

INEX 2003 Workshop Proceedings

December 15-17, 2003
Schloss Dagstuhl

International Conference and Research
Center for Computer Science

http://inex.is.informatik.uni-duisburg.de:2003/

http://inex.is.informatik.uni-duisburg.de:2003/
klas
I

klas
I

klas
I

klas
I

klas
I

Preface

The aim of the workshop is to bring together researchers in the field of XML retrieval who
participated in the Initiative for the Evaluation of XML retrieval (INEX) during 2003. The
aim of the INEX initiative is to provide means, in the form of a large XML test collection and
appropriate scoring methods, for the evaluation of XML retrieval systems. During the past
year participating organisations contributed to the building of a large-scale XML test
collection by creating topics, performing retrieval runs and providing relevance assessments
along two relevance dimensions for XML components of varying granularity. The workshop
concludes the results of this large-scale effort, summarises and addresses encountered issues
and devises a work plan for the evaluation of XML retrieval systems.

The workshop was organised into presentation and workshop sessions. During the
presentation sessions participants had the opportunity to present their approaches to XML
indexing and retrieval. The workshop sessions (organised as working groups) served as
discussion forums to review issues related to the creation of the INEX topics, the definition of
the two relevance dimensions, the use of the on-line assessment system, and the development
of evaluation metrics.

These proceedings start with an overview paper describing INEX 2003, and then continue
with research papers that were submitted to INEX 2003. These papers are revised versions of
those appearing in the pre-proceedings, and have been through peer reviewing. Theses papers
have been classified according to the following approaches:

Model-Oriented Approaches: these are approaches based on established information
retrieval models like e.g. vector space model, language model, logistic regression model or
Bayesian inference model. This type of approaches was further classified according to sub-
categories such as language models, (other) probabilistic models, result fusion, enriched
representations and other models.

System-Oriented Approaches: these are approaches that focused more on system aspects,
like e.g. adding an XML-specific post processing step to “normal” text retrieval engine, using
a relational database for query processing, or performing retrieval in a distributed
environment. Further classification was made according to sub-categories such as database
systems and information retrieval systems.

In addition to the overview paper and research papers, these proceedings include papers on a
query language and a metric for INEX, and papers summarising the discussion and outcome
of the working groups. The guideline documents distributed to the participants are also
included.

klas
II

klas
II

klas
II

klas
II

klas
II

Schloss Dagstuhl

Schloss Dagstuhl or Dagstuhl manor house was built in 1760 by the then reigning prince
Count Anton von Öttingen-Soetern-Hohenbaldern. After the French Revolution and
occupation by the French in 1794, Dagstuhl was temporarily in the possession of a Lorraine
ironworks. In 1806 the manor house along with the accompanying lands was purchased by the
French Baron Wilhelm de Lasalle von Louisenthal. In 1959 the House of Lasalle von
Louisenthal died out, at which time the manor house was then taken over by an order of
Franciscan nuns, who set up an old-age home there. In 1989 the Saarland government
purchased the manor house for the purpose of setting up the International Conference and
Research Center for Computer Science. The first seminar in Dagstuhl took place in August of
1990. Every year approximately 2,000 research scientists from all over the world attend the
30-35 Dagstuhl Seminars and an equal number of other events hosted at the center.

http://www.dagstuhl.de/

klas
III

klas
III

klas
III

klas
III

Table of Contents

Overview of the INitiative for the Evaluation of XML Retrieval (INEX) 2003
Norbert Fuhr, Saadia Malik (University of Duisburg-Essen, DE), Mounia Lalmas (Queen Mary
University of London, UK)

1

Model-Oriented approaches

 Language Model
Using Language Models for Flat Text Queries in XML Retrieval
Paul Ogilvie, Jamie Callan (Carnegie Mellon University, USA)

 12

An Element-based Approach to XML Retrieval
Börkur Sigurbjörnsson, Jaap Kamps, Maarten de Rijke (University of Amsterdam, NL)

 19

HyREX at INEX 2003
Mohammad Abolhassani, Norbert Fuhr, Saadia Malik (University of Duisburg-Essen,
DE)

27

 Other Probabilistic Models

Bayesian Networks and INEX’03
Benjamin Piwowarski, Huyen-Trang Vu, Patrick Gallinari (LIP6, FR)

33

Cheshire II at INEX’03: Component and Algorithm Fusion for XML
Retrieval
Ray R. Larson (University of California, Berkeley, USA)

38

 Result Fusion

Searching in an XML Corpus Using Content and Structure
Yiftah Ben-Aharon, Sara Cohen,Yael Grumbach, Yaron Kanza, Jonathan Mamou,
Yehoshua Sagiv, Benjamin Sznajder, EfratTwito (The Hebrew University of Jerusalem,
IL)

46

Retrieving the most relevant XML Components
Yosi Mass, Matan Mandelbrod (IBM Haifa Research Lab, IL)

 53

 Enriched Representations

XXL @ INEX 2003
Ralf Schenkel, Anja Theobald, Gerhard Weikum (Max–Planck Institut für Informatik,
DE)

59

Using value-added document representations in INEX
Birger Larsen, Haakon Lund, Jacob K. Andresen, Peter Ingwersen (Royal School of
Library and Information Science, DK)

67

 Other Models

Accurate Retrieval of XML Document Fragments using EXTIRP
Antoine Doucet, Lili Aunimo, Miro Lehtonen, Renaud Petit (University of Helsinki, FI)

73

Keyword-based XML Fragment Retrieval: Experimental Evaluation based
on INEX 2003 Relevance Assessments
Kenji Hatano (Nara Institute of Science and Technology, JP), Hiroko Kinutan (Japan
Science and Technology Agency, JP), Masahiro Watanabe (The National Institute of
Special Education , JP), Yasuhiro Mori, Masatoshi Yoshikawa (Japan Science and
Technology Agency, JP), Shunsuke Uemura (Nara Institute of Science and Technology,
JP)

81

An Approach to Structured Retrieval Based on the Extended Vector Model
Carolyn J. Crouch, Sameer Apte (University of Minnesota Duluth, USA), Harsh Bapat
(Persistent Systems Pvt. Ltd., IN)

89

Cooperative XML (CoXML) Query Answering at INEX 03
Shaorong Liu, Wesley W. Chu (University of California, Los Angeles, USA)

94

klas
IV

System-Oriented Approaches

 Database Systems

The TIJAH XML-IR system at INEX 2003
Johan List (CWI, NL), Vojkan Mihajlovic (University of Twente, NL), Arjen P. de Vries
(CWI, NL), Georgina Ramírez (CWI, NL), Djoerd Hiemstra (University of Twente, NL)

102

XPath Inverted File for Information Retrieval
Shlomo Geva, Murray Leo-Spork (Queensland University of Technology, AU)

110

Applying the IR Stream Retrieval Engine to INEX 2003
Andreas Henrich, Volker Lüdecke (University of Bamberg, DE), Günter Robbert
(University of Bayreuth, DE)

118

 IR Systems

Distributed XML Information Retrieval
Wayne Kelly, Shlomo Geva, Tony Sahama, Wengkai Loke (Queensland University of
Technology, AU)

126

RMIT INEX experiments: XML Retrieval using Lucy/exist
Jovan Pehcevski, James Thom (RMIT University, AU), Anne-Marie Vercoustre (
CSIRO-ICT Centre, AU)

134

IRIT at INEX 2003
Karen Sauvagnat, Gilles Hubert, Mohand Boughanem, Josiane Mothe (IRIT, FR)

142

Identifying and Ranking Relevant Document Elements
Andrew Trotman, Richard A. O’Keefe (University of Otago, NZ)

149

The SearX-Engine at INEX’03: XML enabled probabilistic retrieval
Holger Flörke (doctronic GmbH & Co. KG, DE)

155

Query Language & Metric

Expected Ratio of Relevant Units: A Measure for Structured Information
Retrieval
Benjamin Piwowarski, Patrick Gallinari (LIP6, FR)

158

The simplest query language that could possibly work
Andrew Trotman, Richard A. O’ Keefe (University of Otago, NZ)

167

Working Groups Report

Queries: INEX 2003 working group report
Börkur Sigurbjörnsson (University of Amsterdam, NL), Andrew Trotman (University of
Otago, NZ)

175

INEX 2003 Working group report: Relevance
Jaana Kekäläinen (University of Tampere, FI)

179

Working Group Report: the Assessment Tool
Benjamin Piwowarski (LIP6, FR)

181

Report of the INEX 2003 Metrics working group
Gabriella Kazai (Queen Mary University of London, UK)

184

Appendix

INEX’03 Guidelines for Topic Development

192

INEX’03 Retrieval Task and Run Submission Specification

200

INEX’03 Relevance Assessment Guide 204

klas
V

Overview of the INitiative for the Evaluation of XML
Retrieval (INEX) 2003

Norbert Fuhr, Saadia Malik
University of Duisburg-Essen, Germany

Mounia Lalmas
Queen Mary University of London, United Kingdom

1. INTRODUCTION
The widespread use of the extensible Markup Language (XML)

in scientific data repositories, digital libraries and on the web, brought
about an explosion in the development of XML retrieval systems.
These systems exploit the logical structure of documents, which is
explicitly represented by the XML markup, to retrieve document
components, the so-called XML elements, instead of whole docu-
ments, in response to a user query. This means that an XML re-
trieval system needs not only to find relevant information in the
XML documents, but also determine the appropriate level of gran-
ularity to return to the user, and this with respect to both content
and structural conditions.

Evaluating the effectiveness of XML retrieval systems requires
a test collection (XML documents, tasks/queries, and relevance
judgements) where the relevance assessments are provided accord-
ing to a relevance criterion that takes into account the imposed
structural aspects. A test collection as such has been built as a
result of two rounds of the Initiative for the Evaluation of XML
Retrieval (INEX 2002 and INEX 2003). The aim of this initiative
is to provide means, in the form of a large testbed and appropriate
scoring methods, for the evaluation of content-oriented retrieval of
XML documents.

This paper presents an overview of INEX 2003. In section 2,
we give a brief summary of the INEX participants and their sys-
tems. Section 3 outlines the retrieval tasks. Section 4 provides an
overview of the INEX test collection along with the description of
how the collection was constructed. Section 5 briefly reports on
the submission runs for the retrieval tasks. Section 6 describes the
relevance assessment phase. Section 7 discusses the different met-
rics used. Section 8 summarises the evaluation results. The paper
finishes with some conclusions and outlook for INEX 2004.

2. PARTICIPATING ORGANISATIONS
In response to the call for participation issued in March 2003,

around 40 organisations registered from 18 different countries within
six weeks. Throughout the year, the number of participants de-
creased due to insufficient contribution while a number of new
groups joined later at the assessment phase. The active participants
are listed in Table 1.

The participating groups used a broad variety of approaches for
performing XML retrieval. We tried to categorise them into two
approaches [Fuhr & Lalmas 04]:

Model-oriented approaches (MO) were based on established in-
formation retrieval (IR) models; e.g. vector space model,

language model, logistic regression or Bayesian inference
model.

System-oriented approaches (SO)focused more on systems as-
pects; e.g. adding an XML-specific post-processing step to a
normal text retrieval engine, using a relational database sys-
tem for query processing, performing retrieval in distributed
environment.

Participants and their corresponding approaches (i.e. MO vs. SO)
are shown in Table 1.

3. THE RETRIEVAL TASKS
In INEX 2003, we focused on ad hoc retrieval. This task has

been described as a simulation of how a library might be used,
where the collection of documents is known while the queries to
be asked are unknown [Voorhees & Harman 02]. Three ad hoc
retrieval sub-tasks were defined in INEX 2003: the CO (content-
only), SCAS (strict content-and-structure) and VCAS (vague content-
and-structure) ad-hoc retrieval of XML documents. Within the CO
task, the aim of an XML retrieval system is to point users to the
specific relevant portions of documents, where the user’s query
contains no structural hints regarding what the most appropriate
granularity of relevant XML elements should be. Within the SCAS
task, the aim of a retrieval system is to retrieve relevant nodes
that strictly match the structural conditions specified within the
query. In the VCAS task, the goal of a system is to retrieve relevant
nodes that may not exactly conform to the structural conditions ex-
pressed within the user’s query, but are structurally similar. CO and
(S/V)CAS are discussed in Section 4.2.

4. THE TEST COLLECTION
Like most IR collections, the INEX test collection is composed

of three parts: the set of documents, the set of topics and the rele-
vance assessments.

4.1 Documents
The document collection was donated to INEX by the IEEE Com-

puter Society. It consists of the full-text of 12,107 articles, marked
up in XML, from 12 magazines and 6 transactions of the IEEE
Computer Society’s publications, covering the period of 1995-2002,
and totalling 494 MB in size, and 8 millions in number of elements.
The collection contains scientific articles of varying length. On
average, an article contains 1,532 XML nodes, where the average
depth of the node is 6.9. More details can be found in [Gövert &
Kazai 03]

klas
3

klas
1

klas
1

klas
1

Retrieval no of runs AssessedOrganisations
approach submitted topics

University Of Otago SO 2 68 100 101
LIP 6 MO 3 82 116
Carnegie Mellon University MO 3 75 113
University of California, Berkeley MO 6 70 102
Tarragon Consulting Corporation MO 88 105
Queensland University of Technology SO 11 89 124
RMIT University SO 6 86 117
Nara Institute of Science and Technology MO 5 65 125
doctronic GmbH & Co. KG SO 4 107 108
University of the Saarland MO 4 69 79
University of Amsterdam MO 9 71 103 104
University of Helsinki MO 3 111 112
University of Bayreuth SO 9 95 96
University of California, Los Angeles MO 3 92 98
IBM, Haifa Research Lab MO 9 85 90
University of Minnesota Duluth MO 2 87 121
University of Tampere MO 6 64 93
Royal School of LIS MO 3 62 97
Institut de Recherche en Informatique de Toulouse SO 9 73 91 94
Cornell University MO 1 80 81 123
University of Rostock MO 0 61 115 122
University of Michigan MO 2 77
University of Twente and CWI SO 5 74 109 110
Hebrew University MO 6 72 119
Universität Duisburg-Essen MO 9 66 99

Organisations joining at the relevance assessments phase:

Waterloo University 76
Oslo University College 63 67
Seoul National University 78 126
Czech Technical University 83 84
Illinois Institute of Technology 118

Table 1: List of INEX 2003 participants

klas
4

klas
2

klas
2

klas
2

4.2 Topics
The topic format and guidelines were based on TREC guidelines,

but were modified to accommodate the two types of topics used in
INEX: CO and CAS topics:

Content-and-Structure (CAS) queriesare topic statements that
allow the query conditions to explicitly refer to XML docu-
ment structure by restricting either the context of interest or
context of certain search concepts.

Content-Only (CO) queries are requests that ignore document
structure and contain only content-related conditions.

4.2.1 Topic format
The topic is made up of four parts: topic title, topic description,

narrative and keywords. The DTD of the topic is shown in Figure 1.
As in TREC, the topic title is a short version of the topic descrip-

tion and usually consists of a number of keywords identifying the
user need. CO topics are the same as the standard TREC topics
for ad hoc retrieval tasks. CAS topic title may contain structure
and content related conditions. In INEX 2003, the format of the
title part of CAS topic was based on an enhanced subset of XPath.
A concept of “aboutness” in the form ofabout(path,string)was
added. The about function usually applies to a context element
(CE) that can be described by the syntax "CE[about(path,string)]".
For example //article[about(//sec,’"XML retrieval"’)] represents the
request to retrieve articles, article being the context element, that
contain within them a section about "XML retrieval". The string
parameter in the about condition may contain a number of terms
separated by a space, where a term can be a single word, or a phrase
encapsulated in double quotes. Furthermore symbols +,- maybe
used to express additional preference regarding the importance of
some terms, where+ can be used to prioritise terms while- can be
used to mention unwanted terms.

The topic description consists of one or two sentences in natu-
ral language describing the information need. The narrative is the
detailed explanation of the topic statement and description of what
makes a document or component relevant. The keyword compo-
nent contains the set of terms separated by comma that were col-
lected during the topic development process (see Section 4.2.2).

The attributes of the topic are: topic_id (which ranges from 61 to
126), query_type (with value CAS or CO) and ct_no, which refers
to the candidate topic number (which ranges from 1 to 120). Ex-
amples of both types of topic can be seen in Figure 2 and Figure 3.

4.2.2 The topic development process
The topics were created by participating groups. Each partic-

ipant was asked to submit up to 6 candidate topics (3 CO and 3
CAS). A detailed guideline was provided to the participants for the
topic creation [Kazai et al. 04b]. Four steps were identified for this
process: 1) Initial Topic Statement creation 2) Collection Explo-
ration 3) Topic Refinement and 4) Topic Selection. The first three
steps were performed by the participants themselves while the se-
lection of topics was decided by the organisers.

During the first step, participants created their initial topic state-
ment. These were treated as a user’s description of his/her infor-
mation need and were formed without regard to system capabil-
ities or collection peculiarities to avoid artificial or collection bi-
ased queries. During the collection exploration phase, participants
estimated the number of relevant documents/components to their
candidate topics. The HyREX retrieval system [Fuhr et al. 02]
was provided to participants to perform this task. Participants had
to judge the top 100 retrieved results and were asked to record

the relevant document/component XPath paths in the top 25 re-
trieved components/documents and the number of relevant docu-
ments/components in the top 100. We were interested in topics that
would have at least 2 relevant documents/components and less than
20 documents/components in the top 25 retrieved elements. In the
topic refinement stage, the topics were finalised ensuring coherency
and that each part of the topic can be used in stand-alone fashion.

After the completion of the first three stages, topics were sub-
mitted to INEX. A total of 120 candidate topics were received, of
which 66 topics (36 CO and 30 CAS) were selected. The topic se-
lection was made on the basis of a combination of criteria such as
1) balancing the number of topics across all participants, 2) elimi-
nating topics that were considered too ambiguous or too difficult to
judge and 3) uniqueness of topics. Table 2 shows some statistics
on the INEX 2003 topics.

5. SUBMISSIONS
Participants processed the final set of topics with their retrieval

systems and produced ranked lists of 1500 result elements in a spe-
cific format. Details of the submission format and procedure were
given in [Kazai et al. 04a]. For the CO task, they were asked to
submit up to 3 runs per topic and for the two CAS sub-tasks, SCAS
and VCAS, up to 3 runs for each could be submitted per topic.
In total 120 runs were submitted by 24 participating organisations.
Out of the 120 submissions, 56 contained results for the CO topics,
38 contained results for the SCAS topics and 26 contained results
for the VCAS topics. For each topic, the top 100 results (of 1,500)
from all the submissions for that topic were merged to create the
pool for assessment. Table 3 shows the pooling effect on the CAS
and CO topics.

6. ASSESSMENTS
The assessments pools were assigned then to participants; either

to the original authors of the topic when this was possible, or on
a voluntary basis, to groups with expertise in the topic’s subject
area. Each group was responsible for about two topics. The topic
assignments are shown in Table 1. Note that this list excludes topics
105,106,114 and 120 as their relevance assessment process is still
in progress.

Two dimensions were employed to define relevance:

Exhaustivity (e-value) measures the extent to which the given el-
ement covers or discusses the topic of request.

Specificity (s-value) measures the extent to which the given ele-
ment is focused on the topic of request.

For both dimensions, a multi-grade scale was adopted. With respect
to exhaustivity:

Not exhaustive (0): the document component does not discuss the
topic of request at all.

Marginally exhaustive (1): the document component discusses only
few aspects of the topic of request.

Fairly exhaustive (2): the document component discusses many
aspects of the topic of request.

Highly exhaustive (3): the document component discusses most
or all aspects of the topic of request.

With respect to specificity:

Not specific (0): the topic of request is not a theme of the docu-
ment component.

klas
5

klas
3

klas
3

klas
3

<!ELEMENT inex_topic (title,description,narrative,keywords)>
<!ATTLIST inex_topic

topic_id CDATA #REQUIRED
query_type CDATA #REQUIRED
ct_no CDATA #REQUIRED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>

Figure 1: Topic DTD

<inex_topic topic_id="76" query_type="CAS" ct_no="81">
<title>

//article[(./fm//yr = ’2000’ OR ./fm//yr = ’1999’) AND about(.,
’"intelligent transportation system"’)]//sec[about(.,’automation
+vehicle’)]

</title>
<description>

Automated vehicle applications in articles from 1999 or
2000 about intelligent transportation systems.

</description>
<narrative>

To be relevant, the target component must be from an
article on intelligent transportation systems published in 1999 or
2000 and must include a section which discusses automated vehicle
applications, proposed or implemented, in an intelligent
transportation system.

</narrative>
<keywords>

intelligent transportation system, automated vehicle,
automobile, application, driving assistance, speed, autonomous
driving

</keywords>
</inex_topic>

Figure 2: A CAS topic from the INEX 2003 test collection

<inex_topic topic_id="98" query_type="CO" ct_no="26">
<title>

"Information Exchange", +"XML", "Information Integration"
</title>
<description>

How to use XML to solve the information exchange
(information integration) problem, especially in heterogeneous data
sources?

</description>
<narrative>

Relevant documents/components must talk about techniques of
using XML to solve information exchange (information integration)
among heterogeneous data sources where the structures of participating
data sources are different although they might use the same ontologies
about the same content.

</narrative>
<keywords>

information exchange, XML, information integration,
heterogeneous data sources

</keywords>
</inex_topic>

Figure 3: A CO topic from the INEX 2003 test collection

klas
6

klas
4

klas
4

klas
4

CAS CO
no of topics 30 36
avg no of words in title 7 4
no of target elements representing article 13 -
no of target elements representing non-article element 17 -
avg no of words in topic description 16 11
avg no of words in keywords component 5 7

Table 2: Statistics on CAS and CO topics on the INEX test collection

CAS topics CO topics

no of documents submitted 30 071 36 113
no of documents in pools 15 077 18 163
reduction 50 % 50 %

no of components submitted 58 828 80 537
no of components in pools 27 633 38 264
reduction 53 % 52 %

Table 3: Pooling effect for CAS and CO topics

Marginally specific (1): the topic of request is a minor theme of
the document component.

Fairly specific (2): the topic of request is a major theme of the
document component.

Highly specific (3): the topic of request is the only theme of the
document component.

The relevance assessment document guideline [Kazai et al. 04c]
explaining the above relevance dimensions and how and what to
assess were distributed to the participants. This guide also con-
tained the manual to the online assessment tool developed by LIP6
to perform the assessments of the XML documents/components.
Features of the tool include user friendliness, implicit assessment
rules whenever possible, keyword highlighting, consistency check-
ing and completeness enforcement.

Initially, the collected assessments were with respect to CAS
and CO topics. Later, a distinction was made between VCAS and
SCAS assessment by filtering elements targeted by the topics from
the CAS assessments. Table 4 shows a statistics of the relevance
assessments. Figures 4 and 5 show the distribution of relevance for
(some of) the elements.

7. EVALUATION METRICS
A number of evaluation metrics were used in INEX 2003.

7.1 inex_eval: INEX 2003 metric for CO and
SCAS topics

This metric was developed during INEX 2002, and was adapted
to deal with the INEX 2003 new dimensions of relevance (i.e. ex-
haustivity and specificity). inex_eval is based on the traditional
recall and precision measures. To obtain recall/precision figures,
the two dimensions need to be quantised onto a single relevance
value. Quantisation functions for two different user standpoints
were used:

• A "strict" quantisation to evaluate whether a given retrieval
approach is capable of retrieving highly exhaustive and highly
specific document components (e3s3).

• In order to credit document components according to their
degree of relevance, a "generalised" quantisation has been
used.

Based on the quantised relevance values, procedures that calcu-
late recall / precision curves for standard document retrieval can
be directly applied to the results of the quantisation functions. The
method ofprecall described by [Raghavan et al. 89] was used to
obtain the precision values at standard recall values. Further details
are available in [Gövert et al. 03].

7.2 inex_eval_ng: INEX 2003 metric for CO
topics

This metric developed for INEX 2003 is for CO topics and is
based on the notion of an ideal concept space [Wong & Yao 95].
This metrics considers the size of retrieved elements. Two vari-
ants were used, one that does not consider overlaps in the rank-
ing of document components and a second one that considers over-
laps within the components of a ranking. Details can be found in
[Gövert et al. 03].

7.3 ERR: Expected Ration of Relevant Units
This measure provides an estimate of the expectation of the num-

ber of relevant document elements a user sees when he/she consults
the list of the firstN returned relevant elements divided by the ex-
pectation of the number of relevant elements a user would see when
he/she explores all the relevant elements in the collection. This
measure is based on an hypothetical user behaviour:

1. The user consults the structural context (parent, children, sib-
lings) of a returned document element.

2. The specificity of a relevant element influences the behaviour
of the user.

3. The user will not use any hyper-link. More precisely, he/she
will not jump to another document. This hypothesis is valid
in the INEX corpus but can easily be removed in order to
cope with hyper-linked corpora.

Details can be found in [Piwowarski & Gallinari 04].

8. SUMMARY OF EVALUATION RESULTS
As mentioned in Section 5, out of the 120 submissions, 56 con-

tained results for the CO task, 38 contained results for the SCAS
task and 26 contained results for the VCAS task. A summary of the

klas
7

klas
5

klas
5

klas
5

e+s VCAS CO SCAS
article level non-article article non-article article non-article

e3s3 188 1 389 180 1 316 122 577
e3s2 111 1 269 112 616 28 151
e3s1 186 663 150 635 25 90

e2s3 148 2 417 124 2 105 46 644
e2s2 147 3 110 103 1 779 35 650
e2s1 360 2 159 222 1 358 64 437

e1s3 223 11 135 148 5 029 100 2 701
e1s2 81 5 726 50 3 872 33 493
e1s1 769 17 617 673 8 074 361 1 185
e0s0 8 897 88 816 10 021 70 530 5 652 19 922

All 11 110 134 301 11 783 95 314 6 466 26 850

Table 4: Assessments at article and component levels

Figure 4: Distribution of relevant elements Figure 5: Distribution of relevant article and non-article ele-
ments (e > 0 and s > 0)

klas
8

klas
6

klas
6

klas
6

results obtained with the different metrics is given in the next two
sub-sections1.

8.1 inex_eval and inex_eval_ng mertics
The submissions have been ranked according to the average pre-

cision. The top ten submissions, according to average precision,
for each task and each quantisation function are listed in Table 5
(inex_eval) and in Table 6 (inex_eval_ng).

When comparing the rankings for the two different quantisation
functions and two different user standpoints (considering overlap
and ignoring overlap) it becomes evident that they are quite sim-
ilar. A regression analysis based on average precision values for
the submissions shows a strong linear correlation between results
obtained using the strict quantisation and results obtained using the
generalised quantisation, and result obtained by ignoring and by
considering overlap between the retrieved components. Figure 6
shows the scatter plots for the SCAS and CO tasks and the respec-
tive regression lines. For the SCAS task the correlation coefficient
is 0.9515, and for the CO task, it is 0.7347. Figure 7 shows the
scatter plot for the CO task by considering component overlap and
by ignoring component overlap for the two quantisations. For strict
quantisation, the correlation coefficient is 0.8775, and for gener-
alised quantisation it is 0.9174.

8.2 ERR metric
Table 7 shows a summary of the evaluation results obtained us-

ing the ERR metric. The rankings of the submissions were done
according to a specific rank (10,100,1500) and averaged over all
values. The top ten submissions are shown in Table 7.

9. CONCLUSION AND OUTLOOK ON INEX
2004

INEX 2003 was a success and showed that XML retrieval is a
challenging new field within IR research. In addition to learning
more about XML retrieval approaches, INEX 2003 has made fur-
ther steps in the evaluation methodology for XML retrieval. In
addition to the presentation of retrieval approaches, four working
groups were formed to discuss issues regarding the evaluation of
content-oriented XML retrieval approaches: topic format, relevance
definition and assessment, online assessment tool, and metrics.

INEX 2004 will start in March of this year, and in addition to the
standard ad-hoc retrieval tasks, has 4 new tracks:

Interactive track focusing on interactive XML retrieval, consid-
ering also navigation through the hierarchical structure,

Heterogeneous collection trackcomprising various XML collec-
tions from different digital libraries, as well as material from
other computer science-related resources,

Relevance feedback trackdealing with relevance feedback meth-
ods for XML,

Natural language track where natural language formulations of
CAS queries have to be answered.

10. ACKNOWLEDGEMENTS
We would like to thank the IEEE Computer Society for provid-

ing us the XML document collection. Special thanks go to Shlomo
Geva for the set up of the WIKI server, Norbert Goevert for pro-
viding the evaluation metrics, Gabriella Kazai for helping with the
1All evaluation results have been compiled using the assessment
package version 2.5 and evaluation package version 2003.007.

various guideline documents, and Benjamin Piwowarski for pro-
viding the on-line assessment tool. Finally, we would like to thank
the participating organisations for their involvement in INEX.

11. REFERENCES
Fuhr, N.; Lalmas, M. (2004). Report on the INEX 2003

Workshop.SIGIR Forum 38(1).
Fuhr, N.; Gövert, N.; Großjohann, K. (2002). HyREX:

Hyper-media Retrieval Engine for XML. In: Järvelin, K.;
Beaulieu, M.; Baeza-Yates, R.; Myaeng, S. H. (eds.):
Proceedings of the 25th Annual International Conference on
Research and Development in Information Retrieval, page 449.
ACM, New York. Demonstration.

Fuhr, N.; Gövert, N.; Kazai, G.; Lalmas, M. (eds.) (2003).
INitiative for the Evaluation of XML Retrieval (INEX).
Proceedings of the First INEX Workshop. Dagstuhl, Germany,
December 8–11, 2002, ERCIM Workshop Proceedings, Sophia
Antipolis, France. ERCIM.http://www.ercim.org/
publication/ws-proceedings/INEX2002.pdf .

Gövert, N.; Kazai, G. (2003). Overview of the INitiative for the
Evaluation of XML retrieval (INEX) 2002. In [Fuhr et al. 03],
pages 1–17.http://www.ercim.org/publication/
ws-proceedings/INEX2002.pdf .

Gövert, N.; Kazai, G.; Fuhr, N.; Lalmas, M. (2003).Evaluating
the effectiveness of content-oriented XML retrieval. Technical
report, University of Dortmund, Computer Science 6.

Kazai, G.; Lalmas, M.; Gövert, N.; Malik, S. (2004a). INEX
Retrieval Tasks and Run Submission Specification. In:
Proceedings of INEX 2003.

Kazai, G.; Lalmas, M.; Malik, S. (2004b). INEX Guidelines for
Topic Development. In:Proceedings of INEX 2003.

Kazai, G.; Lalmas, M.; Piwowarski, B. (2004c). INEX
Relevance Assessment Guide. In:Proceedings of INEX 2003.

Piwowarski, B.; Gallinari, P. (2004). Expected ratio of relevant
units: A measure of structured information retrieval. In:
Proceedings of INEX 2003.

Raghavan, V. V.; Bollmann, P.; Jung, G. S.(1989). Retrieval
System Evaluation Using Recall and Precision: Problems and
Answers. In:Proceedings of the Twelfth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 59–68. ACM, New York.

Voorhees, E. M.; Harman, D. K. (eds.)(2002).The Tenth Text
REtrieval Conference (TREC 2001), Gaithersburg, MD, USA.
NIST.

Wong, S. K. M.; Yao, Y. Y. (1995). On modeling information
retrieval with probabilistic inference.ACM Trans. Inf. Syst.
13(1), pages 38–68.

http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
http://www.ercim.org/publication/ws-proceedings/INEX2002.pdf
klas
9

klas
7

klas
7

klas
7

rank avg precision organisation run ID

1. 0.3182 U. of Amsterdam UAmsI03-SCAS-MixedScore
2. 0.2987 U. of Amsterdam (UAmsI03-SCAS-ElementScore
3. 0.2601 Queensland University of Technology CASQuery_1
4. 0.2476 University of Twente and CWI LMM-ComponentRetrieval-SCAS
5. 0.2458 IBM, Haifa Research Lab SCAS-TK-With-Clustering
6. 0.2448 Universität Duisburg-Essen scas03-way1-alias
7. 0.2437 RMIT University RMIT_SCAS_1
8. 0.2419 RMIT University RMIT_SCAS_2
9. 0.2405 IBM, Haifa Research Lab SCAS-TDK-With-No-Clustering

10. 0.2352 RMIT University RMIT_SCAS_3

a) SCAS task; strict quantisation

rank avg precision organisation run ID

1. 0.2989 U. of Amsterdam UAmsI03-SCAS-MixedScore
2. 0.2456 U. of Amsterdam UAmsI03-SCAS-ElementScore
3. 0.2451 U. of Amsterdam UAmsI03-SCAS-DocumentScore
4. 0.2399 IBM, Haifa Research Lab SCAS-TDK-With-No-Clustering
5. 0.2378 IBM, Haifa Research Lab SCAS-TK-With-Clustering
6. 0.2222 IBM, Haifa Research Lab SCAS-TDK-With-Clustering
7. 0.2212 University of Twente and CWI LMM-ComponentRetrieval-SCAS
8. 0.2050 Queensland University of Technology CASQuery_1
9. 0.1934 Universität Duisburg-Essen scas03-way1-alias

10. 0.1893 Queensland University of Technology (QUT) scas_ps

b) SCAS task; generalised quantisation

rank avg precision organisation run ID

1. 0.1214 U. of Amsterdam UAmsI03-CO-lamda=0.20
2. 0.1144 U. of Amsterdam UAmsI03-CO-lambda=0.5
3. 0.1102 U. of Amsterdam UAmsI03-CO-lambda=0.9
4. 0.1001 Universität Duisburg-Essen factor 0.2
5. 0.0952 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
6. 0.0929 LIP 6 local-okapi-element,list,ef
7. 0.0915 Universität Duisburg-Essen difra_sequential
8. 0.0780 Carnegie Mellon University LM_context_TDK
9. 0.0708 Universität Duisburg-Essen factor 0.5

10. 0.0688 University of Bayreuth _co_second

c) CO task; strict quantisation

rank avg precision organisation run ID

1. 0.1032 U. of Amsterdam UAmsI03-CO-lamda=0.20
2. 0.1009 U. of Amsterdam (UAmsI03-CO-lambda=0.5
3. 0.0962 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
4. 0.0960 U. of Amsterdam UAmsI03-CO-lambda=0.9
5. 0.0881 LIP 6 local-okapi-element,list,ef
6. 0.0839 Carnegie Mellon University LM_context_TDK
7. 0.0740 University of Bayreuth _co_second
8. 0.0691 University of Bayreuth CO-third
9. 0.0687 Universität Duisburg-Essen factor 0.2

10. 0.0676 Universität Duisburg-Essen difra_sequential

d) CO task; generalised quantisation

Table 5: Ranking of submissions w. r. t. average precision
using inex_eval metric

klas
10

klas
8

klas
8

klas
8

rank avg precision organisation run ID

1. 0.1626 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
2. 0.1575 University of Minnesota Duluth 01
3. 0.1483 Universität Duisburg-Essen factor 0.2
4. 0.1464 U. of Amsterdam UAmsI03-CO-lamda=0.20
5. 0.1429 IBM, Haifa Research Lab CO-TDK-With-Clustering
6. 0.1409 Universität Duisburg-Essen difra_sequential
7. 0.1403 University Of Otago CO4
8. 0.1380 University of Twente and CWI LMM-CLengthModifie
9. 0.1374 U. of Amsterdam UAmsI03-CO-lambda=0.5

10. 0.1328 doctronic GmbH & Co. KG 1

a) CO task; strict quantisation; overlapping considered

rank avg precision organisation run ID

1. 0.1500 University Of Otago CO4
2. 0.1489 University of Twente and CWI LMM-CLengthModified
3. 0.1447 University of Twente and CWI LMM-Component
4. 0.1365 University of Minnesota Duluth 01
5. 0.1113 IBM, Haifa Research Lab CO-TDK-With-Clustering
6. 0.1110 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
7. 0.1091 IBM, Haifa Research Lab CO-T-With-Clustering
8. 0.1063 U. of Amsterdam UAmsI03-CO-lamda=0.20
9. 0.1051 doctronic GmbH & Co. KG 1

10. 0.1011 Carnegie Mellon University LM_context_TDK

b) CO task; generalised quantisation; overlapping considered

rank avg precision organisation run ID

1. 0.1915 U. of Amsterdam UAmsI03-CO-lamda=0.20
2. 0.1780 University of Twente and CWI LMM-CLengthModified
3. 0.1755 U. of Amsterdam UAmsI03-CO-lambda=0.5
4. 0.1707 University of Twente and CWI LMM-Component
5. 0.1674 Carnegie Mellon University LM_context_TDK
6. 0.1631 U. of Amsterdam UAmsI03-CO-lambda=0.9
7. 0.1627 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
8. 0.1332 LIP 6 local-okapi-element,list,ef
9. 0.1312 University of Minnesota Duluth 01

10. 0.1281 IBM, Haifa Research Lab CO-TDK-With-Clustering

c) CO task; strict quantisation; overlapping ignored

rank avg precision organisation run ID

1. 0.1809 University of Twente and CWI LMM-CLengthModified
2. 0.1749 University of Twente and CWI LMM-Component
3. 0.1570 U. of Amsterdam UAmsI03-CO-lamda=0.20
4. 0.1462 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
5. 0.1403 Carnegie Mellon University LM_context_TDK
6. 0.1376 U. of Amsterdam UAmsI03-CO-lambda=0.5
7. 0.1363 University Of Otago CO4
8. 0.1269 U. of Amsterdam UAmsI03-CO-lambda=0.9
9. 0.1268 University of Minnesota Duluth 01

10. 0.1231 Queensland University of Technology co_ns

d) CO task; generalised quantisation; overlapping ignored

Table 6: Ranking of submissions w. r. t. average precision
using inex_eval_ng metric

klas
11

klas
9

klas
9

klas
9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
g

pr
ec

is
io

n
(g

en
er

al
is

ed
)

avg precision (strict)

submission
regression line

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
g

pr
ec

is
io

n
(g

en
er

al
is

ed
)

avg precision (strict)

submission
regression line

a) SCAS b) CO

Figure 6: Scatter plots and regression lines for average precision of submissions, using strict and generalised quantisation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
g

pr
ec

is
io

n
(o

ve
rla

p
co

ns
id

er
ed

)

avg precision (overlap ignored)

submission
regression line

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

av
g

pr
ec

is
io

n
(o

ve
rla

p
co

ns
id

er
ed

)

avg precision (overlap ignored)

submission
regression line

c) CO: strict quantisation d) CO: generalised quantisation

Figure 7: Scatter plots and regression lines for average precision of submissions, considering component overlap and ignoring
component overlap

klas
12

klas
10

klas
10

klas
10

rank avg organisation run ID

1. 49.9 IBM, Haifa Research Lab CO-TDK-With-No-Clustering
2. 46.8 IBM, Haifa Research Lab CO-TDK-With-Clustering
3. 45.2 Universität Duisburg-Essen factor 0.2
4. 43.6 Universität Duisburg-Essen difra_sequential
5. 42.0 U. of Amsterdam UAmsI03-CO-lambda=0.5
6. 41.9 LIP 6 local-okapi-element,list,ef
7. 41.0 Carnegie Mellon University LM_context_TDK
8. 40.2 U. of Amsterdam UAmsI03-CO-lambda=0.9
9. 39.8 U. of Amsterdam UAmsI03-CO-lamda=0.20

10. 39.5 IBM, Haifa Research Lab CO-T-With-Clustering

a) CO task

rank avg organisation run ID

1. 48.1 U. of Amsterdam UAmsI03-SCAS-MixedScore
2. 47.4 U. of Amsterdam UAmsI03-SCAS-ElementScore
3. 42.3 U. of Amsterdam UAmsI03-SCAS-DocumentScore
4. 35.7 University of Bayreuth first_scas
5. 35.7 Universität Duisburg-Essen scas03-way3-noalias
6. 35.7 University of Bayreuth cas_third
7. 34.5 Queensland University of Technology CASQuery_1
8. 33.5 IBM, Haifa Research Lab SCAS-TDK-With-Clustering
9. 33.5 University of Bayreuth second_scas

10. 32.9 Queensland University of Technology QUTscas_st

b) SCAS task

rank avg organisation run ID

1. 40.9 U. of Amsterdam UAmsI03-VCAS-NoStructure
2. 37.6 U. of Amsterdam UAmsI03-VCAS-TargetFilter
3. 33.0 IBM, Haifa Research Lab VCAS-TDK-With-No-Clustering
4. 32.4 IBM, Haifa Research Lab VCAS-TK-With-Clustering
5. 32.2 IBM, Haifa Research Lab VCAS-TDK-With-Clustering
6. 29.2 University of Twente and CWI LMM-ComponentRetrieval-VCAS
7. 28.2 University of Bayreuth second_vcas
8. 28.0 Universität Duisburg-Essen vcas03-way2-alias
9. 28.0 University of Bayreuth first_vcas

10. 27.9 University of Bayreuth vcas_third

c) VCAS task

Table 7: Ranking of submissions w. r. t. average using ERR metric

klas
13

klas
11

klas
11

klas
11

Using Language Models for Flat Text Queries in XML Retrieval
Paul Ogilvie, Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA USA
{pto,callan}@cs.cmu.edu

ABSTRACT
This paper presents a language modeling system for ranking
flat text queries against a collection of structured documents.
The retrieval system, built using the Lemur toolkit, produces
probability estimates that arbitrary document components
generated the query. This paper describes storage mechanisms
and retrieval algorithms for the evaluation of unstructured
queries over XML documents. The paper includes retrieval
experiments using a generative language model on the content
only topics of the INEX testbed, demonstrating the strengths
and flexibility of language modeling to a variety of problems.
We also describe index characteristics, running times, and the
effectiveness of the retrieval algorithm.

1. INTRODUCTION
Language modeling has been studied extensively in standard
Information Retrieval in the last few years. Researches have
demonstrated that the framework provided by language models
has been powerful and flexible enough to provide strong
solutions to numerous problems, including ad-hoc information
retrieval, known-item finding on the Internet, filtering,
distributed information retrieval, and clustering.

With the success of language modeling for this wide variety of
tasks and the increasing interest in studying structured
document retrieval, it is natural to apply the language modeling
framework to XML retrieval. This paper describes experiments
using one way the generative language model could be
extended to model and support queries on structured
documents. We model documents using a tree-based language
model. This is similar to many previous models for structured
document retrieval [1][2][3][6][7][10], but differs in that
language modeling provides some guidance in combining
information from nodes in the tree and estimating term weights.
This work is also similar to other works using language models
for XML retrieval [5][9], but differs in that we also present
context-sensitive language model smoothing and an
implementation using information retrieval style inverted lists
rather than a database.

The next section provides background in language modeling in
information retrieval. In Section 3 we present our approach to
modeling structured documents. Section 4 describes querying
the tree-based language models presented in the previous
section. In Section 5, we describe the indexes required to
support retrieval and the retrieval algorithms. We describe the
experiment setup and indexes used for INEX 2003 in Section 6.
Section 7 describes experimental results. We discuss
relationships to other approaches to structured document
retrieval in Section 8, and Section 9 concludes the paper.

