element content index
(ECI), and the ontology index (OI).

The EPI contains the relevant information for evaluating
simple path expressions that consist of the concatenation of
one or more element names and path wildcards #. The ECI
contains all terms that occur in the content of elements and
attributes, together with their occurrences in documents; it
corresponds to a standard text index with the units of index-
ing being elements rather than complete documents. The OI
implements the ontology graph presented in Section 4.

XXL servlets

Query
Processor

EPI
Handler

ECI
Handler

Ontology
Handler

Visual
XXL

XXL applet

EPI

ECI

OI

WWW

......

.....

......

.....

Crawler

Path
Indexer

Content
Indexer

Ontology
Indexer

Figure 3: Architecture of the XXL search engine

5.2 Query Processing in the XXL Search En-
gine

The evaluation of the search conditions in the Where clause
consists of the following two main steps:

• The XXL query is decomposed into subqueries. A glo-
bal evaluation order for evaluating the various sub-
queries and a local evaluation order in which the com-
ponents of each subquery are evaluated are chosen.

• For each subquery, subgraphs of the data graph that
match the query graph are computed, exploiting the
various indexes to the best possible extent. The subre-
sults are then combined into the result for the original
query.

5.2.1 Query Decomposition
As an example for an XXL query, consider the following
XXL query where we are interested in scientific articles about
information retrieval and databases:

SELECT $T

FROM INDEX

WHERE ~article AS $A

AND $A/~title AS $T

AND $A/#/~section ~ "IR & database"
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The Where clause of an XXL query consists of a conjunc-
tion "W1 And ... And Wn" of subqueries Wi, where each
subquery has one of the following types:

• Pi

• Pi AS $A

• Pi ∼/LIKE/=/<>/</> condition

where each Pi is a regular path expression over elementary
conditions, $A denotes a element variable to which the end
node of a matching path is bound, and condition gives
a content–based search condition using a binary operator.
From the definitions of variables we derive the variable de-
pendency graph that has an edge from $V to $W if the path
bound to $W contains $V. We require the variable dependency
graph of a valid XXL query to be acyclic.

Each subquery corresponds to a regular expression over ele-
mentary conditions which can be described by an equivalent
non-deterministic finite state automaton (NFSA). Figure 4
shows the search graphs of the example query together with
the variable dependency graph.

~article $A

~title

$A

~ „IR & DB“

%

~section

$A

$T

$A $T

variable dependencies

W1: 
~article AS $A

W2: 
$A/~title AS $T

W3: 
$A/#/~section ~ „IR & DB“

Figure 4: XXL search graphs for each subquery of
the given XXL query

5.2.2 Query Evaluation
To evaluate an XXL query, we first choose an order in which
its subqueries are evaluated. This order must respect the
variable dependency graph, i.e., before a subquery that de-
fines a variable is evaluated, all subqueries that define vari-
ables used in this subquery must be evaluated. As this may
still leaves us some choices how to order subqueries, we es-
timate the selectivity of each subquery using simple statis-
tics about the frequency of element names and search terms
that appear as constants in the subquery. Then we choose
to evaluate subqueries and bind the corresponding variables
in ascending order of selectivity (i.e., estimated size of the
intermediate result).

Each subquery is mapped to its corresponding NFSA. A
result for a single subquery, i.e. a relevant path, is a path
of the XML data graph that matches a state sequence in
the NFSA from an intial state to a final state. For such a

result, the relevance score is computed by multiplying the
local relevance scores of all nodes of the path. In addition,
all variables that occur in the subquery are assigned to one
node of the relevant path.

A result for the query is then constructed from a consistent
union of the variable assignments and a set of relevant paths
(one from each subquery) that satisfies the variable assign-
ments. The global relevance for such a result is computed
by multiplying the local relevances of the subresults.

The local evaluation order for a subquery specifies the or-
der in which states of the subquery’s NFSA are matched
with elements in the XML data graph. The XXL prototype
supports two alternative strategies: in top-down order the
matching begins with the start state of the NFSA and then
proceeds towards the final state(s); in bottom-up order the
matching begins with the final state(s) and then proceeds
towards the start state.

As an example, we show how the NFSA shown in Figure 5
is evaluated in top-down order on the data shown in that
figure:

Step 1: The first elementary search condition contains a
semantic similarity search condition on an element name.
Thus, we consult the ontology index to get words which are
similar to paper, yielding the word article with sim(article,
paper) = 0.9. The first part of our result graph is therefore a
n–node of the data graph named article, and it is assigned
a local relevance score of 0.9.

Step 2: To be relevant for the query, a node from the result
set of Step 1 must also have a child node with name bdy.
As a result of Step 2, we consider result graphs formed by
such nodes and their respective child.

Step 3: The next state in the NFSA corresponds to a wild-
card for an arbitrary path in the data graph. Explicitly eval-
uating this condition at this stage would require an enumer-
ation of the (possibly numerous) descendants of candidate
results found so far, out of which only a few may satisfy the
following conditions. We therefore proceed with the next
condition in the NFSA and postpone evaluating the path
wildcard to the next step. The following condition is again
a semantic similarity condition, so we consult the ontology
index to get words which are similar to section. Assume
that the ontology index returns the word sec with a simi-
larity score of 0.95. There are no n-nodes in the data that
are named section, but we can add n–nodes named sec to
our preliminary result with a local relevance score of 0.95.

Step 4: In this step we combine the results from steps 2
and 3 by combining n-nodes that are connected through an
arbitrary path.

Step 5: The final state of the NFSA contains a content-
based semantic similarity search condition which must be
satisfied by the content of a sec-element in the result set
of Step 4. We first decompose the search condition that
may consist of a conjunction of search terms into the atomic
formulas (i.e., single terms). For each atomic formula we
consult the ontology index for similar words and combine
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them in a disjunctive manner. We then use a text search
engine to evaluate the relevance of each element’s content
which is expressed through an tf/idf-based relevance score.
This score is combined with the ontology-based similarity
score to the relevance score of the atomic formula. Finally,
we multiply the relevance scores for each formula to get the
relevance score for the similarity condition.

In our example, the shaded nodes in Figure 5 form a relevant
path for the given NFSA.
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Figure 5: Evaluation of a XXL search graph in top–
down manner

5.2.3 Index Structures
The XXL Search Engine provides appropriate index struc-
tures, namely the element path index (EPI), the element
content index (ECI), and the ontology index (OI), that sup-
port the evaluation process described in the previous sub-
section.

The OI supports finding words that are semantically related
to a given word, using the techniques presented in Section 4.

The ECI supports the evaluation of complex logical search
conditions using an inverted file and a B+–tree over element
names. Given an atomic formula, the ECI returns elements
whose content is relevant with respect to that atomic for-
mula and the tf/idf–based relevance score.

The EPI provides efficient methods to find children, par-
ents, descendants and ascendants of a given node, and to
test if two arbitrary nodes are connected. When the XML
data graph forms a tree, we use the well-known pre- and
postorder scheme by Grust et al. [10, 11] for this purpose.
However, if the XML documents contain links, this scheme
can no longer be applied. For such settings that occur fre-
quently with documents from the Web, the XXL Search En-
gine provides the HOPI index [16] that utilizes the concept
of a 2–hop cover of a graph. This is a compact representation
of connections in the graph developed by Cohen et al. [4].

It maintains, for each node v of the graph, two sets Lin(v)
and Lout(v) which contain appropriately choosen subsets of
the transitive predecessors and successors of v. For each
connection (u, v) in the XML data graph G, we choose a
node w on a path from u to v as a center node and add w to
Lout(u) and to Lin(v). We can efficiently test if two nodes u
and v are connected by checking Lout(u) and Lin(v): there
is a path from u to v iff Lout(u) ∩ Lin(v) �= ∅. The path
from u to v can be separated into a first hop from u to some
w ∈ Lout(u) ∩ Lin(v) and a second hop from w to v, hence
the name of the method.

More technical details how we improved the theoretical con-
cept of a 2–hop–cover can be found in [16] which covers both
the efficient creation of the index using a divide-and-conquer
algorithm and the incremental maintenance of the index.

5.3 Implementation Issues
In our prototype implementation we store XML data in an
Oracle 9i database with the following relational database
schema:

– URLS (urlid, url, lastmodified),
– NAMES(nid, name),
– NODES(oid, urlid, nid, pre, post),
– EDGES(oid1, oid2),
– LINKS(oid1, oid2),
– CONTENTS(oid, urlid, nid, content),

– LIN (oid1, oid2) and
– LOUT(oid1, oid2).

Here, NODES, EDGES and CONTENTS store the actual
XML data, URLS contains the urls of all XML documents
known to the system, and LINKS holds the links between
XML documents. LIN and LOUT store the Lin and Lout

sets used by the HOPI index. The ECI makes use of Oracle’s
text search engine.

The OI is represented by the following three tables:

– CONCEPTS (cid, concept, description, freq),
– WORDS (cid, word) and
– RELATIONSHIPS(cid1, cid2, type, freq, weight).

The entries in the ontology index are extracted from the
well–known electronic thesaurus WordNet [9]. Frequencies
and weights are computed as shown in Section 4.

Both the crawler used to parse and index XML documents
from the Web and from local directories and the query pro-
cessor of the XXL search engine used to evaluate XXL queries
are implemented using Java.

6. XXL AND INEX
6.1 The INEX Data
The INEX document collection consists of eighteen IEEE
Computer Society journal publications with all volumes since
1995. Each journal is stored in its own directory. For
each journal, the volumes are organized in subdirectories per
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year. Each volume consists of a main XML file volume.xml

that includes the XML files for the articles in this volume
using XML entities. Thus, importing all volumes using a
standard XML parser yields 125 single documents.

This organization of the data appears somewhat artificial
and is unsuitable for answering INEX queries, as these queries
typically ask for URLs of articles, not volumes. Having only
volumes available as separate XML files, the path to the
originating article for a hit has to be reconstructed from
metadata in the XML files (the fno entries) which unfortu-
nately is not always correct.

To overcome this problem, we adapted the INEX data in the
following way. We replaced each entity in the volume files by
an XLink pointing to the root element of the corresponding
article. This modification keeps the original semantics of the
data, but allows us to return the correct URLs of results in
all cases. Additionally, such an organization is much closer
to what one would expect from data available on the Web
or in digital libraries. After this modification, importing all
documents yielded 125 journal volumes and 12,117 journal
articles.

The following table shows the number of records of each
table after crawling and indexing the slightly modified INEX
document collection.

table number of records
urls 12.233
names 219
nodes 12.061.347
edges 12.049.114
links 408.085
contents 7.970.615
lin 28.776.664
lout 4.924.420

In addition to this structural problem, the INEX collection
has some other properties that makes retrieval based on se-
mantic similarities difficult, if not infeasible:

• Most element and attribute names are, even though
they are derived from natural language, no existing
words. As an example, the element name sbt stands
for ”‘subtitle”’. However, the ontology used by XXL
does not contain such abbrevations, so it had to be
manually adapted if it was to be used for the INEX
queries.

• Some element names are used only for formatting and
do not carry any semantics at all. As an example,
elements with name scp contain textual content that
should be typeset small caps font.

• Each journal article has a rich structure with possibly
long paths (which XXL supports with its highly effi-
cient path index structures). However, as all articles
are conforming to the same DTD, they share the same
structure, which renders structural similarity search
obsolete.

• The queries mostly contain keywords that are not well
represented in WordNet, yielding ontology lookups use-

less in most cases. For some keywords, we manually
enhanced the ontology, but this was far less complete
than the information usually available with WordNet.

As a preliminary conclusion, the INEX collection is inap-
propriate for exploiting and stress–testing similarity search
features as provided by our query language XXL and also
other approaches along these lines [1, 5, 12].

6.2 The INEX benchmark
The Inex benchmark consists of a set of content–only queries
(CO) and content–and–structure queries (CAS) given in a
predefined XML format. Each query a short description and
a longer description of the topic of request and a set of key-
words, and CAS queries also contain an XPath expression.
For example, consider the CO–query 98:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="98"

query_type="CO"

ct_no="26">

<title>

"Information Exchange", +"XML", "Information

Integration"

</title>

<description>

How to use XML to solve the information ex-

change (information integration) problem,

especially in heterogeneous data sources?

</description>

<narrative>

Relevant documents/components must talk about

techniques of using XML to solve information

exchange (information integration) among

heterogeneous data sources where the struc-

tures of participating data sources are diffe-

rent although they might use the same ontolo-

gies about the same content.

</narrative>

<keywords>

information exchange, XML, information inte-

gration, heterogeneous data sources

</keywords>

</inex_topic>

To automatically transform a CO query into an XXL query
we consider only the keywords given for the query. As there
is no way to automatically decice how to combine these key-
words (conjunctively, disjunctively or mixed) in an optimal
manner, we chose to combine them conjunctively. To get
also results that are semantically similar to the keywords,
we also add our similarity operator . For the example CO
query this process yields the following XXL query:

SELECT *

FROM INDEX

WHERE article/# ~ " information exchange

& XML

& information extraction "

For CAS queries, we map the given XPath expression in
a straightforward way to a corresponding XXL expression,
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adding semantic similarity conditions to all element names
and keywords that appear in the XPath expression. How-
ever, as there are sometimes differences between the XPath
expression and the natural language–based description of a
query, this automatic transformation does not always yield
optimal results.

We submitted runs with and without enabling lookups in
the ontology index. With the OI enabled, each keyword in
the query is replaced by the disjunction of itself and all its
synonyms:

SELECT *

FROM INDEX

WHERE article/# ~

" (information exchange | data exchange |

object exchange | OEM)

& (XML | semistructured data)

& (information extraction | data integration |

database integration | Mediator) "

Each potentially relevant component of a journal article is
assessed by a human who assigns an exhaustiveness value
and a specificity value. Exhaustivity describes the extent to
which the component discusses the topic of request, speci-
ficity describes the extent to which the component focusses
on the topic of request. Each parameter can accept four
values:

0 not exhaustive/specific
1 marginally exhaustive/specific
2 fairly exhaustive/specific
3 highly exhaustive/specific

To assess the quality of a set of search results, the INEX
2003 benchmark applies a metric based on the traditional
recall/precision metrics. In order to apply this metric, the
assessors’ judgements have to be quantised onto a single
relevance value. Two different quantisation functions have
been used:

1. Strict quantisation is used to evaluate whether a given
retrieval approach is capable of retrieving highly ex-
haustive and highly specific document components.

fstrict(ex, spec) =

{
1 ex=3, spec=3 (short: 3/3)
0 otherwise

2. In order to credit document components according to
their degree of relevance (generalised recall/precision),
a generalized quantisation has been used.

fgeneralized(ex, spec) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 3/3
0.75 2/3, 3/2, 3/1
0.5 1/3, 2/2, 2/1

0.25 1/1, 1/2
0 0/0

Given the type of quantisation described above, each docu-
ment component in a result set is assigned a single relevance
value using the human–based relevance assessment before.

We now consider the quality of the top 10 hits of some of
the runs we made for the example query.

For the run with OI disabled, we obtain the following result
(in the INEX result format):

<inex-submission participant-id="12"

run-id="OntoA" task="CO"

query="automatic" topic-part="T">

<description>

scoring is based on Oracle’s tf/idf

</description>

<!-- #Results: 8

time: 0min 6sec 736msec -->

<topic topic-id="98">

<result>

<file>ic/2001/w3032</file>

<path>article[1]/</path>

<rank>1</rank>

<rsv>0.08</rsv>

</result>

<result>

<file>ic/2001/w3021</file>

<path>article[1]/</path>

<rank>1</rank>

<rsv>0.08</rsv>

</result>

...

</topic>

</inex-submission>

\vspace{-2mm}

The following table shows the quality of the top 10 results
for the example query:

Run #Results 1.0 0.75 0.5 0.25 0
1. without onto 8 0 4 1 2 1
2. with onto 40 1 0 9 0 0

Each run needs only some seconds for the complete evalu-
ation and result construction. It is evident that using the
ontology returns more results that have a higher quality.

However, if we carefully look at the query, it turns out that a
reformulation like the following could return better results:

SELECT *

FROM INDEX

WHERE article/# ~ " (information exchange |

information extraction)

& XML "

As the INEX runs had to use automatically generated queries,
such an optimization could not be applied. It turns out
that this reformulation in fact yields even better results,
even though the ontology-enabled result includes some non-
relevant results:

Run #Results 1.0 0.75 0.5 0.25 0
3. without onto 1,225 0 4 4 2 0
4. with onto 3,541 2 3 2 0 3
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For evaluating the 3rd and the 4th run the XXL Search
Engine needs about 10 minutes for evaluation and result
construction.

7. CONCLUSIONS
The results obtained for our XXL Search Engine in the
INEX benchmark clearly indicate that exploiting semantic
similarity generally increases the quality of search results.
Given the regular structure of the INEX data, we could not
make use of the features for structural similarity provided
by XXL.

To further extend the result quality, we plan to add a rel-
evance feedback step to incrementally increase the quality.
Additionally, we will integrate information from other, ex-
isting ontologies into our ontology and extend the ontology
to capture more kinds of relationships (e.g., instance-of re-
lationships).

For future INEX benchmarks we would appreciate to have
data that has a more heterogenous structure. The INEX
data that is currently available is well suited for exact struc-
tural search with long paths, but not for search engines that
exploit structural diversity.
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ABSTRACT
Last year in the context of the INEX evaluation initiative
we could show that our retrieval system IRStream is suc-
cessfully applicable as retrieval engine for XML-documents.
Nevertheless, we have to point out that IRStream can be
further optimized in many directions.

In the present paper we show, how IRStream was extended
and improved for its application for INEX 2003 in order to
achieve better retrieval results. Furthermore we point out
some first retrieval results, which demonstrate the impact
of the improvements of IRStream concerning the quality of
the retrieval results.

1. MOTIVATION
Last year, as a participating organization at the INEX eval-
uation initiative [11], we applied IRStream to the collection
of XML documents provided by INEX. Hereby, we investi-
gated the usability of IRStream for structured text docu-
ments. By the application of IRStream als retrieval system
for XML-documents, we have recognized, that IRStream can
be further improved and optimized in many directions.

As the main two drawbacks of IRStream we have identified
the absence of a component for the automatic generation
of queries based on topics and the problem, that IRStream
sometimes delivered wrong granules as the result of a query.
Therefore we decided to improve and extend IRStream in
order to avoid the drawbacks mentioned above.

IRStream in this respect is intended as a powerful framework
to search for components of arbitrary granularity – ranging
from single media objects to complete documents. IRStream
combines traditional text retrieval techniques with content-
based retrieval for other media types and fact retrieval on
meta data. In contrast to other retrieval services which per-
mit set-oriented or navigation-oriented access to the docu-
ments, we argue for a stream-oriented approach. In the fol-
lowing, we shortly describe the significant features of this ap-
proach and point out the system architecture of IRStream.
Furthermore, we present the application of an extended and
improved version of our IRStream retrieval engine as a re-
trieval system for XML documents in the context of INEX
2003 [4].

The rest of the paper is organized as follows: In section
2 we will give a short overview about the ideas and main
components of IRStream. The concrete architecture of our

IRStream implementation is presented in section 3. Sec-
tion 4 shows how we improved our retrieval system IRStream
in order to use it as a retrieval engine for XML documents
in the context of INEX 2003. Afterwards in section 5 we
present some first experimental results concerning the im-
proved version of IRStream. Finally, section 6 concludes the
paper.

2. STREAM-ORIENTED QUERY
PROCESSING

“Stream-oriented” means that the entire query evaluation
process is based on components producing streams one ob-
ject after the other. First, there are components creating
streams given a base set of objects and a ranking criterion.
We call these components rankers. Other components con-
sume one or more input streams and produce one (or more)
output stream(s). Combiners, transferers and filters are dif-
ferent types of such components.

2.1 Rankers
The starting point for the stream-oriented query evaluation
process are streams generated for a set of objects based on
a given ranking criterion. For example, text objects can be
ranked according to their content similarity compared to a
given query text and images can be ranked with respect to
their color or texture similarity compared to a given sample
image.

Such “initial” streams can be efficiently implemented by ac-
cess structures such as the M-tree, the X-tree, the LSDh-
tree, or by approaches based on inverted files. All these
access structures can perform the similarity search in the
following way: (1) the similarity search is initialized and (2)
the objects are taken from the access structure by means
of some type of “getNext” method. Hence, the produced
streams can be efficiently consumed one element after the
other.

2.2 Combiners
Components of this type combine multiple streams provid-
ing the same objects ranked with respect to different ranking
criteria. Images are an example for media types, for which
no single comprehensive similarity criterion exists. Instead,
different criteria addressing color, texture and also shape
similarity are applicable. Hence, components are needed
which merge multiple streams representing different rank-
ings over the same base set of objects into a combined rank-
ing.
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Since each element of each input stream is associated with
some type of retrieval status value (RSV), a weighted aver-
age over the retrieval status values in the input streams can
be used to derive the overall ranking [3]. Other approaches
are based on the ranks of the objects with respect to the
single criteria [12, 7]. To calculate such a combined ranking
efficient algorithms, such as Fagin’s algorithm [1, 2], Nosfer-
atu [14], Quick Combine [5] and J∗ [13] can be deployed.

2.3 Transferers
With structured documents, ranking criteria are sometimes
not defined for the required objects themselves but for their
components or other related objects. An example arises
when searching for images where the text in the “vicinity”
(for example in the same section) should be similar to a
given sample text. In such situations the ranking defined
for the related objects has to be transferred to the desired
result objects.

More precisely said, we are concerned with a query which
requires a ranking for objects of some desired object type otd

(image for example). However, the ranking is not defined for
the objects of type otd, but for related objects of type otr

(text for example).

We assume that the relationship between these objects is
well-defined and can be traversed in both directions. This
means that we can determine the concerned object or ob-
jects of type otd for an object of type otr and that we
can determine the related objects of type otr for an object
of type otd. The concrete characteristics of these traversal
operations depend on the database or object store used to
maintain the documents. In objectrelational databases join
indexes and index structures for nested tables are used to
speed up the traversal of such relationships. For a further
improvement additional path index structures can be main-
tained on top of the ORDBMS (cf. section 3).

Furthermore, we assume there is an input stream yielding a
ranking for the objects of type otr. For example, this stream
can be the output of a ranker or combiner.

To perform the actual transfer of the ranking we make use of
the fact that each object of type otr is associated with some
type of retrieval status value (RSVr) determining the rank-
ing of these objects. As a consequence, we can transfer the
ranking to the objects of type otd based on these retrieval
status values. For example, we can associate the maximum
retrieval status value of a related object of type otr with each
object of type otd. Another possibility would be to use the
average retrieval status value over all associated objects of
type otr. In [10] you will find a detailed description of an al-
gorithm called “RSV-Transfer”, which is used by IRStream
to perform the transfer of rankings between different object
types.

2.4 Filters
Of course, it must be possible to define filter conditions for
all types of objects. With our stream-oriented approach
this means that filter components are needed. These filter
components are initialized with an input stream and a filter
condition. Then only those objects from the input stream
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Figure 1: Architecture of the IRStream system

which fulfill the given filter condition are passed to the out-
put stream.

3. THE IRSTREAM ARCHITECTURE
The architecture of our IRStream system is based on the idea
that the data is maintained in external data sources. In our
implementation, an ORDBMS is used for this purpose. The
stream-oriented retrieval engine is implemented in Java on
top of this data source and provides an API to facilitate the
realization of similarity based retrieval services. Figure 1
depicts this architecture.

The core IRStream system — shaded grey in figure 1 —
comprises four main parts: (1) Implementations for rankers,
combiners, transferers, and filters. (2) Implementations of
various methods for the extraction of feature values as well
as corresponding similarity measures. (3) A component main-
taining meta data for the IRStream system itself and appli-
cations using IRStream. (4) Wrappers needed to integrate
external data sources, access structures and stream imple-
mentations.

Feature Extractors and Similarity Measures

A feature extractor receives an object of a given type and
extracts a feature value for this object. The similarity mea-
sures are methods which receive two feature representations
— usually one representing the query object and an object
from the database. The result of such a similarity measure
is a retrieval status value.
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Ranker, Combiner, Transferer, Filter,. . .

All these components are subclasses of the class “Stream”.
The interface of these classes mainly consists of a specific
constructor and a getNext method.

For example, the constructor of a ranker receives a specifi-
cation of the data source, a feature extractor, a similarity
measure and a query object. Then the constructor inspects
the meta data to see if there is an access structure for this
data source, this feature extractor, and this similarity mea-
sure. In this case, the access structure is employed to speed
up the ranking. Otherwise, a table scan with a subsequent
sorting is performed.

For the construction of a combiner two or more incoming
streams with corresponding weights have to be defined. Here
it is important to note that combiners such as Fagin’s algo-
rithm or Quick Combine rely on the assumption that ran-
dom access is supported for the objects in the input streams.
The reason for this requirement is simple. When these al-
gorithms receive an object on one input stream, they want
to calculate the mixed retrieval status value of this object
immediately. To this end, they perform random accesses on
the other input streams. Unfortunately, some input streams
are not capable of such random access options, or a random
access would require an unreasonable high effort. In these
cases, other combine algorithms — such as Nosferatu or J∗

— have to be applied.

For the construction of a transferer, an incoming stream, a
path expression and a transfer semantics have to be defined.
In our implementation, references and scoped references pro-
vided by the underlying ORDBMS are used to define the
path expressions.

To construct a filter, an incoming stream and a filter predi-
cate have to be defined.

Meta Data

This component maintains data about the available feature
extractors, similarity measures, access structures, and so
forth. On the one hand, this meta data is needed for the
IRstream system itself in order to decide if there is a suitable
access structure for example. On the other hand, the meta
data is also available via the IRstream-API for applications.

Wrapper

IRstream allows for the extension of the retrieval service
in various directions by the use of wrappers and interfaces:
Data source wrappers are needed to attach systems main-
taining the objects themselves to our retrieval system. At
present, objectrelational databases can be attached via JDBC.
Whereas access structure wrappers can be used to deploy
access structures originally not written for our system. For

example, we incorporated an LSDh-tree written in C++ via
a corresponding wrapper. In contrast, the stream wrapper
interface is used to incorporate external sources for streams
into our system. It can be used to incorporate external

stream producers. At present, the text module of the un-
derlying ORDBMS is integrated via a stream wrapper.

On top of the IRStream API various types of applications
can be realized. An example is a graphical user interface
where the user can define the query as a graph of related
query objects [8]. Another possibility is to implement a
declarative query language on top of the API. At present,
we are working on a respective adaptation of our POQLMM

query language [6, 9].

4. EXTENSIONS AND IMPROVEMENTS
OF IRSTREAM FOR INEX2003

This section describes the main improvements applied to
the IRStream retrieval system in the context of INEX 2003.
For that, every retrieval system had to be able to perform
an automatic query generation from topic data. While a
topic is interpreted as a representation of an information de-
sire, a query in this context is an internal representation for
the system’s retrieval process. Thus, the first extension of
IRStream was to integrate a query generation step into this
retrieval process. An evaluation of last year’s results shows
that one of main problems of IRStream02 was the determi-
nation of a fitting granule of retrieval results for CO-topics,
and furthermore an automatic processing of structural con-
straints of CAS-topics, as well as automatically generating
multiple results from one document (e.g. a list of authors).
To solve these problems, the retrieval process of the sys-
tem was completely redesigned, which is described in this
section.

To determine fitting granules for retrieval results (and their
corresponding identifying paths), a retrieval system has to
be able to perform two tasks: First, extract (possibly sev-
eral) fragments of one document and determine their unique
paths (including node indices). In this case a path expres-
sion is given as part of the query, which describes a struc-
tural constraint for result granules, as is the case with CAS-
topics. Second, the system must be able to process queries
which do not contain a constraint regarding the result gran-
ule (CO-topics). In this case, the decision about the fitting
granule is to be made automatically within the retrieval pro-
cess.

4.1 Automatic query generation
The queries used internally by a retrieval system, generated
from the topic data, may influence the quality of retrieval
results significantly. In order to compare the results of dif-
ferent retrieval systems or even the result of a retrieval sys-
tem in various development states, the influence of manual
(pre-) processing must be eliminated. Therefore an auto-
matic query generation was added to the IRStream system,
which was also a requirement for retrieval systems partici-
pating in INEX 2003. For reasons of performance, two differ-
ent approaches for CO- and CAS-topics were used, although
every CO-topic may be converted into CAS-format by inter-
preting a CO-topic title as //[about(.,’CO-title’)]. The
different retrieval processes for these two topic types will be
described later in this section.

The general architecture is the same for both variants. A
wrapper-class Topic parses a topic file and provides means
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of access in form of a java-API. The system is thereby also
prepared for changing topic-formats, which will result in ad-
ditional sub-classes of this wrapper. The methods provided
by Topic are used by a QueryBuilder component specialized
in CO-topics or CAS-topics respectively. This component
creates the queries internally used by the Rankers of the
core-retrieval system. To configure the query generation, a
QueryOptions class is used, which contains all kinds of pa-
rameters used in the generation process. Figure 2 gives an
overview of the general architecture and the differentiation
between query generation and query processing.

Every query may make use of any of the following three topic
parts: the title, the description and the keywords. Within
the topic title, terms may further be categorized in must-
terms (marked by a +), must-not terms (marked by a -) and
terms not marked at all. For each part or each category of
terms, the QueryOptions class contains parameters about:

Consideration: Shall these terms be considered for query
generation at all?

Weighting: What weight shall be associated to these terms
(1-10)?

Stemming: Shall the stemming operator of the underlying

ORDBMS be used for these terms?

Connectors: Which connecting operator (OR, AND, AC-
CUMulate) shall be used to connect terms of this class
or between classes of terms?

Compound terms: Which way shall compound terms be
treated?

4.2 CAS-topics
A CAS-topic contains structural constraints as well as con-
tent information, so that three logic parts of a CAS-topic
may be identified: First, a constraint regarding the gran-
ule of result elements. Second, content and structure in-
formation about the result element itself — i.e. its inner
context —, which shall be called content constraint. Third,
there may be content and structure information about the
result element’s parent or sibling elements — i.e. the ele-
ment’s environment —, which shall be called structure con-
straint.

The differentiation between content and structure constraint
may easily be done by looking at the syntax of a CAS-topic
title:

[node [filter]]* target-node filter

Every filter (which corresponds to constraints) before the
target-node belongs to the structure constraint, while the
filter given for the target-node contains the content con-
straint.

The title of a CAS-topic contains a path expression that
must be matched by the path of a result element. For the
automatic query generation, this path expression is simply
the concatenation of all nodes. Normally, there are several
elements within a document with matching paths, since the
path expression may contain wildcards and does not have to
use node indices. Thus, a retrieval system not only has to
find relevant documents and determine fitting sub-elements
of that element, but it also has to determine relevance scores
for each sub-element. Therefore we inserted a new table into
the underlying ORDBMS which contains every addressable
element of the document collection, i.e. every element that
matches the XPath-expression //*, which are about 8 mio
elements. Each table entry consists of an element with all
its sub-elements and their textual content, its unique path
expression, and its path expression without indices. To de-
termine the unique path of an element, which is needed for
the creation of the submission-file, this data can simply be
read from this table. To fulfill the structural constraint of a
CAS-topic regarding the result granule, only a selection of
those elements is evaluated whose path matches the path ex-
pression given in the topic title. Apparently, this approach
implies a high degree of redundancy, since the table contains
every textual content multiple times. Further developments
of IRStream will address this problem, probably by making
extended use of the transferer functionality.

The content constraint includes every information that is
given about the result element itself. That may be content
only, but also constraints concerning the internal structure
of an element, like a section having a title about information
retrieval:
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/article/bdy/

sec[about(.,//st,’"information retrieval"’)]

The crucial factor of this logic part of the topic is that every
information needed is within the result element itself and
thus may be addressed via the table mentioned above.

The structure constraint includes every information given
about the environment of the result element, i.e. its sibling
and parent elements. This may include both structure and
content information which is not contained in the result el-
ement itself and therefore cannot be addressed via the table
mentioned above, since the table entries are decoupled from
their environment. To fulfill this constraint, a document as
a whole has to be evaluated, i.e. it refers to a whole article
instead of a result element only.

By looking at an example (topic 77), the retrieval process
of IRStream for CAS-topics and the integration of a query
generation step into this process will be depicted. The title
of topic 77 states:

//article[about(.//sec,’"reverse engineering"’)]//

sec[about(.,’legal’) OR about(.,’legislation’)]

The concatenation of all nodes is //article//sec, which is
the given path expression that all result elements have to
fulfill. Therefore only elements with the fitting granule will
be ranked in the query process, which is implemented via a
corresponding WHERE-clause.

The content constraint, referring to the result element itself,
is contained in the last filter. It says that the result element
has to be about concepts of legal or legislation. The
query generation component successively reads all about-
clauses and their connectors. Each about-clause is trans-
lated into a corresponding INPATH-clause of the ORDBMS,
which reads (terms INPATH path) and includes any given
structural constraints. In this example, (legal INPATH

/sec) would be the resulting query part. The INPATH-
clauses, their connectors and the result element’s path ex-
pression form the main part of the content query, which is
applied to the table containing every addressable element.

The structure query on the other hand has to be applied to a
table of whole articles, which contain the complete structure
information of a document. The query generation is done
accordingly, reading each filter successively and connecting
the resulting INPATH-expressions. The last filter in the topic-
title may or may not be part of the structure query. Not
including it means that some articles are probably marked
relevant that do not contain any elements that satisfy the
content constraint. IRStream therefore considers the con-
tent query being a part of the structure query.

In order to get a result ranking, these two queries have each
to be processed by a ranker-component and then be joined
into a final ranking. These two rankers create streams of
two different object types — article (structure query) and
element (content query) —, which cannot directly be com-
bined by a combiner-component. Therefore a transferer-

ranker

article

ranker

result granule

transferer
article ->

subelements

combiner

structure content

result

filter

result granule

Figure 3: CAS-topic processing

component is needed, which transfers the ranking of an ar-
ticle to all its sub-elements. A special filter-component fil-
ters all elements whose path does not fulfill the given path
expression. The output of this filter is a stream of elements,
and thus a combiner can finally merge the two streams into
a result ranking. This procedure is shown in figure 3.

Obviously, this (general) procedure can be optimized, be-
cause the transferer creates hundreds of elements that are
immediately eliminated by a filter. Therefore the task of
ranking, transferring and filtering was integrated into a spe-
cialized component InexRanker, which relocates the trans-
ferring-process into the DBMS. The described three logical
steps can thereby be performed by a single SQL-query:

1. ranking an article in reference to the structure query

2. transferring the RSV to all sub-elements, identified via
foreign key relationship

3. selection of those elements that fulfill the given path
expression

4.3 CO-topics
The special challenge while processing CO-topics is that the
retrieval system has to decide autonomously, which granule
of the result elements is the most fitting. For INEX 2003,
the procedure for handling CO-topics is based on the table
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mentioned above, which contains every addressable element
including all its textual content and that of its sub-elements.
A single ranker-component simply creates a ranking of all
those elements, and an element’s filename and unique path
may be read from this table. The aim of this approach
was to evaluate whether it is worthwhile to base further
optimizations on it, which are obviously possible, since this
table contains about eight million elements, every layout-tag
(italic, bold etc.) being contained.

For CO-topics, four characteristics can be identified. Based
on these, the general applicability of this approach is to be
shown:

CO-topics do not contain structural information

The elements in the table used are decoupled from
their structural environment and are treated as single
documents. No structure information is needed for this
query processing.

CO-topics do not contain constraints regarding the granule
of result elements

By this procedure, elements of all granules are ranked
likewise, so that every granule may be contained in
the result ranking. Possible optimizations will be ad-
dressed in section 6.

An ideal result element satisfies the information need com-
pletely

A retrieval system cannot validate a complete answer-
ing of an information need, but this requirement has to
be considered in the process of determining relevance
scores. Regarding a XML-document as being a tree
of elements, that one element obviously fulfills that re-
quirement best, which is superior to all elements which
contain relevant information. If several paragraphs are
marked relevant, for example, their corresponding sec-
tion seems to be most fitting element. The calculation
of a score-value that is done by the underlying OR-
DBMS provides an according evaluation, because it is
in principle based on absolute term frequencies. Thus,
superior elements normally get a relevance score which
is equal to or greater than that of their child elements.

An ideal result element is specific about the topic’s theme

For INEX 2003, IRStream did not eliminate multiple
result elements within a branch of the document tree,
the consequences of it with respect to retrieval effec-
tiveness has not yet been evaluated, but it will be ad-
dressed in the near future. If several elements of a
branch have the same RSV-score, it is obviously the
smallest element that conforms best to this require-
ment. It remains to be seen whether elimination of
such duplicates or considering document lengths will
improve retrieval effectiveness.

The query generation for CO-topics is similar to that of
CAS-topics, but here only one query has to be created, and
no structural information has to be included. Terms in the
title of CO-Topic may be marked by a + (declared as must-
terms). The IRStream query generation allows to interpret

these markings as strict or vague. A strict interpretation
means that only those elements may be relevant that contain
all must-terms. Therefore these terms are connected to each
other by AND-operators, and must-terms and all other terms
are each encapsuled by brackets which are also connected
by an AND-operator. Interpreting these terms vague, other
connecting operators may be used, like ACCUMulate or OR.

5. EVALUATION OF THE NEW IRSTREAM
ENGINE AT INEX2003

With the runs submitted to INEX 2003, two things were to
be looked at: First, we wanted to see, whether our interpre-
tation of CAS-topics and thus the differentiation between
content and structure constraints would lead to good re-
sults compared to those of the other participating retrieval
systems. Second, we wanted to get an estimation of how
applicable our approach for processing CO-topics is.

Figures 4 and 5 show the recall/precision graphs for
IRStream’s CAS-run — with strict and generalized quan-
tization — in comparison to all officially submitted retrieval
runs. Rank 12 of 38 for strict quantization and rank 10 of 38
for generalized quantization seem promising that the chosen
query architecture forms a solid basis for further efforts.

INEX 2003: second_scas

quantization: strict; topics: SCAS
average precision: 0.2277

rank: 12 (38 official submissions)

Figure 4: summary CAS strict

The recall/precision graphs for IRStream’s CO-run are
shown in figures 6 and 7. Rank 10 of 56 for strict and rank 7
of 56 submissions for generalized quantization indicate that
further efforts to optimize our approach seem to be worth-
while.

In order to compare the results of IRStream02 and
IRStream03 — and thus to evaluate the effect of the sys-
tem changes — we used the new system to create a retrieval
run on the topics of INEX 2002. Since the topic syntax for
CAS-topics has changed, only those topics were processed
in this run which could be converted to the new syntax.
Topics without explicitly stating a target element or those
with multiple target elements do not conform to INEX 2003
syntax and thus were omitted.
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INEX 2003: second_scas

quantization: generalized; topics: SCAS
average precision: 0.1983

rank: 10 (38 official submissions)

Figure 5: summary CAS generalized

INEX 2003: _co_second

quantization: strict; topics: CO
average precision: 0.0677

rank: 10 (56 official submissions)

Figure 6: summary CO strict

6. CONCLUSION
In this paper, we have presented an improved version of
our retrieval system called IRStream, which was success-
fully used in the context of INEX 2002. The main idea
of IRStream is intended to complement traditional query
processing techniques for queries dominated by similarity
conditions. The IRStream retrieval engine has been imple-
mented as a prototype in Java on top of an ORDBMS and
first experimental results achieved with this prototype are
promising. With regard to INEX2003 IRStream was ex-
tended and improved in several directions. IRStream now
supports automatic query generation as well as the auto-
matic detection of the best fitting result granule for a given
query.

In the near future, we will develop a query language for
this approach and consider optimization issues regarding

INEX 2003: _co_second

quantization: generalized; topics: CO
average precision: 0.0717

rank: 7 (56 official submissions)

Figure 7: summary CO generalized

IRStream 2002 vs. 2003
quantization: strict; topics: CAS

new: 0.278
old: 0.213

Figure 8: improvement CAS strict

IRStream 2002 vs. 2003
quantization: generalized; topics: CAS

new: 0.284
old: 0.159

Figure 9: improvement CAS generalized
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IRStream 2002 vs. 2003
quantization: strict; topics: CO

new: 0.058
old: 0.036

Figure 10: improvement CO strict

IRStream 2002 vs. 2003
quantization: generalized; topics: CO

new: 0.106
old: 0.041

Figure 11: improvement CO generalized

the interaction between the underlying ORDBMS and the
IRStream system. Last but not least, IRStream should build
a good basis for the integration of further query criteria —
like context information or domain specific thesauri — into
the query execution in order to improve the precision of the
system.
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[11] G. Kazai, N. Gövert, M. Lalmas, and N. Fuhr. The
INEX evaluation initiative, pages 279–293. Lecture
Notes in Computer Science. Springer, Heidelberg et
al., 2003.

[12] J. H. Lee. Analyses of multiple evidence combination.
In Proc. 20th Annual Intl. ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 267–276, Philadelphia, PA, USA, 1997.

[13] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and
J. S. Vitter. Supporting incremental join queries on
ranked inputs. In Proc. 27th Intl. Conf. on Very Large
Data Bases, pages 281–290, Los Altos, USA, 2001.

[14] U. Pfeifer and S. Pennekamp. Incremental Processing
of Vague Queries in Interactive Retrieval Systems. In
Hypertext - Information Retrieval - Multimedia ’97:
Theorien, Modelle und Implementierungen, pages
223–235, Dortmund, 1997.

klas
48

klas
48

klas
48

klas
48

klas
48



HyREX at INEX 2003

Mohammad Abolhassani, Norbert Fuhr, Saadia Malik
University of Duisburg-Essen, Germany

9th December 2003

1 Introduction

The HyREX (Hypermedia Retrieval Engine
for XML) system developed by our group
[Fuhr & Großjohann 01, Fuhr & Großjohann 04,
Fuhr et al. 02] supports document ranking based
on index term weighting, specificity-oriented
search for retrieving the most relevant parts
of documents, datatypes with vague predicates
for dealing with specific types of content and
structural vagueness for vague interpretation of
structural query conditions. In INEX 2002,
HyREX performed very well for content-only
(CO) queries, but only poorly for content-and-
structure(CAS) queries (although this was due to
a bug in the implementation).

In this paper, we describe a new retrieval model
for CO queries. For the CAS queries, we inves-
tigated several methods for transforming INEX
topics into our own query language XIRQL.

2 Content-Only queries

In [Fuhr & Großjohann 01], we proposed the aug-
mentation method for processing content-only
queries. This method gave very good results in
INEX 2002. This approach can be combined
with any kind of indexing method (we were using
the BM25 formula for this purpose). This year,
we were/are trying to adopt a kind of language
model, namely the divergence from randomness
(DFR) approach developed by Gianni Amati.

2.1 The DFR approach

[Amati & Rijsbergen 02] introduce a framework
for deriving probabilistic models of IR. These
models are non-parametric models of IR as ob-
tained in the language model approach. The term
weighting models are derived by measuring the di-
vergence of the actual term distribution from that
obtained under a random process.

In this framework, the weighting formula for a
term in a document is the product of the following
two factors:

1. Prob1 is used for measuring the informa-
tion content of the term in a document,
and (− log2 Prob1) gives the corresponding
amount of information.

2. Prob2 is used for measuring the information
gain of the term with respect to its ‘elite’
set (the set of all documents in which the
term occurs). The less the term is expected
in a document with respect to its frequency
in the elite set (measured by the counter-
probability (1−Prob2), the more the amount
of information is gained with this term.

Then the weight of a term in a document is defined
as:

w = (1−Prob2)·(− log2 Prob1) = Inf2·Inf1 (1)

For computing the two probabilities, the following
parameters are used:

N number of documents in the collection,
tf term frequency within the document (since dif-

ferent normalisations are applied to the term
frequency, we use tf1 and tf2 in the following
formulas),
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n size of the elite set of the term,
F term frequency in elite set.

Furthermore, let λ = F/N in the following.

As probability distribution for estimating Prob1,
different probabilistic models are regarded in
[Amati & Rijsbergen 02]. In this paper, we use
only two of them:

D The approximation of the binomial model with
the divergence:

Inf1 = tf1 · log2

tf1

λ
+

(
λ +

1
12tf1

− tf1

)

· log2 e + 0.5 log2(2π · tf1) (2)

G The Geometric as limiting form of the Bose-
Einstein model:

Inf1 = −log2
1

1 + λ
− tf1 · log2

λ

1 + λ
(3)

For the parameter Inf2 = (1 − Prob2) (which is
also called first normalisation), Prob2 is defined
as the probability of observing another occurrence
of the term in the document, given that we have
seen already tf occurrences. For this purpose,
Amati regards two approaches:

L Based on Laplace’s law of succession, he gets

Inf2 =
1

tf2 + 1
(4)

B Regarding the ratio of two Bernoulli processes
yields

Inf2 =
F + 1

n · (tf2 + 1)
(5)

These parameters do not yet consider the length of
the document to be indexed. For the relationship
between document length and term frequency, we
apply the following formula:

ρ(l) = c · lβ (6)

where l is the document length, ρ(l) is the density
function of the term frequency in the document,
c is a constant and β is a parameter to be chosen.

In order to consider length normalisation, Am-
ati maps the tf frequency onto a normalised fre-
quency tfn computed in the following way: Let
l(d) denote the length of document d and avl is

the average length of a document in the collection.
Then tfn is defined as:

tfn =
∫ l(d)+avl

l(d)
ρ(l)dl (7)

For considering these normalisations, Amati sets
tf1 = tf2 = tfn in formulas 2–5 and then com-
putes the term weight according to eqn 1.

For retrieval, the query term weight qtf is set
to the number of occurrences of the term in the
query. Then a linear retrieval function is applied:

R(q, d) =
∑
t∈q

qtf · Inf2(tf2) · Inf1(tf1) (8)

2.2 Applying divergence from
randomness to XML documents

2.2.1 Direct application of Amati’s model

In Section 2.1, we have described the basic model
along with a subset of the weighting functions pro-
posed by Amati. Given that we have two different
formulas for computing Inf1 as well as two differ-
ent ways for computing Inf2, we have four basic
weighting formulas which we are considering in
the following.

In a first round of experiments, we tried to apply
Amati’s model without major changes. However,
whereas Amati’s model was defined for a set of
atomic documents, CO retrieval is searching for
so-called index nodes, i.e. XML elements that are
meaningful units for being returned as retrieval
answer.

As starting point, we assumed that the complete
collection consists of the concatenation of all XML
documents. When we regard a single index node,
we assume that the complete collection consists
of documents having the same size as our current
node. Let L denote the total length of the collec-
tion and l(d) the length of the current node (as
above), then we compute the number of hypothet-
ical documents as N = L/l(d).

Table 1 shows the experimental results. The first
two result columns show the average precision val-
ues for this setting when applying the four differ-
ent weighting functions. We assume that the poor
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Table 1: Results from direct application vs. augmentation approach
document length Dynamic Fixed

B Norm. L Norm. B Norm. L Norm.
Bernoulli 0.0109 0.0356 0.0640 0.0717
Bose-Einstein 0.0214 0.0338 0.0468 0.0606
Augmentation 0.1120

Table 2: Results from 2nd normalisation with two basic values for β
β = 0 β = −1

B Norm. L Norm. B Norm. L Norm.
Bernoulli 0.0391 0.0586 0.0640 0.0900
Bose-Einstein 0.0376 0.0609 0.0376 0.0651

performance is due to the fact that the weights
derived from different document lengths are not
comparable.

As an alternative method, we computed the aver-
age size of an index node. The two last columns
in table 1 show a much better retrieval quality for
this case.

In the subsequent experiments, we focused on the
second approach. By referring to the average size
of an index node we were also able to apply doc-
ument length normalisation according to Equa-
tion 6. Table 2 shows the corresponding results
for β = 0 and β = −1. The results show that
length normalisation with β = −1 improves re-
trieval quality in most cases. These results were
also in conformance with Amati’s findings that
β = −1 gives better results than β = 0.

Subsequently we tried some other values for β.
Table 3 shows the corresponding results for β =
−0.75 and β = −0.80, with which we got better
results.

Overall, using a fixed average document length,
and length normalisation, gave better results than
those achieved in the first round. However, the re-
sulting retrieval quality was still lower than that
of the augmentation approach (see table 1). Thus,
in order to arrive at a better retrieval quality, we
investigated other ways than straightforward ap-
plication of Amati’s model.

2.2.2 Considering the hierarchical structure of
XML documents

In order to consider the hierarchical structure of
our documents, we investigated different ways for
incorporating structural parameters within the
weighting formula. Considering the basic ideas,
as described in Section 2.1, the most appropriate
way seemed the modification of the Inf2 param-
eter, which refers to the ‘elite’ set. Therefore, we
computed Inf1 as above, by performing document
length normalisation with respect to the average
size of an index node.

For computing Inf2, we also applied document
length normalisation first, thus yielding a nor-
malised term frequency tfn. Then we investi-
gated several methods for ‘normalising’ this factor
with respect to the hierarchical document struc-
ture; we call this process third normalisation. For
this purpose, we introduced an additional parame-
ter h(d) specifying the height (or level) of an index
node relative to the root node (which has h = 1).

Using the level information, we first tried several
heuristic formulas like tf2 = tfn ·h(d)α and tf2 =
tfn · h(d)−α, which, however, did not result in
any improvements. Finally, we came up with the
following formula:

tf2 = tfn · (h(d)/α) (9)

Here α is a constant to be chosen, for which we
tried several values. However, the experiments
showed that the choice of α is not critical.

Table 4 shows the results for the combination
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Table 3: Results from 2nd normalisation with two other values for β
β = −0.75 β = −0.80

B Norm. L Norm. B Norm. L Norm.
Bernoulli 0.0799 0.1026 0.0768 0.1005
Bose-Einstein 0.0453 0.0653 0.0448 0.0654

Table 4: Average precision for the Bose-Einstein L Norm combination with various values of α
α 2 4 9 16 20 32 64 96 104 116 128

prec. 0.0726 0.0865 0.0989 0.1059 0.1077 0.1083 0.1089 0.1094 0.1087 0.1081 0.1077

of Bose-Einstein and Laplace normalisation, for
which we got significant improvements. This vari-
ant also gave better results in Amati’s experi-
ments.

2.2.3 INEX 2003 Submissions

Our CO submissions in INEX 2003 include:

• factor 0.5
• factor 0.2
• difra_sequential

The first two submissions use the “augmentation”
method (the same as in our 2002 INEX submis-
sion) with 0.5 and 0.2 as "augmentation factor",
respectively. The third submission is based on the
“DFR” method. Here, we chose the best config-
uration according to our experiments results, i.e.
Bose-Einstein and L Normalisation with the pa-
rameters α = 96 and β = −0.80.

Table 5 shows the evaluation results of our sub-
missions, based on different metrics, in INEX
2003. The results show that the latter two sub-
missions both performed very well, with the aug-
mentation method still slightly better than the
DFR approach.

3 Content-and Structure(CAS)
Topics

The query language XIRQL of our retrieval sys-
tem HyREX is very similar to the INEX CAS
topic specification. However, our experience from
INEX 2002 has shown that a ‘literal’ interpreta-
tion of the CAS queries does not lead to good re-
trieval results. Thus, we were looking for ‘vague’

interpretations of the INEX topics. Since XIRQL
has a high expressiveness, we did not want to
change the semantics of XIRQL (by introducing
vague interpretations of the different language el-
ements). Instead, we focused on the transfor-
mation from the INEX topic specification into
XIRQL.

XIRQL is an extension of XPath
[Clark & DeRose 99] by IR concepts. We
assume that XML document elements have
specific data types, like e.g. person names, dates,
technical measurement values and names of
geographic regions). For each data type, there
are specific search predicates, most of which
are vague (e.g. phonetic similarity of names,
approximate matching of dates and closeness
of geographic regions). In addition to Boolean
connectors, there also is a weighted sum operator
for computing the scalar product between query
and document term weights.

The general format of a of XIRQL query is
//TE[filter] or
//CE[filter]//TE[filter]
Where TE stands for Target Element and CE
stands for Context Element.

In XIRQL, single query conditions can be com-
bined in the following way:

Conjunctions(C) Filter conditions(conditions
within [..]) can be combined by the $and$
operator

Disjunctions(D) Filter conditions can be com-
bined by the $or$ operator.

Weighted Sum (WS) and Precedence (Pr)
Weighted sum notation can be used to
indicate the importance of a query term, e.g.
//article[wsum(
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Table 5: Average precision for our CO submissions in INEX 2003, based on different metrics
Submission Average Precision

inex_eval inex_eval_ng
consider overlap ignore overlap

strict generalised strict generalised strict generalised
factor 0.5 0.0703 0.0475 0.1025 0.0623 0.0806 0.0590
factor 0.2 0.1010 0.0702 0.1409 0.0903 0.1219 0.0964
difra_sequential 0.0906 0.0688 0.1354 0.0774 0.1217 0.0920

0.7,.//atl//#PCDATA $stem$ "image",
0.3,.//atl//#PCDATA $stem$ "retrieval"
)]

Phrases (P) Since HyREX has no specific phrase
operator (yet), we represented phrases as
conjunctions of the single words, e.g.
//article[wsum(
1.0,.//atl//#PCDATA [. $stem$ "image"
$and$ . $stem$ "retrieval"],
1.0,. $stem$ "colour")]

3.1 Experimentation

In order to search for better transformations from
INEX CAS topics into XIRQL, we performed a
number of experiments using the INEX 2002 top-
ics (which we transformed into the 2003 format).
For generating our XIRQL queries, we used only
titles and keywords of the topics. In the follow-
ing we briefly characterise the different kinds of
transformations investigated. We illustrate each
method by showing the resulting XIRQL expres-
sion for the following INEX topic:

//article[about(.//atl,’"image retrieval"’
) and about(.,’image retrieval colour
shape texture’)]

3.1.1 SCAS-I

1. Only query title is used.
2. Phrases are represented using conjunctions.
3. Query terms are represented using disjunc-

tions
4. ’+’ prefixed terms are handled as phrases.

//article[(.//atl//#PCDATA[
. $stem$ "image" $and$
. $stem$ "retrieval"]) $and$
(.//#PCDATA[ . $stem$ "image"] $or$

.//#PCDATA[ . $stem$ "retrieval"]
$or$ .//#PCDATA[ . $stem$ "colour"]
$or$ .//#PCDATA[ . $stem$ "shape"]
$or$ .//#PCDATA[ . $stem$ "texture"]
)]

3.1.2 SCAS-II

1. Only query title is used.
2. Phrases are represented using conjunctions.
3. Terms are represented using weighted sum

notation and assigned weight 1.
4. ’+’ prefixed terms are assigned higher

weights.

/article[ wsum(1.0,.//atl//#PCDATA[
. $stem$ "image" $and$
. $stem$ "retrieval"],
1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")]

3.1.3 SCAS-III

1. Only query title is used.
2. Phrases are represented using conjunctions.
3. Terms are represented using weighted sum

notation and XPath notations. These two
notations are joined with or operator.

4. ’+’ prefixed terms are assigned higher weight
5 and also represented as phrases.

So this variation is a combination of SACS-I and
SCAS-II.

//article[(.//atl//#PCDATA[
. $stem$ "image" $and$
. $stem$ "retrieval"])
$and$
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Table 6: Survey over query variations
Query part Notation Terms Phrases + Prefixed Terms

SCAS-I T a XPath D b C c C
SCAS-II T WSum W d1.0 C W 5.0
SCAS-III T XPath & WSum D & W 1.0 C C & W 5.0
VCAS-I T & K e XPath D C C
VCAS-II T WSum W 1.0 W 1.0 W 5.0

atitle
bdisjunction
cconjunction
dweight
ekeywords

Table 7: Experimentation results
SCAS-I SCAS-II SCAS-III VCAS-I VCAS-II

IEf−Geng .2338 .1215 .1475 .1179 .1077
CEh−Gen .1508 .0798 .0916 .0877 .0872
IE-Strict .2640 .1325 .1724 .1297 .1327
CE-Strict .1692 .0859 .1045 .0959 .0806

fignore empty
ggeneralised quantisation
hconsider empty

(.//#PCDATA[ . $stem$ "image"] $or$
.//#PCDATA[ . $stem$ "retrieval"] $or$
.//#PCDATA[ . $stem$ "colour"] $or$
.//#PCDATA[ . $stem$ "shape"] $or$
.//#PCDATA[ . $stem$ "texture"]) $or$
wsum(1.0,.//atl//#PCDATA $stem$ "image",
1.0,.//atl//#PCDATA $stem$ "retrieval",
1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")]

3.1.4 VCAS-I

1. Query titles and keywords are used. Key-
words are considered in case there are less
than 3 query terms in the title.

2. Phrases are represented using conjunctions.
3. Terms are represented using disjunctions
4. ’+’ prefixed terms are handled as phrases.

//article[ ( .//atl//#PCDATA[
. $stem$ "image" $and$
. $stem$ "retrieval"]) $and$
(.//#PCDATA[ . $stem$ "image"] $or$
.//#PCDATA[ . $stem$ "retrieval"]

$or$ .//#PCDATA[ . $stem$ "colour"]
$or$ .//#PCDATA[ . $stem$ "shape"]
$or$ .//#PCDATA[ . $stem$ "texture"
])]

3.1.5 VCAS-II

1. Only query title is used.

2. Phrases are also handled as terms and as-
signed weight 1.0.

3. Terms are combined by wsum operator.

4. Higher weight (5) is assigned to terms pre-
fixed with ’+’.

//article[
wsum( 1.0,.//atl//#PCDATA $stem$ "image",
1.0,.//atl//#PCDATA $stem$ "retrieval",
1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")

]
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Table 8: Average precision for our CAS submissions in INEX 2003
Submission Average Precision

inex_eval
strict generalised

SCAS03-I-alias 0.2594 0.2037
SCAS03-II-alias 0.2213 0.1744
SCAS03-III-noalias 0.2034 0.1707

3.1.6 Evaluation

One of the results of the first INEX workshop
(INEX 2002) has been the definition of a metric
for the evaluation of XML retrieval approaches
[Gövert & Kazai 03]. This metric, based on the
notion of precision and recall – together with the
relevance assessment package – has been used here
for the evaluation.

3.1.7 INEX 2003 Submissions & Results

Except topic formats, there are two differences be-
tween CAS topic tasks of this year and the last
year; this year there is a VCAS subtask and there
are aliases defined.

Our CAS submissions in INEX 2003 include:

• SCAS03-I-alias

• SCAS03-II-alias

• SCAS03-III-noalias

• VCAS03-I-alias

• VCAS03-II-alias

• VCAS03-I-noalias

These submissions have been formed using the
methods described above, with and without alias
option. Some submissions were made with no
alias option, due to the reason that our system
could not process some of the topics with in the
aliased version.

Table 8 shows the evaluation results of our sub-
missions in INEX 2003. The results confirm the
outcome of our own experimentation. SCAS03-
I-alias is the best of our submitted runs and
performed quite well in comparison to other ap-
proaches.

4 Conclusions

The results from INEX 2003 show that HyREX
yields good retrieval performance both for CO and
CAS queries. For the CO queries, we will continue
our work on the DFR approach towards a full-
fledged language model for XML retrieval. On the
CAS side, besides dealing with some weaknesses
of the current implementation, we will investigate
further methods for ‘vague’ interpretations of this
type of queries.
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ABSTRACT 
In this paper we describe how we used our „out of the box“ search 
engine for INEX’03. The SearX-Engine integrates structural 
information into the query language and the retrieval function and 
is based on the widely used probabilistic retrieval (TF*IDF). 

1. Query Language 
A query in the probabilistic retrieval model can be represented by 
an unordered set of terms. The user can easily express his 
information need by specifying some related terms. 

To integrate structural assignments and weightings into the query 
language, we introduce the concept of roles. One role (such as 
‘author’ or ‘heading’) combines all parts of the collection with a 
common semantics, so the user does not have to know about the 
specific structure of the underlying collection. The mapping from 
the collection data to structural roles is done at indexing time by 
the content provider, who should know about his data. 
Furthermore roles can help to query distributed and 
heterogeneous document collections. 

The user can integrate structural information into his query by 
assigning query terms to structural roles and choosing one 
retrieval role. The retrieval role determines the parts of the 
collection that should be returned and ranked. 
We also support a mechanism to weight roles. If a query term is 
found, the score of this occurrence will be influenced by the 
structural context. This weighting is often made by the publisher, 
who can provide his knowledge about the data and the 
information needs of the users. 
The SearX-Engine knows the concept of headings, so structural 
implications (eg scoring an article title should score all sections 
within this article) can be expressed. Furthermore the operators 
“+” (must have) and “–“ (must not have) and phrases are 
supported. 

2. INEX’03 
To evaluate INEX’03 topics, we made a mapping of the used 
structural assignments to roles and transformed the topics to our 
query format described above. Weighting was done to push up 
hits within article titles, abstracts and keywords. 

2.1 CO-Topics 
For Content-Only queries we decided to rank always whole 
articles and search for the title and the keywords of the topic 
description within the whole article. So we did not make any 
structural assignments besides the weighting. 

 
2.2 CAS-Topics 
The CAS-Mapping is somewhat more difficult because of the 
CAS topic format introduced in INEX’03. 

The last element in the path of the title is taken as the retrieval 
element. Every about-predicate creates one query item (pair of 
role and terms). 

 
A Filter on an explicit attribute value in the CAS title (eg 
/article[.//yr <= '2000']) was translated into a SearX-Engine filter 
to exclude document parts based on attribute values. 

2.3 Submission 
The translated topics were evaluated against the INEX’03 
document collection. The XML results produced by the SearX-
Engine were easily transformed into the submission format. 
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Abstract 
XML enables to encode semantics in full text documents 
through XML tags. While query results on corpora of full 
text documents is typically a sorted list of ranked 
documents, this granularity can be refined to return sub 
components when searching over XML documents. In this 
paper we describe an approach for finding the most relevant 
XML components for a given query.  

Keywords 
XML Search, Information Retrieval, Vector Space Model 

1. Introduction 
 
XML documents represent a family of semi-structured 
documents in which data has some structure but is not fully 
structured as in databases. It is thus not surprising that 
approaches for searching in collections of XML documents 
are either extension of Information Retrieval (IR) 
techniques or of database query languages. The main 
difference between the two approaches is that while the 
results of Information Retrieval techniques is a list of 
documents sorted by their relevance to the query, the results 
of a database query are strict matches with no relevance 
values. In this paper we focus on Information Retrieval 
approaches and explore a technique whereby we rank 
individual XML components rather than full documents. 
 
The Initiative for the evaluation of XML Retrieval (INEX)  
[7] coined two types of queries over XML documents: In 
Content Only (CO) queries the user has no knowledge of 
the document structure and the search engine is supposed to 
return the best components that match the query concepts. 
In Content and Structure (CAS) queries the user has 
some knowledge of the document structure and can use it to 
constrain content to a specific structure and also to specify 
the XML components to be returned.  
 
It should be noted that techniques that are suited for 
returning a specific XML component that matches a CAS 
query may be orthogonal to the task at hand, which requires 
that the best matching component be retrieved. Indeed the 
version of JuruXML [11] that we used in INEX’02 [7] could 
retrieve XML components as specified by CAS topics yet it 

could score only full documents. Consequently, all relevant 
components in a retrieved document where assigned 
identical scores – the score of their enclosing document, 
and individual component ranking was not supported. 
 
In modern Information Retrieval engines document ranking 
is done based on the vector space model [13]. The idea is to 
treat both the documents and the query as a vector of terms 
(typically words). Each term is given a weight proportional 
to its Term Frequency (TF) in a document/query and 
inversely proportional to its Document Frequency (DF), 
which is the number of documents in which the term 
appears.  The similarity between a document and a query is 
defined as the distance between the two vectors usually 
measured as the cosine between the two. 
 
In order to rank components rather than entire documents, 
this classic model must be expanded to take into account 
component level statistics. The problem is that components 
in XML documents are nested and this hierarchy needs to 
be taken into account when counting term occurrences. 
More specifically, a specific term should not be counted 
more than once. For example consider a term inside a 
paragraph, which is itself nested in a section. What is the 
component frequency of this term? If it is counted as 
belonging to two components, it may distort ranking since 
the term actually appears only once in the document. On the 
other hand, if it is counted only once, with which 
component should this count be associated? 
In this paper we describe an extension to the classic vector 
space model that can correctly handle retrieval at the 
component level. We demonstrate the use of this method on 
the INEX topics. This method can be implemented as an 
extension of any vector space based text search engine with 
no need to modify its basic structures and algorithms, 
making it   highly applicable for any search engine wishing 
to rank components. 
 
The remainder of the paper is organized as follows: In 
section 2 we outline some related work. In section 3 we 
describe our novel approach for selecting the most relevant 
XML component and how it was used for the INEX CO 
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topics. In section 4 we show how this method was extended 
to handle the CAS topics. Our method for result clustering 
and for filtering redundant components is described in 
Section 5. We conclude with summary and future work. 

2. Related Work 
The idea of ranking document subcomponents has been 
explored in the context of passage retrieval  [10], [14]. The 
goal there is to identify the sentences that best match the 
user's query and assemble them into passages that are then 
returned to the user. The returned unit can be any 
combination of sentences even if they are inconsecutive. 
This technique is not suitable for XML components 
retrieval where the returned unit must be a fixed XML 
component. 
The work described in  [12] tries to identify subject 
boundaries in a text document based on the assumption that 
words that are related to a certain subject will be repeated 
whenever that subject is mentioned. Again this work 
assumes a flat text document with freedom to pick a portion 
of the text as an answer. This is not suitable for XML 
retrieval where the retrieval unit must be a predefined XML 
component. 
The idea of scoring XML components separately has been 
suggested in the context of XML retrieval  [5]  [6]. In both 
cases, the term and document frequency is accumulated at 
the basic component level. An augmentation factor is used 
to propagate statistics from child to parent components. The 
problem with this technique is that the augmentation factors 
are either set manually by the user or set empirically and 
thus cannot be proven to give the best results. 
 

3. Approach for Content Only topics 
We start by describing our approach for Content Only (CO) 
tasks and then we show how this approach was extended to 
handle Context and Structure (CAS) topics as well. 
As a reminder, in a CO task the query is specified in full 
text (with additions of +/- and phrases) and the search 
engine is expected to return the most relevant XML 
components that match the query concepts.  
Based on a training set composed of the INEX’02 topics 
and assessments, we found that the majority of the highly 
ranked components for CO topics (1296 out of 1394) were 
taken from the set: {article, bdy, abs, sec, ss1, ss2, p and 
ip1}.   This is quite intuitive since {sec, ss1, and ss2} stand 
for sections and sub sections and {p, ip1} represent 
meaningful paragraphs, all good reasonable results for a 
query. The entire article or its abstract {abs} are also good 
candidates for component retrieval. The only exception is 
the {bdy} component that constitutes the main part of the 
article so whenever a bdy is relevant so is its containing 

article and vice versa.  In that case we rather return the 
article and not the body. 
 
Realizing that we have a clear list of candidate components 
for retrieval, our goal was to modify JuruXML [11] so that it 
could rank each of these candidate components separately.  
The ranking method used in JuruXML is based on the 
Vector Space Model where both documents and queries are 
represented as vectors in a space where each dimension 
represents a distinct term. It is typically computed using a 
score of the tf x idf family that takes into account the 
following document and collection statistics - 
 

1. N - Total Number of documents in the collection 
2. Term Frequency TFD(t) – number of occurrences 

of a term t in a document D  
3. Document Frequency DF(t) – total number of 

documents containing a term t 
 
The relevance of the document D to the query Q, denoted 
below as ),( DQρ , is then evaluated by using a measure of 
similarity between vectors such as the cosine measure (see 
Formula 1).  
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Formula 2 
 
It follows that the weight WD(t) is proportional to the 
number of occurrences of t in D (TFD(t)) and inversely 
proportional to the number of documents in which t appears 
(DF(t)). The motivation is that a term t that appears in a few 
documents in the corpus, should contribute a relatively high 
weight to the score of a document in which it appears 
compared to terms that are frequent in many documents. 
The contribution to the document score is additionally 
proportional to the number of its occurrences in the 
document.  
 
In order to rank components instead of entire documents, 
these statistics should be tallied at the component level. 

klas
59

klas
59

klas
59

klas
59

klas
59



That is, it is necessary to keep track of the following 
component and collection statistics: 
 

1. N - Total Number of components in the collection 
2. Term Frequency TFC(t) – number of occurrences 

of a term t in a component C  
3. Component Frequency CF(t) - total number of 

components containing a term t 
 
The problem is that XML components are nested. For 
example consider a collection consisting of a single 
document (see Figure 1).  
 

<article> 
         t1 
        <sec> 
 <p>t2</p> 
        </sec> 
</article> 

Figure 1 
 
The document contains three components {C1=article, 
C2=sec, C3=p} and two terms {t1, t2}.  Term t1 appears only 
in the article while t2 appears in all 3 components.  
Therefore we get 
 

• N = 3 
• CF(t1) = 1,   CF(t2) = 3  
• TFC1(t1) = 1, TFC1(t2) = 1 
• TFC2(t1) = 0, TFC2(t2) = 1 
• TFC3(t1) = 0, TFC3(t2) = 1 
 

By Formula 2 applied to component level statistics, we 
would get that Wc1(t1) > Wc1(t2) which is not necessarily 
true since both t1 and t2 appear an equal number of times in 
the document.  
 
One can try to fix this by only counting the Term Frequency 
TFC(t) at the component level and still computing N & 
DF(t) at the document level. However, this imposes another 
problem that is illustrated in the following example (see 
Figure 2).  
 

<article> 
      <sec>t1</sec> 
      <sec>t1</sec> 
      <sec>t2</sec> 
</article> 

Figure 2 
As before, the collection consists of a single document and 
we have  

• N = 1 

• DF(t1) = 1,   DF(t2) = 1 
• If we mark the 3 sections by C1, C2, C3 we get 

o TFC1(t1) = 1  
o TFC2(t1) = 1 
o TFC3(t2) = 1 

 
By Formula 2 it follows that Wc1(t1) = Wc2(t1) =Wc3(t2). 
However if we regard each section as a standalone 
component then since t2 appears only in one section while t1 
appears in 2 sections we expect to get Wc1(t1) < Wc3(t2) 
(which is what would have happened if the sections were in 
different documents, since we would then have then DF(t1) 
= 2).  With this approach to counting statistics it is thus 
impossible to differentiate between the rankings of the three 
sections. 
 
In view of the above problems, we selected a strategy 
whereby we create a different index for each component 
type. Statistics can thus be tallied at the precise level of 
granularity for each component. In particular, we created 
six indices corresponding to the following tags: {article, 
abs, sec, ss1, ss2, p, and ip11}. The article index contains 
the full data of all documents. The sec index contains each 
sec from each article as a separate document and so on for 
each of the six tags above. For example the document in 
Figure 2 above will result in 3 separate documents in the 
sec level index. 
For each index, the entities are determined according to the 
topmost XML tag of the corresponding type. That is, nested 
components of the same type do not yield a new partition of 
the document. For example consider a document as in 
Figure 3 
 

<Article> 
        <sec> 
 <p>some text 
        <p>some internal text</p> 
 </p> 
        </sec> 
        <p>some higher level text</p> 
</article> 

Figure 3 
 
This document will add two "documents" to the paragraph 
level index (See Figure 4 & Figure 5) 
 
 

<p>some text 
       <p>some internal text</p> 
</p> 

Figure 4 
                                                           
1 P and IP1 were indexed into one Index 
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And 
 

        <p>some higher level text</p> 
Figure 5 

 
The search engine's regular ranking formula can now be 
used to accurately score and rank individual components 
among themselves. In other words, given a query, the 
system can return the best matching articles, sections, sub-
sections, etc. Our goal however is to return one ranked list 
of the best matching components regardless of granularity 
and thus need to compare scores from the individual 
indices.  To achieve this, the query is submitted in parallel 
to each index, resulting in six sorted lists of components – 
one from each index.  
The scores in each index are normalized into the range (0,1) 
using a formula that ensures that this normalization yields 
absolute numbers and is index independent. This is 
achieved by each index computing P(Q,Q) (see Formula 1) 
which is the score of the query itself as if it was a document 
in the collection. Since the score measures the cosine 
between vectors, then the max value is achieved between 
two identical vectors. Each index therefore normalizes all 
its scores to its computed P(Q,Q). The normalized results 
are then merged into a one ranked list consisting of 
components of all granularities. 
 
It should be noted that this approach can be implemented 
on top of almost any full text ranking engine resulting in a 
system than is able to rank XML omponents without 
modifying the core search engine code. It simply requires 
an XML parser that can parse documents and feed the 
components into separate indexes. At run time, queries are 
submitted to each index and the results are merged as 
described above.  
 

3.1 The CO runs 
We now describe the implementation of this method on the 
INEX collection. The size of the collection is ~500Mb. Six 
indices were created as described above, resulting in the 
following index sizes:  

• Article  – 290Mb  
• Sec  – 270Mb   
• Ss1  – 158Mb 
• Ss2  –   38Mb 
• P, ip1  – 280Mb  
• Abs  –   14Mb 

Overall we get an index size that is about twice as large as 
the original collection. While this can be an inhibiting 
factor, our goal was to prove the viability of this method 

from a quality standpoint. We believe there is room for 
optimisation in terms of index sizes. 
We submitted three CO runs. Recall that a CO topic 
consists of full text with additions of +/- and Phrases. 
According to the topic development guide  [8] the +/- 
“should be interpreted with a fuzzy flavour and not simply 
as must contain and must not contain conditions”. We 
applied this vagueness to “+” terms but still we believe that 
if the user specify a “-“ term then this term should not be 
returned. Therefore we treated the “-“ strictly (namely 
results that contain such terms were never returned).  The 
runs we submitted were - 

• In the first run we considered all query parts: Title, 
Description and Keywords. 

• In the second run we applied post clustering on the 
first run (see Section  5 below). 

• In the third run we considered only the Title. In 
this run we ignored phrases and treated the phrase 
terms as regular words. We applied the clustering 
algorithm on this run as well (see Section  5 
below). 

At the time this report is written, Recall Precision graphs 
for the CO topics were published and our run that used both 
Title Description and Keywords was ranked first 

4. Approach for CAS Topics 
The Content and Structure (CAS) topics differ in two 
aspects from the CO topics. First the query content can be 
limited to a given XML tag and second there is less 
freedom in selecting the component to be returned. The 
topic format is an extension of XPath [15] and as such the 
last component in the path specifies the component that 
should be returned.  
For example topic 66 (Figure 6) defines a constraint on the 
year <yr> and on section <sec>.  <sec> is also the element 
to be returned. 
 

/article[./fm//yr < '2000'] 
//sec[about(.,'"search engines"')]  

Figure 6 
 
To enable fuzziness in the query constraints we introduce a 
Synonyms mechanism. We divide the XML tags into 
synonym groups such that all tags in the same group are 
regarded equivalent. Whenever there is a tag in the query 
that belongs to some synonym group, we substitute it by all 
tags in its group. 
For example if we set {sec, ss1} to be in the same synonym 
group then in the query in Figure 6 above we substitute sec 
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by {sec, ss1} and we get2 the query in Figure 7. The 
synonyms mechanism is used at different granularity levels 
for the SCAS and VCAS runs (see below).  
 

/article[./fm//yr < '2000'] 
                    //{sec,ss1}[about(.,'"search engines"')]  

Figure 7 
 
In order to find documents in which all of the query 
constraints are met, we need to execute the modified query 
on the full documents. This will indeed return relevant 
components that match the query constraints, but as 
described above the components cannot be scored 
individually using only this one index.     
Therefore we execute each query in two steps – in the first 
step we use the article index to locate candidates that fulfill 
the query constraints.  In the second step, relevant parts of 
the query are extracted for each index (see example below) 
and the relevant query is submitted in parallel to the other 
five indexes of {abs, sec, ss1, ss2, p+ip1}.  A relevance 
value is computed only for elements that were marked valid 
in the first step and a ranked list of results is returned. The 
separate lists are then merged similarly to what described 
for the CO case, resulting in one ranked list of results.  
Note that although our indices do not cover all of the 
possible tags in the corpus, we can still resolve queries that 
request a tag that does not have a dedicated index. For 
example, topic 67 defines <fm> as the last component in 
the XPath expression, thus requesting a component for 
which we do not have a special index. In this case, we 
simply stop after the first step and use the article's score as 
the score of the component. 

Example 
In the following example we define one synonym group that 
consists of {sec, ss1, ss2} tags and we use it to run the 
query in Figure 6 above. We run the query first against the 
article level index and then we run the relevant query part 
on each of the synonyms ✌ {sec, ss1, ss2} so we run 

 //sec[about(.,'"search engines"')] 
against the sec level index,  

//ss1[about(.,'"search engines"')] 
against the ss1 level index and 

//ss2[about(.,'"search engines"')] 
against the ss2 level index. We then merge the results based 
on their normalized scores as described above. 

                                                           
2 This is not the syntax we use, the actual substitution is done in 

the internal implementation. 

 

4.1 SCAS and VCAS 
 
This year there were 2 CAS variants - Strict CAS (SCAS) 
and Vague CAS (VCAS). The SCAS defines that 
“structural constraints of a query must be strictly matched” 
while the VCAS defines that “structural constraints of a 
query can be treated as vague conditions”. The vague 
means that XML elements that are “structurally similar” to 
those specified in the query can be returned. We used our 
synonym groups in different configurations to support both 
SCAS and VCAS. 
For the SCAS runs we used the equivalent tags that were 
defined in the INEX topic development guide [7]. The 
synonyms we used were: 

• {sec, ss1, ss2} for sections.   
• {p, ip1} for paragraphs 

The other two tags {article} and {abs} were not synonyms 
to any other tags so in topics that requested article or abs as 
results, only those tags were returned. 
For the VCAS topics we defined one large synonym group 
that included all the tags {sec, ss1, ss2, p, ip1, abs}, except 
for the article tag. Again in topics that requested the article 
tag as a result we returned only articles. 

4.2 The CAS runs 
We submitted 3 SCAS and 3 VCAS runs. In all runs we 
treated the “-“ strictly and the “+” with a fuzzy flavour. In 
all runs we treated query constraints in a strict manner up to 
the synonym tags. So for example results for the query in 
Figure 6 will be only sections and all their synonym tags 
that discuss “search engines” but only from articles that 
were published before year 2000.  
We ran the following 3 runs for both SCAS and VCAS 

• In first run, we considered all query parts: Title, 
Description and Keywords. 

• In the second run, we applied a post-clustering 
algorithm on the first run (see Section  5 below). 

• In the third run, we considered only the Title and 
Keywords and applied a post-clustering algorithm 
(see Section  5 below). 

 

5. Result clustering  
The approach described above may result in redundant 
components that are returned to the user. For example 
consider a section with four paragraph children.   We can 
identify two extreme scenarios - 

• In the first scenario assume all four paragraphs are 
highly relevant to the topic. In this case all four 
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paragraphs as well as their parent section will be 
ranked in high positions.  

• In the second scenario assume that only the first 
paragraph is very relevant to the topic and 
therefore it is assigned a high score. As a result it 
may also contribute to its parent’s section score 
even if it is the only relevant paragraph in that 
section. Again that paragraph and its parent 
section may be ranked in a high position when 
merging the results. 

One expectation of a good search engine is that it should 
not return redundant results; therefore in the first scenario it 
should return the section and not the paragraphs, while in 
the second scenario it should return the first paragraph only. 
To filter such redundancies we developed a clustering 
algorithm that maps related components to one of the 
scenarios above. The algorithm gets the result set of the 
original run and constructs a tree consistent with the parent-
child relationship of the components in the XML document. 
Each node in the tree corresponds to a result component 
and has the following data - 

• Its score as a number between 0 and 1 
• Total number of descendant children in the 

original document. This number is extracted while 
parsing the document. 

The algorithm processes the tree bottom up and at each 
level compare the score of a node to that of its children. 
When it manages to identify one of the two scenarios above 
it remove the redundant components from the result set. 
Recall that a score is a number between 0 and 1 so we need 
some means to compare two scores. Let a node’s score be 
s1 and a child’s score be s2. We say that the two scores are 

close if  hScoreThres
s

ss
<

−

1
21

 

For some configured ScoreThresh value.  Otherwise we say 
that s1 is higher than s2 (if s1>s2) or lower (if s1<s2). 
The algorithm clusters each node into the following cases – 

1. HighParent - If the node’s score is higher than all 
its direct children, then we remove the children 
from the tree. 

2. HighChild - If some child’s score is higher than 
the node’s score, then we remove the node from 
the tree. 

3. ManyDescendants – Let Ne be the number of 
close descendants and Nt the number of all 
descendants of our node. If 

hdantsThresManyDescen
N
N

t

e
> for some 

configured ManyDescendantThresh then we 

remove the direct children from the tree 
(corresponding to the first scenario above)  

4. SingleChild – For each direct child Ci let Ni be the 
number of close descendants of Ci and N the total 
number of close descendants of the current node. 
If there is a child Ci with 

dThreshSingleChil
N
Ni

> for some configured 

SingleChildThresh value then we say that most 
good results are concentrated in that child so we 
remove the parent from the tree (corresponding to 
the second scenario) 

5. For all other cases no filtering takes place, and all 
components are returned  

5.1 Clustering runs 
We used the following values for the clustering runs: 

• ScoreThresh=0.45 
• ManyDescendantThresh = 0.2 
• SingleChildThresh=0.42. 

 
According to the INEX evaluations received thus far, it 
seems that the runs that applied clustering received a lower 
overall score than runs that applied clustering. It thus seems 
that there was no penalty for runs returning redundant 
results. This topic should be discussed in order to devise 
metrics that evaluate a good overall result set, rather than 
individual results. 

6. Summary  
We presented a novel approach and implementation for 
scoring and ranking individual components of XML 
documents. At the time this report is written, Recall 
Precision graphs for the CO topics were published and one 
of our runs was ranked first indicating that this approach 
indeed computes more accurate component scores. The 
approach presented here can be implemented on top of 
almost any full text search engine without modifying its 
code to return ranked components for Content Only queries. 
Similarly the approach can be used by XML search engines 
to compute more accurate scores for target components 
specified in CAS topics. One limitation of our approach is 
that the set of potential components to be returned must be 
known in advance. We believe however, that this is a 
reasonable requirement for any given collection. 
Additionally, some space as well as runtime overhead is 
incurred by multi-indexing. Improving the efficiency is left 
for future research. 
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1. INTRODUCTION
An XML document has a structure in addition to con-
tent, and an XML search engine should be capable of
taking advantage of the structure in order to improve
the quality (i.e., precision and recall) of the results. The
structure may also be incorporated into the topic (i.e.,
query) in two ways. First, the topic may include con-
ditions that relate content to structure (e.g., some key-
word should appear in the title of the document). Sec-
ond, the topic may specify the exact fragment of the
document that should be returned as an answer. Even
if the topic does not have any hint about the structure,
the search engine should still be able to find not just the
relevant documents, but also the most relevant fragment
(or fragments) within each document.

Several different paradigms have been proposed recently
for searching XML documents. In XRANK [7], the main
idea is a generalization of the Page-Rank [4] technique
of Google [1]. In XSEarch [6], the emphasis is on re-
trieving only those answers that consist of semantically
related nodes. Neither one of these approaches is suit-
able for the INEX corpus, which consists of articles from
the IEEE digital library. The XRANK approach is not
directly applicable to INEX, since the XML documents
of INEX do not have cross references in the form of
IDREFs or XLinks. The XSEarch approach is irrele-
vant to INEX, since all the nodes of any single XML
document are deemed semantically related.

Our approach consists of a variety of Information Re-
trieval techniques augmented with the ability to give

different weights to different fragments of a document,
based on the tags. Specifically, we use term frequen-
cies, inverse domain frequencies, proximity among oc-
currences of keywords, and similarity between keywords
and words from the given document. Each technique
has been implemented as a separate ranker and the fi-
nal ranking is done by merging the results of the various
rankers.

2. TOPIC SEMANTICS AND SYNTAX
The query language of a standard search engine is sim-
ply a list of keywords, optionally preceded by the + or
− sign. In the context of XML, the query language
can also contain information about the structure, in the
form of path expressions that describe specific parts of
a document where the keywords should appear.

In INEX’03 [9], a query is called a topic and comprises
four parts: (1) title: this part describes the topic in a
formal syntax, (2) description: a description in a natural
language of the information that is needed, (3) narra-
tive: a more detailed description, and (4) keywords: a
set of comma-separated terms, where a term is a sin-
gle keyword or a phrase encapsulated in double quotes.
Our system uses only the title.

A topic can be either content only (abbr. CO) or con-
tent and structure (abbr. CAS). In a CO topic, the title
contains only content-related conditions; it is a set of
space-separated terms, optionally preceded by the + or
the − sign. For example,

+database +‘‘java programming’’

is a CO topic about “database” and “java program-
ming.”

In a CAS topic, the title relates terms to specific lo-
cations in documents. The general form of the title is
CE[filter] CE[filter] ... CE[filter], where each
CE is a context element that specifies a path in the doc-
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ument (using XPath syntax). A filter is a Boolean
combination of XPath predicates (e.g., a comparison
between a path expression and a constant) and pred-
icates of the form about(path,string), where path is
an XPath expression and string is a quoted string of
terms (each term could be preceded by a + or −). For
example,

//article[.//@yr > ‘2000’]

//sec[about(.,‘+‘‘java programming’’’)]

specifies that sections about “java programming” from
articles written after 2000 should be retrieved.

We use T to denote a CO or a CAS topic. By a slight
abuse of notation, T also denotes the list of all stemmed
terms appearing in the title of T . (stop words are elim-
inated). T+ denotes the list of terms in T that are pre-
ceeded by a + sign, T− denotes the list of terms that
are preceded by a − sign, and To is the list of all the
remaining (i.e., optional) terms in T .

3. AN OVERVIEW OF THE SYSTEM
The design of our system was influenced by two major
considerations. First, our goal was to build an exten-
sible system so that various information-retrieval tech-
niques could be combined in different ways and new
techniques could be easily added. Second, the system
had to be developed in a very short time.

The first consideration led to the decision to imple-
ment each information-retrieval technique as a separate
ranker and to implement a merger that would merge the
results of the individual rankers.

The second consideration influenced the implementa-
tion of the topic (i.e., query) processor. In INEX, a topic
may include expressions in XPath (augmented with the
“about” function) that refer to the structure of the doc-
uments to be retrieved. Thus, an XPath processor is
needed in order to evaluate a given topic. However,
any existing XPath processor cannot be applied to the
complete description of a topic that is written in the
formal syntax of INEX; instead, it can only be applied
separately to each XPath expression that is embedded
inside the topic. This is not sufficient for an accurate
processing of CAS (content and structure) topics, since
when different XPath expressions from the same topic
are evaluated separately, it is impossible to tell how to
combine their results correctly. So, it seemed that the
topic processor would require a complete implementa-
tion of an XPath parser (and that would be time con-
suming). Instead, we implemented (in Java) a parser
for INEX topics that creates an XSL stylesheet (i.e.,
a program written in XSL). Since XPath is included in
XSL, we circumvented the need to implement an XPath
parser as a part of our topic processor.

Figure 3 depicts the main components of the system.
The first step is building the indices, which are described
in detail in Section 4. Given a topic, the indices are used

to filter the whole corpus in order to retrieve the docu-
ments that contain all the required keywords (i.e., key-
words preceded by +). Documents that pass through
the filtering phase are processed by an XSL stylesheet
that is generated from the topic. The XSL stylesheet
retrieves from each document all the fragments that are
relevant to the processing of the given topic. The re-
trieved fragments are produced as an XML file (one per
document) in a manner that preserves the original hi-
erarchy among these fragments. In the next step, each
ranker process all the XML files and creates a new XML
file of the ranked results. In the final steps, the results
of the various rankers are merged into a single XML file.

4. INDEXING
The system uses several indices when processing topics
(i.e., queries). The creation of the indexes is done as
a preprocessing step by the indexer. The indices are
described below.

Document-Location Array
The system assigns a unique document identifier (also
called did) to each document. The document-location
array is used to associate each did with the physical
location, in the file system, of the corresponding docu-
ment.

Inverted Keyword Index
The inverted keyword index associates each keyword
with the list of documents that contain it. Stop words,
i.e., words that are used very frequently in English (e.g.,
“in,” “to,” “the,” etc.) do not appear in the index. Also,
regular stemming, using the Porter’s stemmer [12], is
done in order to achieve a higher flexibility when search-
ing for a particular keyword. The inverted-keyword in-
dex stores stems of words. For each stem w, there is a
posting list of the did ’s of all the documents that contain
some keyword with stem w.

Keyword-Distance Index
The keyword-distance index stores information about
proximity of keywords in the corpus. For each pair of
keywords, the system computes a score and the keyword-
distance index holds this score. The score reflects the
number of occurrences of that pair of keywords in any
single sentence. It also reflect the distance between the
two keywords when they appear in the same sentence.
The score for a given pair of keywords is the sum of the
inverse of the distance between the two keywords over
all the sentences in all the documents of the corpus.
Formally, the score of the pair (wi, wj) is

D(wi, wj) =
∑

d∈D

∑

s∈d

∑

(wi,wj )∈s

1

distance(wi, wj)

where D is the set of all the documents in the corpus, d
is a document, s is a sentence, and distance(wi, wj) is
the number of words separating wi and wj . Scores are
normalized and D(w, w) is defined to be 1 (the maxi-
mum). The keyword-distance index actually stores the
scores for pairs of stems rather than complete keywords.
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Figure 1: Overall Architecture

Tag Index
Tags are given weights according to their importance.
The weight of each tag is a parameter that can be eas-
ily modified by anyone who uses the system. A Java
property file stores the weight tw(t) of each tag t.

Inverse-Document-Frequency (idf) Index
The document frequency of a keyword k is the number
of documents that contain k, divided by the total num-
ber of documents in the corpus. The inverse document
frequency is defined as follows:

idf(k) := log

(

1 +
|D|

|{d | d ∈ D and k ∈ d}|

)

where D is the set of all the documents in the corpus.
The inverse-document-frequency index is a hash table
that holds the inverse document frequency for the stem
k of each keyword.

5. TOPIC PROCESSING
The processing of a topic T is done in four phases. In the
filtering phase, the documents that contain all the key-
words in T+ are retrieved from the corpus. In the extrac-
tion phase, the relevant fragments are extracted from
each document. In the ranking phase, the fragments
from the previous phase are ranked by each ranker. In
the merging phase, the results of the various rankers
are merged together. Next, we describe each phase in
detail.

In the filtering phase, for each keyword k ∈ T+, the
posting list Lk of the stem of k is extracted from the in-

verted keyword index. The intersection LT = ∩k∈T+
Lk

is computed and the result is an XML document that
contains a list of all the did ’s of the documents in LT .

In the extracting phase, an XSL stylesheet is generated
from the title of the topic. This stylesheet extracts the
relevant fragments from each document that passed the
filtering phase. For CAS topics, the relevant fragments
are determined by the title. For CO topics, the system
has to determine which fragments are relevant. In our
system, the fragments that could be returned are deter-
mined in advance; this policy was proposed by [3] and is
also used in XRANK [7]. Specifically, these fragments
are either the whole document, the front matter, the
abstract, any section or any subsection.

A potentially relevant fragment must also satisfy some
conditions. For one, it must include all the terms that
are preceded by +. Moreover, it may have to satisfy
some predicates, e.g., .//@yr > ‘2000’. Thus, extract-
ing the relevant fragments requires a processor that is
capable of parsing titles of CO and CAS topics. An
XPath processor is not suitable for the job, since the
syntax of titles is more general than that of XPath. In
our system, a Java program parses the title and gener-
ates an XSL stylesheet that does the extraction. Since
XPath is included in XSL, portions of the title that ad-
here to the XPath syntax can be transplanted into the
stylesheet. This has lead to a fast implementation of
the topic processor.

In the title of a CAS topic, there is a core path expres-
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sion that consists of the concatenation of all the context
elements. There are also several filter path expressions,
where each one is a path expression that appears in
some filter concatenated with all the context elements
that precede it. The last element of the core path ex-
pression and the last element on any filter path expres-
sion are called target elements. For example, consider
the following CAS title:

//a[about(.//b, ‘...’)]//c[about(.//d, ‘...’)]

The core path expression is //a//c and c is the target
element of this path. The fragments that eventually
will be returned as answers for this title are c elements.
The filter path expressions are //a//b, with the target
element b, and //a//c//d, with the target element d.
Fragments that are b and d elements should be extracted
in order to check the conditions that are specified in the
about clauses.

Extracting fragments for the target elements and check-
ing that each one satisfies its corresponding condition is
not quite enough. In order for the rankers to work cor-
rectly, it is important to know whether a fragment ex-
tracted for a b element is related to a fragment extracted
for a d element, in the sense that both have the same a

element as an ancestor. Therefore, the XSL stylesheet
extracts fragments for the target elements in a man-
ner that preserves the original hierarchy among these
fragments. Essentially, the stylesheet has a sequence of
nested loops, one for each target element. The nesting of
the loops follows the hierarchy dictated by the the core
and filter path expressions. Each loop extracts all the
fragments for its corresponding target element. Each
extracted fragment is assigned a level number, which is
the level of nesting of its corresponding loop. For ex-
ample, in the above title, the extracted d elements are
descendants of the extracted c elements and, hence, will
have a larger level number.

The XSL stylesheet is applied to all the documents that
passed the filtering phase and it produces a new XML
document, DT , that contains for each extracted frag-
ment (1) the URL of the parent document, (2) the path
of the fragment in the document, (3) the stems of key-
words from the title that appear in the fragment, and
(4) the fragment itself. The XML file DT is given to
each ranker. Note that the about predicate can be eval-
uated by the rankers, since the relevant fragments are
in DT . The ranking of fragments and the final merging
are explained in the next section.

6. RANKING THE RESULTS
We implemented five rankers, namely word-number ran-
ker, idf ranker, tf-idf ranker, proximity ranker and simi-
larity ranker. Each ranker gives scores to the fragments
that are listed in the XML file DT . This section de-
scribes the five rankers and how their results are merged.

6.1 Word-Number Ranker

Recall that To is the list of optional terms (i.e., not
preceded by the + or − sign) from the title of a given
topic T . Similarly, T− is the list of terms that should
not appear in the result (i.e., preceded by the − sign).
Given a fragment F , the number of optional terms that
appear in F is |To ∩ F | and the number of unwanted
terms in F is |T− ∩ F |. The score given to F by the
word-number ranker is

|To ∩ F | + 1 −
min(|T− ∩ F |, 10)

10
.

Note that the score is increased when the number of op-
tional terms appearing in the fragment F is increased
and it is decreased when the number of unwanted terms
in F is increased. Also note that the weight that is given
to the appearance of a wanted term is an order of mag-
nitude greater than the weight given to the appearance
of an unwanted term. Moreover, there is a bound of 10
on the total number of unwanted terms that are taken
into account.

6.2 Inverse-Document-Frequency (IDF)
Ranker

We first give the intuition behind the idf ranker. Con-
sider two fragments F1 and F2, such that F1 ∩ T+ and
F2 ∩ T+ contain single keywords, w1 and w2, respec-
tively. Also, assume that the intersection of F1 and F2

with T− is empty. In this case, the word-number ranker
returns the same score for F1 and F2. If, however, w1

is a frequent word in the corpus and w2 is a rare one,
then F2 should be given a higher score than F1.

Let F be a given fragment. In the idf ranker, a rare
keyword that appears in F has a greater effect on the
score than a keyword that appears frequently in the
corpus. The score of the idf ranker is the following sum
of the idf values of the optional words and the unwanted
words that appear in F .

∑

k∈{To∩F}

idf(k) −
∑

k∈{T−∩F}

idf(k)

Note that terms of T+ are not considered by this ranker,
since all the fragments contain them.

6.3 Tf-Idf Ranker
The tf-idf ranker uses a model similar to the vector-
space model that is common in information retrieval [2].
We have modified the basic technique so that the weights
given to tags will be incorporated in the computation
of the ranker’s score.

Let T be a given topic and let F be a fragment. We as-
sume that all the words in T and in F are stemmed. We
also assume that all the stop words are removed from F
and T . The score given by the ranker to F with respect
to T is computed using a variation of the standard tfidf
(term frequency, inverse document frequency) method.
Next, we briefly describe tfidf and how it is computed
in our system.
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Let k be a term. The term frequency (tf) of k in F is the
number of occurrences of k in F (denoted as occ(k, F )),
divided by the maximal number of occurrences in F of
any term. That is,

tf(k, F ) =
occ(k, F )

max{occ(k′, F ) | k′ ∈ F}
.

Note that a term is likely to have a larger term frequency
in a small document than in a bigger one.

The inverse document frequency of k, idf(k), has been
defined in Section 4. The tfidf of a term k w.r.t. a
fragment F , denoted by tfidf(k, F ), is tf(k, F ) × idf(k).
Note that by taking a log in the idf factor, the overall
importance of the tf factor in tfidf is increased.

In our system, each tag has a weight. The default weight
is 1. A user can modify the weight of any tag. The
accumulated weight of a word w in an XML file X is
the multiplication of the weights of all the tags of the
elements of X in which w is nested. That is, the ac-
cumulated weight of w is produced by multiplying all
the weights of the tags of elements on the path from the
root of X to w. The effect of the weight of tags on the
computation of tfidf is as follows. For each occurrence
of k in F , instead of increasing occ(k, F ) by 1, the value
of occ(k, F ) is increased by the accumulated weight of k
for that occurrence.

The value of tfidf(k, F ) is normalized as follows.

w(k, F ) :=
tfidf(k, F )

√

∑

k′∈F
tfidf(k′, F )2

By definition, w(k, F ) is 0 if k does not appear in F .
We denote by K the set of all the keywords appearing in
the corpus. Each fragment F in the corpus is associated
with a vector VF of size |K|. For each keyword k of K,
the vector VF has an entry VF [k] that holds w(k, F ).

For each topic T , we define VT to be the following vector.