2. LANGUAGE MODELS FOR
DOCUMENT RETRIEVAL
Language modeling applied to information retrieval problems
typically models text using unigram language models.
Unigram language models are similar to bags-of-words
representations, as word order is ignored. The unigram
language model specifically estimates the probability of a word
given some text. Document ranking typically is done one of
two ways: by measuring how much a query language model
diverges from document language models [8], or by estimating
the probability that each document generated the query string.
Since we use the generative language model for our
experiments, we will not describe the divergence based
approaches here.

2.1 The Generative Language Model
The generative method ranks documents by directly estimating
the probability of the query using the texts’ language models
[13][4][15][16]:

() () ()∏
∈

=
Qw

wqtf
w TT

θ
P

θ
QP

where Q is the query string, and T
θ

is the language model

estimated for the text, and qtf(w) is the query term frequency of
the term w (count of w in the query). Texts more likely to have
produced the query are ranked higher. It is common to rank by
the log of the generative probability as it there is less danger of
underflow and it produces the same orderings:

()() () ()∑
∈

=
Qw

wwqtf TT θPlogθQPlog

Under the assumptions that query terms are generated
independently and that the query language model used in KL-
divergence is the maximum-likelihood estimate, the generative
model and KL divergence produce the same rankings [11].

2.2 The Maximum-Likelihood Estimate of a
Language Model
The most direct way to estimate a language model given some
observed text is to use the maximum-likelihood estimate,
assuming an underlying multinomial model. In this case, the
maximum-likelihood estimate is also the empirical distribution.
An advantage of this estimate is that it is easy to compute. It is
very good at estimating the probability distribution for the
language model when the size of the observed text is very large.
It is given by:

() ()
T

T,θ
P TMLE

wfreq
w =

klas
12

klas
12

klas
12

klas
14

klas
12

klas
12

klas
12

document

title abstract body

section 1 section 2 references

where T is the observed text, freq(w, T) is the number of times
the word w occurs in T, and |T| is the length in words of T. The
maximum likelihood estimate is not good at estimating low
frequency terms for short texts, as it will assign zero probability
to those words. This creates a problem for estimating document
language models in both KL divergence and generative
language model approaches to ranking documents, as the log of
zero is negative infinity. The solution to this problem is
smoothing.

2.3 Smoothing
Smoothing is the re-estimation of the probabilities in a
language model. Smoothing is motivated by the fact that many
of the language models we estimate are based on a small
sample of the “true” probability distribution. Smoothing
improves the estimates by leveraging known patterns of word
usage in language and other language models based on larger
samples. In information retrieval smoothing is very important
[16], because the language models tend to be constructed from
very small amounts of text. How we estimate low probability
words can have large effects on the document scores. In
addition to the problem of zero probabilities mentioned for
maximum-likelihood estimates, much care is required if this
probability is close to zero. Small changes in the probability
will have large effects on the logarithm of the probability, in
turn having large effects on the document scores. Smoothing
also has an effect similar to inverse document frequency [4],
which is used by many retrieval algorithms.

The smoothing technique most commonly used is linear
interpolation. Linear interpolation is a simple approach to
combining estimates from different language models:

() ()∑
=

=
k

i
ii ww

1

θ
P

θ
P λ

where k is the number of language models we are combining,
and iλ is the weight on the model i

θ
. To ensure that this is a

valid probability distribution, we must place these constraints
on the lambdas:

0,1forand1
1

≥≤≤=∑
=

i

k

i
i ki λλ

One use of linear interpolation is to smooth a document’s
language model with a collection language model. This new
model would then be used as the smoothed document language
model in either the generative or KL-divergence ranking
approach.

2.4 Another Characterization
When we take a simple linear interpolation of the maximum
likelihood model estimated from text and a collection model,
we can also characterize the probability estimates as:

() ()
()

 ∈

=
otherwisew

wifw
w

Tunseen

Tseen
T θP

TθPθP

where

() () () ()collectionwww θPθP1θP TMLETseen ωω +−=

and

() ()collectionww θPθP Tunseen ω=

This notation distinguishes the probability estimates for cases
where the word has been seen in the text and where the word
has not been seen will be in the sample text. We will use this
notation later when describing the retrieval algorithm, as it
simplifies the description and is similar to the notation used in
previous literature [16]. The simple form of linear interpolation
where ω is a fixed constant is often referred to as Jelinek-
Mercer smoothing.

3. STRUCTURED DOCUMENTS AND
LANGUAGE MODELS
The previous section described how language modeling is used
in unstructured document retrieval. With structured documents
such as XML or HTML, we believe that the information
contained in the structure of the document can be used to
improve document retrieval. In order to leverage this
information, we need to model document structure in the
language models.

We model structured documents as trees. The nodes in the tree
correspond directly with tags present in the document. A
partial tree for a document might look like:

Nodes in the document tree correspond directly to XML tags in
the document. For each document node in the tree, we estimate
a language model. The language models for leaf nodes with no
children can be estimated from the text of the node. The
language models for other nodes are estimated by taking a
linear interpolation of a language model formed from the text in
the node (but not in any of its children) and the language
models formed from the children.

We have not specified how the linear interpolation parameters
for combining language models in the document tree should be
chosen. This could be task specific, and training may be
required. The approach we will adopt in this paper is to set the
weight on a child node as the accumulated length of the text in
the child divided by the accumulated length of the node. By
accumulated length we mean the number of words directly in
the node plus the accumulated length of the node’s children.
Setting the parameters in this manner assumes that a word in a
one node type is no more important than a word in any other
node type; it is the accumulated length of the text in the node
that determines how much information is contained in the node.

We also wish to smooth the maximum likelihood models that
are estimated directly from the text with a collection language
model. In this work, we will combine the maximum likelihood
models with the collection model using a linear interpolation
with fixed weights. The collection model may be specific to
the node type, giving context sensitive smoothing, or the
collection model may be one large model estimated from
everything in the corpus, giving a larger sample size.

When the λ parameters are set proportional to the text length
and a single collection model is used, this results a special case
that is very similar to the models used in [5][9]. The tree-based
language model estimated using these parameter settings will

klas
13

klas
13

klas
13

klas
15

klas
13

klas
13

klas
13

be identical to a language model estimated by taking a simple
linear interpolation of a maximum likelihood estimate from the
text in the node and its ancestors and the collection model.

4. RANKING THE TREE MODELS
In a retrieval environment for structured documents, it is
desirable to provide support for both structured queries and
unstructured, free-text queries. It is easier to adapt the
generative language model to structured documents, so we only
consider that model in this paper. It is simpler to support
unstructured queries, so we will describe retrieval for them
first.

4.1 Unstructured Queries
To rank document components for unstructured queries, we use
the generative language modeling approach for IR described in
Section 2. For full document retrieval, we need only compute
the probability that the document language model generated the
query. If we wish to return arbitrary document components, we
need to compute the probability that each component generated
the query.

Allowing the system to return arbitrary document components
may result in the system stuffing the results list with many
components from a single document. This behavior is
undesirable, so a filter on the results is necessary.

One filter we employ takes a greedy approach to preventing
overlap among components in the results list. For each result, it
will be thrown out of the results if there is any component
higher in the ranking that is an ancestor or descendent of the
document component under consideration.

4.2 Structured Queries
Our previous paper on this subject [11] discusses how some
structural query operators could be included in the model. We
do not currently support any of these operators in our system,
so we will not discuss in depth here. However, we will mention
that the retrieval framework can support most desired structural
query operators using relatively easy to implement query nodes.

4.3 Prior Probabilities
Given relevance assessments from past topics, we can estimate
prior probabilities of the document component being relevant
given its type. Another example prior may depend on the length
of the text in the node. A way to incorporate this information is
to rank by the probability of the document node given the
query. Using Bayes rule, this would allow us incorporate the
priors on the nodes. The prior for only the node being ranked
would be used, and the system would multiply the probability
that the node generated the query by the prior:

() ()

())N(P
θ

QP

 toalproportion iswhich

P(Q))N(P
θ

QPQNP

N

N=

This would result in ranking by the probability of the document
component node given the query, rather than the other way
around.

5. STORAGE AND ALGORITHMS
This section describes how we support structured retrieval in
the Lemur toolkit. We first describe the indexes built to

support retrieval. Then we describe how the indices are used
by the retrieval algorithm. We also present formulas for the
computation of the generative probabilities we estimate for
retrieval.

5.1 Index Support
There are two main storage structures in Lemur that provide the
support necessary for the retrieval algorithm. Lemur stores
inverted indexes containing document and node occurrences
and document structures information.

5.1.1 Inverted Indexes
The basic idea to storing structured documents in Lemur for
retrieval is to use a modified inverted list. Similar to storing
term locations for a document entry in an inverted list, we store
the nodes and the term frequencies of the term in the nodes in
the document entries of the inverted list. The current
implementation of the structured document index does not store
term locations, but could be adapted to store term locations in
the future.

The inverted lists are keyed by term, and each list contains the
following:

• document frequency of the term
• a list of document entries, each entry containing

o document id
o term frequency (count of term in document)
o number of nodes the term occurs in
o a list of node entries, each entry containing

� node id
� term frequency (count of term in node)

When read into memory, the inverted lists are stored in an array
of integers. The lists are stored on disk using restricted-
variable length compression and delta-encoding is applied to
document ids and node ids. In the document entry lists, the
documents entries are stored in order by ascending document
id. The node entry lists are similarly stored in order by
increasing node id. Document entries and node entries are only
stored in the list when the term frequency is greater than zero.
Access to the lists on disks is facilitated with an in-memory
lookup table for vocabulary terms.

There is also an analogous set of inverted lists for attribute
name/value pairs associated with tags. For example, if the
document contained the text

 <date calendar=“Gregorian”>,

the index would have an inverted list keyed by the triple
date/calendar/Gregorian. The structure and information stored
in the inverted lists for the attribute name/value pairs is
identical to those in the inverted lists for terms.

5.1.2 Document Structure
The document structure is stored compressed in memory using
restricted variable length compression. A lookup table keyed
by document id provides quick access to the block of
compressed memory for a document. We choose to store the
document structure in memory because it will be requested
often during retrieval. For each document, a list of information
about the document nodes is stored. For each node, we store:

• parent of the node
• type of node
• length of the node (number of words)

Since this list of information about the document structure is
compressed using a variable length encoding, we must

klas
14

klas
14

klas
14

klas
16

klas
14

klas
14

klas
14

decompress the memory to provide efficient access to
information about nodes. When the document structure for a
document is being decompressed, we also compute:

• accumulated length of the node (length of text directly
in the node + accumulated length of children)

• number of children of the node
• a list of the node’s children

This decompression and computation of other useful
information about the document structure is computed in time
linear to the number of nodes in the document being
decompressed.

5.2 Retrieval
We construct a query tree to process and rank document
components. A typical query tree is illustrated below. The leaf
nodes of the query tree are term nodes which read the inverted
lists for a term off of disk and create result objects for
document components containing the term. The term nodes are
also responsible for propagating the term scores up the
document tree. The sum node merges the result lists returned
by each of the term nodes, combining the score estimates. The
score adjuster node adjusts the score estimates to get the
generation probabilities and also applies any priors. The heap
node maintains a list of the top n ranked objects and returns a
sorted result list. Efficient retrieval is achieved using a
document at a time approach. This requires that the query tree
be walked many times during the evaluation of a query, but
results a large saving of memory, as only the result objects for a
document and the top n results objects in the heap must be
stored at any point in time.

A more detailed description of each of the query nodes follows.
When each query node is called, they are passed a document id
to evaluate. In order to know which document should be
processed next, the term nodes pass up the next document id in
the inverted list. For other query nodes, the minimum next
document id among a node’s children gets passed up the query
tree with the results list. We will describe the query nodes
bottom up, as that is how the scores are computed.

We first note that we can rewrite the log of the probability that
the document node generated the query as

()() () ()
()

() ()∑

∑

∈

∈

+

=

Qw
node

nodeQw node

node

node

wwqtf

w

w
wqtf θ

Plog

θ
P

θ
P

log
θ

QPlog

unseen

, unseen

seen

as shown in [16]. This will allow us to easily compute the item
in the first sum easily using term nodes, combine these
components of the score using a sum node, and then add on the
rest using a score adjustment node.

5.2.1 Term Node
The term nodes read in the inverted lists for a term w off of disk
and create a list of results where the score for a result is
initialized to

() ()
()

⋅

node

node

w

w
wqtf θ

P

θ
P

log
unseen

seen

The term node assumes that the parent id of a node is smaller
than the node’s id. It also assumes that the document entries in
inverted lists are organized in increasing document id order and
the node entries are organized in increasing term id order. The
structured document index we built is organized this way. In
the following algorithm description, indentation is used to
denote the body of a loop.

1 Seek to the next entry in the inverted list where the
document id is at least as large as the requested document

2 If the document id of the next entry is the requested
document

3 Decompress the document structure information for the
document

4 Read in the node entries from the inverted list

5 Create the result objects for the leaf nodes. For each
node that contains the term:

6 Initialize the score for the result to the seen
probability part for the node

 () () () ()nodenodenodewfreqnodeseen ,,1 λω−=

 where

 () ()
()nodelengthdaccumulate

nodelength
nodenode =,λ

 and ω will be used to set the influence of the
collection models.

7 Push the node id onto the candidate node heap

8 Store the result object in an array indexed by node id
for fast access

9 While the candidate node heap isn’t empty:

10 Pop the top node id off of the heap (the largest node
id), set it to the current node id

11 Lookup the result from the result array

12 Lookup the node id for the parent of the current node

13 Lookup the parent node’s result

14 If the parent node’s result object is NULL:

15 Create a new result object for the parent node and
put it in the result array, initializing the score to 0

16 Push the parent node’s id onto the candidate node
heap

17 Propagate the seen part of the score from the
current node to the parent node, setting the parent
node’s seen part to

 () () ()parentnodenodeseenparentseen ,λ+

 where

 () ()
()parentlengthdaccumulate

nodelengthdaccumulate
parentnode =,λ

18 Push the result onto the front of the results list

Heap

Score adjuster

Sum Sum

Term

“gregorian”

Term

“chant”

klas
15

klas
15

klas
15

klas
17

klas
15

klas
15

klas
15

19 Set the result in the result array for the node to NULL
(initializing the result array for the next document)

[Now each document node that contains the query term
(or has a child containing the term) has a result in the
results list where the score is the seen probability part
for the query term]

20 For each node in the result list

21 Compute the unseen part of the generative
probability for each node. For linear interpolation
with a constant ω and one single node type
independent collection model, this is

 () ()collectionwnodewunseen
θ

P, ω=

For linear interpolation with a constant ω and
node type specific collection models, this can be
computed recursively

()
()() ()
() ()∑

∈
+

=

)(

,

,,

,
θ

P

,

nodechildrenchild

nodetypecollection

nodechildchildwunseen

nodenodew

nodewunseen

λ

λω

22 Set the score for the result to

() () ()
()

 +⋅
nodewunseen

nodewunseennodeseen
wqtf

,

,
log

23 Return the result list and the next document id in the
inverted list

The result list now contains results for a single document where
the score is

() ()
()

⋅

node

node

w

w
wqtf θ

P

θ
P

log
unseen

seen

and the list is ordered by increasing node id.

5.2.2 Sum Node
The sum node maintains an array of result lists, with one result
list for each of the children. It seeks to the next entry in each of
the child result lists where the document id is at least as large as
the requested document. If necessary, it calls the children
nodes to get their next result lists. For the requested document,
the sum node merges results from the result lists of the children,
setting the score of the new result equal to the sum of the
children’s results with the same document and node id. This
node assumes that results in a result list are ordered by
increasing document id, then increasing node id. The results
returned by this component have the score

() ()
()∑

∈

nodeQw node

node

w

w
wqtf

, unseen

seen θ
P

θ
P

log

and the minimum document id returned by the children is
returned.

5.2.3 Score Adjustment Node
The score adjustment node adds

() ()∑
∈Qw

nodewwqtf θPlog unseen

to each of the results, where

() ()nodewunseenw node ,
θ

Punseen =

as defined for the term node. If there is a prior probability for
the node, the score adjustment node also adds on the log of the
prior. The results in the list now have the score

() ()
()

() ()
()()

() ()()node

node

wwqtf

w

w
wqtf

node

Qw
node

nodeQw node

node

P
θ

QPlog

Plog

θ
Plog

θ
P

θ
P

log

unseen

, unseen

seen

=

+

+

∑

∑

∈

∈

which is the log of the score by which we wish to rank
document components.

5.2.4 Heap Node
The heap node repeatedly calls its child node for result lists
until the document collection has been ranked. The next
document id it calls for its child to process is the document id
returned by the child node in the previous evaluation call. It
maintains a heap of the top n results. After the document
collection has been ranked, it sorts the results by decreasing
score and stores them in a result list that is returned.

5.2.5 Other Nodes
There are many other useful nodes that could be useful for
retrieval. One example is a node that filters the result lists so
that the XML path of the node in the document tree satisfies
some requirements. Another example is a node that throws out
all but the top n components of a document.

6. EXPERIMENT SETUP
The index we created used the Krovetz stemmer and InQuery
stopword list. Topics are similarly processed, and all of our
queries are constructed from the title, description, and
keywords fields. All words in the title, description, and
keywords fields of the topic are given equal weight in the
query. Table 3 shows the size of components created to
support retrieval on the INEX document collection. The total
index size including information needed to do context sensitive
smoothing is about 70% the size of the original document
collection. A better compression ratio could be achieved by
compression of the context sensitive smoothing support files.
Note that the document term file which is 100 MB is not
necessary for the retrieval algorithms described above.

Component Size (MB)
Inverted file 100
Document term file (allows iteration
over terms in a document)

100

Document structure 30
Attributes inverted file 23
Smoothing – single collection model 4
Smoothing – context sensitive models
(not compressed)

81

Other files (lookup tables, vocabulary,
table of contents, etc.)

12

Total 350
Table 3: Lemur structured index component sizes

klas
16

klas
16

klas
16

klas
18

klas
16

klas
16

klas
16

Table 4 shows approximate running times for index
construction and retrieval. The retrieval time for context
insensitive smoothing is reasonable at less than 20 seconds per
query, but we would like to lower the average query time even
more. We feel we can do this with some simple data structure
optimizations that will increase memory reuse.

Action Time (mins)
Indexing 25
Retrieval of 36 INEX 2003 CO topics
– context insensitive smoothing

10

Retrieval of 36 INEX 2003 CO topics
– context sensitive smoothing

45

Table 4: Indexing and retrieval times using Lemur

The higher retrieval time for the context sensitive retrieval
algorithm is due to the recursive computation of the unseen
component of the score as described Step 21 of Section 5.2.1.
Clever redesign of the algorithm may reduce the time some.
However, all of the descendent nodes in the document’s tree
must be visited regardless of whether the descendent nodes
contain any of the query terms. This means that the
computation of the unseen component of the scores is linear in
the number of nodes in the document tree, rather than the
typically sub-linear case for computation of the seen score
components. If the λ and ω functions and their parameters are
known, it is possible to precompute and store necessary
information to reduce the running time to something only
slightly larger than the context insensitive version. However,
our implementation is meant for research, so we prefer that
these parameters remain easily changeable.

7. EXPERIMENT RESULTS
We submitted three official runs as described in Table 2. All of
our runs used the title, description, and keyword fields of the
topics. Unfortunately, two of our runs performed rather poorly.
This is either an error in our path filter or a problem with the
component type priors. We would also like to evaluate the
additional runs corresponding to the dashes in the table, but we
have not been able to do these experiments yet.

The LM_context_TDK run has good performance across all
measures. This is our basic language modeling system using
context sensitive smoothing. The strong performance of the

context sensitive language modeling approach speaks well for
the flexibility of language modeling.

For the content only topics, context sensitive smoothing does
not help. The node type priors also do not consistently help.
There was a significant problem with the path filters we used.

With regards to context sensitive smoothing, it may not make
much difference for content only tasks as they are typically
searching for textual components such as paragraphs, sections,
and articles. The characteristics of the text in these components
tend to be very similar, so the context sensitive smoothing may
not be helpful.

With regards to component type priors, we have observed
similar puzzling behavior in [12]. We discovered that the
distributions observed in the rankings after applying the prior
probabilities are not the desired distributions. We are actively
working on new techniques to incorporate information in a way
that will provide the desired distributions of results in the
rankings.

8. RELATED WORK
There exists a large and growing body of work in retrieving
information from XML documents. Some work is described in
our previous paper [11] and much of the more recent work is
also described in the INEX 2002 proceedings [14]. With that in
mind, we will focus our discussion of related work on language
modeling approaches for structured document retrieval.

In [5] a generative language modeling approach for content
only queries is described where a document component’s
language model is estimated by taking a linear interpolation of
the maximum likelihood model from the text of the node and its
ancestors and a collection model. This corresponds to a special
case of our approach. Our model is more flexible in that it
allows context sensitive smoothing and different weighting of
text in children nodes.

The authors of [9] also present a generative language model for
content only queries in structured document retrieval. They
estimate the collection model in a different way, using
document frequencies instead of collection term frequencies.
As with [5], this model can be viewed as a special case of the
language modeling approach presented here.

inex_eval Topic
Fields

Context Prior Path
Strict Gen

TDK YES NO NO .0464 .0646
TDK YES YES NO .0488 .0653
TDK NO NO NO .0463 .0641
TDK NO YES NO .0485 .0654

Table 1: Performance of the retrieval system on INEX 2002 CO topics. Context refers to context sensitive smoothing, prior
refers to the document component type priors, and path refers to the overlapping path filter.

inex_eval inex_eval_ng w/o overlapRun Name
(Official runs are bold)

Topic
Fields

Context Prior Path
Strict Gen Strict Gen Strict Gen

LM_context_TDK TDK YES NO NO .0717 .0804 .2585 .3199 .2305 .2773
LM_context_typr_TDK TDK YES YES NO .0769 .0855
LM_context_typr_path_TDK TDK YES YES YES .0203 .0240
LM_base_TDK TDK NO NO NO .0783 .0861
LM_base_typr_TDK TDK NO YES NO .0764 .0847
LM_base_typr_path_TDK TDK NO YES YES .0204 .0234

Table 2: Summary of runs and results for INEX 2003 CO topics.

klas
17

klas
17

klas
17

klas
19

klas
17

klas
17

klas
17

9. CLOSING REMARKS
We presented experiments using a hierarchical language model.
The strong performance of language modeling algorithms
demonstrates the flexibility and ease of adapting language
models to the problem. In our preliminary experiments with
standard text queries, context sensitive smoothing did not give
much different performance than using a single collection
model.

We described data structures and retrieval algorithms to support
retrieval of arbitrary XML document components within the
Lemur toolkit. We are reasonably pleased with the efficiency
of the algorithms for a research system, but we will strive to
improve the algorithms and data structures to reduce retrieval
times even further.

In our future work, we would like to compare the component
retrieval to standard document retrieval. We would also like to
investigate query expansion using XML document components.
Additionally, we would like to explore different ways of setting
the λ weights on the nodes’ language models, as we believe that
words in some components may convey more useful
information than words in other components.

10. ACKNOWLEDGMENTS
This work was sponsored by the Advanced Research and
Development Activity in Information Technology (ARDA)
under its Statistical Language Modeling for Information
Retrieval Research Program. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors, and do not necessarily reflect those of the
sponsor.

11. REFERENCES
[1] Fuhr, N. and K. Großjohann. XIRQL: A query language

for information retrieval in XML documents. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (2001), ACM Press, 172-180.

[2] Grabs, T. and H.J. Schek. Generating vector spaces on-
the-fly for flexible XML retrieval. In Proceedings of the
25th Annual International ACM SIGIR Workshop on XML
Information Retrieval (2002), ACM.

[3] Hatanao, K., H. Kinutani, M. Yoshikawa, and S. Uemura.
Information retrieval system for XML documents. In
Proceedings of Database and Expert Systems Applications
(DEXA 2002), Springer, 758-767.

[4] Hiemstra, D. Using language models for information
retrieval, Ph.D. Thesis (2001), University of Twente.

[5] Hiemstra, D. A database approach to context-based XML
retrieval. In [14], 111-118.

[6] Kazai, G., M. Lalmas, and T. Rölleke. A model for the
representation and focused retrieval of structured
documents based on fuzzy aggregation. In The 8th
Symposium on String Processing and Information
Retrieval (SPIRE 2001), IEEE, 123-135.

[7] Kazai, G., M. Lalmas, and T. Rölleke. Focussed
Structured Document Retrieval. In Proceedings of the 9th
Symposium on String Processing and Information
Retrieval (SPIRE 2002), Springer, 241-247.

[8] Lafferty, J., and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (2001), ACM Press, 111-119.

[9] List, J., and A.P. de Vries. CWI at INEX 2002. In [14],
133-140.

[10] Myaeng, S.H., D.H. Jang, M.S. Kim, and Z.C. Zhoo. A
flexible model for retrieval of SGML documents. In
Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (1998), ACM Press, 138-145.

[11] Ogilvie, P. and J. Callan. Language models and structured
document retrieval. In [14], 33-40.

[12] Ogilvie, P. and J. Callan. Combining Structural
Information and the Use of Priors in Mixed Named-Page
and Homepage Finding. To appear in Proceedings of the
Twelfth Text REtrieval Conference (TREC 2003).

[13] Ponte, J., and W.B. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (1998), ACM
Press, 275-281.

[14] Proceedings of the First Workshop of the Initiative for the
Evaluation of XML Retrieval (INEX). 2003, DELOS.

[15] Westerweld, T., W. Kraaj, and D. Heimstra. Retrieving
web pages using content, links, URLs, and anchors. In
Proceedings of the Tenth Text Retrieval Conference,
TREC 2001, NIST Special publication 500-250 (2002),
663-672.

[16] Zhai, C. and J. Lafferty. A study of smoothing methods
for language models applied to ad hoc information
retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (2001), ACM Press, 334-342.

klas
18

klas
18

klas
18

klas
20

klas
18

klas
18

klas
18

An Element-based Approach to XML Retrieval

Börkur Sigurbjörnsson Jaap Kamps Maarten de Rijke

Language & Inference Technology Group, University of Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

E-mail: {borkur, kamps, mdr}@science.uva.nl

ABSTRACT
This paper describes the INEX 2003 participation of the Language
& Inference Technology group of the University of Amsterdam.
We participated in all three of the tasks, content-only, strict content-
and-structure and vague content-and-structure. Our main strategic
lines were to find the appropriate units of retrieval and to mix evi-
dence from several layers in the XML hierarchy.

1. INTRODUCTION
One of the recurring issues in XML retrieval is finding the appro-
priate unit of retrieval. For the content-only (CO) task at INEX
2002, we followed anarticle-basedapproach, i.e. submitted runs
in which whole articles were the unit of retrieval [5]. Much to our
surprise, this turned out to be a competitive strategy. In [6] we
experimented with going below the article level and returning ele-
ments. Our experiments showed that a successful element retrieval
approach should be biased toward retrieving large elements. For
the content-only task this year we followed anelement-basedap-
proach, and our main aim was to experiment further with this size
bias, in order to try to determine what is the appropriate unit of re-
trieval. Additionally, we experimented scoring elements by mixing
evidence from article and element levels.

For the Strict Content-and-Structure (SCAS) task the unit of re-
trieval is usually explicitly mentioned in the query. Our research
question for the content-only task does therefore not carry over to
the strict content-and-structure task. The CAS queries are a mix-
ture of content and structural constraints. We followed anelement-
basedapproach, and our main aim was to investigate how we could
score elements by mixing scores, gained from evaluating the differ-
ent constraints separately.

The Vague Content-and-Structure (VCAS) task is a new task and
we could not base our experiments on previous experience. Since
the definition of the task was underspecified, our aim for this task
was to try to find out what sort of task this was. We experimented
with a content-only approach, strict content-and-structure approach
and article retrieval approach.

All of our runs were created using theFlexIR retrieval system de-
veloped by the Language & Inference Technology group. We use a
multinomial language model for the scoring of retrieval results.

The structure of the remainder of this paper is as follows. In Sec-
tion 2 we describe the setup of our experiments. In Section 3 we
explain our runs for each of the three tasks, CO in 3.1, SCAS in 3.2,
and VCAS in 3.3. Results are presented and discussed in Section 4,
and in Section 5 we draw conclusions from our experiments.

2. EXPERIMENTAL SETUP

2.1 Index
We adopt an IR based approach to XML retrieval. We created our
runs using two types of inverted indexes, one for XML articles only
and another for all XML elements.

Article index
For the article index, the indexing unit is a whole XML document
containing all the terms appearing at any nesting level within the
〈article〉 tag. This is thus a traditional inverted index as used for
standard document retrieval.

Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.

The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both indexes were word-based, no stemming was applied to the
documents, but the text was lower-cased and stop-words were re-
moved using the stop-word list that comes with the English ver-
sion on the Snowball stemmer [10]. Despite the positive effect
of morphological normalization reported in [5], we decided to go
for a word-based approach. Some of our experiments have indi-
cated that high precision settings are desirable for XML element
retrieval [4]. Word-based approaches have proved very suitable for
achieving high precision.

2.2 Query processing
Two different topic formats are used, see Figure 2 for one of the CO
topics, and Figure 3 for one of the CAS topics. Our queries were
created using only the terms in the〈title〉 and〈description〉
parts of the topics. Terms in the〈keywords〉 part of the topics may
significantly improve retrieval effectiveness [4]. The keywords,
which are used to assist during the assessment stage, are often
based on human inspection of relevant documents during the topic
creation. We think that using only the title and description fields is
a more realistic use-case scenario for ad-hoc retrieval. Our system
does not support +, - or phrases in queries. Words and phrases
bound by a minus were removed, together with the minus-sign.
Plus-signs and quotes were simply removed.

klas
19

klas
19

klas
19

klas
21

klas
19

klas
19

klas
19

Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Tom Waits

simple.xml /article[1]/au[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Figure 1: Simplified figure of how XML documents are split up into overlapping indexing units

Like the index, the queries were word-based, no stemming was ap-
plied but the text was lower-cased and stop-words were removed.

Blind feedback
For some of our runs we used queries expanded by blind feedback.
We considered it safer to perform the blind feedback against the ar-
ticle index since we do not know how the overlapping nature of the
element index affects the statistics used in the feedback procedure.
We used a variant of Rocchio feedback [7], where the top 10 docu-
ments were considered relevant; the top 501–1000 were considered
non-relevant; and up to 20 terms were added to the initial topic.
Terms appearing in more that 450 articles were not considered as
feedback terms. The parameters for the feedback were based on
experiments with the INEX 2002 collection. An example of an ex-
panded query can be seen in Figure 2c.

Task specific query handling will be further described as part of the
run descriptions in the following section.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the el-
ements. The elements are then ranked according to the likelihood
of the query, given the estimated language model for the element.
That is, we want to estimate the probability

P(E,Q) = P(E) ·P(Q|E). (1)

The two main tasks are thus to estimate the probability of the query,
given the element,P(Q|E); and the prior probability of the element,
P(E).

Probability of the query
Elements contain a relatively small amount of text, too small to
be the sole basis of our element language model estimation. To
account for this data sparseness we estimate the element language
model by a linear interpolation of two language models, one based
on the element data and another based on collection data. Further-
more, we assume that query terms are independent. That is we
estimate the probability of the query, given the element language

model, using the equation

P(Q|E) =
k

∏
i=1

(λ ·Pmle(ti |E)+(1−λ) ·Pmle(ti |C)) , (2)

whereQ is a query made out of the termst1, . . . , tk; E is an element;
andC represents the collection. The parameterλ is the interpola-
tion factor (often called thesmoothing parameter). We estimate the
language models,Pmle(·|·) using maximum likelihood estimation.
For the collection model we use element frequencies. The esti-
mation of this probability can be reduced to the scoring function,
s(Q,E), for an elementE and a queryQ = (t1, . . . , tk) ,

s(E,Q) =
k

∑
i=1

log

(
1+

λ · tf(ti ,E) · (∑t df(t))
(1−λ) ·df(ti) · (∑t tf(t,E))

)
, (3)

where tf(t,E) is the frequency of termt in elementE, df(t) is the
element frequency of termt, andλ is the smoothing parameter.

The smoothing parameterλ played an important role in our submis-
sions. Zhai and Lafferty [13] argue that bigger documents require
less smoothing than smaller ones. In [4] we reported on the effect
of smoothing on the unit of retrieval. The experiments suggested
that there was a correlation between the value of the smoothing pa-
rameter and the size of the retrieved elements. The average size
of retrieved elements increases dramatically as less smoothing (a
higher value for the smoothing parameterλ) is applied. Increas-
ing the value ofλ in the language model causes an occurrence of
a term to have an increasingly bigger impact. As a result, the el-
ements with more matching terms are favored over elements with
fewer matching terms. In the case of our overlapping element in-
dex, a high value forλ gives us an article biased run, whereas a
low value forλ introduces a bias toward smaller elements (such as
sections and paragraphs).

Prior probabilities
The second major task is to estimate the prior probability of an el-
ement. Basing the prior probability of a retrieval component on its
length, has proved useful for several retrieval tasks [3, 9]. Length
priors are particularly useful for XML retrieval. It is most com-
mon to have the prior probability of a component proportional to

klas
20

klas
20

klas
20

klas
22

klas
20

klas
20

klas
20

its length. That is, we calculate a so-called length prior:

lp(E) = log

(
∑
t

tf(t,E)
)

. (4)

With this length prior, the actual scoring formula becomes the sum
of the length prior (Equation 4) and the score for the query proba-
bility (Equation 3),

slp(E,Q) = lp(E)+s(E,Q). (5)

Although not used here, previous results have indicated that it might
be useful to have the prior proportional to the square or even the
cube of the element length [6]. For an exact description of how
we apply this length prior, see the individual run descriptions in
Section 3.

Mixing evidence
Although we retrieve individual elements from the collection, the
elements are not independent from the surrounding elements. It is
therefore intuitive to judge elements, not only based on their own
merit, but also based on the context in which they appear. In many
of our runs we scored elements by mixing evidence from the el-
ement itself,s(E,Q), and evidence from the surrounding article
s(A,Q), using the scoring formula

scomb(E,Q) = lp(E)+α ·s(A,Q)+(1−α) ·s(E,Q), (6)

wheres(·, ·) is the score function from Equation 3 and lp(·) is the
length prior from Equation 4. This mixing could in principle be
more cleanly implemented inside the language model framework,
using a mixture model.

Index cut-off
Using a length prior and tweaking of the smoothing parameter are
not the only methods applicable to eliminate the small elements
from the retrieval set. One can also simply discard the small el-
ements when building the index. Elements containing text that is
shorter than a certain cut-off value can be ignored when the index
is built. In some of our runs we imitated such index building by re-
stricting our view of the element index to a such a cut-off version.
We also recalculate collection statistics accordingly, making the run
equivalent to Further details will be provided in the description of
individual runs in the next section.

3. RUNS
3.1 Content-Only task
In [6] we tried to answer the question of what is the appropriate unit
of retrieval for XML information retrieval. A general conclusion
was that users have a bias toward large elements. With our runs for
the content-only task we pursued this issue further.

We wanted to experiment with element length bias. Three length
related parameters were introduced in the previous section: value
of the smoothing parameter, length prior and index cut-off. All
our runs used the normal length prior, formula (4). Cut-off value
was set to 20, which is equivalent to having only indexed elements
containing at least 20 terms. Our runs differed only in the value
given to the smoothing parameter.

UAmsI03-CO-lambda=0.9
In this run we set the smoothing parameterλ to 0.9. This value ofλ
means that little smoothing was performed, which resulted in a run
with a bias toward retrieving large elements such as whole articles.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="103" query_type="CO" ct_no="50">
<title>UML formal logic</title>
<description>Find information on the use of formal logics
to model or reason about UML diagrams.</description>
<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

uml formal logic find information use formal logics model
reason uml diagrams

(b) Cleaned query (TD)

uml formal logic find information use formal logics model
reason uml diagrams booch longman rumbaugh itu jacobson
wiley guards ocl notations omg statecharts formalism
mappings verlag sdl documenting stereotyped semantically
sons saddle

(c) Expanded query (TD+blind feedback)

Figure 2: Example of a Content-Only topic (Topic 103)

UAmsI03-CO-lambda=0.2
In this run we set the smoothing parameterλ to 0.2 which means
that a considerable amount of smoothing is performed. This re-
sulted in a run with a bias toward retrieving elements such as sec-
tions and paragraphs.

UAmsI03-CO-lambda=0.5
Here we went somewhere in between the two extremes above by
settingλ = 0.5. Furthermore, we required elements to be either
articles, bodies or nested within the body.

All runs used mixed evidence from the article and the element level.
The same combination value,α = 0.4, was used in the scoring
equation (Equation 6). The value was chosen after experimenting
with the INEX 2002 collection.

As described previously, queries were created using the terms from
the title and description; they were not stemmed but stop-words
were removed (See Figure 2b). The queries were expanded using
blind feedback (See Figure 2c). Feedback is a risky business, some
terms might help while other might lead the retrieval astray. For
this particular query one can imagine that it is useful to include the
founding fathers of UML:Booch, JacobsonandRumbaugh; but it
might be misleading to include the publishers:Longman, (John)
Wiley (&) sonsand(Springer) Verlag.

3.2 Strict Content-And-Structure task
The CAS topics have a considerably more complex format than the
CO topics (see Figure 3a for an example). The description part is
the same, but the title has a different format. The CAS title is writ-
ten in a language which is an extension of a subset of XPath [12].
We can view the title part of the CAS topic as a mixture of path
expressions and filters. Our aim with our SCAS runs was to try
to cast light on how these expressions and filters could be used to
assign scores to elements.

More precisely, we consider the topic title of CAS topics to be split

klas
21

klas
21

klas
21

klas
23

klas
21

klas
21

klas
21

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="76" query_type="CAS" ct_no="81">
<title>//article[(./fm//yr=’2000’ OR
./fm//yr=’1999’) AND about(.,’"intelligent
transportation system"’)]//sec[about(.,
’automation +vehicle’)]</title>

<description>Automated vehicle applications
in articles from 1999 or 2000 about intelligent
transportation systems.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

intelligent transportation system automation
vehicle automated vehicle applications in
articles from 1999 or 2000 about intelligent
transportation systems

(b) Full content query (TD)

76a intelligent transportation system

76b automation vehicle

(c) Partial content queries(T)

//article[about(., "76a")]//sec[about(.,"76b")]

(d) Fuzzy structure (T)

//article[./fm//yr=’2000’ or ./fm//yr=’1999’]//sec

(e) Strict structure (T)

Figure 3: Example of a Content-and-Structure topic (Topic 76)

into path expressions and filters as follows.

rootPath[Fr ∪Cr ∪Sr]targetPath[Fe∪Ce∪Se], (7)

whererootPath andtargetPath are XPath path-expressions and
Fr , Cr , Sr , Fe, Ce, Se are sets of filters (explained below). We dis-
tinguish between three types of filters.

Element filters (F) F is a set of filters that put content constraints
on the current element, as identified by preceding path ex-
pression (rootPath or targetPath). Element filters have
the formatabout(.,’whatever’)

Nested filters (C) C is a set of filters that put content constraints on
elements that are nested within the current element. Nested
filters have the formatabout(./path, ’whatever’)

Strict filters (S) S is a set of filters of the formatpath op value,
whereop is a comparison operator such as= or >=; and value
is a number or a string.

The filters in the actual topics were connected with a boolean for-
mula. We ignore this formula and only look at sets of filters. How-
ever we treat the filters in quite a strict fashion; the larger the num-
ber of filters that are satisfied, the higher the ranking of an element.
The difference between our three runs lies in the way we decide the
ranking of results that satisfy the same number of filters.

As an example, the title part of Topic 76 in Figure 3a can be broken
up into path expressions and filters such as:

rootPath = //article

Fr = {about(.,‘"intelligent transportation system"’)}
Cr = /0
Sr = {./fm//yr=‘2000’,./fm//yr=‘1999’}
targetPath = //sec

Fe = {about(.,‘automation +vehicle’)

Ce = /0
Se = /0

We calculate the retrieval scores by combining 3 base runs. The
base runs consist of anarticle run, a ranked list of articles answer-
ing the full content query (Figure 3b); an element run, a ranked
list of target elements answering the full content query (Figure 3b);
and afilter run, a ranked list of elements answering each of the par-
tial content queries (Figure 3c). More precisely the base runs were
created as follows.

Article run
We created an article run from the element index by filtering away,
from an element retrieval run, all elements not having the tag-name
〈article〉. We used a valueλ = 0.15 for the smoothing parameter.
This is the traditional parameter settings for document retrieval.
We used the full content query (Figure 3b), expanded using blind
feedback. For each query we retrieved a ranked list of 2000 most
relevant articles.

Element run
We created an element run in a similar fashion as for the CO task.
Additionally, we filtered away all elements that did not have the
same tag-name as the target tag-name (the rightmost part of the
targetPath). For topics where the target was unspecified, a ‘*’,
we considered only elements containing at least 20 terms. We did a
moderate smoothing by choosing a value of 0.5 for λ. We used the
full content queries (Figure 3b), expanded using blind feedback.
For each query we retrieved an exhaustive ranked list of relevant
elements.

Filter run
We created an element run in a similar fashion as for the CO task,
but using the partial content queries (Figure 3c). No blind feedback
was applied to the queries. We filtered away all elements that did
not have the same tag-name as the target tag-name of each filter.
For filters where the target was a ‘*’ we considered only elements
containing at least 20 terms. We did minor smoothing by choosing
the value 0.7 forλ. For each query we retrieved an exhaustive
ranked list of relevant elements.

For all the base runs we used the scoring formula with a length prior
(Equation 5). From the base runs we created three runs which we
submitted: one where scores are based on the element run; another
where scores are based on the article run; and a third which uses
a mixture of the element run, article run and filter run. For all
the runs, the elements are filtered using an XPath-parser and the
strict filters (Figure 3e). Any filtering using tag-names used the tag
equivalence relations defined in the topic development guidelines.
Our three different runs we created as follows.

klas
22

klas
22

klas
22

klas
24

klas
22

klas
22

klas
22

UAmsI03-SCAS-ElementScore
The articles appearing in the article run were parsed and their ele-
ments that matched any of the element- or nested-filters were kept
aside as candidates for the final retrieval set. In other words, we
kept aside all elements that matched the title fuzzy XPath expres-
sion (Figure 3d), where the about predicate returns the valuetrue
for precisely the elements that appear in the filter run. The candi-
date elements were then assigned a score according to the element
run. Additionally, results that match all filters got 100 extra points.
Elements that match only the target filters got 50 extra points. The
values 100 and 50 were just arbitrary numbers used to guarantee
that the elements matching all the filters were ranked before the
elements only matching a strict subset of the filters. This can be
viewed as a coordination level matching for the filter matching.

UAmsI03-SCAS-DocumentScore
This run is almost identical to the previous run. The only difference
was that the candidate elements were assigned scores according to
the article run instead of according to the element run.

UAmsI03-SCAS-MixedScore
The articles appearing in the article run are parsed in the same way
as for the two previous cases. The candidate elements are assigned
a score which is calculated by combining the RSV scores of the
three base runs. Hence, the score of an element is a mixture of its
own score, the score of the article containing it, and the scores of
all elements that contribute to the XPath expression being matched.
More precisely, the element score was calculated using the formula

RSV(e) = α ·

(
s(r)+ ∑

f∈Fr

s(f)+ ∑
c∈Cr

maxs(c)

)

+(1−α) ·

(
s(e)+ ∑

f∈Fe

s(f)+ ∑
c∈Ce

maxs(c)

)
, (8)

whereFr , Cr , Fe andCe represent sets of elements passing the re-
spective filter mentioned in Equation 7;s(r) is the score of the ar-
ticle from the article run;s(f) ands(c) are scores from the filter
run; ands(e) is the score from the element run. In all cases we set
α = 0.5. We did not have any training data to estimate an optimal
value for this parameter. We did not apply any normalization to the
RSVs before combining them.