VT [k] =







1 if k ∈ T+ ∪ To

−1 if k ∈ T−

0 otherwise

The score given to the fragment F by the ranker is the
cosine between VT and VF . The value of this cosine is
proportional to the following sum:

∑

k∈K

VF [k] × VT [k] =
∑

k∈T

VF [k] × VT [k]

Note that the above equality holds because VT [k] = 0 if
k /∈ T .

6.4 Proximity Ranker
6.4.1 Lexical Affinities for Text Retrieval
The idea behind the proximity ranker is to use lexical
affinities (abbr. LA) of words. The ranker takes advan-
tage of the correlation between words that appear in a
single phrase in a certain proximity.

The notion of lexical affinities for text retrieval was first
introduced by Saussure [13]. Later, it was developed by
Maarek and Smadja [10], in the context of information
retrieval.

Essentially, the ranker works as follows. Given a topic T
containing the terms t1, . . . , tn, the ranker creates a list
that contains all possible pairs of distinct words (ti, tj),
such that ti < tj (words are compared lexicographi-
cally). For each fragment F , whenever the ranker finds
in F an occurrence of a pair (ti, tj) in a single sentence,
the score given to F is increased. Different increasing
policies can be used.

6.4.2 Lexical Affinities for XML Retrieval
The following explains how LA retrieval is adapted to
XML, in general, and to our system, in particular.

Two words that appear very far from each other should
not be considered as a LA. A maximal distance must
be defined, such that when exceeded, the two words are
not considered to be correlated. Martin [11] showed
that 98% of LA’s relate words that are separated by
at most five words within a single sentence. Maarek
and Smadja [10] used this result by searching for co-
occurrences in a sliding window (within a single sen-
tence) of size 5. We have adapted this result to the
context of XML as explained below.

In XML, structure and content are combined. Due to
this lack of separation between structure and content,
an XML file can have a logical unit of text in which
the text does not appear in a sentence delimited by full
stops, but rather delimited by tags. For example, con-
sider the following XML fragment.

<author>John Washington</author>

<address>New Jersey State</address>

The absence of a full stop between Washington and New
Jersey State could be mistakenly interpreted as a case
where Washington State is a LA. In order to avoid such
mistakes, we consider a closing tag followed by an open-
ing tag as a delimiter of a logical unit.

When looking for lexical affinities in a topic (i.e., query),
special attention must be paid to the structure of the
topic in order to avoid an attempt to pair words that do
not appear under the same tag. For words that are not
under the same tag, a LA should not be created. For
example, consider the following topic title.

//article//fm[

(about(.//tig, ‘+software +architecture’)

or about(.//abs, ‘+software +architecture’))

and about(., ‘-distributed -Web’)]

In this topic, the pairs “software architecture” and “dis-
tributed Web” should be considered as LA’s. The pairs
“distributed architecture” and “software Web” should
not be considered as LA’s.
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For words that appear under the same tag, but some of
them in quotation marks, the LA’s in quotation marks
are given a larger weight. For example, consider the
following topic.

/article[about(./fm/abs,

‘"information retrieval" "digital libraries"’)]

The pairs “information retrieval,” “digital libraries,”
“information digital,” “information libraries,” “retrieval
digital” and “digital libraries” are all considered as LA’s.
However, the occurrences of “information retrieval” or
“digital libraries” in a fragment get a larger weight than
the occurrences of “retrieval digital” or “digital libraries.”

6.5 Similarity Ranker
The idea behind the similarity ranker is that if two
words appears very frequently in proximity in the cor-
pus, then they should be considered as related concepts.
For example, if we find that “SQL” and “databases” are
two words that frequently appear together, then we may
conclude that the two words are closely related. There-
fore, when looking for documents about databases, we
may as well search for documents about SQL.

Let F be a fragment of a document D. FT denotes the
terms appearing either in F , in the title of D or in the
abstract of D. As usual, T denotes the terms in the
title of a given topic. The similarity ranker computes
the score of F w.r.t. the given topic T according to the
formula

∏

k∈T

∑

w∈FT

(tw(tag) ∗ D(k, w))

where tag is the tag with the largest weight among those
containing w. The similarity ranker uses the keyword-
distance index in order to get the value of the distance
D(k, w). The tag index is used in order to get the value
of tw(tag).

This ranker can be seen as an automatic query refine-
ment. It differs from the work of Jing and Croft [8], since
we do not use a probabilistic approach. It also differs
from the work of Carmel et al. [5], since our refinement
uses a global analysis of the whole corpus and assigns
weights to all the co-occurrences in the fragment, rather
than just to a limited number of LA’s.

6.6 Merging the Results of the Rankers
A crucial issue is to determine the relative weight of each
ranker in the final phase of merging the results of the
various ranker. Tackling this issue requires extensive
experimentation with the system. So far, only a rudi-
mentary merger has been implemented and it is based
on the simple idea of merging the results by lexicograph-
ically sorting the scores of the five rankers. The relative
positions of the five rankers in the lexicographic sort is
given in a configuration file and can be easily modified
by the user through a browser.

We have experimented with different orders of the ran-

kers; in all of them, the word-number ranker was first
and idf ranker was second. Results were produced for
the following three orders of the rankers:

• Word Number, Idf, Proximity, Similarity, Tf-Idf.

• Word Number, Idf, Similarity, Proximity, Tf-Idf.

• Word Number, Idf, Tf-Idf, Proximity, Similarity.

We always chose word number and idf to be the first
and second rankers, since early experiments with the
system indicated that it gave the best results. The
proximity ranker, the similarity ranker and the tf-idf
ranker were essentially used to tune the ranking of the
first two rankers.

The following two restrictions were applied to the cre-
ation of the XML file that contains the final ranking of
the fragments. First, the final result is limited to 1500
fragments. Secondly, at most 5 fragments from any sin-
gle document could appear in the final result. These
limitations could be easily modified by the user.

7. CONCLUSION AND FUTURE WORK
The main contribution of our work is a design of an ex-
tensible system that is capable of combining different
types of rankers in a manner that takes into account
both the structure and the content of the documents.
Traditional as well as new information-retrieval tech-
niques can be incorporated into our system, and the
ranking score of each technique can be easily modified
to include the weights assigned to tags. Our system is
also extensible in the sense that it can be easily adapted
to changes in the formal syntax of titles, due to the im-
plementation of the topic processor by means of XSL.

Two major issues remain for future work. One is im-
proving the efficiency of the system. The second is im-
proving the quality (i.e., recall and precision) of the
results. This would necessitate extensive experimen-
tation with the current rankers as well as new ones.
In particular, we plan to modify the merger so that it
would use a single formula to aggregate the scores of the
various rankers, rather than sorting those scores lexico-
graphically. Towards this end, further experimentation
is needed in order to find the optimal weight of each
ranker relative to the other rankers.
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ABSTRACT
This paper discusses our participation in INEX (the Initia-
tive for the Evaluation of XML Retrieval) using the TIJAH
XML-IR system. TIJAH’s system design follows a ‘stan-
dard’ layered database architecture, carefully separating the
conceptual, logical and physical levels. At the conceptual
level, we classify the INEX XPath-based query expressions
into three different query patterns. For each pattern, we
present its mapping into a query execution strategy. The
logical layer exploits probabilistic region algebra as the basis
for query processing. We discuss the region operators used
to select and manipulate XML document components. The
logical algebra expressions are mapped into efficient rela-
tional algebra expressions over a physical representation of
the XML document collection using the ‘pre-post numbering
scheme’. The paper concludes with a preliminary analysis
of the evaluation results of the submitted runs.

1. INTRODUCTION
This paper describes our research for INEX 2003 (the Initia-
tive for the Evaluation of XML Retrieval). We participated
with the TIJAH XML-IR retrieval system, a research pro-
totype built on top of the MonetDB database kernel [1].
Key feature of the TIJAH system is its layered design, fol-
lowing the basic system architecture of relational database
management systems.

Traditional information retrieval systems represent a docu-
ment as a ‘bag-of-words’. Inverted file structures provide the
basis for implementing a retrieval system for such ‘flat’ doc-
uments. In the case of structured documents however, we
think designing the retrieval system following ‘the database
approach’ is best to keep the more complex data represen-
tation manageable.

The main characteristic of the database approach is a strong
separation between conceptual, logical and physical levels,
and the usage of different data models and query languages
at each of those levels [18]. In relational database systems, a
significant benefit of this data abstraction (through the sep-
aration between the levels in database design) is to enable
query optimization. A SQL query (a ‘calculus expression’)
at the conceptual level is first translated into relational al-
gebra. The algebraic version used at the logical level is then
rewritten by the query optimizer into an efficient physical
query plan. The physical algebra exploits techniques like
hashing and sorting to improve efficiency [8].

For XML-IR systems, following this separation in layers
gives another, additional advantage: by choosing the ap-
propriate level of abstraction for the logical level, the devel-
opment of probabilistic techniques handling structural in-
formation is simplified, and kept orthogonal to the rest of
the system design. Section 3 details our approach, based on
a probabilistic extension of text region algebras.

The paper is organized along the layers of the TIJAH sys-
tem design. The following Section describes the query lan-
guage used at the conceptual level, identifies three patterns
in the INEX topic set, and explains how the language mod-
elling approach to information retrieval is used for the about
operator. Section 3 presents a probabilistic region algebra
for expressing the three query patterns. Section 4 explains
how the algebraic expressions are mapped into efficient re-
lational algebra expressions over a physical representation
of the XML document collection using the ‘pre-post num-
bering scheme’. We conclude with a discussion of the ex-
periments performed with our approach for the three INEX
search tasks.

2. CONCEPTUAL LEVEL
For the conceptual level, we used the INEX query language,
as proposed by the INEX Initiative in 2002. The INEX
query language extends XPath with a special about-function,
ranking XML elements by their estimated relevance to a
textual query. As such, the invocation of the about function
can be regarded as the instantiation of a retrieval model.

The retrieval model used for the about-function is essentially
the same as that used at INEX 2002 [12, 14]. We calculate
the probability of complete relevance of a document com-
ponent assuming independence between the probability of
relevance on exhaustivity and the probability of relevance
on specificity.

The probability of relevance on exhaustivity, P (RE), is es-
timated using the language modelling approach to informa-
tion retrieval [11]. Instead of document frequency, we have
used collection frequencies for the background model. The
probability of relevance on specificity, P (RS), is assumed
to be directly related to the component length (following a
log-normal distribution). Its steep slope at the start dis-
counts the likelihood that very short document components
are relevant. Its long tail reflects that we do not expect long
document components to be focused on the topic of request
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either.

The language model as used by our system disregards struc-
ture within a document component, i.e., the model treats a
document component as a ‘flat-text’ document. This model
property, and an informal inspection of the INEX 2003 topic
list, led us to use only a subset of possible location step axes
within an about function call; we only used the descendant-
or-self::qname location step axis. Allowing other axes, like
sibling::qname or following::qname requires correct proba-
bilistic modeling for estimating probabilities in the language
model, which our model did not offer at the time of evalua-
tion.

Table 1: SCAS and VCAS pattern set. Note that
xp, xp2, axp, axp1 and axp2 are location steps, and
’t/p’ denotes any set of terms or phrases to perform
the search.
Pattern Pattern definition

P1 xp[about(axp, ’t/p’)]

P2 xp[about(axp1, ’t1/p1’) AND about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’) OR about(axp2, ’t2/p2’)]

P3 xp[about(axp1, ’t1/p1’)]/xp2[about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’)]//xp2[about(axp2, ’t2/p2’)]

Since we did not have an automatic query processing facility,
we processed the queries manually but in a mechanic fashion.
Processing the INEX query patterns takes place in two steps:
1) classify the query into (a sequence of) three basic query
patterns (shown in Table 1), and, 2) create a query plan to
process the queries. The query patterns are visualized in
Figure 1.

The basic pattern for all XPath based queries is the single lo-
cation step, as defined in [7], augmented with an about func-
tion call (pattern P1 in Table 1). When referring to e.g., xp,
we refer to the nodeset representing the location step xp; in
other words, a path leading to a certain location (or node) in
the XML syntax tree. The first query pattern consists of one
location step to identify the nodes to be retrieved, ranked
by an about expression over a nodeset reached by a second
location step. The two other (more complex) patterns P2

and P3 are essentially multiple interrelated instances of the
basic pattern P1 . The XPath location steps may also ap-
ply (Boolean) predicate filters, e.g. selecting nodes with a
particular value range for yr.

3. LOGICAL LEVEL
The logical level is based on a probabilistic region algebra.
Region algebra was introduced by Burkowski [2], Clarke et
al. [3], and Tova and Milo [4]. The aim of the earliest text
region algebra approaches has been to enable structured text
search. Later, it has been applied to related tasks as well,
including search on nested text regions [13], processing of
structured text [17], and ranked retrieval from structured
text documents [15].

The basic idea behind region algebra approaches is the rep-
resentation of text documents as a set of ‘extents’, where
each extent is defined by its starting and end position. The
application of the idea of text extents to XML documents is
straightforward. If we regard each XML document instance

title:[1..4] bdy:[5..24]

sec:[6..14]

article:[0..25]

sec:[15..23]

‘dating’:[17..17]

p:[11..13] p:[19..22]p:[16..18]p:[7..10]

‘...’:[3..3]

‘...’:[20..20] ‘...’:[21..21]
‘Maxima’:[12..12]

‘Willem−Alexander’:[8..8]

‘...’:[2..2]

‘...’:[9..9]

@lang

@pdate

Figure 2: Example XML syntax tree with start and
endpoint assignment.

as a linearized string or a set of tokens (including the doc-
ument text itself), each component can then be considered
as a text region or a contiguous subset of the entire lin-
earized string. Therefore, a text region a can be identified
by its starting point sa and ending point ea within the en-
tire linearized string. Figure 2 visualizes an example XML
document (as a syntax tree) with the start point and end
point numbering for the nodes or regions in the tree. As
an example, the bdy-region corresponds to (closed) interval
[5..24].

Let us introduce the basic set of region operators. We use
capital letters (A, B, C) to denote the region sets, and their
corresponding non-capitals to denote regions in these region
sets (a, b, c). The operators take region sets as input and
give a result which is again a region set. The definition of
region operators is given in Table 2. Interval operator I (t)
returns the region set representing the occurrences of term t
as a content word in the XML document; note that it gives
a result set in which sa = ea for every region, assuming t
is a single term and not a phrase. Location operator L(xp)
denotes the sequential application of XPath location steps,
i.e., axis- and node-tests (a definition of axis- and node-tests
can be found in [16]). Optionally, location step operator L
also processes predicate tests on node or attribute values
specified in the XPath expression.

Table 2: Region Algebra Operators.
Operator Operator definition

I(t) {a|sa, ea are pre and post index of term t}
L(xp) C = XPath(xp)
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≤ sb ∧ ea ≥ eb}
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≥ sb ∧ ea ≤ eb}
A4B {c|c ∈ A ∧ c ∈ B}
A5B {c|c ∈ A ∨ c ∈ B}

Table 3 expresses the patterns identified in the previous Sec-
tion using region algebra operators (ignoring ranking for
now). Pattern 1 distinguishes between term (t) and phrase
expressions (p = {t1 , t2 , ..., tn}). Patterns 2 and 3 are rewrit-
ten into several interrelated instances of pattern 1. Table 4
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Pattern 1 Pattern 2 Pattern 3

AXP

XP

AXP2‘...’

AXP1

XP

AXP1 XP2

AXP2

XP

Figure 1: Example instances of the three defined patterns.

Table 3: Pattern definitions based on pure region algebra operators.
Pattern Algebraic expression

P1 (xp, axp) L(xp) � (L(axp) � I(t))
L(xp) � ((L(axp) � I(t1))4 (L(axp) � I(t2))4 ...4 (L(axp) � I(tn)))

P2 (xp, axp1 , axp2 ) P1(xp, axp1)4 P1(xp, axp2)
P1(xp, axp1)5 P1(xp, axp2)

P3 (xp1 , xp2 , axp1 , axp2 ) P1(xp2, axp2) � P1(xp1, axp1)

introduces a probabilistic extension of the pure region alge-
bra operators. In order to introduce ranking, we extend the
notion of region with its relevance score; i.e., every region a
has an associated relevance score pa. In cases where pure re-
gion algebra operators are used, the value of the introduced
relevance score is equal to a predefined default value (e.g.,
pa = 1) for each resulting region in a region set.

Table 5 gives the probabilistic region algebra expressions
corresponding to the INEX query patterns identified be-
fore. The tp1 is used to denote ’t1/p1’ or the combination
of ’t1/p1’ and ’t2/p2’ (the choice between these options is
made at the conceptual level). Similarly, tp2 is either ’t2/p2’
or a combination of ’t2/p2’ and ’t1/p1’.

Expressing query plans using the operators given in Ta-
ble 4 preserves data independence between the logical and
the physical level of a database. Similarly, these operators
enable the separation between the structural query process-
ing and the underlying probabilistic model used for ranked
retrieval: a design property termed content independence
in [6]. The instantiation of these probabilistic operators is
implementation dependent and does not influence the global
system architecture. This gives us the opportunity to change
the probabilistic model used or to modify the existing model
while keeping the system framework, creating the opportu-
nity to compare different probabilistic models with minimal
implementation effort.

4. PHYSICAL LEVEL
The physical level of the TIJAH system relies on the Mon-
etDB binary relational database kernel [1]. This Section
details implementation and execution strategy for each of
the patterns.

The text extents used at the logical level are represented by
XML text regions at the physical level, and encoded using a
preorder/postorder tree encoding scheme, following [9, 10].

The XML text regions are stored as three-tuples { si, ei, ti },
where:

• si and ei represent the start and end positions of XML
region i ;

• ti is the (XML) tag of each region.

The set of all XML region tuples is named the node index
N . Index terms present in the XML documents are stored
in a separate relation called the word index W. Index terms
are considered text regions as well, but physically the term
identifier is re-used as both start and end position to reduce
memory usage. The physical layer has been extended with
the text region operators shown in Table 6. Boolean pred-
icate filters are always applied first. For further details on
this indexing scheme, refer to [5, 14].

4.1 Pattern 1
Pattern 1 for the VCAS scenario Processing pattern 1
in Table 1 requires two basic steps: relating nodesets xp and
axp to each other, and processing the about operator. Node-
sets xp and axp must have a parent - descendant1 structural
relationship. So, the pattern is processed as follows (visual-
ized in Figure 3):

1Parent - child relationships are considered a specific variant
of parent - descendant relationships.

Table 6: Text region operators at the physical level.
Operator Definition

a ⊃ b true ⇐⇒ sb > sa ∧ eb < ea

a ⊂ b true ⇐⇒ sa > sb ∧ ea < eb

A 1⊃ B {(sa , sb)| a ← A, b ← B , a ⊃ b}
A 1⊂ B {(sa , sb)| a ← A, b ← B , a ⊂ b}

klas
74

klas
74

klas
74

klas
74

klas
74



Table 4: Probabilistic region algebra operators. Note that the “ranked containing” and “ranked and” operators are

used to define the about-function.
Operator Operator description Operator usage examples

A . B ranked containing (based on LM) L(axp) . I(t)
A � B average containing L(xp) � (L(axp) . I(t))
A∆B ranked and (based on LM) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2)))
A � B average contained (L(xp1) � (L(axp1) . I(t1))) � (L(xp2) � (L(axp2) . I(t2)))
A4B complex and (L(xp) � (L(axp1) . I(t1)))4 (L(xp) � (L(axp2) . I(t2)))
A5B complex or (L(xp) � (L(axp1) . I(t1)))5 (L(xp) � (L(axp2) . I(t2)))

Table 5: Pattern definitions based on probabilistic region algebra operators.
Pattern Algebraic expression

P1 (xp, axp, t) L(xp) � (L(axp) . I(t))
P1 (xp, axp, p) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2))∆...∆(L(axp) . I(tn)))
P2 (xp, axp1 , axp2 , tp1 , tp2 ) P1(xp, axp1, tp1)4 P1(xp, axp2, tp2)

P1(xp, axp1, tp1)5 P1(xp, axp2, tp2)
P3 (xp1 , xp2 , axp1 , axp2 , tp1 , tp2 ) P1(xp2, axp2, tp2) � P1(xp1, axp1, tp1)

L

Nxp

W Q

1

L

Nxp

L

axp N

1⊃

1⊂

1⊂

about

avg-groupby

Figure 3: Physical query plan for pattern 1.
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• Determine the correct axp nodeset for ranking. On the
physical level, this is done by executing a containment
join between the nodesets xp and axp: axp 1⊂ xp. The
result of this containment join is cxp or the set of those
nodes of axp which are contained within nodes in xp;

• Perform the about operation on the nodes in cxp (the
combination of . and ∆ operators on the logical level);

• Return the ranking for the xp nodeset, based on the
rankings of the nodes present in cxp. Note that it is
possible that the ranking returns a ranking for mul-
tiple axp descendant nodes for a single xp node (e.g.,
multiple sections within an article). In that case, we
take the average as the final score for the xp node in
question. This step is the physical equivalent of the
logical . (one descendant of the type of axp) or logical
� (multiple descendants of the type of axp) operator.

Pattern 1 for the SCAS scenario The processing of pat-
tern 1 for the SCAS scenario does not differ from the pro-
cessing performed for the VCAS scenario. The containment
join will automatically remove those xp nodes not contain-
ing one or more axp nodes. This ensures only the ‘correct’
axp nodes, those within a node from the xp nodeset, will be
ranked.

4.2 Pattern 2
Pattern 2 for the VCAS scenario For the processing of
pattern 2 for the VCAS scenario, we assume that conjunc-
tions and disjunctions specified in the query relate to the
structure, and never to the query terms. In case nodesets
axp1 and axp2 are equal, the pattern is rewritten to a pat-
tern 1. If the nodesets axp1 and axp2 are not equal, it is
possible these nodesets represent completely different parts
of the (sub)tree below xp, as depicted in Figure 1. In path-
based terms, if the (sub)tree starting at xp does not contain
both paths axp1 and axp2, that xp tree cannot be relevant
in the strict query scenario.

However, for a more vague query scenario, we argue that the
absence of a descendant node does not render the requested
(ancestor) target node irrelevant completely. Consider the
following expression:

/article[
about(./abstract, ’information retrieval’)

AND about(.//section, ’XML data’)
]

If an article contains no abstract, but it does score on ‘XML
data’ in one or more of the sections, the question is whether
the article is completely irrelevant. For a vague retrieval
scenario this might not be the case. Therefore, we decided
to process these expression types as follows. We split up
the expression into a series of pattern 1 expressions, and
combine the results of the individual pattern 1 executions.
The example above is split up into the following two pattern
1 expressions:

- /article[about(./abs, ’information retrieval XML data’)]
- /article[about(.//sec, ’information retrieval XML data’)]

Both subpatterns are processed as pattern 1. The two re-
sulting nodesets need to be combined for a final ranking. An
intuitive combination function for the 4 operator is taking
the minimum of the (non-zero) descendant scores, and for
the 5 operator the maximum. Note that, alternatively,
a more formal probabilistic choice would be to use product
and sum instead of minimum and maximum; whether this
yields better results is an open question for further research.

Pattern 2 for the SCAS scenario For the SCAS sce-
nario, all of the descendant nodes present in axp1 and axp2
need to be present in the context of an xp node. In path-
based terms: if the path xp does not contain both a path
axp1 and a path axp2, the path xp cannot be relevant. We
filter out those xp paths, not containing both the axp1 and
axp2 paths. This additional filtering step and the choice of
operator to implement the complex ‘and’ (4) and ‘or’ (5)
operators define together the difference between strict and
vague scenarios.

4.3 Pattern 3
Pattern 3 for the VCAS scenario Pattern 3 can be pro-
cessed like pattern 2, except for the fact that the target
element now lies deeper in the tree. We process this pattern
by first splitting it up into multiple instances of pattern 1:

- xp[about(axp1, ’t1/p1 t2/p2’)]
- xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

The pattern 1 execution already provides for aggregation of
scores of a set of nodes of the same type, within a target
element. The question remains however how to combine
the scores of the nodes present in nodesets /xp/axp1 and
/xp/xp2/axp2. Like before, these nodesets can represent
nodes in completely different parts of the (sub)tree.

Based on the observation that the user explicitly asks for
the nodes present in the /xp/xp2 nodeset, we decided to
use the rankings of those nodes as the final rankings. The
first about-predicate reduces nodeset xp to those nodes for
which a path axp1 exists. For the vague scenario however,
we argue that absence or presence of axp1 does not really
influence target element relevance (similar to pattern 2 in
subsection 4.2).

Summarizing, the first about-predicate in the pattern men-
tioned at the start of this subsection is dropped, rewriting
the resulting pattern to a pattern 1 instance:

/xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

This results in the following execution strategy for pattern
3 under the VCAS scenario: remove all about-predicates
from all location steps, except for the about-predicate on
the target element.

Pattern 3 for the SCAS scenario The processing of pat-
tern 3 for the SCAS scenario is stricter in the sense that we
can not simply drop intermediate about-predicates, as we did
for the VCAS scenario. The general procedure consists of
1) splitting up the pattern into separate location steps and
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2) structural correlation of the resulting nodesets of each
location step. The target elements are ranked by their cor-
responding about-predicate only; thus, ignoring the scores
produced for the other about-clauses in the query. Like in
pattern 1, the target element can have multiple descendants;
in that case, the descendants’ scores are averaged to produce
the target element scores.

As an example, consider the following expression:

/article[about(./abstract, ’t1/p1’)]
//section[about(./header, ’t2/p2’)]
//p[about(., ’t3/p3’)]

We first split up the above expression into:

- /article[(about(./abstract, ’t1/p1 t2/p2 t3/p3’)]
- //section[about(./header, ’t1/p1 t2/p2 t3/p3’)]
- //p[about(., ’t1/p1 t2/p2 t3/p3’)]

All of the patterns above produce intermediate result node-
sets that have to be structurally correlated to each other.
We can choose to perform a top-down correlation sequence,
or a bottom-up correlation sequence consisting of contain-
ment joins. The choice between a top-down or bottom-up
sequence can be an optimization decision, made at runtime
by the retrieval system. For example, if a collection contains
many paragraph elements, not contained within article ele-
ments, the system might decide to limit the amount of un-
necessary executed about-predicates by choosing a top-down
approach. In the current implementation, the patterns are
always processed top-down.

5. EXPERIMENTS
For the content only (CO) topics, we designed three ex-
perimentation scenarios. The first scenario represents the
baseline scenario of ’flat-document’ retrieval, i.e. retrieval
of documents which possess no structure. After examina-
tion of the document collection, we decided to perform re-
trieval of article-components. The second scenario regarded
all subtrees in the collection as separate documents. For the
third scenario we re-used the result sets of the second run
and used a log-normal distribution to model the quantity
dimension. To penalize the retrieval of extremely long doc-
ument components (this in contrast with the language model
that assigns a higher probability to longer documents), as
well as extremely short document components, we set the
mean at 2516. Experiments for INEX 2002 showed that
2516 words was the average document component length of
relevant document components according to the strict evalu-
ation function used in INEX 2002. Table 7 gives a summary
of our experimentation scenarios.

For both the SCAS (strict content-and-structure) and VCAS
(vague content-and-structure), we submitted one run each
(not mentioned in Table 7); the topics executed according
to the conceptual, logical and physical SCAS and VCAS
pattern rulesets as detailed in the previous Sections. The
recall-precision graphs of our submitted CO runs are pre-
sented in Figures 4a–f and Figures 5a–f (for the overlapping
metric). We have included both the strict and generalized
evaluations.

Table 7: CO experimentation scenarios; note that
we used a length of 2516 as preferred component
length in scenario 3. The experiments for INEX
2002 showed 2516 was the average document com-
ponent length of relevant components according to
the strict evaluation function used in INEX 2002.

Scenario Retr. Unit Dimension(s)

V CO
1 {tr(′article ′)} topicality

V CO
2 {tr(′∗′)} topicality

V CO
3 {tr(′∗′)} top., quant .(2516 )

6. CONCLUSIONS AND FUTURE WORK
Our participation in INEX can be summed up as an exer-
cise in applying current and state of the art information re-
trieval technology to a structured document collection. We
described a relatively straightforward approach to simplify
the implementation of retrieval models that combine struc-
tural and content properties. We hope to take advantage
of this flexibility to a larger extend in our future research,
as the current approach to retrieval has only used a small
proportion of all the structural information present in XML
documents. Other research includes more extensive experi-
mentation in the area of relevance feedback, and develop a
different normalization mechanism to remove the bias of the
language model on short components.
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Figure 5: CO recall-precision graphs for the overlapping metric (top row: strict evaluation, bottom row:
generalized evaluation).
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ABSTRACT
This paper describes the INEX 2003 participation of the Language
& Inference Technology group of the University of Amsterdam.
We participated in all three of the tasks, content-only, strict content-
and-structure and vague content-and-structure.

1. INTRODUCTION
One of the recurring issues in XML retrieval is finding the appropri-
ate unit of retrieval. For the content-only (CO) task at INEX 2002,
we only submitted runs in which whole articles were the unit of re-
trieval [3]. Much to our surprise, retrieving articles turned out to be
a competitive strategy. In [5] we experimented with going below
the article level and returning elements. Our experiments showed
that a successful element retrieval approach should be biased to-
ward retrieving large elements. For the content-only task this year
our aim was to experiment further with this size bias, in order to try
to determine what is the appropriate unit of retrieval.

For the strict content-and-structure (SCAS) task the unit of retrieval
is usually explicitly mentioned in the query. Our research question
for the content-only task does therefore not carry over to the strict
content-and-structure task. At INEX 2002, we experimented with
assigning an RSV score to elements satisfying an XPath expression.
This year we experiment further with the same idea, although our
scoring methods are quite different from those of last year.

The vague content-and-structure (VCAS) task is a new task and we
could not base our experiments on previous experience. Since the
definition of the task was underspecified, our aim for this task was
to try to find out what sort of task this was. We experimented with
a content-only approach, strict content-and-structure approach and
article retrieval approach.

All of our runs were created using theFlexIR retrieval system de-
veloped by the Language and Inference Technology group. We use
a multinomial language model for the scoring of retrieval results.

The structure of the remainder of this paper is as follows. In Sec-
tion 2 we describe the setup used in our experiments. In Section 3

we explain the submitted runs for each of the three tasks, CO in 3.1,
SCAS in 3.2 and VCAS in 3.3. Results are presented and discussed
in Section 4 and in Section 5 we draw initial conclusions from our
experiments.

2. EXPERIMENTAL SETUP
2.1 Index
We adopt an IR based approach to XML retrieval. We created our
runs using two types of inverted indexes, one for XML articles only
and another for all XML elements.

Article index
For the article index, the indexing unit is a whole XML document
containing all the terms appearing at any nesting level within the
〈article〉 tag. This is thus a traditional inverted index as used for
standard document retrieval.

Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.

The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both indexes were word-based, no stemming was applied to the
documents, but the text was lower-cased and stop-words were re-
moved using the stop-word list that comes with the English version
on the Snowball stemmer [8]. Despite the positive effect of mor-
phological normalization reported in [3], we decided to go for a
word-based approach. Some of our experiments have indicated that
high precision settings are desirable for XML element retrieval [4].
Word-based approaches have proved very suitable for achieving
high precision.

2.2 Query processing
Two different topic formats are used, see Figure 2 for one of the CO
topics, and Figure 3 for one of the CAS topics. Our queries were
created using only the terms in the〈title〉 and〈description〉
parts of the topics. Terms in the〈keywords〉 part of the topics
have proved to significantly improve retrieval effectiveness [4]. The
keywords, which are used to assist during the assessment stage, are
often based on human inspection of relevant documents during the
topic creation. Using them would have meant a violation of the
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Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Tom Waits

simple.xml /article[1]/au[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Figure 1: Simplified figure of how XML documents are split up into overlapping indexing units

assumptions underlying a fully automatic run, so we decided not to
use them. Our system does not support +, - or phrases in queries.
Words and phrases bound by a minus were removed, together with
the minus-sign. Plus-signs and quotes were simply removed.

Like the index, the queries were word-based, no stemming was ap-
plied but the text was lower-cased and stopwords were removed.

For some of our runs we used queries expanded by blind feedback.
We considered it safer to perform the blind feedback against the ar-
ticle index since we do not know how the overlapping nature of the
element index affects the statistics used in the feedback procedure.
We used a variant of Rocchio feedback [6], where the top 10 docu-
ments were considered relevant; the top 501-1000 were considered
non-relevant; and up to 20 terms were added to the initial topic.
Terms appearing in more that 450 documents were not considered
as feedback terms. An example of an expanded query can be seen
in Figure 2c.

Task specific query handling will be further described as part of the
run descriptions in the following section.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the el-
ements. The elements are then ranked according to the likelihood
of the query, given the estimated language model for the element.
To account for data sparseness we estimate the element language
model by a linear interpolation of two language models, one for the
element and another for the collection:

P(E|Q) = P(E) ·
k

∏
i=1

(λ ·Pmle(ti |E)+(1−λ) ·Pmle(ti |C)) , (1)

whereQ is a query made out of the termst1, . . . , tk; E is a language
model of an element;C is a language model of the collection; andλ
is the interpolation factor (smoothing parameter). We estimate the
language models,Pmle(·|·) using maximum likelihood estimation.
For the collection model we use element frequencies. Assuming
a uniform prior probability of elements being relevant, our basic
scoring formula for an elementE and a queryQ = (t1, . . . , tk) is
therefore

s(E,Q) =
k

∑
i=1

log

(
1+

λ · tf(ti ,E) · (∑t df(t))
(1−λ) ·df(ti) · (∑t tf(t,E))

)
, (2)

where tf(t,E) is the frequency of termt in elementE, df(t) is the
element frequency of termt andλ is the smoothing parameter. In

most cases we base the probabilityP(E) on the element length.
That is, we add a length prior to the score:

lp(E) = log

(
∑
t

tf(t,E)
)

. (3)

For an exact description of how we apply this length prior, see in-
dividual run descriptions in Section 3.

The smoothing parameterλ played a crucial role in our submis-
sions. In [4] we reported on the effect of smoothing on the unit
of retrieval. The results obtained there suggested that there was a
correlation between the value of the smoothing parameter and the
size of the retrieved elements. The average size of retrieved ele-
ments increases dramatically as less smoothing (a higher value for
the smoothing parameterλ) was applied. Further descriptions on
how we tried to exploit this size-smoothing relation are provided in
the individual run descriptions.

Smoothing is not the only method applicable to eliminate the small
elements from the retrieval set. One can also simply discard the
small elements when building the index. Elements containing text
that is shorter than a certain cut-off value can be ignored when the
index is built. In some of our runs we imitated such index build-
ing by restricting our view of the element index to a such a cut-off
version. Further details will be provided in the description of indi-
vidual runs in the next section.

3. RUNS
3.1 Content-Only task
In [5] we tried to answer the question of what is the appropriate unit
of retrieval for XML information retrieval. A general conclusion
was that users have a bias toward large elements. With our runs for
the content-only task we pursued this issue further.

We create a language model for each XML-element. As described
in the previous section, since small elements do not provide a large
sample space, we get very sparse statistics. We therefore smooth
our statistics by combining the element language model with a lan-
guage model for the whole collection. Zhai and Lafferty [10] argue
that bigger documents require less smoothing than smaller docu-
ments. A similar effect was witnessed in [4], where less smooth
language models retrieved larger elements than more smooth lan-
guage models.

Increasing the value ofλ in the language model causes an occur-
rence of a term to have an increasingly bigger impact. As a result,
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the elements with more matching terms are favored over elements
with fewer matching terms. In the case of our overlapping element
index, a high lambda gives us an article biased run, whereas a low
lambda introduces a bias toward smaller elements (such as sections
and paragraphs).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="103" query_type="CO" ct_no="50">
<title>UML formal logic</title>
<description>Find information on the use of formal logics
to model or reason about UML diagrams.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

.i 103
uml formal logic find information use formal logics model
reason uml diagrams

(b) Cleaned query (TD)

.i 103
uml formal logic find information use formal logics model
reason uml diagrams booch longman rumbaugh itu jacobson
wiley guards ocl notations omg statecharts formalism
mappings verlag sdl documenting stereotyped semantically
sons saddle

(c) Expanded query (TD+blind feedback)

Figure 2: CO Topic 103

In our runs we scored elements by combining evidence from the
element itself,s(e), and evidence from the surrounding articles(d),
using the scoring formula

scomb(e) = lp(e)+α ·s(d)+(1−α) ·s(e) (4)

wheres(·) is the score function from Equation 2 and lp(·) is the
length prior from Equation 3.

We submitted the following runs for the CO task. Since we wanted
to experiment with the element size bias, we wanted to compare
two runs, one with considerable smoothing (λ = 0.2) and another
with considerably less smoothing (λ = 0.9).

UAmsI03-CO-lambda=0.9
In this run we set the smoothing parameterλ to 0.9. This value ofλ
means that little smoothing was performed, which resulted in a run
with a bias toward retrieving large elements such as whole articles.

UAmsI03-CO-lambda=0.2
In this run we set the smoothing parameterλ to 0.2 which means
that a considerable amount of smoothing is performed. This re-
sulted in a run with a bias toward retrieving elements such as sec-
tions and paragraphs.

UAmsI03-CO-lambda=0.5
Here we went somewhere in between the two extremes above by
settingλ = 0.5. Furthermore, we required elements to be either
articles, bodies or nested within the body.

All runs used the same combination valueα = 0.4 in the scoring
formula (4), a value chosen after experimenting with the INEX

2002 collection. Only elements longer than 20 terms were consid-
ered. Very short pieces of text are themselves not likely to be very
informative. One straightforward way to make sure those short el-
ements are not retrieved, is to remove them from the index. The
value for the size threshold was justified by experiments on the
INEX 2002 collection.

As described previously, queries were created using the terms from
the title and description; they were not stemmed but stop-words
were removed (See Figure 2b). The queries were expanded using
blind feedback (See Figure 2c). The parameters for the feedback
were based on experiments with the INEX 2002 collection. In our
score calculations we used the overlapping element index as a basis
for the collection language model. In our combinations of article
and element scores we did not do any normalization of scores.

3.2 Strict Content-And-Structure task
For the Strict Content-and-structure (SCAS) task the unit of re-
trieval is usually coded inside the topics. Our research question
for the CO task does therefore not carry directly over to the SCAS
task.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="76" query_type="CAS" ct_no="81">
<title>//article[(./fm//yr=’2000’ OR
./fm//yr=’1999’) AND about(.,’"intelligent
transportation system"’)]//sec[about(.,
’automation +vehicle’)]</title>

<description>Automated vehicle applications
in articles from 1999 or 2000 about intelligent
transportation systems.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

.i 76
intelligent transportation system automation
vehicle automated vehicle applications in
articles from 1999 or 2000 about intelligent
transportation systems

(b) Full content query (TD)

.i 76a article
intelligent transportation system
.i 76b sec
automation vehicle

(c) Partial content queries(T)

//article[about(., "76a")]//sec[about(.,"76b")]

(d) Fuzzy structure (T)

//article[./fm//yr=’2000’ or ./fm//yr=’1999’]//sec

(e) Strict structure (T)

Figure 3: CAS Topic 76

The CAS topics have a considerably more complex format than the
CO topics (see Figure 3a for an example). The description part is
the same, but the title has a different format. The CAS title is writ-
ten in a language which is an extension of a subset of XPath [9].
We can view the title part of the CAS topic as a mixture of path
expressions and filters. Our aim with our SCAS runs was to try
to cast light on how these expressions and filters could be used to
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assign scores to elements. All our runs treat the filters in quite a
strict fashion; the larger number the number of filters that are satis-
fied, the higher the ranking of an element. The difference between
our three runs lies in the way we decide the ranking of results that
satisfy the same number of filters.

More precisely, we consider the topic title of CAS topics to be split
into path expressions and filters as follows.

rootPath[Fr ∪Cr ∪Sr]targetPath[Fe∪Ce∪Se], (5)

whererootPath andtargetPath are path expressions andFr , Cr ,
Sr , Fe, Ce, Se are sets of filters (to be explained below). The filters
in the actual topics were connected with a boolean formula. We
ignore this formula and only look at sets of filters. We distinguish
between three types of filters.

Element filters (F) F is a set of filters that put content constraints
on the current element, as identified by preceding path ex-
pression (rootPath or targetPath). Element filters have
the formatabout(.,’whatever’)

Nested filters (C) C is a set of filters that put content constraints on
elements that are nested within the current element. Nested
filters have the formatabout(./path, ’whatever’)

Strict filters (S) S is a set of filters of the formatpath op value,
whereop is a comparison operator such as= or >=; and value
is a number or a string.

As an example, the title part of Topic 76 in Figure 3a can be broken
up into path expressions and filters such as:

rootPath = //article

Fr = {about(.,‘"intelligent transportation system"’)}
Cr = /0
Sr = {./fm//yr=‘2000’,./fm//yr=‘1999’}
targetPath = //sec

Fe = {about(.,‘automation +vehicle’)

Ce = /0
Se = /0

We calculate the retrieval scores by combining 3 base runs. The
base runs consist of anarticle run, a ranked list of articles answer-
ing the full content query (Figure 3b); an element run, a ranked
list of target elements answering the full content query (Figure 3b);
and afilter run, a ranked list of elements answering each of the par-
tial content queries (Figure 3c). More precisely the base runs were
created as follows.

Article run
We created an article run from the element index by filtering away
all elements not having the tag-name〈article〉. We used a value
λ = 0.15 for the smoothing parameter. This is the traditional pa-
rameter settings for document retrieval. We used the full content
query (Figure 3b), expanded using blind feedback. For each query
we retrieved a ranked list of 2000 most relevant articles.

Element run
We created an element run in a similar fashion as for the CO task.
Additionally, we filtered away all elements that did not have the

same tag-name as the target tag-name (the rightmost part of the
targetPath). For topics where the target was a ‘*’ we consid-
ered only elements containing at least 20 terms. We did moderate
smoothing by choosing a value of 0.5 for λ. We used the full con-
tent queries (Figure 3b), expanded using blind feedback. For each
query we retrieved an exhaustive ranked list of relevant elements.

Filter run
We created an element run in a similar fashion as for the CO task,
but using the partial content queries (Figure 3c). No blind feedback
was applied to the queries. We filtered away all elements that did
not have the same tag-name as the target tag-name of each filter.
For filters where the target was a ‘*’ we considered only elements
containing at least 20 terms. We did minor smoothing by choosing
the value 0.7 forλ. For each query we retrieved an exhaustive
ranked list of relevant elements.

For all the base runs the length prior from equation 3 is added to
the score.

From the base runs we created three runs which we submitted: one
where scores are based on the element run; another where scores
are based on the article run; and a third which uses a mixture of the
element run, article run and filter run.

UAmsI03-SCAS-ElementScore
The articles appearing in the article run were parsed and their ele-
ments that matched any of the element- or nested-filters were kept
aside as candidates for the final retrieval set. In other words, we
kept aside all elements that matched the title XPath expression,
where the about predicate returns the valuetrue for precisely the
elements that appear in the filter run. The candidate elements were
then assigned a score according to the element run. Additionally,
results that match all filters got 100 extra points. Elements that
match only the target filters got 50 extra points. The values 100
and 50 were just arbitrary numbers used to guarantee that the ele-
ments matching all the filters were ranked before the elements only
matching a strict subset of the filters. This can be viewed as a co-
ordination level matching for the filter matching.

UAmsI03-SCAS-DocumentScore
This run is almost identical to the previous run. The only difference
was that the candidate elements were assigned scores according to
the article run instead of according to the element run.

UAmsI03-SCAS-MixedScore
The articles appearing in the article run are parsed in the same way
as for the two previous cases. The candidate elements are assigned
a score which is calculated by combining the RSV scores of the
three base runs. Hence, the score of an element is a mixture of its
own score, the score of the article containing it, and the scores of
all elements that contribute to the XPath expression being matched.
More precisely, the element score was calculated using the formula

RSV(e) = α ·

(
s(r)+ ∑

f∈Fr

s( f )+ ∑
c∈Cr

maxs(c)

)

+(1−α) ·

(
s(e)+ ∑

f∈Fe

s( f )+ ∑
c∈Ce

maxs(c)

)
, (6)

whereFr , Cr , Fe andCe represent sets of elements passing the re-
spective filter mentioned in Equation 5;s(r) is the score of the ar-
ticle from the article run;s( f ) ands(c) are scores from the filter
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MAP p@5 p@10 p@20
λ = 0.9 0.1091 0.3308 0.2769 0.2250
λ = 0.2 0.1214 0.3231 0.2923 0.2423
λ = 0.5 0.1143 0.3462 0.2923 0.2346

Table 1: Results of the CO task

run; ands(e) is the score from the element run. In all cases we set
α = 0.5. We did not have any training data to estimate an optimal
value for this parameter. We did not apply any normalization to the
RSVs before combining them.

For all the SCAS runs, the elements are also filtered using the
strict filters (Figure 3e). Any filtering using tag-names used the tag
equivalence relations defined in the topic development guidelines.

3.3 Vague Content-And-Structure task
Since the definition of the task was a bit underspecified, we did not
have a clear idea about what this task was about. With our runs
we tried to cast light on whether this task is actually a content-only
task, a content-and-structure task or a traditional article retrieval
task.

UAmsI03-VCAS-NoStructure
This is a run that is similar to our CO runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. We only considered elements
containing at least 20 terms.

UAmsI03-VCAS-TargetFilter
This run is more similar to our SCAS runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. Furthermore, we only re-
turned elements having the same tag-name as the rightmost part of
targetPath. Where the target element was not explicitly stated (*-
targets), we only considered elements containing at least 20 terms.

UAmsI03-VCAS-Article
This run is a combination of two article runs using unweighted
combSUM [7]. The two runs differ in the way that one is aimed
at recall but the other at high precision. The one that aims at recall
usedλ = 0.15 and the full content queries, expanded by blind feed-
back. The high precision run usedλ = 0.70 and as queries only the
text appearing in the filters of the topic title. The RSV values of the
runs were normalized before they were combined.

For all the VCAS runs, the length prior from equation 3 was added
to the score.

4. RESULTS
Our runs were evaluated using version 2003.004 of the evaluation
software provided by the INEX 2003 organizers. We used version
2.3 of the assessments. All runs were evaluated using the strict
quantization; i.e., an element is considered relevant if and only if it
is highly exhaustive and highly specific.

4.1 Content-Only task
Table 1 shows the results of the CO runs. Figure 4 shows the
precision-recall plots. The CO runs at INEX 2003 were evaluated
using inex eval, the standard precision-recall measure for INEX.
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Figure 4: Precision-recall curves for our CO submissions, using
the strict evaluation measure

MAP p@5 p@10 p@20
ElementScore 0.2650 0.4273 0.3455 0.2432
DocumentScore 0.2289 0.2909 0.2636 0.2136
MixedScore 0.2815 0.4000 0.3318 0.2773

Table 2: Results of the SCAS task

Furthermore, two other measures were developed,inex eval ng(s),
a precision recall measure that takes size of retrieved components
into account; andinex eval ng(o), which considers both size and
overlap of retrieved components [1]. At the time when this report
is written, a working version of the latter two measures had not
been released. We will therefore only report on our results using
the inexeval measure.

It looks like our runs are very similar. There is not much differ-
ence in scoring and the graphs look the same. It seems that index
size cut-off reduces the effect of the smoothing parameter reported
in [4], where the absence of smoothing provided bias toward larger
elements. Here the cut-off already eliminates the smallest elements
and there is less need for extreme size bias.

According to the inexeval measure, the run usingλ = 0.2 has over
all highest MAP score. The run usingλ = 0.5 and filter out ele-
ments outside the〈bdy〉 tag, gives slightly higher precision when
5 elements were retrieved. The run usingλ = 0.2 does however
catch up quite quickly. The runs seem to be so similar that any
differences are unlikely to be statistically significant.

4.2 Strict Content-And-Structure task
Table 2 shows the results of the SCAS runs. Figure 5 shows the
precision-recall plots. The run using the combination of element-
, document- and filter-RSVs has higher MAP than the other two
runs. The run based on element scores has slightly lower MAP
than the combination run. The run based on document scores has
the lowest MAP.

The run based on element scores outperforms the other two at low
recall levels. We can see from the table that the element based run
has the highest precision after only 5 or 10 documents have been
retrieved. The combination run catches up with the element score
based run once 20 documents have been retrieved. This indicates
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Figure 5: Precision-recall curves for our SCAS submissions,
using the strict evaluation

MAP p@5 p@10 p@20
NoStructure 0.1270 0.2880 0.2520 0.1980
TargetFilter 0.0647 0.2880 0.2640 0.1960
Article 0.0627 0.2080 0.1800 0.1300

Table 3: Results of the VCAS task

that the coordination level matching for the filter matching, works
well for initial precision, but is not as useful at higher recall levels.

4.3 Vague Content-And-Structure task
Table 3 shows the results of the VCAS runs. Figure 6 shows the
precision-recall plots. Treating the VCAS task as a CO task, re-
sults in a higher MAP than either treating it as an SCAS task or
an article retrieval task. The main difference lies in the recall. By
limiting the set of returned elements, by considering the structure
or retrieving articles, we discard elements that have a big potential
of being relevant to the user. Hence we can never obtain maximal
recall.

Looking at the precision at low recall levels, the difference between
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Figure 6: Precision-recall curves for our VCAS submissions,
using the strict evaluation

the two element retrieval runs is not so great. If we look at precision
after 5, 10 and 20 elements have been retrieved, we see that treating
the VCAS task as an SCAS task performs comparable to treating it
as a CO task. The strict implementation of the task can even help
early precision.

5. CONCLUSIONS
This paper described our official runs for the INEX 2003 evaluation
campaign. Our main research question was to further investigate
the appropriate unit of retrieval. Although this problem is most vis-
ible for INEX’s CO task, it also plays a role in the element and filter
base runs for the CAS topics. With default adhoc retrieval settings,
small XML elements dominate the ranks of retrieved elements. We
conducted experiments with a number of approaches that aim to
retrieve XML elements similar to those receiving relevance in the
eyes of the human assessors. First, we experimented with a uni-
form length prior, ensuring the retrieval of larger sized XML ele-
ments [5]. Second, we experimented with Rocchio blind feedback,
resulting in longer expanded queries that turn out to favor larger
XML elements than the original queries. Third, we experimented
with size cut-off, only indexing the element that contain at least 20
words. Fourth, we experimented with an element filter, ignoring
elements occurring in the front and back matter of articles. Fifth,
we experimented with smoothing settings, where the increase of
the term importance weight leads to the retrieval of larger elements
[4]. Finally, we combined approaches in various ways to obtain the
official run submission. We plan to give an overview of the relative
impact of these approaches in the final proceedings of INEX.

Our future research focuses on the question of what is the appro-
priate statistical model for XML retrieval. In principle, we could
estimate language models from the statistics of the article index
similar to standard document retrieval. An alternative is to estimate
them from the statistics of the element index, or from a particu-
lar subset of the full element index. In particular, we smooth our
element language model with collection statistics from the over-
lapping element index. Arguably, this may introduce biases in the
word frequency and document frequency statistics. Each term ap-
pearing in an article usually creates several entries in the index. The
overall collection statistics from the index may not best estimator
for the language models. In our current research we investigate the
various statistics from which the language models can be estimated.
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ABSTRACT
We present a bayesian framework for XML document re-
trieval. This framework allows us to consider content only.
We perform the retrieval task using inference in our net-
work. Our model can adapt to a specific corpus through
parameter learning and uses a grammar to speed up the
retrieval process in big or distributed databases. We also
experimented list filtering to avoid element overlap in the
retrieved element list.

Keywords
Bayesian networks, INEX, XML, Focused retrieval, Struc-
tured retrieval

1. INTRODUCTION
The goal of our model is to provide a generic system for
performing different IR tasks on collections of structured
documents. We take an IR approach to this problem. We
want to retrieve specific relevant elements from the collection
as an answer to a query. The elements may be any document
or document part (full document, section(s), paragraph(s),
...) indexed from the structural description of the collection.
We consider the task as a focused retrieval, first described
in [1, 7].

This year, we focused on content only (CO) queries since
many questions still remain open for this specific task. The
Bayesian Network (BN) model is is briefly described in sec-
tion 2.1. We also present modifications with respect to the
model we presented last year.

2. MODELS
The generic BN model used for the CO task was described in
last year proceedings [8]. We only give here the main model
characteristics. Our work is an attempt to develop a formal
model for structured document access. Our model relies on
bayesian networks and provides an alternative to other spe-
cific approaches for handling structured documents [6, 3, 4].
BN offer a general framework for taking into account relation
dependencies between different structural elements. Those
elements, which we call doxels (for Document Element) will
be random variables in our BN.

We believe that this approach allows casting different ac-
cess information tasks into a unique formalism, and that
these models allow performing sophisticated inferences, e.g.
they allow to compute the relevance of different document
parts in the presence of missing or uncertain information.

Compared to other approaches based on BN, we propose a
general framework which should adapt to different types of
structured documents or collections. Another original as-
pect of our work is that model parameters are learnt from
data. This allows to rapidly adapt the model to different
document collections and IR tasks.

Compared to last year baseline model, we have proceeded
this year to different additions:

• We experimented with different weighting schemes for
terms in the different doxels. Weight importance may
be relative to the whole corpus of documents, to doxels
labelled with the same tag, ...;

• We introduced a grammar for modelling different con-
straints on the possible relevance values of doxels in a
same path ;

• For limiting the overlap of retrieved doxels, we intro-
duced simple filtering techniques.

2.1 Bayesian networks
The BN structure we used directly reflects the document
hierarchy, i.e. we consider that each structural part within
that hierarchy as an associated random variable. The root of
the BN is thus a ”corpus” variable, its children the ”journal
collection” variables, etc. In this model, due to the condi-
tional independence property of the BN variables, relevance
is a local property in the following sense: if we know that the
journal is (not) relevant, the relevance value of the journal
collection will not bring any new information on the rele-
vance of one article of this journal.

In our model, the random variable associated to a struc-
tural element can take three different values in the set V =
{N, G, E} which is related to the specificity dimension of
the INEX’03 assessment scale:

N (for Not relevant) when the element is not relevant;

G (for too biG) when the element is marginally or fairly
specific;

E (for Exact) when the element has an high specificity.

For any element e and for a given query, the probability
P (e = E|query) gives us the final Retrieval Status Value (RSV)
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of this element. This value is used to order the different el-
ements before returning the list of retrieved elements.

We considered two more types of random variables. The
first one is the query need that is described as a vector of
word frequencies. Note that this random variable is always
observed (known). The second one is associated to baseline
models and can take only two values : relevant and not
relevant.

For a given query, a local relevance score is computed for
each doxel via the baseline score models. This score only
depends on the query and the doxel constraint without in-
fluence other doxels in the tree. Based on these local scores
and on parameters, BN inference is then used to combine
evidence and scores for the different doxels in the document
model. For computing the local score, different models could
be used. We used in our experiments simple retrieval meth-
ods and classical ones such as Okapi. The first one (ratio)
compute for each element the value S1:

S1(element) =

P

termt tfquery(t)
tfelement(t)
tfparent(t)

P

termt
tfquery(t)

where tfparent denotes the term frequency in the parent of
the element, tfelement the term frequency within the element
and tfquery within the query. The second one (weight ratio)
is simply S1 divided by a decreasing function of the element
length:

S2(element) =
S1(element)

log(20 + length(element))

where the length of the element is number of words that
this element and its descendants contain. All those formu-
las and coefficient were determined empirically. The main
advantages of these formulas are that they are naturally
bounded (between 0 and 1) and that they can be computed
locally. We can then simply define the probability that an
element is relevant (R) for the first (resp. second) model M1

(M2) by:

P (Mi = R|query, elementcontent) = Si with i ∈ {1, 2}

We also tried to add the classical Okapi model, but as its
RSV are harder to normalize, we were not able to integrate
it with success into our BN framework.

In our model, the probability that element is in the state N ,
G or E depends on the parent state and on the fact that Mi

has judged the element as relevant or not relevant (figure 1).
We can then compute the probability using this formula for
any element e and any state v ∈ V :

P (e = v|query) =
P

vp∈V
r1,r2∈{R,¬R}

θc(e),v,vp,r1,r2

×P (e parent = vp)

×P (M1 = r1|query)

×P (M2 = r2|query)

where θ is a learnt parameter that depends on the different
states of the four random variables (element state, parent
state, baseline model 1 and 2 relevance) and on the category
c(e) of the element. The categories used in our experiment

query

Weighted ratio Ratio

element

... ... ...

parent

...

Figure 1: Bayesian Network model (detail view).
The element state depends on the parent state and
on the relevance of the element for the model ra-

tio (M1) and weighted ratio (M2)

are shown in table 1. In our BN, scores are computed re-
cursively with the above formula: we begin by the biggest
doxels (INEX volumes) and then with smaller doxels (arti-
cle, body paragraph, ...).

Adding a grammar to the BN
We used a grammar in order to add some constraint on
the retrieval inference process. That grammar enables us
to express coherence rules on scored doxels within the same
document path:

• A non relevant element may not have a relevant de-
scendant:

∀c, r1, r2, θc,v,N,r1,r2 = 0 if v ∈ {G, E}

• A highly specific (G) element has either a non rele-
vant (N) or a highly specific (E) child

∀c, r1, r2, θc,G,E,r1,r2 = 0

The main interest of this grammar is to provide us a way
to make a decision about whether we can find an element
which has a higher RSV in the set of descendants of a given
element. Indeed, we can show that:

P (e = E|query) ≤ P (p = E|query) + P (p = G|query) (1)

where p is the parent of the doxel e.

Learning parameters
In order to fit a specific corpus, parameters are learnt from
observations using the Expectation Maximization (EM) al-

gorithm. An observation O(i) is a query with its associated
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tags category c(e)
ss, ss1, sec1 section
bib, bibl, ack, reviewers misc
ip, ip1, ip2, ip3, bb,
app, p1, p2

paragraph

figw, fig figure
l1, l2, l3, l4, l5, l6, l7,
l8, l9, la, lb, lc, ld, le,
numeric-list, numeric-
rbrace, bullet-list, index

list

index-entry, item-none,
item-bold, item-both,
item-bullet, item-
diamond, item-letpara,
item-mdash, item-
numpara, item-roman,
item-text

item

hdr, hdr2, hdr1, h3, h2,
h2a, h1a, h1, h

header

bdy, article container
* (any other tag) other

Table 1: Element categories

relevance assessments (document/part is relevant or not rel-
evant to the query). EM [2] optimizes the model parameters
Θ with respect to the likelihood L of the observed data:

L(O, Θ) = log P (O|Θ)

where O =
n

O(1), . . . , O(|O|)
o

are the N observations. Ob-

servations may or may not be complete, i.e. relevance assess-
ments need not to be known for each structural element in
the BN in order to learn the parameters. Each observation
Oi can be decomposed into Ei and Hi where Ei corresponds
to structural entities for which we know whether they are
relevant or not, i.e. structural parts for which we have a
relevance assessment. Ei is called the evidence. Hi corre-
sponds to hidden observations, i.e. all other nodes of the
BN.

In our experiment, we used for learning the 30 CO queries
from INEX’02 and their associated relevance assessments.

2.2 Filtering
A Structured IR system has to cope with overlapping dox-
els, as it may for example return a section and a paragraph.
In order to avoid duplicate information, it might be inter-
esting to filter out the returned result in order to choose
between different levels of granularity. We thus developed a
simple filtering algorithm which we describe below. The ba-
sic idea is to remove an element when another element in the
retrieved list contains or is contained by the element. For
INEX’03, we chose a very simple filtering mainly motivated
by intuition.

The filtering we chose removes some of the retrieved dox-
els in the list while preserving the relative ranking of other
document components. Kazai et al. [5] had this idea with
the so-called BEP1. We can consider our filtering step as an
instance of BEP which doesn’t take into account hyperlinks.

1Best Entry Point

Filtering is a necessary step for improving the effectiveness
of Structured IR systems.

We tried the three following strategies:

Root oriented If a doxel appears on the retrieved list, its
descendants in the document tree will not give any new
information if they appear below in the list. We thus
remove any element in the ranked list if an ancestor is
higher in the list. This simple method favors large dox-
els which is in conflict with the CO objective (retrieve
the most specific doxels as possible).

Leaf oriented This is the inverse of the previous approach.
We remove an element from the list when there is a de-
scendant higher. The limit of this method is that when
the latest is not relevant, then all the other informa-
tions brought by the ancestor are lost for the user.

BEP BEP strategy cumulates root and leaf oriented filter-
ing. That is, an element is kept only if there is neither
descendant nor ancestor higher in the retrieved list.

We chose the “Root oriented” strategy for some of the official
submissions for INEX’03.

3. EVALUATION
The definition of a measure is based on an hypothetical user
behaviour. Hypothesis used in classical measures are sub-
jective but do reflect a reality. In the Structured IR frame-
work (SIR), we propose a measure that estimate the number
of relevant doxels a user might see and that does depend on
a specific user behaviour.

We made three specific hypothesis on the user behaviour.
First, the user eventually consults the structural context
(parent, children, siblings) of a returned doxel. This hypoth-
esis is related to the inner structure of documents; Second,
the specificity of a doxel influences the behaviour of the user.
Third, The user will not use any hyperlink. More precisely,
he will not jump to another document. This hypothesis is
valid in the INEX corpus but can easily be removed in order
to cope with hyperlinked corpora.

The measure we propose is the expectation of the number
of relevant doxels a user sees when he consult the list of
the k first returned doxels divided by the expectation of the
number of relevant doxels a user see if he explores all the
doxels of the database. We denote this measure by ERR
(for Expected Ratio of Relevant documents). This measure
is normalized so it can be averaged over queries.

4. CONCLUSION
We have described a new model for performing IR on struc-
tured documents. It is based on BN whose conditional
probability functions are learnt from the data via EM. This
model uses a grammar for restricting the allowed state of a
doxel in our BN knowing the state of its parent. The BN
framework has thus three advantages:

1. it can be used in distributed IR, as we only need the
score of the parent element in order to compute the
score of any its descendants;
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2. it can use simultaneously different baseline models: we
can therefore use specific models for non textual me-
dia (image, sound, ...) as another source of evidence;

3. Whole part of the corpus can be ignored when retriev-
ing doxels using inequality (1).

The model has still to be improved, tuned and developed,
and several limitations have still to be overcome in order to
obtain an operational structured information retrieval sys-
tem. In particular, we should improve the baseline mod-
els2 and further experiments are thus needed for tuning the
learning algorithms and for filtering.
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ABSTRACT 
This paper describes the retrieval approaches proposed by IRIT in 
INEX’2003 evaluation. The primary approach uses Mercure 
system and different modules to perform content only and content 
and structure queries. The paper also discusses a second approach 
based on a voting method previously applied  in the context of 
automatic text categorization. 
Keywords 

Information Retrieval, XML retrieval, connectionist model, 
voting method, automatic text categorization 

1. INTRODUCTION 
XML (eXtensible Markup Language) has recently emerged as a 
new standard for representation and data exchange on the Internet 
[29]. If this tendency goes on, XML will certainly become a 
universal format and HTML (Hypertext Markup Language) will 
disappear in aid of XML. Consequently, the information retrieval 
issue in XML collections becomes crucial.  

A growing number of approaches are dealing with structured 
documents like XML. They can be divided into three main 
groups: database, XML-oriented specific approaches and IR 
approaches. The database community considers XML collections 
as databases, and tries to develop models for representing and 
querying documents, according to the content and the structure of 
these documents. Many languages have been developed for 
querying and updating these databases [1][18][24][30][11]. XML 
specific oriented approaches estimate the relevance of document 
parts according to the relevance of their structurally related parts. 
They are also named aggregation-based methods [8][15][7][13] 
[16]. In IR approaches, traditional IR models are adapted to be 
used on structured collections [17][20][22]. 

In this paper, we present two IR approaches applied to structured 
documents retrieval, within the context of INEX’2003: the first 
approach uses Mercure information retrieval system, while the 
second one is based on a voting method used initially for 
automatic text categorization. Section 2 presents the INEX 
initiative. Section 3 describes the Mercure model, and the INEX 
search approach with Mercure system is reported in section 4. 
Section 5 and 6 present first the voting method defined in the 
context of categorization and then the adaptations we integrated 
within the INEX'2003 context. 

2. THE INEX INITIATIVE 
2.1 Collection 
INEX collection, 21 IEEE Computer Society journals from 1995-
2002, consists of 12 135 (when ignoring the volume.xml files) 

documents with extensive XML-markup. All documents respect 
the same DTD. 

2.2 Queries 
As last year, participants to INEX’2003 have to perform two 
types of queries. CO (Content Only) queries are requests that 
ignore the document structure and contain only content related 
conditions, e.g. only specify what a document/component should 
be about. CAS (Content and Structure) queries contain explicit 
references to the XML structure, and restrict the context of 
interest and/or the context of certain search concepts. Both CO 
and CAS topics are made up of four parts: topic title, topic 
description, narrative and keywords. 
Within the ad-hoc retrieval task, three sub-tasks are defined: (1) 
the CO task, using CO queries, (2) the SCAS task, using CAS 
queries, for which the structural constraints must be strictly 
matched, (3) the VCAS task, also using CAS queries, but for 
which the structural constraints can be considered as vague 
conditions. 

3. MERCURE SYSTEM 
Mercure is a full-text information retrieval system based on a 
connectionist approach and modeled by a multi-layer network. 
The network is composed of a query layer (set of query terms), a 
term layer (representing the indexing terms) and a document layer 
[4]. 
Mercure includes the implementation of retrieval process based 
on spreading activation forward and backward through the 
weighted links. Queries and documents can be used either as 
inputs or outputs. The links between layers are symmetric and 
their weights are based on the tf-idf measure inspired by OKAPI 
[23] and SMART term weighting. 
The query-term links  are weighted as follows : 
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Where: 
- qui : the weight of the term ti in the query u at the stage s 
- qtfui: the frequency of the query term ti in the query u 
- nqu: the number of terms in the query u 
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The term-document link weights are expressed by : 
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Where: 
- dij : term-document weight of term ti and document dj 
- tfij: term frequency of ti in the document dj 
- N: total number of documents 
- ni: number of documents containing term ti 
- h1,h2,h3,h4 and h5: constant parameters 
- ∆l : average document length 
- dlj :number of terms in the document dj 

The query evaluation function computes the similarity between 
queries and documents.  
Each term node computes an input value:  )()( s

uii qtIn =

and an activation value: Out , where g is the term 
layer activation function. 

))(()( ii tIngt =

Each term node propagates then this activation value to the 
document nodes through the term-document links. Each document 
node computes an input value: In and an 

activation value: Out , where g is the document 

layer activation function. 

∑=
i

ijij dtOutd *)()(

))(()( jj dIngd =

Documents are then ranked by ascending order of their activation 
value.  
The ranking function (activation) is modified to take into account 
term proximity in a document [14]. Thus, documents having close 
query terms compute a new input value: 

∑∑
−

=
i iii

ijij prox
dtOutdIn

1,
*)*)(()( α  (3) 

Where: 

- α is a constant parameter so that 1prox 1i,i
≥

−
α . α is set to 4 for 

INEX’2003 experiments. 
- proxi,i-1 is the number of terms separating the query terms ti and 
ti-1 in the window of  α terms in the document. The query terms 
are ranked according to their position in the query text. 
In other words, documents having close query terms  (i.e. no more 
than α words separate two consecutive query terms in the 
document content) increase their input value.  
In addition, we have implemented two modules that are used to 
process structured documents. The aim of these modules is to 
filter the most specific1 and exhaustive2 elements of the 
documents returned by Mercure [15].  

                                                                 
1 An element is specific to a query if all its information content 

concerns the query. 
2 An element is exhaustive to a query if the element contains all 

the required information. 

The first module, which is content-oriented, deals with queries 
composed of simple keyword terms. It glances through  
documents retrieved by Mercure, and finds elements answering 
the queries in the most specific and exhaustive way. Element 
types that can be retrieved are pre-specified manually, according 
to the DTD of the documents. This module performs as follow: 
for each document retrieved by Mercure, it searches occurrences 
of query terms in all pre-specified elements. It returns the 
elements containing the greatest number of query terms. If more 
than k elements are supposed to be the most specific and 
exhaustive, the module returns the whole document. 
The second module, which is content-and-structure-oriented, 
performs queries containing both explicit references to the XML 
structure and content constraints. These queries can be divided 
into two parts : a target element and a content constraint on this 
target element. As the content-oriented module, the second 
module browses documents returned by Mercure, and returns 
specific elements (e.g. target elements) containing the greatest 
number of query terms specified in the content constraints. If the 
target elements do not contain any of the terms of the content 
constraints,  the document retrieved by Mercure is removed from 
the list of results.  
Thus, the main difference between the two modules is the way 
they process the documents structure. In the content-oriented 
module, elements that can be returned are pre-specified manually 
without user intervention. The user only gives keywords and 
cannot express structural conditions in his query. Using the 
content-and-structure-oriented module, users explicitly give a 
target element and content constraints on this target element. 
As a result for both modules, we obtain a ranked list of 
elements/documents. 

4. THE INEX SEARCH APPROACH WITH 
THE MERCURE SYSTEM 
4.1 Indexing the INEX database and the 
queries 
The INEX collection was indexed in order to take into account 
term positions in the documents. Terms are stemmed with Porter 
algorithm and a stop-word list is used in order to remove non-
significant terms from the index. No structural information is kept 
in the index. 
Queries are then indexed in two different ways. 
CO and CAS queries are first indexed using title and keywords 
fields, in order to build queries for Mercure system. Regarding 
CO queries, we simply remove terms preceded by minus (which 
means that the user does not want these terms appear in the 
results) and keep all the other terms. CAS queries are indexed 
using terms in the content constraints of the title field and terms 
of the keyword field. For both types of queries, terms are 
stemmed with the Porter algorithm and terms appearing in the 
stop-word list are removed, as it is done for the documents. 
Then,  CAS queries are re-indexed for the content-and-structure-
oriented module. Indeed, as explained before, the content-and-
structure-oriented module needs the target element of queries in 
order to process them. Let us take some examples of CAS queries: 
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Top. Title field Description 

63 //article[about(.,’”digital 
library”’) AND about 
(.//p,’+authorization 
+”access control” + 
security’)] 

Relevant documents are 
about digital libraries and 
include one or more 
paragraphs discussing 
security, authorization or 
access control in digital 
libraries. 
 

66 >/article[.//yr <=’2000’] 
//sec[about(.,’”search 
engines”’)] 

The user is looking for 
sections of articles published 
before 2000, which discuss 
search engines. 
 

84 //p[about(.’overview 
“distributed query 
processing” join’)] 

The user wants paragraphs 
that give an overview about 
distributed query processing 
techniques with a focus on 
joins implementations. 

90 //article[about(./sec,’ +trust 
authentication “electronic 
commerce” e-commerce e-
business marketplace’) 
//abs[about(.,’trust 
authentication’)] 

The user wants to find 
abstracts or article that 
discuss automated tools for 
establishing trust between 
parties on the internet. The 
article should discuss 
applications of trust for 
authenticating parties in e-
commerce. 

Table 1: Examples of CAS queries 
All the content constraints occurring in the about predicates are 
first indexed for  Mercure system, even though they are not on the 
target element (in topics 63 and 90 for example). Targets elements 
(article for topic 63, section for topic 66, paragraph for topic 84 
and abstract for topic 90) are then indexed for the content-and-
structure-oriented module.  
About 20% of the CAS topics (like topic 66) contain a constraint 
on the year of publication. This constraint is also stored and will 
be used to filter results of the content-and-structure-oriented 
module. 

4.2 Retrieval 
In both cases (CO queries and CAS queries), a first search is 
performed with Mercure search engine using the content part of 
the queries. As a result, a ranked list of 1000 documents is 
selected for each query. Then, the content-oriented module is used 
to process the document results of CO queries, and the content-
and-structure-oriented module for CAS queries. Both modules 
return a ranked list of elements/documents, derived from the first 
ordered list of documents returned by Mercure system. 

4.2.1 Retrieval with CO queries 
According to the DTD, we have decided to allow the content-
oriented module to return only section or abstract elements. 
Indeed, section and abstract elements are supposed to be large 
enough to be exhaustive and small enough to be specific. 

If the content-oriented module finds more than two relevant 
elements (k =2) within a given document, the whole document is 
returned. 

4.2.2 Retrieval with CAS queries 
The content-and-structure-oriented module browses documents 
returned by Mercure, and returns target elements containing the 
greatest number of query terms specified in all the content 
constraints of CAS queries. If no occurrence of terms contained in 
the content constraints is found in target elements, the document 
returned by Mercure is removed from the results list. Indeed, the 
target element always have a content constraint. 
Then, if the query contains a year constraint, elements returned by 
the content-and-structure-oriented module are filtered, according 
to the article publication date .  

4.3 Submitted runs 
The first goal of our experiments in INEX’2003 is to test whether 
a full-text information retrieval system can be easily adapted to 
structured retrieval and to evaluate how suitable are the full-text 
IR based techniques for such kind of retrieval. Our approach can 
be compared to the fetch and browse method proposed in [5]. No 
static structure is used a priori and so, all types of XML 
documents can be processed. The second goal of our experiments 
is to measure the effect of term positions in INEX query types. 
Five runs performed with Mercure have been submitted to 
INEX’2003. The runs are labeled as follows: 

- pos indicates that Mercure uses term positions to 
process queries (Mercure2.pos_co_ti, 
Mercure2.pos_cas_ti, Mercure2.pos_vcas_ti ), 
otherwise runs are based on a Mercure simple search 
(Mercure2.co_ti, Mercure2.cas_ti). 

- Co (Mercure2.co_ti, Mercure2.pos_co_ti), cas 
(Mercure2.cas_ti, Mercure2.pos_cas_ti), and vcas 
(Mercure2.pos_vcas_keyti) indicate the sub-task type, 
e.g. CO, SCAS or VCAS 

- ti indicates that only title field of queries was used 
(Mercure2.co_ti, Mercure2.pos_co_ti, Mercure2.cas_ti, 
Mercure2.pos_cas_ti) , whereas keyti indicates that the 
title and keywords fields were used 
(Mercure2.pos_vcas_keyti). 

4.4 First results 
The following table shows the results of the five runs, in terms of 
average precision: 

Strict 
quantization 

Generalized 
quantization 

Run 

Average 
precision 

Rank Average 
precision  

Rank 

Mercure2.co_ti 0.0056 50/56 0.0088 48/56 

Mercure2.pos_co_ti 0.0344 28/56 0.0172 41/56 

Mercure2.cas_ti 0.0719 33/38 0.0612 34/38 

Mercure2.pos_cas_ti 0.1641 25/38 0.1499 24/38 

Mercure2.pos_vcas_keyti NC NC NC NC 

Table 2: Results of the five runs performed with Mercure 
system 
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The first result that can be drawn from Table 2 is that runs using 
term positions are definitely better that simple search for both 
query types (CO and CAS). Average precision for runs using term 
positions (Mercure2.pos_cas_ti , Mercure2.pos_vcas_keyti, and 
Mercure2.pos_co_ti) is about four times higher than average 
precision of runs performed with a single Mercure search 
(Mercure2.cas_ti , Mercure2.co_ti). 

4.5 Discussion and future works 
Regarding this year experiments and results, some investigations 
have to be performed. First of all, for the CO task, elements that 
can be returned by the content-oriented module are pre-selected 
manually. These types of elements are not always necessarily the 
most exhaustive and specific: it depends on the way the DTD was 
understood by the document creators. Statistics [12] or 
aggregation methods [7] [13] may be used to find those elements 
automatically. Then, the content-and-structure-oriented module is 
not able to perform all the content and structural constraints. 
Indeed, it processes only content constraint on the target element 
and year constraints. For example, in topic 90, the first about 
predicate is on sections, whereas the target element is abstract: the 
module does not insure that the content constraint on sections is 
respected. However, topics such as topic 84 are fully treated. 
According to these remarks, the content-and-structure-oriented 
module seems to be more adapted to the VCAS task. For this 
purpose, the run Mercure2.pos_vcas_keyti was performed and 
submitted. Finally, query processing is relatively slow, because 
the modules have to browse all documents returned by Mercure in 
order to find relevant elements. Regarding these limitations, an 
indexing model taking into account the structural and content 
information of documents seems to be necessary.  
Moreover, our approach uses the idf measure to compute a 
retrieval status value for documents (and then documents are 
browsed to return relevant elements). The idf measure is also used 
in [7] and [26], in order to directly return relevant elements. 
However, term occurrences in elements do not necessary follow a 
Zipf law [31]. The number of term repetitions can be (very) 
reduced in XML documents and idf is not necessarily appropriate 
[6][10]. The use of ief (Inverse Element Frequency) is proposed in 
[28] and [9]. An indexing scheme storing different IR statistics 
might be interesting on the INEX collection: thus, combinations 
of IR and XML-specific approaches could be tested. 

5. A VOTING METHOD FOR 
INFORMATION RETRIEVAL 
The approach proposed is derived from a process for 
categorisation of textual documents. This categorisation intends to 
link documents with pre-defined categories. Our approach focuses 
on categories organised as a taxonomy. The original aspect is that 
our approach involves a voting principle instead of a classical 
similarity computing. 
Our approach associates each text with different categories as 
opposed to  most of the other categorisation techniques. The 
association of a text to categories is based on the Vector Voting 
method [21]. This method relies on the terms describing each 
category and their automatic extraction from the text  to be 
categorised. The voting process evaluates the importance of the 
association between a given text and a given category. This 
method is similar to the HVV method (Hyperlink Vector Voting) 
used within the Web context to compute the pertinence of Web 

page regarding the web sites referring to it [19]. In our context, 
the initial strategy considers that the more the category terms 
appear in the text, the more the link between the text and this 
category is strong. 
The association principle between a document and categories is 
composed of different steps: 
– Compute the profile of each category.  In automatic 
categorisation, profiles correspond generally to a set of weighted 
terms [25][27] which can be obtained  by training from previous 
categorised documents. 
– Extract automatically the concepts describing a document and 
their importance for the document. The extraction is based on a 
set of rules to treat, for example, document tags, and processes to 
treat synonymy and to remove stop words. 
– For each category of the hierarchy, compute a score with a 
voting function which measures the representativity of the 
category according to the text. Different functions can be used as 
voting function based on measures such as term importance in 
text and in hierarchy, text size, hierarchy size, number of terms 
describing a category that appear in the text. 
– Sort the winning categories according to their score, and 
eventually select the best categories (for example, scores greater 
than a fixed threshold, or n greatest scores). 
We have studied different voting functions whose results are 
presented in [2][3]. The voting function must take into account 
the importance in the document of each term describing the 
category, the discriminant power of each term describing the 
category, the category representativity within the document. The 
function providing the best results is described as follows : 
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D is a document 
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This factor measures the importance of the term 
t in the document D. F(t,D) corresponds the 
number of  occurrences of the term t in the 
document D and  S(D) corresponds to the size 
(number of terms) of D. 

),(
)(

HtF
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This factor measures the discriminant power the 
term t in the hierarchy H. F(T,H) corresponds to 
the number of occurrences of the term t in the 
hierarchy H and S(H) corresponds to size of H. 

)(
),(

ENT
DENT

 

This factor measures the presence rate of terms 
representing the category in the text (importance 
of the category). NT(E) corresponds to the 
number of terms in the category E and NT(E,D) 
corresponds to the number of terms of the 
category E that appear in the document D 

 
The above function (1) considers the two factors as equivalent:  
the importance of a term in the document and the discriminant 
power of this term in the hierarchy. Applying the exponential 
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function to the third factor (i.e. the presence rate of terms 
representing the category in the text) aims at accentuate its 
importance. 
The function is completed with the notion of coverage. The aim 
of the coverage is to ensure that only categories enough 
represented in a document will be selected for this document. The 
coverage is a threshold corresponding to the percentage of terms 
from a category that appear in a text . For example, a coverage of 
50% implies that at least half of terms describing a category have 
to appear in the text of a document to be selected. 

6. THE INEX SEARCH APPROACH WITH 
A VOTING METHOD 
6.1 Evolution if the categorisation process 
From the topic point of view, CO and CAS topics are constituted 
of different informative parts (title, keywords, description) that 
can be exploited to construct their profile. Although our method 
can use all the possible parts we first focused on to the title and 
keyword parts for the INEX'2003 experiments. For both topic 
types, stop words are removed and optionally terms can be 
stemmed using Porter algorithm. 
For CAS topics, an additional step identify the structural 
constraints indicated in a topic. All the structural constraints 
defined on target elements of topics are taken into account and 
stored to be processed in a post categorisation step to filter the 
results issued from the categorisation step. Only, the results 
having expected xpaths are kept. About content structural 
constraints (e.g. about(.//p,'+authorization +"access control" 
+security') or .//yr <='2000') only constraints on the year of the 
article are taken into account and stored to filter the results. More 
complex content constraints have not been treated for INEX'2003. 
Next experiments are planned about the extension of the voting 
method to take into account such constraints. 
From the INEX collection point of view, the documents are 
considered as sets of text chunks identified by xpaths. For each 
document, concepts are extracted automatically with the different 
xpaths identifying the chunks where they appear and their 
importance in the chunk is calculated. For INEX'2003 
experiments all XML tags have been taken into account.  
The voting method is applied without any modification. Topics 
are considered as categories to which document elements have to 
be assigned. The result is constituted of a list of topics associated 
to each chunk of text (identified by its xpath) for each document.  

6.2 Experiments 
Our experiments aim at evaluating the efficiency of the voting 
function and estimating the adaptations needed for the 
categorisation process in a context such as INEX'2003. 
Four runs based on the voting method were submitted to 
INEX'2003. The main parameter that distinguishes the runs is to 
apply or not a coverage (C50 corresponds to apply a coverage of 
50% i.e. half of the terms describing the topic must appear in the 
text to keep the topic, C0 corresponds to no coverage). No 
stemming process has been applied for the submitted although it 
can be added. The tcXX% parameter specifies that only the 
elements having a score over a given percentage of the best score 
will be kept (e.g. tc50% indicates that only the elements having a 
score over the half of the best score are kept in the result).. 

6.3 Results 
The following table shows the preliminary results of the four runs 
based on the voting method : 

Strict 
quantization 

Generalized 
quantization 

Run 

Average 
precision 

Rank Average 
precision  

Rank 

VotingNoStemTKCO 
tc75%C0nonorm 

0.0012 54/56 0.0041 56/56 

VotingNoStemTKVCAS
C50nonorm 

NC NC NC NC 

VotingNoStemTKSCAS 
tc50%C0nonorm 

0.0626 34/38 0.0746 31/38 

VotingNoStemTKVCAS
tc50%C0nonorm 

NC NC NC NC 

Table 3: Results of the 4 runs performed with the voting 
method 

Results for VCAS topics are not yet known. 

6.4 Discussion and future works 
Regarding the experiment that were performed and the obtained 
results we can notice that: 
- the voting method applied without coverage tends to promote 

short chunks of text that have only one term in common with 
the topic. Introducing coverage intends to correct this since 
short chunks of text that have several terms in common with 
the topic are less frequent than longer ones. We plan to study 
changes made to the voting function  to evaluate their impact 
on results notably with regard to the size of text chunks. 

- The elementary level has been considered to identify the 
different chunks of text. This choice leads to miss  complex 
chunks of text constituted of different elementary chunks 
with high voting scores. A rebuilding of complex chunk 
should be integrated in the process. 

- Structural constraints defined on the content of topics have 
not been taken into account. This aspect constitutes the main 
axis of study to extend the voting method. The main idea is 
to integrate the constraint when computing the voting score 
in order to promote relevant text chunks regarding content 
which respect the structural constraints without eliminating 
relevant chunks (regarding content) but that do not satisfy 
the constraints. 
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ABSTRACT 
This paper presents a language modeling system for ranking 
flat text queries against a collection of structured documents.  
The system, built using Lemur, produces probability estimates 
that arbitrary document components generated the query.  This 
paper describes storage mechanisms and retrieval algorithms 
for the evaluation of unstructured queries over XML 
documents.  The paper includes retrieval experiments using a 
generative language model on the content only topics of the 
INEX testbed, demonstrating the strengths and flexibility of 
language modeling to a variety of problems.  We also describe 
index characteristics, running times, and the effectiveness of 
the retrieval algorithm. 

1. INTRODUCTION 
Language modeling has been studied extensively in standard 
Information Retrieval in the last few years.  Researches have 
demonstrated that the framework provided by language models 
has been powerful and flexible enough to provide strong 
solutions to numerous problems, including ad-hoc information 
retrieval, known-item finding on the Internet, filtering, 
distributed information retrieval, and clustering.   

With the success of language modeling for this wide variety of 
tasks and the increasing interest in studying structured 
document retrieval, it is natural to apply the language 
modeling framework to XML retrieval.  This paper describes 
and presents experiments using one way the generative 
language model could be extended to model and support 
queries on structured documents.  We model documents using 
a tree-based language model.  This is similar to many previous 
models for structured document retrieval [1][2][3][6][7][10], 
but differs in that language modeling provides some guidance 
in combining information from nodes in the tree and 
estimating term weights.    This work is also similar to other 
works using language models for XML retrieval [5][9], but 
differs in that we also present context-sensitive language 
model smoothing and an implementation using information 
retrieval style inverted lists rather than  a database. 

The next section provides background in language modeling in 
information retrieval.  In Section 3 we present our approach to 
modeling structured documents.  Section 4 describes querying 
the tree-based language models presented in the previous 
section.  In Section 5we describe the indexes required to 
support retrieval and the retrieval algorithms.  We describe the 
experiment setup and indexes used for INEX 2003 in Section 
6.  Section 7 describes experimental results.  We discuss 
relationships to other approaches to structured document 
retrieval in Section 8, and Section 9 concludes the paper. 

2. LANGUAGE MODELS FOR 
DOCUMENT RETRIEVAL 
Language modeling applied to information retrieval problems 
typically models text using unigram language models.  
Unigram language models are similar to bags-of-words 
representations, as word order is ignored.  The unigram 
language model specifically estimates the probability of a word 
given some text.  Document ranking typically is done one of 
two ways: by measuring how much a query language model 
diverges from document language models [8], or by estimating 
the probability that each document generated the query string.  
Since we use the generative language model for our 
experiments, we will not describe the divergence based 
approaches here. 

2.1 The Generative Language Model 
The generative method ranks documents by directly estimating 
the probability of the query using the texts’  language models 
[12][4][14][15]:   

( ) ( ) ( )∏
∈

=
Qw

wqtf
w TT

�
P

�
QP  

where Q is the query string, and T

�
is the language model 

estimated for the text, and qtf(w) is the query term frequency 
of the term.  Texts more likely to have produced the query are 
ranked higher.  It is common to rank by the log of the 
generative probability as it there is less danger of underflow 
and it produces the same orderings: 

( )( ) ( ) ( )�
∈

=
Qw

wwqtf TT �Plog�QPlog   

Under the assumptions that query terms are generated 
independently and that the query language model used in KL-
divergence is the maximum-likelihood estimate, the generative 
model and KL divergence produce the same rankings [11]. 

2.2 The Maximum-Likelihood Estimate of a 
Language Model 
The most direct way to estimate a language model given some 
observed text is to use the maximum-likelihood estimate, 
assuming an underlying multinomial model.  In this case, the 
maximum-likelihood estimate is also the empirical 
distribution.  An advantage of this estimate is that it is easy to 
compute.  It is very good at estimating the probability 
distribution for the language model when the size of the 
observed text is very large.  It is given by: 

( ) ( )
T

T,�
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where T is the observed text, freq(w, T) is the number of times 
the word w occurs in T, and |T| is the length in words of T.  
The maximum likelihood estimate is not good at estimating 
low frequency terms for short texts, as it will assign zero 
probability to those words.  This creates a problem for 
estimating document language models in both KL divergence 
and generative language model approaches to ranking 
documents, as the log of zero is negative infinity.  The solution 
to this problem is smoothing. 

2.3 Smoothing 
Smoothing is the re-estimation of the probabilities in a 
language model.  Smoothing is motivated by the fact that many 
of the language models we estimate are based on a small 
sample of the “ true”  probability distribution.  Smoothing 
improves the estimates by leveraging known patterns of word 
usage in language and other language models based on larger 
samples.  In information retrieval smoothing is very important 
[15], because the language models tend to be constructed from 
very small amounts of text.  How we estimate low probability 
words can have large effects on the document scores.  In 
addition to the problem of zero probabilities mentioned for 
maximum-likelihood estimates, much care is required if this 
probability is close to zero.  Small changes in the probability 
will have large effects on the logarithm of the probability, in 
turn having large effects on the document scores.  Smoothing 
also has an effect similar to inverse document frequency [4], 
which is used by many retrieval algorithms. 

The smoothing technique most commonly used is linear 
interpolation.  Linear interpolation is a simple approach to 
combining estimates from different language models: 

( ) ( )�
=

=
k

i
ii ww

1

�
P

�
P λ  

where k is the number of language models we are combining, 
and iλ  is the weight on the model i

�
.  To ensure that this is a 

valid probability distribution, we must place these constraints 
on the lambdas: 

0,1forand1
1

≥≤≤=�
=

i

k

i
i ki λλ  

One use of linear interpolation is to smooth a document’s 
language model with a collection language model.  This new 
model would then be used as the smoothed document language 
model in either the generative or KL-divergence ranking 
approach.   

2.4 Another Characterization 
When we take a simple linear interpolation of the maximum 
likelihood model estimated from text and a collection model, 
we can also characterize the probability estimates as: 

( ) ( )
( )��

�
�
� ∈

=
otherwisew

wifw
w

Tunseen

Tseen
T �P

T�P�P  

where  

( ) ( ) ( ) ( )collectionwww �P�P1�P TMLETseen ωω +−=  

and 

( ) ( )collectionww �P�P Tunseen ω=  

This notation distinguishes the probability estimates for cases 
where the word has been seen in the text and where the word 
has not been seen will be in the sample text.  We will use this 
notation later when describing the retrieval algorithm, as it 
simplifies the description and is similar to the notation used in 
previous literature [15].  The simple form of linear 
interpolation where �  is a fixed constant is often referred to as 
Jelinek-Mercer smoothing. 

3. STRUCTURED DOCUMENTS AND 
LANGUAGE MODELS 
The previous section described how language modeling is used 
in unstructured document retrieval.  With structured 
documents such as XML or HTML, we believe that the 
information contained in the structure of the document can be 
used to improve document retrieval.  In order to leverage this 
information, we need to model document structure in the 
language models.   

We model structured documents as trees.  The nodes in the 
tree correspond directly with tags present in the document.  A 
partial tree for a document might look like: 

 

Nodes in the document tree correspond directly to XML tags in 
the document.  For each document node in the tree, we 
estimate a language model.  The language models for leaf 
nodes with no children can be estimated from the text of the 
node.  The language models for other nodes are estimated by 
taking a linear interpolation of a language model formed from 
the text in the node (but not in any of its children) and the 
language models formed from the children. 

We have not specified how the linear interpolation parameters 
for combining language models in the document tree should be 
chosen.  This could be task specific, and training may be 
required.  The approach we will adopt in this paper is to set 
the weight on a child node as the accumulated length of the 
text in the child divided by the accumulated length of the node.  
By accumulated length we mean the number of words directly 
in the node plus the accumulated length of the node’s children.  
Setting the parameters in this manner assumes that a word in a 
one node type is no more important than a word in any other 
node type; it is the accumulated length of the text in the node 
that determines how much information is contained in the 
node.   

We also wish to smooth the maximum likelihood models that 
are estimated directly from the text with a collection language 
model.  In this work, we will combine the maximum likelihood 
models with the collection model using a linear interpolation 
with fixed weights.  The collection model may be specific to 
the node type, giving context sensitive smoothing, or the 
collection model may be one large model estimated from 
everything in the corpus, giving a larger sample size.   
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When the �  parameters are set proportional to the text length 
and a single collection model is used, this results a special case 
that is very similar to the models used in [5][9].  The tree-
based language model estimated using these parameter settings 
will be identical to a language model estimated by taking a 
simple linear interpolation of a maximum likelihood estimate 
from the text in the node and its ancestors and a the collection 
model.   

4. RANKING THE TREE MODELS 
In a retrieval environment for structured documents, it is 
desirable to provide support for both structured queries and 
unstructured, free-text queries.  It is easier to adapt the 
generative language model to structured documents, so we only 
consider that model in this paper.  It is simpler to support 
unstructured queries, so we will describe retrieval for them 
first. 

4.1 Unstructured Queries 
To rank document components for unstructured queries, we 
use the generative language modeling approach for IR 
described in Section 2.  For full document retrieval, we need 
only compute the probability that the document language 
model generated the query.  If we wish to return arbitrary 
document components, we need to compute the probability that 
each component generated the query.   

Allowing the system to return arbitrary document components 
may result in the system stuffing the results list with many 
components from a single document.  This behavior is 
undesirable, so a filter on the results is necessary.   

One filter we employ takes a greedy approach to preventing 
overlap among components in the results list.  For each result, 
it will be thrown out of the results if there is any component 
higher in the ranking that is an ancestor or descendent of the 
document component under consideration. 

4.2 Structured Queries 
Our previous paper on this subject [11] discusses how some 
structural query operators could be included in the model.  We 
do not currently support any of these operators in our system, 
so we will not discuss in depth here.  However, we will note 
that the retrieval framework can support most desired 
structural query operators as relatively easy to implement 
query nodes. 

4.3 Prior Probabilities 
Given relevance assessments from past topics, we can estimate 
prior probabilities of the document component being relevant 
given its type. Another example prior may depend on the 
length of the text in the node.  A way to incorporate this 
information is to rank by the probability of the document node 
given the query.  Using Bayes rule, this would allow us 
incorporate the priors on the nodes.  The prior for only the 
node being ranked would be used, and the system would 
multiply the probability that the node generated the query by 
the prior: 

( ) ( )

( ) )N(P�QP
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N
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=
 

This would result in ranking by the probability of the 
document component node given the query, rather than the 
other way around.   

5. STORAGE AND ALGORITHMS 
This section describes how we support structured retrieval in 
the Lemur toolkit.  We first describe the indexes built to 
support retrieval.  Then we describe how the indices are used 
by the retrieval algorithm.  We also present formulas for the 
computation of the generative probabilities we estimate for 
retrieval.   

5.1 Index Support 
There are two main storage structures in Lemur that provide 
the support necessary for the retrieval algorithm.  Lemur stores 
inverted indexes containing document and node occurrences 
and document structures information. 

5.1.1 Inverted Indexes 
The basic idea to storing structured documents in Lemur for 
retrieval is to use a modified inverted list.  Similar to storing 
term locations for a document entry in an inverted list, we 
store the nodes and the term frequencies of the term in the 
nodes in the document entries of the inverted list. The current 
implementation of the structured document index does not 
store term locations, but could be adapted to store term 
locations in the future.   

The inverted lists are keyed by term, and each list contains the 
following: 

• document frequency of the term 
• a list of document entries, each entry containing 

o document id 
o term frequency (count of term in document) 
o number of nodes the term occurs in 
o a list of node entries, each entry containing 

� node id 
� term frequency (count of term in node) 

When read into memory, the inverted lists are stored in an 
array of integers.  The lists are stored on disk using restricted-
variable length compression and delta-encoding is applied to 
document ids and node ids.  In the document entry lists, the 
documents entries are stored in order by ascending document 
id.  The node entry lists are similarly stored in order by 
increasing node id.  Document entries and node entries are 
only stored in the list when the term frequency is greater than 
zero.  Access to the lists on disks is facilitated with an in-
memory lookup table for vocabulary terms. 

There is also an analogous set of inverted lists for attribute 
name/value pairs associated with tags.  For example, if the 
document contained the text 

  <date calendar=“Gregorian”>, 

the index would have an inverted list keyed by the triple 
date/calendar/Gregorian.  The structure and information stored 
in the inverted lists for the attribute name/value pairs is 
identical to those in the inverted lists for terms.   

5.1.2 Document Structure 
The document structure is stored compressed in memory using 
restricted variable length compression.  A lookup table keyed 
by document id provides quick access to the block of 
compressed memory for a document.  We choose to store the 
document structure in memory because it will be requested 
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often during retrieval.  For each document, a list of information 
about the document nodes is stored.  For each node, we store: 

• parent of the node 
• type of node 
• length of the node (number of words) 

Since this list of information about the document structure is 
compressed using a variable length encoding, we must 
decompress the memory to provide efficient access to 
information about nodes.  When the document structure for a 
document is being decompressed, we also compute: 

• accumulated length of the node (length of text directly 
in the node + accumulated length of children) 

• number of children of the node 
• a list of the node’s children 

This decompression and computation of other useful 
information about the document structure is computed in time 
linear to the number of nodes in the document being 
decompressed.   

5.2 Retrieval 
We construct a query tree to process and rank document 
components.  A typical query tree is illustrated below.  The 
leaf nodes of the query tree are term nodes which read the 
inverted lists for a term off of disk and create result objects for 
document components containing the term.  The term nodes 
are also responsible for propagating the term scores up the 
document tree.  The sum node merges the result lists returned 
by each of the term nodes, combining the score estimates.  The 
score adjuster node adjusts the score estimates to get the 
generation probabilities and also applies any priors.  The heap 
node maintains a list of the top n ranked objects and returns a 
sorted result list.  Efficient retrieval is achieved using a 
document at a time approach.  This requires that the query tree 
be walked many times during the evaluation of a query, but 
results a large saving of memory, as only the result objects for 
a document and the top n results objects in the heap must be 
stored at any point in time.   

 
A more detailed description of each of the query nodes follows.  
When each query node is called, they are passed a document id 
to evaluate.  In order to know which document should be 
processed next, the term nodes pass up the next document id in 
the inverted list.  For other query nodes, the minimum next 
document id among a node’s children gets passed up the query 
tree with the results list.  We will describe the query nodes 
bottom up, as that is how the scores are computed. 