3.3 Vague Content-And-Structure task
Since the definition of the task was a bit underspecified, we did not
have a clear idea about what this task was about. With our runs
we tried to cast light on whether this task is actually a content-only
task, a content-and-structure task, or a traditional article retrieval
task.

UAmsI03-VCAS-NoStructure
This is a run that is similar to our CO runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. We only considered elements
containing at least 20 terms.

UAmsI03-VCAS-TargetFilter
This run is more similar to our SCAS runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. Furthermore, we only re-
turned elements having the same tag-name as the rightmost part of

targetPath. Where the target element was not explicitly stated (*-
targets), we only considered elements containing at least 20 terms.

UAmsI03-VCAS-Article
This run is a combination of two article runs using unweighted
combSUM [8]. The two runs differ in the way that one is aimed
at recall but the other at high precision. The one that aims at recall
usedλ = 0.15 and the full content queries, expanded by blind feed-
back. The high precision run usedλ = 0.70 and as queries only the
text appearing in the filters of the topic title. The RSV values of the
runs were normalized before they were combined.

For all the VCAS runs, scores were calculated using the length prior
(Equation 5).

4. RESULTS AND DISCUSSION
We evaluate our runs using version 2003.004 of the evaluation soft-
ware provided by the INEX 2003 organizers. We used version 2.4
of the assessments. Below, all runs are evaluated using the strict
quantization; i.e., an element is considered relevant if, and only if,
it is highly exhaustive and highly specific.

4.1 Content-Only task
Table 1 shows the results of the CO runs. Figure 4 shows the
precision-recall plots. The CO runs at INEX 2003 are evaluated us-
ing inex eval, the standard precision-recall measure for INEX. At
present, two other measures are being developed,inex eval ng(s),
a precision recall measure that takes size of retrieved components
into account; andinex eval ng(o), which considers both size and
overlap of retrieved components [1]. At the time of writing, a work-
ing version of the latter two measures had not been released. We
will therefore only report on our results using the inexeval mea-
sure.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

lambda=0.90
lambda=0.20
lambda=0.50

Figure 4: Precision-recall curves for our CO submissions, using
the strict evaluation measure

klas
23

klas
23

klas
23

klas
25

klas
23

klas
23

klas
23

92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126
0

0.2

0.4

0.6

0.8

1

Topic

Pr
ec

is
io

n
lambda=0.2
lambda=0.5
lambda=0.9

Figure 5: Precision for each of the CO topics. Note that assessments for topics 105, 106, 114, 118, 120, and 122 have not been
completed. Furthermore, topics 92, 100, 102, and 121 have no strict judgments.

MAP p@5 p@10 p@20
λ = 0.2 0.1214 0.3231 0.2923 0.2423
λ = 0.5 0.1143 0.3462 0.2923 0.2346
λ = 0.9 0.1091 0.3308 0.2769 0.2250

Table 1: Results of the CO task

According to the inexeval measure, the run usingλ = 0.2 has over
all highest MAP score. The run that usesλ = 0.5 and filters out el-
ements outside the〈bdy〉 tag, gives slightly higher precision when
5 elements were retrieved. The run usingλ = 0.2 does however
catch up quite quickly. The runs seem to be so similar that any
differences are unlikely to be statistically significant.

Despite the similarity between the runs, let’s take a closer look and
see if there is any difference. Table 2 shows, for each run, the aver-
age length of retrieved elements and average length of the relevant
elements retrieved. The table shows that the runs are indeed differ-
ent. We are using the smoothing parameter to introduce a different
length bias, the higher the value we give to the length prior, the
larger elements we get on average. The difference between aver-
age length of retrieved elements and the average length of relevant
elements retrieved, might indicate that a more length biased length
prior is needed. Figure 5 shows the average precision of our runs
for each topic separately. We see that for a vast majority of the
topics the different runs give more or less the same score.

Average element length
retrieved relevant

λ = 0.2 1,335 2,499
λ = 0.5 1,839 2,965
λ = 0.9 2,166 3,330

Table 2: Some statistics of our submitted runs

From Figure 5 we see that our runs are far from being stable be-
tween topics. For 15 out of 30 assessed topics we score practically
nothing at all. For 9 topics our score lies between 0.05 and 0.2.
For 5 topics we score between 0.2 and 0.4. Finally only one topic
reaches over 0.4. Let’s take a closer look at the 15 topics where we
score practically nothing. For 4 of them there were no strict judg-
ments, i.e. no element was assessed as highly exhaustive and highly
specific. A further 7 topics had 10 or less strict judgments. The re-
maining 4 had 21–90 strict judgments each. For all the 11 topics
where were 10 or fewer strict judgments, we score poorly. For
those topics the task turned out to be a real needle-in-the-haystack
problem.

4.2 Strict Content-And-Structure task
In this section we will refer to our thee different runs as element-
based, document-based and mixed. Table 3 shows the results of the
SCAS runs. Figure 6 shows the precision-recall plots. The mixed

MAP p@5 p@10 p@20
ElementScore 0.2987 0.4160 0.3520 0.2540
DocumentScore 0.2314 0.2960 0.2680 0.2160
MixedScore 0.3182 0.4000 0.3440 0.2860

Table 3: Results of the SCAS task

run has higher MAP than the other two runs. The element-based
run has slightly lower MAP than the mixed run. The document-
based run has the lowest MAP.

The element-based run outperforms the other two at low recall lev-
els. We can see from the table that the element-based run has the
highest precision after only 5 or 10 documents have been retrieved.
The mixed run catches up with the element-based run once 20 doc-
uments have been retrieved. This indicates that coordination level
matching for the filter matching, works well for initial precision,
but is not as useful at higher recall levels.

klas
24

klas
24

klas
24

klas
26

klas
24

klas
24

klas
24

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
0

0.2

0.4

0.6

0.8

1

Topic

Pr
ec

is
io

n

Element Score
Document Score
Mixed Score

Figure 7: Precision for each of the SCAS topics. Topics 61, 67, 69, 73, and 76 have no strict judgments.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

Element Score
Document Score

Mixed Score

Figure 6: Precision-recall curves for our SCAS submissions,
using the strict evaluation

Let us now try to analyze individual topics and topic groups. Fig-
ure 7 shows the average precision for our SCAS runs, individually
for each topic. We see that the our performance is topic dependent.
For this task, we do not see as clear correlation between precision
and total number of relevant elements, as we saw for the content-
only task. Since the target element is usually specified, this is less
of a needle-in-the-haystack problem. To try to understand this bet-
ter we look at performance over three different classes of topics.

Table 4 shows mean average precision for three different classes of

target elements. First we look at the class of topics where the target
is 〈article〉, then we look at the class where the target is〈sec〉,
and finally we look at the class of other topics (where the target
is either *, 〈abs〉, 〈p〉, 〈vt〉 or 〈bb〉). The second column in the
table shows how many topics there are in each class. The remain-
ing columns show the performance of each run. The difference of
each run is calculated using the overall performance of that run as
baseline. Before we continue it must be said that the results must
be taken with a grain of salt; they are based on very few topics, the
classes only contain 10, 8 and 7 topics respectively.

Target # elem.-based doc.-based mixed
article 10 0.3298 +10% 0.3142 +36% 0.3526 +11%
sec 8 0.2354 -21% 0.2364 +2.2% 0.2810 -13%
other 7 0.2569 -14% 0.1712 -26% 0.3199 +0.53%

Table 4: Average precision of our runs for the SCAS topics,
clustered by tag name of the target element

For the class of topics where the target is an article, all runs perform
well relative their overall performance. Compared to each other, the
element-based run and document-based run perform similarly. The
only difference is the value chosen for the smoothing parameterλ.
For this class, the mixed run scores better than the other two runs,
giving further evidence of how structure can help improve article
retrieval [11].

For the class of topics where sections are the target, the perfor-
mance of the document-based run is similar to it’s overall perfor-
mance. The element-based run and the mixed run perform poorly
relative to their overall performance. Compared to each other, the
mixed run still performs somewhat better than the other two runs.
Again there is not much difference between the element-based run
and the document-based run. This is surprising since one would
have guessed that the element-based run would perform better.

For the class of the remaining topics, the performance of the mixed

klas
25

klas
25

klas
25

klas
27

klas
25

klas
25

klas
25

run is similar to it’s overall performance. The other two runs per-
form poorly relative to their overall performance. Compared to
each other, the mixed run is still better than the other two. Now the
element-based run is clearly better than the document-based run.

Overall we can say safely that, our runs perform better on topics
where the target element is an article, compared to the performance
for other target-type classes. When the different runs are compared
to each other, the mixed run performed consistently better than the
other two. The element-based run only differentiated itself from the
document-based run when the task was to find the smaller elements
such as paragraphs and abstracts.

4.3 Vague Content-And-Structure task
At the time of writing the evaluation metric of the Vague Content-
And-Structure task had not been released. Hence there are no re-
sults to discuss for this task.

5. CONCLUSIONS
This paper described our official runs for the INEX 2003 evaluation
campaign. Our main research question was to further investigate
the appropriate unit of retrieval. Although this problem is most vis-
ible for INEX’s CO task, it also plays a role in the element and filter
base runs for the CAS topics. With default adhoc retrieval settings,
small XML elements dominate the ranks of retrieved elements. We
conducted experiments with a number of approaches that aim to
retrieve XML elements similar to those receiving relevance in the
eyes of the human assessors. First, we experimented with a uni-
form length prior, ensuring the retrieval of larger sized XML ele-
ments [6]. Second, we experimented with Rocchio blind feedback,
resulting in longer expanded queries that turn out to favor larger
XML elements than the original queries. Third, we experimented
with size cut-off, only indexing the element that contain at least 20
words. Fourth, we experimented with an element filter, ignoring
elements occurring in the front and back matter of articles. Fifth,
we experimented with smoothing settings, where the increase of
the term importance weight leads to the retrieval of larger elements
[4]. Finally, we combined approaches in various ways to obtain the
official run submission.

Our future research focuses on the question of what is the appro-
priate statistical model for XML retrieval. In principle, we could
estimate language models from the statistics of the article index
similar to standard document retrieval. An alternative is to estimate
them from the statistics of the element index, or from a particu-
lar subset of the full element index. In particular, we smooth our
element language model with collection statistics from the over-
lapping element index. Arguably, this may introduce biases in the
word frequency and document frequency statistics. Each term ap-
pearing in an article usually creates several entries in the index.
The overall collection statistics from the index may not be the best
estimator for the language models. In our current research we in-
vestigate the various statistics from which the language models can
be estimated.

6. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organization for
Scientific Research (NWO) under project numbers 400-20-036 and
612.066.302. Maarten de Rijke was supported by grants from NWO,
under project numbers 612-13-001, 365-20-005, 612.069.006, 612.-
000.106, 220-80-001, 612.000.207, and 612.066.302.

7. REFERENCES
[1] N. Gövert, G. Kazai, N. Fuhr, and M. Lalmas. Evaluating the

effectiveness of content-oriented XML retrieval. Technical
report, University of Dortmund, Computer Science 6, 2003.

[2] D. Hiemstra.Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[3] D. Hiemstra and W. Kraaij. Twenty-One at TREC-7: Ad-hoc
and cross-language track. In E.M. Voorhees and D.K.
Harman, editors,The Seventh Text REtrieval Conference
(TREC-7), pages 227–238. National Institute for Standards
and Technology. NIST Special Publication 500-242, 1999.

[4] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Topic Field
Selection and Smoothing for XML Retrieval. In A. P. de
Vries, editor,Proceedings of the 4th Dutch-Belgian
Information Retrieval Workshop, pages 69–75. Institute for
Logic, Language and Computation, 2003.

[5] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. The
Importance of Morphological Normalization for XML
Retrieval. In N. Fuhr, N. G̈overt, G. Kazai, and M. Lalmas,
editors,Proceedings of the First Workshop of the Initiaitve
for the Evaluation of XML Retrieval (INEX), pages 41–48.
ERCIM Publications, 2003.

[6] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson.
XML Retrieval: What to Retrieve? In C. Clarke,
G. Cormack, J. Callan, D. Hawking, and A. Smeaton,
editors,Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 409–410. ACM Press, 2003.

[7] J. Rocchio. Relevance feedback in information retrieval. In
G. Salton, editor,The SMART Retrieval System —
Experiments in Automatic Document Processing. Prentice
Hall, 1971.

[8] J. A. Shaw and E. A. Fox. Combination of multiple searches.
In D.K. Harman, editor,Proceedings TREC-2, pages
243–249. NIST, 1994.

[9] A. Singhal, C. Buckley, and M. Mitra. Pivoted document
length normalization. InProceedings of the 19th Annual
International ACM-SIGIR Conference on Research and
Development in Information Retrieval, pages 21–29. ACM
Press, 1996.

[10] Snowball. The snowball string processing language, 2004.
http://snowball.tartarus.org/.

[11] R. Wilkinson. Effective retrieval of structured documents. In
W. Bruce Croft and C. J. van Rijsbergen, editors,
Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 311–317. Springer-Verlag New York, Inc.,
1994.

[12] XPath. XML Path Language, 1999.
http://www.w3.org/TR/xpath.

[13] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 334–342. ACM Press, 2001.

http://snowball.tartarus.org/
http://www.w3.org/TR/xpath
klas
26

klas
26

klas
26

klas
28

klas
26

klas
26

klas
26

HyREX at INEX 2003

Mohammad Abolhassani, Norbert Fuhr, Saadia Malik
University of Duisburg-Essen, Germany

ABSTRACT
Abstract: In this paper, we describe two new approaches for pro-
cessing INEX queries. For CO queries, we adopt Amati’s diver-
gence from randomness approach (aka language model) and ex-
tend it by an additional factor for considering the hierarchical level
of the element to be retrieved. For CAS queries, we investigate sev-
eral mappings from INEX queries to our query language XIRQL,
where we tried to introduce different degrees of vagueness. Both
approaches yield good retrieval results, but still leave room for im-
provement.

1. INTRODUCTION
The HyREX (Hypermedia Retrieval Engine for XML) system de-
veloped by our group [Fuhr & Großjohann 01], [Fuhr & Großjo-
hann 04], [Fuhr et al. 02] supports document ranking based on
index term weighting, specificity-oriented search for retrieving the
most relevant parts of documents, data types with vague predicates
for dealing with specific types of content and structural vagueness
for vague interpretation of structural query conditions. In INEX
2002, HyREX performed very well for content-only (CO) queries,
but only poorly for content-and-structure(CAS) queries (although
this was due to a bug in the implementation).
In this paper, we describe a new retrieval model for CO queries
based on Amati’s divergence from randomness (DFR) approach.
For the CAS queries, we investigated several methods for trans-
forming INEX topics into our own query language XIRQL [Fuhr
& Großjohann 01].

2. CONTENT-ONLY QUERIES
In [Fuhr & Großjohann 01], we proposed theaugmentationmethod
for processing content-only queries. This method gave very good
results in INEX 2002. In the augmentation approach, standard term
weighting formulas (we were using the BM25 formula [Robertson
et al. 95] for this purpose) are used for indexing the leave nodes
of the document tree. For computing the indexing weights of in-
ner nodes, the weights from the leaves are propagated towards the
inner nodes. During propagation, however, the weights are down-
weighted by multiplying them with a so-called augmentation fac-
tor. This down-weighting happens whenever the indexing weight
is propagated from an element that belongs to a predefined set of
so-called index node root elements to its parent element. In case
a term at an inner note receives propagated weights from several
leaves, we compute the overall term weight by assuming a proba-
bilistic disjunction of the leaf term weights. This way, more specific
elements are preferred during retrieval

This year, we were trying to adopt the DFR approach, which is a
kind of language model. Here we give only a brief description of
the application of this approach to XML retrieval. A more detailed
presentation can be found in [Abolhassani & Fuhr 04].

2.1 The DFR approach
[Amati & Rijsbergen 02] introduce a framework for deriving prob-
abilistic models of IR. These models are non-parametric models of
IR as obtained in thelanguage modelapproach. The term weight-
ing models are derived by measuring the divergence of the actual
term distribution from that obtained under a random process.
In this framework, the weighting formula for a term in a document
is the product of the following two factors:

1. Prob1 is used for measuring theinformation contentof the
term in a document, and(− log2 Prob1) gives the corre-
sponding amount of information.

2. Prob2 is used for measuring theinformation gainof the term
with respect to its ‘elite’ set (the set of all documents in which
the term occurs). The less the term is expected in a document
with respect to its frequency in the elite set (measured by the
counter-probability(1 − Prob2)), the more the amount of
information is gained with this term.

Then the weight of a term in a document is defined as:

w = (1 − Prob2) · (− log2 Prob1) = Inf2 · Inf1 (1)

For computing the two probabilities, the following parameters are
used:

N number of documents in the collection,

tf term frequency within the document (since different normalisa-
tions are applied to the term frequency, we usetf1 andtf2

in the following formulas),

n size of the elite set of the term,

F term frequency in elite set.

Furthermore, letλ = F/N in the following.
As probability distribution for estimatingProb1, different proba-
bilistic models are regarded in [Amati & Rijsbergen 02]. In this
paper, we use only two of them:

• The binomial model assumes that theF term occurrences
are distributed independently over theN document; thus, we
have a binomial distribution withp = 1/N . Approximating
the binomial formula with the divergence yields:

Inf1 = tf1 · log2

tf1

λ
+

„
λ +

1

12tf1
− tf1

«

klas
27

klas
27

klas
27

klas
29

klas
27

klas
27

klas
27

Table 1: Results from direct application vs. augmentation approach
document length Dynamic Fixed

B Norm. L Norm. B Norm. L Norm.

Binomial 0.0109 0.0356 0.0640 0.0717
Bose-Einstein 0.0214 0.0338 0.0468 0.0606
Augmentation 0.1120

Table 2: Results from 2nd normalisation with two basic values forβ
β = 0 β = −1

B Norm. L Norm. B Norm. L Norm.

Binomial 0.0391 0.0586 0.0640 0.0900
Bose-Einstein 0.0376 0.0609 0.0376 0.0651

· log2 e + 0.5 log2(2π · tf1) (2)

• TheBose-Einsteinmodel considers all possible distributions
of theF term occurrences within theN documents and then
considers all those events where the current document has
tf1 occurrences. The Geometric as limiting form of the Bose-
Einstein model yields:

Inf1 = −log2
1

1 + λ
− tf1 · log2

λ

1 + λ
(3)

For the parameterInf2 = (1 − Prob2) (which is also calledfirst
normalisation), Prob2 is defined as the probability of observing
another occurrence of the term in the document, given that we have
seen alreadytf occurrences. For this purpose, Amati regards two
approaches:

L Based on Laplace’s law of succession, he gets

Inf2 =
1

tf2 + 1
(4)

B Regarding the ratio of two Bernoulli processes yields

Inf2 =
F + 1

n · (tf2 + 1)
(5)

These parameters do not yet consider the length of the document
to be indexed. For the relationship between document length and
term frequency, we apply the following formula:

ρ(l) = c · lβ (6)

wherel is the document length,ρ(l) is the density function of the
term frequency in the document,c is a constant andβ is a parameter
to be chosen.
In order to consider length normalisation, Amati maps thetf fre-
quency onto a normalised frequencytfn computed in the following
way: Let l(d) denote the length of documentd andavl is the av-
erage length of a document in the collection. Thentfn is defined
as:

tfn =

Z l(d)+avl

l(d)

ρ(l)dl (7)

Thus, the normalised term frequencytfn is computed by assum-
ing that there would be a document of average length appended
to the actual document, and that we estimate the number of term
occurrences within this hypothetical document (based on the term
density functionρ(l)).

For considering these normalisations, Amati setstf1 = tf2 = tfn
in formulas 2–5 and then computes the term weight according to
eqn 1.
For retrieval, the query term weightqtf is set to the number of oc-
currences of the term in the query. Then a linear retrieval function
is applied:

R(q, d) =
X
t∈q

qtf · Inf2(tf2) · Inf1(tf1) (8)

In [Amati & Rijsbergen 02], DFR evaluation results for different
parts of the TREC collection are reported. In many cases, DFR
variants give better results than the BM25 formula1, and in some
cases even yield the best overall results. Thus the DFR approach
offers both a solid theoretical foundation an a high retrieval quality.

2.2 Applying divergence from randomness to
XML documents

2.2.1 Direct application of Amati’s model
In Section 2.1, we have described the basic model along with a
subset of the weighting functions proposed by Amati. Given that
we have two different formulas for computingInf1 as well as two
different ways for computingInf2, we have four basic weighting
formulas which we are considering in the following.
In a first round of experiments, we tried to apply Amati’s model
without major changes. However, whereas Amati’s model was de-
fined for a set of atomic documents, CO retrieval is searching for
so-calledindex nodes, i.e. XML elements that are meaningful units
for being returned as retrieval answer.
As starting point, we assumed that the complete collection consists
of the concatenation of all XML documents. When we regard a sin-
gle index node, we assume that the complete collection consists of
documents having the same size as our current node. LetL denote
the total length of the collection andl(d) the length of the cur-
rent node (as above), then we compute the number of hypothetical
documents asN = L/l(d). Since we assume that all documents
are of equal length, no document length normalisation (eqn. 7) is
necessary in this case; instead, we have an implicit consideration
of document length via modifyingN , which, in turn, affectsλ in
eqn. (2) and (3).
Table 1 shows the experimental results. The first two result columns
list the average precision values for this setting when applying the
four different weighting functions. We suspect that the poor perfor-
mance is due to the fact that the weights derived from different doc-
1In [Amati & Rijsbergen 02], it is shown that BM25 actually is an
approximation of one of the DFR formulas.

klas
28

klas
28

klas
28

klas
30

klas
28

klas
28

klas
28

Table 3: Results from 2nd normalisation with two other values forβ
β = −0.75 β = −0.80

B Norm. L Norm. B Norm. L Norm.

Binomial 0.0799 0.1026 0.0768 0.1005
Bose-Einstein 0.0453 0.0653 0.0448 0.0654

Table 4: Average precision for the Bose-Einstein L Norm combination with various values ofα
α 2 4 9 16 20 32 64 96 104 116 128

prec. 0.0726 0.0865 0.0989 0.1059 0.1077 0.1083 0.1089 0.1094 0.1087 0.1081 0.1077

ument lengths are not comparable, i.e. that our ’implicit’ document
length normalisation via modifying the hypothetical total number
of documentsN is not feasible.
As an alternative method, we computed the average size of an index
node. The two last columns in table 1 show a much better retrieval
quality for this case.
In the subsequent experiments, we focused on the second approach.
By referring to the average size of an index node we were also able
to apply document length normalisation according to Equation 6.
Table 2 shows the corresponding results forβ = 0 andβ = −1.
The results show that length normalisation withβ = −1 improves
retrieval quality in most cases. These results were also in confor-
mance with Amati’s findings thatβ = −1 gives better results than
β = 0.
Subsequently we tried some other values forβ. Table 3 shows the
corresponding results forβ = −0.75 andβ = −0.80, with which
we got better results.
Overall, using a fixed average document length, and length normal-
isation, gave better results than those achieved in the first round.
However, the resulting retrieval quality was still lower than that of
the augmentation approach (see table 1). Thus, in order to arrive at
a better retrieval quality, we investigated other ways than straight-
forward application of Amati’s model.

2.2.2 Considering the hierarchical structure of XML
documents

In order to consider the hierarchical structure of XML documents,
we investigated different ways for incorporating structural param-
eters within the weighting formula. Regarding the basic ideas, as
described in Section 2.1, the most appropriate way seemed to be
the modification of theInf2 parameter, which refers to the ‘elite’
set. Therefore, we computedInf1 as above, by performing doc-
ument length normalisation with respect to the average size of an
index node.
For computingInf2, we also applied document length normalisa-
tion first, thus yielding a normalised term frequencytfn. Then we
investigated several methods for ‘normalising’ this factor with re-
spect to the hierarchical document structure; we call this process
third normalisation. For this purpose, we introduced an additional
parameterh(d) specifying the height (or level) of an index node
relative to the root node (which hash = 1).
Using the level information, we first tried several heuristic formulas
like tf2 = tfn · h(d)α andtf2 = tfn · h(d)−α, which, however,
did not result in any improvements. Finally, we came up with the
following formula:

tf2 = tfn · (h(d)/α) (9)

Hereα is a constant to be chosen, for which we tried several val-
ues. However, the experiments showed that the choice ofα is not
critical. This weighting formula gives higher weights to terms oc-

curring in deeper elements of the document tree. This way, we try
to achieve the INEX CO goal of retrieving the most specific ele-
ments answering the query.
Table 4 shows the results for the combination of Bose-Einstein and
Laplace normalisation, for which we got significant improvements.
This variant also gave better results in Amati’s experiments. In fur-
ther experiments not listed here we tried to combine 3rd normalisa-
tion with the binomial model; however, this resulted in a decrease
of retrieval quality.

3. CONTENT-AND STRUCTURE(CAS) TOP-
ICS

The query language XIRQL of our retrieval system HyREX is very
similar to the INEX CAS topic specification. However, our expe-
rience from INEX 2002 has shown that a ‘literal’ interpretation of
the CAS queries does not lead to good retrieval results. Thus, we
were looking for ‘vague’ interpretations of the INEX topics. Since
XIRQL has a high expressiveness, we did not want to change the
semantics of XIRQL (by introducing vague interpretations of the
different language elements). Instead, we focused on the transfor-
mation from the INEX topic specification into XIRQL.
XIRQL is an extension of XPath [Clark & DeRose 99] by IR con-
cepts. We assume that XML document elements have specific data
types, like e.g. person names, dates, technical measurement values
and names of geographic regions. For each data type, there are
specific search predicates, most of which are vague (e.g. phonetic
similarity of names, approximate matching of dates and closeness
of geographic regions). In addition to Boolean connectors, there
also is a weighted sum operator for computing the scalar product
between query and document term weights.
The general format of a of an INEX query is
//TE[filter] or
//CE[filter]//TE[filter]
Where TE stands for Target Element and CE stands for Context
Element.
In XIRQL, single query conditions can be combined in the follow-
ing way:

Conjunctions(and) Filter conditions(conditions within [..]) can
be combined by the and operator

Disjunctions(or) Filter conditions can be combined by the or
operator.

Weighted Sum (wsum) and PrecedenceWeighted sum notation
can be used to indicate the importance of a query term, e.g.

//article[wsum(
0.7,.//atl//#PCDATA $stem$ "image",
0.3,.//atl//#PCDATA $stem$ "retrieval"
)]

klas
29

klas
29

klas
29

klas
31

klas
29

klas
29

klas
29

Phrases Since HyREX has no specific phrase operator (yet), we
represented phrases as conjunctions of the single words, e.g.

//article[wsum(
1.0,.//atl//#PCDATA [. $stem$ "image"
and . $stem$ "retrieval"],
1.0,. $stem$ "colour")]

3.1 Experimentation
In order to search for better transformations from INEX CAS top-
ics into XIRQL, we performed a number of experiments using the
INEX 2002 topics (which we transformed into the 2003 format).
For generating our XIRQL queries, we used only titles and key-
words of the topics. In the following we briefly characterise the
different kinds of transformations investigated. We illustrate each
method by showing the resulting XIRQL expression for the fol-
lowing INEX topic(articles about image retrieval methods based
on colour, contour, shape, texture and semantics):

//article[about(.//atl,’image retrieval’
) and about(.,’image retrieval colour
shape texture’)]

3.1.1 CAS-I
The first transformation assumes a very strict interpretation of the
INEX query. Except for the query terms, we always assume a con-
junction of conditions:

1. Only query title is used.

2. Phrases are represented using conjunctions.

3. Query terms are represented using disjunctions

4. Mandatory (’+’ prefixed) terms are handled by conjunctions

//article[(.//atl//#PCDATA[
. $stem$ "image" and
. $stem$ "retrieval"]) and
(.//#PCDATA[. $stem$ "image"] or

.//#PCDATA[. $stem$ "retrieval"]
or .//#PCDATA[. $stem$ "colour"]
or .//#PCDATA[. $stem$ "shape"]
or .//#PCDATA[. $stem$ "texture"]
)]

3.1.2 CAS-II
Here we tried a vague interpretation of the query, by combining the
different conditions via weighted sum, and mandatory terms just
get higher weights.

1. Only query title is used.

2. Phrases are represented using conjunctions.

3. Terms are represented using weighted sum notation and as-
signed weight 1.

4. Mandatory terms are assigned higher weights.

/article[wsum(1.0,.//atl//#PCDATA[
. $stem$ "image" and
. $stem$ "retrieval"],

1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")]

3.1.3 CAS-III
This variant is is a combination of CAS-I and CAS-II:

1. Only query title is used.

2. Phrases are represented using conjunctions.

3. Terms are represented using weighted sum notation and XPath
notations. These two notations are joined with or operator.

4. ’+’ prefixed terms are assigned higher weight 5 and also rep-
resented as phrases.

//article[(.//atl//#PCDATA[
. $stem$ "image" and
. $stem$ "retrieval"])
and
(.//#PCDATA[. $stem$ "image"] or

.//#PCDATA[. $stem$ "retrieval"] or

.//#PCDATA[. $stem$ "colour"] or

.//#PCDATA[. $stem$ "shape"] or

.//#PCDATA[. $stem$ "texture"]) or
wsum(1.0,.//atl//#PCDATA $stem$ "image",

1.0,.//atl//#PCDATA $stem$ "retrieval",
1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")]

3.1.4 CAS-IV
This variant is similar to CAS-I, but considers terms from both the
title and the keywords.

1. Query titles and keywords are used. Keywords are consid-
ered in case there are less than 3 query terms in the title.

2. Phrases are represented using conjunctions.

3. Terms are represented using disjunctions

4. ’+’ prefixed terms are handled as phrases.

//article[(.//atl//#PCDATA[
. $stem$ "image" and
. $stem$ "retrieval"]) and

(.//#PCDATA[. $stem$ "image"] or
.//#PCDATA[. $stem$ "retrieval"]
or .//#PCDATA[. $stem$ "colour"]
or .//#PCDATA[. $stem$ "shape"]
or .//#PCDATA[. $stem$ "texture"
])]

3.1.5 CAS-V
This is a more vague variant of CAS-II, where we combine even
the components of a phrase via wsum.

1. Only query title is used.

2. Phrases are also handled as terms and assigned weight 1.0.

3. Terms are combined by wsum operator.

4. Higher weight (5) is assigned to terms prefixed with ’+’.

klas
30

klas
30

klas
30

klas
32

klas
30

klas
30

klas
30

Table 5: Query variations summary
query notation terms phrases +prefixed
part terms

CAS-I title XPath or and and
CAS-II title wsum weight 1.0 and weight 5.0
CAS-III title XPath & wsum or & weight 1.0 and and & weight 5.0
CAS-IV title & keywords XPath or and and
CAS-V title wsum weight 1.0 weight 1.0 weight 5.0

Table 6: Results:Experimentation with INEX 2002 CAS topics
Query Variation Average Precision

ignore empty consider empty
strict generalised strict generalised

CAS-I 0.2640 0.2338 0.1692 0.1508
CAS-II 0.1325 0.1215 0.0859 0.0798
CAS-III 0.1724 0.1415 0.1045 0.0916
CAS-IV 0.1297 0.1179 0.0959 0.0877
CAS-V 0.1327 0.1077 0.0806 0.0872

//article[
wsum(1.0,.//atl//#PCDATA $stem$ "image",

1.0,.//atl//#PCDATA $stem$ "retrieval",
1.0, ... $stem$ "image",
1.0, ... $stem$ "retrieval",
1.0, ... $stem$ "colour",
1.0, ... $stem$ "shape",
1.0, ... $stem$ "texture")

]

3.1.6 Evaluation
Using the two strict and the generalised variants of the INEX eval-
uation metrics [Gövert & Kazai 03], we got the results shown in
table 8. Depending on the query complexity, some of the queries
could not be processed by HyREX; columns headed by ’ignore
empty’ give performance figures where these queries are ignored,
whereas ’consider empty’ means that these queries are considered
with zero precision. One can see that the strict interpretation CAS-
I yields the best results, whereas all vague interpretations lead to a
lower retrieval quality. We conclude that — at least for the strict
interpretation of the CAS queries — vague interpretations of the
query logic by replacing conjunctions with disjunctions or weighted
sums do improve results, they lead to a lower retrieval quality.

4. INEX 2003 SUBMISSIONS & RESULTS
Our CO submissions in INEX 2003 include:

• factor 0.5

• factor 0.2

• difra_sequential

The first two submissions use the “augmentation” method (the same
as in our 2002 INEX submission) with 0.5 and 0.2 as “augmen-
tation facto”, respectively. The third submission is based on the
“DFR” method. Here, we chose the best configuration according
to our experiments results, i.e. Bose-Einstein and L Normalisation
with the parametersα = 96 andβ = −0.80.
Table 7 lists the evaluation results of our submissions, based on dif-
ferent metrics, in INEX 2003. The results show that the latter two

submissions both performed well, with the augmentation method
still slightly better than the DFR approach.
For the CAS topics, two subtasks were defined in INEX: strict
CAS(SCAS) and vague CAS (VCAS). SCAS enforces the strict
interpretation of CAS topics while in case of VCAS, query condi-
tions can be treated vaguely. For the latter also a list of equivalent
tags was defined.; as long as the retrieved component is structurally
similar to the user’s interest (target element), it is considered to be
correct.
With regard to these two subtasks, we submitted three runs based
on the query transformation CAS-I . . . III for the SCAS task as
SCAS03-I . . . III, while the other two transformations CAS-IV and
CAS-V were used as VCAS submissions VCAS03-I and VCAS03-
II, respectively. Since our system could not process all transfor-
mations with the alias list of element names (leading to the corre-
sponding disjunction of structural conditions), the alias list was not
applied for two of the submissions:

• SCAS03-I-alias

• SCAS03-II-alias

• SCAS03-III-noalias

• VCAS03-I-alias

• VCAS03-II-alias

• VCAS03-I-noalias

Table 8 shows the evaluation results of our submissions in INEX
2003. The results confirm the outcome of our own experiments.
SCAS03-I-alias is the best of our submitted runs and performed
quite well(ranked at 5th and 9th out of 38 for strict and generalised
quantisations respectively) in comparison to other approaches.

5. CONCLUSIONS
The results from INEX 2003 show that HyREX yields good re-
trieval performance both for CO and CAS queries. For the CO
queries, our extension to the basic DFR approach takes into ac-
count only the level of a retrieved element (via third normalisation).
However, there are numerous other parameters that could consid-
ered, such as e.g. element names, element-specific node length, or

klas
31

klas
31

klas
31

klas
33

klas
31

klas
31

klas
31

Table 7: Average precision for our CO submissions in INEX 2003
Submission Average Precision

inex_eval inex_eval_ng
consider overlap ignore overlap

strict generalised strict generalised strict generalised

factor 0.5 0.0703 0.0475 0.1025 0.0623 0.0806 0.0590
factor 0.2 0.1010 0.0702 0.1409 0.0903 0.1219 0.0964
difra_sequential 0.0906 0.0688 0.1354 0.0774 0.1217 0.0920

Table 8: Average precision for our CAS submissions in INEX 2003
Submission Average Precision & Ranking

strict generalised
avg. precision ranking avg.precision ranking

SCAS-I-alias 0.2594 5 0.2037 9
SCAS-II-alias 0.2213 18 0.1744 18
SCAS-III-noalias 0.2034 19 0.1707 18

element specific prior probabilities. By investigating the influence
of these factors, we will continue our work on the DFR approach
towards a full-fledged language model for XML retrieval. On the
CAS side, besides dealing with some weaknesses of the current
implementation, we will investigate further methods for ‘vague’ in-
terpretations of this type of queries, especially with regard to struc-
tural conditions.

6. REFERENCES
Abolhassani, M.; Fuhr, N. (2004). Applying the Divergence

From Randomness Approach for Content-Only Search in XML
Documents. In:26th European Conference on Information
Retrieval Research (ECIR 2004). Springer, Heidelberg et al.

Amati, G.; Rijsbergen, C. (2002). Probabilistic models of
information retrieval based on measuring the divergence from
randomness.ACM Transactions on Information Systems (TOIS)
20(4), pages 357–389.

Clark, J.; DeRose, S.(1999).XML Path Language (XPath)
Version 1.0. Technical report, World Wide Web Consortium.
http://www.w3.org/TR/xpath20/ .

Fuhr, N.; Großjohann, K. (2001). XIRQL: A Query Language
for Information Retrieval in XML Documents. In: Croft, W.;
Harper, D.; Kraft, D.; Zobel, J. (eds.):Proceedings of the 24th
Annual International Conference on Research and development
in Information Retrieval, pages 172–180. ACM, New York.

Fuhr, N.; Großjohann, K. (2004). XIRQL: An XML Query
Language Based on Information Retrieval Concepts. (accepted
for publication).

Fuhr, N.; Gövert, N.; Großjohann, K. (2002). HyREX:
Hyper-media Retrieval Engine for XML. In: Järvelin, K.;
Beaulieu, M.; Baeza-Yates, R.; Myaeng, S. H. (eds.):
Proceedings of the 25th Annual International Conference on
Research and Development in Information Retrieval, page 449.
ACM, New York. Demonstration.

Gövert, N.; Kazai, G. (2003). Overview of the INitiative for the
Evaluation of XML retrieval (INEX) 2002. In: Fuhr, N.;
Gövert, N.; Kazai, G.; Lalmas, M. (eds.):INitiative for the
Evaluation of XML Retrieval (INEX). Proceedings of the First
INEX Workshop. Dagstuhl, Germany, December 8–11, 2002,
ERCIM Workshop Proceedings, pages 1–17. ERCIM, Sophia
Antipolis, France.http://www.ercim.org/
publication/ws-proceedings/INEX2002.pdf .

Robertson, S. E.; Walker, S.; Jones, S.; Hancock-Beaulieu,
M. M. (1995). Okapi at TREC-3. In:Proceedings of the 3rd
Text Retrieval Converence (TREC-3), pages 109–126. NTIS,
Springfield, Virginia, USA.

klas
32

klas
32

klas
32

klas
34

klas
32

klas
32

klas
32

Bayesian Networks and INEX’03

Benjamin Piwowarski
LIP 6, Paris, France

bpiwowar@poleia.lip6.fr

Huyen-Trang Vu
LIP 6, Paris, France

vu@poleia.lip6.fr

Patrick Gallinari
LIP 6, Paris, France

gallinar@poleia.lip6.fr

ABSTRACT
We present a Bayesian framework for XML document re-
trieval. This framework allows us to consider content-only (CO)
queries. We perform the retrieval task using inference in our
network. The proposed model can adapt to a specific corpus
through parameter learning and it uses a grammar to speed
up the retrieval process in large or distributed databases.
We also experimented list filtering to avoid overlap in the
retrieved element list.

Keywords
Bayesian networks, INEX, XML, Focused retrieval, Struc-
tured document retrieval

1. INTRODUCTION
The goal of our model is to provide a generic system for per-
forming different Information Retrieval (IR) tasks on collec-
tions of structured documents. We take an IR approach to
this problem. We want to retrieve specific relevant elements
from the collection as an answer to a query. The elements
may be any document or document part (full document,
section(s), paragraph(s), etc.) indexed from the structural
description of the collection. We consider the task as a fo-
cused retrieval, first described in [1, 7].

This year, we focused on content only (CO) queries since
many research questions still remain open for this specific
task. The Bayesian Network (BN) model is briefly described
in section 2.1. We also present modifications with respect
to the model presented last year.

2. MODELS
The generic BN model used for the CO task was described in
the last proceedings [8]. We only give here the main model
characteristics. Our work is an attempt to develop a formal
model for structured document access. Our model relies on
Bayesian networks and provides an alternative to other spe-
cific approaches for handling structured documents [6, 3, 4].
BN offer a general framework for taking into account relation
dependencies between different structural elements. Those
elements, which we call doxels (for Document Element) will
be random variables in our BN.

We believe that this approach allows casting different ac-
cess information tasks into a unique formalism, and that
these models allow performing sophisticated inferences, e.g.
they allow to compute the relevance of different document
parts in the presence of missing or uncertain information.

Compared to other approaches based on BN, we propose a
general framework which should adapt to different types of
structured documents or collections. Another original as-
pect of our work is that model parameters are learnt from
data. This allows to rapidly adapt the model to different
document collections and IR tasks.

We have made the following additions to the model pre-
sented last year :

• We experimented with different weighting schemes for
terms in the different doxels. Weight importance may
be relative to the whole corpus of documents, to doxels
labelled with the same tag, etc. ;

• We introduced a grammar for modelling different con-
straints on the possible relevance values of doxels know-
ing its parent relevance value ;

• To limit the overlap (e.g. return a section and one of its
paragraph) of retrieved doxels, we introduced simple
filtering techniques.

2.1 Bayesian networks
The BN structure we used directly reflects the document
hierarchy, i.e. we consider that each structural part within
that hierarchy has an associated random variable. The root
of the BN is thus a “corpus” variable, its children the “jour-
nal collection” variables, etc. In this model, due to the con-
ditional independence property of the BN variables, rele-
vance is a local property in the following sense: if we know
the relevance of a journal, the relevance value of the journal
collection will not bring any new information on the rele-
vance of one article of this journal (figure 1).

In our model, the random variable associated to a struc-
tural element can take three different values in the set V =
{N, G, E} which is related to the specificity dimension of the
INEX’03 assessment scale:

N (for Not relevant) when the element is not relevant;

G (for too biG) when the element is marginally or fairly
specific;

E (for Exact) when the element has a high specificity.

klas
33

klas
33

klas
33

klas
35

klas
33

klas
33

klas
33

journal collection

journal journal journal

article article

Figure 1: Independence in the BN. When we know
the relevance of a journal, the relevance of the jour-
nal collection have no influence on the articles within
this journal.

For any doxel e and for a given query, the probability P (e = E|query)
gives us the final Retrieval Status Value (RSV) of this el-
ement. This value is used for the ranking of the different
doxels with respect to the query.

We considered two other types of random variables. The
first one is the query that is described as a vector of word
frequencies. Note that this random variable is always ob-
served (known). The second one is associated to baseline
models and can take only two values: relevant and not rel-
evant.

For a given query, a local relevance score is computed for
each doxel via the baseline score models. This score only
depends on the query and the doxel content. Based on these
local scores and on parameters, BN inference is then used
to combine evidence and scores for different doxels in the
document model. For computing the local score, different
models could be used. We used in our experiments simple
retrieval methods and classical ones such as Okapi. The first
one (ratio) computes for each element the value S1:

S1(element) =

P

termt
tfquery(t)

tfelement(t)
tfparent(t)

P

termt
tfquery(t)

where tfparent denotes the term frequency in the parent of
the element, tfelement the term frequency within the element
and tfquery within the query. The second one (weight ratio)
is simply S1 divided by a decreasing function of the element
length:

S2(element) =
S1(element)

log(20 + length(element))

where the length of the element is number of words that
this element and its descendants contain. All those formu-
las and coefficient were determined empirically. The main
advantages of these formulas are that they give scores that
are naturally bounded (between 0 and 1) and that they can
be computed locally. We can then define the probability

that an element is relevant (R) for the first (resp. second)
model M1 (M2) by:

P (Mi = R|query, element content) = Si with i ∈ {1, 2}

We also tried to add the classical Okapi model, but as its
RSV are harder to normalise, we were not able to integrate
it with success into our BN framework. We will try to use
the normalisation proposed by Robertson [9] next year: our
goal was to prove BN can perform better than its baseline
models.

query

Weighted ratio Ratio

element

...

parent

...