We first note that we can rewrite the log of the probability that 
the document node generated the query as 
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as shown in [15].  This will allow us to easily compute the 
item in the first sum easily using term nodes, combine these 
components of the score using a sum node, and then add on the 
rest using a score adjustment node. 

5.2.1 Term Node 
The term nodes read in the inverted lists for a term w and 
create results where the score for a result is initialized to  
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The term node assumes that the parent id of a node is smaller 
than the node’s id.  It also assumes that the document entries 
in inverted lists are organized in increasing document id order 
and the node entries are organized in increasing term id order.  
The structured document index we built is organized this way.   
In the following algorithm description, indentation is used to 
denote the body of a loop. 

1 Seek to the next entry in the inverted list where the 
document id is at least as large as the requested document 

2 If the document id of the next entry is the requested 
document 

3 Decompress the document structure information for the 
document 

4 Read in the node entries from the inverted list 

5 Create the result objects for the leaf nodes.  For each 
node that contains the term: 

6 Initialize the score for  the result to the seen 
probability par t for  the node 

 ( ) ( ) ( ) ( )nodenodenodewfreqnodeseen ,,1 λω−=  

 where  

 ( ) ( )
( )nodelengthdaccumulate

nodelength
nodenode =,λ  

 and ω  will be used to set the influence of the 
collection models.   

7 Push the node id onto the candidate node heap 

8 Store the result object in an array indexed by node id 
for fast access 

9 While the candidate node heap isn’ t empty: 

10 Pop the top node id off of the heap (the largest node 
id), set it to the current node id 

11 Lookup the result from the result array 

12 Lookup the node id for the parent of the current node 

13 Lookup the parent node’s result 

14 If the parent node’s result object is NULL: 

15 Create a new result object for the parent node and 
put it in the result array, initializing the score to 0 

16 Push the parent node’s id onto the candidate node 
heap 

Heap  

Score adjuster  

Sum Sum 

Term 

“gregorian”  

 

Term 

“chant”  
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17 Propagate the seen par t of the score from the 
cur rent node to the parent node, setting the 
parent node’s seen par t to 

 ( ) ( ) ( )parentnodenodeseenparentseen ,λ+  

 where  

 ( ) ( )
( )parentlengthdaccumulate

nodelengthdaccumulate
parentnode =,λ  

18 Push the result onto the front of the results list  

19 Set the result in the result array for the node to 
NULL (initializing the result array for the next 
document) 

[Now each document node that contains the query term 
(or has a child containing the term) has a result in the 
results list where the score is the seen probability part 
for the query term]  

20 For each node in the result list 

21 Compute the unseen par t of the generative 
probability for  each node.  For  linear  
interpolation with a constant ω  and one single 
node type independent collection model, this is 

 ( ) ( )collectionwnodewunseen �P, ω=  

For  linear  interpolation with a constant ω  and 
node type specific collection models, this can be 
computed recursively 
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22 Set the score for  the result to 
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23 Return the result list and the next document id in the  
inverted list 

The result list now contains results for a single document 
where the score is  
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and the list is ordered by increasing node id. 

5.2.2 Sum Node 
The sum node maintains an array of result lists, with one result 
list for each of the children.  It seeks to the next entry in each 
of the child result lists where the document id is at least as 
large as the requested document.  If necessary, it calls the 
children nodes to get their next result lists.  For the requested 
document, the sum node merges results from the result lists of 
the children, setting the score of the new result equal to the 
sum of the children’s results with the same document and node 
id.  This node assumes that results in a result list are ordered 
by increasing document id, then increasing node id.  The 
results returned by this component have the score 
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and the minimum document id returned by the children is 
returned.  

5.2.3 Score Adjustment Node 
The score adjustment node adds  
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to each of the results, where  

( ) ( )nodewunseenw node ,�Punseen =  

as defined for the term node.  If there is a prior probability for 
the node, the score adjustment node also adds on the log of the 
prior.  The results in the list now have the score 
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which is the log of the score by which we wish to rank 
document components. 

5.2.4 Heap Node 
The heap node repeatedly calls its child node for result lists 
until the document collection has been ranked.  The next 
document id it calls for its child to process is the document id 
returned by the child node in the previous evaluation call.  It 
maintains a heap of the top n results.  After the document 
collection has been ranked, it sorts the results by decreasing 
score and stores them in a result list that is returned.   

5.2.5 Other Nodes 
There are many other useful nodes that could be useful for 
retrieval.  One example is a node that filters the result lists so 
that the XML path of the node in the document tree satisfies 
some requirements.  Another example is a node that throws out 
all but the top n components of a document.     

6. EXPERIMENT SETUP 
The index we created used the Krovetz stemmer and InQuery 
stopword list.  Topics are similarly processed, and all of our 
queries are constructed from the title, description, and 
keywords fields.  All words in the title, description, and 
keywords fields of the topic are given equal weight in the 
query.   Table 3 shows the size of components created to 
support retrieval on the INEX document collection.  The total 
index size including information needed to do context sensitive 
smoothing is about 70% the size of the original document 
collection.  A better compression ratio could be achieved by 
compression of the context sensitive smoothing support files.  
Note that the document term file which is 100 MB is not 
necessary for the retrieval algorithms described above. 
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Component Size (MB) 
Inverted file 100  
Document term file (allows iteration 
over terms in a document) 

100  

Document structure 30  
Attributes inverted file 23  
Smoothing – single collection model 4  
Smoothing – context sensitive models  
(not compressed) 

81 

Other files (lookup tables, vocabulary, 
table of contents, etc.) 

12  

Total 350  
Table 3: Lemur structured index component sizes 

Table 4 shows approximate running times for index 
construction and retrieval.  The retrieval time for context 
insensitive smoothing is reasonable at less than 20 seconds per 
query, but we would like to lower the average query time even 
more.  We feel we can do this with some simple data structure 
optimizations that will increase memory reuse.   

Action Time (mins) 
Indexing 25  
Retrieval of 36 INEX 2003 CO topics 
– context insensitive smoothing 

10 

Retrieval of 36 INEX 2003 CO topics 
– context sensitive smoothing 

45 

Table 4: Indexing and retrieval times using Lemur 

The higher retrieval time for the context sensitive retrieval 
algorithm is due to the recursive computation of the unseen 
component of the score as described Step 21 of Section 5.2.1.  
Clever redesign of the algorithm may reduce the time some.  
However, all of the descendent nodes in the document’s tree 
must be visited regardless of whether the descendent nodes 
contain any of the query terms.  This means that the 
computation of the unseen component of the scores is linear in 
the number of nodes in the document tree, rather than the 
typically sub-linear case for computation of the seen score 
components.  If the �  and �  functions and their parameters are 
known, it is possible to precompute and store necessary 
information to reduce the running time to something only 
slightly larger than the context insensitive version.  However, 

our implementation is meant for research, so we prefer that 
these parameters remain easily changeable.   

7. EXPERIMENT RESULTS 
We submitted three official runs as described in Table 2.  All 
of our runs used the title, description, and keyword fields of 
the topics.  Unfortunately, two of our runs performed rather 
poorly.  This is either an error in our path filter or a problem 
with the component type priors.  We would also like to 
evaluate the additional runs corresponding to the dashes in the 
table, but we have not been able to do these experiments yet. 

The LM_context_TDK run has good performance across all 
measures.  This is our basic language modeling system using 
context sensitive smoothing.  The strong performance of the 
context sensitive language modeling approach speaks well for 
the flexibility of language modeling.   

Unfortunately, we have not been able to do a through 
evaluation of variations of the system to figure out which 
additional components are helpful.  We have done some 
experiments on the INEX 2002 content only topics.  The 
summary of our runs for the 2002 topics is given in Table 1.  
There is little for us to conclude from the 2002 topics.  It is not 
clear that context sensitive smoothing makes any significant 
difference.  The priors may give a small boost, but the priors 
were estimated directly from the relevance assessments for the 
2002 CO topics.  We would like to answer questions of 
whether context sensitive smoothing is helpful, whether a 
component type prior helps, and whether component retrieval 
for this task performs better than standard document retrieval. 

8. RELATED WORK 
There exists a large and growing body of work in retrieving 
information from XML documents.  Some work is described in 
our previous paper [11] and much of the more recent work is 
also described in the INEX 2002 proceedings [13].  With that 
in mind, we will focus our discussion of related work on 
language modeling approaches for structured document 
retrieval.   

In [5] a generative language modeling approach for content 
only queries is described where a document component’s 

inex_eval Topic 
Fields 

Context   Pr ior  Path  
Str ict Gen 

TDK YES NO NO .0464 .0646 
TDK YES YES NO .0488 .0653 
TDK NO NO NO .0463 .0641 
TDK NO YES NO .0485 .0654 

Table 1: Performance of the retrieval system on INEX 2002 CO topics.  Context refers to context sensitive smoothing, prior 
refers to the document component type priors, and path refers to the overlapping path filter. 

inex_eval inex_eval_ng w/o over lap Official Run Name Topic 
Fields 

Context   Pr ior  Path  
Str ict Gen Str ict Gen Str ict Gen 

LM_context_TDK TDK YES NO NO .0717 .0804 .2585 .3199 .2305 .2773 
- TDK YES YES NO       
LM_context_typr_path_TDK TDK YES YES YES .0203 .0240     
- TDK NO NO NO       
- TDK NO YES NO       
LM_base_typr_path_TDK TDK NO YES YES .0204 .0234     

Table 2: Summary of runs and results for INEX 2003 CO topics.   
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language model is estimated by taking a linear interpolation of 
the maximum likelihood model from the text of the node and 
its ancestors and a collection model.  This corresponds to a 
special case of our approach.  Our model is more flexible in 
that it allows context sensitive smoothing and different 
weighting of text in children nodes.   

The authors of [9] also present a generative language model for 
content only queries in structured document retrieval.  They 
estimate the collection model in a different way, using 
document frequencies instead of collection term frequencies.  
As with [5], this model can be viewed as a special case of the 
language modeling approach presented here.   

9. CLOSING REMARKS 
We presented experiments using a hierarchical language 
model.  The strong performance of language modeling 
algorithms demonstrates the flexibility and ease of adapting 
language models to the problem.  In our preliminary 
experiments, context sensitive smoothing did not give much 
different performance than using a single collection model.   

We described data structures and retrieval algorithms to 
support retrieval of arbitrary XML document components 
within the Lemur toolkit.  We are reasonably pleased with the 
efficiency of the algorithms for a research system, but we will 
strive to improve the algorithms and data structures to reduce 
retrieval times even further.   

In our future work, we would like to compare the component 
retrieval to standard document retrieval.  We would also like 
to investigate query expansion using XML document 
components.   Additionally, we would like to explore different 
ways of setting the �  weights on the nodes’  language models, 
as we believe that words in some components may convey 
more useful information than words in other components. 
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2. THE RETRIEVAL ALGORITHMS AND
OPERATORS
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<� ����	�����! ���� ���� #��	���� �� �)� ����� �������

����	� ��$����� ��	� �$�	� ����	� ��$��� �����	�� � ���
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��� ��� ���� �� � ���$� *����! 	�"
����
���
�
�����	 ��� ������ ����	� ������ ��� �������� ����$
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2.2 New Fusion Operators
��� ���� ��
"����� ���� ���� "��� ��� �# � ��� �# ��) ���
������� #�� ��� �������� �� �����"� ����� ��� ��� 6�GGH!
+�7�+��� ��� ,�+=� ���������� 6�>>� ��������� ���
�������� �# ��� ������ ��������� ���� ��� ��� 8����	�8 ����
��� 	���������� ������ ���������! ������ �� )��$���� ���
��� ����� �� ��	� �# ������ ��:! ��� 8I6�GGH ��:8
�������� ����� ��� "��� �# ��� �)� )��$��� �� ��� �����
���� #�� ��� ��"� ��	��� &���� ��1��� #��" ��� 	����������
#�>>� ��: ���� ���� ��� "���"�" �# ��� �)� )��$��'� ���
8I6�GGH 3+8 ����� ��� ��$��� �# ��� �)� )��$��� #�� ���
��"� ��	���� 8I6�GGH �3�8 	������� 
������ ��� ��"�
)�� �� ����	� ������ 8�3�8� 3����)��� ����� ���������
��� ���� ��� ��"� )�� �� ��� ����	� ������ ����������

��� 8I+�7�+��� �38 ��� 8I+�7�+��� 6+3,8 ������
���� ���� ������ � 	�"������ ����� ��� � ��	�"��� �����!
�� �)� 	�"������ ������ &)���� ��� 	�"������ 	�������
��� �����'� �� ���	����� �� -4/! 5	�"�������8 �� ��� ������
��� �� �����" 	�� 
� ��� 	������� �# ��� ��$ &�� �# � ��� �#
��$�' ���� ��� ������� �� �������� ��	�"���� #�� ��� ����
����� �# ����2��$ ��� ��������� �� ��� 	��� �# 	�"������
��� ��	�"��� ������ ��� 	�"������ ��� �� ������	��� ��
	�"������� ���� ��� �� ��� ��	�"��� ����� J ��� "��	���$
	�"������� ��� ��� �������� ��������$ ����� )��$�� #��"
��� ���$��� 	�"������ ������ 0��� �)� ������ 	�"���
���� ������ ��� ���� )��� ����� ��������� ��� ����� �� ��$��
	�"������� ���� ��	��� ��� �� "��� �# ��� �"��� 	�"���
������ &���� ���� )��� 	�"������ ��� ��	�"��� ������
I+�7�+��� �3 ��� I+�7�+��� 6+3, "�� 
� ���� ���
���	���$�
� ��� ��� ���� �# ��������� �� 
� ���#��"�� ��
�����"���� 
� ��� ������ �# ��� ����� ����! 
�� )��� �)�
	�"������ ������ ��� ������$ �# ��� ��"���� "��� 
� �����
���� �		���� �� 	������	���$ ��� *���� &���! C����� ��� I+��
7�+��� 6+3, ���� ��� �� ���� ��� I+�7�+��� �3 C���
��� ���'� ������� C����� ��� ���� 	�� 
� ��� ��
�*����
���� ������ �� ��� ����������� ���� �# 	�"�������

��� I,�+=� 7�, �������� 	�"
���� ��� �)� ���������
&��� � ������ 3+' 
�� ���� ��� )��$��� &�	���� ��� ���
�����$ ��) ������$ ���� . K � ���
�
�����	 ����� ��� .�?
#�� 
����� ������ )��� "��	���$ ��	�"��� �� 	�"������
��� �� 
��� ����! ��� ��� ���$��� ���� #�� ���"� #���� ���
�� � ���$� �����'� ���� ���� I,�+=� 7�, )��$��� "��
�2	��� . ��� ��� ��� ���
�
�������

��� I,�+=� ,��� �������� 	�"
���� ��� �)� ���������
&��� � ������ 3+' 
�� ����� ��� ,��� &�� �����$�' �#
��� )��$��� #��" ���"� �� 
��� ���� ��� ��# �# ��� )��$��
�# ���"� �� ��� � ���$� ���� ���� �� ��� &	�������' ��	�"�
"����� �������� #�� "��$��$ ���
�
�����	 ����������

��� I,�+=� �3+, �������� 	�"
���� ��� �)� ���������
&��� I,�+=� ,���' 
�� �� ���"��>�� ��� )��$��� ���
��$ ,�� ,�� ���"��>����� 
�#��� �� ����� ��� ,��� �#
��� )��$��� #��" ���"� �� 
��� ���� ��� ��# �# ��� )��$��
�# ���"� �� ��� � ���$� ���� ���� )�� )���� &���' 
�$
�		����� �� ��� �Æ	�� ����! 
�	���� ���"� #��" � ���$�
��� )��� ������� ���"��>�� �� ������� �� ��#� ���� �"�
��	������ �# ���� 
�$! )�� ���� #�� ��� �Æ	�� ���� ����$
,�+=� �3+,! ���"� ���� �		����� �� ��� � ��	��� ���
��� ���! �"��$ ��� "��� ������ ������ "��$�� #�� ��	�
�# ��� *������! )��� ���� �� ��	���� ������ )��$��� �� ���
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������� ��� "��������� #�� ��� ��) ��������� #��)� #��"
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���	 �
��������� ���� ��� ������ � ������	� ���� ����
#����� "������ �� �+! ���� �� ���$� �������� �$�����" ���

��� 	���������� ������ �� 
� 
����� ���� ��� ����� �$��
����" #�� � ����� �# ����	���� �� ��������$ � ��� �# �����
����� #�� 	�"
����$ ��� ��������� ���� #��" ��1����� ����	�
������$���! )� ��� �����$ �� 	������>� ��� �����$��� �# ����
��	��� �$�����"� )��� ����	��$ ����� �"��������� �� $���
���! ����"����� 
����� ��� �"��"�������� �# ���� #�����
�� ���� ��� "��� ������	� ��� �����" ��� �
��� ��� ��������
���� 
��)��� � *���� ��� � ��	�"��� &��	����$ ��� ����
�# ����	���� ��#��"����� �
��� ��� ��	�"���� #���� �� ���
���� *������'! ��� "��� �		����� �� )� 
� �� �����	���$ ���
���
�
���� ���� ��� ��	�"��� )� �����#� ��� ���� � �����
3���� ������	���� ���� ���)� ���� ��������� ��#��"�����
�
��� ��� �	����� ��� ���2�"��� �# ������ ����	� ���"�
	�� 
� ���� �� ������� � ������$ �	��� #�� � ��� �# ��	��
"����-F/� ��� ��#����	� ��� �+ "��� ��� ���)� ���� ���
�2�	� "��	� ������ �������� ������ 	�� 
� ���� �� �����
����� ������	� �# ��� ���
�
���� �# ������	� �� ��� 	����2�
�# � ��$�� ���)��� �# ���
�
�����	 ������	�-.;/� �� ��� ��"�
)��! )� ����� ��� ��� �# ��	�"���� �������$ #��" ��� �2�	�
"��	� ������ *���� �� � ���	�� 	��� �# � ���
�
�����	��
������ ���! )��� ��	� ��������� ��	�"��� �����$ �� �*��
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2.3 Okapi Implementation
��� ������� �# ��� 3���� �,��? �$�����" �"��"����� ��
��� �������� �� �����" �� 
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�� �# ������� ���"� ����2�� )��� � $���� ���"

� �� ��� ���� ��"
�� �# ������� ���"� #�� ��� *����

 �� ��� ��"
�� �# ���"� ����2�� )��� � $���� ���"

! �� ��� ��"
�� �# ���"� �� ��� 	��	����

��� ������ #�� �������$ ��� 3���� �,��? �$�����" )��
�)�#��� 6���� )� )����� �� ������� �� ����� �# ��� ��������
�� �����" ��� �# ��� "��� )���� ���� ��� 
��� ���#��"�
��$ �$�����"�� 7�	����! )� )����� �� 
� �
� �� �� 	�"�
�������� ������$ ��� ��������� ����$ ���� �$�����"� ���
��	�"���� )��$��� $�������� 
� ��� 3���� �$�����" ���
�� � *���� ��1����� �	�� #��" ����� $�������� 
� ��� ��
$����	 ��$������� �$�����"! ��� ���� ����� �� ��
�� ��1���
��	�� �� ��� <�� ����� �# ��	�"���� #�� ��� ��"� �����

��� ��� *����� 3�� 	������ �"��"�������� ���� ��� ���
� ������ ������� &����! )������ ������	� ��#��"�����' �# ���

+�
�������7���	� M���� )��$���! ��� ���� ���� �� �1�	�����
9��� �� �:6 )��$����$� N�)����! 
�	���� ��� ������ #��"
���� �"��"�������� �# 3���� ��� ��� %�$����	 +�$�������
)��� ��Æ	����� ��1�����! ���� ���"�� �� �1�� ��� ���� �#
	��������� )���� ���� #����� ��� 
��� ���)� �� 
� 
� "���
�1�	���� -.�! ./�

3. INEX APPROACH
3�� ������	� �� ���� )�� �� ��� � �# ��� ���$��� ���
��) #������� �# ��� 	������� �����" �� $��������$ ��� ������
��
"����� #�� ��� �Æ	�� ����� ���� ��	���� )� ���	��
�
��� ����2��$ ���	��� ��� ����2�� ����! ��� ��� ���	��� ���
�	����� ���� #�� ����	� ���	�����$� ��� 
���	 ����
��� )��
��	���$�� #��" ��� ���� �� 0� ���! ��)����! 	����� ��� ���
� ��"
�� �# ��������� ����2�� ��� ���#��"�� � 	�"����
������2��$ �# ��� ���� ��	�"��� 	��	����� ���� ��	����
)� <��� ���	��
� ��� ����2�� ��� 	�"������ ��<������� 	���
���� #�� ���� �����

3.1 Indexing the INEX Database
� ����2��$ �� ��� �������� �� �����" �� 	������� 
� ��
7=,% ���<$������� <� )��	� ���	��
�� ��� ����
��� ��

� 	������� ���� 	��<$������� <� �� ��
��*����� ���� ��
����	� ���	�����$ �� 	����� ��� "�����$ �# ����	� 	�""���
����2 ��"�� &�� G�@�?� ��"���	 �����
���� �����������$ ����
��	��� ����� �# 
�
��$�����	 ����' �� ��� �����	� ����2 <��
���� ��� ��� �� ����	����� 	�"������ ����2�� )��� �����	�
��� 	�"������� ��� ��	�"�����

�� ����� �
���! ��� ��"��� �� �����
��� "�� 
� ����2���
�� �������� �����	��� ����� #�� �����
���� �# ��"���� 	��

� ���� �� 	����� ���	���� �# ��� ��"���� �� 
� �����
�� ��� ����2� ��� 	��<$������� <� ����� #�� ��	� ����2
��<������ ��	���� ����� �����
���� $�������$ ��) ��� 	���
��2� ����� �# ��� &��� �� "���' ��"��� ����� ���	�<�� #��
��� ����2 )� 
� �������� ����� �����
���� ���D

.� ����77D ��� ����2 ���� ����	���� ���� &� �# ���
����2�� #�� ���� ���� ���+�� ����2��'�

�� ���+���D ��� ���� �# �2���	���� �# ��� ���� ��

� ���#��"��! ��� "��� 	�""�� ��� O�H03+:! ��
�����O�H� �����O�H ����� ��� ��2� ����� ��
� �����$ )��� ����� "��������� #�� �#�������$�� ���
"��	���$� O�H03+: ����� ��������� ������ #��"
��� ��2� ����� �� �������� ����� �� ������� #�� �2���	�
���� �# ���2�"��� ��#��"����� �� )�� 0� "��� ���
�# ���2�"��� ���	�����$ �� "���$� ������ ����	��� #��
���� ����� 7�"� "��� ���	���>�� �2���	���� "����
��� ��	��� :��� ��� :�����,� �2���	����! ���
��=�+! 6%3�� ��� :���,�% �2���	����! �� )�
�� �2���	���� "������ #�� $��$�����	 	�����������

�� �3+,�%D ��� ���� �# ���"��>����� ������ �� ���
���� �2���	��� #��" ��� ��2� ������ ��� "��� 	�"�
"��� ���� ��� 7��, ��� �3��� 7��, ���� �� ���
���	�� ������� �# ��� C����� ���""��! ��� �3�� &��
����� �# ��� ��"�' ���#��"� 	����#����$� 7��	���>��
���"��>����� �������� #�� ��1����� ����! ������"� ���
$��$�����	 	��������� #��"��� 	�� ��� 
� ���	�<���

��	� ����2 	�� ���� ��� �)� ���	���>�� ����)��� ���! ��
����! #�� �2�"��! 	�������� ��"�� ���� � ��1����� ��� �#
����)���� #��" ��	�"��� ����� �� ������� ��"���

,��� �# ��� ����2�� ���� �� ���� ���� O�H03+: ��
O�H03+: C+3��,��H �2���	���� ��� 7��,"��$ �# ���
���)��� ������� �2	������� �� ���� $����� ��� )��� ���� ��
�"���� &)��	� )��� �2���	��� ����$ :��� �2���	���� �# ���
���� ���' ��� ��� ��"�� �# ������� )��	� )��� �2���	���
)������ ���""��$ �� �������� �� ������ ��� #� ��"��

��
� . ���� ��� ��	�"������� &(����	�' ����2�� 	������ #��
���� ��� ��� ��	�"��� ��"���� #��" )��	� ��� 	�������
�# ����� ����2�� )��� �2���	���� ����� ����2�� &)��� ���
�������� �# ��� ����	����� ����2' ��� ��� ��"� �� ����� ����
��� ����� ��� "�9�� ��1����	� #��" ��� ���� �� ���� ���
������! �)�! ����! ����	! ����	����� ����2�� )��� ��� �� ��
������� ���2�"��� ����	���$�

�� ����� �
��� ��� �������� �����" ���"��� ����� �# ���
��	�"��� ��
���� �� 
� ������� �� �������� ��	�"���� )���
����� �)� �������� ����2��� ��
�� ; P � ���	��
� ��� �,%
	�"������� 	������ #�� ���� ��� ��� 	�"���������� ���
��2�� ���� )��� 	������ #�� ���"�

��
� ; ���)� ��� 	�"������� ��� ��� ���� ���� �� ���
<�� ���"� ��� �3,C 7����3� 	�"������ 	������� �#
��	� ������<�� ��	���� &"��	# ��� "(��	#' �� � �# ��� ��	�
�"����! ���"�����$ ��	� ��������� ��	���� �# � ����	� ��

� ��������� ���������� 7�"����! ��	� �# ��� �3,C ���!
�3,C C�+�7! ��� �3,C 6�= 	�"�������! �����	�����!
����� ��	� 
�
��$�����	 ��#����	� &"

# ��� "(

#'! �����
$���� &)��� � �# ��� ���������� ����$���� ��"���� ���)�
�� ��
� ;'! ��� <$��� &"<$# ��� "(<$#' �� ���������
��	�"���� ���� 	�� 
� ��������� ��������� #��" ��� ������
��	�"����

��
� � ���	��
�� ��� �,% 	�"������ ����2�� 	������ #��
��� 	�"������� ���	��
�� �� ��
� ;� ����� ����2�� "���
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��������� ��	����� &�3,C 7����3�' �# ��� ���� ��	�
�"���� ��������
� 
� ����� �����! �� 
� ��� ���"� �		���
���$ �� ��� ��	����� ����� ��� ��� ���2�"��� ����2��! ��
������ ����	���$ �� ��������� )����� ��� ����2��� ��
���
$�����	 ��#����	�� �� ��� ����	�� &�3,C ���' ��� "���
�		����
� 
� ��� ������ ��"��! �����! ��� ��
�	����� ����
�# ��� ��������� 
�
��$�����	 �����! )��� ���2�"��� ����	��
��$ ��������� #�� 
�
��$����� ������ ��������� ����$�����
&�3,C C�+�7' ��� ����	��
� 
� ��� �# ��� ���"� �� ���
����$����! ��� )��� ���2�"��� ����	���$� ��������� <$�
���� &�3,C 6�=' ��� ����2�� 
� ����� 	�������! ��� �����
&�3,C Q����' ��� ����2�� 
� ���)���� )����� ��� ��2�!
)��� ���2�"��� ��������

�"��� � �# ����� ����2�� ��� 	�"������� )��� ���� ����
��$ ������� � ����	� ��������� ���� �# ��� ���� ���� ����
�	�� ��� �Æ	�� ��
"����� ���� ��� �	����� ���� �� ����
��� ���	��
�� �� ��� ��2� ��	�����

3.2 INEX ’03 Official Runs
������� ��
"����� ��2 �������� ���� #�� ���� ����! �����
�3 ���� ��� � 7��7 ����� 0� ��� ��� ��
"�� ��� Q��7
����� ���� ��	���� ���	��
�� ��� ��������� ���� ��� $�����
������	� ����� �� 	������$ ��� *������ ��
"����� �$����� ���
���� ����
��� ��� ��� �	����� ���� �� �� ��� ��
"�������
��� ����$����� 
��) 
���B� ���	��
� ������� � ���� ����
�����
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����� �� ���	�
�� �������� ������	 ��� ����

��������� ��� ��	���
���� � ��������� ���
�����

����	 � ���� ��� ���)��� ��	������ ���� ��� ���� ����"���	
*���� $��������� )��� %�$����	 ��$������� "��	���$ 	�"�

���� )��� 
����� ������ "��	���$ ��� ,�+=� ,���
������ ����� 	�"
��������� 3�� ����	� ��� ������ ���
�������� �� ���� ��� &��<����� � "������'�

������� �3 3���� )�� �� ����"���	 �3 ��� ����$ ���
��� ����	 � ���� ��� ���)��� ��	������ ���� ��� ���� ���
���� ��� ��"� ����"���	 *���� $��������� �	���� �� ������
�� �3�. 
�� �"���� ��� ��) �"��"�������� �# ��� 3����
�,��? �$�����" #�� ������ ����	� 	�"�������! 	�"
����
)��� ������ ��"���� #�� ���2�"��� ��� ���" ������	������
+����� #��" "����� 	�"������� )���� 	�"
���� ����$
,�+=� ,��� "��$��$ �# ������� +7Q �	���� )��� ����
"��>�� ��� "����� ����� ���� 	�"
���� �� ��	��� ����	��
���! ��	�������� ��� ����$�������� �������

������� �3 ,��$�C�3� )�� �� ����"���	 �3 ���� ����
��� ���� ����"���	 *���� $��������� )��� 
��� 3���� �,�
�? ��� %�$����	 ��$������� �������� �$�����"� 	�"
���� ���
��$ � �	�������"��>�� "��$��$ �$�����" &,�+=� �3+,'�
+����� #��" "����� 	�"������� )���� 	�"
���� ����$
,�+=� ,��� ��� ,�+=� �3+, "��$��$ �# �������
7������� �������� �# ����	��! 7�	����� ��� ����$����� )���
	�"
���� ����$ �	��� ���"��>�� "��$�� �# ����� �������
3�� ����� ��� ���)���� )��� ���� �� $��������$ ��� *������!
)��	� ��� ��	���� ������ ���������� #�� ���2�"��� ����	��
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��$ ��� 8��$����8 ���"�� ���� ��� )�� �������� �� ��"���
������ ��� �1�	�������� �# #����� �# ������ #��" �)� ��1�����
�������� �$�����"��

������� 7��7�. )�� �� ����"���	 7��7 ��� ����$ ���
��� ���� &�C��� ���	�<	�����'� ���� ��� ���� ����"���	
*���� $��������� )��� %�$����	 ��$������� "��	���$ 	�"�

���� )��� 
����� ������ "��	���$ ��� ,�+=� ,���
������ ����� 	�"
�������� 6�GGH ��: ��� 6�GGH 3+
��������� )��� ���� �� 	�"
����$ ��: ��� 3+ ��"����
)����� �� 8�
���8 �����	���

������� 7��7 3���� )�� � 7��7 ����"���	 ��� ����$ ���
��� ����	 ����� ���� ��� ���� ����"���	 *���� $���������
#��" �C��N &��� ��� �.' 
�� ���� 3���� �,��? ������$
������� �# %�$����	 ��$������� ��� ���� ���"��>�� �	���� ��
"��$��$ ������ #��" ��1����� ����	�� �# ��� *������� +�����
#��" "����� 	�"������� )���� 	�"
���� ����$ ,�+=� �3+,
"��$��$ �# �������

������� 7��7 3����� )�� ������� ����"���	 7��7 ����
���� ��� ��� ���� ����"���	 *���� $��������� ��� �� ����
��"��� �� ������� 7��7 3����� +����� #��" "����� 	�"�
������� )���� ��� 	�"
���� ����$ ,�+=� �3+, "��$�
��$ �# ������� ��� "�9�� ��1����	� �� ���� ��1����� ����2��
)��� ���� &���� ��	���� "��� �# ��� ��2� J ���� ��� ����	 ���
��2 ��� ��� ����	����� ����2 ���� �� ������� 7��7 3����'
#�� ��"� �# ��� *������� ,��� �# ��� *������ )� ���
�
�
���� ������	� ������ �� ��� ����� ������
���� ����

�� Q��7 ���� )��� ��
"����� &�����$� ��� 7��7 ����
����� ���
�
� ���� 
��� ��
"����� #�� 
���! ���	� ����
�������������� �� "��	���$ )�� ��� 	�"����� ����	�'�

3.2.1 General Script structure and contents
�� ����� �� ��� �������) �# �������� �� #�������! � �# ���
�������� 	���� ���$��"� ��� �	�����
� ����$ �	 �� C������
6�� ��� ���� ���� ���� )� 	������ �	����� �� ��� �	 ���
$��$� ����! �� $�����! �"��"����� ��� #��)��$ ��*���	�
�# ����������D
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1. ABSTRACT 
A method of indexing and searching structured 
documents for element retrieval is discussed.  
Documents are indexed using a modified inverted 
file retrieval system.  Modified postings include 
pointers into a collection-wide document structure 
tree (the corpus tree) describing the structure of 
every document in the collection. 
Retrieval topics are converted into Boolean queries.  
Queries are used to identify relevant documents.  
Documents are then ranked using Okapi BM25 and 
finally relevant elements are identified using 
coverage.  Search results are presented sorted first 
by document then coverage. 
The design is presented in the context of the second 
annual INEX workshop. 

2. INTRODUCTION 
Otago first entered INEX [2] during its second year.  
There were three objectives: understand the 
participation process, gain access to this and last 
year’s judgments, and create a baseline for 
comparing future experiments. 
Participation involved design of six topics, 
generation and submission of search results, and 
online judging of three topics.  Of these, generating 
the results was the most problematic as it required 
software changes. 
The chosen retrieval engine was designed from the 
onset for retrieval of whole academic documents in 
XML [1].  A predecessor can be seen on 
BioMedNet and ChemWeb [4].  This engine, like 
that used in the IEEE digital library, returns 
relevance ranked lists of whole documents – the 
natural (citable) unit of information in an academic 
environment.  From experience, information 
vendors are not interested in converting their 
documents from propriety DTDs into a common 
DTD or any other format – so software was needed 
to handle documents in heterogeneous formats. 
Boolean searching, field restricting and relevance 
ranking were already supported, so modifications 
focused on identifying and ranking document 
elements.  The modified retrieval engine can be 
thought of as working in three parts.  Candidate 
documents are identified using a Boolean query.  
Candidates are then ranked using Okapi BM25 [6].  
Finally, relevant non-overlapping elements are 

identified and presented as the result.  Although it is 
easier to understand in three parts, in fact the most 
relevant elements of the most relevant documents 
are computed in a single pass of the indexes. 

3. INDEXING 
Much of the index design has already been 
described elsewhere [7].  Inverted file retrieval is 
used.  There is one dictionary file and each 
dictionary term points to a single inverted list of 
postings. 
An unstructured inverted list is usually represented 
{<d1, f1>, <d2, f2>, …, <dn, fn>} where dn is a 
document ordinal number and fn is the frequency of 
the given term in the given document.  For 
structured retrieval, each <dn, fn> pair is replaced by 
the triple <dn, pn, fn>, where pn is a position in the 
document.  When phrase or proximity searching is 
required, this triple is replaced with the triple <dn, 
pn, wn> where wn is the ordinal number of the term 
in the collection (starting from 0 at the start of the 
collection, incrementing by 1 for each term, not 
incrementing for tags, and not reset at the beginning 
of each record).  On disk the postings are stored 
compressed. 
The pn value in each posting is a position in the 
corpus tree.  The tagging structure for any one 
document represents a tree walk.  Start at the root of 
the tree.  When an open tag is encountered, the 
branch labelled with the tag name is followed 
downwards.  When a close tag is encountered, the 
walk backtracks one branch.  For a well-formed 
XML document, the walk will start and end at the 
root.  This tree-walking property also holds for a 
collection of well-formed documents.  The tree they 
collectively describe is called the corpus tree and 
can be built during single pass indexing.  As each 
node is encountered for the first time, a branch is 
added to the tree and labelled with a unique ordinal 
identifier, pn.  Terms can lie either at the nodes or 
the leaves of this tree. 
The corpus tree includes every single path in every 
single document, but is unlikely to match the 
structure of any one document.  In Figure 1, three 
well-formed documents are given, as is the corpus 
tree for those documents.  For clarity, the branches 
of the tree are labelled with which document they 
describe although this information is not computed 
and not stored. 
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sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

doc[1]:1doc[1]:1

sec[1]:2 sec[2]:5sec[1]:2sec[1]:2 sec[2]:5sec[2]:5

@c[1]:4@c[1]:4

p[2]:7p[2]:7p[1]:3p[1]:3 p[1]:6p[1]:6

 
Figure 1: Three documents and the corpus tree 
including every path through every document, 

but not matching the structure of any one 
document.  For the purpose of this figure each 
document is marked white, gray, or black and 
each node with which documents include that 

path.  Each node is numbered with the instance 
of the tag (e.g. p[2]) and the node id, pn (after the 

colon). 
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Figure 2: The in-memory postings structure 

allows quick access to only those postings 
relevant to the required document elements. 

 

The inverted lists are built and processed using the 
structure represented in Figure 2.  Postings for each 
term are ordered by increasing pn.  Each pn points to 
the list of document ids (the d-sublist) and word ids 
(the w-sublist) found at that point in the tree.  Each 
list is held in increasing order and compressed. 
To search the collection for a given term, each d-
sublist is examined in turn.  By doing so, documents 
may not be examined in turn.  This does not matter 
so long as all documents that would be examined 
are examined.  Further, whole documents may not 
be examined in turn – this, too, does not matter as 
many ranking functions can be computed 
piecewise1.  To field-restrict a term, a restricted set 
of sublists is examined.  The w-sublists are used for 
proximity searching. 
Storing and processing the postings in this way has 
computational advantages.  For a field-restricted 
search, postings not pertaining to the restriction can 
be skipped.  As postings are stored compressed, 
they need not even be decompressed.  Word 
postings are used only for proximity searching.  On 
disk the w-sublists are collected together and stored 
after all d-sublists.  They are not even loaded from 
disk if not needed. 

4. SEARCHING 
As the retrieval engine starts up, the corpus tree is 
loaded and an additional structure is created from it, 
the field list.  For each instance of each tag, the list 
of nodes at or below that node is collected.  For 
each tag, the same is collected.  These lists are then 
merged and sorted. 
 

Table 1:  The field list for the  
corpus tree given in Figure 1. 

Field Restriction 

@c {4} 
@c[1] {4} 
doc {1, 2, 3, 4, 5, 6, 7} 
doc[1] {1, 2, 3, 4, 5, 6, 7} 
p {3, 4, 6, 7} 
p[1] {3, 4, 6} 
p[2] {7} 
sec {2, 3, 4, 5, 6, 7} 
sec[1] {2, 3, 4, 7} 
sec[2] {5, 6} 

 
The field list for the Figure 1 corpus tree is given in 
Table 1.  From this, a search restricted to ‘sec’ 
requires postings at or below all ‘sec’ nodes of the 
                                                           
1 BM25 cannot, so the lists are merged then processed. 
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corpus tree, or where pn={2, 3, 4, 5, 6, 7}.  To 
search in ‘p[1]’, the postings are needed where 
pn={3, 4, 6}.  For a search restricted to ‘p[1] in sec’, 
these two lists are ANDed together (giving pn={3, 4, 
6}), and the members of this list are checked against 
the corpus tree to ensure they satisfy ‘p[1] in sec’ 
and not ‘sec in p[1]’. 
Equivalence tag restrictions are also computed from 
the field list.  The restrictions for each equivalent 
tag are ORed giving the equivalent restriction.  If, 
for example, ‘p[2]’ and ‘@c’ were equivalent in 
Table 1, the restriction would be pn={4, 7}. 
Several extensions were added to support element 
and attribute retrieval. 
Attributes are now distinguished from tags by 
prefixing attributes with an @ symbol.  This symbol 
was chosen because it makes for easy parsing of 
INEX queries, which use the same symbol. 
The attribute value is considered to be content lying 
not only within the attribute, but also the tag.  For 
example, “<tag att=“number”> term </tag>”, is 
equivalent to “<tag> <@att> number </@att> term 
</tag>”.  In this way, a search for “number in tag” 
will succeed. 
Tags can now be identified not only by their name 
and path, but also by the tag instance.  Where before 
it was only possible to restrict to paragraph for 
example, it is now possible to restrict to the second 
paragraph. 
Trotman [7] suggests the corpus tree will be small 
for real data.  In this extended model this no longer 
holds true.  In the TREC [3] Wall Street Journal 
collection there are only 20 nodes, for INEX there 
are 198,041 nodes after ‘noise’ nodes are removed 
(4,789 with attributes and instances also removed). 
 

Table 2: Tags ignored during indexing. 
ariel en item-text ss 
art entry label stanza 
b enum large sub 
bi f li super 
bq it line tbody 
bu item math tf 
bui item-bold proof tfoot 
cen item-both rm tgroup 
colspec item-bullet rom thead 
couplet item-diamond row theorem 
dd item-letpara scp tmath 
ddhd item-mdash sgmlf tt 
dt item-numpara sgmlmath u 
dthd item-roman spanspec ub 

Many tags are used to mark elements too small to be 
relevant.  An example of such a tag is ‘ref’, used to 
mark references in the text.  This tag cannot be 
relevant to any topic as the contents are simply 
reference numbers.  Some tags were used for visual 
appearance such as ‘b’ used to mark text in bold.  
Others were used as typesetting hints such as ‘art’ 
used to specify the size of an image.  If any of these 
tags, or those in Table 2 were encountered during 
indexing, tagging was ignored (until the matching 
close tag), but the content still indexed. 

5. QUERY FORMATION 
The title of the topic is extracted and converted into 
a Boolean query.  This query is used to determine 
which documents to retrieve.  Ranking is computed 
from the postings for the search terms. 
For content and structure (CAS) topics, the target 
element is computed and stored for later use.  The 
complete path for each about-function is computed 
by concatenating the about-path to the context-
element restricting it.  All equivalent paths are then 
computed by permuting this path with the 
equivalence tags.  This fully specified path now 
replaces the original about-path and the context-
element is removed. 
At this point, the topic has been transformed from 
INEX topic syntax into a query whereby each 
about-function is Boolean separated and explicitly 
field restricted. 
 
Create mandatory by ANDing each mandatory term (+) 
Create optional by ORing each optional term 
Create exclusion by ORing each exclusion term (-) 
If all three sub-expressions are non-null, combine: 
 mandatory AND (* OR optional) NOT  
exclusion 
If two sub-expressions are non-null, combine using one of:
 mandatory AND (* OR optional) 
 optional NOT exclusion 
 mandatory NOT exclusion 
If only one sub-expression is non-null, use one of: 
 mandatory 
 optional 
 * NOT exclusion 
Where ‘*’ finds all documents 

Figure 3: Algorithm to convert an about phrase 
into a Boolean expression. 

 
Examining the about-string, optional, mandatory 
(+), and exclusion (-) terms are allowed.  These 
terms are converted into a Boolean expression.  
Optional terms are collected and converted into a 
sub-expression by ORing (“a b c” → “a OR b OR 
c”).  Likewise, exclusion terms are also ORed.  
Mandatory terms are collected and ANDed (“+d +e 
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+f” → “d AND e AND f”).  These three sub-
expressions are then combined to form a complete 
about-query.  The whole algorithm is presented in 
figure 3. 
Separate about functions are already Boolean 
separated so these operators are preserved. Finally, 
all context-elements must be satisfied so these are 
ANDed together. 
For content only (CO) topics, a Boolean expression 
is computed exactly as for one about-string using 
the algorithm presented in Figure 3. 

6. RANKING 
The retrieval engine is a Boolean ranking hybrid.  
Result sets are computed in two parts; a bit-string of 
documents satisfying the query, and a set of 
accumulators holding document weights. 
The Boolean expression constructed above is 
converted into a parse tree then evaluated.  At each 
leaf, the posting are loaded and converted into a bit-
string, one bit per document.  The bit-strings are 
then combined at the nodes of the parse tree using 
the operator there.  At the root of the tree, the bit-
string has set bits for all documents satisfying the 
query and unset for those that do not. 
The accumulator values are the sum of Okapi BM25 
scores computed at each leaf of the parse tree.  
Scores are summed regardless of the operators in 
the parse tree.  
For AND and OR nodes scores are summed because 
the influence at these nodes is the sum of influences 
of the children. 
For NOT nodes, they are also summed.  If a 
document is excluded from the result set, the 
accumulator value is irrelevant.  If a document is 
not, it is either re-included through other terms (e.g. 
mammal OR (dog NOT cat)), or there is a double 
negative in the query (e.g. cat NOT (dog NOT cat)).  
In both cases, the document has successfully 
satisfied a query leaf so receives a positive weight. 
The Boolean ranking hybrid engine was extended to 
include ranking elements.  Although whole 
documents are valid as results for CO topics, CAS 
topics specify a target element.  This targeting 
establishes the retrieval unit.  If the target element is 
‘sec’, this tag must be returned.  It essentially directs 
the retrieval engine to search and rank each given 
tag instance separately. 
Wilkinson [8] suggests that ranking whole 
documents then extracting elements from these is a 
poor ranking strategy.  The opposite may hold for 
this collection.  A relevant element lies in the 
greater context of a relevant document.  A relevant 
document will lie in a relevant journal, which, in 
turn, lies in a relevant collection.  To this end, every 
paragraph of every section of every document is 

contextually placed so extracting elements from 
relevant documents may be a good approach. 

6.1 Coverage 
The coverage of any one posting is computed as 
those nodes in the corpus tree at or above the 
posting.  Each posting is already annotated with a 
pointer into the tree, pn.  To compute the coverage, 
the tree is traversed upwards from pn to the root.  
Coverage is computed for each document with 
respect to each search term. 
For each document in the result set, the weighted 
coverage is computed as the covered branches of the 
document tree and how many search terms cover 
that branch.  This is computed during a single pass 
of the indexes by storing the weighted coverage as 
part of each accumulator. 
In any given document, the document root must 
have the highest weighted coverage, but this can be 
equal to that of other nodes.  For CO topics, all 
branches of the document tree with coverage less 
than the root are pruned.  The remaining leaves are 
presented as the result set for that document.  In this 
way, the most information dense elements in the 
document are considered most relevant and no part 
of any document is returned more than once 
(overlapping is eliminated). 
If a target element is specified in a CAS topic, all 
non-target branches are pruned.  From the remains, 
those branches with the highest weighted coverage 
are presented as the result set for that document. 
So, recall is determined by evaluation of the 
Boolean expression, documents are then ranked 
using Okapi BM25, and elements are selected by 
weighted coverage.  As all the metrics needed for 
ranking are available at search time, the search and 
rank process is computed in a single pass of the 
postings. 

7. RESULTS 
Evaluation results are presented in Table 3. 

Table 3: INEX performance measures 
Strict Precision Rank 

CO 0.0249 42nd 

SCAS 0.1799 24th 

CO-ng-o 0.2210 Unknown 

CO-ng-s 0.2210 10th 

Generalized Precision Rank 

CO 0.0241 31st 

SCAS 0.1214 28th 

CO-ng-o 0.2889 9th 

CO-ng-s 0.2889 4th 
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The retrieval engine performed badly using the 
INEX_EVAL measure.  This is most likely because 
this measure treats each tag in a hierarchy as 
relevant but coverage eliminates overlapping tags – 
the measure is inappropriate for this retrieval 
technique. 
Good results were shown when performance is 
measured using INEX_EVAL_NG.  NG measures 
the ratio of relevant to irrelevant information 
returned.    Coverage finds those parts of the 
document that contain most of the search terms.  
The correlation between information density and 
coverage is reflected in the result. 
The results show the best performance when 
generalized quantization is used.  This suggests the 
ordering of the results is not optimal for strict 
quantization – or the most relevant documents are 
not ranked before less relevant documents.  This 
may be a consequence of sorting into document 
order before coverage order. 

8. OTAGO AT INEX 
The participation process involved the design and 
contribution of six topics.  Of these, four were 
selected for inclusion in the final topic set.  Otago 
was assigned three of these to assess.  The 
assessment took three people one week each; this 
was one week per topic. 
The retrieval engine described herein was used for 
designing the contributed topics.  This was 
somewhat problematic as the topic parser was 
written at the same time the topics were being 
written, each with few examples. 
From the final CAS topic set, 19 required 
corrections, corrections finally running to 12 
rounds!  This suggests the topic syntax is 
unnecessarily complex.  See our further contribution 
[5] for a discussion on a possible language to use for 
future workshops. 
The assessors were overburdened by the multitude 
of obviously irrelevant documents to assess.  
Examining some of these documents suggests many 
retrieval engines were aiming at high recall by 
retrieving any document containing any of the title 
terms.  In particular, the word ‘java’ appeared in one 
topic; this was a somewhat popular research area 
over the years included in the IEEE collection.  The 
assessment task could be reduced by carefully 
designing topics (and retrieval engines) to avoid this 
problem. 

9. CONCLUSIONS 
Element ranking was added to a Boolean ranking 
hybrid retrieval engine.  Relevant documents were 

identified using Boolean searching. Documents 
were ranked using Okapi BM25.  Finally coverage 
was used to rank elements within documents. 
The results suggest coverage is a good method of 
identifying relevant and non-overlapping elements.  
Performance was best for generalized quantization, 
so ordering is not ideal.  This may be a consequence 
of presenting results in document order. 
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ABSTRACT
The INEX’03 query language proved to be much too compli-
cated for the INEX participants to use well, let alone anyone
else. We need something simpler, but not too simple. Some-
thing which is basically a hybrid between Boolean IR queries
and a stripped down CSS will do the job.

1. INEX NEEDS A QUERY LANGUAGE.
In the INEX conferences, we are trying to develop a data
collection and a set of queries with known answers that can
provide a solid basis for research and experimentation with
XML information retrieval.

In order to communicate between researchers in the same
year, we need a common query language. For INEX’02 there
was such a language. In INEX’03 there was another. In
order to communicate between the researchers who produce
the queries in one year and the researchers who use them in
later years, we need a stable, well-defined language.

The designer(s) of the INEX’03 query language had every
reason to feel pleased. After the INEX’02 query language
proved to need revision, surely this was the simplest thing
that could possibly work: take an extremely well established
XML structural query language (XPath) and add to it a
minimal set of features for Information Retrieval.

It seems to be agreed that XPath is not a language for the
casual user. But this paper is not concerned with user query
languages. The query language we need is a query language
for use by researchers who are expert in information retrieval
and XML. What counts is whether the query language is
suitable for us, not users.

Unfortunately, the production of this year’s queries proved
conclusively that the INEX’03 query language is far too com-
plicated for us:

• It proved too hard to use. Of the 30 CAS queries that
were selected, 19 (nearly 2

3
), were either syntactically

illegal or otherwise wrong. It took no fewer than 12
rounds of correction before we had a completed collec-
tion of queries.

• Like many W3C productions, XPath is quirky, to put
it kindly. It is very powerful in some respects, but
there are queries that are very hard to express. For
example, //body//ip1//name | //body//ip2//name is

legal, but //body//(ip1|ip2)//name is not.

• It proved to be hard to implement. Presumably ev-
eryone who submitted a query for consideration had
already checked it with some XML IR engine; how
else could they have known that the query had about
the right number of relevant answers? Yet a large
number of queries were syntactically or semantically
wrong. That should have been noticed. At least one
implementor switched the semantics of the / and //
operators.

• It proved to be hard to implement for another rea-
son. XPath is quite powerful, in ways that are not
likely to be useful for information retrieval, and yet if
XPath was not implemented in full, were we really im-
plementing the INEX’03 query language? This year,
it turned out that most of the power of XPath was
not needed. It wasn’t the simplest thing that could
possibly have worked. For example, we[23] found that
there were 198,041 nodes in the index after ignoring
“noise” tags. Yet if ordinal position was also ignored,
there were only 10,522 distinct paths. Not one of this
year’s selected CAS queries used the ordinal position
([n]) feature of XPath.

• XPath has a clear definition of the “string value” of
a node; the definition is precise, but given the actual
XML markup in the document collection we are work-
ing with, it’s not the definition we want. For example,
if there is one mention of Joe Bloggs in the collection,
as 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉, then
the string value is “JoeBloggs” and a search for the
word “Bloggs” is guaranteed to miss it.

Worse, markup that is supposed to enclose numbers
very commonly includes punctuation as well; the rules
of XPath say that trying to convert such a string value
to numeric form is an error. Yet we want to query it.

2. THE INEX’03 QUERY LANGUAGE WAS
TOO HARD TO USE.

Every group had to submit 3 CAS and 3 CO queries. These
submissions were supposed to have been tested, and known
to have a reasonable number (not too high, not too low) of
relevant answers. In fact, some answers were provided with
each submission. So each submitted query should have been
a legal INEX’03 query.
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From this pool, 30 CAS and 36 CO queries were selected. Of
the 30 CAS queries, 19 had either syntax errors or serious
semantic errors. The most common semantic error was using
the “child” operator / when the “descendant” operator //
was intended.

This is a shocking error rate.

It wasn’t just hard to get the queries right in the first place;
it was hard to fix them. It took 12 rounds of corrections
before we had a workable set of queries, starting from what
were presumably the best queries in the first place.

3. WHAT SHOULD WE LOOK FOR IN A
QUERY LANGUAGE?

3.1 We want something WE can use.
This paper is not about query interfaces or query languages
for end users. This paper is solely concerned with query
languages for researchers producing or using INEX data.
Complexity is not necessarily a problem for us, as long as
it is useful complexity. Requiring an intimate knowledge
of XML or XML related technologies is not necessarily a
problem for us. Requiring lots of punctuation in just the
right places is not necessarily a problem for us.

While complexity need not be a problem, we need to take
a step back and start with something much simpler than
XPath, because it is an empirically established fact that it
was too complicated for us. It is not likely that the query
language we propose in this paper will serve for all time;
what does matter is that it should be possible to automat-
ically translate it into whatever richer language may be de-
vised in the future. Simplicity now means easier conversion
in the future. So one guiding rule is that nothing should be
included in the query language unless it was actually used
in this year’s or last year’s queries.

We do not want to limit INEX participation to experimenters
following an “orthodox line” in query languages. Keep-
ing the query language simple keeps the conference open
to approaches with as yet unimagined index structures and
retrieval techniques. XPath and XPath-like languages pe-
nalise such approaches.

3.2 Databases and information retrieval are
different

It is useful to distinguish between database query languages
and information retrieval query languages. They have some
similarities, but the differences are fundamental, and mean
that an XML database query language is unlikely to be a
good foundation for an XML information retrieval query
language.

The CODASYL database language, “network” databases,
the relational algebra, the relational calculus, SQL, the Ob-
ject Query Language (OQL) in the ODMG Object Database
Standard[4], and various spatial and temporal extensions
of relational databases, even the Smalltalk dialect used in
Gemstone, all have these fundamental characteristics in com-
mon:

• To a large extent, as [9] puts it, this “data is primarily
intended for computer, not human, consumption.”

• A “database” is made up of elementary values (num-
bers, strings, dates, and so on) aggregated using a pre-
defined set of container types with precise data struc-
ture semantics and labelled with user defined labels
(column names, relation names, and so on).

• The user-defined labels have user-defined semantics
which the database is aware of only to the extent that
constraints are stated.

• Even when there are user-defined structures (classes
in ODMG, Gemstone, and SQL3, for example), these
may be seen as instances of one of a fixed set of meta-
structures. For example, the ODMG standard pro-
vides an Object Interchange Format by means of which
any object database may be dumped as a text stream;
instances of classes all have a fixed format here and it
is clear that “class” is a single meta-structure.

• There is a structured query language with a (more-or-
less) formal definition which relates any legal query to
a precise semantics, by appealing to the data structure
semantics of the container types and meta-structures
and to any stated constraints.

• A query processor is expected to obey the semantics
of any query it accepts precisely ; it may exploit known
properties of the query language to transform a query
into one with better performance, typically by using
indexes.

• If a query has more than one answer, all of the answers
are relevant. Someone who doesn’t want all of the
answers is expected to write a more specific query.

Database query languages are just like programming lan-
guages. (Very bad programming languages, some of them,
notably SQL.) The person formulating the query is expected
to understand the relevant user-defined labels and constraints
and to “program” a query which expresses his or her needs.
A database query engine is required to obey the query liter-
ally, just as a C compiler is required to translate C faithfully,
even rubbish. If you ask an ODMG database the OQL query
select p from Persons p where p.address.city = “Dunedin”
and the answer includes a p for which p.address.city = “Mos-
giel”, you will be seriously unhappy, even though Mosgiel is
only 10 to 15 minutes’ drive from Dunedin.

Since SGML was designed, the SGML slogan has been “a
document is a database”. For many years there have been
SGML document database engines, notably SIM[16]. As
XML is a special case of SGML, it is natural to view an
XML document as a database.

• The elementary values are strings. The aggregates are
labelled attributed tree structures. The data structure
semantics is provided by GROVEs, or the DOM. El-
ement type names and attribute names are the user
defined labels.
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• Constraints are stated by means of DTDs or XML
Schemas. XML Schemas in particular express the no-
tion “a database is a document”.

What you get, on that view, is a database query language
for tree-structured databases.

Information retrieval is very different. Instead of saying
“the programmer knows precisely what s/he wants and how
that’s represented, I must do exactly what s/he says”, in-
formation retrieval engines say “the user wants to find out
about something and has given me a hint about what it is, I
must be helpful”. If you ask an information retrieval system
“agricultural research Dunedin” and it comes back with a
web page about “Invermay Agricultural Centre, Mosgiel”,
you are not angry with it for disobeying you but impressed
with how clever it was to find something so helpful.

The fact that information retrieval systems regard the user’s
query as a clue about what the user wants instead of a pre-
cise specification has enormous consequences for the design
of information retrieval languages. So does the fact that the
text they search is itself not in a precisely defined language.

When you construct a DTD or Schema for a family of XML
documents, you describe how the XML parts fit together.
But if you have free text in some of the elements, it remains
just as informal as free text on its own.

At one end, we have data without a known precise seman-
tics. At the other end, we have queries that are regarded as
clues rather than commands. As Shlomo Geva[13] pointed
out in the INEX mailing list, even the Boolean operators
are not taken all that seriously by some retrieval engines. If
two relational or object database engines holding the same
information give different answers to a single query, at least
one of them is broken. If two information retrieval engines
holding the same document collection give different answers
to a query, one of them might be better, but each of them
might find something useful that the other doesn’t. It cer-
tainly doesn’t mean that either of them is wrong. All of
this makes it hard to design elaborate information retrieval
query languages. What earthly use is elaborate precise syn-
tax when you don’t have, can’t have, and wouldn’t want,
precise semantics?

Of course we can embed a database query language in an IR
query language (find precisely this set of documents and use
that as a clue combined with the other clues in the query
to find what I really want instead), and we can embed an
IR query language in a database query language (give me
precisely the answers satisfying a bunch of tests one of which
is this clue about what I have in mind). Confusion seems
unavoidable; at least we should be clear about which parts
are precise and which parts are fuzzy.

3.3 It’s all about indexes.
The great strength of Information Retrieval systems is their
indexes.

An information retrieval language for XML should exploit
this. It should avoid “structural” queries that are hard to
handle with plausible index structures.

This does not mean that we should always be limited to
queries that can be expressed in terms of currently known
index structures. On the contrary, if someone comes across
a reasonable query that is not expressible in the INEX’04
query language, that’s a good thing, because it suggests a
research topic: what kind of index could support this kind
of query?

3.4 “Descendant” is more useful than “child”.
An extremely common mistake in the INEX’03 queries was
using the “child” axis (/) when the “descendant” axis (//)
was intended.

The designers of CSS recognised that “descendant” queries
were more common when they used the invisible operator
to mean “descendant”, making “descendant” easier to say
than “child”.

Consider //article/bdy/sec/ip1. That may be what you
want, but you might have wanted //article/bdy/sec/bq/ip1
elements as well, had you known about them. The query
//article//bdy//sec/ip1 is more likely to be what you re-
ally mean.

It turns out that none of the INEX’03 queries needs “child”
at all; in each case “descendant” will do.

4. POPULAR XML QUERY LANGUAGES.
The world is awash in query languages for semistructured
data, ranging from the complicated (CSS) to the mindbog-
glingly complicated (XQuery).

4.1 HyTime
HyTime[15, 14, 21] introduced many important things to
SGML. One of them was a query language, HyQ[19].

However, the current standard says “HyTime recommends
the use of the Standard Document Query Language (SDQL),
defined in the DSSSL standard, ISO/IEC 10179:1996 Doc-
ument Style Semantics and Specification Language, for the
queryloc and nmquery element forms. The SDQL language
includes equivalents of all the HyTime location address forms.”

Early drafts of XPath looked like a stripped down HyQ.

HyQ is all about precise location of points and ranges both
in trees and in multimedia coördinate systems. It is quite
complicated. But it is worthy of note as one of the two an-
cestors of most XML query languages. (The other is SQL.)

4.2 DSSSL
DSSSL[17] is the SGML version of XSL and XSLT[6]. It con-
tains a Scheme-based query and transformation language. It
must be said that DSSSL is incomparably easier to read than
XSLT. The Standard Document Query language is basically
some datatypes for collections of nodes and some functions
that manipulate them. It’s a programming language, not an
IR query language.

4.3 CSS
A CSS[3] 〈selector〉 is a collection of 〈path〉s or-ed together.
In each 〈path〉, the focus is on the rightmost element; it is

klas
119

klas
119

klas
119

klas
119

klas
119



Table 1: CSS grammar
〈selector〉 ::= 〈path〉 {〈or〉 〈path〉}∗
〈or〉 ::= ‘,’
〈path〉 ::= {〈siblings〉 〈down〉}∗ 〈siblings〉
〈down〉 ::= ‘>’ | empty
〈siblings〉 ::= {〈element〉 〈followed-by〉}∗ 〈element〉
〈followed-by〉 ::= ‘+’
〈element〉 ::= (〈name〉 | 〈any〉 | 〈filter〉) 〈filter〉∗
〈any〉 ::= ‘*’
〈filter〉 ::= 〈exists〉|〈equals〉|〈word〉|〈prefix〉|〈first〉|〈lang〉
〈exists〉 ::= ‘[’ 〈name〉 ‘]’
〈equals〉 ::= ‘[’ 〈name〉 ‘=’ 〈value〉 ‘]’
〈word〉 ::= ‘[’ 〈name〉 ‘∼=’ 〈value〉 ‘]’
〈prefix〉 ::= ‘[’ 〈name〉 ‘|=’ 〈value〉 ‘]’
〈first〉 ::= ‘:first-child’
〈lang〉 ::= ‘:lang(’〈value〉‘)’

that element which the following style will be applied to.
Working from right to left, an element must be a sibling
(‘+’), a child (‘>’), or a descendant (invisible operator) of
the element to its left.

An 〈element〉 test may check for an element 〈name〉 or not
(〈any〉 or omitted). It may check whether an element is
the ‘:first-child’ of its parent. This means that XPath’s
/*[3 and p] is expressible as *:first-child+*+p. But XPath’s
/p[3] is not quite expressible; p:first-child+p+p does not
allow other elements between the p elements.

A 〈filter〉may check whether an attribute is present, whether
it is present and has normalised value exactly equal to a
given text, whether it is present and contains a given white
space delimited word, or whether it is present, looks like an
xml:lang value, and has a given lang code as prefix. The
grammar is given in Table 1.

There is no negation anywhere in CSS. You cannot test
whether an attribute is present and not equal to a string.
Paths cannot be negated. Within its limits, CSS seems quite
usable.

4.4 XPath
This year’s query language was based on XPath 1.0. XPath
1.0 has several uses in W3C standards. One of them is
XPointer. XPointer provides a means of pointing precisely
to a location or range in a document. That is, XPointer,
and the underlying XPath, are database query languages for
XML.

We can get an idea of the complexity of various extensions
and relatives of XPath by looking at the sizes of the defining
reports; to master any of them requires reading at least this
much material. Since the reports are provided in HTML,
the page count depends on how you display it. Therefore we
normalise the number of screens by the number of screens
for XPath 1.0 in Table 2.

The “all up” entries include the Data Model and Func-
tions and Operators documents, which are essential parts of
XPath 2.0, XSLT 2.0, and XQuery 1.0. To get page counts
for the browser and paper size we used, multiply by left

Table 2: Length of Specification (Normalised)
1.0 XPath 1.0[7]
0.7 XML-QL[10]
1.5 XQL[22]
3.2 XSLT 1.0[6]
4.2 XSLT 1.0 + XPath 1.0 (XSLT includes XPath)
2.4 XQuery 1.0 and XPath 2.0 Data Model[11]
5.8 XQuery 1.0 and XPath 2.0 Functions&Operators[20]
3.1 XPath 2.0[1]

11.3 XPath 2.0 all up
9.0 XQuery 1.0[2]

17.3 XQuery 1.0 all up
10.1 XSLT 2.0[18]
18.3 XSLT 2.0 all up

column by about 28.

If XPath 1.0 was too complex for us to master, can any of
the other W3C query languages be easier? XML-QL looks
as though it might be, but it is not a W3C recommendation,
and [9] explicitly says that “. . . we take a database view, as
opposed to document view, of XML. We consider an XML
document to be a database . . . ”.

In fact all of these languages take a database view, making
them unsuitable as foundations for an information retrieval
query language. Space does not permit thorough discus-
sion of YATL[8], XQL[22], Quilt[5] (Quilt and XPath 1.0
are closely related), YATL[8], or others.

4.5 XIRQL
XIRQL[12] was designed as an “information retrieval” query
language, not a “database” query language. However, it ex-
tends XQL, so parts of it resemble XPath, including the dis-
tinction between “child” and “descendant” which we failed
to master. In the INEX collection, it was not clear to most
of us what the root actually was, so the ability to refer to
the root is not useful to us either.

The abstract of [12] tells is that XIRQL integrates “weight-
ing and ranking, relevance-oriented search, datatypes with
vague predicates, and semantic relativism ... by using ideas
from logic-basic probabilistic IR models.” This means that
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important and attractive as XIRQL is, it is too closely tied
to one particular approach to be suitable for INEX.

We propose a much simpler and less capable language, which
can be seen as a very small sublanguage of XIRQL, and also
of other query languages.

5. THE STRING-VALUE PROBLEM.
Practically everything in XPath 1.0 that involves strings is
defined in terms of the “string-value” of a node. The rules
are spelled out in section 5 of the XPath 1.0 specification.
Roughly speaking,

1. The string-value of a text item (parsed character data
or CDATA) is the obvious text value.

2. The string-value of an element or of the entire doc-
ument is the concatenation of the string-values of its
text descendants in document order.

3. The string-value of an attribute is its normalised value
as spelled out in the XML 1.0 specification. (An XML
processor that does not validate cannot be used as the
basis for an XPath implementation.)

So 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉 has string-
value “JoeBloggs”.

If you go looking for “Bloggs” in 〈au〉, XPath 1.0 guarantees
you won’t find it.

Of course, we don’t have to follow XPath’s definition of
string-value. But if we don’t do that, there isn’t much point
in following XPath’s complex and limiting syntax either.

This definition of string value goes back to HyTime; ev-
ery XML-related standard we’ve checked uses essentially the
same definition. CSS and XSLT provide means for trans-
forming a document by adding material at the beginning or
end of an element’s contents; the string value can be quite
different in the transformed document. XPath was too hard;
bringing XSLT into it would clearly be inadvisable.

There are three plausible ways around this problem.

• Add an extra space at the end of each text item. This
gives the answer “Joe Bloggs ”, which will work. In
rare cases like “〈u〉A〈/u〉ccelerator” this may break
words up, but it will almost always help.

• For items which should be treated as having word
breaks, add an attribute in the DTD:

<!ATTLIST snm INEXword #FIXED "break">

Ensure that there is at least one white space char-
acter at the boundaries of every element with INEX-
word=”break”.

• Allow the indexing software to make the decision just
as it does for stemming. Attributes like INEXword offer
guidance, not rigid command.

The first approach is simpler. If we were seeking the preci-
sion of database queries, the second approach would be bet-
ter. Examples like T〈scp〉itle〈/scp〉 W〈scp〉ords〈/scp〉 may
make it essential even for us (although the INEXscan at-
tribute should solve this problem). But whichever approach
we take, we are divorcing ourselves from XPath.

5.1 Numbers
An XML document contains only strings. Many of this
year’s queries involved numeric comparisons. That requires
converting strings to numbers. XPath specifies precisely how
that is done. (The rules are somewhat different in XPath
2.0, but do not affect the present point.)

The problem is that the INEX’03 document collection is a
realistic collection of sloppily marked up text. There are el-
ements such as 〈yr〉 which are supposed to contain numbers,
but also contain punctuation marks and other junk. Trying
to convert such a string to a number is an error in XPath.
If we want to know whether yr > 1999, we do not want our
query to be derailed by 〈yr〉2000, 〈/yr〉, as it must be in
XPath.

Not only do we need rules for converting text to numbers
that are different from the rules in XPath, we need to inter-
pret comparisons fuzzily. If you ask a database for a record
with date > 1999 and it reports a record with date = 1999,
that’s an error. If you ask an information retrieval sys-
tem for documents with yr > 1999 and it returns one with
yr = 1999, that’s not an error, it’s just somewhat less rele-
vant than one that matches the clue precisely.

6. ARCHITECTURAL FORMS
HyTime was really several interesting standards package to-
gether unintelligibly. One of the key features presented was
the idea of “architectural forms” and of architectural form
processing.

Basically, the idea is that a document may be marked up
(and validated) according to one DTD, yet processed ac-
cording to another (traditionally but confusingly called a)
meta-DTD. Attributes in the source DTD say how to map
the elements and attributes physically present to the ones
that ought to be present according to the target DTD. A
processing instruction with a special form is used to tell an
architectural-form-aware processor which attributes to use
for this purpose.

This may sound like XSLT, or, if you are into arcana, like
linkage declarations in SGML. In fact it is something much
simpler. Elements and attributes may be dropped, renamed,
or copied as they are.

Why would you parse in one DTD and process according to
another? You might have a formatter that can handle many
structures, and a specialised DTD that is only intended to
use some of the features. You might have a meta-DTD writ-
ten using English words for markup, and Swedish users who
would like to use Swedish words, so they validate against
a DTD which uses Swedish words, but which uses architec-
tural form processing to map to the English version. You
might wish to make fine distinctions; for example you might
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want to use 〈species〉 and 〈foreign〉 tags in your markup, but
they might both be simply mapped to 〈italic〉.

With the INEX collection, we have a collection of documents
marked up for printing. Some of the distinctions made in the
DTD are not important for information retrieval purposes.
The INEX’03 rules took this into account. For example,
〈ip1〉, 〈ip2〉, 〈ip3〉, 〈ip4〉 were all to be treated by the query
engine as equivalent to 〈p〉.

That’s the wrong time to do it. It had the unpleasant con-
sequence that you asked for p[n] the element you got could
be p[m] with m 6= n.

It is not the queries which determine which tags are equiv-
alent, but the DTD designer and document collector. The
replacement of tags by equivalents should be done before
the documents are indexed, so that the index and the query
agree about what elements are which. That is just what
architectural form processing can do for you.

We may not want to index some elements, either because
they do not contain text or because the text is never use-
ful. (We yearned mightily for some way to get rid of 〈ref〉
elements during evaluation. They should never have been
returned in the first place.)

Some elements may be presentation markup which it is use-
ful to ignore (see Table 2 in [23]). This is especially useful
because these are the tags which spoil the simple “add a
space after each element” rule for modified string-value. For
example, given 〈st〉V〈scp〉OICE〈/scp〉 XML〈/st〉 we would
like this to be treated as 〈st〉VOICE XML〈/st〉. We want to
ignore the tags of these elements, but not their contents.

In the spirit of architectural form processing, we can ad-
dress these issues by adding attribute declarations in the
DTD. XML allows us to add attribute declarations without
changing the original ones, so xmlarticle.dtd could become

<!ENTITY old-dtd PUBLIC "..." "oldarticle.dtd">

%old-dtd;

<!ATTLIST ...>

...

<!ATTLIST ...>

with the original xmlarticle.dtd renamed to oldarticle.dtd.
It is important that this can be done without touching the
original DTD or the original XML files in any way.

The three attributes we want to add are

• INEXscan

nothing do not index this tag or its descendants

content do not index this tag; index its content

element index this tag; do not index its content

all index this tag and its content

The evaluation tool should heed this attribute; it would
materially reduce the labour of judging.

• INEXname

if present, the name that is to be used in the index,
and in queries, instead of the original element type.

• INEXatts

a list of pairs of names: attr - means “do not index
@attr, attr alt means “index @attr under the name
@alt instead”. If an attribute is not in the list, it is
indexed as itself.

For example, we might have

<!ATTLIST ip1 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip2 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip3 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip4 INEXname NMTOKEN #FIXED "p">

<!ATTLIST scp INEXscan NMTOKEN #FIXED "content">

<!ATTLIST ref INEXscan NMTOKEN #FIXED "nothing">

The mapping can be handled by a trivial post-parser.

7. THE SIMPLEST THING THAT COULD
POSSIBLY WORK.

The following query language was constructed to be just
powerful enough to handle the queries people actually wrote.
It clearly separates paths and text queries, allowing Boolean
combinations of text queries but not of paths.

〈topic〉 ::= 〈about〉
| 〈filtered-path〉 [〈star〉] 〈about〉
| 〈filtered-path〉 [〈about〉]

〈filtered-path〉 [〈star〉] 〈about〉

An 〈about〉 is basically a Boolean query plus context for
the terms. A 〈filtered-path〉 describes a path in an XML
document; the attributes of elements may be checked. There
is no way of marking the “child” relation anywhere, or of
specifying ordinal position.

If P and Q match 〈filtered-path〉 and A and B match 〈about〉,
then A means “answer any elements that are about A”; PA
means “answer any instances of P that are about A”; PAQB
means “for instances of P that are about A return instances
of Q under that P which are about B”; and a missing A
imposes no constraint.

〈star〉 ::= ‘/’ ‘*’

A 〈star〉 may precede the final 〈about〉. This is to handle
the queries which used //* in XPath. It means that once
an instance of the preceding P or Q has been found, any
descendant of that instance which fits the last 〈about〉 may
be reported. Such descendants are of course subject to rank-
ing in the same way as any others, elements which are too
“dilute” should not be a problem.

〈filtered-path〉 ::= 〈filtered-elem〉 {‘/’ 〈filtered-elem〉}∗
〈filtered-elem〉 ::= XML-name 〈filter〉∗

An XML-name is any XML identifier, possibly including
colons. The time to deal with namespaces will be when
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we have to. The ‘/’ operator means “descendant”, not
“child”. This is what most people expected ‘/’ to mean
in the INEX’03 query language.

〈filter〉 ::= ‘[’ 〈attr-path〉 〈range-list〉 ‘]’
〈range-list〉 ::= 〈range〉 {‘,’ 〈range〉}∗
〈range〉 ::= number [‘..’ [number]]

| ‘..’ number
〈range〉 ::= [number] ‘..’ [number]
〈attr-path〉 ::= 〈attr〉|〈simple-path〉

| 〈simple-path〉 〈attr〉
〈attr〉 ::= ‘@’ XML-name
〈simple-path〉 ::= XML-name {‘/’ XML-name}∗

A filter compares text with a range of numbers. An 〈attr-
path〉 is followed to find some text; the text may be the
(modified) string value of an attribute or the (modified)
string value of an element. Spaces and punctuation are
trimmed from that modified string value; if the result can
be converted to a number, the filter is satisfied to the degree
that the number is in one of the ranges.

In a range x..y, x is the lower bound and y is the upper
bound. It is an error if x > y. Missing x means −∞;
missing y means +∞.

This query language does not use conventional notation like
< or =. There are two reasons for that. One is that these
queries are supposed to be easy to express in XML, and XML
makes it hard to use <. The second is that < and = are
associated with precise meanings. But this is an informa-
tion retrieval query language; a value which is not precisely
in range may still be somewhat relevant. Since we don’t
intend the standard meaning of the mathematical signs, we
shouldn’t use them; it is important not to lie to the user.

〈about〉 ::= ‘(’ 〈or-query〉 ‘)’
〈or-query〉 ::= 〈and-query〉 {‘|’ 〈and-query〉}∗
〈and-query〉 ::= 〈not-query〉 {‘&’ 〈not-query〉}∗
〈not-query〉 ::= 〈text-query〉 | ‘∼’ 〈text-query〉

An IR engine may interpret these Boolean operators the way
it would normally interpret any Boolean operators. The con-
ventional precedence of the Boolean operators is followed.
They need not be “precise”, and although it is tempting to
define algebraic identities for this query language, it would
be inappropriate. The ampersand is also awkward to express
in XML; some other spelling such as ‘;’ could be allowed.

〈text-query〉 ::= 〈basic-query〉
| 〈basic-query〉 ‘:’ 〈simple-path-list〉

〈basic-query〉 ::= {〈restriction〉 〈term〉}+ | 〈about〉
〈term〉 ::= word | ‘"’ word+ ‘"’ | ‘’’ word+ ‘’’
〈restriction〉 ::= empty | ‘+’ | ‘-’
〈simple-path-list〉 ::= 〈simple-path〉{‘,’〈simple-path-list〉}∗

A text query may ask whether a basic query matches the
current element, or whether it matches some descendant el-
ement. The commas in a simple path list mean “or” just as
they do in CSS.

A word is an XML-name that doesn’t include any dots,
colons, or underscores, or is a pair of such names with an

apostrophe in between, or is a number. A sequence of words
between matching quotation marks is a phrase. The ‘+’ and
‘-’ restrictions have the same meaning as in the INEX’03
query language.

That’s all there is to it. A parser for this language has been
built using Lex and Yacc.

Several features that were considered but deliberately ex-
cluded:

• Filtering on anything other than a numeric range. In
simple cases, this can be handled by the PAQB pat-
tern. Complex cases haven’t arisen. When they do, it
will be important to be clear about whether we want
precise matches, so that XHTML documents making
extensive use of the “class” attribute could be han-
dled, or information retrieval matches, in which case
we could simply have [〈attr-path〉 〈about〉].

• Any kind of language sensitivity. This is what the
CSS ‘| =’ predicate is for, and its ‘:lang” predicate.
When the INEX collection includes mixed-language
documents, we could perhaps use [:lang word].

• Any kind of position checks. It is easy enough to
add syntax for this, just copy XPath. What’s hard
is to interpret it. In XPath, bdy//p[2] means “among
the descendants of a 〈bdy〉 element take the second
〈p〉 whether it has the same parent as p[1] or not”.
To avoid this, we might take the INEX definition of
p[2], “the 2nd 〈p〉 child of some descendant of 〈bdy〉”.
Adapting [:first-child] from CSS would make more
sense.

• Allowing any number of 〈path〉〈about〉 pairs. There’s
no difficulty in adding this, it just isn’t needed.

• Allowing an axis other than “descendant”. From a
DTD, it is possible to compute a binary relation “can
have child”, the transitive closure of which is “can have
proper descendant”. This can be used to check the
plausibility of queries. CSS also allows “child” and
“sibling”, which are similarly checkable. The complex
mixing of axes in XPath makes it hard to check; we
don’t want to go there.

8. SOME SAMPLE INEX’03 QUERIES
Query 61 //article[about(.,’clustering +distributed’) and

about(.//sec,’java’)]

⇒ article(clustering +distributed & java:sec)

Query 64 //article[about(./, ’hollerith’)] //sec[
about(./, ’DEHOMAG’)]

⇒ article(hollerith) sec(DEHOMAG)

Query 66 /article[./fm//yr &lt; ’2000’]//sec[
about(.,’”search engines”’)]

⇒ article[fm/yr ..1999] sec(”search engines”)

Query 68 //article[about(., ’+Smalltalk’) or about(.,
’+Lisp’) or about(.,’+Erlang’) or about(., ’+Java’)]//
bdy//sec[about(., ’+”garbage collection” +algorithm’)]

⇒ article(+Smalltalk|+Lisp|+Erlang|+Java) bdy/sec(
+”garbage collection” +algorithm)
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Query 71 //article[about(.,’formal methods verify correct-
ness aviation systems’)]/bdy//*[about(.,’case study ap-
plication model checking theorem proving’)]

⇒ article(formal methods verify correctness aviation
systems) bdy/*(case study application model checking
theorem proving)

Query 76 //article[(./fm//yr=’2000’ OR ./fm//yr=’1999’)
AND about(., ’”intelligent transportation system”’)]//
sec[about(., ’automation +vehicle’)]

⇒ article[fm/yr 1999..2000](”intelligent transportation
system”) sec(automation +vehicle)

Query 91 Internet traffic

⇒ (Internet traffic)
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ABSTRACT
In this paper, we present EXTIRP1, a novel XML retrieval
system. It aims at retrieving exact coverage elements by de-
composing the collection into a set of minimal retrieval units.
With respect to a query, a similarity measure is computed
for each of those units using an aggregation of relevance
scores for a word features vector space model and for a novel
maximal frequent sequences model. The similarity measure
are finally propagated bottom-up, from each minimal unit
to its ancestors. The system also includes query expansion,
for which we may repeat the process several times.

1. INTRODUCTION
In this paper, we focus on the problem of finding an answer
with an optimal coverage of the topic, given a non-structural
query (CO topics in INEX). That is, we want to find a trade-
off between replying to a query with a 15 pages article and
replying a fragment that is not sufficient when deprived of
its context.

In related work, it was tried to index every single element
of the document collection, but modeling and computing an
RSV (retrieval status value) for each element causes a clear
problem w.r.t. efficiency. Our approach consists in defining
minimal retrieval units, such that none of their subelements
is big enough to be of interest by itself. An RSV is computed
for each minimal unit, using word term features in the vector
space model and maximal frequent phrases. The RSV values
of the minimal units are finally propagated upwards to all
their ancestors. One or more quey expansion steps can be
iterated to form more relevant topic descriptions.

The technique for defining minimal retrieval units is pre-
sented in section 2. The two models we used are then pre-
sented (section 3), followed by the corresponding techniques
to evaluate similarities within these models (section 4). In
the following section, our query expansion technique is pre-
sented. The last section describing the system is number 6,
where we present the method used to propagate RSVs up-
wards. We finally describe our runs in section 7 and con-
lude.

∗This author is supported by the Academy of Finland
(project 50959; DoReMi - Document Management, Infor-
mation Retrieval and Text Mining)
1EXacT coverage IR based on static Passage clusters

2. PREPARATORY PROCEDURES
Finding the most relevant text documents for each given
topic is the basic problem to be solved in traditional IR.
But, as the document collection is in XML format, we can
identify two additional challenges that must be overcome
before any traditional IR methods can be applied. First, the
document collection consists of 125 XML documents which
alone are too big to be retrieved on their own. Therefore, the
collection is divided into smaller XML units which we shall
call XML fragments. Second, the XML fragments contain all
the XML markup that is present in the original XML format.
Our goal is to convert the XML fragments into a text-only
format where all XML markup has been removed without
losing any of the information that is implicitly or explicitly
coded in the XML structure of the original documents.

2.1 Division of the collection
The division of the collection was performed at different lev-
els of granularity. We will later refer to these subdivisions
as Minimal Retrieval Units.

2.2 Structural conversion
The simplest solution is to strip all XML tags off, after which
we only have textual content left. However, this method
leads to the loss of crucial information.

3. MODELING DOCUMENTS AND QUERIES
In our approach, we represent the Minimal Retrieval Units
(MRU) by word features within the vector space model, and
by Maximal Frequent Sequences (MFS), accounting for the
sequential aspect of text. For each of those two representa-
tions, a Retrieval Status Value (RSV) is computed. Those
values are later combined to form a single RSV per MRU,
that will be later propagated to parent nodes as described
in section 6.

3.1 Preprocessing
The first step of the process is to cleanse the data. A first
way to do this consists in skipping a set of words that are
considered least informative, the stopwords. We also dis-
carded all words of small size (less than three characters).

We also reduced each word to its stem using the Porter
algorithm[8]. For example, the words ”models”, ”modelling”
and ”modeled” are all stemmed to ”model”. This technique
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for reducing words to their root permits to further reduce
the number of word terms.

This feature selection phase brings more computational com-
fort for the next steps since it greatly reduces the size of
the document collection representation in the vector space
model (the dimension of the vector space).

3.2 Modeling document fragments
The set of the remaining word stems W is used to represent
the MRUs of the document collection within the vector space
model. Each minimal retrieval fragment is represented by
a ‖W‖-dimensional vector filled in with a weight standing
for the importance of each word w.r.t. that fragment. To
calculate this weight, we used a normalized tfidf variation
following the ”tfc” term-weighting components as detailed
by Salton et al. [11], that is:

tfidfw =
tfw · log N

nw√∑
wi∈W

(
tfwi · log N

nwi

)2

Where tfw is the term frequency of the word w. N is the
total number of MRUs in the document collection and n the
number of MRUs in which w occurs.

3.3 Extracting Maximal Frequent Sequences

3.3.1 Definition and technique
Maximal Frequent Sequences (MFS) are sequences of words
that are frequent in the document collection and, moreover,
that are not contained in any other longer frequent sequence.
Given a frequency threshold σ, a sequence is considered to
be frequent if it appears in at least σ documents.

Ahonen-Myka presents an algorithm combining bottom-up
and greedy methods in [1], that permits to extract max-
imal sequences without considering all their frequent sub-
sequences. This is a necessity, since maximal frequent se-
quences in documents may be rather long.

Nevertheless, when we tried to extract the maximal frequent
sequences from the collection of minimal retrieval units ex-
tracted in 2, their number and the total number of word
features in the collection did pose a clear computational
problem and did not actually permit to obtain any result.

To bypass this complexity problem, we decomposed the col-
lection of MRUs into several disjoint subcollections, small
enough so that we could efficiently extract the set of maxi-
mal frequent sequences of each subcollection. Joining all the
sets of MFS’, we obtained an approximate of the maximal
frequent sequence set for the full collection.

We conjecture that more consistent subcollections permit
to obtain a better approximation. This is due to the fact
that maximal frequent sequences are formed from similar
text fragments. Followingly, we formed the subcollection
by clustering similar documents together using the common
k-means algorithm (see for example [15, 4]).

3.3.2 Main Strengths of the Maximal Frequent Se-
quences

The method efficiently extracts all the maximal frequent
word sequences from the collection. From the definitions
above, a sequence is said to be maximal if and only if no
other frequent sequence contains that sequence.

Furthermore, a gap between words is allowed: in a sentence,
the words do not have to appear continuously. A parameter
g tells how many other words two words in a sequence can
have between them. The parameter g usually gets values
between 1 and 3.

For instance, if g = 2, a phrase “president Bush” will be
found in both of the following text fragments:
...President of the United States Bush...

...President George W. Bush...

Note: Articles and prepositions were pruned away during the
preprocessing.

This allowance of gaps between words of a sequence is proba-
bly the strongest specificity of the method, compared to the
other existing methods for extracting text descriptors. This
greatly increases the quality of the phrase, since processing
takes the variety of natural language into account.

The other powerful specificity of the technique is the ability
to extract maximal frequent sequences of any length. This
permits to obtain a very compact description of documents.
For example, by restricting the length of phrases to 8, the
presence, in the document collection, of a frequent 25 words
long phrase would result in thousands of phrases represent-
ing the same knowledge as this one maximal sequence.

3.4 Modeling queries
To build our queries, we only considered words found in the
<title> and <keywords> elements. For consistency, we ap-
plied them the same preprocessing technique as to document
fragments.

Vector space model. A novelty in INEX 2003 was the
possibility to precede keywords with infix operators (”-” pre-
ceding a keyword meant that word was not desired, whereas
”+” preceding a keyword indicated that word was especially
important). We attached different weights to keywords pre-
ceded by such operators:

• no infix operator: the normal case, weight 1

• +: especially important, weight 1.5

• -: especially not desired, negative weight -1

In practice, things were not that simple, since the same word
could occur within two phrases with contradictory operators
(e.g., ”language” in topic 111 occurs in -”programming lan-
guage” and in +”human language”). In such rare cases, we
ignored the word (weight: 0).

Keyphrases. All the phrases occurring in the <title> and
<keywords> elements are stored in the (possibly empty) set
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of keyphrases representing the topic. For example, topic 117
(see figure 1) will be represented by the 4 phrases: ”Patri-
cia Tries”, ”text search”, ”string search algorithm”, ”string
pattern matching”.

4. EVALUATING DOCUMENTS
Once document fragments and queries are represented within
our two models, a way to estimate the relevance of a frag-
ment w.r.t. a query remains to be found. As mentioned
earlier, we compute separate RSV values for the word fea-
tures vector space model and the MFS model. In a second
step, we aggregate these two RSVs into one single relevance
score for each document fragment w.r.t. a query.

4.1 Word features RSV
The vector space model offers a very convenient framework
for computing similarities between documents and queries.
Indeed, there exists a number of techniques to compare two
vectors. Eucclidean distance, Jaccard and cosine similarity
being the most frequently used in IR. We have used cosine
similarity because of its computational efficiency. By nor-
malizing the vectors, which we did in the indexing phase,

cosine(
−→
d1,

−→
d2) simplifies to vector product (d1 · d2).

4.2 MFS RSV
The first step is to create an MFS index for the document
collection. Once a set of maximal frequent sequences has
been extracted and each document is attached the corre-
sponding phrases, as detailed in subsection 3.3, it remains
to define the procedure to match a phrase describing a doc-
ument and a keyphrase (from a query).

Note, that from here onwards, keyphrase denotes a phrase
found in a query, and maximal sequence denotes a phrase
extracted from a document fragment.

Our approach consists in decomposing keyphrases of the
query into pairs. Each of these pairs is bound to a score
representing its quantity of relevance. Informally speaking,
the quantity of relevance of a word pair tells how much it
makes a document relevant to include an occurrence of this
pair. This value depends on the specificity of the pair (ex-
pressed in terms of inverted document frequency) and mod-
ifiers, among which an adjacency coefficient, reducing the
quantity of relevance given to a pair formed by two words
that are not adjacent.

4.2.1 Definitions:
Let D be a collection of N document fragments and A1 . . . Am

a keyphrase of size m. Let Ai and Aj be 2 words of A1 . . . Am

occurring in this order, and n be the number of MRUs of the
collection in which AiAj was found. We define the quantity
of relevance of the pair AiAj as:

Qrel(AiAj) = idf(AiAj , D) · adj(AiAj)

Where idf(AiAj , D) represents the specificity of AiAj in the
collection D:

idf(AiAj , D) = log

(
N

n

)

and adj(AiAj) is a score modifier to penalize word pairs
formed by non adjacent word sequences of A1 . . . Am:

adj(AiAj) =


1, if Ai and Aj are adjacent

0 ≤ α1 ≤ 1, if d(Ai,Aj) = 1
0 ≤ α2 ≤ α1 if d(Ai,Aj) = 2

. . .
0 ≤ αn−2 ≤ αn−3, if d(Ai,Aj) = n− 2

Followingly, the larger the distance between the two words,
the lowest quantity of relevance is attributed to the corre-
sponding pair. In our runs, we will actually ignore distances
higher than 1 (i.e., (k > 1) ⇒ (αk = 0)).

Note the adjacency value of AiAj in A1 . . . Am is also called
the modifying coefficient of AiAj .

4.2.2 Example:
For example, ignoring distances above 1, a keyphrase ABCD
is decomposed into 5 tuples (pair, modifying coefficient):

(AB, 1), (BC, 1), (CD, 1), (AC, α1), (BD, α1)

Let us compare this keyphrase to the documents d1, d2, d3, d4

and d5, described respectively by the frequent sequences AB,
AC, AFB, ABC and ACB. The corresponding quantities of
relevance brought by the keyphrase ABCD are shown in
table 1.

Assuming equal idf values, we observe that the quantities of
relevance form a coherent order. The longest matches rank
first, and matches of equal size are untied by adjacency.
Moreover, non adjacent matches (AC and ABC) are not
ignored as in many other phrases representations [7].

4.3 Aggregated RSV
In practice, some queries do not contain any keyphrase,
and some documents do not contain any MFS. However,
there can of course be correct answers to these queries, and
those documents must be relevant answers to some queries.
Also, all document fragments containing the same matching
phrases get the same MFS RSV. Therefore, it is necessary
to find a way to separate them. The word-based cosine sim-
ilarity measure is very appropriate for that.

Another natural response would have been to re-decompose
the pairs into single words and form fragment vectors ac-
cordingly. However, this would not be satisfying, because
least frequent words are all missed by the algorithm for MFS
extraction. An even more important category of missed
words is that of frequent words that do not frequently cooc-
cur with other words. The loss would be considerable.

This is the reason to compute another RSV using a basic
word-features vector space model. To combine both RSVs
to one single score, we must first make them comparable by
mapping them to a common interval. To do so, we used
Max Norm, as presented in [12], which permits to bring all
positives scores within the range [0,1]:
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<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="117" query_type="CO" ct_no="98">

<title>Patricia Tries </title>

<description>Find documents/elements that describe Patricia tries and

their use.</description>

<narrative>To be relevant, a document/element must deal with the use

of Patricia Tries for text search. Description of the standard

algorithm, optimisied implementation and use in Information retrieval

applications are all relevant. </narrative>

<keywords>Patricia tries, tries, text search, string search algorithm,

string pattern matching</keywords>

</inex_topic>

Figure 1: Topic 117

Document MFS Corresponding pairs Matches Quantity of relevance

d1 AB AB AB idf(AB)
d2 ACD AC CD AD AC CD idf(CD) + α1.idf(AC)
d3 AFB AF FB AB AB idf(AB)
d4 ABC AB BC AC AB BC AC idf(AB) + idf(BC) + α1.idf(AC)
d5 ACB AC CB AB AC AB idf(AB) + α1.idf(AC)

Table 1: Quantity of relevance stemming from various indexing phrases w.r.t. a keyphrase query ABCD

New Score =
Old Score

Max Score

Following this normalization, we aggregate both RSVs us-
ing a linear interpolation factor λ representing the relative
weight of scores obtained with each technique (similarly as
in [6]).

Aggregated Score = λ·RSVWord Features+(1−λ)·RSVMFS

The evidence of experiments with the INEX 2002 collection
showed good results when weighting the single word RSV
with the number of distinct words in the query, and the MFS
RSV with the number of distinct words found in keyphrases
of the query. In other words:

λ =
#(distinct words)

#(distinct words) + #(distinct words in keyphrases)

5. QUERY EXPANSION
Query expansion (QE )was used in two of the three runs
that we submitted to INEX 2003. Both of these runs per-
formed better than the one with no expansion at all. In
runs one and two, the only difference was the use of QE,
so it serves as a good benchmark for its significance for the
performance EXTIRP. In the run without QE, the strict
precision was 0.0061, and the generalized one 0.0105, when
empty results were ignored. The corresponding figures when
QE is added, are strict precision: 0.0323 and generalized
precision: 0.0222.

In the rest of this chapter we will first describe some back-
ground concepts of QE in general. In section 5.2, we will
describe our QE method, and in 5.3, we will describe fur-
ther work in developing the method.

5.1 Background
It is generally agreed that modern variants of query expan-
sion improve the results of a query engine [2]. However, there
are many different ways in which QE can be performed.
Some methods are based on relevance feedback, which can
be blind, or which can involve feedback from the user. In
both cases, the QE approach is local because it is based
on the retrieved set of documents. A global QE approach
uses the the information derived from the whole document
collection. Modern global QE methods usually use an auto-
matically constructed thesaurus [9, 3]. Other methods are
based on manually crafted thesauri, such as WordNet, but
experimental studies have shown that if the expansion terms
from such theasuri are selected automatically, QE can even
degrade the performance of the system [14].

5.2 The Process
Our QE process can be considered a form of blind relevance
feedback that has been inspired by the standard Rocchio
way [10] of calculating the modified query vectors. However,
it is different from the traditional relevance feedback frame-
work in that it takes into account only positive terms and
no negative terms and in that it does not take into account
all of the terms in the fragments, but only the best ones,
which limits in practice the number of expansion terms per
QE iteration between zero and ten. However, experimental
studies have shown that even a few, carefully selected QE
terms can considerably improve the performance of a system
[13].
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Here is the outline of the process:

1. Run EXTIRP. The output from EXTIRP is a set of
ranked lists of document fragments. There is one list
per topic and the fragments are ranked according to
their RSV values with regard to the topic.

2. Take the ten topmost items of each list.

3. Calculate the similarity threshold value.

4. For each topic do:

(a) Take those fragments whose RSV value is greater
than the similarity threshold value. Make a list
of words occurring in these fragments followed by
their frequency count, and sort by frequency.

(b) Take the ten topmost words and expand the topic
with them.

(c) Multiply the weights of the old terms by two and
give the new terms the weight 1.

5. Run EXTIRP with the expanded topics.

We will now describe each of the steps in the process in
more detail. In steps 1 and 5 EXTIRP is run with the
same parameters and the RSV value is calculated according
to these. This means that the only things that change from
the first iteration to the second are the keywords in the topic
and the threshold value for similarity.

In step 3, the similarity threshold for a given topic is deter-
mined in the following way: Read the topmost RSV value
of the matches for each topic and maintain a list of the
six smallest values. The threshold value is the highest one
among the six smallest values. This way of determinig the
similarity threshold value implies that there are always at
least six topics that are not expanded. The topics vary a lot
and it is thus necessary to treat them differently from each
other. The number six was determined by training the QE
method on the topics and assesments of the year 2002. The
similarity threshold value has to be set always when the QE
method is applied because running EXTIRP with different
parameters results in radically different RSV values.

In step 4 (a), a list of words occurring in the fragments is
created. This list is of course pruned from stopwords and the
words are stemmed. As a stopword list a standard list for
English language is used as well as a collection-specific list.
The collection-specific list was created simply by gathering
the most frequent terms in the collection. In stemming, the
Porter stemmer [8] is used 2.

In step 4 (c), the weights of the old terms are multiplied by
two and the new terms are given the weight 1. The possible
weights of the old terms are: -1, 1 and 1.5. This means
that the term weights in the expanded topic vectors can
have the following values: -2, 1, 2 and 3. The topic vectors
are normalized so that their length is one when they are
processed by EXTIRP.