Figure 2: Bayesian Network model (detail view).
The element state depends on the parent state and
on the relevance of the element for the model ra-

tio (M1) and weighted ratio (M2)

In our model, the probability that an element is in the state
N , G or E depends on the parent state and on the fact that
Mi has judged the element as relevant or not relevant (fig-
ure 2). We can then compute the probability using this
formula for any element e and any state v ∈ V :

P (e = v|query) =
P

vp∈V
r1,r2∈{R,¬R}

θc(e),v,vp,r1,r2

×P (e parent = vp)

×P (M1 = r1|query)

×P (M2 = r2|query)

where θ is a learnt parameter that depends on the different
states of the four random variables (element state, parent
state, baseline model 1 and 2 relevance) and on the category
c(e) of the element. The categories used in our experiment
are shown in table 1. In our BN, scores are computed re-
cursively with the above formula: we begin by the biggest
doxels (INEX volumes) and then we compute scores while
going deeper and deeper in the document tree (article, body,
paragraph and so on).

klas
34

klas
34

klas
34

klas
36

klas
34

klas
34

klas
34

tags category c(e)

ss, ss1, sec1 section
bib, bibl, ack, reviewers misc
ip, ip1, ip2, ip3, bb, app, p1, p2 paragraph
figw, fig figure
l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc,
ld, le, numeric-list, numeric-rbrace,
bullet-list, index

list

index-entry, item-none, item-
bold, item-both, item-bullet,
item-diamond, item-letpara, item-
mdash, item-numpara, item-roman,
item-text

item

hdr, hdr2, hdr1, h3, h2, h2a, h1a,
h1, h

header

bdy, article container
* (any other tag) other

Table 1: Element categories

Adding a grammar to the BN
We used a grammar in order to add some constraint on
the retrieval inference process. That grammar enables us
to express coherence rules on scored doxels within the same
document path:

• A non relevant element may not have a relevant de-
scendant:

∀c, r1, r2, θc,v,N,r1,r2 = 0 if v ∈ {G, E}

• An exact doxel (E) can not have a child which is “too
big” (G).

∀c, r1, r2, θc,G,E,r1,r2 = 0

The main interest of this grammar is to provide us a way
to make a decision about whether we can find an element
which has a higher RSV in the set of descendants of a given
element. Indeed, we can show that:

P (e = E|query) ≤ P (p = E|query) + P (p = G|query) (1)

where p is the parent of the doxel e.

Learning parameters
In order to fit a specific corpus, parameters are learnt from
observations using the Expectation Maximization (EM) al-

gorithm. An observation O(i) is a query with its associated
relevance assessments (document/part is relevant or not rel-
evant to the query). EM [2] optimises the model parameters
Θ with respect to the likelihood L of the observed data:

L(O, Θ) = log P (O|Θ)

where O =
n

O(1), . . . , O(|O|)
o

are the N observations. Ob-

servations may or may not be complete, i.e. relevance assess-
ments need not to be known for each structural element in
the BN in order to learn the parameters. Each observation
Oi can be decomposed into Ei and Hi where Ei corresponds
to structural entities for which we know whether they are
relevant or not, i.e. structural parts for which we have a

relevance assessment. Ei is called the evidence. Hi corre-
sponds to hidden observations, i.e. all other nodes of the
BN.

In our experiment, we used for learning the 30 CO queries
from INEX’02 and their associated relevance assessments.

2.2 Filtering
A Structured IR system has to cope with overlapping doxels,
as it may for example return a section and its paragraph. In
order to avoid duplicate information, it might be interesting
to filter out the returned result in order to choose between
different levels of granularity. We thus developed a sim-
ple filtering algorithm which we describe below. The basic
idea is to remove an element when another element in the
retrieved list contains or is contained by the element. For
INEX’03, we chose a very simple filtering mainly motivated
by intuition.

The filtering we chose removes some of the retrieved dox-
els in the list while preserving the relative ranking of other
document components. Kazai et al. [5] had this idea with
the BEP1. We can consider our filtering step as an instance
of BEP which does not take into account hyperlinks. Fil-
tering is a necessary step for improving the effectiveness of
Structured IR systems.

We tried the three following strategies:

Root oriented If a doxel appears on the retrieved list, its
descendants in the document tree will not give any new
information when they appear later. We thus remove
any element in the ranked list if an ancestor is higher
in the list. This simple method favours large doxels
which is in conflict with the CO objective (retrieve the
most specific doxels as possible).

Leaf oriented This is the inverse of the previous approach.
We remove an element from the list when there is a de-
scendant higher. The limit of this method is that when
the latter is not relevant, then all the other informa-
tions brought by the ancestor are lost for the user.

BEP BEP strategy cumulates root and leaf oriented filter-
ing. That is, an element is kept only if there is neither
descendant nor ancestor higher in the retrieved list.

We chose the “Root oriented” strategy for two official sub-
missions for INEX’03. This strategy gave the best results
with the INEX’02 collection.

3. EXPERIMENTS
Three official runs were submitted to INEX’03:

okapi-1 In this run, we used the Okapi weighting scheme;
every volume (and not every doxel) in the INEX cor-
pus was considered as a document while the average
document length used in the Okapi formula was local:
for every doxel, the average document length was the
average length of the doxel and its siblings. Results
were filtered with “root oriented” strategy.

1Best Entry Point

klas
35

klas
35

klas
35

klas
37

klas
35

klas
35

klas
35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

quantization: strict; topics: CO

okapi-1
BN

okapi-2

Figure 3: Official runs (strict quantisation)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

on

Recall

quantization: strict; topics: CO

okapi-1
BN

okapi-2

Figure 4: Official runs (generalised quantisation)

BN In this run, we submitted the doxel retrieved with the
BN which is described in section 2.1. Results were
filtered with the “root oriented” strategy.

okapi-2 In this run, we used the Okapi weighting scheme;
every article (and not every doxel) in the INEX cor-
pus was considered as a document while the average
document length was the same as for okapi-1.

average precision rank
okapi-1 0.030 / 0.024 35 / 36

bn 0.046 / 0.048 19 / 18
okapi-2 0.089 / 0.087 7 / 5

Table 2: Results: in each cell, the first number is the
strict quantisation, the second one the generalised.

The results are summarised in figures (3,4) and table 2.
There is a gap between the model okapi-2 and the two other
ones BN and okapi-1. The BN model is limited by its two
baseline models that have performances that are a little be-
low the BN results – these results are not shown here but
are based on experiments with the INEX’02 dataset. The
best performances are thus reached by a model which is very
close to the standard Okapi (term weight are computed on
an article basis): the only change is the length normalisa-
tion, which is local. Some preliminary experiments have
shown this kind of normalisation gives the best results.

The main results we obtained are twofold. Firstly, with re-
spect to last year, BN have shown they are able to perform
reasonably well with respect to the baseline models perfor-
mances. Secondly, using classical models as Okapi can help
to improve significantly the BN performances as they per-
form much better than other models we have experimented.
We still need to investigate further the filtering process, as
we believe this is a key issue in XML retrieval.

4. CONCLUSION
We have described a new model for performing IR on struc-
tured documents. It is based on BN whose conditional
probability functions are learnt from the data via EM. This
model uses a grammar for restricting the allowed state of a
doxel in our BN knowing the state of its parent. The BN
framework has thus three advantages:

1. it can be used in distributed IR, as we only need the
score of the parent element in order to compute the
score of any its descendants;

2. it can use simultaneously different baseline models: we
can therefore use specific models for non textual me-
dia (image, sound, etc.) as another source of evidence;

3. whole parts of the corpus can be ignored when retriev-
ing doxels using inequality (1).

The model has still to be improved, tuned and developed,
and several limitations have still to be overcome in order to
obtain an operational structured information retrieval sys-
tem. In particular, we should improve the baseline mod-
els and further experiments are thus needed for tuning the
learning algorithms and for filtering.

klas
36

klas
36

klas
36

klas
38

klas
36

klas
36

klas
36

5. REFERENCES
[1] Y. Chiaramella, P. Mulhem, and F. Fourel. A Model for

Multimedia Information Retrieval. Technical report,
IMAG, Grenoble, France, July 1996.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum Likelihood from incomplete data via de EM
algorithm. The Journal of Royal Statistical Society,
39:1–37, 1977.

[3] N. Fuhr and T. Rölleke. HySpirit - a Probabilistic
Inference Engine for Hypermedia Retrieval in Large
Databases. In H.-J. Schek, F. Saltor, I. Ramos, and
G. Alonso, editors, Proceedings of the 6th International
Conference on Extending Database Technology
(EDBT), Valencia, Spain, 1998. Springer, Berlin.

[4] T. Grabs and H.-J. Schek. ETH Zrich at INEX: flexible
information retrieval from XML with PowerDB-XML.
Dec. 2002.

[5] G. Kazai, M. Lalmas, and T. Rölleke. A Model for the
Representation and Focussed Retrieval of Structured
Documents based on Fuzzy Aggregation. In String
Processing and Information retrieval (SPIRE 2001)
Conference, Laguna de San Rafael, Chile, Sept. 2001.

[6] M. Lalmas. Dempster-Shafer’s Theory of Evidence
Applied to Structured Documents: Modelling
Uncertainty. In Proceedings of the 20th Annual
International ACM SIGIR, pages 110–118,
Philadelphia, PA, USA, July 1997. ACM.

[7] M. Lalmas and E. Moutogianni. A Dempster-Shafer
indexing for the focussed retrieval of a hierarchically
structured document space: Implementation and
experiments on a web museum collection. In 6th RIAO
Conference, Content-Based Multimedia Information
Access, Paris, France, Apr. 2000.

[8] B. Piwowarski, G.-E. Faure, and P. Gallinari. Bayesian
networks and INEX. In Proceedings of the First Annual
Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), DELOS workshop, Dagstuhl,
Germany, Dec. 2002. ERCIM.

[9] S. Robertson. Threshold setting and performance
optimization in adaptive filtering. Information
Retrieval, 5(2-3):239–256, April-July 2002.

klas
37

klas
37

klas
37

klas
39

klas
37

klas
37

klas
37

Cheshire II at INEX ’03: Component and Algorithm Fusion for XML Retrieval

Ray R. Larson
School of Information Management and Systems

University of California, Berkeley
Berkeley, California, USA, 94720-4600

ray@sherlock.berkeley.edu

ABSTRACT
This paper describes the retrieval approach that UC Berke-
ley used in the 2003 INEX evaluation, and the subsequent
analysis and correction of search failures in the “official runs”.
As in last year’s INEX, our primary approach is a combi-
nation of probabilistic methods using a Logistic Regression
(LR) algorithm for estimation of document (article) rele-
vance and/or element relevance, along with Boolean con-
straints. This year we also used data fusion techniques to
combine results from multiple probabilistic retrieval algo-
rithms, specifically the Okapi BM-25 algorithm, and multi-
ple search elements for any given query.

1. INTRODUCTION
Early in the TREC evaluations a number of participating
groups found that fusion of multiple retrieval algorithms
provided an improvement over a single search algorithm[13,
2]. With ongoing improvements of the algorithms used in
the TREC main (i.e., ad hoc retrieval) task, later analy-
ses[9, 1] found that the greatest effectiveness improvements
appeared to occur between relatively ineffective individual
methods, and the fusion of ineffective techniques, while of-
ten approaching the effectiveness of the best single IR al-
gorithms, seldom exceeded them for individual queries and
never exceeded their average performance.

Our approach to XML retrieval in last year’s INEX, as
reported in our 2002 INEX paper[6], was to use a “Fu-
sion Search” facility in the Cheshire II system that merged
the result sets from multiple searches. For the majority of
the content-only and content and structure queries separate
searches from different indexes and different elements of the
collection were merged into a single integrated result set.
This facility was developed originally to support combina-
tion of results from distributed searches, but has proved to
be quite valuable when applied to the differing elements of
a single collection as well.

One of the main questions we were investigating in the 2002
INEX was how to take advantage of more precise search
matches (e.g. Boolean title searches) when they are possi-
ble for a given query, yet to permit the enhanced recall that
probabilistic queries can provide. We found in subsequent
analysis of the INEX 2002 results, that our implementa-
tion of this approach suffered significantly from a number of
bugs. As noted in the final INEX 2002 paper, some of the
bugs were found in the script that converted the results to
the INEX submission format, not in retrieval itself, where

only the first occurrence of component in a document was
converted to an entry for the submission (this was most sig-
nicant in one query where all of the relevant components
were in a single article).

We also discovered in analysis of the results from last year
that Fusion Searches were not correctly accumulating scores
for each component search in some cases. This turned out
to be a particularly costly bug (in terms of the INEX per-
formance measures) caused by a failure to sort some of the
intermediate resultsets in searches before they were merged,
leading to an incorrect ranking sequence in the final result-
sets, and in some particularly pathological situations result-
ing in the effective reversal of the correct ranking sequence.

For the official INEX 2003 runs, the bugs noted above were
corrected. But, unfortunately, others were discovered rather
late in the evaluation process, which led to the worse-than-
expected results obtained for the official runs (these bugs
are described below in the discussion of retrieval score nor-
malization in combining results from different indexes and
algorithms). We now believe that most of the bugs have
been corrected, which has led to significant improvements
in the performance of both CO and SCAS searches in our
“post-INEX” experiments.

Our principle approach this year was to expand on the ba-
sic fusion approach used last year, using a combination of
new implementations of additional algorithms, and new op-
erators for merging intermediate results from different algo-
rithms and search elements. The major addition this year is
that we have implemented, and employed, a version of the
Okapi BM-25 algorithm. The remainder of this paper de-
scribes the retrieval algorithms, new methods for combining
results for different elements, and discusses the comparative
results for the different official runs and our subsequent runs
with bugs corrected.

2. THE RETRIEVAL ALGORITHMS AND
OPERATORS

The original design rationale and features of the Cheshire
II search engine have been discussed elsewhere [8, 7] and
will only be briefly repeated here with an emphasis on those
features that were applied in the INEX evaluation. We will
also describe our newly implemented algorithms and opera-
tors used in the official and subsequent runs.

klas
38

klas
38

klas
38

klas
40

klas
38

klas
38

klas
38

2.1 Original Probabilistic and Boolean Oper-
ations

The Cheshire II search engine supports various methods for
translating a searcher’s query into the terms used in in-
dexing the database. These methods include elimination of
“noise” words using stopword lists (which can be different
for each index and field of the data), particular field-specific
query-to-key conversion or “normalization” functions, stan-
dard stemming algorithms (a modified version of the Porter
stemmer) and support for mapping database and query text
words to single forms based on the WordNet dictionary and
thesaurus using a adaption of the WordNet “Morphing” al-
gorithm and exception dictionary.

In his analysis of fusion approaches to improving retrieval
performance, Lee[9] found that the best results were ob-
tained by combining algorithms where similar sets of rele-
vant documents were returned but that retrieved different
sets of non-relevant documents. With this in mind, we chose
for this research two probabilistic algorithms that at least
partially fulfill this criteria. The first algorithm is based on
logistic regression and the second is the well-known Okapi
BM-25 algorithm. In this section we describe each algorithm
as it was implemented for this evaluation.

2.2 Logistic Regression Algorithm
The logistic regression (LR) algorithm used in this study
was originally developed at Berkeley by Cooper, et al.[4]
and shown to provide good full-text retrieval performance
in the TREC ad hoc task. As originally formulated, the LR
model of probabilistic IR attempts to estimate the probabil-
ity of relevance for each document based on a set of statistics
about a document collection and a set of queries in combina-
tion with a set of weighting coefficients for those statistics.
The statistics to be used and the values of the coefficients
are obtained from regression analysis of a sample of a collec-
tion (or similar test collection) for some set of queries where
relevance and non-relevance has been determined. More for-
mally, given a particular query and a particular document
in a collection P (R | Q,D) is calculated and the documents
or components are presented to the user ranked in order of
decreasing values of that probability. To avoid invalid prob-
ability values, the usual calculation of P (R | Q,D) uses the
“log odds” of relevance given a set of S statistics, si, derived
from the query and database, such that:

logO(R | Q,D) = b0 +

S∑

i=1

bisi (1)

where b0 is the intercept term and the bi are the coefficients
obtained from the regression analysis of the sample collec-
tion and relevance judgements.

Based on the structure of XML documents as a tree of XML
elements, we define a “document component” as an XML
subtree that may include zero or more subordinate elements
or subtrees with text as the leaf nodes of the tree. Naturally,
a full XML document may also be considered a document
component. As discussed below, the indexing and retrieval
methods used in this research take into account a selected

set of document components for generating the statistics
used in the search process and for extraction of the parts
of a document to be returned in response to a query. Be-
cause we are dealing with not only full documents, but also
document components (such as sections and paragraphs or
similar structures) derived from the documents, we will use
C to represent document components in place of D. There-
fore, the full equation describing the LR algorithm used in
these experiments is:

logO(R | Q,C) =

−3.70 +

1.269 ·

 1

|Qc|

|Qc|∑

j=1

log qtfj

+
(
−0.310 ·

√
|Q|
)

+

0.679 ·

 1

|Qc|

|Qc|∑

j=1

log tfj

 (2)

+
(
−0.0674 ·

√
cl
)

+

0.223 ·

 1

|Qc|

|Qc|∑

j=1

log
N − ntj
ntj

+ (2.01 · log |Qd|)

Where:

Q is a query containing terms T ,

|Q| is the total number of terms in Q,

|Qc| is the number of terms in Q that also occur in the
document component,

tfj is the frequency of the jth term in a specific document
component,

qtfj is the frequency of the jth term in Q,

ntj is the number of components (of a given type) contain-
ing the jth term,

cl is the document component length measured in bytes.
and

N is the number of components of a given type in the col-
lection.

This equation, used in estimating the probability of rele-
vance in this research, is essentially the same as that used
in [3]. The coefficients were estimated using relevance judge-
ments and statistics from the TREC/TIPSTER test collec-
tion. In this evaluation we used the same coeffients for each
of the main document components used. This means that
we are treating all components smaller than a full document
as if they were, in effect, small documents.

klas
39

klas
39

klas
39

klas
41

klas
39

klas
39

klas
39

2.3 Okapi BM-25 Algorithm
The version of the Okapi BM-25 algorithm used in these
experiments is based on the description of the algorithm in
Robertson[11], and in TREC notebook proceedings[12]. As
with the LR algorithm, we have adapted the Okapi BM-25
algorithm to deal with document components :

|Qc|∑

j=1

w(1) (k1 + 1)tfj
K + tfj

(k3 + 1)qtfj
k3 + qtfj

(3)

Where (in addition to the variables already defined):

K is k1((1− b) + b · dl/avcl)

k1, b and k3 are parameters , 1.5, 0.45 and 500, respectively,
were used,

avcl is the average component length measured in bytes

w(1) is the Robertson-Sparck Jones weight:

w(1) = log
(r+0.5
R−r+0.5

)

(
ntj−r+0.5

N−ntj−R−r+0.5
)

Where, for a given query and a given term:

r is the number of relevant components of a given type that
contain a given term,

R is the total number of relevant components of a given type
for the query. (Note that these statistics do not take into
account nested components.)

Our current implementation uses only the a priori version
(i.e., without relevance information) of the Robertson-Sparck

Jones weights, and therefore the w(1) value is effectively just
an IDF weighting. The results of searches using our imple-
mentation of Okapi BM-25 and the LR algorithm seemed
sufficiently different to offer the kind of conditions where
data fusion has been shown to be most effective [9].

2.4 Boolean Operators
The Cheshire II system used in the evaluation supports
searches combining probabilistic and (strict) Boolean ele-
ments, as well as operators to support various merging op-
erations for both types of intermediate result sets. Although
strict Boolean operators and probabilistic searches are im-
plemented within a single process, using the same inverted
file structures, they really function as two parallel logical
search engines. Each logical search engine produces a set
of retrieved documents. When a single search strategy is
used the result is either a probabilistically ranked set or an
unranked Boolean result set. When both are used within in
a single query, combined probabilistic and Boolean search
results are evaluated using the assumption that the Bool-
ean retrieved set has an estimated P (R | Qbool, C) = 1.0
for each document component in the set, and 0 for the rest

of the collection. The final estimate for the probability of
relevance used for ranking the results of a search combining
strict Boolean and probabilistic strategies is simply:

P (R | Q,C) = P (R | Qbool, C)P (R | Qprob, C)

where P (R | Qprob, C) is the probability of relevance es-
timate from the probabilistic portion of the search, and
P (R | Qbool, C) is the Boolean. In practice the combination
of strict Boolean “AND” and the probablistic approaches
has the effect of restricting the results to those items that
match the Boolean portion, with ranking based on the prob-
abilistic portion. Boolean “NOT” provides a similar restric-
tion of the probabilistic set by removing those document
components that match the Boolean specification. When
Boolean “OR” is used, the probabilistic and Boolean results
are merged (however, items that only occur in the Boolean
result, and not both, are reweighted as in the “fuzzy” and
merger operations described below.

A special case of Boolean operator in the experimental sys-
tem is that of proximity and phrase matching operations.
In proximity and phrase matching the matching terms must
also satisfy proximity constraints (both term order and ad-
jacency in the case of phrases). Thus, proximity operations
also result in Boolean intermediate result sets.

2.5 Result Combination Operators
Cheshire II provides a number of ways to using “FUZZY”,
“RESTRICT” and “MERGE” operators to combine inter-
mediate results of a search from different components or
indexes. With these operators we have available an entire
spectrum of combination methods ranging from strict Bool-
ean operations to fuzzy Boolean and normalized mean scores
for probabilistic and Boolean results.

Fuzzy operators are versions of the Boolean operators that
are less ”strict” than the conventional Boolean operators,
applied to weighted result lists. In place of Boolean AND,
the ”!FUZZY AND” operator takes the mean of the two
weights in the result sets for the same record (this differs
from the conventional fuzzy AND that take the minimum of
the two weight). The ”!FUZZY OR” takes the largest of the
two weights for the same record. ”!FUZZY NOT” currently
behaves the same way as strict Boolean ”NOT”. Otherwise
these operators are used the same way as the strict Boolean
operators.

The ”!RESTRICT TO” and ”!RESTRICT FROM” opera-
tors take either a component result and a document result,
or two component results (where one component contains
the other). As discussed in [6], “components” in the Chesh-
ire II system can be the contents of any tag (or of a set of
tags) that are treated as separate documents for the pur-
poses of indexing and retrieval. In the case of component
and document results the component list is restricted to
components that are in the document result – the matching
components only are returned retaining their weight from
the original component result. When two nested compo-
nent results are used with these operators the result is larger
components that include one or more of the smaller compo-

klas
40

klas
40

klas
40

klas
42

klas
40

klas
40

klas
40

nents. (Note that with component and document results
!RESTRICT TO and !RESTRICT FROM may be used in-
terchangibly and the type of operation to be performed is
determined by the nature of the result sets, but with two
component results the nesting of the elements must be taken
into account in constructing the query (i.e, Parent set !RE-
STRICT FROM Child set or Child set !RESTRICT TO Par-
ent set). Naturally Parent and Child can be any sub-query
that results in the appropriate kind of component.

The !MERGE SUM operator combines the two resultsets
(like a Boolean OR) but adds the weights (actually the re-
sulting raw ranking adds 1.0 to the probabilistic result and
sets 1.5 for Boolean results with matching document or com-
ponent ids in both lists, and the original values for items
found only in a single result). Note that !MERGE SUM
weights may exceed 1 and are not probabilities.

The !MERGE MEAN operator combines the two resultsets
(like a Boolean OR) but takes the MEAN (or average) of
the weights from items in both lists and half of the weight
of items in only a single list. This is the (currently) recom-
mended operator for merging probabilistic resultsets.

The !MERGE NORM operator combines the two resultsets
(like !MERGE MEAN) but it performs the min-max nor-
malization of the weights suggested by Lee[9] before it takes
the mean of the weights from items in both lists and half of
the weight of items in only a single list. There was a bug in
this process in the official runs, because items in only one of
the two input lists were neither normalized nor divided in
half. This effect of this bug was that items occurring in only
a single result set, among the many partial results merged
for each of the queries, were likely to receive higher weights
in the final results than items occurring in many (or all) of
the partial results.

The motivation for these new operators follows from the ba-
sic observation that has driven all research into data fusion
methods in IR, that no single retrieval algorithm has been
consistently proven to be better than any other algorithm
for all types of searches. By providing a set of operators
for combining the retrieved sets from different search strate-
gies, we are hoping to capitalize the strengths of particu-
lar algorithms while reducing their limitations. In general,
the assumption behind any implementation of data fusion is
that the more evidence the system has about the relation-
ship between a query and a document (including the sort
of structural information about the documents found in the
INEX queries), the more accurate it will be in predicting the
probability that the document will satisfy the user’s need.
Other researchers have shown that additional information
about the location and proximity of Boolean search terms
can be used to provide a ranking score for a set of docu-
ments[5]. The inference net IR model has shown that the
exact match Boolean retrieval status can be used as addi-
tional evidence of the probability of relevance in the context
of a larger network of probabilistic evidence[14]. In the same
way, we treat the set of documents resulting from the exact
match Boolean query as a special case of a probabilistically
ranked set, with each retrieved document having an equal
rank.

3. INEX APPROACH
Our approach in INEX was to use all of the original and new
features of the Cheshire II system in generating the results
submitted for our official runs. This section will describe
the indexing process and indexes used, and also discuss the
scripts used for search processing. The basic database was
unchanged from last year’s. We did, however, create and use
a number of additional indexes and performed a complete
reindexing of the INEX document collection. This section
will first describe the indexes and component definitions cre-
ated for INEX 2003.

3.1 Indexing the INEX Database
All indexing in the Cheshire II system is controlled by an
SGML Configuration file which describes the database to
be created. This configuration file is subsequently used in
search processing to control the mapping of search command
index names (or Z39.50 numeric attributes representing par-
ticular types of bibliographic data) to the physical index files
used and also to associated component indexes with partic-
ular components and documents.

As noted above, any element or attribute may be indexed.
In addition particular values for attributes of elements can
be used to control selection of the elements to be added
to the index. The configuration file entry for each index
definition includes three attributes governing how the child
text nodes of the (one or more) element paths specified for
the index will be treated.

Each index can have its own specialized stopword list, so
that, for example, corporate names have a different set of
stopwords from document titles or personal names.

Most of the indexes used in INEX used keyword or key-
word with proximity extraction and stemming of the key-
word tokens. Exceptions to this general rule were date el-
ements (which were extracted using date extraction of the
year only) and the names of authors which were extracted
without stemming or stoplists to retain the full name.

Other than the conversion of some indexes from keyword
to keyword with proximity, the indexes and component el-
ements for INEX 2003 were the same as those used in the
2002 evaluation[6].

Altogether, 27 separate indexes and 5 types of components
(in addition to article-level) were used in search evaluation
runs of the 2003 INEX topics. The official submitted runs
in INEX are described in the next section.

3.2 INEX ’03 Official Runs
Berkeley submitted six retrieval runs for INEX 2003, three
CO runs and 3 SCAS runs. We did not submit any VCAS
runs. This section describes the individual runs and general
approach taken in creating the queries submitted against
the INEX database and the scripts used to do the submis-
sion. All of the official runs were automatic, with queries
generated by scripts that used title and keyword sections
for the CO runs, and the title only for the SCAS runs. (The
corrected runs described later also use automatic query gen-
eration with the same topic elements).

klas
41

klas
41

klas
41

klas
43

klas
41

klas
41

klas
41

Berkeley CO01: This run used LR ranking combined with
Boolean phrase matching and MERGE MEAN partial
result combinations. Only article level results are re-
turned in this run.

Berkeley CO Okapi: This run employed the Okapi BM-
25 algorithm for ranked search components, combined
with Boolean elements for proximity and term restric-
tions. Results from multiple components where com-
bined using MERGE MEAN merging of results. RSV
scores were normalized and multiple result sets com-
bined to include Article-level, section-level and paragraph-
level results.

Berkeley CO MergePrOk: This run was a fusion of LR
and Okapi algorithms using a score-normalized merg-
ing algorithm (MERGE NORM). Results from multi-
ple components where combined using MERGE MEAN
and MERGE NORM merging of results. Separate re-
trieval of Articles, Sections and paragraphs were com-
bined using score normalized merges of these results.

Berkeley SCAS01: Used LR ranking combined with Bool-
ean phrase matching and MERGE MEAN partial re-
sult combinations. FUZZY AND and FUZZY OR op-
erators were used in combining AND and OR elements
within an ”about” predicate.

Berkeley SCAS Okapi: Used the Okapi BM-25 ranking
instead of LR and used normalized scores in merging
results from different aspects of the queries. Results
from multiple components used the MERGE NORM
operator for merging of results.

Berkeley SCAS Okapi2: Was similar to the above run,
except for the use of some different indexes (including
more of the document text).

4. EVALUATION
The summary average precision results for the official runs
described above are shown in Table 1.

Run Name Short name Avg Prec Avg Prec

(strict) (gen.)

Berkeley CO01 Prob 0.0467 0.0175

Berkeley CO Okapi Okapi 0.0318 0.0314

Berkeley CO MergePrOk MergePrOK 0.0546 0.0557

Berkeley SCAS01 Prob SCAS 0.1970 0.1545

Berkeley SCAS Okapi Okapi SCAS 0.0865 0.0682

Berkeley SCAS Okapi2 Okapi2 SCAS 0.0869 0.0687

Table 1: Cheshire Official Runs for INEX 2003

Figures 1 and 2 show, respectively, the Recall/Precision
curves for generalized quantization of each the SCAS and
CO results of the officially submitted Berkeley runs. None
of Berkeley runs appeared in the top ten for all submitted
runs. The results, as discussed above, particularly for the
the Okapi-based runs have relatively poor results due to im-
plementation errors. It is, however, worth noting that the
fusion results (MergePrOk) did perform better than either
the probabilistic or (flawed) Okapi runs for the CO task.
Thus, the issue that we were seeking to investigate (whether

XML retrieval would benefit from data fusion methods oper-
ating across both elements and algoriths, had some cautious
confirmation from the official runs. The MergePrOK run
which combined results for both LR and Okapi algorithms
showed a marked improvement over the Okapi run alone.
However The high-end precision in that run was less than in
the Prob run, this may however be due to the bug described
previously. In addition, it is likely that if the logistic regress
algorithm run (Prob) had included section and paragraph
elements, it would probably have had much better overall
performance.

4.1 Post-INEX CO Results
A large number of subsequent tests were run evaluate the
causes of the relatively poor performance shown in the the
official results, and to track down and correct the bugs dis-
cussed above. After correction of these problems, a number
of tests were run to evaluate the corrected baseline perfor-
mance for the LR and Okapi algorithms for the CO task.
The result for these runs are shown in Tables 2 and 3. Run
names that include “ full” in the name include expansions
of the topic terms in the queries to include proximity-based
search for quoted phrases, query term weight enhancements
for “+” terms and Boolean NOT. Thus, “prob full” and
“okapi full” use the LR and Okapi algorithms, respectively,
and include the full expansion. Run names with “ base”
use just the particular algorithm with no term expansions
or reweighting.

For fusion operations between different indexes for a par-
ticular document component, the MERGE NORM opera-
tor was used to combine the sub-query results. In Tables 2
and 3 “fusion full” combines full queries of only the topic,
sec words, and para words indexes for both LR and Okapi,
“fusion t full” combines both the topic, alltitles, sec words,
sec title, and para words, “fusion ta full” adds the abstract
index to this. As in the preceding, “fusion t p abs full” and
“fusion t p abs full” use the same indexes, but perform an
additional LR search of the abstract and extract and merge
the abstract in the final results used in evaluation.

The fusion approaches that we have been been exploring at-
tempt to consider both the optimal combinations of search
elements and algorithms that should used in the retrieval
process. For this evaluation we have not re-estimated the
logistic reression parameters or examined the possibility of
differential weightings that could be applied to the search
elements to best estimate the probability of relevance for a
given query and document element, or combination of ele-
ments.

The summary average precision results for the runs described
above are shown in Tables 2 and 3 for the strict and general-
ized quantization of the INEX evaluation metrics. In these
tables ∆P shows the percentage difference for the test from
the “prob base” baseline and ‘∆O shows the difference from
“okapi base”.

Figures 3 and 4 show the Recall/Precision curves for gen-
eralized quantization of the base algorithms (prob base and
okapi base) in combination with the full expanded queries
(Figure 3) or the best performing fusion query (fusion t full).

klas
42

klas
42

klas
42

klas
44

klas
42

klas
42

klas
42

0

0.2

0.4

0 0.5 1

Prec.

Recall

’Prob gscas’
’Okapi gscas’

’Okapi2 gscas’

Figure 1: Official SCAS Runs (generalized)

Run Name MAP ∆ P ∆ O

fusion t full 0.0690 22.97 18.99
fusion t p abs full 0.0635 16.26 11.94
fusion ta full 0.0632 15.89 11.55
fusion full 0.0600 11.37 6.80
prob full 0.0589 9.72 5.07
fusion ta p abs full 0.0584 9.00 4.30
okapi full 0.0563 5.51 0.63
okapi base 0.0559 4.90 0.00
prob base 0.0532 0.00 -5.16

Table 2: Post Evaluation of CO Queries: Mean Av-
erage Precision of different algorithms and search
element combinations (strict)

As Tables 2 and 3 indicate, the use of query expansion, as
discussed in section 3.2, appears to offer some benefit of the
unexpanded query for both quantizations, prob full shows
improvement over prob base and okapi full shows improve-
ment over okapi base. What is somewhat more interesting is
that under strict quantization the LR approach in prob full
performs better than either okapi test, but for generalized
quantization both Okapi tests perform better than either LR
test (and indeed better than some of the fusion approaches.
This implies that the Okapi algorithm is better at identi-
fying a wider range of degrees of perceived relevance, while
the LR algorithm is better at identifying the highly relevant
items.

When the two algorithms are combined (with only topic
and word searches in fusion full) the results for both the
strict and generalized measures are better than any of the
single algorithms. This is different from the kind of results
reported in [1], and seems to confirm the improvements from
data fusion reported by Lee[9]. When the searches include
a separate ranking of title searches merged with the topic

0

0.2

0.4

0 0.5 1

Prec.

Recall

’Prob’
’Okapi’

’MergePrOk’

Figure 2: Official CO Runs (generalized)

Run Name MAP ∆ P ∆ O

fusion t full 0.0741 15.89 4.85
fusion full 0.0739 15.61 4.53
okapi full 0.0730 14.58 3.37
fusion ta full 0.0725 14.07 2.79
fusion t p abs full 0.0712 12.49 1.01
okapi base 0.0705 11.60 0.00
fusion ta p abs full 0.0698 10.75 -0.96
prob full 0.0690 9.70 -2.15
prob base 0.0623 0.00 -13.12

Table 3: Post Evaluation of CO Queries: Mean Av-
erage Precision of different algorithms and search
element combinations (generalized)

searches the performance is further improved and performs
the best for both quantizations of all of the query forms
examined here. However, it appears that element indexes
cannot be arbitrarily combined in attempting to improve
performance, adding the abstract index results in reduced
performance relative to topic and titles alone.

4.2 Post-INEX SCAS Results
Some of the subsequent SCAS runs are shown in Table 4.
The table shows that the LR-based queries (indicated by
“scas.p” in the names) seem to be generally less effective
than the Okapi-based queries (including “scas.o” in the run
names). Of course, the SCAS queries are in general more
complex than the CO queries, and make use of many addi-
tional merging operations (such as the “RESTRICT” opera-
tors) driven by the individual Xpath queries. The runs with
the same number, used the same combinations of merge op-
erators and differ only in the ranking algorithm employed.
The Fusion runs (indicated by name with “scas.fus” each
combine results from different runs, those with numbers
only in the last part of the name are Okapi only runs, and

klas
43

klas
43

klas
43

klas
45

klas
43

klas
43

klas
43

0

0.2

0.4

0 0.5 1

Prec.

Recall

’prob base’
’okapi base’

’prob full’
’okapi full’

Figure 3: Recall-Precision of LR and Okapi retrieval
algorithms for CO (generalized quantization)

Run Name Avg Prec Avg Prec

(gen.) (strict)

scas.fus.258 0.2107 0.2403

scas.fus.78 0.2075 0.2395

scas.fus.p28o8 0.1985 0.2304

scas.fus.p8o87 0.2020 0.2444

scas.o.2 0.2010 0.2205

scas.o.7 0.1996 0.2247

scas.o.8 0.2120 0.2308

scas.p.2 0.1877 0.2092

scas.p.8 0.1948 0.2174

Table 4: Post Evaluation of SCAS Queries: Mean
Average Precision of different algorithms and search
element combinations

the others mix LR and Okapi runs. The best performing
SCAS run for the generalized evaluation metrics was an
Okapi run that used the “MERGE NORM” operator when
a “AND” was used in an “about” clause in a query, and
“MERGE SUM” was used for “OR”. For Xpath expression
with separate “about” clauses in nodes on different levels
in the document tree, the “RESTRICT FROM” operators
were used. Terms with “+”, “-”, and quotes were handled
the same way as in the CO runs, with added search elements
for exact phrase matching, additional query term weighting
for “+” and use of Boolean “NOT” for “-”.

Figures 5 and 6 show the generalized recall-precision metrics
for the SCAS runs above. Figure 5 shows the LR and Okapi
results and Figure 6 shows the different fusion results.

5. CONCLUSIONS
The results reported here are the first evaluation of the new
fusion and resultset merging operators in the Cheshire II

0

0.2

0.4

0 0.5 1

Prec.

Recall

’prob base’
’okapi base’

’fusion t full’

Figure 4: Recall-Precision of the best fusion method
compared to algorithm baselines for CO (generalized
quantization)

system. In exploring the fusion of different algorithms and
document components in content-oriented and structured
XML retrieval we have obtained some encouraging results.
The results indicate that several of the fusion approaches
that we tested do perform better than the individual algo-
rithms, and that some Boolean constraints seem to be ben-
eficial for XML retrieval. This is different from most studies
of fusion methods, where the fusion is of different algorithms
for the same collection of full documents [1, 10]. Because we
are combining not only full document results, but also com-
ponent elements of documents, we believe that the results
benefit from the differing selectivity of different document
components, when those can be merged into a single ranked
list.

However, there is much room for further study, in particular
this study did not include language models of XML, which
have proved to be highly effective in the INEX evaluations.
Future work will extend the Cheshire II system to include
language model-based XML retrieval algorithms and test it
in combination with the logistic regression and Okapi algo-
rithms tested here.

When using the LR algorithms, as described above, the same
weighting coefficients were applied to the statistics from all
components ranging from full documents to paragraphs and
titles. We plan to investigate a new implementation of the
logistic regression algorithm where these coefficients will be
estimated for each component type using a training sample
of those components and their matching relevance judge-
ments. Thus, the weighting coefficients applied to compo-
nent length, for example, might be quite different depend-
ing on the component type. This can be expected to provide
better tuned weighting coefficients and hence ranking values
for the individual components and should, in turn, improve

klas
44

klas
44

klas
44

klas
46

klas
44

klas
44

klas
44

0

0.2

0.4

0 0.5 1

Prec.

Recall

’scas.p.2’
’scas.o.2’
’scas.p.8’
’scas.o.8’
’scas.o.7’

Figure 5: Recall-Precision of LR and Okapi retrieval
algorithms for SCAS (generalized quantization)

the fusion of components.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation and Joint Information Systems Committee(U.K)
under NSF International Digital Libraries Program award
#IIS-9975164.

7. REFERENCES
[1] S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder,

D. Grossman, and N. Goharian. Disproving the fusion
hypothesis: An analysis of data fusion via effective
information retrieval strategies. In Proceedings of the 2003
SAC Conference, pages 1–5, 2003.

[2] N. Belkin, P. B. Kantor, E. A. Fox, and J. A. Shaw.
Combining the evidence of multiple query representations
for information retrieval. Information Processing and
Management, 31(3):431–448, 1995.

[3] W. S. Cooper, F. C. Gey, and A. Chen. Full text retrieval
based on a probabilistic equation with coefficients fitted by
logistic regression. In D. K. Harman, editor, The Second
Text Retrieval Conference (TREC-2) (NIST Special
Publication 500-215), pages 57–66, Gaithersburg, MD,
1994. National Institute of Standards and Technology.

[4] W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic
retrieval based on staged logistic regression. In 15th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Copenhagen,
Denmark, June 21-24, pages 198–210, New York, 1992.
ACM.

[5] M. A. Hearst. Improving full-text precision on short queries
using simple constraints. In Proceedings of SDAIR ’96, Las
Vegas, NV, April 1996, pages 59–68, Las Vegas, 1996.
University of Nevada, Las Vegas.

[6] R. R. Larson. Cheshire II at INEX: Using a hybrid logistic
regression and boolean model for XML retrieval. In
Proceedings of the First Annual Workshop of the Initiative
for the Evaluation of XML retrieval (INEX), pages 18–25.
DELOS workshop series, 2003.

0

0.2

0.4

0 0.5 1

Prec.

Recall

’scas.fus.p8o87’
’scas.fus.258’

’scas.fus.p28o8’
’scas.fus.78’

Figure 6: Recall-Precision of fusion approaches for
SCAS (generalized quantization)

[7] R. R. Larson and J. McDonough. Cheshire II at TREC 6:
Interactive probabilistic retrieval. In D. Harman and
E. Voorhees, editors, TREC 6 Proceedings (Notebook),
pages 405–415, Gaithersburg, MD, 1997. National Institute
of Standards and Technology.

[8] R. R. Larson, J. McDonough, P. O’Leary, L. Kuntz, and
R. Moon. Cheshire II: Designing a next-generation online
catalog. Journal of the American Society for Information
Science, 47(7):555–567, July 1996.

[9] J. H. Lee. Analyses of multiple evidence combination. In
SIGIR ’97: Proceedings of the 20th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, July 27-31, 1997, Philadelphia,
pages 267–276. ACM, 1997.

[10] M. E. Renda and U. Straccia. Web metasearch: Rank vs.
score based rank aggregation methods. In Proc. of the 18th
Annual ACM Symposium on Applied Computing,
Melbourne, Florida, 2003. ACM Press.

[11] S. E. Robertson and S. Walker. On relevance weights with
little relevance information. In Proceedings of the 20th
annual international ACM SIGIR conference on Research
and development in information retrieval, pages 16–24.
ACM Press, 1997.

[12] S. E. Robertson, S. Walker, and M. M. Hancock-Beauliee.
OKAPI at TREC-7: ad hoc, filtering, vlc and interactive
track. In Text Retrieval Conference (TREC-7), Nov. 9-1
1998 (Notebook), pages 152–164, 1998.