2The program was obtained from
http://www.tartarus.org/ martin/PorterStemmer/

1. Initialisation:

• ∀n ∈ N , score(n)=0

• ∀m ∈ M , score(m)=RSV(m)

2. Iterate:

• ∀m ∈ M : ∀nm ∈ N such that nm is an ancestor
of m, score(nm) = score(nm) + score(m)

3. Final step:

• ∀n ∈ N , score(n)= score(n)

size(n)Upf

Figure 2: Greedy upward propagation algorithm

5.3 Suggestions for improvement and furher
work

The above QE method can be developed further in many
ways. We plan to treat different topics in more individual
ways, run the method through more iterations and perform
QE on negative query terms as well. For example, EXTIRP
can be run separately for each topic instead of running it
for all topics at the same time, and the improvement of the
RSV values can be calculated separately for each topic. In
this way, the number of iterations performed per topic will
vary. The number of iterations of the QE method does not
have to be limited to one. Instead, we can perform QE
until a stable level of performance is reached. Expansion of
negative query terms can be performed in a similar way as
expansion of positive query terms. In negative expansion,
we will run EXTIRP with the negative terms and expand
the topics with those terms that are most common in the
matches of this negative query.

6. UPWARD PROPAGATION OF MINIMAL
RETRIEVAL UNITS

The result of the previous steps is an RSV value for each
MRU of the document collection, as defined in section 2.
We propose in this section a technique for assigning an RSV
to each ancestor of at least one MRU.

The principle is to propagate upwards the relevance value
of each MRU node, weighting each relevance value upon the
size of the corresponding element. We define the size of a
node as the sum of the sizes of all its leaf descendants. In
turn, the size of a leaf node is the number of characters it
contains (its #PCDATA value).

Let A be an XML document, N the set of element nodes of
A, M the set of MRUs of A. We compute the score of each
node n ∈ A as shown in figure 2.

Where UPF (Upward Propagation Factor) is a parameter
that modulates the importance of the size of the elements.
High UPF values give more penality to high sizes, and cause
smaller candidates to be privileged. On the other hand, if
UPF=0, for any given article, the best score will be given
to the full article.

Because we assume that users go through answers in in-
creasing rank order, we decided to avoid to propose them a
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document fragment they had already seen. Therefore, as a
postprocessing, we decided to prune every node having an
ancestor with a higher rank.

Following this, for example if UPF=0, the set of answers
will only contain full articles.

7. OUR RUNS
• UHel-Run1.

– MRU granularity: paragraph

– Number of clusters: 200

– MFS frequency threshold: σ = 7

– Upward propagation: 2

– No Query Expansion

• UHel-Run2.

– MRU granularity: subsections

– Number of clusters: 100

– MFS frequency threshold: σ = 7

– Upward propagation: 2

– With Query Expansion

• UHel-Run3.

– MRU granularity: subsections

– Number of clusters: 100

– MFS frequency threshold: σ = 7

– Upward propagation: 5

– With Query Expansion

8. CONCLUSIONS
We came up with a new technique for exploiting the logi-
cal structure of XML document so as to give more focused
answers to information retrieval queries. We implemented
this system and submitted runs to INEX 2003. At the mo-
ment, we have not properly analyzed our results, but we
observed with satisfaction that our runs 2 and 3 are ranking
5th and 4th w.r.t. to strict quantisation in the inex eval ng
evaluation technique [5].

However, there is a number of improvements to be achieved.
First, we plan to reuse the clusterings formed prior to the
extraction of maximal frequent sequences, aiming at query
optimization. The idea is that by comparing queries to cen-
troids of MRU clusters, we will be able to efficiently skip
large quantities of MRUs, without having to compute simi-
larity measures for each minimal unit individually.

Another concern is the fact that the current upward prop-
agation formula is exponential in nature, meaning a small
variation in the UPF factor can cause a switch from a set
of answers with a large majority of minimal units to a set
of answers with a large majority of full articles. Part of our
future work is to explore the various ways to smooth this
effect.
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ABSTRACT 
We describe our efforts to generate different functional 
and cognitive representations of the INEX corpus, and 
the results of simple runs with these representations. 
 

1 INTRODUCTION 
Highly structured XML documents offer unique 
opportunities for extracting many different 
representations of documents for information retrieval 
(IR) purposes. In this paper we describe our efforts to 
work with combinations of different representations 
generated from the corpus of the INEX collection as 
well as from external sources. The purpose of the 
experiments was to initiate tests of the theory of 
polyrepresentation [3] with different cognitive and 
functional representations of the document corpus. 

The paper is structured as follows: The theory of 
polyrepresentation is briefly discussed as a theoretical 
framework for the experiments in section 2. Section 3 
describes the experimental setup, and section 4 
analyses the results. Section 5 gives tentative 
conclusions. 

2 POLYREPRESENTATION  
The theory of polyrepresentation [3] provides a 
theoretical background for working with different 
representations from several sources. In summary, the 
theory hypotheses that overlaps between different 
cognitive and functional representations of both users’ 
information needs as well as documents can be 
exploited for reducing the uncertainties inherent in 
Information Retrieval (IR), and thereby improve the 
performance of IR systems. Two or more different 
cognitive representations pointing at the same 
documents is regarded as multi-evidence of those 
documents being relevant, and suggests to apply a 
principle of ‘intentional redundancy’ [2] with the 
purpose of reducing the uncertainties by placing 
emphasis on overlaps between representations. Better 
results are expected when cognitively unlike 

representations are used, e.g., the document title (made 
by the author) vs. intellectually assigned descriptors 
from indexers. 

Although the theory of polyrepresentation is holistic in 
nature and amalgamates user-oriented approaches with 
both Boolean and best match principles it is, however, 
inherently Boolean in much of its reasoning. This is 
apparent in the pronounced focus on cognitive retrieval 
overlaps, i.e., sets of documents retrieved based on 
different cognitive representations, see, e.g., the 
appendix example in [3]. A little discussed, but 
inherent point is that the structure ensures the quality of 
the sets that are matched. But this structure does not 
necessarily have to be of a Boolean nature – other 
kinds of structure may be implemented. Such may 
include the probabilistic query operators in the InQuery 
IR system for instance as utilised by [4] to achieve 
various degrees of structure in queries.  

Inspired by the work of Madsen and Pedersen [12] 
Larsen [9] proposes the idea of a polyrepresentation 
continuum (See Figure 1 below) as a model for 
discussing how structured a given implementation of 
polyrepresentation is.  

UnstructuredStructured

The Polyrepresentation Continuum

Exact match
Sets
Overlaps
Pseudo-ranking

Best match
Thresholds

Fusion of ranks 
Continuous ranking

UnstructuredStructured

The Polyrepresentation Continuum

Exact match
Sets
Overlaps
Pseudo-ranking

Best match
Thresholds

Fusion of ranks 
Continuous ranking

 
Figure 1. The polyrepresentation continuum [From 9, p. 

36] 

At the structured pole of the continuum the 
implementations are based on exact match principles, 
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leading to sets of retrieved documents for each 
representation from which overlaps can be formed and 
a pseudo-ranking be constructed. At the unstructured 
pole of the continuum the implementations are based 
on best match principles leading to a rank of the 
documents that are retrieved as input for 
polyrepresentation. Rather than straight generation of 
overlaps between sets, the implementations at the 
unstructured pole of the polyrepresentation continuum 
will consist of fusing ranks to produce a final ranked 
output, perhaps aided by thresholds to provide the 
necessary quality by restricting the ranks to be fused to 
the top ranked documents only. 

Few empirical investigations have been carried out of 
the theory of polyrepresentation so far. Larsen [8] 
reports a small online Boolean experiment at the 
structured end of the continuum. The MSc thesis of 
Madsen and Pedersen [12] combines a highly 
structured Boolean approach with probabilistic query 
operators in a best match system, and is as such placed 
closer to the middle of the continuum. 

3 METHODS 
The main focus of the runs submitted to INEX2003 
was on obtaining functionally and cognitively different 
representations of the documents. Only simple fusion 
strategies for combining the representations were used 
because of lacking time to experiment with more 
advanced ones (See section 3.2). The runs submitted to 
INEX2003 were therefore close to the unstructured 
pole of the polyrepresentation continuum. The 
investigation of more advanced strategies for how to 
combine these in a suitable structured manner 
according to the theory of polyrepresentation is the 
subject of future work. Note that the purpose of the 
experiments reported in the present paper was to 
retrieve whole documents, and not document 
components as in most approaches in INEX.  

Functionally different representations are defined as 
representations originating from the same cognitive 
agent, e.g., the article title or figure captions made by 
the author [3]. In relation to IR, representations are 
regarded as cognitively different if they originate from 
other cognitive agents than the author, e.g., descriptors 
from a thesaurus assigned intellectually to the 
documents, or later citations or links to the document 
by other authors. The corpus of the INEX test 
collections offers excellent opportunities for the 
generation of functionally different representations 
originating from the author because of the elaborate 
XML structure of the documents. In addition, a range 
of cognitively different representations of the 
documents are available because the journals in the 
corpus are indexed in the INSPEC database. A further 

opportunity offered by the INEX corpus is to exploit 
the references in the bibliographies to generate citation-
based representations.  

The InQuery IR system was used for all runs because it 
offers the possibility to store different representations 
of the documents in fields and to combine these using 
both Boolean and softer query operators. 

3.1 Indexes and fields1 
Two indexes were constructed, each containing three 
fields: one with author generated representations, one 
with intellectually assigned descriptors from a domain 
thesaurus, and one with a citation index generated from 
the corpus (See Figure 2 and Figure 3).  

The first field consists of different types of titles from 
the documents: the article title, the section headings at 
all levels, and the cited titles from the bibliographies. 
These are either generated or selected by the author. 
The inclusion of section headings is inspired by the 
Subject Access Project  (SAP) [1; 18] where section 
headings, figure and table captions were extracted as 
representations in addition to the article titles. The use 
of cited titles has been proposed by Kwok [6; 7], and 
tested by Salton and Zhang [16]. The latter experiment 
did not show any general gains from including cited 
titles. However, only those articles that were also 
source documents in the test collections used were 
included in the experiment, i.e., only a limited selection 
of cited titles was used in the experiments. The INEX 
corpus has all cited titles and may thus provide better 
results with the cited titles. The path used for extracting 
the cited titles was //bb/atl. This includes the titles of 
cited journal articles and conference papers, but not the 
titles of cited books or reports. More than 7,000 
documents contained such cited titles with an average 
of 9.9 cited titles per document. 

Titles (FLD001) 
(Article title, section 
titles, and cited titles) 

//fm/tig/atl 
//st 
//bb/atl 

Descriptors (FLD002) Intellectually assigned 
descriptors  

Citation index (FLD003)
(Boomerang effect) 

Best possible tuning with 
INEX2002 test collection 

Figure 2. Index A (without expansion on descriptors) 

The second field consists of intellectually assigned 
descriptors from the INSPEC thesaurus. These were 
available for 7,711 of the 12,107 documents in the 

                                                           
1 After submission we discovered a number of errors in the 
indexing process. Attempts have been made to correct these, 
and the methods and results reported here are for the 
corrected runs. 
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INEX corpus. Because only relatively few descriptors 
are assigned to each document by the INSPEC indexers 
this representation contained relatively few index keys. 
In an effort to enlarge this representation we expanded 
the descriptors by adding all the synonyms (the used 
for (UF) relation) as well as the narrower terms (NT) 
from the INSPEC thesaurus. Index A contained the un-
expanded descriptors (Figure 2), and Index B contained 
the expanded descriptors (Figure 3).  

Titles (FLD001) 
(Article title, section 
titles, and cited titles) 

/fm/tig/atl 
//st 
//bb/atl 

Descriptors (FLD002) 
(expanded document 
representation) 

Intellectually assigned 
descriptors, expanded  
from the INSPEC 
thesaurus (NT, UF) 

Citation index (FLD003) 
(Boomerang effect) 

Best possible tuning with 
INEX2002 test collection 

Figure 3. Index B (with descriptors expanded from the 
thesaurus) 

The third field in both indexes contained data for 
constructing a citation index, i.e., data to identify the 
references in each document. When indexed in the 
database documents can be retrieved that refer to (cite) 
a particular seed document. Such search strategies have 
shown promising results [13-15], but have rarely been 
exploited in IR research2. This is probably partly due to 
a lack of citation data in the test collections developed 
in the last decade, and partly due to the lack of seed 
documents to represent the information need. A 
particular approach to identify such seed documents 
automatically was used to construct queries for the 
citation index (See section 3.2). The index was 
constructed based on the cited titles discussed above in 
combination with the cited year. Because there were 
numerous typos etc. in the cited titles an 
implementation of the edit distance algorithm was used 
to identify variants to the same cited document3. 7,111 
documents contained references with both cited titles 
and cited years. In these documents there were 70,634 
unique citations after merging of variants, and these 
were mentioned a total of 192,881 times in the 
documents. The citations were represented by id-
numbers to ease processing. 

                                                           
2 Increasingly, web search engines exploit link data. 
However, there are indications that although similar in 
conception links and citations may be quite different in 
practice, see e.g., [17]. CiteSeer is an exception because it 
uses citations extracted from scientific papers [11]. 
3 We greatly acknowledge the Department of Information 
Studies, University of Tampere, Finland for making the 
source code for this implementation available to us. 

3.2 Queries 
Only CO topics were used because the only whole 
documents were retrieved with the tested approach.  

The same queries were used for both the title field and 
the field containing descriptors (FLD001 and FLD002). 
These were constructed manually from the title 
elements of the CO topics translating the INEX 
operators into InQuery’s probabilistic query operators 
(See Figure 4). 

In order to be able to match the content of the citation 
index with the topics, the latter had to be translated into 
citations. This was done with a best match version of 
the so-called boomerang effect proposed in [8; 10]. In 
short, the boomerang effect extracted the citations from 
sets of documents retrieved by natural language queries 
from a range of functional and cognitive 
representations. These citations were used as seed 
documents in a citation search that can retrieve later 
documents that cite the seed documents. The 
occurrence of the citations between representations and 
their frequency was used to weight and select which 
citations to use as seed documents as well as to weight 
the seed documents in the query (See [10] for details). 
The boomerang effect used was the best possible 
tuning based on the INEX2002 test collection: citations 
were extracted from 8 documents resulting in 252 seed 
documents in average per query. 

InQuery’s #sum operator was used to combine the 
fields (See Figure 4). Only a simple strategy was used 
to fuse the fields because the main focus was on 
obtaining functionally and cognitively different 
representations of the documents. Therefore the runs 
can be characterised as being at the unstructured end of 
the polyrepresentation continuum. The same queries 
were used for index A and index B. 

#sum ( 

#field (FLD001 #and(#1(natural language processing) 
(#1(human language))) #not(#1(programming 
language)) #not(#1(modeling language)))   

#field (FLD002 #and(#1(natural language processing) 
(#1(human language))) #not(#1(programming 
language)) #not(#1(modeling language))) 

#field (FLD003 #WSUM(1 3797.98 CIT_ID46361 
2404.53 CIT_ID28456 1898.99 CIT_ID43757 1898.99 
CIT_ID43816 1898.99 CIT_ID57141 ... )) ) 

Figure 4. Sample query (CO topic 111). Note that the 
citation query in FLD003 has been shortened. 
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3.3 Runs 
The two main runs were the runs on index A and index 
B to study the effect of the expanded descriptors. We 
also did runs on the individual fields to assess their 
contribution to the overall result. Six runs are reported 
here: IndexA_run, IndexB_run, Titles_run, 
Descriptor_run, Descriptor_expanded_run, and 
Citation_index_run. 

4 RESULTS 
Table 1 shows the results for the strict quantification 
function in inex_eval. Overall the results display a low 
performance compared to the best runs in INEX2003: 
The highest AvgP value was 0.0419 for the Titles_run. 
The top 10 in INEX2003 was in the 0.1140-0.0677 
range.  

Run AvgP (strict) 
IndexA_run 0.0385 
IndexB_run 0.0300 
Titles_run 0.0419 
Citation_index_run 0.0327 
Descriptor_run 0.0099 
Descriptor_expanded_run 0.0009 

Table 1. Overall results. Strict quantification function. 

Figure 5 and Figure 6 show P-R curves for the runs. It 
is immediately obvious from Figure 6 and the AvgP 
value for the run (Table 1) that there has been a 
processing error in the expansion of the descriptors. 
This means that the performance of the IndexB_run has 
suffered: Compared to IndexA the performance drops 
from 0.0385 to 0.0300 for IndexB.  

Figure 6 shows the performance each individual field. 
The un-expanded descriptors in themselves perform 
quite poorly (AvgP = 0.0099), and the idea of 
expanding this representation is supported. The 
Titles_run have the best performance of all 6 runs 
(AvgP = 0.0419), followed by the Citation_index_run 
(AvgP = 0.0327).  
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Figure 5. P-R curves for IndexA and IndexB run using 
the strict quantification function in inex_eval. 
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Figure 6. P-R curves for the individual fields using the 
strict quantification function in inex_eval. 
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5 CONCLUSIONS 
The overall aim of our runs submitted to INEX2003 
was to work on obtaining functionally and cognitively 
different representations of the documents. Two of 
these were successful:  The titles representation 
consisting of the article title, headings and cited titles, 
and the citation index, which performed fairly well. 
The intellectually assigned descriptors did not perform 
well, and it was attempted to expand these in the 
document representation by using the INSPEC 
thesaurus. Due to technical errors this failed succeed, 
and we do not know the effect of the expansion. 

Future work includes correction of the expansion error 
and a subsequent investigation of its behaviour and 
performance. Other expansion techniques on the query 
side can also be implemented, e.g., similar to the ones 
tested in [5]. 

The approach tested in the runs was close to the un-
structured pole of the polyrepresentation continuum. 
Future work also includes investigations of more 
advanced structured query strategies to improve the 
quality of the initial set used, and move the tests closer 
to the structured pole of the continuum. 
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ABSTRACT 
In this paper, we describe our approach to XML retrieval, 
which is based on the extended vector space model initially 
proposed by Fox [5].  The current implementation of our 
system and results to date are reported. The basic functions 
are performed using the Smart experimental retrieval 
system.  Early results confirm the viability of the extended 
vector space model in this environment. 

1. INTRODUCTION 
When we began our work with INEX last year, our goal 
was to confirm the utility of Salton’s vector space model 
[10] in its extended form for XML retrieval.  Long 
familiarity with Smart [9] and it capabilities led us to 
believe that it could be used for this purpose.  Our 
approach was described in the Proceedings of last year’s 
workshop [3].  Much initial effort was spent on the 
translation of documents and topics from XML to internal 
Smart format and the subsequent translation of results back 
into INEX format.  When we reported our results in [3], 
our system was still in a very rudimentary stage and far 
from error-free.   
During the past year, we built upon and extended this 
work.  We now have an operational system.  For the sake 
of clarity, a brief overview follows.  

1.1 Background 
Everyone involved in information retrieval is familiar with 
the vector space model, wherein documents and queries are  
represented as weighted term vectors.  The weight assigned 
to a term is indicative of the contribution of that term to the 
meaning of the document. Very commonly, tf-idf weights 
[11] or some variation thereof [12] are used.  The similarity 
between vectors (e.g., document and query) is represented 
by the mathematical similarity of their corresponding term 
vectors. 
In 1983, Fox [5] proposed an extension of the vector space 
model—the so-called extended vector space model—to 
allow for the incorporation of objective identifiers with 
content identifiers in the representation of a document.  An 
extended vector can include different classes of 
information about a document, such as author name, 
bibliographic citations, etc., along with content terms.   In 
this model, a document vector consists of a set of 
subvectors, where each subvector represents a different 

class of information (i.e., concept class or c-type).  Our 
current representation of an XML document/query consists 
of 18 c-types (i.e., article, ti, atl, pub_yr, sec, st, fgc, 
article_au_fnm, article_au_snm, abs, kwd, ack, tig, 
bibl_au_fnm, bibl_au_snm, bibl_ti, bibl_atl, p) as defined 
in INEX guidelines. Similarity between extended vectors is 
calculated as a linear combination of the similarities of 
corresponding subvectors.   
Use of the extended vector model for document retrieval 
normally raises at least two problems:  the construction of 
the extended search request [4, 6] and the selection of the 
coefficients for combining subvector similarities.  For 
XML retrieval, of course, the query is posed in a form that 
is easily translated into an extended vector.  The second 
problem—the weighting of the subvectors themselves—
remains open to investigation. Another issue of some 
interest here is the weighting of terms within the 
subvectors—objective vs. subjective.  (We have produced 
some useful results in relation to the term weighting issue; 
our work on the weighting of subvectors is promising but 
not well developed.  In any case, subvector weighting is 
unlikely to have a  measurable effect within the large INEX 
window.)  
The extended vector capability of Smart appeared to us 
well suited for XML with respect to the retrieval of 
documents.  But there is no facility for retrieving at the 
element level (or at various levels of granularity), which is 
a requirement of INEX tasks.  We are interested in 
determining the feasibility of incorporating the 
functionality (i.e., flexibility and granularity) required for 
XML retrieval within the extended vector environment.  
(Our first experiment in this vein, based on the methods of 
Grabs and Schek [7, 8], was not successful.  However, 
more work is necessary before conclusions can be drawn.) 

1.2 System Description 
Our system handles the processing of XML text as follows: 

(1) The documents are parsed using a simple XML 
parser available on the web.  Each of our 18 c-
types is now identifiable in terms of its XML path.  

(2) The documents and queries are translated into 
Smart format and indexed by Smart as extended 
vectors. (For the results reported in this paper, we 
used only the article-based indexing.) 
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(3) Retrieval takes place by running the queries 
against the indexed collection.  The result is a list 
of articles ordered by decreasing similarity to the 
query. (A variety of term weighting schemes are 
available through Smart.) 

(4) For each query, results are sorted by correlation 
and the top 100 elements are converted to INEX 
format and reported. 

The retrieval itself is straight-forward.  The only variation 
is the splitting of certain CAS queries into separate portions 
which are then run in parallel to ensure that the elements 
retrieved meet the specified criteria.  See [3] for an 
example of this type. 

2. EXPERIMENTS 
In the following sections, we describe the experiments 
performed with respect to the processing of the CO and 
CAS topics, respectively.  In all cases, we use only the 
topic title and keywords as search words in query 
construction.   

2.1 Using CO Topics 
Our first task is to formulate the CO topic in extended 
vector form.  Of the 18 c-types composing the extended 
vector, 8 contain subjective identifiers (i.e., abs, kwd, bdy, 
atl, edintro, ack, bibl_atl, and bibl_ti).  The extended 
vector topic is formed by associating the search words of 
the topic with each of these 8 c-types.  The remaining c-
types contain objective identifiers and are not used in 
formulating CO queries.  Our more interesting experiments 
are discussed briefly below; see [1] for more information.  
The subvectors were equally weighted in all these cases. 

2.1.1 2002 Topics  
All the results based on 2002 topics were produced through  
the original inex_eval.   
Tuned Lnu-ltu Term Weighting:  In this experiment, we 
tuned the collection as indicated by Singhal, et. al., in [13].  
Results under generalized quantization were 0.065 whereas 
strict quantization produced 0.095. 
Augmented tf-idf  (atc) Term Weighting:   2002 topics 
under generalized quantization produced an average 
precision of 0.033. 
Retrieval at the Element Level:  In this experiment, we 
used indexings of the collection at the paragraph and 
section levels in addition to the article level.  Untuned 
(estimated) Lnu-ltu weights were used in each case. For 
each  query, the rank-ordered lists were sorted and the top 
100 elements reported.  Average precision was 0.042 under 
generalized quantization. 
Flexible Retrieval:  In this experiment, we used the method 
of Grabs and Schek [7, 8].  Identifying the paragraph as the 
basic indexing node, we used the paragraph indexing of the 

collection and reported the best elements by calculating 
statistics for other elements on the fly.  Average precision 
was 0.018  under generalized quantization. 

2.1.2 2003 Topics 
Our 2003 CO submission was based on parameters that 
produced the best results for 2002 CO topics, i.e., Lnu-ltu 
term weighting with equal subvector weights. The recall-
precision graphs for 2003 CO topics under the revised 
inex_eval are given below in Figures 1 and 2.  The results 
under inex_eval_ng (overlap ignored) are shown in Figures 
3 and 4.   

 
Figure 1.  Recall-precision for CO, Generalized 

 
Figure 2.  Recall-precision for CO, Strict 
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2.2.1 2002 Topics   
Untuned Lnu_ltu Term Weighting:  All subvectors are 
weighted in this fashion.  Not unexpectedly, average 
precision was low—0.179 under generalized and 0.222 
under strict quantization. 

 

Lnu_ltu (for subjective subvectors) and nnn (for objective 
subvectors) Term Weighting:  Here we used simple term 
frequency weights (nnn) for the objective subvectors 
combined with Lnu_ltu weights for the subjective 
subvectors.  Average precision was 0.187 under 
generalized and 0.235 under strict quantization. 
Augmented tf-idf (atc) Term Weighting:    All subvectors 
were weighted with atc weights.  Average precision was 
0.194 and 0.238 under generalized and strict quantization, 
respectively.   
Augmented tf-idf (atc—for subjective subvectors) and nnn 
(for objective subvectors) Term Weighting:  These weights 
returned an average precision of 0.192 under generalized 
and 0.243 under strict quantization. 

Figure 3: Recall-precision for CO, Gen under ng 
2.2.2 2003 Topics 

 

Our 2003 submission used atc term weighting for all 
subvectors with equal subvector weights.  Due to the 
exigencies of the academic schedule, we were able to 
submit only under VCAS.  We will report these results 
when they become available through INEX. 

2.3 Results 
During the past year, we produced a working system.  Our 
results for CO topics are on the whole very good, ranking 
first or second in 3 of the 4 evaluations (e.g., in Figures 3 
and 4) under inex-eval-ng.  Yet although we were able to 
produce decent results for the 2002 CO topics under the 
original inex_eval, our results for the 2003 CO topics under 
the revised inex_eval fall far from the top.  We are still 
assessing the causes.  The assessment of our CAS 
submission awaits evaluation from INEX.  An overview of 
results to date may be seen in Table 1. 
 

3. CONCLUSIONS Figure 4: Recall-precision for CO, Strict under ng 
Our system is still in an early stage of development.  The 
issue of term weighting has now become clearer; the 
weighting of the subvectors themselves is still an open 
question. The next challenge is to develop a method of 
returning results at the element level, i.e., to retrieve at the 
desired level of granularity.  Our plans include further 
investigation of the methods of others along with the 
development of an approach that may be better suited to 
our own environment. 

 

2.2 Using CAS Topics 
Although we were able to formalize the formulation of 
extended vector CO topics very easily, CAS topics are 
more of a challenge.  At present, we are still working on 
this task.  Thus the 2003 topic formulations were 
performed manually.  Equal subvector weighting was 
applied in each case.  Experiments performed during the 
past year using the INEX 2002 queries are described 
briefly below; see [2] for more information.  Evaluation 
was performed through the original inex_eval. 
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Table 1. Comparison of Best Case Avg Precision for CO Topics 

 UMD INEX 

 gen strict gen strict 
'02 Topics 0.0650 0.0950 0.0700 0.0880 
'03 Topics: 
inex_eval 0.0253 0.0653 0.0968 0.1140 

'03 Topics: 
inex_eval_ng* 0.2971 0.2961 0.3051 0.2961 

'03 Topics: 
inex_eval_ng** 

 
0.2789 

 
0.2873 

 
0.3408 

 
0.2966 

* overlap ignored; ** overlap considered 
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ABSTRACT 

The Extensible Markup Language (XML) is becoming 
the most popular format for information representation 
and data exchange. Much research has been investigated 
on providing flexible query facilities while aiming at 
efficient techniques to extract data from XML documents. 
However, most of them are focused on only the exact 
matching of query conditions. In this paper, we describe a 
cooperative XML query answering system, CoXML, 
which cooperates with the users by extending query 
relaxation techniques and provides approximate matching 
of query conditions. We also present our participation 
effort in the Initiative for the Evaluation of XML 
Retrieval (INEX) with CoXML. 

1. INTRODUCTION 
With the growing popularity of the Extensible Markup 
Language (XML) [12], more and more information is 
stored and exchanged in the XML format [1]. XML is 
essentially a textual representation of hierarchical (tree-
like) data where a meaningful piece of data is bounded by 
matching starting and ending tags, such as <name> and 
</name>. 

To cope with the tree-like structures in the XML model, 
several XML-specific query languages have recently been 
proposed (e.g. Xpath [15], Quilt [3], XML-QL [13] and 
XQuery [16] etc.). All these XML query languages aim at 
only the exact matching of query conditions. Answers are 
found when those XML documents match the given 
query conditions exactly. However, this may not always 
be the case in the XML model. To remedy this condition, 
we are developing a query relaxation framework for 
searching answers that match the given query conditions 
approximately. Query relaxation enables systems to relax 
the user query to a less restricted form to derive 
approximate answers. Such a technique has been 
successfully used in the relational databases (e.g. CoBase 
[5]) and has proven to be a valuable technique for 
deriving approximate answers. 

In the XML domain, the need for query relaxation 
increases since the flexible nature of the XML model 
allows varied structure or values, and the non-rigid XML 
tag syntax enables users to embed a wealth of meta-
information in XML documents. Query relaxation is more 
important for the XML model [14] than for the relational 
model because: 

1. The schema in the XML model [14] is substantially 
larger and more complex than the schema in the 
relational model. Therefore, it is often unrealistic for 
users to understand the full schema and compose 
very complex queries. Thus, it is critical to be able to 
relax a user’s query when the original query yields 
null or insufficient answers. 

 
2. As the number of data sources available on the web 

increases, it is becoming increasingly common to 
build systems that gather data from the 
heterogeneous data sources. The structures of these 
data sources are different although using the same 
ontology for similar contents. Therefore, the 
capability to query against differently-structured data 
sources is becoming increasingly important [8, 9]. 
Query relaxation allows a query to relax its structure 
and matches data sources with relaxed structures. 

 

Query relaxation in the XML model introduces new 
challenges than the relational database. Query relaxation 
in the relational model is basically focused on the value 
aspect. For example, for a relational query “find a person 
with a salary range 50K – 55K”, if there is no answer or 
not enough answers available, it can be relaxed to a query 
“find person with a salary range 45K - 60K.” In the XML 
model, in addition to the value relaxation, a new type of 
relaxation called structure relaxation is introduced. 
Structure relaxation relaxes the nodes and/or edges of a 
query tree. 

Further, we shall develop a methodology to provide 
automatic structure relaxations and to evaluate the 
effectiveness of XML structure relaxations.  

A knowledge-based relaxation index structure called 
XML Type Abstraction Hierarchy (X-TAH) is introduced 
to provide scalable XML query relaxations. X-TAH is a 
hierarchical tree-like knowledge structure that builds 
multi-level knowledge representation about the XML data 
tree. X-TAH can be used to guide the XML query 
relaxation process. 

The paper is organized as follows: Section 2 provides 
some background information which cover XML data 
model, query model and XML query relaxation types. 
Section 3 describes the system architecture that we are 
using for this year’s INEX retrieval task. Query execution 
and query relaxation processes are presented in Section 4. 
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The experimental performance is discussed in Section 5. 
Finally we summarize our participation effort in INEX 03 
and discuss future works in Section 6. 

2. XML Data Model and Query Relaxation 
We first briefly describe the XML data and query model 
and then introduce query relaxation types in the XML 
model. 

2.1 Data Model and Query Model 
An XML document can typically be represented as an 
ordered, labeled tree where nodes correspond to elements 
and attributes, and edges represent element inclusion 
relationships. Each node has a label which is the tag name 
of its corresponding element or attribute. Elements’ text 
content or attributes’ values become the values of their 
corresponding nodes. Similarly, a query against an XML 
document can be represented as a tree with two types of 
edges: a parent-child edge denoted as “/”, or an ancestor-
descendant edge denoted as “//”. 
Note that in the paper, we treat an attribute as a sub-
element of an element and a reference IDREF as a special 
type of value.  

2.2 Query Relaxation Types 
In the XML model, there are two types of query 
relaxations, value relaxations and structure relaxations: 

2.2.1 Value Relaxation 

In the XML context, value relaxation involves expanding 
the value scope of certain nodes to allow the matching of 
additional answers. A value can be relaxed to a range of 
numeric values or a set of non-numeric values. Figure 1 
illustrates an example of numeric value relaxation and an 
example of non-numeric value relaxation. The query in 
Figure 1b is a relaxed query for that in Figure 1a by a 
numerical value relaxation, and the query in Figure 1d is 
a relaxed query for that in Figure 1c by a non-numeric 
value relaxation. 

 

2.2.2 Structure Relaxation 

In XML context, structural relaxation is the process of 
relaxing the nodes and/or edges of a query tree. After the 
relaxation, a new query tree may have a different 
structure than the original query tree. There are three 
types of structural relaxations. 
1) Edge Relaxation 
In an edge relaxation, a parent-child edge ('/') in a query 
tree can be relaxed to an ancestor-descendant edge ('//'). 
The semantics of edge relaxation is that while the original 
query finds answers with only a parent-child relationship, 
the new query will be able to find answers with an 
ancestor-descendent relationship which is a superset of a 
parent-child relationship. For example, query topic 69 
/article/bdy/sec[about(.//st, “Information Retrieval”)] can 
be relaxed to /article/bdy//sec[about(.//st, “Informaiton 
Retrieval”)] by relaxing the structural relationship 
between node bdy and sec from “/” to “//”. 
2) Node Re-label 
In this relaxation type, certain nodes can be re-labeled to 
similar or equivalent tag names according to the domain 
knowledge. For example, in INEX 03, domain experts 
have identified sets of equivalent tags as shown in Figure 
2. With this domain knowledge, the query 
/article/bdy//sec [about(., “XML”)] can be relaxed to 
/article/bdy//section [about(., “XML”)] by generalizing 
node sec’s label to section. 

 
3) Node Deletion 
In this relaxation type, certain nodes can be deleted while 
preserving the “superset” property. When a node v is a 
leaf node, it can simply be removed. When v is an internal 
node, the children of node v will be connected to the 
parent of v with ancestor-descendant edges (“//”). For 
example, a query /article/bdy/sec[about(., “Information 
Integration”)] can be relaxed to /article//sec 
[about(.,”Information Integration”)] by deleting internal 
node bdy so that a section in an article’s appendix talking 
about “Information Integration” can also be returned as 
an approximate answer. 

paragraph 

p1 p2 p3 ip1 ip2 ip3 ip4 ip5 ilrj item-nonep

section 

sec ss1 ss2 ss3 

(a) Equivalent names for paragraph-like tags 

(b) Equivalent names for section-like tags

Figure 2: Domain knowledge for equivalent tags in INEX 03
article

year 

2001-2003 

article

year 

1998-2003 

article

title 

“XML

(a) (b) (c) 
(d)

Figure 1: An example of value relaxation 

article

title

“Semi-
structured 
Data” 
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3. The CoXML Framework 

 
Figure 3 shows the cooperative XML query answering 
system (CoXML) which performs two types of functions: 
document indexing and query processing as discussed in 
the following: 
Document Indexing  
While a SAX parser parses XML documents, the Index 
Builder builds indices on these data based on the index 
configurations provided by the Index Configurations 
module (Section 3.1). The Index Builder module builds 
several types of indices (refer to section 3.2) for query 
processing. 
Query Processing 
An XML query is first parsed by the Query Parser to 
check its correctness. If the query is invalid, it will be 
returned to the user with the error information. Otherwise, 
the Query Processor will consult the Index Manager to 
load the corresponding indices for processing the query. 
If there are enough XML answers returned, the Result 
Ranking module will rank the results based on their 
relevancy to the query and return the ranked results to the 
user. If there is no answer or the available answers are not 
enough, the X-TAH that resides in the Knowledge Base 
will guide the Query Relaxation Manager to relax the 
query. Then the relaxed queries will be resubmitted to the 
Query Processor for answering. This process will be 
repeated until there are enough answers available or the 
query is no longer relaxable. 

3.1 Index Configurations 
XML documents in the INEX document collections are 
document-centric. There are two types of tags in these 
documents: 1) semantic tags, and 2) presentation tags. 
Semantic tags describe the semantics of the elements. For 
example, in the XML document fragment example in 
Figure 4, <article>, <bdy> and <sec> etc. are semantic 
tags for they encode the semantics of the elements, while 
<scp> is a presentation tag because it only senses the 
purpose of displaying: informing the browser to display 
the characters bounded by <scp> and </scp> in lower 
cases.

 
Presentation tags sometimes are undesirable in query 
processing. For example, suppose a user wants to find an 
article that has a section with title containing a keyword 
“knowledge”, which can be expressed in XQuery as 
//article [contains(//sec/st, “knowledge”)]. Intuitively, the 
XML document fragment in Figure 4 is an answer 
because the title of the article’s section (Line 4-7 in 
Figure 4) is “Knowledge Based…”. However, if we do 
not ignore the markup <scp> and </scp> (Line 4), it will 
not be returned as an answer since the presentation tag 
<scp> separates “K” from “NOWLEDGE”. 
To support keyword and phrase matching in document-
centric XML documents, it is necessary to ignore such 
presentation tags [2]. The set of ignorable tags during 
indexing is listed in the Index Configurations module 
(Figure 3). For XML documents in the INEX document 
collections, the list of ignorable tags for index 
configurations is shown in Table 1. 

Category Ignorable Tags 

List-items item-bold, item-both, item-bullet, item-
diamond, item-letpara, item-mdash, item-
numpara, item-roman, item-text 

Lists li, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le, 
list, numeric-list, numeric-rbrace, bullet-list 

Text font, 
style, size, 

emphasis etc 

ss, tt, b, ub, it, rm, scp, u, sub, super, large,  
ariel, bi, bu, bui, cen, rom, h, h1, h1a, h2, h2a, 
h3, h4 

 

SAX 
Parser 

XML Data 

Index 
Builder

Index 
Manager 

Knowledge Base 
(X-TAH) 

Query 
Parser

Query 
Processor  

Query 
Relaxation 

XML Query 

Relaxed 
Queries 

Result 
Ranking 

Query Results 

XML 
Indices

Figure 3: The CoXML System Architecture  

Index 
Configuration

Document Indexing 

Query Processing 

Human

1. <article>  
2.   <bdy>…. 
3.     <sec> 
4.         <st>K<scp>NOWLEDGE</scp> B<scp>ASED</scp>       
5.                 S<scp>EMANTIC</scp> T<scp>EMPORAL</scp>    
6.                   I<scp>MAGE</scp> M<scp>ODEL</scp> 
7.        </st> … 
8.      </sec> …. 
10.   </bdy> …. 
11. </article> 

Figure 4 : An XML document fragment 

Table 1: Index configurations used in INEX
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3.2 Indexing XML documents 
Each node in an XML data tree is represented by a triple 
(ID, size, level), where ID uniquely identifies the node in 
the XML document collections, size indicates the size of 
the sub-tree rooted at this node and level describes the 
node’s height in the data tree. The advantage of this 
encoding scheme is that the hierarchical relationship 
(either parent-child or ancestor-descendant relationships) 
between any pair of nodes can be checked in constant 
time.  
Values of nodes are processed in the following three steps:  
1) A stop words list is used to delete words with weak 
discriminative powers (such as articles, pronouns, 
conjunctions and auxiliary words). This step significantly 
reduces the index size.  
2) The Lovins stemmer [7] is used to derive word stems. 
For example, the stem for “clustering”, “clusters” and 
“clustered” is “cluster”. Word stemming reduces the 
index size and also supports keyword matching.  
3) Each stem is represented as a pair of (ID, pos), where 
ID is the unique identifier of a node that contains this 
stem and pos is its relative position in the node’s value. 
We assign a node’s ID to its corresponding value to avoid 
the expensive join operations between nodes and their 
values and keep each stem’s relative position in a node’s 
value to support phrase matching. 
To support efficient and scalable query processing, the 
Index Builder builds several types of indices, as listed 
below: 
 Tag Name Index (tag name  name identifier) 

Each tag name s is mapped to a unique name 
identifier (NID) to minimize index size and 
computation overhead by eliminating string 
comparisons.  

 Node Index (name identifier  (ID, size, level)) 
Each name identifier is mapped to a set of nodes (in 
the form of (ID, size, level)) whose labels are the 
same as the one represented by the name identifier. 

 Inverted Stem Index (stem s  (ID, pos)) 
Each stem s is mapped to a set of pairs (ID, pos), 
where ID is the unique identifier of the node that 
contains stem s and pos is its relative position in the 
node’s value. 

 Text Size Index (ID  text size) 
For each node that has a value, its ID is mapped to 
the number of words it contains. The text size index 
is useful for result ranking (refer to section 4.4). 

The indices for the XML document fragment in Figure 5 
are shown in Table 2, which consist of four indices: a tag 

name index (Table 2.a); a node index (Table 2.b); an 
inverted stem index (Table 2.c) and a text size index 
(Table 2.d). 

 
 

 
 
Stem (ID, pos) pairs 

bas (3, 1) (7, 2) 

imag (3,2) (4, 3) 

knowledg (3, 0) (7, 1) 

retrief (3, 3) (4, 1) 

 

 
 

 
 

3.3 Knowledge Base  
Knowledge Base is an important part in the system 
architecture, which facilitates XML query relaxation and 
consists of the following two parts: 

1) Domain Ontology 

Domain ontology provides the semantic relationships 
among the tag names in an XML dataset, such as groups 
of equivalent or similar tag names which can guide the 
node re-label. For example, Figure 2 lists two sets of 
equivalent or similar tag names for INEX 03, one for 
section-like nodes (Figure 2a) and another for paragraph-
like nodes (Figure 2b). 

2) Knowledge-based XML Relaxation Index (X-TAH) 

Tag Name NID 

article 0 

appendix 1 

body 2 

section 3 

NID Nodes (ID, size, level) 

0 (1, 5, 1) 

1 (5, 1, 2) 

2 (2, 2, 2) 

3 (3, 0, 3) (4, 0, 3) (7, 0, 3) 

ID Text Size 

1 1000 

2 600 

… … 

7 100 

article 

body 

section section 

appendix

section 

“Knowledge Based 
Image Retrieval…”

“It retrieves 
the images…” 

“A knowledge 
base is …” 

Figure 5 : An XML document fragment 

2 

3 4 

5

7

1 

Table 2: Indices for the XML fragment in Figure 5, a) maps a 
tag name to a unique name identifier; b) maps a name identifier 
to a set of nodes in the format of (ID, size, level); c) maps a 
stem to a set of (ID, pos) pairs d) maps a node ID to its text size

(c) An inverted stem index 

(b) A node index (a) A tag name index 

(d) A text size index 
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Query relaxation enlarges the search scope of query 
conditions which can be accomplished by viewing a 
query object at a higher conceptual level. To support 
query relaxation in the XML model, we are generating 
two types of relaxation index structures, XML Type 
Abstract Hierarchy - X-TAH: value relaxation index and 
structure relaxation index for guiding value and structure 
relaxations. 

An X-TAH is a tree-like multi-level knowledge 
representation of the structure and value characteristics of 
an XML data tree. X-TAH can be automatically 
generated from a set of objects based on their inter-object 
distance [8]. Objects in an XML value relaxation index 
are values of XML elements and attributes, while objects 
in an XML structure relaxation index are structure 
fragments of XML data trees. X-TAH has two types of 
nodes: internal nodes and leaf nodes. This differentiates it 
from a traditional cluster which has no internal nodes. An 
internal node in an X-TAH is a representative that 
summarizes the characteristics of all the objects in that 
cluster, while a leaf node is an object that is either a value 
(in the XML value relaxation index) or a structure 
fragment of an XML data tree (in the XML structure 
relaxation index). For example, Figure 6 is an X-TAH for 
the values of //fig//no in the INEX document collections. 
Figure 7 is an X-TAH for structure relaxation for 
//article/*//section. 

 

4. Query Processing and Relaxation 
The control flow for processing the INEX query topics is 
illustrated in Figure 8. First, each topic is translated into a 
tree representation that the Query Processor can follow 
and process. Next, the query is executed to produce a set 
of results. If there are enough answers produced, the 
Result Ranking ranks each result based on its relevancy to 
the query. Otherwise, the Query Relaxation Manager 
relaxes the query based on an X-TAH (Knowledge Base). 
The relaxed queries are then submitted to the Query 
Processor for deriving approximate answers. This process 

will iterate until either there are enough answers or the 
query is no longer relaxable. 

 
 

 

4.1 Transformation of INEX Query Topics 
The topic transformation can be accomplished by the 
following three steps:  
1) Translating each INEX query topic expressed in XPath 
[15] into a tree representation. This is a straightforward 
step as most XPath expressions use tree structures. 
2) Categorizing each term and phrase in the <title></title> 
part of a query into one of the three categories as defined 
below: 

• PREFER (P) 
Any term or phrase prefixed by “+” belongs to this 
category.  
• REJECT (R) 

  Figure 6: An Example of value relaxation index (X-TAH) 

O2 O3 O4

R1

O5 O6 O7 

R2 

O8 O9 

R3 

R4 

R5
Structure Relaxation 
Index for query pattern 
//article/*//section

O1

O10

Figure 7: An Example of structure relaxation index (X-TAH) 

Query Topic 

Query Processor 

Query Relaxation 
Manager  

Enough 
Answers?

Relaxed 
Query  

Result 
Ranking  

Query Results 

Y

N 

     Figure 8: The control flow of CoXML query processing

KB     
(X-TAH)

15 

7 

4 3 

3-4 2 1

1-2

6 5 

5-6 

3-6 

1-6 

9 8 

8-9 

7-9 

11 10 

10-11 

7-11 

1-11 
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Any term or phrase prefixed with “-“ or appearing 
after “!=” operator belongs to this category. 
• NORMAL (N) 
Any term or phrase not in the PREFER or REJECT 
category is classified in the NORMAL category. 

3) Expanding a query’s value predicates in the 
<title></title> part with terms and phrases in the 
<keyword></keyword> part that do not appear in the 
<title></title> part. Such terms and phrases are in the 
KEYWORD (K) category. 
For example, the tree representation for the INEX 03 
query topic 89 (Figure 9) with classified terms and 
phrases and expanded keyword value predicates is shown 
in Figure 10. 

 
4.2 Query Processing 
After the topic translation, a query tree is sent to the 
Query Processor for execution. Several query processing 
strategies have been proposed for XML tree pattern 
queries [e.g.11, 10]. The basic idea of these query 
processing strategies is to decompose an XML tree 
pattern query into a set of basic structural relationships 
(i.e. parent-child relationship and ancestor-descendant 
relationship) between pairs of nodes. Query answers can 
be derived by first matching each of these basic structural 
relationships and then combing these basic matches. 
Matching each structural relationship is usually based on 
XML indices and structural join algorithms [10, 4 etc.]. 

We leverage on these query processing strategies for 
deriving the exact matched query answers with additional 
care for processing value constraints in a query tree. 
As illustrated in section 4.1, each term and phrase in the 
<title></title> and <keyword></keyword> part of a query 
topic is classified into one of the four categories. The 
semantics for terms and phrases in the PREFER, 
NORMAL and KEYWORD categories are quite clear. 
However, the semantics for terms and phrases in the 
REJECT category is context sensitive. If a value predicate 
in a query contains only REJECT category terms and 
phrases, it is interpreted as “strictly MUST NOT”. 
Otherwise it means “fuzzy MUST NOT”. For example, 
for the query tree in Figure 10, the semantics for “R: 
SOFT, SOM” under node bdy is different from that for “R: 
Kohonen” under node snm. The semantics for the first 
one is that if an article’s body (bdy) contains either term 
“SOFT” or “SOM”, it is still an answer but with lower 
relevancy. However, the semantics for the second one is 
that if an author’s surname (snm) contains the term 
“Kohonen”, it will not be returned as an answer. 

4.3 Query Relaxation 
If there is no answer or not enough available answers, the 
Query Processor will call the Query Relaxation Manager 
to relax the query in the following three steps: 
1) A set of relaxable conditions as well as their respective 
relaxation order are generated. For example, for INEX 03 
query topic 85, //article[.fm//yr >= 1998 and .//fig//no 
>9]//sec[about(.//p, ‘VR, “virtual reality”, “virtual 
environment”, cyberspace “augmented reality”’)], the set 
of relaxable conditions and their relaxation order may be 
assigned as: relaxing the value of figure numbers 
(//article//figure/no > 9) first and then relaxing the value 
of the article’s year (//article/fm/yr >= 1998). 
 
2) For each relaxable condition, a relaxation index (X-
TAH) will be selected to guide the relaxation process. 
The Query Relaxation Manager will first examine the 
internal representatives to find the one that contains the 
exact or closest match against the relaxable condition and 
relax the query condition accordingly. There are two 
types of operations in an X-TAH: i) Generalization - 
moving up the hierarchy to enlarge the search scope; and 
ii) Specification – moving down the hierarchy to narrow 
the search scope. The query relaxation process may incur 
a sequence of Generalization and Specification operations.  
3) The relaxed queries will be sent to the Query 
Processor to derive approximate answers. This relaxation 
process will continue until there are enough answers or 
the query is no longer relaxable. 