[13] J. A. Shaw and E. A. Fox. Combination of multiple
searches. In Proceedings of the 2nd Text REtrieval
Conference (TREC-2), National Institute of Standards and
Technology Special Publication 500-215, pages 243–252,
1994.

[14] H. Turtle and W. B. Croft. Inference networks for
document retrieval. In J.-L. Vidick, editor, Proceedings of
the 13th International Conference on Research and
Development in Information Retrieval, pages 1–24, New
York, 1990. Association for Computing Machinery, ACM.

klas
45

klas
45

klas
45

klas
47

klas
45

klas
45

klas
45

Searching in an XML Corpus
Using Content and Structure�

Yiftah Ben-Aharon Sara Cohen Yael Grumbach Yaron Kanza
Jonathan Mamou Yehoshua Sagiv Benjamin Sznajder Efrat Twito

The Selim and Rachel Benin
School of Engineering and Computer Science

The Hebrew University of Jerusalem
Jerusalem 91904, Israel�������	��
��������
�������
�����
����	�	������
��� !"�#�$
��$ ����%��
�����&'�(��)���
�*�+-,��.�%,	����
��$/�/�/�0�1-2��435����*-�436
�2437��8

ABSTRACT9;:�<>=@?.AB?DC�EF?�EGC�=GC�H-IG=�AJ=GK�=GIGCMLONQP�ESRUT@VWEGC�IGEG<>C�X�AZY\[�9;:�C�AB?�]
?�EGPDAB^_:`^�P	H�=G<>=GIG=@P	N@AJX�AZEG<>C�I\K�P	Nba\H�NQP�EGL%ABIG<cP	Hed'C�IGEG<>C�X�AZY�IGC�^_:�]
H�<>f�g�C�=SAZg�h�LJC�H-IGC�ikj;<>IG:lIG:�C�ABm�<>Y><cI\KkIGP@h�<>X�Cnj�CM<ch	:-IG=bIGP@i�<>oDC�EG]
CMH�I�NpE�AZh	LJC�H-IG=.P�N�A"i�Pq^�g�L@C�H-I�rm4AZ=GC�iFP�HFIG:�C"I�AZh	=�[ts�?DCM^�<>u�^-ABYcY>K�r
IGCMEGLvNpEGCMf�g�C�H�^M<cCM=�r�<>H�X�C�EG=GC�i�Pq^�g�LJCMH�ISNpEGC�f-g�C�H�^�<>C�=�r'?�EGP�w-<>LJ<>I6K
ABLJP�H�hxPq^�^�g�EGEGC�H�^MC�=�P	N$y�C�K-j�P�EGi�=�r�AZH�i@=G<>LJ<>Y\AZEG<>I6KSmDC�I6j�C�C�HSy�C�K-]
j�P�EGi�=UAZH�ilj�P	EGi�=zNpEGP�L{IG:�Cnh	<>X�C�H|i�Pq^Mg�LJC�H-I�r}AZEGCFg�=GC�i4[�~xAB^_:
IGCM^_:�H�<>f-g�CU:.AB=SmDCMC�H�<>LJ?�Y>C�LJCMH�IGCMi�AZ=lA@=GC�?.ABE�AZIGC�E�AZH�y�C�EkAZH�i
IG:�C�u�H.ABY�E�AZH�y�<>H�hb<>=}i�P�H�C�m-KzLJC�EGh�<>H�hbIG:�C�EGCM=Gg�Y>IG=�P	N�IG:�C"X�AZEG<>P	g�=
E�ABH�y�CMEG=�[

1. INTRODUCTION� H%RUT@V`i�Pq^�g�LJC�H-I�:4AZ=#An=GIGEGg�^MIGg�EGCF<cH�AZi�i�<>IG<>P�H%IGP�^�P�H-IGC�H-I�r
ABH�i`ABH|RUT@V�=GCqAZEG^Z:|C�H�h	<cH�Cn=G:�P	g�Y>ilmDC�^-AZ?4AZm�YcC�P	N.I�AZy-<>H�h%ABi�]
X�AZH-I�ABh�C�P	N@IG:�C�=GIGEGg�^MIGg�EGC(<cH�P�EGi�C�E|IGP�<cL@?�EGP�X�C�IG:�C�f-g4AZY><>I6K
� <\[C-[>rq?�EGC�^�<>=G<>P�H�AZH�i�EGC�^-ABY>Y6�4P	N�IG:�CzEGC�=Gg�Y>IG=�[49;:�C�=GIGEGg�^�IGg�EGC�L%A7K
ABY>=GPSmDCb<>H�^�P	EG?DP�E�AZIGCMi�<>H-IGPnIG:�C�IGP	?�<>^ � <\[C-[>r�f-g�C�EGK}�$<>HUI6j�P�jxAGK-=�[
� <>EG=GI�r�IG:�C@IGP	?�<>^UL%A7K|<>H�^�Y>g�i�CJ^�P	H�i�<cIG<>P	H�=nIG:.ABInEGC�Y\AZIGCJ^MP�H-IGC�H-I
IGP�=GIGEGg�^MIGg�EGC � C-[hD[>r�=GP	LJC@y�C�K-j�P�EGi%=G:�P�g�Y>i�AZ?�?DC-AZE�<cH%IG:�CSIG<>IGY>C
P	NxIG:�Cki�Pq^�g�LJC�H-I��G[�s�C�^MP�H�i4r"IG:�C�IGP�?�<>^lL%A7K�=G?DC�^�<>NpK`IG:�ClC�w-]
AB^�IJNQE�AZh�L@C�H-IUP�NbIG:�C�i�Pq^�g�LJC�H-I@IG:4AZI@=G:�P�g�Yci�mDC�EGC�IGg�EGH�C�ieAZ=
ABH�AZH�=Gj�C�E�[b~"X�C�H|<>N"IG:�C�IGP�?�<>^Si�PqC�=xH�P	Iz:4A7X�CkAZH-Kl:�<>H-I@AZmDP�g�I
IG:�CS=GIGEGg�^�IGg�EGCqr�IG:�CF=GC-AZEG^Z:%C�H�h	<>H�C@=G:�P�g�Yci|=GIG<>Y>Y.mDC�AZm�Y>CSIGP�u�H�i
H�P�I;�Qg�=GI�IG:�CxEGCMYcCMX$ABH�I�i�Pq^�g�LJC�H-IG=�r-m�g�I�ABY>=GPUIG:�C�L@P�=GI�EGC�Y>C�X�AZH-I
NQE�AZh	LJC�H-I � P	E�NpE�AZh	LJC�H-IG=��4j;<>IG:�<>HlC-AB^_:li�Pq^�g�L@C�H-I�[

s�C�X�C�E�ABYDi�<>oDC�EGC�H-I�?.AZE�ABi�<>h�L@=;:.A7X�CbmDC�C�H#?�EGP	?DP�=GC�i�EGC�^�C�H-IGY>KJNQP�E
=GCqAZEG^Z:�<>H�hnRJT@V|i�Pq^�g�LJC�H-IG=�[}a6HSRUd ���z���>�Z� r�IG:�C;L%AB<>HJ<>i�C-A�<>=
A4h	C�H�C�E�ABY><c�qAZIG<>P�HSP�N-IG:�Cz�.AZh	C�]_dzABH�y � �	� IGC�^Z:�H�<>f-g�C'P	N���PqP	h�Y>C �>�B� [
a\HWRUs�~xABEG^_: �>�Z� r�IG:�C%C�LJ?�:.AZ=G<>=k<c=�P�HWEGC�IGEG<>C�X-<>H�h`P�H�Y>K�IG:�P	=GC
� 9;:�<>=�EGC�=GC-AZEG^Z:�jxAZ=F=Gg�?�?DP	EGIGC�i�m-K|9;:�CUa6=GE�AZCMYxs�^�<>C�H�^�C � P�g�H�]
i4AZIG<>P�H � ��E�AZH-IS� ���B�D� �G[

AZH�=Gj�C�EG=�IG:.AZIb^�P	H�=G<>=GI�P	N��B ¡S¢�£�¤¦¥5§B¢�¨p¨ª©k«\ ¨ª¢�¤¦ B¬�H�Pqi�CM=�[� C�<>IG:�C�E
P�H�C%P�NnIG:�CM=GC�AB?�?�EGPDAZ^Z:�CM=k<>=�=Gg�<>I�AZm�YcC(NpP	EkIG:�C|a � ~�R^MP�EG?�g�=�r
j;:�<>^Z:U^�P�H�=G<>=GIG=�P�N�ABEGIG<c^MYcCM=�NpEGP	L®IG:�C�a6~"~�~�i�<>h�<>I�AZY$Y><>m�E�ABEGK�[}9;:�C
RUd ���z� AB?�?�EGP$AZ^Z:�<>=;H�P	I;i�<>EGC�^�IGY>K(AB?�?�Y><>^-ABm�Y>CnIGP@a � ~"RUr�=G<>H�^�C
IG:�CSRUT@V�i�Pq^�g�LJC�H-IG=�P	N�a � ~"R¯i�PkH�P�Ix:4A7X�CS^MEGP�=G=nEGC�NQC�EGC�H�^MC�=
<>H%IG:�CFNpP�EGL°P�N"a±xd.~ � =zP	ExR�V}<cH�y-=�[�9;:�CSRJs�~�AZEG^Z:�AZ?�?�EGPDAB^_:
<>=t<>EGEGC�Y>C�X�AZH-I�IGP�a � ~�RJr	=G<>H�^�CJAZY>YDIG:�CbH�Pqi�C�=�P	NtABH-K@=G<>H�h	YcC�RUT@V
i�Pq^Mg�LJC�H-IFABEGCni�C�C�L@C�il=GC�L%ABH-IG<c^qAZY>Y>K�EGC�Y\AZIGCMi.[

² g�ESAB?�?�EGP$AZ^Z:l^�P	H�=G<>=GIG=zP	NbAzX�AZEG<>C�I6K�P�N.a\H�NQP�EGL%ABIG<cP	H�d'CMIGEG<cCMX$ABY
IGC�^Z:�H�<cf-g�C�=�AZg�h�LJCMH�IGCMi@j;<>IG:@IG:�CnAZm�<>Yc<>I\KSIGPzh�<>X�Ctj�C�<>h�:-IG='IGP�i�<>NQ]
NpCMEGC�H-IbNQE�AZh	LJC�H-IG=zP	NbAzi�Pq^Mg�LJC�H-I�rqm.AB=GC�ilP�H�IG:�CxI�ABh�=�[bs�?DC�^�<>u�]
^-ABYcY>K�rj�C�g�=GC�IGCMEGL³NpEGCMf�g�C�H�^M<cCM=�r�<>H-X�C�EG=GC"i�Pq^�g�LJC�H-I4NQEGC�f-g�C�H�^�<>C�=�r
?�EGP�w-<>LJ<>I6KJAZLJP	H�h�Pq^�^�g�EGEGC�H�^�CM=4P�N-y�C�K-j�P�EGi�=�rqABH�in=G<>LJ<>Y\AZEG<>I6KnmDCM]
I6j�C�C�H|y�CMK�j�P�EGi�=@ABH�ilj�P�EGi�=zNQEGP�L´IG:�Cnh	<cX�C�H|i�Pq^�g�LJC�H-I�[.~xAB^_:
IGC�^Z:�H�<cf-g�CU:.AZ=FmDC�C�H�<>LJ?�Y>C�LJC�H-IGC�i�AB=|A@=GC�?4AZE�ABIGC�E�ABH�y�CMElABH�i
IG:�C"u�H4AZY	E�AZH�y-<>H�h�<>=4i�P�H�C'm-K�L@C�EGh�<>H�hbIG:�C"EGC�=Gg�YcIG=}P�N�IG:�C'X�AZEG<>P�g�=
E�AZH�y�C�EG=�[

2. TOPIC SEMANTICS AND SYNTAX9;:�C�f-g�C�EGK(Y\AZH�h�g.ABh�C�P�NSAJ=GI�AZH�i.AZEGi�=GCqAZEG^Z:�CMH�h�<>H�Ck<>=F=G<cL@?�Y>K
AxY><c=GIzP�N'y�C�K-j�P�EGi�=�r�P�?�IG<>P	H.AZY>Y>Kl?�EGC�^�C�i�C�i|m-K�IG:�CkµWP�EU¶W=G<>h�H4[
a6H#IG:�Cb^MP�H-IGC�w-I�P	N}RJT@V;r	IG:�Czf-g�CMEGK@Y\AZH�h�g.ABh�Cx^qAZH�AZY>=GPF^�P�H-I�AZ<>H
<>H�NQP�EGL%ABIG<cP	H�AZmDP�g�I�IG:�C�=GIGEGg�^�IGg�EGC-r�<>HUIG:�C�NQP�EGL�P�N�?.ABIG:JC�w-?�EGCM=G]
=G<>P�H�=FIG:4AZIni�C�=G^�EG<>mDCU=G?DC�^�<>u�^U?4AZEGIG=�P�NnAFi�Pq^Mg�LJC�H-Inj;:�C�EGCUIG:�C
y�C�K-j�P�EGi�=�=G:�P�g�Y>i�AZ?�?DCqAZE�[

a6H�a � ~�RJ· �D¸F� � � r}A�f�g�C�EGKJ<>=;^-ABYcY>C�i�AS¤¦¹_ºD¥5§JAZH�ik^MP�LJ?�EG<c=GCM=bNQP�g�E
?.ABEGIG=�» � � �#¤¦¥5¤¦¨ª ¼%IG:�<>=U?.ABEGI�i�C�=G^�EG<>mDC�=#IG:�C�IGP�?�<>^|<>H½A�NpP�EGL|AZY
=GK-H-I�AZw}r �G¾ �;¬� �B§«_¥ º�¤¦¥5¹�£�¼nAzi�C�=G^MEG<c?�IG<>P�H|<>H`AzH4AZIGg�E�ABY}Y\ABH�h�g4AZh	C
P�N�IG:�C�<>H�NQP�EGL%ABIG<>P�H�IG:.AZI�<>=�H�C�C�i�CMi.r � ¸ �k£�¢�«Z«6¢�¤¦¥p¿ ¼³AlLJP�EGC
i�CMI�AZ<>Y>C�i³i�C�=G^�EG<>?�IG<>P�H4rJAZH�i � � �lÀ ©�Á"¹�«6¬��B¼�A(=GC�I�P�N@^MP�LJL%AB]
=GC�?4AZE�AZIGCMi´¤¦ «_¡S�BÂSj;:�C�EGCWA�IGC�EGLÃ<>=�A(=G<>H�h	Y>C�y�C�K-j�P�EGieP�E�A
?�:�E�AZ=GC;C�H�^-AZ?�=Gg�Y\AZIGCMiJ<>HJi�P	g�m�Y>C;f-g�P	IGC�=�[² g�E'=GK�=GIGCML½g�=GC�='P�H�Y>K
IG:�C�IG<cIGY>C-[

� IGP�?�<c^�^-ABH�mDC�C�<>IG:�CME%§B¹�£�¤¦ £�¤F¹�£�¨ª© � AZm�m�E�[tÄ ² �bP	E%§B¹�£�¤¦ £�¤
¢�£�¬J�B¤¦«_Å-§¤¦Å-«6 � AZm�m�E�[$Ä � s��G[�a6H(A�Ä ² IGP	?�<>^-r�IG:�CbIG<>IGY>Cb^�P�H-I�AZ<>H�=
P�H�Y>KF^MP�H-IGC�H-IG]ÆEGC�Y\AZIGC�iF^�P�H�i�<>IG<>P�H�=�Ç	<>I.<c=bA'=GC�I.P�N�=G?.AZ^MC�]Æ=GC�?.ABE�AZIGC�i
IGC�EGLJ=�r;P�?�IG<>P�H.ABY>YcK�?�EGC�^�CMi�C�iÈm-K�IG:�C�µÉP�E�IG:�C�¶É=G<>h	H.[� P	E
C�w}AZL@?�Y>C-r

Ê +q
���
��
���, Ê.Ë�Ë *�
�&�
`Ì-�� �����
����$���-�'Í�Í

klas
46

klas
46

klas
46

klas
48

klas
46

klas
46

klas
46

<>=@AJÄ ² IGP�?�<>^�AZmDP�g�IlÎ¦i.ABI�AZm4AZ=GC�Ï(ABH�ieÎ5�GA7X$Ab?�EGP�h	E�AZLJL@<cH�hD[Ï

a\H�AkÄ � sUIGP	?�<>^-r�IG:�CSIG<>IGY>C@EGC�Y\ABIGC�=nIGC�EGLJ=xIGP#=G?DC�^M<cu�^@Y>Pq^-ABIG<cP	H�=
<>Hli�Pq^�g�L@C�H-IG=�[�9;:�Cnh�CMH�C�E�ABY�NpP	EGLÉP�N.IG:�CxIG<>IGYcCn<>=
Ð	Ñ�Ò ����8���,��qÓ Ð�Ñ�Ò ����8���,��qÓ°3�3�3 Ð	Ñ�Ò ����8���,��qÓ r
j;:�C�EGC@CqAZ^Z: Ð�Ñ <>=#A�§Z¹�£�¤¦ Ô¤b ¨ª ¡@ £�¤tIG:4AZI�=G?DCM^�<>u�C�=#An?.ABIG:%<cH
IG:�C�i�Pq^�g�LJC�H-I � g�=G<>H�hnRU�.ABIG:U=GK-H�I�ABw}�G[� ���	8���,�� <c=xAnÕ}PqP�Y>C-ABH
^MP�LFm�<>H.ABIG<cP	H³P	NSRJ�.AZIG:�?�EGC�i�<>^-AZIGC�= � C-[hD[>rUAl^�P�LJ?4AZEG<>=GP�HemDC�]
I\j�C�CMHWAF?4AZIG:(C�w-?�EGC�=G=G<>P	HÈABH�iWAn^�P	H�=GI�AZH-I��nABH�i(?�EGC�i�<c^qAZIGC�=nP	N
IG:�CxNpP	EGL
�� ��-�.Ö×Ì�
��	���B���������-�$Ø rDj;:�C�EGC Ì�
��	� <>=SAZH�RU�.AZIG:kC�w-]
?�EGC�=G=G<>P�H�AZH�i ���������-� <c=JA�f-g�P�IGCMil=GIGEG<>H�hUP�N'IGC�EGL@= � C-AB^_:|IGCMEGL
^MP�g�Y>ilmDCn?�EGC�^�C�i�C�i�m-K�AJµ�P	EJ¶x�G[� P�E�C�w}AZLJ?�Y>C-r

Ù�Ù
�������2�8�, Ò 3 Ù�Ù 1	���ÛÚ Ë7Ü�Ý�Ý�Ý Í\Ó
Ù�Ù ��,q2 Ò
�� �q�.Ö�3	� Ë\Ê.Ë�Ë *q
�&�
ÈÌ-�- �����
����D���-�'Í�Í�Í_ØÓ

=G?DCM^�<>u�C�=;IG:4AZI�=GCM^�IG<>P�H�=nAZmDP�g�IkÎ¦�7A7X$A;?�EGP	h�E�AZL@LJ<>H�h�ÏSNpEGP	LÞAZEGIG<>]
^MYcCM=zj;EG<>IGIGC�H`ABNpIGC�E ¾ ����� =G:�P�g�Y>ikmDCnEGC�IGEG<>C�X�C�i4[

ß Czg�=GCbà�IGP�i�C�H�P�IGCSA�Ä ² P	EnA�Ä � s�IGP	?�<>^-[;Õ}KlA;=GY><>h�:-I�ABm�g�=GC
P	NxH�P	I�AZIG<>P�H4r�àOAZY>=GP�i�C�H�P	IGC�=UIG:�ClY><>=GI#P�NJAZY>Yz=GIGCMLJLJC�i�IGC�EGLJ=
AB?�?DC-ABEG<>H�h�<cH|IG:�C�IG<cIGY>CFP�N"àF[�s�IGP�?�j�P�EGi�=#AZEGCFC�Y><>LJ<>H.ABIGC�i.[;à'á
i�C�H�P	IGC�=UIG:�CkY><c=GI@P�N�IGCMEGLJ=U<>H�àâIG:4AZI%ABEGC�?�EGCM^�C�C�i�C�i�m-K�A(µ
=G<>h	H.r�à�ã�i�C�H�P�IGC�=bIG:�C�Yc<>=GIbP�N.IGC�EGL@=bIG:4AZISAZEGC�?�EGC�^�C�i�C�ilm-K�AU¶
=G<>h	H.rtABH�i�à"äz<>=�IG:�CJY><>=GIFP�N�ABYcY�IG:�CJEGCML%AZ<>H�<>H�h � <6[C-[>r}P	?�IG<>P�H4AZY\�
IGCMEGLJ=�<cHlàS[

3. AN OVERVIEW OF THE SYSTEM9;:�Cni�C�=G<>h	H�P�N�P�g�E;=GK-=GIGC�LåjnAZ=�<>H�æ�g�C�H�^�C�i�m-KUI6j�P@L%A��QP�E�^�P	H�]
=G<>i�C�E�AZIG<>P�H�=�[� <>EG=GI�r�P	g�Exh	PDABY�jxAZ=�IGPkm�g�<>Y>iÈABH�C�w-IGC�H�=G<>m�Y>C@=GK-=G]
IGCMLç=GP%IG:.ABI@X�AZEG<>P�g�=@<>H�NQP�EGL%ABIG<>P�H�]ÆEGC�IGEG<>C�X�AZY�IGC�^Z:�H�<>f�g�C�=F^�P�g�Yci
mDCn^MP�LFm�<>H�C�ik<>Hli�<>oDC�EGC�H-I;jxAGK-=FABH�ilH�C�jWIGC�^Z:�H�<>f-g�CM=;^�P�g�Yci�mDC
CqAZ=G<>Y>K�AZi�i�C�i.[�s�C�^�P�H�i.r�IG:�C�=GK�=GIGCML°:4AZi|IGP#mDCSi�C�X�C�Y>P	?DC�i|<>H�A
X�C�EGK#=G:�P�EGI�IG<>LJC-[

9;:�Ctu�EG=GI.^MP�H�=G<>i�C�E�AZIG<>P�H@YcCMi@IGP�IG:�C�i�C�^�<>=G<>P�HJIGPz<cL@?�Y>C�LJC�H-I.C-AB^_:
<>H�NpP�EGL|AZIG<>P�H�]×EGCMIGEG<cCMX$ABY.IGC�^_:�H�<>f-g�C�AB=UAx=GC�?.ABE�AZIGCFE�AZH�y�C�E@AZH�i|IGP
<>LJ?�Y>C�LJC�H-I�AlLJCMEGh�C�EkIG:.AZI�j�P	g�Y>i�LJC�EGh	C�IG:�C�EGC�=Gg�Y>IG=�P�N�IG:�C
<>H�i�<>X-<ci�g.ABY}E�ABH�y�C�EG=�[

9;:�CS=GCM^�P�H�i(^MP�H�=G<>i�C�E�AZIG<>P�H(<>H�æ�g�C�H�^�C�i|IG:�C�<>LJ?�YcCMLJC�H-I�AZIG<>P�H%P	N
IG:�CSIGP	?�<>^ � <\[C-[>r$f-g�C�EGK}�.?�EGPq^�C�=G=GP	E�[xa6H%a � ~�RJr�AnIGP�?�<>^SL%A7Kl<>H�]
^MYcg�i�CkC�w-?�EGC�=G=G<>P�H�=U<>H�RJ�.AZIG: � AZg�h	LJC�H-IGC�i�j;<>IG:�IG:�C�ÎZABmDP�g�IGÏ
NQg�H�^�IG<>P�H.��IG:4AZI�EGC�NpC�E;IGPSIG:�Cz=GIGEGg�^�IGg�EGC�P�N}IG:�Cbi�Pq^�g�LJC�H-IG=tIGPSmDC
EGCMIGEG<cCMX�C�i.[�9;:-g�=�r"AZH�RJ�.AZIG:�?�EGPq^�C�=G=GP	E�<c=nH�C�C�i�C�i�<>H(P�EGi�CMEFIGP
CMX$ABYcg4AZIGC�AJh�<>X�C�H�IGP	?�<>^-[kèzP�j�C�X�CME�r;AZH-K�CMw�<>=GIG<>H�h%RJ�.AZIG:�?�EGP�]
^MC�=G=GP�E#^-ABH�H�P	IJmDC�AB?�?�Yc<>C�i�IGP(IG:�C�^MP�LJ?�YcCMIGC�i�CM=G^�EG<>?�IG<>P�H�P�N@A
IGP	?�<>^xIG:4AZIt<>=�j;EG<>IGIGC�Hk<>HkIG:�C�NQP�EGL%ABY}=GK-H-I�AZwUP	N�a � ~"RUÇ�<>H�=GIGC-ABi.r
<>Ib^-AZH%P	H�Y>KkmDCkAB?�?�Y><>C�i%=GC�?4AZE�AZIGCMYcKkIGP#C-AZ^Z:|RU�.ABIG:lC�w-?�EGC�=G=G<>P	H
IG:4AZIb<>=zC�LFmDC�i�i�C�ik<cH�=G<>i�C�IG:�CnIGP	?�<>^-[�9;:�<c=b<>=zH�P�Ib=Gg�éJ^M<cCMH�I�NQP�E
ABH�AB^�^�g�E�ABIGCx?�EGPq^MC�=G=G<>H�hJP	N�Ä � s � ^�P�H-IGC�H-I�ABH�i�=GIGEGg�^�IGg�EGC-�}IGP	?�]
<>^�=�rê=G<cH�^�C#j;:�C�H�i�<>oDC�EGC�H-InRU�.ABIG:�C�w-?�EGC�=G=G<>P�H�=FNpEGP	LÞIG:�CJ=�ABLJC
IGP	?�<>^�AZEGC#C�X�AZY>g.ABIGC�i�=GC�?.ABE�AZIGC�Y>K�r4<>IS<>=S<cL@?DP�=G=G<>m�Y>C�IGP(IGCMYcY�:�P�j
IGP(^�P	LSm�<cH�CkIG:�C�<>E@EGC�=Gg�Y>IG=J^�P�EGEGCM^�IGY>K�[Ès�P$r.<>IJ=GCMC�LJC�i`IG:.ABI@IG:�C
IGP	?�<>^�?�EGPq^�C�=G=GP	E;j�P�g�Y>i�EGCMf�g�<>EGCJA;^�P�L@?�Y>C�IGC�<>LJ?�Y>C�LJC�H-I�AZIG<>P	HkP	N
ABH%RU�.AZIG:%?4AZEG=GC�E � AZH�i%IG:4AZI�j�P�g�Yci%mDCFIG<>LJCS^MP�H�=Gg�LJ<>H�h$�G[ba6H�]
=GIGCqAZi.rêj�CU<>LJ?�Y>C�L@C�H-IGC�i � <>HWë�A7X�A���AS?4AZEG=GC�EFNpP	EFa � ~"RåIGP	?�<>^�=
IG:4AZIF^�EGC-ABIGC�=|ABH�RUs�V�=GI6K-Y>C�=G:�C�CMI � <\[C-[>r�AU?�EGP�h	E�AZLOj;EG<cIGIGCMH�<cH
RJs�Vt�G[�s�<cH�^�C�RU�.ABIG:J<>=�<>H�^MYcg�i�C�iU<>HJRJs�Vtr�j�Cz^�<>EG^�g�LSX�C�H-IGC�i@IG:�C
H�C�C�i�IGPk<>LJ?�YcCMLJC�H-I�AZH�RU�.AZIG:(?.ABEG=GC�E�AZ=kA�?.AZEGI�P�NtP	g�ExIGP	?�<>^
?�EGPq^�C�=G=GP	E�[

� <>h	g�EGC ¸ i�C�?�<c^MIG=nIG:�C@L|AZ<>H�^�P	LJ?DP�H�C�H-IG=xP�N�IG:�CJ=GK-=GIGC�L|[�9;:�C

u�EG=GI}=GIGC�?�<>=�m�g�<>Yci�<>H�h�IG:�C"<>H�i�<>^�CM=�rj;:�<>^_:kAZEGC�i�C�=G^MEG<cmDCMiF<>H�i�CMI�AZ<>Y
<>Hes�C�^�IG<>P	H � [���<>X�C�HeAUIGP�?�<>^-r.IG:�C�<>H�i�<c^MC�=|ABEGC�g�=GCMi�IGP(u�Y>IGC�E
IG:�Ckj;:�P	YcC|^MP�EG?�g�=J<>H�P	EGi�C�EJIGP�EGC�IGEG<>C�X�ClIG:�C�i�Pq^�g�LJCMH�IG=@IG:.AZI
^�P	H�I�AB<>H�AZY>YtIG:�C#EGC�f-g�<cEGCMi�y�C�K-j�P	EGi�= � <\[Cq[cr�y�C�K-j�P�EGi�=S?�EGC�^�C�i�C�i
m-K%µn�G[t±�Pq^Mg�LJC�H-IG=�IG:.AZI�?.AB=G=tIG:�EGP	g�h�:#IG:�C�u�Y>IGC�EG<>H�hF?�:.AB=GCUAZEGC
?�EGPq^MC�=G=GC�i�m-K`ABH%RUs�V`=GI\K�Y>C�=G:�C�C�IxIG:4AZIx<>=xh	C�H�CME�AZIGC�i(NpEGP	LIG:�C
IGP�?�<>^-[49;:�C�RJs�V(=GI6K-Y>C�=G:�CMC�ItEGC�IGEG<>C�X�CM=;NpEGP�LåC-AZ^Z:�i�Pq^�g�LJCMH�InAZY>Y
IG:�C"NpE�ABh�LJCMH�IG=.IG:4AZItAZEGCtEGC�Y>C�X�AZH-I}IGPzIG:�C�?�EGPq^�C�=G=G<>H�hzP�N�IG:�C�h	<>X�C�H
IGP�?�<>^-[�9;:�CbEGC�IGEG<>C�X�C�iUNQE�AZh	LJC�H-IG=nABEGCz?�EGPqi�g�^MC�i(AZ=�ABHURUT@V|u�YcC
� P�H�Cx?DC�E;i�Pq^�g�LJCMH�I��ê<cH�AbL|AZH�H�C�E;IG:.ABIt?�EGCM=GC�EGX�C�=;IG:�CxP�EG<>h�<>H4AZY
:�<>C�E�ABEG^_:-KeAZL@P�H�h�IG:�C�=GClNQE�AZh	LJC�H-IG=�[�a6H�IG:�ClH�C�w-IJ=GIGC�?4r"C-AB^_:
E�AZH�y�C�Ez?�EGPq^�C�=G=GCM=#AZY>Y.IG:�CFRUT@V�u�Y>C�=#AZH�i|^�EGC-ABIGC�=#AnH�C�jeRUT@V
u�Y>CUP	N;IG:�CUE�AZH�y�C�i�EGC�=Gg�Y>IG=�[Ua6H�IG:�CJu�H4AZY�=GIGCM?�=�rêIG:�CUEGC�=Gg�Y>IG=FP�N
IG:�C�X$ABEG<cP	g�=�E�AZH�y�C�EG=SAZEGCnL@C�EGh�C�i�<cH-IGP%Ab=G<cH�h�Y>C�RUT@V�u�Y>C-[

4. INDEXING9;:�C�=GK-=GIGC�L�g�=GCM=�=GC�X�CME�AZY�<>H�i�<>^�C�=�j;:�C�HJ?�EGPq^�C�=G=G<>H�hFIGP�?�<>^�= � <\[C-[>r
f-g�C�EG<>C�=��G[�9;:�C�^�EGC-AZIG<>P	H@P�N�IG:�C�<cH�i�C�w-C�=}<>=.i�P�H�CxAB=bA'?�EGC�?�EGPq^MC�=G=G]
<>H�hJ=GIGCM?lm-KUIG:�C�¥5£�¬� Ô «_[49;:�Cn<cH�i�<>^�C�=SABEGCni�C�=G^�EG<>mDC�i�mDC�Y>P�jF[

Document-LocationArray9;:�C;=GK-=GIGC�L{AB=G=G<>h�H�=�A�g�H�<>f�g�Cn¬�¹§Å-¡S £�¤.¥5¬� £�¤¦¥ ì. « � AZY>=GPn^-AZY>Y>C�i
¬�¥5¬ê��IGP�CqAZ^Z:Ji�Pq^�g�LJC�H-I�[ê9;:�C�¬�¹§Å-¡@ £�¤¦í\¨ª¹§B¢�¤¦¥p¹�£�¢�«Z«6¢�©�<>="g�=GC�i
IGP�AZ=G=GPq^�<\AZIGCUCqAZ^Z:È¬�¥p¬�j;<cIG:�IG:�CF?�:-K-=G<>^-AZY.Y>Pq^-ABIG<cP	H.rD<>H�IG:�CSu�YcC
=GK-=GIGC�L%rqP�N.IG:�Cx^�P�EGEGCM=G?DP�H�i�<>H�hJi�Pq^�g�LJCMH�I�[

InvertedKeyword Index9;:�C�¥5£�¿ «Z¤¦ B¬�À ©�Á'¹�«6¬`¥5£�¬� Ô�AB=G=GPq^�<\AZIGC�=�C-AB^_:�y�C�K-j�P	EGi�j;<>IG:
IG:�C�Yc<>=GI"P�N$i�Pq^�g�L@C�H-IG="IG:4AZI.^�P	H-I�AZ<>HJ<>I�[ts�IGP	?@j�P�EGi�=�r�<6[C-[>r	j�P�EGi�=
IG:.ABI%AZEGC�g�=GC�i�X�C�EGK�NQEGC�f-g�C�H-IGY>K�<>H�~�H�h�Y><>=G: � C-[hD[>r#Î5<>H.r ÏåÎ¦IGP$r Ï
Î¦IG:�C-r Ï@C�IG^q[c�bi�P�H�P	I�AZ?�?DC-AZEt<>H�IG:�Cb<>H�i�CMw�[� Y>=GPDr�EGC�h	g�Y\AZE;=GIGC�L@]
LJ<>H�h$r}g�=G<>H�h|IG:�C(��P�EGIGCME�· =F=GIGC�LJL@C�E �>� ¾ � r�<>=Si�P�H�CU<>H�P	EGi�C�E�IGP
AZ^Z:�<>C�X�C(AS:�<>h�:�C�E�æ�C�w-<>m�<>Y><>I6K(j;:�C�H�=GC-AZEG^Z:�<>H�h|NpP�E�AS?4AZEGIG<>^�g�Y\ABE
y�C�K-j�P�EGi.[�9;:�C�<cH-X�CMEGIGC�i�]Æy�C�K-j�P�EGi�<>H�i�CMwx=GIGP�EGC�=.=GIGCMLJ=.P�N�j�P�EGi�=�[
� P	E�C-AB^_:U=GIGC�L®îSr	IG:�C�EGCb<>=nA�º�¹��B¤¦¥5£�ï�¨ª¥5�B¤}P�NêIG:�CS¬�¥5¬ê· =�P	NtABY>Y$IG:�C
i�Pq^Mg�LJC�H-IG=�IG:.ABI;^�P�H-I�AB<cH�=GP�LJCny�CMK�j�P�EGikj;<cIG:�=GIGC�L´î@[

Keyword-DistanceIndex9;:�CkÀ ©�Á'¹�«6¬�í×¬�¥5�B¤¦¢�£�§B k¥5£�¬� ÔJ=GIGP�EGC�=b<>H�NQP�EGL%ABIG<cP	H�AZmDP�g�Iz?�EGP�w�]
<>LJ<>I6K#P�N}y�C�K-j�P	EGi�=t<>HkIG:�C�^MP�EG?�g�=�[� P�EtCqAZ^Z:�?.AB<>E;P�N�y�C�K-j�P�EGi�=�r
IG:�C@=GK�=GIGCML^�P�L@?�g�IGCM=�AF=G^�P	EGC(AZH�i(IG:�C@y�C�K-j�P	EGi�]Æi�<>=GI�AZH�^�C@<>H�]
i�CMw(:�P�Y>i�=FIG:�<>=�=G^�P	EGC-[�9;:�CU=G^�P�EGC#EGC�æ�C�^�IG=FIG:�CJH-g�LFmDC�EnP	N;Pq^�]
^�g�EGEGC�H�^�CM=JP�NbIG:.ABIJ?.AB<cE@P�Nby�C�K-j�P	EGi�=J<>HeAZH-K�=G<>H�h	YcCk=GC�H-IGC�H�^MC-[
a6I@AZY>=GP#EGC�æ�C�^�IbIG:�Cni�<>=GI�ABH�^�C�mDC�I\j�C�C�H|IG:�C�I6j�PUy�C�K-j�P�EGi�=zj;:�C�H
IG:�CMK�AB?�?DC-ABE'<cH@IG:�C;=�AZL@Cb=GCMH�IGCMH�^�C-[�9;:�C�=G^�P	EGC;NpP�E�A�h	<cX�C�HJ?.AB<>E
P�N�y�C�K-j�P	EGi�=4<>='IG:�C�=Gg�LÛP	N�IG:�C�<cH-X�CMEG=GC�P�N�IG:�C�i�<>=GI�AZH�^MC;mDC�I6j�C�C�H
IG:�C;I\j�Pxy�C�K-j�P�EGi�='P�X�C�EzAZY>Y$IG:�C�=GC�H-IGC�H�^�CM=�<>H%ABYcY�IG:�C;i�Pq^�g�LJCMH�IG=
P�N.IG:�Cx^�P	EG?�g�=�[� P�EGL%ABYcY>K�r-IG:�Cx=G^�P	EGC�P�N4IG:�Cx?.AB<cE � înð6ñ\î�ò��.<>=

ó � înð6ñ\î�ò��"ô
õMö�÷ øBöqõ ùªú$ûGü ú�ý�þ ö-ø

�
ÿ��������	��
�� � înð×ñ6î�ò�

j;:�CMEGC�Þ<>=#IG:�C�=GC�IUP�N#ABY>YzIG:�Cli�Pq^�g�LJC�H-IG=U<>H�IG:�Cl^�P�EG?�g�=�r ÿ
<>=�AFi�Pq^�g�LJCMH�I�r � <>=�AF=GCMH�IGCMH�^�C-r'ABH�i ÿ�����������
�� � î ð ñ\î ò ��<>=nIG:�C
H-g�LFmDC�E�P�N.j�P�EGi�=b=GC�?4AZE�AZIG<>H�hkînð�AZH�i|î�ò�[zs�^�P	EGC�=JABEGC�H�P�EGL|AZY>]
<>��C�i�ABH�i ó � î@ñ\îS��<>=Fi�C�u�H�C�i�IGP|mDC � � IG:�CUL%ABw�<>LFg�L%�G[U9;:�C
y�C�K-j�P�EGi�]Æi�<c=GI�ABH�^�CU<>H�i�C�w�AZ^MIGg.AZY>Y>K(=GIGP�EGC�=FIG:�CU=G^�P	EGC�=FNpP�EF?.AB<>EG=
P�N.=GIGCMLJ=�E�AZIG:�CMEbIG:4AZHk^�P�LJ?�Y>C�IGCny�C�K-j�P	EGi�=�[

Tag Index9�ABh�=#ABEGCSh	<cX�C�H%j�C�<>h�:-IG=JAZ^�^�P	EGi�<>H�h�IGP#IG:�C�<>Eb<>LJ?DP�EGI�ABH�^�C-[;9;:�C
j�CM<ch	:-I"P	N�C-AB^_:SI�AZhx<>=bA�?4AZE�ABLJC�IGC�E.IG:4AZI.^-ABH@mDCtC-AB=G<>YcKFLJPqi�<cu�C�i

klas
47

klas
47

klas
47

klas
49

klas
47

klas
47

klas
47

�������������! #"%$&���('*)�),+-��.�/0��12�	.31��0�(�

m-K�AZH-K�P	H�Czj;:�PJg�=GC�=;IG:�Cx=GK-=GIGC�L|[� ë�A7X�Az?�EGP	?DC�EGI6K#u�Y>Cx=GIGP	EGC�=
IG:�Cnj�C�<>h	:�I � î � � ��P�N4C-AB^_:�I�AZh � [

Inverse-Document-Frequency(idf) Index9;:�C�¬�¹§Å-¡S £�¤,4B«\ 65Å- £�§©�P�N@AJy�C�K-j�P	EGi87l<>=SIG:�C�H�g�LSmDCMESP	N
i�Pq^�g�L@C�H-IG=FIG:4AZIn^�P	H-I�AZ<>H97-r}i�<>X-<>i�C�i�m�K|IG:�CUIGP�I�ABY�H-g�LFmDC�EnP	N
i�Pq^�g�L@C�H-IG=n<cH(IG:�C@^�P�EG?�g�=�[n9;:�C%¥5£�¿ «_�B �¬�¹§Å-¡@ £�¤:4B«\ 65Å- £�§©
<>=bi�C�u�H�C�i�AZ=�NQP�Y>Y>P�j;=�»

¥5¬64 � 7-�"»>ô�Y>P�h � µ ; ;
; � ÿ ; ÿ=< �	�êÿ 7 <#ÿ 0 ;

j;:�C�EGC>å<>=zIG:�Cn=GC�IbP�NzAZY>Y4IG:�Cni�Pq^�g�LJC�H-IG=z<>HlIG:�C�^�P�EG?�g�=�[�9;:�C
¥p£�¿ «Z�Z í×¬�¹§Å-¡@ £�¤¦í?4G«6 @5Å- £�§©�¥5£�¬� Ô�<>=nAt:.AB=G:�I�ABm�Y>CbIG:.AZI":�P	Y>i�=
IG:�Cn<>H�X�C�EG=GCni�Pq^�g�LJC�H-I;NpEGCMf�g�C�H�^MK�NQP�EbIG:�Cn=GIGC�LA7nP�N.C-AB^_:�y�C�K-]
j�P�EGi4[

5. TOPIC PROCESSING9;:�CJ?�EGPq^MC�=G=G<>H�hlP	NnAFIGP	?�<>^UàÛ<>=ni�P	H�CS<cH(NpP	g�En?�:.AZ=GCM=�[�a\H�IG:�C
ì4¨ª¤¦ «_¥p£�ï�º�B�¢��Z Â-IG:�C�i�Pq^Mg�LJC�H-IG="IG:.ABI�^�P	H-I�AZ<>H(AZY>Y$IG:�Cby�C�K-j�P�EGi�=
<>HUà á ABEGC;EGC�IGEG<>C�X�C�iSNpEGP�L½IG:�Ct^�P	EG?�g�=�[êa6H@IG:�C� Ô¤¦«6¢�§¤¦¥5¹�£Fº&B�¢��B Â
IG:�C'EGC�Y>C�X$ABH-I}NQE�AZh�L@C�H-IG=�AZEGC"C�w-IGE�AZ^�IGCMinNpEGP�L�C-AB^_:ni�Pq^�g�LJCMH�I�[Da6H
IG:�Cz«6¢�£�À¥5£�ï4º�B�¢��Z Â�IG:�C'NpE�ABh�LJC�H-IG=4NQEGP�L�IG:�C'?�EGCMX�<>P	g�=�?�:.AB=GC�ABEGC
E�ABH�y�CMi�m-K#C-AZ^Z:lE�AZH�y�C�E�[�a\H�IG:�C�¡S «6ï¥5£�ïbº�B�¢��B Â�IG:�CnEGC�=Gg�YcIG=�P	N
IG:�CnX$ABEG<>P�g�=�E�ABH�y�C�EG=SABEGCFL@C�EGh�C�i�IGP�h�CMIG:�C�E�[� C�w-I�rqj�Cni�C�=G^�EG<>mDC
CqAZ^Z:l?�:4AZ=GCn<>Hli�CMI�AZ<>Y\[

a\H�IG:�C�u�Y>IGC�EG<>H�h@?�:4AZ=GC-rqNpP	E;C-AZ^Z:�y�C�K-j�P�EGiC7 < à á r-IG:�C�?DP�=GIG<>H�h
Y><>=GIEDGF�P�N'IG:�C�=GIGC�L{P�NH7F<>=�C�w-IGE�AB^�IGC�i%NpEGP	L°IG:�CF<>H-X�C�EGIGCMi|y�C�K-]
j�P�EGi�<>H�i�C�w}[@9;:�CU<>H-IGC�EG=GC�^MIG<cP	HCDJIWôLK F ö I�M D F <>=�^�P�LJ?�g�IGC�i

AZH�i�IG:�CSEGCM=Gg�Y>Ix<>=�AZH(RUT@V`i�Pq^Mg�LJC�H-IxIG:4AZIz^�P�H-I�AZ<>H�=�A�Y><>=GInP�N
AZY>Y}IG:�C#¬�¥p¬}· =�P�N4IG:�Cni�Pq^�g�LJC�H-IG=;<>H�D I [
a6H³IG:�C�C�w-IGE�AZ^MIG<cH�hW?�:4AZ=GC-r�AZH½RJs�Vå=GI\K-YcCM=G:�C�C�I(<>=�h	C�H�CME�AZIGC�i
NpEGP	LÃIG:�C�IG<>IGYcC�P�N@IG:�C�IGP	?�<>^-[â9;:�<>=|=GI6K-Y>C�=G:�C�C�IlC�w-IGE�AB^�IG=|IG:�C
EGC�Y>C�X�AZH-I�NpE�ABh�LJC�H-IG=zNpEGP�L´C-AB^_:|i�Pq^�g�L@C�H-IbIG:4AZI�?.AB=G=GC�i|IG:�Cnu�Y>]
IGC�EG<>H�h(?�:4AZ=GC-[� P	E%Ä � slIGP	?�<>^�=�r"IG:�C�EGC�Y>C�X�AZH-ISNpE�AZh	LJC�H-IG=(AZEGC
i�CMIGC�EGLJ<>H�C�i�m-K�IG:�C�IG<>IGY>C-[� P�E�Ä ² IGP�?�<>^�=�rbIG:�C�=GK-=GIGC�L :.AB=
IGP�i�C�IGC�EGL@<cH�C@j;:�<c^Z:�NQE�AZh	LJC�H-IG=�AZEGCSEGC�Y>C�X$ABH-I�[na\H%P�g�E�=GK�=GIGCML%r
IG:�C�NpE�AZh	LJC�H-IG=;IG:.ABI;^�P�g�Y>i�mDCxEGC�IGg�EGH�C�i�ABEGCni�C�IGC�EGL@<cH�C�i�<cH�AZi�]
X�AZH�^MC-Ç'IG:�<>=S?DP	Yc<>^�K�jnAZ=S?�EGP	?DP�=GC�i`m-K �>¸B� AZH�i�<c=lAZY>=GP(g�=GC�i�<>H
RUd ���z�Ã�>�B� [Þs�?DC�^�<>u�^-ABY>YcK�r�IG:�C�=GC�NpE�ABh�LJC�H-IG=�ABEGC�C�<>IG:�CMElIG:�C
j;:�P	Y>C|i�Pq^�g�LJC�H-I�r�IG:�C�NpEGP�H-IUL%ABIGIGC�E�r�IG:�C`AZm�=GIGE�AZ^�I�rnABH�K�=GCM^�]
IG<>P�HlP	ESAZH-K#=Gg�m�=GCM^�IG<>P�H.[

� ?DP�IGC�H-IG<\AZY>Y>K#EGC�Y>C�X$ABH-ItNpE�ABh�LJC�H-I�LFg�=GI�ABYc=GP@=�AZIG<>=GNpK�=GP�LJC�^�P�H�]
i�<>IG<>P�H�=�[� <>EG=GI�r<cI}LSg�=GI}<>H�^�Y>g�i�C�AZY>YqIG:�C"IGCMEGLJ=�IG:4AZI;ABEGC�?�EGC�^�C�i�C�i
m-K�µn[�T@P	EGC�P�X�C�E�r<cI.L|AGKn:4A7X�C�IGPz=�AZIG<>=GNpK�=GP�L@Ct?�EGC�i�<>^-AZIGC�=�r�C-[hD[>r
3 Ù�Ù 1	���eÚ Ë7Ü�Ý�Ý�Ý Í [z9;:-g�=�r�C�w-IGE�AB^�IG<>H�h#IG:�CFEGC�Y>C�X�AZH-IzNQE�AZh	LJC�H-IG=
EGC�f-g�<>EGC�=UA�?�EGPq^�C�=G=GP�EnIG:4AZIx<>=x^qAZ?.ABm�Y>C@P	N�?4AZEG=G<>H�h�IG<>IGYcCM=nP�N�Ä ²
AZH�i�Ä � sxIGP�?�<c^M=�[� HURU�.ABIG:�?�EGPq^�C�=G=GP	E;<c=�H�P�I�=Gg�<>I�AZm�YcCzNpP	EtIG:�C
�pP	m.r�=G<cH�^�CUIG:�C@=GK�H-I�ABw(P	NtIG<>IGY>C�=�<c=�LJP	EGCUh�C�H�C�E�AZY�IG:.ABH�IG:.ABInP�N
RU�.ABIG:.['a6HlP	g�Eb=GK�=GIGCML%r�AUë�A7X�A�?�EGP	h�E�AZL{?.ABEG=GC�=bIG:�C�IG<>IGYcCkABH�i
h�CMH�C�E�ABIGC�=�AZH�RUs�V|=GI6K-Y>C�=G:�CMC�I�IG:4AZI�i�PqC�=tIG:�CzC�w-IGE�AB^�IG<>P�H.[;s�<>H�^�C
RU�.ABIG:l<>=z<>H�^�Y>g�i�CMil<>HlRUs�V;rq?DP�EGIG<>P�H�=zP	N"IG:�CnIG<>IGYcCnIG:4AZI@AZi�:�C�EGC
IGP�IG:�CtRU�.ABIG:@=GK-H-I�AZwn^-ABH@mDCtIGE�ABH�=G?�Y6ABH-IGC�i@<>H-IGP�IG:�Ct=GI6K-Y>C�=G:�CMC�I�[
9;:�<>=�Y>C-AZi|IGPlAzNGAB=GIz<>LJ?�Y>C�LJC�H-I�AZIG<>P	HlP�N.IG:�CxIGP�?�<c^n?�EGPq^�C�=G=GP	E�[

a6H(IG:�CSIG<>IGYcC@P�N�AkÄ � sUIGP�?�<>^-rDIG:�CMEGCJ<>=�A�§B¹�«6 nº�¢�¤�B% Ô6º�«\ �Z�B¥5¹�£
IG:.ABI}^MP�H�=G<>=GIG=}P�N-IG:�C'^�P	H�^-ABIGC�H.ABIG<cP	H�P�N}AZY>Y�IG:�C"^MP�H-IGC�w-I}CMYcCMLJC�H-IG=�[

klas
48

klas
48

klas
48

klas
50

klas
48

klas
48

klas
48

9;:�C�EGCFAZEGCFABY>=GPx=GC�X�C�E�ABY�ì4¨ª¤¦ «4º�¢�¤�BS Ô6ºD«6 �B�B¥5¹�£��BÂ-j;:�C�EGCtCqAZ^Z:JP�H�C
<>=zA"?4AZIG:FC�w-?�EGC�=G=G<>P	H@IG:.ABI�AZ?�?DC-AZEG='<>HF=GP�LJC;u�YcIGCME4^�P�H�^-AZIGCMH.AZIGCMi
j;<>IG:�ABY>Y�IG:�CJ^�P�H-IGC�w-InC�Y>C�L@C�H-IG=FIG:4AZIn?�EGC�^�C�i�CJ<>I�[@9;:�CUY\AZ=GI�C�Y>]
CMLJC�H-InP�N�IG:�CJ^�P	EGCJ?.ABIG:�CMw�?�EGC�=G=G<>P�H�ABH�i(IG:�CSY6AB=GI�C�Y>C�LJC�H-InP�H
ABH-K�u�Y>IGC�EU?.ABIG:�C�w-?�EGCM=G=G<cP	H½ABEGC|^-AZY>Y>C�i�¤¦¢�«\ï ¤@ ¨ª ¡S £�¤¦�@N � P	E
CMw�ABLJ?�Y>C-rq^�P	H�=G<>i�C�EbIG:�C�NpP�Y>Y>P�j;<>H�h�Ä � sSIG<>IGY>C-»

Ù�Ù
 Ò
�� �-�.Ö�3 Ù�Ù ��� Ë 3�3�3�Í_ØÓ Ù�Ù 2 Ò
�� ��-�.Ö�3 Ù�Ù +.� Ë 3�3�3	Í_Ø�Ó

9;:�C|^�P�EGC%?4AZIG:�CMw�?�EGC�=G=G<>P�HÈ<>= Ù�Ù
 Ù�Ù 2 [W9;:�C|NpE�ABh�LJCMH�IG=�IG:.ABI
CMX�C�H-IGg.ABYcY>KFj;<>YcY�mDC;EGC�IGg�EGH�C�i|AB=zAZH�=Gj�C�EG="NpP�E"IG:�<>='IG<>IGY>CFAZEGC 2 C�Y>C�]
L@C�H-IG=�[ê9;:�C'u�YcIGCME}?4AZIG:nC�w-?�EGCM=G=G<cP	H�=tAZEGC Ù�Ù
 Ù�Ù � ABH�i Ù�Ù
 Ù�Ù 2 Ù�Ù + [
� E�AZh�L@C�H-IG=tIG:.ABInAZEGC � ABH�i + C�Y>C�L@C�H-IG=t=G:�P	g�Y>i#mDC�C�w-IGE�AZ^MIGC�i#<cH
P	EGi�C�E�IGP�^_:�C�^_ySIG:�C�^�P	H�i�<>IG<>P�H�=�IG:4AZI�AZEGCb=G?DC�^�<>u�C�i#<>H#IG:�C
�� ��-�
^MY6ABg�=GC�=�[

~"w-IGE�AZ^�IG<>H�h�NpE�ABh�LJC�H-IG=�NpP	E�IG:�Cl?.ABIG:�C�w-?�EGC�=G=G<>P�H�=�AZH�i�^Z:�C�^Zy-]
<>H�hSIG:4AZI"C-AZ^Z:#P�H�Cz=�AZIG<>=Gu�CM=t<>IG=�^�P	EGEGC�=G?DP�H�i�<>H�hF^�P�H�i�<>IG<>P�H#<>=tH�P	I
f-g�<cIGCkC�H�P	g�h	:.[�a\H�P	EGi�C�E@NpP�E#IG:�C�E�AZH�y�C�EG=UIGP(j�P	EGy�^MP�EGEGC�^�IGY>K�r
<>IJ<>=S<cL@?DP�EGI�AZH-ISIGP�y-H�P�j®j;:�C�IG:�C�E|AJNpE�ABh�LJCMH�I@C�w-IGE�AZ^�IGC�i`NQP�E
A � CMYcCMLJC�H-I�<c=�EGC�Y\ABIGC�i�IGP`ASNQE�AZh�L@C�H-ISC�w-IGE�AB^�IGC�i�NQP�E�A + C�Y>C�]
L@C�H-I�rq<>H�IG:�Cz=GC�H�=GCxIG:4AZItmDP	IG:k:4A7X�C�IG:�C�=�AZL@C
 C�Y>C�L@C�H-IFAZ=FAZH
ABH�^�CM=GIGP�E�[t9;:�C�EGCMNpP�EGCqr�IG:�CnRUs�V�=GI6K-Y>C�=G:�C�C�I�CMw�IGE�AB^�IG=bNpE�AZh	LJC�H-IG=
<>H®AlL%AZH�H�C�EkIG:.ABI�?�EGCM=GC�EGX�C�=kIG:�C(P�EG<>h�<>H.ABYn:�<>C�E�ABEG^_:-K�ABLJP�H�h
IG:�C�=GCJNQE�AZh�L@C�H-IG=�[�~"=G=GC�H-IG<\AZY>Y>K�rêIG:�CF=GI6K-Y>C�=G:�C�C�In:.AB=#AF=GCMf�g�C�H�^MC
P	N;H�C�=GIGCMi�Y>PqP�?�=�[U9;:�CJH�CM=GIG<cH�hlP�N�IG:�CJY>PqP�?�=SNQP�Y>Y>P�j;=@IG:�C@:�<>C�EG]
ABEG^_:-K%i�<>^�I�ABIGC�i�m-K%IG:�CJIG:�CJ^�P	EGC�ABH�i�u�Y>IGC�E�?.ABIG:�C�w-?�EGCM=G=G<cP	H�=�[
~�AZ^Z:`Y>PqP�?`C�w-IGE�AZ^�IG=lAZY>YtIG:�C�NQE�AZh	LJC�H-IG=JNpP	E@<>IG=@^MP�EGEGC�=G?DP	H�i�<>H�h
CMYcCMLJC�H-I�[�~xAB^_:(C�w-IGE�AZ^MIGC�i�NQE�AZh	LJC�H-In<>=#AZ=G=G<>h�H�C�iWAnY>C�X�C�Y.H-g�LJ]
mDCME�rDj;:�<>^_:%<>=xIG:�CFY>C�X�C�Y.P	N�H�C�=GIG<>H�h#P�N�<>IG=�^�P	EGEGC�=G?DP�H�i�<>H�hkYcPqP	?.[
� P�EUC�w}AZL@?�Y>C-r"<>H�IG:�C�ABmDP�X�C�IG<>IGY>C-r�IG:�C�C�w-IGE�AZ^MIGC�i + C�Y>C�LJC�H-IG=
ABEGC�i�C�=G^�C�H�i.AZH-IG="P�NêIG:�CbC�w-IGE�AZ^�IGCMi 2 C�Y>C�L@C�H-IG=nAZH�i.r�:�C�H�^�Cqr	j;<>YcY
:4A7X�C%AFY\ABEGh�C�E�Y>C�X�C�Y'H-g�LFmDC�E�[n9;:�CJRJs�V�=GI6K-Y>C�=G:�CMC�In<>=�AB?�?�Yc<>C�i
IGP�AZY>Y'IG:�CSi�Pq^�g�LJC�H-IG=�IG:4AZIx?4AZ=G=GC�i(IG:�CSu�Y>IGC�EG<>H�h�?�:4AZ=GClAZH�i(<>I
?�EGPqi�g�^�C�=�AtH�CMjÈRUT@V%i�Pq^Mg�LJC�H-I�r ó I r�IG:.ABI�^�P	H�I�AB<>H�=�NQP�E;C-AB^_:
CMw�IGE�AB^�IGC�i�NpE�ABh�LJC�H-IPORQ�SlIG:�C=TJd'V�P�NzIG:�C�?.ABEGC�H-IJi�Pq^�g�LJC�H-I�rORU�SbIG:�C;?4AZIG:JP	N�IG:�C;NpE�ABh�LJCMH�I�<>HUIG:�C;i�Pq^Mg�LJC�H-I�r0O�V6SzIG:�C;=GIGC�LJ=
P	N�y�CMK�j�P�EGi�=tNpEGP	LâIG:�CzIG<cIGY>CxIG:4AZI�AB?�?DC-ABE;<>HkIG:�C�NpE�ABh�LJCMH�I�r�¢�£�¬ORW�S@IG:�CJNQE�AZh�L@C�H-In<cIG=GCMYcN7[F9;:�CJRUT@V�u�Y>C ó I�<>=�h�<>X�C�H(IGP�C-AB^_:
E�ABH�y�CME�[� P	IGCFIG:4AZIbIG:�C
�� ��-� ?�EGC�i�<>^-ABIGC�^-AZH|mDC�C�X�AZY>g.ABIGC�i|m-K
IG:�CkE�ABH�y�CMEG=�r'=G<>H�^MC�IG:�C�EGC�Y>C�X�AZH-I@NQE�AZh	LJC�H-IG=%AZEGCk<>H ó I.[�9;:�C
E�ABH�y-<>H�hSP�N�NQE�AZh	LJC�H-IG=FAZH�ikIG:�C�u�H4AZY�LJC�EGh	<>H�h|ABEGCxC�w-?�Y\AB<cH�C�i�<cH
IG:�CnH�C�w-It=GCM^�IG<>P�H.[

6. RANKING THE RESULTSß CS<>LJ?�Y>C�LJC�H-IGC�i|u�X�CSE�ABH�y�CMEG=�r�H.ABLJC�Y>K`Á'¹�«6¬�í\£�Å�¡YXB «J«6¢�£�À «_r
¥p¬�4(«6¢�£�À «_rk¤ 4Bí×¥5¬�4(«6¢�£�À «Zr�º�«\¹�Ô¥5¡S¥5¤¦©È«6¢�£�À «³ABH�iâ�Z¥p¡@¥5¨ª¢�«Z¥5¤¦©
«\¢�£�À «Z[x~xAB^_:(E�AZH�y�C�Ezh�<>X�C�=x=G^MP�EGC�=nIGP�IG:�CFNpE�ABh�LJC�H-IG=nIG:4AZIUABEGC
Y><>=GIGC�i�<>H�IG:�CURUT@VÈu�YcC ó I [U9;:�<>=S=GCM^�IG<>P�H�i�CM=G^�EG<>mDC�=SIG:�CUu�X�C
E�ABH�y�CMEG=@ABH�ik:�P�j�IG:�C�<>E�EGC�=Gg�Y>IG=SAZEGCnL@C�EGh�C�i4[

6.1 Word-Number Rankerd.C�^-ABY>Y�IG:.ABI'à ä <>="IG:�C;Y><c=GI'P	N$P�?�IG<cP	H.ABY�IGC�EGLJ= � <\[C-[>r	H�P	I.?�EGC�^MC�i�C�i
m-K�IG:�C�µWP�EJ¶�=G<ch	H.�.NpEGP	L°IG:�CnIG<cIGY>C�P�NzA�h	<cX�C�HlIGP�?�<>^SàF[zs�<>LJ]
<>Y\AZEGY>K�r$à�ã|<>=zIG:�C�Y><c=GIzP�N'IGC�EGLJ=zIG:.ABIz=G:�P�g�Y>i|H�P�I@AZ?�?DCqAZE�<>H|IG:�C
EGCM=Gg�Y>I � <\[Cq[cr�?�EGC�^MC�i�C�i�m-KlIG:�C|¶e=G<ch	H.�G[k��<cX�C�HÈA�NpE�ABh�LJC�H-I>Z#r
IG:�CJH-g�LFmDC�E�P	NtP�?�IG<>P�H.ABY�IGCMEGLJ=nIG:.ABI#AZ?�?DC-AZEn<>H[Z®<c= ; à ä K>Z ;ABH�i�IG:�CUH-g�LFmDC�ExP	Ntg�H-jnABH-IGC�i�IGC�EGL@=F<>H\Zâ<c= ; à ã KYZ ; [J9;:�C=G^MP�EGC�h�<>X�C�HkIGP]Z½m-KUIG:�Cnj�P	EGi�]ÆH-g�LFmDC�EtE�ABH�y�C�E�<>=

; à ä K^Z ; µ � ¶
LJ<>H � ; à�ã-K>Z ; ñ �Z� ��Z� _

� P	IGC|IG:.ABIUIG:�Cl=G^�P	EGC|<>=�<>H�^�EGC-AZ=GCMiWj;:�C�H�IG:�ClH-g�LFmDC�EUP	NxP�?�]
IG<>P�H4AZY"IGC�EGLJ=�AZ?�?DC-AZEG<>H�hl<>H�IG:�CSNpE�ABh�LJC�H-I>Zâ<>=n<>H�^�EGC-AB=GC�i�ABH�i
<>I�<c=bi�CM^�EGC-AZ=GCMilj;:�C�H�IG:�CnH-g�LFmDC�E;P�N.g�H-jnAZH-IGC�ikIGC�EGLJ=�<>H�Z½<>=
<>H�^�EGCqAZ=GC�i4[� Y>=GP�H�P�IGCbIG:.ABI�IG:�C�j�C�<>h�:-I�IG:.AZI"<>=�h	<cX�C�HUIGP�IG:�CSAZ?�]
?DC-ABE�AZH�^MCxP�NtA�jxAZH-IGC�i�IGC�EGLå<>=�ABHkP	EGi�C�E;P	N}L%ABh�H�<cIGg�i�Cxh	EGC-AZIGCME
IG:.ABH�IG:�C|j�C�<>h�:-I#h�<>X�CMHÈIGP�IG:�C�AZ?�?DCqAZE�AZH�^�C%P�N�ABH�g�H-jxAZH-IGC�i
IGC�EGL%[;T@P	EGC�P�X�C�E�r�IG:�CMEGC�<>=�A;mDP�g�H�iUP�N �Z� P�H�IG:�CbIGP�I�AZY�H-g�LFmDC�E
P�N.g�H-jnAZH-IGC�i�IGC�EGLJ=�IG:4AZISAZEGCnI�ABy�C�H�<>H-IGP%AB^�^�P�g�H-I�[

6.2 Inverse-Document-Frequency(IDF)
Rankerß CSu�EG=GIzh�<>X�C@IG:�C@<>H-IGg�<>IG<>P�H%mDC�:�<cH�i%IG:�C@<>i�N�E�ABH�y�C�E�[UÄ�P	H�=G<>i�CME

I6j�P�NQE�AZh�L@C�H-IG=`ZJa"AZH�i#Z�bMr=Gg�^Z:@IG:4AZIcZJadK.à'á|ABH�ieZ�b3K4à'áJ^�P�H�]
I�AZ<>H�=G<>H�h�Y>Cxy�C�K-j�P�EGi�=�rqî a AZH�i�î b rqEGCM=G?DC�^�IG<>X�C�Y>K�[� Y>=GP$rêAB=G=Gg�LJC
IG:.ABI�IG:�Cz<>H-IGC�EG=GC�^�IG<>P	HkP	N�Zfa;AZH�i=Zgb'j;<>IG:�à�ãk<>=�C�LJ?�I\K�[}a6HUIG:�<>=
^-AB=GC-r-IG:�Czj�P�EGi�]×H-g�LSmDC�E�E�AZH�y�C�E�EGCMIGg�EGH�=�IG:�Cb=�AZLJCx=G^MP�EGC�NQP�E�Z a
AZH�ihZ�b�[(a\NGr4:�P�j�CMX�C�E�r'îeax<>=%AJNpEGC�f-g�C�H-I@j�P	EGi`<cH�IG:�C#^�P	EG?�g�=
AZH�i�î b <>=nA;E�AZEGCbP�H�C-r�IG:�C�H%Z b =G:�P	g�Y>i#mDCzh	<cX�C�H�A;:�<>h�:�CMEt=G^�P�EGC
IG:.ABHiZfa_[
V�CMI`ZÈmDCFA"h�<>X�C�HSNpE�AZh	LJC�H-I�[�a6HSIG:�Ct<>i�N$E�AZH�y�C�E�r�A"E�AZEGC;y�C�K-j�P�EGi
IG:.ABI�AZ?�?DC-AZEG=�<>H[Zâ:4AZ=�AFh	EGC-AZIGCMESC�oDCM^�InP�H�IG:�CJ=G^�P	EGCUIG:.ABHÈA
y�C�K-j�P�EGi�IG:4AZIkAZ?�?DC-AZEG=FNpEGC�f-g�C�H-IGYcK%<>H�IG:�CU^�P�EG?�g�=�[U9;:�C#=G^�P�EGC
P�NêIG:�Cb<>i�NêE�AZH�y�C�E"<c=�IG:�CbNpP�Y>Y>P�j;<>H�hJ=Gg�L®P	N}IG:�Cz<>i�NêX�AZY>g�C�=�P�NêIG:�C
P�?�IG<>P�H.ABY�j�P�EGi�=SABH�i�IG:�Cng�H-jnABH-IGC�ikj�P�EGi�=zIG:4AZIFAZ?�?DC-AZE�<>H�Z#[

F ö�j I3kmlon�p
¥p¬�4 � 7-��¶ F ö�j I2qol�n�p

¥5¬�4 � 7��

� P	IGC�IG:4AZIJIGC�EGL@=UP�Nxà á ABEGC�H�P�IJ^�P	H�=G<>i�CMEGC�i�m-K�IG:�<c=UE�ABH�y�CME�r
=G<>H�^�C�ABY>Y�IG:�C�NpE�AZh	LJC�H-IG=b^�P�H-I�AZ<>HlIG:�C�L%[

6.3 Tf-Idf Ranker9;:�C�IGNp]Æ<>i�N;E�ABH�y�CMESg�=GC�=|A@LJPqi�C�Yt=G<>LJ<>Y\AZEJIGP%IG:�CUX�C�^�IGP	EG]×=G?4AZ^�C
LJPqi�C�Y�IG:.AZI�<>=;^�P�LJL@P�H�<>H�<>H�NpP	EGL%AZIG<>P	H�EGC�IGEG<>C�X�AZY � ¾ � [ß Cb:.A7X�C
LJPqi�<cu�C�i�IG:�C�m.AZ=G<>^lIGCM^_:�H�<>f-g�C�=GP�IG:4AZIJIG:�Ckj�C�<>h�:-IG=Uh�<>X�C�H`IGP
I�AZh	=tj;<>Y>YDmDCz<>H�^MP�EG?DP�E�ABIGC�i�<cHUIG:�Cz^MP�LJ?�g�I�AZIG<>P	H�P	N}IG:�C�E�AZH�y�C�E�· =
=G^�P	EGC-[

V�CMItà�mDCJA;h	<>X�C�H�IGP�?�<>^@AZH�i�Y>C�IrZemDC@A�NQE�AZh�L@C�H-I�[ß CJAB=G=Gg�LJC
IG:.ABI(AZY>YbIG:�C�j�P�EGi�=U<cH�àÞAZH�i�<>HsZ ABEGC|=GIGC�LJLJCMi.[ß C�ABYc=GP
AZ=G=Gg�LJC(IG:.AZI�ABYcY�IG:�C|=GIGP�?Wj�P�EGi�=�ABEGC�EGC�L@P�X�C�iÈNpEGP	LtZ ABH�i
àF[�9;:�C�=G^MP�EGC�h�<>X�C�H�m-K(IG:�CUE�AZH�y�C�EFIGP�ZÉj;<cIG:�EGCM=G?DC�^�IFIGP%à
<>=J^�P	LJ?�g�IGC�i�g�=G<>H�h�A#X�AZEG<\AZIG<>P	H�P	N�IG:�C�=GI�AZH�i.ABEGiÛ¤ ì4¬�4 � IGC�EGL
NpEGCMf�g�C�H�^MK�rD<>H-X�C�EG=GC@i�Pq^�g�LJC�H-InNpEGC�f-g�C�H�^�K}��L@C�IG:�Pqi4[� C�w-I�r$j�C
m�EG<>C�æ�KUi�C�=G^MEG<cmDC�¤ ì4¬�4%ABH�i�:�P�jW<cI;<>=;^�P	LJ?�g�IGC�i�<>H�P�g�E;=GK�=GIGCML%[
V�CMI=7UmDClAFIGC�EGL%[�9;:�C%¤¦ «Z¡u4B«\ 65Å- £�§©hO¦¤ 46S@P	N>7J<cHvZâ<>=nIG:�C
H-g�LFmDC�E;P�N.Pq^M^�g�EGEGC�H�^�C�=bP�Nf7n<cHiZ � i�C�H�P	IGC�i�AB=J¹§B§ � 7�ñ�Z#�G�Gr-i�<>]
X-<>i�C�i�m-K�IG:�C#L%AZw-<>L%AZY;H-g�LSmDC�EFP�NbPq^�^�g�EGEGC�H�^MC�=@<>HhZ°P	N@ABH-K
IGC�EGL%[49;:4AZI�<>=�r

¤ 4 � 7�ñmZ#�"ô ¹§B§ � 7�ñmZ#�
L%ABw � ¹§B§ � 7xw\ñ�Z#� ; 7�w < Z 0 _

� P	IGCzIG:4AZI�AtIGC�EGL®<>=�Yc<>y�CMYcK@IGPF:4A7X�CSA;Y\ABEGh�C�EtIGCMEGL®NQEGC�f-g�C�H�^�K@<>H
Az=GL%ABY>Y�i�Pq^Mg�LJC�H-I;IG:4AZH�<>H`Abm�<>h�h	C�EzP	H�C-[

9;:�C�<cH-X�CMEG=GC�i�Pq^Mg�LJC�H-ItNQEGC�f-g�C�H�^�KUP�Ng7�rê¥5¬�4 � 7��Gr�jxAZ=;i�CMu�H�CMik<>H
s�CM^�IG<>P�H � [}9;:�Cx¤ ì.¬�4nP	N.A'IGC�EGLy7�jF[E�[I�[�A"NQE�AZh	LJC�H-IzZ#r�i�C�H�P	IGC�i
m-K(¤ ì.¬�4 � 7�ñ�Z#�Gr�<>=S¤ 4 � 7�ñmZ#�r{�¥5¬64 � 7-�G[� P�IGC�IG:.AZI;m-K#I�AZy-<>H�hlAzY>P�h
<>H%IG:�C�¥5¬�4�NGAZ^MIGP�E�r$IG:�CFP�X�C�E�AZY>Y4<>LJ?DP	EGI�AZH�^�C@P	N�IG:�Cl¤ 4�NGAB^�IGP�En<>H
¤ ì.¬64�<>=�<>H�^�EGCqAZ=GC�i4[

klas
49

klas
49

klas
49

klas
51

klas
49

klas
49

klas
49

a\HnP�g�E�=GK-=GIGC�L%rMC-AB^_:�I�ABhb:4AZ=�A4j�C�<>h�:-I�[}9;:�C'i�C�N7AZg�Y>I}j�C�<>h�:-I}<c= � [
� g�=GC�Eb^-AZH|LJPqi�<>NpK�IG:�Cnj�C�<>h	:�IzP�NbABH�K�I�AZh$[�9;:�Ck¢�§B§Å-¡@Å-¨ª¢�¤¦ B¬
Á' ¥5ï|B�¤�P�N"A�j�P	EGiUî�<>H%ABHURUT@Vlu�YcCJ}â<>="IG:�C;LFg�Y>IG<>?�Y><>^-AZIG<>P�H#P	N
IG:�C�j�C�<>h�:-IG=bP�NzAZY>Y4IG:�CnI�AZh	=�P�N'IG:�CnC�Y>C�LJC�H-IG=bP�N:} <cH|j;:�<>^_:%î
<>=tH�C�=GIGC�i4[}9;:.ABIt<>=�rqIG:�CSAZ^�^�g�LSg�Y\AZIGC�i�j�C�<>h	:�I�P�N}îW<c=�?�EGPqi�g�^�C�i
m-K`LFg�Y>IG<>?�Y>K-<cH�hWABYcYzIG:�Clj�C�<>h�:-IG=#P�NnIG:�ClI�AZh	=�P	NnC�Y>C�LJC�H-IG=#P�H
IG:�C�?.AZIG:�NpEGP�L{IG:�CnEGPqP	IzP	N:}ÞIGP#îS[�9;:�CFCMoDC�^�I�P�N'IG:�Cnj�C�<>h�:-I
P	NtI�AZh	=�P�H�IG:�CJ^�P	LJ?�g�I�AZIG<>P�H�P�N�¤ ì4¬�4|<>=�AB=nNpP	YcY>P�j;=�[� P�EnC-AB^_:
Pq^M^�g�EGEGC�H�^�C#P�NY7�<>HCZ#rê<cH�=GIGC-AZi�P�N;<>H�^�EGCqAZ=G<>H�h�¹§B§ � 7�ñ�Z#�tm-K � r
IG:�C�X�AZY>g�C"P�N4¹§B§ � 7�ñ�Z#�-<c=.<>H�^�EGC-AZ=GCMiSm-KxIG:�CxAB^�^�g�LFg�Y\ABIGC�iSj�C�<>h�:-I
P	Nf7�NQP�E�IG:.ABI;Pq^�^�g�EGEGCMH�^�C-[
9;:�CnX$ABY>g�CnP�N;¤ ì.¬�4 � 7�ñ~Z#��<>=�H�P�EGL|AZY><>��C�i�AZ=�NQP�Y>Y>P�j;=�[

î � 7�ñ�Z#�'»>ô ¤ ì4¬�4 � 7�ñmZ#�
F@� ö n ¤ ì.¬�4 � 7 w ñ�Z#� b

ÕêK�i�C�u�H�<cIG<>P	H.r�î � 7�ñmZ#��<c= � <>NY7#i�PqC�=FH�P�IkAB?�?DC-ABEF<>HCZ#[ß C
i�C�H�P	IGCkm-K\� IG:�C#=GC�ISP�NSAZY>Y;IG:�Cky�CMK�j�P�EGi�=lAB?�?DC-ABEG<cH�h�<>H�IG:�C
^MP�EG?�g�=�[4~xAB^_:kNpE�AZh	LJC�H-IJZÛ<>HlIG:�Cz^�P�EG?�g�=�<>=@AB=G=GPq^�<\AZIGC�i|j;<>IG:�A
X�C�^�IGP�E#� n P�N'=G<>��C ; � ; [� P	EzCqAZ^Z:|y�C�K-j�P	EGih7FP�N:�`r-IG:�C�X�C�^�IGP	E�&nl:.AB=FAZHlCMH�IGEGK\�&n � 7 � IG:.ABI;:�P	Yci�=bî � 7�ñ�Z#�G[
� P�E�C-AZ^Z:lIGP	?�<>^�àFrqj�Cni�C�u�H�C-� I IGPJmDCnIG:�CxNQP�Y>Y>P�j;<cH�h#X�C�^�IGP	E�[

� I � 7 � ô � <cNf7 < à á=� à"ä
¶ � <cNf7 < à�ã
� P�IG:�CMEGj;<c=GC

9;:�C�=G^�P	EGCth�<>X�CMHSIGPbIG:�C"NpE�ABh�LJC�H-IcZ�m�KzIG:�C�E�AZH�y�C�E�<>=.IG:�C"^�P	=G<cH�C
mDCMI6j�CMC�Hv� I AZH�i�� n [}9;:�C�X�AZY>g�C;P	NêIG:�<>=�^�P	=G<>H�C�<>=�?�EGP	?DP�EGIG<>P�H4AZY
IGP@IG:�CxNQP�Y>Y>P�j;<>H�hk=Gg�L%»

F ö	�
�&n � 7 � {��!I � 7 � ô F ö I

�&n � 7 � {��!I � 7 �
� P�IGC%IG:.ABI#IG:�C�AZmDP�X�C%C�f-g4AZY><>I6K�:�P�Y>i�=kmDC�^qAZg�=GCP� I � 7 � ô � <>N7��< àF[

6.4 Proximity Ranker
Lexical Affinitiesfor Text Retrieval9;:�C�<ci�C-A�mDC�:�<cH�iJIG:�C�?�EGP�w-<>LJ<>I6KFE�AZH�y�C�E'<>=�IGPng�=GCS¨ª Ô¥5§B¢�¨$¢���£�¥5í
¤¦¥p � � AZm�m�E�[�V � �DP�N�j�P	EGi�=�[�9;:�CbE�AZH�y�C�E�I�AZy�C�=�AZi�X$ABH-I�AZh�CbP�N�IG:�C
^MP�EGEGC�Y\AZIG<>P	H|mDC�I6j�C�C�H�j�P�EGi�=bIG:4AZIFAB?�?DC-ABEb<>H�Ab=G<>H�h	YcC�?�:�E�AZ=GC�<cH
Ab^�C�EGI�AZ<>Hl?�EGP�w�<>LJ<>I\K�[

9;:�C�H�P�IG<>P�HWP	N�YcCMw�<>^-ABY�AZéJH�<>IG<cCM=�NpP	E�IGC�w-I�EGC�IGEG<>C�X�AZYxjxAZ=�u�EG=GI
<>H-IGEGPqi�g�^�C�iWm-K½s�AZg�=G=Gg�EGC �>��¸Z� [�V;AZIGCME�r�<>I�jnAZ=�i�C�X�CMYcP	?DC�iWm-K
T|A	AZEGC�y�AZH�iÈs�L%AZi��GA �c�B��� rê<>H�IG:�C@^MP�H-IGC�w-IxP�N�<>H�NpP	EGL%AZIG<>P	H�EGC�]
IGEG<>C�X�AZY\[

~"=G=GC�H-IG<\AZY>Y>K�r"P	g�E@E�ABH�y�CME@j�P	EGy-=%AZ=JNQP�Y>Y>P�j;=�[e��<>X�C�HeAUIGP�?�<c^kà
^MP�H-I�AZ<>H�<>H�hnIG:�C;IGC�EGLJ= � a ñ _2_2_ ñ ��� r�IG:�C;E�ABH�y�C�E'^�EGCqAZIGC�=�A�Y><c=GI"IG:.ABI^MP�H-I�AZ<>H�=zABYcY�?DP�=G=G<>m�YcC�?4AZ<>EG='P�N$i�<c=GIG<>H�^�I.j�P	EGi�= � � ð\ñ � ò��Gr=Gg�^Z:@IG:.ABI� ðY� � ò � j�P	EGi�=%ABEGCl^�P�L@?.AZEGCMi�Y>C�w-<>^�P�h	E�AZ?�:�<>^-AZY>Y>K}�G[� P�EJC-AB^_:
NQE�AZh	LJC�H-I^Z#r$j;:�C�H�C�X�C�EzIG:�C@E�ABH�y�CMExu�H�i�=�<>HvZABH�Pq^�^Mg�EGEGC�H�^�C
P	NbAz?.AB<>E � � ð×ñ � ò���<>H`Az=G<>H�h	YcCn=GCMH�IGCMH�^�C-rqIG:�C�=G^�P�EGC�h�<>X�CMH�IGP]ZÛ<>=
<>H�^�EGC-AZ=GCMi.[b±�<>oDC�EGC�H-I;<>H�^�EGC-AB=G<>H�hU?DP�Y><>^�<>C�=b^-AZH�mDCxg�=GC�i4[

Lexical Affinitiesfor XML Retrieval9;:�C�NpP�Y>Y>P�j;<>H�h�C�w-?�Y\AZ<>H�=�:�P�j`V � EGC�IGEG<>C�X�AZY�<c=�AZi4AZ?�IGC�i@IGPnRJT@V;r
<>Hlh	C�H�CME�AZY\r�ABH�i�IGP@P�g�E�=GK-=GIGC�L%rq<>Hl?.ABEGIG<>^�g�Y\AZE�[

9;j�PSj�P	EGi�=;IG:.ABI�AZ?�?DC-AZE�X�C�EGKJN7AZE;NpEGP	LâC-AB^_:�P�IG:�C�Et=G:�P	g�Y>i�H�P�I
mDC;^�P	H�=G<>i�C�EGCMi%AZ=zA�V � [� L%ABw�<>L%ABY�i�<>=GI�AZH�^MC;LSg�=GI"mDC�i�C�u�H�C�i4r
=Gg�^Z:�IG:4AZI;j;:�C�H�C�w-^�CMC�i�C�i4r�IG:�CxI\j�P@j�P�EGi�=@ABEGCnH�P	I;^�P�H�=G<ci�C�EGC�i
IGP�mDC�^�P�EGEGC�Y\ABIGC�i.[;T|ABEGIG<cH �>���Z� =G:�P�j�CMi@IG:.ABI��d�x��P�N$V � · =.EGC�Y\AZIGC
j�P	EGi�=�IG:.ABI�ABEGC|=GC�?.ABE�AZIGC�iWm-KeAZI#LJP	=GIku�X�Clj�P�EGi�=�j;<>IG:�<>H�A
=G<>H�h	YcCz=GC�H-IGC�H�^MC-[tT|A�ABEGC�y(AZH�i�s�L%ABi��GA �>�Z�	� g�=GC�i#IG:�<c="EGC�=Gg�YcI�m�K
=GC-ABEG^_:�<cH�h|NpP	ES^�P]ÆPq^�^�g�EGEGCMH�^�C�=S<>H�A@=GY><ci�<>H�h|j;<>H�i�P�j � j;<>IG:�<>H�A
=G<>H�h	YcCk=GC�H-IGC�H�^MC-��P	N�=G<c�MC[�	[ß C#:.A7X�C�AZi4AZ?�IGCMi�IG:�<>=@EGC�=Gg�Y>ISIGP
IG:�C�^�P�H-IGC�w-I;P�N.RJT@VWAB=zC�w-?�Y6AB<>H�C�ikmDC�Y>P�jF[

a6H(RUT@Vtr�=GIGEGg�^�IGg�EGC%AZH�i�^MP�H-IGC�H-IUABEGCJ^�P�LFm�<>H�C�i.[�±�g�CSIGPkIG:�<>=
Y\AZ^Zy|P�N"=GC�?.ABE�AZIG<>P�H�mDC�I6j�C�C�H%=GIGEGg�^MIGg�EGC�AZH�i%^�P	H-IGC�H-I�r.AZH(RUT@V
u�Y>C�^-AZH`:4AGX�C�AJY>P�h	<c^qAZYbg�H�<>IFP�NbIGC�w-I@<>H`j;:�<>^Z:�IG:�CkIGCMw�IFi�PqCM=
H�P	ISAZ?�?DCqAZE�<>H�Az=GC�H-IGC�H�^�Cni�CMYc<>LJ<>IGC�i�m�K#NQg�Y>Y}=GIGP	?�=�r-m�g�I�E�AZIG:�CME
i�CMYc<>LJ<>IGC�i@m�K�I�ABh�=�[� P	E"CMw�ABLJ?�Y>C-r�^�P�H�=G<>i�C�E'IG:�C�NpP�Y>Y>P�j;<>H�hFRUT@V
NpE�ABh�LJCMH�I�[

�
�q�	�� ���Ú3�� ���9��
q�M�$���-���- � � Ù
��-�	�� ��-Ú�
	+�+���,q���	Ú���,(����,�����,����	�-
���, � Ù
	+�+���,�����Ú
9;:�C�AZm�=GCMH�^�C|P	N#A�NQg�Y>Yz=GIGP	?�mDC�I\j�C�CMH ß AB=G:�<>H�h	IGP�HÛAZH�i � CMj
ë_C�EG=GCMKls�I�AZIGCt^�P	g�Y>i@mDC�LJ<>=GI�AZy�C�H�Y>KF<>H-IGC�EG?�EGC�IGC�i�AZ=zA"^-AB=GC;j;:�C�EGC
ß AB=G:�<>H�h	IGP�H`s�I�AZIGCn<>=SAzV � [-a\H�P	EGi�C�E�IGP%A7X�P	<cik=Gg�^Z:lLJ<>=GI�AZy�C�=�r
j�C#^�P	H�=G<>i�CME|A@^�Y>P�=G<>H�h�I�ABh|NpP�Y>Y>P�j�C�i�m-KÈABH�P�?DC�H�<>H�h|I�AZh�AB=lA
i�CMYc<>LJ<>IGC�EbP�N;AzY>P�h�<>^-ABY4g�H�<>I�[