<inex_topic topic_id="89" query_type="CAS" ct_no="123"> 
<title> 
//article[about(./bdy,'clustering "vector quantization" +fuzzy +k-
means +c-means -SOFM -SOM')]//bm//bb[about(.,'"vector 
quantization" +fuzzy clustering +k-means +c-means') AND 
about(./pdt,'1999') AND ./au/snm != 'kohonen'] 
 </title> 
<description> 
Find articles about vector quantization or clustering and return 
bibliography details of cited publications about clustering and 
vector quantization methods, from recent years, not authored by 
Kohonen.  
</description> 
<narrative> 
Bibliography elements of publications, preferably from around 
2000 (1996 to 2002 is fine, descending relevance thereafter). 
Preferred documents have reference to k-means or c-means 
clustering. Not interested in publications where the author is 
Kohonen, or in his work on self organizing feature maps (SOM 
SOFM). The citing article and the cited publication should be about 
clustering or vector quantization methods.  
</narrative> 
<keywords> 
cluster analysis,adaptive clustering,Generalized Lloyd, LBG, GLA 
</keywords> 
</inex_topic> 

Figure 9: INEX 03 Query Topic 89 
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For example, in the query topic 85, to relax the query 
condition, //article//figure//no > 9, the Query Relaxation 
Manager will select the value relaxation index in Figure 6 
to guide the relaxation process. The system first locates 
the closest matched internal representative, which is 8-9, 
and then relaxes the query condition to //article/figure//no 
> 8 to derive approximate answers. 

Similarly, to relax the structure constraint //article/bdy/sec 
in the query topic 69 (i.e. /article/bdy/sec[about(.//st, 
‘“information retrieval”’)]), the Query Relaxation 
Manager will first locate the closest matched internal 
representative, which is //article/bdy//sec, and will relax 
the query topic to //article/bdy//sec[about (.//st, 
‘“information retrieval”’)]. 

4.4 Result Ranking  
The query results are ranked by the Result Ranking 
module before returning them to the user. Query results 
are ranked according to the following priorities: first 
query results from the original query and then 
approximate answers from the relaxed queries. The 
approximate answers are further ranked according to the 
relaxation order. For example, for the query topic 85, 
there are two relaxation conditions: 1) //article//fig//no > 
9 and 2) //article/fm//yr > 1998. The relaxation order 
between them is to relax the first condition and then the 
second one. As a result, the approximate answers for the 
first relaxation condition are ranked before the 
approximate answers for the second relaxation condition. 
For the query results in the same category, they are 
ranked according to the following formula: 

| |

i = P, N, K, R 1

( )
| |

iC
iji

u
ji

frequency of termwrank
C Text Size of node u=

= ∑ ∑  

 

 
where wi is the weight assigned to one of the four 
categories Ci (i = P, N, K R); |Ci| is the total number of 
stems (a phrase is counted as a term) in the category; 
frequency of termij is the number of occurrence of termj 
from category Ci in node u; and Text Size of node u refers 
to the total number of words in node u, which can be 
accessed from the text size index.  

5. Experimental Observations 
We shall now discuss the experimental results based on 
two performance measurements: index size and query 
execution times.  
The indices for all the INEX document collections occupy 
about 1.2GB, which is roughly about twice the size of the 
XML document collections. Four types of indices are 
built by the Index Builder: tag name index, node index, 
text size index, and inverted stem index. The first three 
are relatively small and the last one is quite large. 
Query processing time depends on the following factors: 
1) Number of stems and phrases in a query and their 
corresponding frequency in the XML data. 
The query processing time depends on the number of 
stems and phrases a query contains and their 
corresponding frequencies in XML documents. More 
frequent stems and phrases require longer query 
processing time than less frequent ones. 
2) Number of structure constraints in a query and their 
corresponding frequency in the XML data. 
The required query processing time is sensitive to the 
number of structure constraints a query contains. It is also 
sensitive to their frequencies in XML documents. For 
example, a less frequent structure constraint, Q1 
//article/fm//pdt, can be processed much faster than a 
more frequent one Q2 //article/bdy//p. (Q1 returns the 
publication date (pdt) element of an article in its front 

article

bdy 

N: clustering, “Vector quantization” 
P: fuzzy, k-means, c-means,  
R: SOFT, SOM 
K: “cluster analysis”, “adaptive 
clustering”, “Generalized Lloyd”, 
LBG, GLA 

bm

bb

pdt au 

snm 

R: Kohonen 
N: 1999

N: clustering, “Vector quantization” 
P: fuzzy, k-means, c-means,  
K: “cluster analysis”, “adaptive 
clustering”, “Generalized Lloyd”, 
LBG, GLA 

Figure10: The tree representation of query topic 89 in INEX 03 
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matter part (fm) and Q2 returns the paragraph (p) elements 
of an article in its body part (bdy)).  
3) The level of query relaxation and the number of 
relaxable conditions existed in the query. 
The more relaxable query conditions a query topic 
contains, the longer it takes to derive the approximate 
answers. 
Depending on the complexity of its value and structure 
constraints, a content-and-structure (CAS) query takes 
from several seconds to over a minute to get exact 
matched answers. For a relaxable query, it might take 
several minutes to generated the relaxed queries and 
derive approximate answers. 

6. Summary and Future Works 
In this paper, we describe how we index INEX XML 
documents and extend the query relaxation technique to 
the XML model to support cooperative XML query 
answering. 
During our INEX 03 investigation, several problems were 
discovered, which needs future investigations: 
1) Index Configurations 
Our current index configuration only contains a list of 
ignorable tags. We plan to support other index 
configurations, such as ignorable annotations in which 
both elements and their value can be ignored.  
2) Uniform Value Index Scheme  
In our current system, we index the elements’ text content 
and attributes’ values in XML documents uniformly. 
Each non-stop word is stemmed and is built an inverted 
stem index without considering of the value’s 
characteristics. Such an index approach sometimes may 
derive undesirable results. For example, for a content-
only (CO) query ”web, internet”, the document fragment 
“<author> <snm>webb </snm></author>” will be 
returned as an answer since “webb” and “web” share the 
same stem: “web”.  To avoid such undesirable results, we 
plan to work on a configurable value index framework 
which supports multiple value treatment options and 
index types based on the value’s characteristics. 
3) Ranking Functions 
Our current system only supports relative ranking. 
Ranking functions for query results needed to be 
investigated to provide more user and context sensitive 
ranking.  
4) Query Relaxation Language 

No explicit relaxation constructs is available in a query 
topic for specifying the relaxable query conditions as well 
as their relaxation order. We plan to develop a 

cooperative query language that enables users to specify 
relaxation constructs in the queries. 
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The aim of the INEX initiative 

appropriate scoring methods, for the
initiative it is the task of the participa
that will contribute to the test collec
this collaborative effort. 

1. Introduction 
Test collections, as traditionally 

documents, a set of information need
topic the set of relevant documents. 

A test collection for XML retrie
Although it still consists of the same
IR test collections, documents are 
generally treated as collections of ter
whether a document as a whole is 
organise their content into smalle
document’s hierarchy, along with th
the use of XML query languages, us
and structural conditions within thei
elements within an XML collection. 
consider the structural nature of the d

This guide deals only with the
their creation for INEX 2003. 
 

2. Topic creation criter
Creating a set of topics for a test

well-known fact that the performan
variation is usually greater than the 
topic. Thus, to judge whether one re
the retrieval performance must be ave
diagnostic tool, the average performa
nor too bad as little can be learned
documents.  

When creating topics, a number o
 
1. The author of a topic shou

subject area covered by th
assessor of relevance!) 

2. Topics should reflect what re
3. Topics should be representat
4. Topics should be diverse. 
5. Topics may also differ in the

 

3. Query types 
As last year, in INEX 2003 we di
 
• Content-only (CO) queries:

content related conditions, 
(without specifying what tha
of XML retrieval stems fro
result components or are no

 

  INEX’03 Guidelines for 
Topic Development  
 

is to provide means, in the form of a large test collection and 
 evaluation of content-oriented XML retrieval. Within the INEX 
ting organisations to provide the topics and relevance assessments 

tion. Each participating organisation therefore plays a vital role in 

used in information retrieval (IR), consist of three parts: a set of 
s called topics, and a set of relevance assessments listing for each 

val differs from traditional IR test collections in many respects. 
 three parts, the nature of these parts is fundamentally different. In 
considered as units of unstructured text, topic statements are 

ms and/or phrases, and relevance assessments provide judgements 
relevant to a query or not. XML documents, on the other hand, 
r, nested structural elements. Each of these elements in the 
e document itself, is a retrievable unit. Regarding the topics, with 
ers of an XML retrieval system are able to combine both content 
r information need and restrict their search to specific structural 
Finally the relevance assessments for an XML collection must also 
ocuments and provide assessments at different structural levels. 
 topics of the test collection and provides detailed guidelines for 

ia 
 collection requires a balance between competing interests. It is a 
ce of retrieval systems varies largely for different topics. This 
performance variation of different retrieval methods on the same 
trieval strategy is in general more effective than another strategy, 
raged over a large, diverse set of topics. In addition, to be a useful 
nce of the retrieval systems on the topics can be neither too good 

 about retrieval strategies if systems retrieve no or only relevant 

f factors should be taken into account.  

ld be either an expert or the very least be familiar with the 
e collection! (Note that the author of a topic should also be the 

al users of operational systems might ask. 
ive of the type of service that operational systems might provide. 

ir coverage, e.g. broad or narrow topic queries. 

stinguish two types of query:  

 are requests that ignore the document structure and contain only 
e.g. only specify what a document/component should be about 
t component is). The need for this type of query for the evaluation 

m the fact that users either do not care about the structure of the 
t familiar with the exact structure of the XML documents. 
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• Content-and-structure (CAS) queries: are topic statements, which contain explicit references 
to the XML structure, and restrict the context of interest and/or the context of certain search 
concepts.  

 

4. Topic format 
Both CO and CAS topics are made up of four parts:  
 
• Topic title: a short version of the topic statement. It serves as a summary of both the content 

and structural requirements of the user’s information need. The exact format of the topic title 
is discussed in more detail later in this section. 

• Topic description: a one or two sentence natural language definition of an information need. 
• Narrative: a detailed explanation of the topic statement and the description of what makes a 

document/component relevant or not. 
• Keywords: a set of comma-separated scan terms that are used in the collection exploration 

phase of the topic development process (see Section 5.2) to retrieve relevant 
documents/components. Scan terms may be single words or phrases and may include 
synonyms, broader or narrower terms from those listed in the topic description or topic title. 

 
The format of the topic title in 2003 is different to that used in INEX 2002. This year, the format is 

based on XPath, the proposed language for addressing parts of XML documents. The XPath notation is 
adopted in INEX 2003 to refer to the logical structure and the attributes of the XML documents. 
However, since XPath is a very rich and powerful language, we restrict ourselves to a subset of XPath, 
which has been identified by the INEX 2002 Topic Format working group as providing an “IR 
minimum”. This subset corresponds (mainly) to the use of path expressions as described in Section 2 of 
the document XML Path Language (XPath) Version 1.0, W3C Working Draft 16 November 1999 
(available at http://www.w3.org/TR/xpath). More precisely, the topic format will make use of Axes 
(Section 2.2), Predicates (Section 2.4), and will use the abbreviated syntax described in Section 2.5 of 
the aforementioned document.  

 
Below are examples of path expressions (taken from Section 2.5 of the XPath 1.0 standard): 

• para selects the para element children of the context node 
• * selects all element children of the context node 
• @attr selects the attr attribute of the context node 
• @* selects all the attributes of the context node 
• para[1] selects the first para child of the context node 
• */para selects all para grandchildren of the context node 
• /doc/chapter[5]/section[2] selects the second section of the fifth chapter of doc  
• chapter//para selects the para descendants element of the chapter element children of 

the context node 
• //para selects all the para descendants of the document root and thus selects all para 

elements in the same document as the context node 
• //olist/item selects all the item elements in the same document as the context node that 

have an olist parent 
• . selects the context node 
• .//para selects the para element descendants of the context node 
• .. selects the parent of the context node 
• ../@lang selects the lang attribute of the parent of the context node 
• para[@type=‘warning’] selects all para children of the context node that have a type 

attribute with value warning  
• para[@type=‘warning’][5] selects the fifth para child of the context node that has a 

type attribute with value warning  
• para[5][@type=‘warning’] selects the fifth para child of the context node if that child 

has a type attribute with value warning  
• chapter[title=‘Introduction’] selects the chapter children of the context node that 

have one or more title children with string-value equal to Introduction  

  

http://www.w3.org/TR/xpath
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• chapter[title] selects the chapter children of the context node that have one or more 
title children 

• employee[@secretary and @assistant] selects all the employee children of the 
context node that have both a secretary attribute and an assistant attribute 

4.1. The about() function 
In INEX, an “aboutness” concept, in the form of an about(path, string) function, has been added to 

the standard XPath syntax to deal with the content aspect of a user query. This concept was necessary 
in order to introduce the uncertainty inherent in IR into the world of the more exact-match XPath 
principle. The about() function should be used as the basis to provide a ranking of the retrieved 
elements with respect to content. Note that the about(path,string) clause is different from the 
contains(path,string) function of the XPath standard (see XPath 1.0, http://www.w3.org/TR/xpath). 
The latter returns true if the text value of the element defined by the path contains the string argument, 
and otherwise returns false. On the other hand, the about() function returns true if the element defined 
by the path argument is “about” the concept(s) defined by the string argument without having to 
actually contain the exact string value.  

 
The about() function is usually applied to a context element, CE. This is described by the following 

syntax: CE[about(path, string)]. A context element is described using a standard XPath path 
expression (see the examples of path expressions in Section 4). It defines a “base node” against which 
relative paths, using the “.” notation, can be defined within the path argument of the about() function. 
For example, //article[about(.//sec,‘“XML retrieval”’)] represents the request to retrieve 
articles that contain within them a section about “XML retrieval”. Another example is 
//article[about(.//sec, ‘“XML retrieval”’) and about(.//sec,‘evaluation’)], 
which is a representation of the request to retrieve articles, which contain a section about “XML 
retrieval” and also a section on evaluation (where the two sections may be different or may be the 
same). We will look at more complex structures when we discuss the format of the CAS topic titles. 
The string parameter may contain a number of space-separated terms, where a term may be a single 
word or a phrase encapsulated in double-quotes. Furthermore, the symbols + and − may be used to 
express additional preferences for certain terms, where + is used to emphasise a concept and − is used 
to denote an unwanted concept. In summary, a string parameter may incorporate the following 
components: 

• Terms (single words or phrases) 
• “” (double-quotes to encapsulate phrases) 
• + (expressing “must be about”) 
• − (denoting “must not be about”) 

 
The syntax of a string argument is:  
 
String   ::=   term ‘ ’  

| ‘+’term ‘ ’  
| ‘−’term ‘ ’ 

Term     ::=   single word  
| ‘”’phrase‘”’  

 
A string must be enclosed between single quotes. For example, //article[about(.//sec, 

‘“XML retrieval” +XML –“information retrieval”’)] would correspond to the request to 
retrieve articles that contain a section which is about XML retrieval but not about information retrieval, 
and where XML is characterised as an important concept. 

 
Although at this point we are not talking about relevance assessment we would like to make a note 

here to emphasise that for relevance assessments the symbols + and − should be interpreted with a 
fuzzy “flavour” and not simply as must contain or must not contain conditions. Following on from the 
definition of the about() function above, a component may be considered relevant even if it does not 
contain the query term(s), but is “about” the concept(s) expressed by the query term(s). Similarly a 
component may be relevant even if it contains, for example, only one half of a phrase. 
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4.2 CO Topics 
The topic title of a CO topic is a short, usually a 2-5 terms representation of the topic statement. 

Since CO topics ignore the document structure, their topic title will only consist of one about() clause 
applied to any context elements denoted by the path //*. The path argument of the about() function 
must be set to “.” (dot) to refer to the context element. The string argument is made up of terms that 
best describe what the user is looking for. Take as an example the topic title //*[about(., ‘“XML 
retrieval"’), which is the representation of the request to retrieve any elements that are about 
“XML retrieval”.  

In order to simplify this syntax, we remove all components of the topic title that are the same for all 
CO topics (e.g. the context element, the path argument, etc.). As a result, we end up with just the string 
argument of the about() function, e.g. replacing //*[about(path, string)] with string, where 
we also ignore the single quotes. 

 
The topic title of a CO topic is therefore defined as a set of space separated terms, optionally 

associated with the symbols + and −, where a term may be a single word or a phrase encapsulated in 
double-quotes. The syntax of the CO topic titles hence matches the syntax of the string argument 
specified above (Section 4.1). 

Examples of CO topic titles 
1. Retrieve documents/components about computer science degrees that are not master degrees: 

<title>“computer science” +degree –master</title> 

2. Retrieve document/components about summer holidays in England: 
<title>“summer holiday” +England</title> 

Example of a CO topic 
<inex_topic topic_id=”1” query_type=”CO”> 

<title> 
"summer holiday” "winter holiday” +"England”  

 </title> 
 <description> 

Winter or summer holidays in England. 
 </description> 
 <narrative> 

To be relevant, a document or component must contain 
information about winter or summer holidays in England. 

 </narrative>  
 <keywords> 
  summer, winter, holiday, England, skiing, beach 
 </keywords> 
</inex_topic> 
 

4.3 CAS Topic 
The general structure of a CAS topic title is as follows: 

CE [ filter ] CE [ filter ] … CE [filter] CE [filter] 

CE refers to the context element. The series of context elements, where the first CE acts as the root 
node, describes a branch of an XML tree. Each context element is relative to the context element that 
precedes it in the sequence. This branch forms the path of the target element that is to be returned to the 
user. A filter is defined as a set of about clauses (e.g. about(path, string)) and other predicate clauses 
(e.g. @yr = ‘2001’), which are joined by Boolean expressions. The path argument of the about() 
function can be expressed relative to the context element by using the “.” notation. For example, 
//article[.//@yr = ‘2001’]//sec[about(.,‘+"XML retrieval"’), is the expression of a 
request to retrieve sections about “XML retrieval” of articles written in 2001. This query has two 
context elements, namely //article and //sec, which together define the target element. 
//article//sec.  

A filter may contain a set of about() functions and/or a set of standard XPath string operators: =, !=, 
>, <, >= and <=. The conditions expressed by these functions and operators can be combined using the 
Boolean operators: AND and OR, together with the use of parenthesis to group such conditions 
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together. For example, //article[about(.//p,‘+“holiday”’) AND .//@yr=‘2002’], 
retrieves articles that contain paragraphs about “holiday” and have a published date of 2002. Note that 
while the series of context elements must describe a branch of the XML tree, the filter components 
allow for the definition of content conditions on different branches of a tree within the context element. 
Take the earlier mentioned example (Section 4.1) of //article[about(.//sec,‘“XML 
retrieval”’) and about(.//sec,‘evaluation’)] requesting article elements, which contain 
a section about “XML retrieval” and also a section on “evaluation” (where the two sections may be 
different or may be the same). Here two independent branches of the tree rooted in //article are 
described.  
NOTE THAT FOR AN INEX CAS TOPIC, IT IS A REQUIREMENT THAT A FILTER  
CONTAINING AN ABOUT() FUNCTION MUST BE SPECIFIED FOR THE LAST CONTEXT  
ELEMENT! Multiple target elements are not allowed in INEX 2003. Also note that specifying one 
context element only, and setting it to //*, while setting the path argument of the about() functions to 
“.”, we arrive back at a CO topic title. 

Examples of CAS topic titles1 
 

1. Return section elements, which are about summer holidays, where the section element is a 
descendent of article element, and the article is from 2001 or 2002: 

<title> 
//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’]//sec[about(., 
‘”summer holidays”’)] 

</title> 

The above query has two context elements, //article and //sec, each with their own filters, 
one containing a standard Xpath predicate and the other containing an about() clause. The target 
element defined by the above query is //article//sec.  

Note that the following query is not a valid INEX query as it does not contain an about() function: 
<title> 

//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’] 
</title> 

The following query is not valid because there is no filter applied to the last context element (e.g. 
//sec): 

<title> 
//article[.//@yr = ‘2001’ OR about(., ‘“summer holiday”’]//sec 

</title> 

In the remainder of the examples for simplicity we ignore the <title> </title> tags. 
 
2. Retrieve all articles that were published in 2001 and are about summer holidays: 

//article[.//@yr = ‘2001’ AND about(./, ‘”summer holidays”’)] 

 
3. Return article elements published in 2001 that contain section elements about summer holidays: 

//article[.//@yr = ‘2001’ AND about(.//sec, ‘”summer holidays”’)] 

4. Return articles from 2001, which contain section elements about summer holidays or section 
elements about winter holidays: 

//article[.//@yr = '2001'  AND (about(.//sec, '"summer holidays"')OR 
about (.//sec, '"winter holidays"'))] 

A query requesting articles from 2001 containing section elements about summer and winter 
holidays would be as follows: 

//article[.//@yr = ‘2001’ AND (about(.//sec, ‘+“summer holidays” 
+“winter holidays”’)] 

5. Return section elements, which are about summer holidays and that are the grandchildren of article 
elements, where the article is from 2001 or 2002: 

                                                           
1 Note that these examples do not conform to the structure or content of the INEX document collection 
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//article[.//@yr = ‘2001’ or .//@yr = ‘2002’]/*/sec[about(., ‘”summer 
holidays”’)] 

6. Return articles on XML retrieval, where the article contains a section on evaluation: 
//article[about(., ‘“XML retrieval”’) AND about(.//sec, ‘evaluation’)] 

7. Retrieve articles that were published in 2002 and contain a section about “XML retrieval”: 
//article[about(.//sec, ‘“XML retrieval”’) AND .//@yr=’2002’] 

8. Retrieve those sections of articles published in 2002 that are about “XML retrieval”: 
//article[.//@yr=’2002’]//sec[about(.//sec, ‘“XML retrieval”’)] 

9. Retrieve those sections of articles that contain both a figure about “CORBA” and a figure caption 
about “XML”: 

//article//sec[about(.//fig, ‘CORBA’) AND about(.//figc, ‘XML’)] 

Example of a CAS topic 
<inex_topic topic_id=”2” query_type=”CAS”> 

<title> 
//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’]//sec[about(., 
‘”summer holidays”’)] 

  </title> 
 <description> 

Summer holidays either of 2001 or of 2002. 
   </description> 
 <narrative> 

Return section elements, which are about summer holidays, where 
the sections is descendent of article element, and the article 
is from 2001 or 2002. 

 </narrative>  
 <keywords> 
  summer, holiday, 2001,2002 
 </keywords> 
</inex_topic> 
 

4.4. Equivalent tags  
This section lists the defined set of "equivalent" tags (alias/role/metedata) in the INEX test 

collection. We are proposing aliases for the following classes of nodes (identified directly from the 
DTD):  

 
Paragraph-like nodes: ilrj|ip1|ip2|ip3|ip4|ip5|item-none|p|p1|p2|p3  
Section nodes: sec|ss1|ss2|ss3  
List environments: dl|l1|l2|l3|l4|l5|l6|l7|l8|l9|la|lb|lc|ld|le|list|numeric-list|numeric-rbrace|bullet-list  
Headings: h|h1|h1a|h2|h2a|h3|h4 
 

4.5. Topics DTD  
The overall structure of the INEX topics is given in the DTD below (Note that additional attributes 

may be added at a later stage). 
 

<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!ELEMENT inex_topic (title, description, narrative, keywords)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT narrative (#PCDATA)> 
<!ELEMENT keywords (#PCDATA)> 
<!ATTLIST inex_topic 
  topic_id   CDATA  #REQUIRED 
  query_type CDATA  #REQUIRED 
> 
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5. Procedure for topic development 
Each participating group will have to submit 3 CO and 3 CAS queries by the 30 May 2003 by 

filling in the Candidate Topic Form (one per topic) at  
 
http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html  
 
This section outlines the procedures involved in the development of candidate topics. There are four 

steps in creating topics for a test collection: 1) creating the initial topic statements, 2) exploring the 
collection, 3) selecting final set of topics, and 4) refining the topic statements. 

5.1. Initial topic statements 
In this step, you should create a one or two sentence description of the information you are seeking. 

This should be a simple description of the information need without regard to retrieval system 
capabilities or document collection peculiarities. This should be recorded in the topic description field.  

Use either a printout or directly the on-line version of the Candidate Topic Form to record all 
information on a topic you are creating. 

5.2. Collection exploration 
In this step the initial topic statements are used to explore the document collection in order to obtain 

an estimate of the number of relevant documents/elements in the collection and to evaluate whether this 
topic can be judged consistently in the assessment phase. You may use any retrieval engine for this 
task, including your own or HyRex (HyRex can be accessed via http://inex.is.informatik.uni-
duisburg.de:2003/internal/#topics). 

Using the Candidate Topic Form record the set of keywords that you use for retrieval (make sure to 
record all the keywords from all iteration of your search or if you use query expansion strategies the 
query terms generated by the process). You should try and make your search queries (e.g. set of 
keywords) as expressive as possible for the kind of documents you wish to retrieve: think of the words 
that would make good scan words when assessing, and use those as your query keywords.  

Next, judge the top 25 documents/components of your retrieval result. Using the Candidate Topic 
Form record the number of found relevant components and the XPath path representing each relevant 
element. If you have found less than 2 or more than 20 relevant components within the top 25 results, 
you should abandon the topic and start with a new one! If you have found at least 2 relevant 
components and no more than 20, perform a feedback search (don't forget to record the terms (if any) 
that you decide to add to your query keywords). Judge the top 100 (some of them you will have judged 
already), and record the number of relevant documents/components in Candidate Topic Form.  

Finally write your detailed explanation on what makes a document/component relevant and record 
this in the narrative field of the topic. Make sure your description is as exhaustive as possible as there 
will be a couple of months gap before you will return to the topic for relevance assessments. The 
expectation is that by judging 100 documents/components you will have determined how you will 
judge the topic in the assessment phase. The narrative of the topic should reflect this.  

To assess the relevance of a retrieved document/component use the following working definition: 
mark a document/component relevant if it would be useful if you were writing a report on the subject 
of the topic, or if it contributes towards satisfying your information need. Each document/component 
should be judged on it own merits. That is, a document/component is still relevant even if it is the 
thirtieth document/component you have seen with the same information. It is crucial to obtain 
exhaustive relevance judgements. It is also very important that your judgement of relevance is 
consistent throughout this task. 

5.3. Refining topic statements 
Refining the topic statement means finalising the topic title, description, keywords and narrative. 

Note that it should be possible to use each of the four parts of a topic in a stand-alone fashion (e.g. 
using only the title for retrieval, or only the description for filtering etc.).  

 
Once you finished, submit the on-line Candidate Topic Form at 
 

http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html.  
 
Make sure you submit all 6 candidate topics no later than the 30 May 2003. 

  

http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html
http://inex.is.informatik.uni-duisburg.de:2003/internal/
http://inex.is.informatik.uni-duisburg.de:2003/internal/
http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html
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5.4. Topic selection 
From the received candidate topics, we (the clearinghouse) will then decide which topics to use 

such that a wide range of likely number of relevant documents is included. The data obtained from the 
collection exploration phase will be used as input to the topic selection process. We will then distribute 
final set of topics back to you to be used for the retrieval and evaluation.  
 
We would like to thank you for your contribution. 
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INEX’03 Retrieval Task 
and Result Submission 
Format Specification 

 
 
 

 
 

 

 

Retrieval Task 
The retrieval task to be performed by the participating groups of INEX'03 is defined as the ad-hoc 
retrieval of XML documents. In information retrieval literature, ad-hoc retrieval is described as a 
simulation of how a library might be used, and it involves the searching of a static set of documents 
using a new set of topics. While the principle is the same, the difference for INEX is that the library 
consists of XML documents, the queries may contain both content and structural conditions and, in 
response to a query, arbitrary XML elements may be retrieved from the library. Within the ad-hoc 
retrieval task we define the following three sub-tasks: 
 
CO: Content-oriented XML retrieval using content-only (CO) queries. As described in the 

INEX’03 Topic Development Guide, CO queries are requests that ignore the document 
structure and contain only content related conditions, e.g. only specify what a 
document/component should be about (without specifying what that component is). The need 
for this type of query for the evaluation of XML retrieval stems from the fact that users may 
not care about the structure of the result components or may not be familiar with the exact 
structure of the XML documents. In this task, it is left to the retrieval system to identify the 
most appropriate XML elements to return to the user. These elements are components that are 
most specific and most exhaustive with respect to the topic of request. Most specific here 
means that the component is highly focused on the topic, while exhaustive reflects that the 
topic is exhaustively discussed within the component. 

 
SCAS: Content-oriented XML retrieval based on content-and-structure (CAS) queries, where the 

structural constraints of a query must be strictly matched. CAS queries are topic statements, 
which contain explicit references to the XML structure, and explicitly specify the contexts of 
the user’s interest (e.g. target elements) and/or the contexts of certain search concepts (e.g. 
containment conditions). In this task, the user’s query is considered as an exact formulation of 
his/her information need, where the structural conditions specified within the query must be 
satisfied exactly by the retrieved components. 

 
VCAS: Content-oriented XML retrieval based on content-and-structure (CAS) queries, where the 

structural constraints of a query can be treated as vague conditions. This task deviates from the 
previous one in that XML elements ‘structurally similar’ to those specified in the query may 
be considered correct answers. The idea behind this sub-task is to allow the evaluation of 
XML retrieval systems that aim to implement a more fuzzy approach to XML retrieval, where 
not only the content conditions within a user query are treated with uncertainty but also the 
expressed structural conditions. These systems aim to return components that contain the 
information sought after by the user even if the result elements do not exactly meet the 
structural conditions expressed in the query. 

 
The actual search queries put to the retrieval engines (e.g. used to search the document collection) may 
be generated either manually or automatically from any part of the topics, with the exception of the 
narrative. Please note that at least one submitted run for each sub-task must be with the use of 
automatic queries.  
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Result Submission 
For each sub-task up to 3 runs may be submitted. The results of one run must be contained in one 
submission file (e.g. up to 9 files can be submitted in total). A submission may contain up to 1500 
retrieval results for each of the INEX topics included within that sub-task (e.g. for the CO sub-task only 
submit the search results obtained for the CO topics).  

Submission format 
For relevance assessments and the evaluation of the results we require submission files to be in the 
format described in this section. The overall submission format is defined in the following DTD: 
 

<!ELEMENT inex-submission (description, topic+)> 
<!ATTLIST inex-submission 
 participant-id CDATA #REQUIRED 
 run-id CDATA #REQUIRED 
 task ( CO | SCAS | VCAS ) #REQUIRED 
 query (automatic | manual) #REQUIRED 
 topic-part (T | D | K | TD | TK | DK | TDK) #REQUIRED 
> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT topic  (result*)> 
<!ATTLIST topic 
 topic-id CDATA #REQUIRED 
> 
<!ELEMENT result (file, path, rank?, rsv?)> 
<!ELEMENT file (#PCDATA)> 
<!ELEMENT path (#PCDATA)> 
<!ELEMENT rank (#PCDATA)> 
<!ELEMENT rsv (#PCDATA)> 

 
Each submission must specify the following information:  

• participant-id: the participant ID of the submitting institute (available at 
http://inex.is.informatik.uni-duisburg.de:2003/inex03/servlet/ShowParticipants),  

• run-id: a run ID (which must be unique for the submissions sent from one organisation – 
also please use meaningful names as much as possible),  

• task: the identification of the task (e.g. CO, SCAS or VCAS),  
• query: the identification of whether the query was constructed automatically or manually 

from the topic, 
• topic-part: the specification of whether the automatic or manual query was generated from 

the topic title only (T), the topic description only (D), the keywords only (K), the combination 
of the topic title and the topic description (TD), the combination of the topic title and the 
keywords (TK), the combination of the topic description and keywords (DK), or the 
combination of the topic title, topic description and keywords (TDK).  

 
Furthermore each submitted run must contain a (brief) description of the retrieval approach applied 
to generate the search results.  
 
A submission should then contain a number of topics, each identified by its topic ID (as provided 
with the topics). For each topic a maximum of 1500 result elements may be included. A result 
element is described by a file name and an element path and it may include rank and/or retrieval 
status value (rsv) information.  
 
Before detailing these elements, below is a sample submission file: 
 
<inex-submission participant-id="12" run-id="VSM_Aggr_06" task=”CO” 
query=”automatic” topic-part=”TK”> 
 <description>Using VSM to compute RSV at leaf level combined with 

aggregation at retrieval time, assuming independence and using 
acc=0.6. 

 </description> 

 

http://inex.is.informatik.uni-duisburg.de:2003/inex03/servlet/ShowParticipants
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 <topic topic-id="01"> 
  <result> 
   <file>tc/2001/t0111</file> 
    <path>/article[1]/bm[1]/ack[1]</path> 
   <rsv>0.67</rsv> 
  </result> 
  <result> 
   <file>an/1995/a1004</file> 
   <path>/article[1]/bdy[1]/sec[1]/p[3]</path> 
   <rsv>0.1</rsv> 
  </result> 
  [ ... ] 
 </topic> 
 <topic topic-id="02"> 
  [ ... ] 
 </topic> 
 [ ... ] 
</inex-submission> 
 
Rank and RSV 
The rank and rsv elements are provided for submissions based on a retrieval approach producing 
ranked output. The ranking of the result elements can be described in terms of  

• Rank values, which are consecutive natural numbers, starting with 1. Note that there can be 
more than one element per rank.  

• Retrieval status values (RSVs), which are positive real numbers. Note that there may be 
several elements having the same RSV value.  

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv 
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a 
retrieval approach does not produce ranked output. 
 
File and path 
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX 
collection, we need a way to identify these nodes without ambiguity. Within INEX submissions, 
elements are identified by means of a file name and an element (node) path specification, which 
must be given in XPath syntax. 
 
File names must be given relative to the INEX collection’s “xml” directory (excluding the “xml” 
directory itself from the file path). The file path should use '/' for separating directories. Note that only 
article files (e.g. no “volume.xml” files) can be referenced here. The extension “.xml” must be left out. 
Example: 
 
 an/1995/a1004 
 
Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as 
described by the following grammar: 
 
 Path ::=  '/' ElementNode Path  

| '/' ElementNode '/' AttributeNode  
| '/' ElementNode 

 ElementNode ::=  ElementName Index 

 AttributeNode ::=  '@' AttributeName 

 Index ::=  '[' integer ']' 
 
Example: 
 
 /article[1]/bdy[1]/sec[4]/p[3] 
 
This path identifies the element which can be found if we start at the document root, select the first 
“article” element, then within that, select the first “bdy” element, within which we select the fourth 
“sec” element, and finally within that element we select the third “p” element. Note that XPath counts 
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elements starting with 1 and takes into account the element type, e.g. if a section had a title and two 
paragraphs then their paths would be given as: ../title[1], ../p[1] and ../p[2]. 
 
When producing the XPath expressions of result elements, the equivalent-tags rules (see INEX’03 
Guidelines for Topic Development) must be ignored, e.g. result elements must be identified in line with 
the original structure of the XML documents! For example, given the structure: 
<sec><p>..</p><ip5>..</ip5><p>..</p></sec>) the following XPaths should be generated: 
/sec[1], /sec[1]/p[1], /sec[1]/ip5[1], and /sec[1]/p[2]. Note that the same structure, 
taking into account the equivalent-tags rules, would result in the XPaths: /sec[1], /sec[1]/p[1], 
/sec[1]/p[2], and /sec[1]/p[3]. However, result elements identified by the latter XPaths will 
lead to incorrect evaluations of the submitted runs. 
 
A result element is identified unambiguously using the combination of its file name and element path. 
Example: 
 
<result> 
 <file>an/1995/a1004</file> 
 <path>/article[1]/bdy[1]/sec[1]/p[3]</path> 
</result> 
 
An application that can be used to check the correctness of a given path specification is available at  

http://inex.is.informatik.uni-duisburg.de:2003/browse.html 
Note that this application requires the input of a file name and element path. If these are correctly 
given, the specified XML element within its container article element will be displayed. 

Result Submission Procedure 
An online submission tool will be provided. Details on how to submit will be circulated as part of a 
separate document in the near future. 
 
 
 
 
July 23, 2003 
Gabriella Kazai, Mounia Lalmas, Norbert Goevert and Saadia Malik 

http://inex.is.informatik.uni-duisburg.de:2003/browse.html
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INEX’03 Relevance
Assessment Guide

1. Introduction
During the retrieval runs, participating organisations evaluated the 66 INEX’03 topics (36 content-only
and 30 content-and-structure queries) against the IEEE Computer Society document collection and
produced a list (or set) of document components (XML elements1) as their retrieval results for each
topic. The top 1500 components in a topic’s retrieval results were then submitted to INEX. The
submissions received from the different participating groups have now been pooled and redistributed to
the participating groups (to the topic authors whenever possible) for relevance assessment. Note that
the assessment of a given topic should not be regarded as a group task, but should be provided by one
person only (e.g. by the topic author or the assigned assessor).

The aim of this guide is to outline the process of providing relevance assessments for the INEX’03 test
collection. This requires first a definition of relevance for XML retrieval (Section 2), followed by
details of what (Sections 3) and how (Section 4) to assess. Finally, we describe the on-line relevance
assessment system that should be used to record your assessments (Section 5).

2. Relevance dimensions: exhaustivity and specificity
Relevance in INEX is defined according to the following two dimensions:

• Exhaustivity (e-value for short), which describes the extent to which the document component
discusses the topic of request.

• Specificity (s-value for short), which describes the extent to which the document component
focuses on the topic of request.

To assess exhaustivity, we adopt the following 4-point scale:

0: Not exhaustive, the document component does not discuss the topic of request at all.
1: Marginally exhaustive, the document component discusses only few aspects of the topic
of request.
2: Fairly exhaustive, the document component discusses many aspects of the topic of request.
3: Highly exhaustive, the document component discusses most or all aspects of the topic of
request.

To assess specificity, we adopt the following 4-point scale:

0: Not specific, the topic of request is not a theme of the document component.
1: Marginally specific, the topic of request is a minor theme of the document component
2: Fairly specific, the topic of request is a major theme of the document component.
3: Highly specific, the topic of request is the only theme of the document component.

A document component can be assessed as highly exhaustive (e-value 3) even if it is not specific to the
topic of request – that is, the topic of request can be a major theme (s-value 2) or a minor theme (s-
value 1) of the component – as long as all or most aspects of the topic is discussed (e.g. a component
may be highly exhaustive to the topic regardless of how much additional, irrelevant information it
contains). Similarly, a document component can be assessed as highly specific (s-value 3) even if it
discusses many (e-value 2) or only a few (e-value 1) aspects of the topic - as long as the topic of
request is the only theme of the component. However, a document component that does not discuss the
topic of request at all (e-value 0) must have an s-value of 0, and vice versa.

                                                            
1 The terms document component and XML element are used interchangeably.
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3. What to judge
Depending on the topic, a pooled result set may contain initially between 500 and 1,500 document
components of 500 - 510 articles, where a component may be a title, paragraph, section, or whole
article etc.

Traditionally, in evaluation initiatives for information retrieval, like TREC, relevance is judged on
document level, which is treated as the atomic unit of retrieval. In XML retrieval, the retrieval results
may contain document components of varying granularity, e.g. paragraphs, subsections, sections,
articles etc. Therefore, to provide comprehensive relevance assessment for an XML test collection, it is
necessary to obtain assessment for the different levels of granularity.

This means that if you find, say, a section of an article relevant to the topic of the request, you will then
need to provide assessment - both with regards to exhaustivity and specificity - for the found relevant
component, for all its ascendant elements until you reach the article component, and for all its
descendant elements until you have identified all relevant sub-components.

Such comprehensive assessments are necessary as it is demonstrated by the following example.
Consider the XML structure in Figure 1. Let us say that you judged Section C, the document
component that encapsulates all text fragments relevant to the topic, as highly exhaustive (e-value 3)
and fairly specific (s-value 2). Given only this single assessment it would not be possible to deduce the
exhaustivity and specificity levels of the ascending or descending elements. For example, Body D and
Article E may be judged fairly or marginally specific depending on the volume of additional, irrelevant
information contained within the sections other than Section C. Looking at the sub-components of
Section C, it is clear that no conclusions can be drawn from Section C’s assessment regarding the
exhaustivity or specificity levels of its sub-components. For instance, both Sub-Sections A and B may
be marginally, fairly or highly exhaustive, and smaller components, such as Paragraph 3, could even be
irrelevant.

Figure 1. Example XML structure and result element

As a general rule it can be said that the exhaustivity level of a parent element is always equal to or
greater than the exhaustivity level of its children elements. This is due to the cumulative characteristics
of exhaustiveness. For example, the parent of a highly exhaustive element will always be highly
exhaustive since the child element already discusses all or most aspects of the topic. Another rule for
the exhaustivity dimension is that the parent of non-exhaustive child elements (i.e. all with e-value 0)
will also be not exhaustive (e-value 0). A rule regarding specificity is that an element has an s-value
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that is greater than 0 if one of its child elements has an s-value different from 0, and less or equal to the
maximum s-value of all its child elements. For instance, suppose that a parent element has tiny child
element with s-value 1 and a large child element with s-value 2, then the s-value of that parent element
will be 1 or 2. However, besides these general rules, no specific rules exist that would automate all the
assessment of ascendant and descendant elements of relevant components. Therefore, you will need to
explicitly judge all elements that contain relevant information. This is the only way to ensure both
exhaustive and consistent relevance assessments.

4. How to judge
To assess the exhaustivity and specificity of document components, we recommend a three-pass
approach.

• During the first pass, you should skim-read the whole article (that a result element is a part of -
even if the result element itself is not relevant!) and identify any relevant information as you go
along. The on-line system will assist you in this task by highlighting keywords within the article
(see Section 5).

• In the second pass, you should assess the exhaustivity and specificity of the relevant components
(i.e. identified in the first phase), and that of their ascendant and descendant XML elements.

• To ensure exhaustive assessments, in the third phase, you should assess the exhaustivity and
specificity of the descendant XML elements of all elements that have been assessed as relevant
during the second phase.

The on-line assessment system (see Section 5) will identify for you all elements that have to be
assessed for phases 2 and 3.

During the relevance assessment of a given topic, all parts of the topic specification should be
consulted in the following order of priority: narrative, topic description, topic title and keywords. The
narrative should be treated as the most authoritative description of the user's information need, and
hence it serves as the main point of reference against which relevance should be assessed. In case there
is conflicting information between the narrative and other parts of a topic, the information contained in
the narrative is decisive. The keywords should be used strictly as a source of possibly relevant cue
words and hence only as a means of aiding your assessment. You should not rely only on the presence
or absence of these keywords in document components to judge their relevance. It may be that a
component contains some or maybe all the keywords, but is irrelevant to the topic of the request. Also,
there may be components that contain none of the keywords yet are relevant to the topic. The same
applies to the terms listed within the topic title!

In the case of content-and-structure (CAS) topics, the topic titles contain structural constraints in the
form of XPath expressions. Although the structural conditions are there to impose a constraint on the
structure, you are asked as an assessor to assess the elements returned for a CAS topic as whether they
satisfy your information need (as specified by the topic) mainly with respect to the content criterion.
Therefore, you should not assess an element as “not relevant” because the structural condition is not
satisfied. In fact, your assessment of CAS topic should be very similar to that of content-only (CO)
topics, although in the former the structural conditions may influence your assessment (to a small
extent).

Note that some result elements are related to each other (ascendant/descendant), e.g. an article and
some sections or paragraphs within the article. This should not influence your assessment. For example
if the pooled result contains Chapter 1 and then Section 1.3, you should not assume that Section 1.3 is
more relevant than Sections 1.1, 1.2, and 1.4, or that Chapter 1 is more relevant than Section 1.3 or vice
versa. Remember that the pooled results are the product of different retrieval engines, which warrants
no assumptions about the level of relevance based on the number of retrieved related components!

You should judge each document component on its own merits! That is, a document component is still
relevant even if it the twentieth you have seen with the same information! It is imperative that you
maintain consistency in your judgement during assessment. Referring to the topic text from time to
time will help you maintain judgement consistency.
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5. Using the on-line assessment system
There is an on-line relevance assessment system provided at:

http://inex.lip6.fr

which allows you to view the pooled result set of the topics assigned to you for assessment, to browse
the IEEE-CS document collection and to record your assessments. Use your username and password to
access this system.

After logging in, you will be presented with the Home page (see Figure 2) enlisting the topic ID
numbers of the topics assigned to you for assessment (under the title “Choose a pool”). This page can
always be reached by clicking on the Home link on any subsequent pages.

Clicking on a topic ID will display the pool main page for that topic (see Figure 3).

At the top of the pool main page the following links are shown: Home, Pool, Topic and Keywords.
By clicking on the Pool link you can always return to this starting main pool page during your work.
By selecting the Topic link you can display the topic text in a popup window. This is useful as it allows
you to refer to the topic at any time during your assessment. The Keywords link allows you to edit a
list of coloured keywords (cue words or phrases). This feature allows you to specify a list of words or
phrases to be highlighted when viewing the contents of an article during assessment. These cue words
or phrases can help you in locating potentially relevant texts within an article and will aid you in
speeding up your assessment (so add as many relevant cue words as you can think of)! You may edit,
add to or delete your list of keywords at any time during your assessment (remember, however, to
reload the currently assessed document to reflect the changes). You may also specify the preferred
highlighting colour for each and every keyword. After selecting the Keywords link, a popup window
will appear showing a table of coloured cells. A border surrounding a cell signifies a colour that is

Figure 2. Home page of the assessment system

Figure 3. Pool main page
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already used for highlighting some keywords. You can move the mouse cursor over this cell to display
the list of keywords that will be highlighted in that colour. To edit the list of words or phrases for a
given colour, click on the cell of your choice. You will be prompted to enter a list of words or phrases
(one per line) to highlight. Note that the words or phrases you specify will be matched against the text
in the assessed documents in their exact form, i.e. no stemming is performed.

In the on-line assessment system, the following scheme is used:
1. Exhaustivity level is displayed in different shades of blue.
2. Geometric shapes are used for specificity level.

The tables below show the different icons used to indicate the relevance value of an XML element.

Element to assess

Element is not relevant

                    Exhaustivity

Specificity

Highly exhaustive Fairly exhaustive Marginally exhaustive

Highly specific

Fairly specific

Marginally specific

Table 1: Icons used to indicate relevance values

Note that all icons except the ? icon can be used by assessors to specify the relevance value (the
exhaustivity and specificity level) of an element. The ? icon is used by the on-line assessment system
only to mark components that need to be assessed.

This year, the assessment system makes use of two types of inference mechanisms to ensure exhaustive
and consistent assessments: we refer to these as passive and active inferences. The passive type simply
identifies new elements to be assessed based on those already assessed. For example, for any relevant
element (e.g. any component assessed other than “not relevant”), the relevance of its child elements
must be assessed, even if these were not part of the original assessment pool (i.e. have not been
retrieved). With the application of the passive inference rules, these need-to-be-assessed components
will be marked with the ? icon. Unlike the passive rules, the active inference rules are able to derive the
relevance value of some elements. These inferred relevance values will be marked using a red border.
For example,  denotes “inferred as not relevant”, which is assigned to a component if all its child
elements have been assessed as “not relevant”.

The on-line assessment system provides three main views:

1. The pool view
2. The volume view
3. The article view

In each of these views, a status bar appears at the bottom of the window and shows statistics on the
current view: how many elements have been assessed as highly exhaustive and highly specific, as
highly exhaustive and fairly specific, etc; how many elements have been assessed as not relevant (¥);
and how many elements remain to be assessed (?). Only when no more elements remain to be assessed
is the assessment for that view (pool / volume / article) complete.
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In the status bar, three arrows may be used to navigate quickly between the elements to be assessed.
The up arrow enables you to move from the article view to the volume view or from the volume view
to the pool view (you move in the opposite direction by selecting a volume and then an article from the
displayed lists). The left arrow can be used to go to the previous element to be assessed, while the right
arrow to go to the next element to be assessed.

It is in the article view that elements can be assessed. The article view displays all the elements that
form an article, whether these elements are to be assessed or not. In addition, the article view (see
Figure 4) shows every XML tag in the article but tries to keep an eye-friendly view of the article. XML
tags are displayed between brackets, in light blue, and according to their given (or inferred)
assessments when applicable. For instance, an <abs> tag that has been assessed as “highly exhaustive
and fairly specific” is displayed as follows:

The mouse cursor becomes a cross when it is held over an XML tag name. You can then:

• Control-click to scroll to the parent element. The parent element will be highlighted in less
than a second (in red).

• Click to display the assessment panel for the element. The assessment panel has three
components: the path (first line), the current assessment (second line), and the set of 11 icons
(reflecting all possible assignments shown in Table 1). Forbidden assessments (e.g. assessing a
parent element as not relevant where one of its child elements is relevant) are displayed in a
grey box. To assess the current element, click on the icon with the corresponding relevance
value. To hide the panel, click anywhere else in the panel.

Note that you do not need to save your relevance assessments, as the on-line assessment system will
automatically do this.
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