ß :�C�H�Y>PqP	y�<>H�h�NpP	EUY>C�w-<c^qAZYSAZéJH�<>IG<cCM=U<cH³A�IGP	?�<>^ � <\[C-[>r�f-g�CMEGK��Gr
=G?DC�^�<\ABYêAZIGIGC�H-IG<>P�H�LFg�=GI�mDC"?.AB<>iFIGP�IG:�C"=GIGEGg�^�IGg�EGC"P�N�IG:�C'IGP	?�<>^�<>H
P�EGi�C�E;IGP�AGX�P�<>i�ABH�ABIGIGC�LJ?�ItIGP@?4AZ<>Etj�P	EGi�=;IG:4AZIti�PSH�P�I�AB?�?DC-ABE
g�H�i�C�E�IG:�Cz=�AZLJCzI�AZhD[� P	Etj�P	EGi�=tIG:4AZI�ABEGC�H�P�Itg�H�i�CME�IG:�Cz=�AZLJC
I�AZh$r}AbV � =G:�P�g�Y>i�H�P	I;mDCx^�EGC-ABIGC�i.[� P	E;C�w}AZLJ?�Y>C-r�^�P�H�=G<ci�C�E�IG:�C
NpP	Y>YcP�j;<>H�h#IGP	?�<>^nIG<>IGYcCq[

Ù�Ù
�������2�8�, Ù�Ù ��� Ò
ÖB
��� �-�.Ö-3 Ù�Ù ����'� Ë\Ê �� 	���x��
���, Ê
���2��$���-,q2��	�-�-,�Í_Ø
 ���
�� �q�.Ö�3 Ù�Ù
�$�}� Ë6Ê �	 	���d��
���, Ê
���2�������,q2����-��,�Í_Ø�Ø

���+�
�� ��-�.Ö�3	� Ë�� +��������������-�-,	+ � ��,��Í_Ø�Ó

a6HWIG:�<>=lIGP�?�<c^qr�IG:�C�?4AZ<>EG=eÎ¦=GP	NpI\jnAZEGCWAZEG^Z:�<>IGC�^�IGg�EGC�ÏÛABH�i Î5i�<>=G]
IGEG<>m�g�IGC�i ß C�m�Ï�=G:�P�g�Yci�mDC�^�P�H�=G<ci�C�EGC�iåAZ=lV � · =�[®9;:�C�?.AB<>EG=
Î¦i�<>=GIGEG<cm�g�IGC�i�ABEG^_:�<>IGC�^�IGg�EGCMÏÈABH�iåÎ¦=GP	NpI\jnAZEGC ß C�m�Ï|=G:�P	g�Y>i`H�P�I
mDCn^�P	H�=G<>i�C�EGCMi`AZ=�V � · =�[

� P	E4j�P	EGi�=.IG:.ABI;AB?�?DC-ABE4g�H�i�C�E}IG:�C�=�ABLJCtI�ABhDrm�g�I}=GP�LJC�P�N�IG:�C�L
<>H%f�g�P�I�ABIG<cP	H%L%AZEGy-=�r�IG:�C�V � · =�<>H%f-g�P�I�ABIG<>P�H%L%AZEGy-=JAZEGC@h	<>X�C�H
AzY\AZEGh	C�Ebj�C�<>h�:-I�[� P	EbCMw�ABLJ?�Y>C-rq^�P	H�=G<>i�C�E�IG:�CnNpP�Y>Y>P�j;<>H�h#IGP�?�<c^q[

Ù
�������2�8�, Ò
�� �q�.Ö�3 Ù �� Ù
�$�ê�
Ë|� �M���- �����
����� �e��,�������,�&-
�8 ��� +���������
�8W8q�M�-��
����	,q� � Í_Ø�Ó

9;:�C%?4AZ<>EG=�Î5<>H�NpP	EGL%AZIG<>P	H�EGCMIGEG<cCMX$ABY6r Ï°Î5i�<>h�<>I�ABYxY><cm�E�AZEG<>C�=�r Ï Î¦<>H�]
NpP	EGL%AZIG<>P	H�i�<>h	<cI�ABY\r ÏâÎ5<cH�NpP	EGL%AZIG<>P�H�Y><cm�E�AZEG<>C�=�r ÏâÎ¦EGC�IGEG<>C�X�AZY;i�<>h�<>]
I�AZY>ÏlAZH�iWÎ¦i�<>h�<>I�AZY�Y><>m�E�AZEG<>C�=GÏ|AZEGC#ABYcY�^�P	H�=G<>i�CMEGC�i�AB=;V � · =�[�èzP�j;]
C�X�CME�rêIG:�C@Pq^�^�g�EGEGCMH�^�C�=FP�N�Î5<>H�NpP	EGL%AZIG<>P	H�EGC�IGEG<>C�X$ABY>Ï|P�E�Î¦i�<ch	<>I�AZY
Y><>m�E�AZEG<>C�=GÏ�<>H`A�NpE�ABh�LJCMH�Ibh�CMIJA�Y\AZEGh	C�E�j�C�<>h�:-IbIG:.AZH�IG:�C�Pq^�^�g�EG]
EGC�H�^�C�=�P�N@Î5EGC�IGEG<>C�X$ABY}i�<>h�<>I�AZY>ÏUP�E|Î¦i�<>h�<>I�AZY}Yc<>m�E�AZEG<>C�=�[Ï

6.5 Similarity Ranker9;:�CU<>i�C-ASmDC�:�<cH�i�IG:�CU=G<cL@<cY\ABEG<cI\K�E�ABH�y�C�En<>=FIG:.ABIn<cN;I\j�Plj�P�EGi�=
AZ?�?DC-AZEG=�X�C�EGK�NQEGC�f-g�C�H-IGY>K�<>HW?�EGP�w-<>LJ<>I6K�<cHWIG:�C�^MP�EG?�g�=�r�IG:�C�H
IG:�CMK�=G:�P�g�Y>i�mDC#^�P	H�=G<>i�C�EGCMi�AZ=@EGCMY6ABIGC�i�^�P	H�^�C�?�IG=�[� P�EFC�w}AZL@]
?�Y>C-r�<>Ntj�CJu�H�i(IG:.ABI�ÎZs!��V}Ï`AZH�i¯Î5i.AZI�ABm.AB=GC�=GÏ�AZEGCJI\j�Plj�P�EGi�=
IG:.ABI�NQEGC�f-g�C�H-IGY>K|AB?�?DC-ABE�IGP	h�C�IG:�C�E�r�IG:�CMHUj�C�L%A7K@^�P	H�^�Y>g�i�CbIG:.AZI

klas
50

klas
50

klas
50

klas
52

klas
50

klas
50

klas
50

IG:�CSI\j�P#j�P	EGi�=JAZEGC@^MYcP	=GC�Y>KlEGC�Y\AZIGCMi.[b9;:�C�EGC�NQP�EGC-r$j;:�CMH(Y>PqP	y�<>H�h
NQP�EFi�Pq^�g�LJC�H-IG=�AZmDP	g�Ini4AZI�AZm4AZ=GC�=�rêj�CUL%A7K�AZ=�j�CMYcY�=GC-AZEG^Z:�NQP�E
i�Pq^�g�L@C�H-IG=@ABmDP�g�IFs!��V;[
V}C�I=ZÞmDC�A�NQE�AZh�L@C�H-IkP	N�A�i�Pq^�g�LJC�H-I ó [�Z I i�CMH�P�IGCM=kIG:�C
IGCMEGLJ=`AZ?�?DC-AZEG<>H�h�C�<>IG:�C�El<>H9Z#r�<>H�IG:�C(IG<cIGY>C(P�N ó P�E�<cH�IG:�C
ABm�=GIGE�AB^�I�P�N ó [� =;g�=Gg.AZY\r-àWi�C�H�P�IGC�=�IG:�C�IGC�EGLJ=;<>HlIG:�C�IG<cIGY>CnP	N
A�h�<>X�C�H(IGP�?�<>^-[x9;:�CJ=G<>LJ<>Y\AZEG<>I6K%E�ABH�y�C�E�^�P�LJ?�g�IGC�=�IG:�C@=G^MP�EGCJP	NZ½jF[E�[I�[�IG:�Cxh�<>X�C�HkIGP�?�<c^�à¯AB^�^�P�EGi�<>H�hUIGPJIG:�CxNpP	EGLSg�Y6A

F ö I ú ö nd�
� � î � �~�	� ��� ó � 7�ñ6î@�G�

j;:�C�EGC �~�	� <c=}IG:�C'I�AZh�j;<>IG:nIG:�C'Y\AZEGh	C�=GI4j�C�<>h�:-ItABLJP�H�h�IG:�P�=GC"^�P	H�]
I�AB<>H�<>H�h�îS["9;:�C�=G<>LJ<>Y\AZEG<>I6K�E�AZH�y�C�E�g�=GC�=bIG:�Cny�CMK�j�P�EGi�]×i�<>=GI�AZH�^MC
<>H�i�C�wJ<>H#P�EGi�C�EtIGPFh�C�I�IG:�CbX$ABYcg�CzP	N}IG:�Czi�<>=GI�AZH�^MC ó � 7�ñ6î@�G[�9;:�C
I�ABhU<>H�i�CMw�<>=�g�=GCMi�<>HlP�EGi�C�E�IGP@h	C�I�IG:�CnX�AZY>g�CxP	N � î � �~�	� �G[
9;:�<>=�E�AZH�y�C�Eb^-AZH%mDC�=GC�C�H�AB=JABH�ABg�IGP	L%AZIG<>^Ff�g�C�EGK�EGC�u�H�C�LJC�H-I�[
a\I�i�<>oDC�EG=nNpEGP	LÞIG:�CJj�P�EGy(P�NFë_<>H�h�AZH�iÈÄ�EGP�NQI � � � r}=G<>H�^�C#j�CUi�P
H�P�IUg�=GC�A�?�EGP	m.ABm�<>Y><c=GIG<>^�AZ?�?�EGP$AZ^Z:.[�a\I%AZY>=GP�i�<>oDC�EG=UNQEGP�L IG:�C
j�P�EGy�P�N�Ä;ABEGLJC�YêC�IFAZY\[� � � r�=G<>H�^MCxP�g�E;EGC�u�H�C�LJC�H-Itg�=GC�=SAbh�Y>P	m.AZY
ABH.ABYcK-=G<>=�P�N�IG:�C|ÁzB�¹�¨ª @^�P�EG?�g�=�AZH�iÈAB=G=G<>h�H�=�j�C�<>h�:-IG=nIGP�ABYcY'IG:�C
^MP�]ÆPq^�^�g�EGEGC�H�^�CM=�<>HJIG:�C;NpE�AZh	LJC�H-I�r	E�ABIG:�C�E'IG:.ABHJ�pg�=GI'IGP�A�Y><cL@<cIGCMi
H-g�LSmDC�E;P	N4V � · =�[

6.6 Merging the Resultsof the Rankers~�AZ^Z:%NpE�ABh�LJC�H-Ib<>=�h�<>X�CMH�A�=G^�P�EGCFm-KkC-AB^_:|E�ABH�y�CME�[�9;:�C�P�X�C�E�AZY>Y
=G^MP�EGC�P	N4A.EGC�=Gg�YcItAZ^�^MP�EGi�<>H�h�IGPSA4E�AZH�y�C�E�<>=4IG:�C�=Gg�LeP	N�IG:�C�=G^�P	EGC�=
h	<>X�C�H@m-KxIG:�C�E�ABH�y�C�E.IGPbIG:�C�i�<>oDC�EGC�H-I4NQE�AZh�L@C�H-IG=.^�P�LJ?DP	=G<>H�hxIG:�C
EGCM=Gg�Y>I�[

� ^MEGg�^�<\AZY�<c=G=Gg�Ck<>=FIGP%i�C�IGC�EGL@<cH�C#IG:�CUEGC�Y\AZIG<>X�C�j�CM<ch	:-I@P�N�C-AB^_:
E�ABH�y�CME4<>H@IG:�C�u�H4AZYq?�:4AZ=GCtP	N�LJCMEGh�<>H�hzIG:�C�EGCM=Gg�Y>IG=.P�N�IG:�C�X�AZEG<>P	g�=
E�ABH�y�CME�[z9�AZ^Zy-Y><cH�hkIG:�<>=x<>=G=Gg�C@EGCMf�g�<>EGC�=�C�w-IGC�H�=G<>X�CSCMw�?DCMEG<cL@C�H-I�AZ]
IG<>P	H�j;<>IG:�IG:�C�=GK-=GIGC�L%[Ws�P�N7AZE�r�P	H�Y>K�A#EGg�i�<>LJCMH�I�ABEGK�LJC�EGh	C�E
:4AZ=�mDC�C�H�<cL@?�Y>C�LJC�H-IGC�i�AZH�il<>I;<c=bm.AB=GC�i�P	HlIG:�C�=G<cL@?�Y>C�<ci�C-AzP	N
L@C�EGh�<>H�h%IG:�C�EGCM=Gg�Y>IG=Sm-K(Y>C�w-<c^MP�h�E�AB?�:�<c^qAZY>Y>K�=GP�EGIG<>H�h%IG:�C#=G^�P	EGC�=
P	N}IG:�C�u�X�C�E�AZH�y�C�EG=�[�9;:�CzEGC�Y\ABIG<cX�C�?DP�=G<>IG<>P�H�=tP�N�IG:�Czu�X�C�E�AZH�y�C�EG=
<>H|IG:�CnYcCMw�<>^�P	h�E�AB?�:�<>^F=GP�EGIb<>=zh	<cX�C�H|<>H`A�^�P�H�u�h	g�E�AZIG<>P	H|u�Y>CkAZH�i
^qAZHlmDCnC-AB=G<>YcK�LJPqi�<cu�C�ilm-K#IG:�Cxg�=GC�E�IG:�EGP	g�h�:�Azm�EGP�j;=GC�E�[

ß C�:.A7X�C�C�w-?DC�EG<>LJC�H-IGC�ilj;<>IG:%i�<>oDC�EGCMH�IbP�EGi�C�EG=�P	N'IG:�C�E�AZH�y�C�EG=�Ç
<>H�ABY>Y�P�NnIG:�C�L%r�IG:�C|j�P�EGi�]ÆH�g�LSmDCMEUE�AZH�y�C�E#jnAZ=�u�EG=GI�ABH�i�<>i�N
E�ABH�y�CME;jnAZ=�=GC�^MP�H�i4[�d'C�=Gg�Y>IG=;j�C�EGCn?�EGPqi�g�^MC�ikNQP�E�IG:�C�NpP�Y>Y>P�j;<>H�h
IG:�EGC�CnP�EGi�C�EG=�P�N4IG:�CnE�AZH�y�C�EG=�»

� ß P	EGi � g�LFmDC�E�r�a6i�N7r}�DEGP�w-<cL@<cI\K�r}s�<>LJ<>Y6ABEG<>I6K�rq9;Np]Æa6i�NG[
� ß P	EGi � g�LFmDC�E�r�a6i�N7r}s�<>LJ<>Y6ABEG<>I6K�rê��EGP�w-<>LJ<>I6K�rq9;Np]Æa6i�NG[
� ß P	EGi � g�LFmDC�E�r�a6i�N7r-9;NQ]Æa6i�N7r}�DEGP�w-<cL@<cI\K�r}s�<>LJ<>Y6ABEG<>I6K�[

ß C�AZY>jnA7K-=S^Z:�P	=GCkj�P�EGi�H-g�LFmDC�E�ABH�i�<>i�N;IGP|mDCUIG:�C�u�EG=GIkAZH�i
=GCM^�P�H�ilE�AZH�y�C�EG=�r�=G<>H�^�CxCqAZEGY>KkCMw�?DCMEG<cL@C�H-IG=tj;<>IG:lIG:�Cz=GK�=GIGCMLâ<>H�]
i�<>^-AZIGC�i@IG:.AZI'<>I'hDA7X�C;IG:�C;mDC�=GI'EGC�=Gg�Y>IG=�[W9;:�C;?�EGP�w-<>LJ<>I6KFE�AZH�y�C�E�r
IG:�CU=G<>LJ<>Y6ABEG<>I6K�E�ABH�y�C�EkABH�i�IG:�C�IGNQ]Æ<ci�NtE�AZH�y�C�EFj�C�EGC#C�=G=GCMH�IG<\ABYcY>K
g�=GC�ilIGPJIGg�H�CxIG:�CxE�AZH�y-<cH�h@P	N.IG:�Cxu�EG=GIbI\j�PJE�ABH�y�CMEG=�[

9;:�C@NQP�Y>Y>P�j;<>H�h|I6j�P�EGC�=GIGEG<>^�IG<>P�H�=�j�C�EGClAZ?�?�Y><cCMi�IGP�IG:�CS^�EGC-AZIG<>P	H
P	N�IG:�C�RUT@V`u�Y>C�IG:.ABI�^�P	H�I�AB<>H�=�IG:�C�u�H.ABY4E�AZH�y-<cH�hUP�N"IG:�C�NpE�ABh�]
L@C�H-IG=�[� <>EG=GI�r}IG:�CJu�H.ABY"EGCM=Gg�Y>In<>=FY><>LJ<>IGC�i�IGP � � �	� NpE�ABh�LJCMH�IG=�[
s�C�^�P	H�i�Y>K�rxABIkL@P�=GIv��NpE�ABh�LJC�H-IG=�NpEGP	L ABH-K�=G<>H�h�Y>C%i�Pq^�g�LJC�H-I

^�P	g�Y>i�AZ?�?DC-AZE�<>HlIG:�Cnu�H.ABY�EGC�=Gg�YcI�[.9;:�CM=GCFY><>LJ<>I�AZIG<>P	H�=�^MP�g�Y>i|mDC
C-AB=G<cY>KkLJPqi�<>u�CMi�m-K#IG:�Cxg�=GC�E�[

7. CONCLUSION AND FUTURE WORK9;:�C�L%AB<>H(^MP�H-IGEG<>m�g�IG<>P	H|P�N'P�g�Ezj�P�EGy�<>=JA�i�C�=G<>h�H%P	N�ABH|C�w-IGC�H�]
=G<>m�Y>CF=GK�=GIGCML°IG:4AZIb<c=z^-AZ?4AZm�YcCSP�N'^�P	LSm�<cH�<>H�h#i�<>oDC�EGC�H-IbI6K-?DC�=bP�N
E�AZH�y�C�EG=t<>H�A�L|AZH�H�C�EtIG:4AZItI�ABy�C�=t<>H-IGPlAB^�^�P	g�H-ItmDP�IG:#IG:�C�=GIGEGg�^M]
IGg�EGCkABH�i|IG:�C�^�P	H-IGC�H-IzP	N"IG:�C�i�Pq^�g�LJC�H-IG=�[�94E�AZi�<>IG<cP	H.ABYbAZ=bj�C�Y>Y
AZ=�H�C�j�<>H�NQP�EGL%ABIG<cP	H�]ÆEGC�IGEG<>C�X�AZY$IGCM^_:�H�<>f-g�C�='^-ABHUmDCb<>H�^�P�EG?DP	E�AZIGC�i
<>H-IGPxP�g�E.=GK�=GIGCML%r�ABH�i@IG:�CtE�AZH�y-<cH�hx=G^�P	EGC;P�N$C-AB^_:@IGC�^_:�H�<>f-g�C�^-AZH
mDCJC-AB=G<>YcK�LJPqi�<>u�C�i�IGPl<>H�^�Y>g�i�C@IG:�CJj�C�<>h�:-IG=kAZ=G=G<>h�H�C�i�IGP�I�ABh�=�[
² g�E'=GK-=GIGC�L�<>=nABYc=GP�C�w-IGC�H�=G<>m�Y>C�<cHUIG:�C�=GC�H�=GC�IG:.ABI�<>I"^-AZHUmDC�C-AB=G]
<>Y>K�ABi.AB?�IGC�i�IGP@^Z:.ABH�h�CM=;<cH�IG:�CzNpP	EGL%AZY}=GK�H-I�ABwJP�N4IG<>IGY>C�=�r�i�g�C�IGP
IG:�C�<>LJ?�YcCMLJC�H-I�AZIG<>P�HUP	N�IG:�C;IGP�?�<>^b?�EGPq^�C�=G=GP	E�m-KSL@C-AZH�=�P	NêRJs�Vt[

9;j�P|L|A��QP�E@<>=G=Gg�C�=SEGCML%AZ<>H�NpP	ESNQg�IGg�EGCUj�P�EGy}[² H�CJ<>=F<cL@?�EGP�X-]
<>H�h%IG:�C#C�é@^�<>C�H�^�K�P�NbIG:�C#=GK-=GIGC�L%[l9;:�C�=GC�^�P	H�i`<>=@<>LJ?�EGP�X-<>H�h
IG:�C#f-g.ABY><cI\K � <\[C-[>r.EGCM^-AZY>YFAZH�i`?�EGC�^�<>=G<>P�H4�bP	NbIG:�CkEGCM=Gg�Y>IG=�[%9;:�<>=
EGC�f-g�<>EGC�=�C�w-IGC�H�=G<>X�CbC�w-?DC�EG<>LJC�H-I�ABIG<cP	H#j;<cIG:#IG:�Cz^�g�EGEGC�H-I�E�ABH�y�C�EG=
AZ=�j�C�Y>YbAZ=�j;<cIG:%H�C�jÛP�H�C�=�[ba\H|?.ABEGIG<c^Mg�Y\AZE�r$j�CS?�Y\AZH%IGP#LJPqi�<cNQK
IG:�C�LJCMEGh�C�Ez=GPUIG:.AZIb<>Izj;<>Y>Y4g�=GClA�=G<>H�h	Y>CSNQP�EGLFg�Y\AxIGP(AZh�h	EGC�hDABIGC
IG:�C�=G^�P�EGC�=�P�N�IG:�ClX�AZEG<>P�g�=#E�AZH�y�C�EG=�r�E�AZIG:�C�E#IG:.ABH�=GP�EGIG<>H�h�IG:�C
=G^�P	EGC�=@Y>C�w-<>^�P�h	E�AZ?�:�<>^-AZY>Y>K�[l94P�jnABEGi�=FIG:�<>=SCMH�i.rêNpg�EGIG:�C�EFC�w-?DC�EG<>]
LJC�H-I�ABIG<cP	H�<>=nH�CMC�i�C�i%<>H�P	EGi�C�E�IGP�u�H�i%IG:�C@P	?�IG<>L%ABY�j�C�<>h�:-InP�N
C-AB^_:lE�ABH�y�CME;EGC�Y\AZIG<>X�CnIGPJIG:�CnP�IG:�CME;E�AZH�y�C�EG=�[

8. REFERENCES�>�B� �-���	Ìr� Ù�Ù �3�3��3Æ�� � ��-8�,.372� M� [
� ¾ � dz[�ÕtABC��-AZ]���AZIGC�=@AZH�i�Õt[}d'<>mDC�<>EGP] � C�IGPD[��l¹¬� «Z£ £�4B¹�«Z¡@¢�¤¦¥5¹�£�¡" ¤¦«_¥5 ¿¢�¨ª[� Ä;TÞ��EGC�=G=�r � �	����[
�>¸B� �n[}ÕtAB:�Y>P�IG<\A	[� C�K-j�P	EGi�=GC-ABEG^_:�<cH�h(AZH�i�m�EGP�j;=G<>H�hU<>H
i.AZI�ABm.AB=GC�=zg�=G<>H�hJm4AZH�y-=�[�a6H �¢�£G¤¥¢ ¹�£�4B «\ £�§B r ¾ ��� ¾ [

� �	� s�[êÕ}EG<>H`AZH�i�V;[ê�.AZh	C-[�9;:�C�AZH4AZIGP�LFK#P�NbAzY\ABEGh�C�]Æ=G^-ABYcC
:�K-?DC�EGIGCMw�IGg4AZY ß C�m�=GC-ABEG^_:�C�H�h	<cH�C-[¢ ¹�¡bº�Å-¤¦ «^¦z ¤¦Á'¹�«ZÀ�
¢�£�¬ �§!£ ¦ § ©��B¤¦ ¡@�Br ¸B� � �] � �G» �B�D�@¨D���	� r � �	�d�	[

� � � ±x[}Ä;ABEGLJC�Y\r�~�[� AZEG^Z:�<\r��U[ê��C�IGEGg�=G:�y$A	rêABH�i � [ês�P�oDCME�[
� g�IGP	L%AZIG<>^nf-g�CMEGKUEGC�u�H�C�LJC�H-I;g�=G<>H�hJY>C�w-<c^qAZY;ABéJH�<>IG<>C�=
j;<cIG:�L%AZw-<>L%AZYê<>H�NQP�EGL%ABIG<cP	H%hDAZ<>H4[-a\HC©"«6¹§B B Z¬�¥5£�ï��¹�4z¤�B� U3ª�¤�B�¢�£�£�Å�¢�¨�¥5£�¤¦ «_£�¢�¤¦¥5¹�£�¢�¨0« ¢ � §! �¬` ¡e§B¹�£�4B «\ £�§B U¹�£¡� �B B¢�«6§|B�¢�£�¬�¬� ¿ ¨ª¹_º�¡S £�¤t¥p£|¥5£�4B¹�«_¡S¢�¤¦¥5¹�£|«\ ¤¦«_¥5 ¿¢�¨ªÂU33V�ímU3®3¯�r�9�AZLJ?DCMEGC-r � <>H�Y6ABH�i4r}ë_g�H�C ¾ ��� ¾ [

�>�B� s�[êÄ�P�:�CMH.rêë�[}T|ABLJP�g4r��J[� ABH��-A	r�ABH�i°�J[}s�AZh	<cX}[
RUs�~�AZEG^Z:.» � =GC�L%ABH�IG<>^n=GC-ABEG^_:|CMH�h�<>H�CnNpP�E�RJT@V;[qa6HC©"«6¹§|NU3¯3¯3V\±z² £G³9 £�¤¦ «Z£�¢�¤¦¥p¹�£�¢�¨ ¢ ¹�£�4G «6 £�§B J¹�£P±$ «Z©%²$¢�«6ï £ ¢�¤¦¢3XB¢��B �Br4Õ}CMEGYc<>H � ��C�EGL|AZH-K}�Gr ¾ ���$¸ [

�>�B� V;[ê��g�PDr � [ês�:.ABPDrêÄ;[�Õ}P	IGC�X}r}ABH�i
ë�[}s�:.ABH�LFg�hDAB=Gg�H�i.AZE�ABL%[qRUd ����� »DdbAZH�y�C�i�y�C�K-j�P	EGi
=GC-AZEG^Z:lP�X�C�E�RUT@V�i�Pq^�g�LJC�H-IG=�[qa6HC©"«6¹§|N:U3¯3¯dV=« ¢ �§! �¬ �µ´ £� £�¤¦ «Z£�¢�¤¦¥5¹�£�¢�¨ ¢ ¹�£�4B «\ £�§B J¹�£��l¢�£�¢�ï ¡S £�¤t¹�4£ ¢�¤¦¢�r}s�ABH�±�<>C�h	P � Ä;AZY><>NpP�EGH�<\A��Gr4ë_g�H�C ¾ ���D¸ [

� � � �U[�ë_<>H�h(ABH�i ß [}Ä�EGP	NpI�[� H�AB=G=GPq^�<\AZIG<>P�H%IG:�CM=�AZg�EGg�=�NpP�E
<cH�NpP	EGL%AZIG<>P�H|EGCMIGEG<cCMX$ABY6[-a6H[©�«\¹§|N�¹�4f¡ «>´�ím®3W�ÂzW�¤�B £�¤¦ «Z£�¢�¤¦¥5¹�£�¢�¨ ¢ ¹�£�4B «\ £�§B ·¶�¡" B§|B� «6§|B� U¬:¸ £�4B¹�«_¡S¢�¤¦¥5¹�£
¢��B�Z¥p�Z¤¦ B zº�¢�«°´"«6¬�¥5£�¢�¤¦ Å-«3¹ZÂ,Q3W3º�í�Q3ºd¯�r � C�j���P	EGy � � �U�Gr
� ��� � [

� � � �n[� AB�-AZ<\r�T|[qV;ABY>L%AZ=�r4ABH�i�s�[êT|AZY><>y�[qa6H�C�w}· �D¸ h	g�<>i�C�Y><>H�CM=
NpP�E�IGP	?�<>^ni�C�X�C�Y>P�?�L@C�H-I�r}T|A7K ¾ �	�D¸ [

klas
51

klas
51

klas
51

klas
53

klas
51

klas
51

klas
51

�>�B��� �U[�T|A	AZEGC�y�AZH�i � [�s�L|AZi��7A�[� g�Y>YDIGC�w-It<>H�i�C�w-<>H�hSm.AZ=GCMi�P�H
Y>C�w-<>^-AZY}EGC�Y\AZIG<>P�H�=�» � H�AZ?�?�Y><>^-AZIG<>P	H.»�s�P	NpI6jxAZEGC�Y><>m�E�AZEG<>C�=�[�a6H©"«6¹§B B Z¬�¥5£�ï��¹�4z¤�B� #QdU�¤�B=«;£�£�Å-¢�¨ £�¤¦ «Z£�¢�¤¦¥5¹�£�¢�¨o« ¢ �§! �¬: ¡ ¢ ¹�£(4B «6 £�§Z @¹�£�¡� �B B¢�«6§|Bk¢�£�¬ £ ¿ ¨ª¹Zº�¡@ £�¤t¥5£ £�4G¹�«_¡S¢�¤¦¥5¹�£�¡" ¤¦«_¥p ¿¢�¨ªÂ`Qd3®�ímU3¯3º�r}Ä;AZLFm�EG<>i�h	C-r�T � r}ë_g�H�C
� �x���	[

�>�	�Z� ß [êT|AZEGIG<>H.r}Õt[� Y\r}ABH�i��ê[qX�AZH�s�IGC�EGy�C�H-m�g�EGhD[² HkIG:�C
?�EGPq^MC�=G=G<>H�hUP�NbAbIGC�w-I;^�P�EG?�g�=�»�NpEGP	L´IGC�w-IGg.AZY�i4AZI�AzIGP
Y>C�w-<>^�P�h	E�AZ?�:�<>^-AZY4<>H�NpP�EGL|AZIG<>P�H4[�a6H[²$ Ô¥5§B¹ï«6¢Zº�B�©�¼©"«_¥5£�§¥ º�¨ª �x¢�£�¬-©�«\¢�§¤¦¥5§B Â ¤ ¬3N:¡�NR¡�NR»�¼z¢�«_¤¦¡S¢�£�Â:«'º�º�¨ª¥5 B¬²$¢�£�ïÅ-¢�ï § ¤¦Å-¬�¥p � § «Z¥5 �BÂ`«�§Z¢�¬� ¡@¥5§Y©�«\ �B�Zr-V�P	H�i�P	H.r
� �x� ¸ [

�>� ¾ � T|[ê��P�EGIGC�E�[� H�ABY>h�P�EG<>IG:�L{NQP�E�=Gg�é@w�=GIGEG<>?�?�<>H�h$[�a6H©"«6¹ï«6¢�¡@r�^Z:.AB?�IGC�E �B� � ¸ �Gr-?.ABh�C�= ��¸B�d¨$��¸�� [� �x� � [
�>�	¸Z� � [ê±x[}s�AZg�=G=Gg�EGC-[¢ ¹�Å-«_��¬� e²}¥5£�ïÅ-¥5�B¤¦¥R5Å- Jï £� «6¢�¨ª Â½ Å-¢�¤¦«Z¥5 ¡@ S B¬�¥5¤¦¥5¹�£�[�V}<cm�E�AZ<>EG<>Ck�.AGK�P�I�rê�.AZEG<>=�r � E�ABH�^�Cqr

� � � �	[

klas
52

klas
52

klas
52

klas
54

klas
52

klas
52

klas
52

Retrieving the most relevant XML Components

Yosi Mass, Matan Mandelbrod
IBM Haifa Research Lab

Haifa 31905, Israel
+972-3-6401627

{yosimass, matan}@il.ibm.com

ABSTRACT
XML enables to encode semantics in full text documents through
XML tags. While query results on corpora of full text documents
is typically a sorted list of ranked documents, this granularity can
be refined to return sub components when searching over XML
documents. In this paper we describe an approach for finding the
most relevant XML components for a given query.

Keywords
XML Search, Information Retrieval, Vector Space Model

1. INTRODUCTION
XML documents represent a family of semi-structured documents
in which data has some structure but is not fully structured as in
databases. It is thus not surprising that approaches for searching in
collections of XML documents are either extension of
Information Retrieval (IR) techniques or of database query
languages. The main difference between the two approaches is
that while the results of Information Retrieval techniques is a list
of documents sorted by their relevance to the query, the results of
a database query are strict matches with no relevance values. In
this paper we focus on Information Retrieval approaches and
explore a technique whereby we rank individual XML
components rather than full documents.

The Initiative for the evaluation of XML Retrieval (INEX) [7]
coined two types of queries over XML documents: In Content
Only (CO) queries the user has no knowledge of the document
structure and the search engine is supposed to return the best
components that match the query concepts. In Content and
Structure (CAS) queries the user has some knowledge of the
document structure and can use it to constrain content to a
specific structure and also to specify the XML components to be
returned.

It should be noted that techniques that are suited for returning a
specific XML component that matches a CAS query may be
orthogonal to the task at hand, which requires that the best
matching component be retrieved. Indeed the version of
JuruXML [11] that we used in INEX’02 [7] could retrieve XML
components as specified by CAS topics yet it could score only full
documents. Consequently, all relevant components in a retrieved
document where assigned identical scores – the score of their
enclosing document, and individual component ranking was not
supported.

In modern Information Retrieval engines document ranking is
done based on the vector space model [13]. The idea is to treat
both the documents and the query as a vector of terms (typically
words). Each term is given a weight proportional to its Term

Frequency (TF) in a document/query and inversely proportional to
its Document Frequency (DF), which is the number of documents
in which the term appears. The similarity between a document
and a query is defined as the distance between the two vectors
usually measured as the cosine between the two.

In order to rank components rather than entire documents, this
classic model must be expanded to take into account component
level statistics. The problem is that components in XML
documents are nested and this hierarchy needs to be taken into
account when counting term occurrences. More specifically, a
specific term should not be counted more than once. For example
consider a term inside a paragraph, which is itself nested in a
section. What is the component frequency of this term? If it is
counted as belonging to two components, it may distort ranking
since the term actually appears only once in the document. On the
other hand, if it is counted only once, with which component
should this count be associated?

In this paper we describe an extension to the classic vector space
model that can correctly handle retrieval at the component level.
We demonstrate the use of this method on the INEX topics. This
method can be implemented as an extension of any vector space
based text search engine with no need to modify its basic
structures and algorithms, making it highly applicable for any
search engine wishing to rank components.

The remainder of the paper is organized as follows: In section 2
we outline some related work. In section 3 we describe our novel
approach for selecting the most relevant XML component and
how it was used for the INEX CO topics. In section 4 we show
how this method was extended to handle the CAS topics. Our
method for result clustering and for filtering redundant
components is described in Section 5. We conclude with summary
and future work.

2. RELATED WORK
The idea of ranking document subcomponents has been explored
in the context of passage retrieval [10], [14]. The goal there is to
identify the sentences that best match the user's query and
assemble them into passages that are then returned to the user.
The returned unit can be any combination of sentences even if
they are inconsecutive. This technique is not suitable for XML
components retrieval where the returned unit must be a fixed
XML component.

The work described in [12] tries to identify subject boundaries in
a text document based on the assumption that words that are
related to a certain subject will be repeated whenever that subject
is mentioned. Again this work assumes a flat text document with
freedom to pick a portion of the text as an answer. This is not

klas
53

klas
53

klas
53

klas
55

klas
53

klas
53

klas
53

suitable for XML retrieval where the retrieval unit must be a
predefined XML component.

The idea of scoring XML components separately has been
suggested in the context of XML retrieval [5] [6]. In both cases,
the term and document frequency is accumulated at the basic
component level. An augmentation factor is used to propagate
statistics from child to parent components. The problem with this
technique is that the augmentation factors are either set manually
by the user or set empirically and thus cannot be proven to give
the best results.

3. APPROACH FOR CO TOPICS
We start by describing our approach for Content Only (CO) tasks
and then we show how this approach was extended to handle
Context and Structure (CAS) topics as well.

As a reminder, in a CO task the query is specified in full text (with
additions of +/- and phrases) and the search engine is expected to
return the most relevant XML components that match the query
concepts.

Based on a training set composed of the INEX’02 topics and
assessments, we found that the majority of the highly ranked
components for CO topics (1296 out of 1394) were taken from the
set: {article, bdy, abs, sec, ss1, ss2, p and ip1}. This is quite
intuitive since {sec, ss1, and ss2} stand for sections and sub
sections and {p, ip1} represent meaningful paragraphs, all good
reasonable results for a query. The entire article or its abstract
{abs} are also good candidates for component retrieval. The only
exception is the {bdy} component that constitutes the main part of
the article so whenever a bdy is relevant so is its containing article
and vice versa. In that case we rather return the article and not the
body.

Realizing that we have a clear list of candidate components for
retrieval, our goal was to modify JuruXML [11] so that it could
rank each of these candidate components separately. The ranking
method used in JuruXML is based on the Extended Vector Space
Model [3] where both documents and queries are represented as
vectors in a space where each dimension represents a distinct
term. It is typically computed using a score of the tf x idf family
that takes into account the following document and collection
statistics -

• N - Total Number of documents in the collection
• Term Frequency TFD(t) – number of occurrences of a

term t in a document D
• Document Frequency DF(t) – total number of

documents containing a term t

The relevance of the document D to the query Q, denoted below
as),(DQρ , is then evaluated by using a measure of similarity
between vectors such as the cosine measure (see Formula 1).

DQ

twtw
DQ

i
DQti

i DQ

∗

∗

=

∑
∈

)()(
),(�

ρ

Formula 1

Where

)
)(

log(*))(log()(},{ tDF
NtTFtw XDQX =

∈

Formula 2

It follows that the weight WD(t) is proportional to the number of
occurrences of t in D (TFD(t)) and inversely proportional to the
number of documents in which t appears (DF(t)). The motivation
is that a term t that appears in a few documents in the corpus,
should contribute a relatively high weight to the score of a
document in which it appears compared to terms that are frequent
in many documents. The contribution to the document score is
additionally proportional to the number of its occurrences in the
document.

In order to rank components instead of entire documents, these
statistics should be tallied at the component level. That is, it is
necessary to keep track of the following component and collection
statistics:

• N - Total Number of components in the collection
• Term Frequency TFC(t) – number of occurrences of a

term t in a component C
• Component Frequency CF(t) - total number of

components containing a term t

The problem is that XML components are nested. For example
consider a collection consisting of a single document (see Figure
1).

<article>
 t1
 <sec>
 <p>t2</p>
 </sec>
</article>

Figure 1

The document contains three components {C1=article, C2=sec,
C3=p} and two terms {t1, t2}. Term t1 appears only in the article
while t2 appears in all 3 components. Therefore we get

• N = 3
• CF(t1) = 1, CF(t2) = 3
• TFC1(t1) = 1, TFC1(t2) = 1
• TFC2(t1) = 0, TFC2(t2) = 1
• TFC3(t1) = 0, TFC3(t2) = 1

By Formula 2 applied to component level statistics, we would get
that Wc1(t1) > Wc1(t2) which is not necessarily true since both t1
and t2 appear an equal number of times in the document.

One can try to fix this by only counting the Term Frequency
TFC(t) at the component level and still computing N & DF(t) at
the document level. However, this imposes another problem that
is illustrated in the following example (see Figure 2).

klas
54

klas
54

klas
54

klas
56

klas
54

klas
54

klas
54

<article>
 <sec>t1</sec>
 <sec>t1</sec>
 <sec>t2</sec>
</article>

Figure 2
As before, the collection consists of a single document and we
have

• N = 1
• DF(t1) = 1, DF(t2) = 1

If we mark the 3 sections by C1, C2, C3 we get

• TFC1(t1) = 1
• TFC2(t1) = 1
• TFC3(t2) = 1

By Formula 2 it follows that Wc1(t1) = Wc2(t1) =Wc3(t2). However
if we regard each section as a standalone component then since t2
appears only in one section while t1 appears in 2 sections we
expect to get Wc1(t1) < Wc3(t2) (which is what would have
happened if the sections were in different documents, since we
would then have then DF(t1) = 2). With this approach to counting
statistics it is thus impossible to differentiate between the rankings
of the three sections.

In view of the above problems, we selected a strategy whereby we
create a different index for each component type. Statistics can
thus be tallied at the precise level of granularity for each
component. In particular, we created six indices corresponding to
the following tags: {article, abs, sec, ss1, ss2, p, and ip11}. The
article index contains the full data of all documents. The sec
index contains each sec from each article as a separate document
and so on for each of the six tags above. For example the
document in Figure 2 above will result in 3 separate documents in
the sec level index.
For each index, the entities are determined according to the
topmost XML tag of the corresponding type. That is, nested
components of the same type do not yield a new partition of the
document. For example consider a document as in Figure 3

<Article>
 <sec>
 <p>some text
 <p>some internal text</p>
 </p>
 </sec>
 <p>some higher level text</p>
</article>

Figure 3

This document will add two "documents" to the paragraph level
index (See Figure 4 & Figure 5)

<p>some text
 <p>some internal text</p>
</p>

Figure 4

1 P and IP1 were indexed into one Index

And

<p>some higher level text</p>

Figure 5

The search engine's regular ranking formula can now be used to
accurately score and rank individual components among
themselves. In other words, given a query, the system can return
the best matching articles, sections, sub-sections, etc. Our goal
however is to return one ranked list of the best matching
components regardless of granularity and thus need to compare
scores from the individual indices. To achieve this, the query is
submitted in parallel to each index, resulting in six sorted lists of
components – one from each index.

The scores in each index are normalized into the range (0,1) using
a formula that ensures that this normalization yields absolute
numbers and is index independent. This is achieved by each index
computing P(Q,Q) (see Formula 1) which is the score of the query
itself as if it was a document in the collection. Since the score
measures the cosine between vectors, then the max value is
achieved between two identical vectors. Each index therefore
normalizes all its scores to its computed P(Q,Q). The normalized
results are then merged into a one ranked list consisting of
components of all granularities.

It should be noted that this approach can be implemented on top
of almost any full text ranking engine resulting in a system than is
able to rank XML components without modifying the core search
engine code. It simply requires an XML parser that can parse
documents and feed the components into separate indexes. At run
time, queries are submitted in parallel to each index and the
results are merged as described above.

3.1 The CO runs
We now describe the implementation of this method on the INEX
collection. The size of the collection is ~500Mb. Six indices were
created as described above, resulting in the following index sizes:

• Article – 290Mb
• Sec – 270Mb
• Ss1 – 158Mb
• Ss2 – 38Mb
• P, ip1 – 280Mb
• Abs – 14Mb

Overall we get an index size that is about twice as large as the
original collection. While this can be an inhibiting factor, our goal
was to prove the viability of this method from a quality
standpoint. We believe there is room for optimisation in terms of
index sizes.

We submitted three CO runs. Recall that a CO topic consists of
full text with additions of +/- and Phrases. According to the topic
development guide [8] the +/- “should be interpreted with a fuzzy
flavour and not simply as must contain and must not contain
conditions”. We applied this vagueness to “+” terms but still we
believe that if the user specify a “-“ term then this term should not
be returned. Therefore we treated the “-“ strictly (namely results
that contain such terms were never returned). The runs we
submitted were -

• In the first run we considered all query parts: Title,
Description and Keywords (CO-TDK)

klas
55

klas
55

klas
55

klas
57

klas
55

klas
55

klas
55

• In the second run we applied post clustering on the first
run (see section 5 below) (CO-TDK-with-clustering)

• In the third run we considered only the Title. In this run
we ignored phrases and treated the phrase terms as
regular words. We applied the clustering algorithm on
this run as well (see Section 5 below) (CO-T-with-
clustering)

The recall precision results achieved for the above runs based on
assessments version 2.4 and using the "Strict with Overlap" metric
are summarized in Table 1 below. Strict means that only highly
assessed elements are considered and overlapping means that the
metric removes overlapping results and penalizes submissions that
return redundant fragments.

 CO-TDK CO-TDK-with-
clustering

CO-T-with-
clustering

P@5 0.42 0.41 0.42
P@10 0.38 0.36 0.30
P@20 0.35 0.29 0.26
P@100 0.24 0.21 0.15
P@1500 0.162 0.142 0.129

Table 1

The table shows results at several precisions. It is quite clear that
the first two runs which included all topic parts (title, keywords
and description) were superior to the third run which used only
the topic’s title. Between the two TDK runs the one without the
clustering performed better. This result is discussed in Section 5
below.

4. APPROACH FOR CAS TOPICS
The Content and Structure (CAS) topics differ in two aspects from
the CO topics. First the query content can be limited to a given
XML tag and second there is less freedom in selecting the
component to be returned. The topic format is XPath [15]
augmented with an ‘about’ predicate [8]. The last component in
the path specifies the component that should be returned.

For example topic 66 (Figure 6) defines a constraint on the year
<yr> and on section <sec>. <sec> is also the element to be
returned.

/article[./fm//yr < '2000']

//sec[about(.,'"search engines"')]
Figure 6

To enable fuzziness in the query constraints we introduce a
Synonyms mechanism. We divide the XML tags into synonym
groups such that all tags in the same group are regarded
equivalent. Whenever there is a tag in the query that belongs to
some synonym group, we substitute it by all tags in its group.
For example if we set {sec, ss1} to be in the same synonym group
then in the query in Figure 6 above we substitute sec by {sec, ss1}
and we get2 the query in Figure 7. The synonyms mechanism is

2 This is not the syntax we use, the actual substitution is done in

the internal implementation.

used at different granularity levels for the SCAS and VCAS runs
(see below).

/article[./fm//yr < '2000']
 //{sec,ss1}[about(.,'"search engines"')]

Figure 7

In order to find documents in which all of the query constraints
are met, we need to execute the modified query on the full
documents. This will indeed return relevant components that
match the query constraints, but as described above the
components cannot be scored individually using only this one
index.
Therefore we execute each query in two steps – in the first step we
use the article index to locate candidates that fulfill the query
constraints. In the second step, relevant parts of the query are
extracted for each index (see example below) and the relevant
query is submitted in parallel to the other five indexes of {abs,
sec, ss1, ss2, p+ip1}. A relevance value is computed only for
elements that were marked valid in the first step and a ranked list
of results is returned. The separate lists are then merged similarly
to what described for the CO case, resulting in one ranked list of
results.
Note that although our indices do not cover all of the possible tags
in the corpus, we can still resolve queries that request a tag that
does not have a dedicated index. For example, topic 67 defines
<fm> as the last component in the XPath expression, thus
requesting a component for which we do not have a special index.
In this case, we simply stop after the first step and use the article's
score as the score of the component.
Example
In the following example we define one synonym group that
consists of {sec, ss1, ss2} tags and we use it to run the query in
Figure 6 above. We run the query first against the article level
index and then we run the relevant query part on each of the
synonyms ✌ {sec, ss1, ss2} so we run
//sec[about(.,'"search engines"')]
against the sec level index,
//ss1[about(.,'"search engines"')]
against the ss1 level index and
//ss2[about(.,'"search engines"')]
against the ss2 level index. We then merge the results based on
their normalized scores as described above.

4.1 SCAS and VCAS

This year there were 2 CAS variants - Strict CAS (SCAS) and
Vague CAS (VCAS). The SCAS defines that “structural
constraints of a query must be strictly matched” while the VCAS
defines that “structural constraints of a query can be treated as
vague conditions”. The vague means that XML elements that are
“structurally similar” to those specified in the query can be
returned. We used our synonym groups in different configurations
to support both SCAS and VCAS.

For the SCAS runs we used the equivalent tags that were defined
in the INEX topic development guide [8]. The synonyms we used
were:

• {sec, ss1, ss2} for sections.

klas
56

klas
56

klas
56

klas
58

klas
56

klas
56

klas
56

• {p, ip1} for paragraphs

The other two tags {article} and {abs} were not synonyms to any
other tags so in topics that requested article or abs as results, only
those tags were returned.

For the VCAS topics we defined one large synonym group that
included all the tags {sec, ss1, ss2, p, ip1, abs}, except for the
{article} tag. Again in topics that requested the article tag as a
result we returned only articles.

4.2 The CAS runs
We submitted 3 SCAS and 3 VCAS runs. In all runs we treated
the “-“ strictly and the “+” with a fuzzy flavour. In all runs we
treated query constraints in a strict manner up to the synonym
tags. So for example results for the query in Figure 6 will be only
sections and all their synonym tags that discuss “search engines”
but only from articles that were published before year 2000.

We ran the following 3 runs for both SCAS and VCAS

• In first run, we considered all query parts: Title,
Description and Keywords.

• In the second run, we applied a post-clustering
algorithm on the first run (see Section 5 below).

• In the third run, we considered only the Title and
Keywords and applied a post-clustering algorithm (see
Section 5 below).

At the time this report is written full CAS results are not yet
available so we don’t report these results here.

5. RESULT CLUSTERING
The approaches described above may result in redundant
components that are returned to the user. For example consider a
section with four paragraph children. We can identify two
extreme scenarios -

In the first scenario assume all four paragraphs are highly relevant
to the topic. In this case all four paragraphs as well as their parent
section will be ranked in high positions.

In the second scenario assume that only the first paragraph is very
relevant to the topic and therefore it is assigned a high score. As a
result it may also contribute to its parent’s section score even if it
is the only relevant paragraph in that section. Again that
paragraph and its parent section may be ranked in a high position
when merging the results.

One expectation of a good search engine is that it should not
return redundant results; therefore in the first scenario it should
return the section and not the paragraphs, while in the second
scenario it should return the first paragraph only.

To filter such redundancies we developed a clustering algorithm
that maps related components to one of the scenarios above. The
algorithm gets the result set of the original run and constructs a
tree consistent with the parent-child relationship of the
components in the XML document. Each node in the tree
corresponds to a result component and has the following data -

• Its score as a number between 0 and 1

• Total number of descendant children in the original
document. This number is extracted while parsing the
document.

The algorithm processes the tree bottom up and at each level
compare the score of a node to that of its children. When it
manages to identify one of the two scenarios above it remove the
redundant components from the result set.

Recall that a score is a number between 0 and 1 so we need some
means to say when two scores are close to each other. Let a
node’s score be s1 and a child’s score be s2. We say that the two

scores are close if hScoreThres
s

ss
<

−

1
21

 for some

configured ScoreThresh value. Otherwise we say that s1 is higher
than s2 (if s1>s2) or lower (if s1<s2).

The algorithm clusters each node into the following cases –

• HighParent - If the node’s score is higher than all its
direct children, then we remove the children from the
tree.

• HighChild - If some child’s score is higher than the
current node’s score, then we remove the node from the
tree.

• ManyDescendants – Let Ne be the number of close
descendants and Nt the number of all descendants of our

node. If hdantsThresManyDescen
N
N

t

e
> for

some configured ManyDescendantThresh then we say
that there are many good children and we remove the
direct children from the tree (corresponding to the first
scenario above)

• SingleChild – For each direct child Ci let Ni be the
number of close descendants of Ci and N the total
number of close descendants of the current node. If

there is a child Ci with dThreshSingleChil
N
Ni

>

for some configured SingleChildThresh value then we
say that most good results are concentrated in that child
so we remove the parent from the tree (corresponding to
the second scenario)

For all other cases no filtering takes place, and all components are
returned

5.1 Clustering runs
We used the following values for the clustering runs:

• ScoreThresh=0.45
• ManyDescendantThresh = 0.2
• SingleChildThresh=0.42.

According to the INEX evaluations received thus far, it seems that
the runs that applied clustering received a lower overall score than
runs that did not apply clustering. It thus seems that there was no
penalty for runs returning redundant results. This topic should be
discussed in order to devise metrics that evaluate a good overall
result set, rather than individual results.

klas
57

klas
57

klas
57

klas
59

klas
57

klas
57

klas
57

6. CONCLUSIONS AND FUTURE WORK
We presented a novel approach and implementation for scoring
and ranking individual components of XML documents. At the
time this report is written, Recall Precision graphs for the CO
topics were published and one of our runs was ranked first
indicating that this approach indeed computes more accurate
component scores. The approach presented here can be
implemented on top of almost any full text search engine without
modifying its code to return ranked components for Content Only
queries. Similarly the approach can be used by XML search
engines to compute more accurate scores for target components
specified in CAS topics. One limitation of our approach is that the
set of potential components to be returned must be known in
advance. We believe however, that this is a reasonable
requirement for any given collection. Additionally, some space as
well as runtime overhead is incurred by multi-indexing.
Improving the efficiency is left for future research.

7. ACKNOLEDGMENT
We would like to thank Aya Soffer for reviewing the paper and
for her useful comments.

8. REFERENCES
[1] R. Baeza-Yates, N. Fuhr and Y. Maarek, Second Edition of

the XML and IR Workshop, In SIGIR Forum, Volume 36
Number 2, Fall 2002

[2] D. Carmel, E. Amitay, M. Herscovici, Y. Maarek, Y.
Petruschka and A. Soffer, "Juru at TREC 10 - Experiments
with Index Pruning", In [1]

[3] D. Carmel, N. Efraty, G. Landau, Y. Maarek, Y. Mass, “An
Extension of the Vector Space Model for Querying XML
Documents via XML Fragments” In XML and Information
Retrieval workshop of SIGIR 2002, Aug 2002, Tampere,
Finland.

[4] D. Carmel, Y. Maarek, M. Mandelbrod, Y. Mass, A. Soffer,
Searching XML Documents via XML Fragments, SIGIR
2003, Toronto, Canada, Aug. 2003

[5] N. Fuhr and K. GrossJohann, “XIRQL: A Query Language
for Information Retrieval in XML Documents”. In
Proceedings of SIGIR’2001, New Orleans, LA, 2001

[6] T. Grabs and H. J. Schek, “Generating Vector Spaces On-
the-fly for Flexible XML Retrieval”, in [2].

[7] INEX’02 , Initiative for the Evaluation of XML Retrieval,
http://qmir.dcs.qmul.ac.uk/inex/

[8] INEX’03 Topic development guide,
http://inex.is.informatik.uni-
duisburg.de:2003/internal/#topics

[9] Juru, A generic full text search engine,
http://w3.haifa.ibm.com/afs/haifa/proj/docs/www/projects/k
m/ir/juru/index.html

[10] M. Kaszkiel and J. Zobel, "Effective ranking with arbitrary
passages", Journal of the American Society of Information
Science, volume 52, number 4, pg 344-364, 2001.

[11] Y. Mass, M. Mandelbrod, E. Amitay, D. Carmel, Y. Maarek,
A. Soffer, JuruXML - an XML Retrieval System at INEX'02,
Proceedings of the First Workshop of the Initiative for The
Evaluation of XML Retrieval (INEX), 9-11 December 2002,
Schloss Dagstuhl, Germany

[12] K. Richmond, A. Smith and E. Amitay, "Detecting Subject
Boundaries within Text: A Language Independent Statistical
Approach", Proceedings of the Second Conference on
Empirical Methods in Natural Language Processing, pg 47-
54, 1997

[13] G. Salton, Automatic Text Processing – The Transformation,
Analysis and Retrieval of Information by Computer, Addison
Wesley Publishing Company, Reading, MA, 1989.

[14] G. Salton, J. Allan, and C. Buckley. “Approaches to passage
retrieval in full text information systems.” In Proceedings of
SIGIR’93, Pittsburgh, PA, 1993.

[15] XPath – XML Path Language (XPath) 2.0,
http://www.w3.org/TR/xpath20/

[16] XQuery – The XML Query language,
http://www.w3.org/TR/2002/WD-xquery-20020430

http://inex.is.informatik.uni-duisburg.de:2003/internal/#topics
http://inex.is.informatik.uni-duisburg.de:2003/internal/#topics
klas
58

klas
58

klas
58

klas
60

klas
58

klas
58

klas
58

XXL @ INEX 2003

Ralf Schenkel
schenkel@mpi-sb.mpg.de

Anja Theobald
anja.theobald@mpi-sb.mpg.de

Gerhard Weikum
weikum@mpi-sb.mpg.de

Max–Planck Institut für Informatik
Saarbrücken, Germany

ABSTRACT
Information retrieval on XML combines retrieval on con-
tent data (element and attribute values) with retrieval on
structural data (element and attribute names). Standard
query languages for XML such as XPath or XQuery support
Boolean retrieval: a query result is a (possibly restructured)
subset of XML elements or entire documents that satisfy the
search conditions of the query. Such search conditions con-
sist of regular path expressions including wildcards for paths
of arbitrary length and boolean content conditions.

We developed a flexible XML search language called XXL
for probabilistic ranked retrieval on XML data. XXL of-
fers a special operator ’∼’ for specifying semantic similar-
ity search conditions on element names as well as element
values. Ontological knowledge and appropriate index struc-
tures are necessary for semantic similarity search on XML
data extracted from the Web, intranets or other document
collections. The XXL Search Engine is a Java–based proto-
type implementation that support probabilistic ranked re-
trieval on a large corpus of XML data.

This paper outlines the architecture of the XXL system and
discusses its performance in the INEX benchmark.

1. INTRODUCTION
The main goal of the initiative for the evaluation of XML
retrieval (INEX) is to promote the evaluation of content–
based and structure–based XML retrieval by providing a
hugh test collection of scientific XML documents, uniform
scoring procedures, and a forum for organisations to com-
pare their results. For that purpose, the INEX committee
provides about 12.000 IEEE journal articles with a rich XML
structure. In cooperation with the participanting groups a
set of content–only queries (CO) and a set of content–and–
structure queries (CAS) was created. Each group evaluated
these queries on the given data with their XML retrieval
system and submitted a set of query results.

In this paper we describe the main aspects of our XXL search
engine. First of all, we present our flexible XML search
language XXL. In addition, we describe our ontology model
which we use for semantic similarity search on structural
data and content data of the XML data graph. Then we
give a short overview how XXL queries are evaluated in
the XXL Search Engine and which index structures used to
support an efficient evaluation. Finally, we present the our
results in the INEX 2003 benchmark.

2. XML DATA MODEL
In our model, a collection of XML documents is represented
as a directed graph where the nodes represent elements, at-
tributes and their values. For identification, each node is
assigned a unique ID, the oid. There is an directed edge

from a node x to a node y if

• y is a subelement of x,

• y is an attribute of x,

• y contains the value of element x or

• y contains the value of attribute x.

Additionally, we model an XLink [7] from one element to
another by adding a special, directed edge between the cor-
responding nodes. We call the resulting graph the XML data
graph for the collection.

article

bdy

sec

st

scp

p

books

journal

title issue publisher sec1 reference

I

ntroduction

IEEE Transactions on
Knowledge and
Data Engineering

title

Special Section on the
14th International Conference

on Data Engineering

sec1

title

CONCISE
PAPERS

xmlns:xlink xlink:type xlink:href

k0468.xmlsimplehttp://www...

ind align

none left

ref

type rid

bib bibk046818

ref ref

fno doi

k0468 10.1041/
K0468s-2000

tk/2000/k0468.xml

tk/2000/volume.xml

1 2 3 4 5 6 7

type rid

bib bibk046820

type rid

bib bibk046810

X
P

ointer

Currently,
information

retrieval [

], database
queries [

], and
hypermedia
techniques [

] are the only
methods to
access and

navigate info
bases.

18 20 10

1 1 1

1 2

Figure 1: XML data graph

klas
59

klas
59

klas
59

klas
61

klas
59

klas
59

klas
59

Figure 1 shows the XML data graph for a collection of
two XML documents from the INEX collection (adapted
as shown in Section 6): a journal document with an XLink
pointing to an article document. Each node that contains
an element or attribute name is called n–node (shown as
normal nodes in Figure 1), and each node that contains an
element or attribute value is called c–node (dashed nodes
in Figure 1). To represent mixed content, we need a local
order of the child nodes of a given element. In Figure 1 you
can see a sentence which is partitioned into several shaded
c–nodes.

3. THE FLEXIBLE XML QUERY LANG-
UAGE XXL

The Flexible XML Search Language XXL has been designed
to allow SQL-style queries on XML data. We have adopted
several concepts from XML-QL [8], XQuery[3] and similar
languages as the core, with certain simplifications and re-
sulting restrictions, and have added capabilities for ranked
retrieval and ontological similarity. As an example for an
XXL query, consider the following query that searches for
publications about astronomy:

SELECT $T // output of the XXL query
FROM INDEX // search space
WHERE ~article AS $A // search condition

AND $A/~title AS $T
AND $A/#/~section ~ "star | planet"

The SELECT clause of an XXL query specifies the output of
the query: all bindings of a set of element variables. The
FROM clause defines the search space, which can be a set
of URLs or the index structure that is maintained by the
XXL engine. The WHERE clause specifies the search condi-
tion; it consists of the logical conjunction of path expressions,
where a path expression is a regular expression over elemen-
tary conditions and an elementary condition refers to the
name or content of a single element or attribute. Regular
expressions are formed using standard operators like ’/’ for
concatenation, ’|’ for union, and ’*’ for the Kleene star.
The operator ’#’ stands for an arbitrary path of elements.
Each path expression can be followed by the keyword AS and
a variable name that binds the end node of a qualifying path
(i.e., the last element on the path and its attributes) to the
variable, that can be used later on within path expressions,
with the meaning that its bound value is substituted in the
expression.

In contrast to other XML query languages we introduce a
new operator ’∼’ to express semantic similarity search con-
ditions on XML element (or attribute) names as well as on
XML element (or attribute) contents.

The result of an XXL query is a subgraph of the XML
data graph, where the nodes are annotated with local rele-
vance probabilities called similarity scores for the elementary
search conditions given by the query. These similarity scores
are combined into a global similarity score for expressing the
relevance of the entire result graph. Full details of the se-
mantics of XXL and especially the probabilistic computation
of similarity scores can be found in [17, 18].

4. ONTOLOGY–BASED SIMILARITY
Ontologies have been used as a means for storing and retriev-
ing knowledge about the words used in natural language and
relations between them.

In our approach we consider a term t as a pair t = (w, s)
where w is a word over an alphabet Σ and s is the word
sense (short: sense) of w, e.g.

t1 = (star, a celestial body of hot gases)
t2 = (heavenly body, a celestial body of hot gases)
t3 = (star, a plane figure with 5 or more points)

In order to determine which terms are related, we introduce
semantic relationships between terms that are derived from
common sense. We say that a term t is a hypernym (hy-
ponym) of a term t′ if the sense of t is more general (more
specific) than the sense of t′. We also consider holonyms and
meronyms, i.e., t is a holonym (meronym) of t′ if t′ means
something that is a part of something meant by t (vice versa
for meronyms). Finally, two terms are called synonyms if
there senses are identical, i.e., their meaning is the same.

Based on these definitions we now define the ontology graph
O = (VO, EO) which is a data structure to represent con-
cepts and relationships between them. This graph has con-
cepts as nodes and an edge between two concepts whenever
there is a semantic relationship between them. In addition,
we label each edge with a weight and the type of the un-
derlying relationship. The weight expresses the semantic
similarity of two connected concepts. Figure 2 shows an ex-
cerpt of an example ontology graph around the first sense
for the word ”star”.

star
celestial body
of hot gases

celestial body, heavenly body
natural objects visible in the sky

beta centauri
the second brightest

star in centaurs

sun
Any star around which a

planetary systems evolves

galaxy, extragalactic nebula
a collection of star systems

milky way, milky way galaxy
the galaxy containing

the solar system

heliosphere
the region inside the heliopause...

hyper
[0.6]

hypo
[0.6]

hyper
[0.85]

hypo
[0.85]

hyper
[0.85]

hypo
[0.85]

hyper
[0.73]

hypo
[0.73]

holo
[0.4]

mero
[0.4]

holo
[0.36]

mero
[0.36]

solar system
the sun with the celstial bodies...

holo
[0.4]

mero
[0.4]

natural object
an object occurring naturally

hyper
[0.2]

hypo
[0.2]

collection, aggregation,
accumulation, assemblage

several things grouped together

hyper
[0.45]

hypo
[0.45]

Figure 2: Excerpt of an ontology graph O with la-
beled edges

To fill our ontology with concepts and releationship we use
the voluminous electronical thesaurus WordNet as backbone.
WordNet organzies words in synsets and presents relation-
ships between synsets without any quantification.

For quantification of relationships we consider frequency–
based correlations of concepts using large web crawls. In
our approach, we compute the similarity of two concepts
using correlation coefficients from statistics, e.g. the Dice or
Overlap coefficient [14].

For two arbitrary nodes u and v that are connected by a path
p = 〈u = n0 . . . nk = v〉, we define the similarity simp(u, v)
of the start node u and the end node v along this path to
be the product of the weights of the edges on the path:

klas
60

klas
60

klas
60

klas
62

klas
60

klas
60

klas
60

simp(u, v) =

length(p)−1∏
i=1

weight(〈ni, ni+1〉)

where weight(〈ni, ni+1〉) denotes the weight of the edge e =
(ni, ni+1). The rationale for this formula is that the length
of a path has direct influence on the similarity score. The
similarity sim(u, v) of two nodes u and v is then defined as
the maximal similarity along any path between u and v:

sim(u, v) = max{simp(u, v) | p path from u to v}

However, the shortest path (the path with the smallest num-
ber of edges) need not always be the path with the highest
similarity, as the triangular inequation does not necessarily
hold. Thus, we need an algorithm that takes into account
all possible paths between two given concepts, calculates
the similarity scores for all paths, and chooses the maxi-
mum of the scores for the similarity of these concepts. This
is a variant of the single–source shortest path problem in a
directed, weighted graph. A good algorithm to find the sim-
ilar concepts to a given concept and their similarity scores is
a variant of Dijkstra’s algorihm [6] that takes into account
that we multiply the edge weights on the path and search
for the path with the maximal weight instead of minimal
weight.

Furthermore, as words may have more than one sense, it is
a priori not clear in which sense a word is used in a query
or in a document. To find semantically similar words, it
is fundamental to disambiguate the word, i.e., to find out
its current sense. In our work we compute the correlation
of a context of a given word and the context of a potential
appropriate concept from the ontology using correlation co-
efficients as described above. Here, the context of a word
are other words in the proximity of the words in the query
or document, and the context of a concept is built from the
words of the neighbor nodes of the concept. See [15] for
more techical details on the disambiguation process.

5. THE XXL SEARCH ENGINE
5.1 Architecture of the XXL Search Engine
The XXL Search Engine is a client-server system with a
Java-based GUI. Its architecture is depicted in Figure 3.

XXL servlets

Query
Processor

EPI
Handler

ECI
Handler

Ontology
Handler

Visual
XXL

XXL applet

EPI

ECI

OI

WWW

......

.....

......

.....

Crawler

Path
Indexer

Content
Indexer

Ontology
Indexer

Figure 3: Architecture of the XXL search engine

The server consists of the following core components:

• service components: the crawler and the query proces-
sor, both Java servlets

• algorithmic components: parsing and indexing docu-
ments, parsing and checking XXL queries

• data components: data structures and their methods
for storing various kinds of information like the el-
ement path index (EPI), the element content index
(ECI), and the ontology index (OI).

The EPI contains the relevant information for evaluating
simple path expressions that consist of the concatenation of
one or more element names and path wildcards #. The ECI
contains all terms that occur in the content of elements and
attributes, together with their occurrences in documents; it
corresponds to a standard text index with the units of index-
ing being elements rather than complete documents. The OI
implements the ontology graph presented in Section 4.

5.2 Query Processing in the XXL Search En-
gine

The evaluation of the search conditions in the Where clause
consists of the following two main steps:

• The XXL query is decomposed into subqueries. A glo-
bal evaluation order for evaluating the various sub-
queries and a local evaluation order in which the com-
ponents of each subquery are evaluated are chosen.

• For each subquery, subgraphs of the data graph that
match the query graph are computed, exploiting the
various indexes to the best possible extent. The subre-
sults are then combined into the result for the original
query.

5.2.1 Query Decomposition
As an example for an XXL query, consider the following
XXL query where we are interested in scientific articles about
information retrieval and databases:

SELECT $T
FROM INDEX
WHERE ~article AS $A

AND $A/~title AS $T
AND $A/#/~section ~ "IR & database"

The Where clause of an XXL query consists of a conjunc-
tion "W1 And ... And Wn" of subqueries Wi, where each
subquery has one of the following types:

• Pi
• Pi AS $A
• Pi ∼|LIKE|=|<>|<|> condition

where each Pi is a regular path expression over elementary
conditions, $A denotes a element variable to which the end
node of a matching path is bound, and condition gives
a content–based search condition using a binary operator.
From the definitions of variables we derive the variable de-
pendency graph that has an edge from $V to $W if the path
bound to $W contains $V. We require the variable dependency
graph of a valid XXL query to be acyclic.

~article $A

~title

$A

~ „IR & DB“

%

~section

$A

$T

$A $T

variable dependencies

W1:
~article AS $A

W2:
$A/~title AS $T

W3:
$A/#/~section ~ „IR & DB“

Figure 4: XXL search graphs for each subquery of
the given XXL query

Each subquery corresponds to a regular expression over ele-
mentary conditions which can be described by an equivalent
non-deterministic finite state automaton (NFSA). Figure 4
shows the search graphs of the example query together with
the variable dependency graph.

klas
61

klas
61

klas
61

klas
63

klas
61

klas
61

klas
61

5.2.2 Query Evaluation
To evaluate an XXL query, we first choose an order in which
its subqueries are evaluated. This order must respect the
variable dependency graph, i.e., before a subquery that de-
fines a variable is evaluated, all subqueries that define vari-
ables used in this subquery must be evaluated. As this may
still leaves us some choices how to order subqueries, we es-
timate the selectivity of each subquery using simple statis-
tics about the frequency of element names and search terms
that appear as constants in the subquery. Then we choose
to evaluate subqueries and bind the corresponding variables
in ascending order of selectivity (i.e., estimated size of the
intermediate result).

Each subquery is mapped to its corresponding NFSA. A
result for a single subquery, i.e. a relevant path, is a path
of the XML data graph that matches a state sequence in
the NFSA from an intial state to a final state. For such a
result, the relevance score is computed by multiplying the
local relevance scores of all nodes of the path. In addition,
all variables that occur in the subquery are assigned to one
node of the relevant path.

A result for the query is then constructed from a consistent
union of the variable assignments and a set of relevant paths
(one from each subquery) that satisfies the variable assign-
ments. The global relevance for such a result is computed
by multiplying the local relevances of the subresults.

The local evaluation order for a subquery specifies the or-
der in which states of the subquery’s NFSA are matched
with elements in the XML data graph. The XXL prototype
supports two alternative strategies: in top-down order the
matching begins with the start state of the NFSA and then
proceeds towards the final state(s); in bottom-up order the
matching begins with the final state(s) and then proceeds
towards the start state.

As an example, we show how the NFSA shown in Figure 5
is evaluated in top-down order on the data shown in that
figure.

st

scp

p

ind align

none left

ref

type rid

bib bibk046818

ref ref

fno doi

k0468 10.1041/
K0468s-2000

tk/2000/k0468.xml

1 2 3 4 5 6 7

type rid

bib bibk046820

type rid

bib bibk046810

Currently,
information

retrieval [

], database
queries [

], and
hypermedia
techniques [

] are the only
methods to
access and

navigate info
bases.

18 20 10

1 1 1

article/bdy/#/~section ~ „IR & DB“

1. step

~paper

~ „IR & DB“

%2. step

3. step

4. step

bdy

~section

1 2
5. step

article

bdy

sec

I

ntroduction

0.9

1.0

0.95

0.4

Figure 5: Evaluation of a XXL search graph in top–
down manner

Step 1: The first elementary search condition contains a
semantic similarity search condition on an element name.
Thus, we consult the ontology index to get words which are
similar to paper, yielding the word article with sim(article,
paper) = 0.9. The first part of our result graph is therefore a
n–node of the data graph named article, and it is assigned
a local relevance score of 0.9.

Step 2: To be relevant for the query, a node from the result
set of Step 1 must also have a child node with name bdy.
As a result of Step 2, we consider result graphs formed by
such nodes and their respective child.

Step 3: The next state in the NFSA corresponds to a wild-
card for an arbitrary path in the data graph. Explicitly eval-
uating this condition at this stage would require an enumer-
ation of the (possibly numerous) descendants of candidate
results found so far, out of which only a few may satisfy the
following conditions. We therefore proceed with the next
condition in the NFSA and postpone evaluating the path
wildcard to the next step. The following condition is again
a semantic similarity condition, so we consult the ontology
index to get words which are similar to section. Assume
that the ontology index returns the word sec with a simi-
larity score of 0.95. There are no n-nodes in the data that
are named section, but we can add n–nodes named sec to
our preliminary result with a local relevance score of 0.95.

Step 4: In this step we combine the results from steps 2
and 3 by combining n-nodes that are connected through an
arbitrary path.

Step 5: The final state of the NFSA contains a content-
based semantic similarity search condition which must be
satisfied by the content of a sec-element in the result set
of Step 4. We first decompose the search condition that
may consist of a conjunction of search terms into the atomic
formulas (i.e., single terms). For each atomic formula we
consult the ontology index for similar words and combine
them in a disjunctive manner. We then use a text search
engine to evaluate the relevance of each element’s content
which is expressed through an tf/idf-based relevance score.
This score is combined with the ontology-based similarity
score to the relevance score of the atomic formula. Finally,
we multiply the relevance scores for each formula to get the
relevance score for the similarity condition.

In our example, the shaded nodes in Figure 5 form a relevant
path for the given NFSA.

5.2.3 Index Structures
The XXL Search Engine provides appropriate index struc-
tures, namely the element path index (EPI), the element
content index (ECI), and the ontology index (OI), that sup-
port the evaluation process described in the previous sub-
section.

The OI supports finding words that are semantically related
to a given word, using the techniques presented in Section 4.

The ECI supports the evaluation of complex logical search
conditions using an inverted file and a B+–tree over element
names. Given an atomic formula, the ECI returns elements
whose content is relevant with respect to that atomic for-
mula and the tf/idf–based relevance score.

The EPI provides efficient methods to find children, par-
ents, descendants and ascendants of a given node, and to
test if two arbitrary nodes are connected. When the XML
data graph forms a tree, we use the well-known pre- and
postorder scheme by Grust et al. [10, 11] for this purpose.
However, if the XML documents contain links, this scheme

klas
62

klas
62

klas
62

klas
64

klas
62

klas
62

klas
62

can no longer be applied. For such settings that occur fre-
quently with documents from the Web, the XXL Search En-
gine provides the HOPI index [16] that utilizes the concept
of a 2–hop cover of a graph. This is a compact representation
of connections in the graph developed by Cohen et al. [4].
It maintains, for each node v of the graph, two sets Lin(v)
and Lout(v) which contain appropriately choosen subsets of
the transitive predecessors and successors of v. For each
connection (u, v) in the XML data graph G, we choose a
node w on a path from u to v as a center node and add w to
Lout(u) and to Lin(v). We can efficiently test if two nodes u
and v are connected by checking Lout(u) and Lin(v): there
is a path from u to v iff Lout(u) ∩ Lin(v) �= ∅. The path
from u to v can be separated into a first hop from u to some
w ∈ Lout(u) ∩ Lin(v) and a second hop from w to v, hence
the name of the method.

More technical details how we improved the theoretical con-
cept of a 2–hop–cover can be found in [16] which covers both
the efficient creation of the index using a divide-and-conquer
algorithm and the incremental maintenance of the index.

5.3 Implementation Issues
In our prototype implementation we store XML data in an
Oracle 9i database with the following relational database
schema:

– URLS (urlid, url, lastmodified),

– NAMES(nid, name),

– NODES(oid, urlid, nid, pre, post),

– EDGES(oid1, oid2),

– LINKS(oid1, oid2),

– CONTENTS(oid, urlid, nid, content),

– LIN (oid1, oid2) and

– LOUT(oid1, oid2).

Here, NODES, EDGES and CONTENTS store the actual
XML data, URLS contains the urls of all XML documents
known to the system, and LINKS holds the links between
XML documents. LIN and LOUT store the Lin and Lout

sets used by the HOPI index. The ECI makes use of Oracle’s
text search engine.

The OI is represented by the following three tables:

– CONCEPTS (cid, concept, description, freq),

– WORDS (cid, word) and

– RELATIONSHIPS(cid1, cid2, type, freq, weight).

The entries in the ontology index are extracted from the
well–known electronic thesaurus WordNet [9]. Frequencies
and weights are computed as shown in Section 4.

Both the crawler used to parse and index XML documents
from the Web and from local directories and the query pro-
cessor of the XXL search engine used to evaluate XXL queries
are implemented using Java.

6. XXL AND THE INEX BENCHMARK
6.1 The INEX Data
The INEX document collection consists of eighteen IEEE
Computer Society journal publications with all volumes since
1995. Each journal is stored in its own directory. For
each journal, the volumes are organized in subdirectories per
year. Each volume consists of a main XML file volume.xml

that includes the XML files for the articles in this volume
using XML entities. Thus, importing all volumes using a
standard XML parser yields 125 single documents.

This organization of the data appears somewhat artificial
and is unsuitable for answering INEX queries, as these queries

typically ask for URLs of articles, not volumes. Having only
volumes available as separate XML files, the path to the
originating article for a hit has to be reconstructed from
metadata in the XML files (the fno entries) which unfortu-
nately is not always correct.

To overcome this problem, we adapted the INEX data in the
following way. We replaced each entity in the volume files by
an XLink pointing to the root element of the corresponding
article. This modification keeps the original semantics of the
data, but allows us to return the correct URLs of results in
all cases. Additionally, such an organization is much closer
to what one would expect from data available on the Web
or in digital libraries. After this modification, importing all
documents yielded 125 journal volumes and 12,117 journal
articles.

The following table shows the number of records of each
table after crawling and indexing the slightly modified INEX
document collection.

table number of records
URLS 12.232
NAMES 215
NODES 12.061.220
EDGES 12.048.987
LINKS 407.960
CONTENTS 11.779.730
LIN 28.776.664
LOUT 4.924.420

In addition to this structural problem, the INEX collection
has some other properties that makes retrieval based on se-
mantic similarities difficult, if not infeasible:

• Most element and attribute names are, even though
they are derived from natural language, no existing
words. As an example, the element name sbt stands
for ”‘subtitle”’. However, the ontology used by XXL
does not contain such abbrevations, so it had to be
manually adapted if it was to be used for the INEX
queries.

• Some element names are used only for formatting and
do not carry any semantics at all. As an example,
elements with name scp contain textual content that
should be typeset small caps font.

• Each journal article has a rich structure with possibly
long paths (which XXL supports with its highly effi-
cient path index structures). However, as all articles
are conforming to the same DTD, they share the same
structure, which renders structural similarity search
obsolete.

• The queries mostly contain keywords that are not well
represented in WordNet, yielding ontology lookups use-
less in most cases. For some keywords, we manually
enhanced the ontology, but this was far less complete
than the information usually available with WordNet.

As a preliminary conclusion, the INEX collection is inap-
propriate for exploiting and stress–testing similarity search
features as provided by our query language XXL and also
other approaches along these lines [1, 5, 12].

6.2 The INEX Topics
The INEX benchmark consists of a set of content–only queries
(CO) and content–and–structure queries (CAS) given in a
predefined XML format. Each topic (INEX query) consists
of a short description and a longer description of the topic of
request and a set of keywords, and CAS queries also contain
an XPath expression. For example, consider the CO–topic
98:

klas
63

klas
63

klas
63

klas
65

klas
63

klas
63

klas
63

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="98" query_type="CO" ct_no="26">

<title>
"Information Exchange", +"XML", "Information
Integration"

</title>
<description>
How to use XML to solve the information exchange
(information integration) problem, especially in
heterogeneous data sources?

</description>
<narrative>
Relevant documents/components must talk about
techniques of using XML to solve information
exchange (information integration) among
heterogeneous data sources where the structures
of participating data sources are different
although they might use the same ontologies
about the same content.

</narrative>
<keywords>
information exchange, XML, information integration,
heterogeneous data sources

</keywords>
</inex_topic>

To automatically transform a CO–topic into an XXL query
we consider the keywords within the XML element <title>
given for the query. As there is no way to automatically de-
cice how to combine these keywords (conjunctively, disjunc-
tively or mixed) in an optimal manner, we chose to combine
them conjunctively. To get also results that are semantically
similar to the keywords, we also add our similarity operator
∼. For the CO–topic 98 this process yields the following
XXL query:

SELECT *
FROM INDEX
WHERE article/# ~ "(information exchange)

& XML
& (information integration)"

For CAS queries, we map the given XPath expression in
a straightforward way to a corresponding XXL expression,
adding semantic similarity conditions to all element names
and keywords that appear in the XPath expression. How-
ever, as there are sometimes differences between the XPath
expression and the natural language–based description of a
query, this automatic transformation does not always yield
optimal results. For the CAS–topic 63 this process yields
the following XXL query:

SELECT $A
FROM INDEX
WHERE article AS $A

AND $A ~ "digital library"
AND $A/#/p ~ "authorization & (access control) &

security"

6.3 The INEX Result Evaluation
For each topic the results of all participants are collected
into a result pool for this topic. Then the potentially rel-
evant components from each pool are assessed by a human
who assigns an exhaustivity value and a specificity value. Ex-
haustivity describes the extent to which the component dis-
cusses the topic of request, specificity describes the extent
to which the component focusses on the topic of request.
Each parameter can accept four values:

0 not exhaustive/specific
1 marginally exhaustive/specific
2 fairly exhaustive/specific
3 highly exhaustive/specific

To assess the quality of a set of search results a metric based
on the traditional recall/precision metrics is applied. In or-
der to apply this metric, the assessors’ judgements have to
be quantised onto a single relevance value. Two different
quantisation functions have been used:

1. Strict quantisation is used to evaluate whether a given
retrieval approach is capable of retrieving highly ex-
haustive and highly specific document components.

fstrict(ex, spec) =

{
1 ex=3, spec=3 (short: 3/3)
0 otherwise

2. In order to credit document components according to
their degree of relevance (generalised recall/precision),
a generalized quantisation has been used.

fgeneralized(ex, spec) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 3/3
0.75 2/3, 3/2, 3/1
0.5 1/3, 2/2, 2/1

0.25 1/1, 1/2
0 0/0

Given the type of quantisation described above, each docu-
ment component in a result set is assigned a single relevance
value using the human–based relevance assessment.

Now, the precision and recall for a submitted result can be
calculated using strict quantisation or generalized quantisa-
tion.

6.4 The XXL Experiments
We submitted runs with and without enabling lookups in
the ontology index. With the OI enabled, each keyword in
the query is replaced by the disjunction of itself and all its
related terms.

6.4.1 CO–Topics
For the first experiment we evaluate CO–topics with and
without ontology support. This scenario is used to compare
the precision and recall of the following two runs:

1. CO:Init . . . for this run we do not use the ontology
index for query evaluation.

2. CO:Onto . . . for this run we use the ontology index for
query expansion.

For example consider the CO–topic 98 with the keywords:

"Information Exchange" +"XML" "Information Integration"

The corresponding XXL query for the first run CO:Init with-
out enabling lookups in the ontology index has the following
where clause:

"information exchange" & "XML" & "information integration"

The corresponding XXL query for the second run CO:Onto
using ontology–based query expansion has the following where
clause:

("information exchange" | "data exchange" |
"heterogeneous data") &
("XML" | "semistructured data") &
("information integration" | "information sharing")

For the first XXL query we obtain 7 results with an average
precision of 0.0002 for the strict quantisation and with an
average precision of 0.0043 for the generalized quantisation.
For the second XXL query we obtain 28 results with an av-
erage precision of 0.0002 for the strict quantisation and with
an average precision of 0.0065 for the generalized quantisa-
tion.

However, if we carefully look at the given topic, it turns out
that a reformulation like the following could return better
results. Thus, for the first XXL query we take:

klas
64

klas
64

klas
64

klas
66

klas
64

klas
64

klas
64

("information exchange" | "information integration") &
"XML"

The second expanded XXL query has following structure:

(("information exchange" | "data exchange" |
"heterogeneous data") |
("information integration" | "information sharing")) &

("XML" | "semistructured data") &

The following figure shows the average precision of the strict
evaluation approach for the CO–topic 98 from the first run
CO:Init (left) and from the second run CO:Onto (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: CO:Init:98

quantization: strict; topics: CO
average precision: 0.0081

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: CO:Onto:98

quantization: strict; topics: CO
average precision: 0.1063

(empty topic results ignored)

The next diagrams show the average precision of the gen-
eralized evaluation approach for the CO–topic 98 from the
first run CO:Init (left) and from the second run CO:Onto
(right).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: CO:Init:98

quantization: generalized; topics: CO
average precision: 0.0303

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: CO:Onto:98

quantization: generalized; topics: CO
average precision: 0.0595

(empty topic results ignored)

As the INEX runs had to use automatically generated queries
such an optimization could not be applied. It turns out
that this reformulation in fact yields even better results,
even though the ontology–enabled results include some non–
relevant results.

For the complete run of all 36 CO–topics submitted after
official INEX deadline we obtain following results. The next
two figures show the average precision with strict quantisa-
tion.

INEX 2003: CO:Init

quantization: strict; topics: CO
average precision: 0.0494

rank: 18 (56 official submissions)

Figure 6: 36 CO–topics: XXL without OI (strict)

INEX 2003: CO:Onto

quantization: strict; topics: CO
average precision: 0.0793

rank: 8 (56 official submissions)

Figure 7: 36 CO–topics: XXL with OI (strict)

In the following two figures we see the average precision with
generalized quantisation for the complete CO run.

INEX 2003: CO:Init

quantization: generalized; topics: CO
average precision: 0.0503

rank: 17 (56 official submissions)

Figure 8: 36 CO–topics: XXL without OI (general-
ized)

INEX 2003: CO:Onto

quantization: generalized; topics: CO
average precision: 0.0728

rank: 7 (56 official submissions)

Figure 9: 36 CO–topics: XXL with OI (generalized)

This experiment shows that ontology–based query expan-
sion for keyword–based XML retrieval provides much better
average precesion and better recall for each CO–topic.

6.4.2 CAS–Topics
For the second experiment we evaluate CAS–topics with and
without ontology support. This scenario is used to compare
the precision and recall of the following two runs:

1. SCAS:Init . . . for this run we evaluate the structural
conditions exactly, but we do not use the ontology in-
dex for query evaluation.

2. SCAS:Onto . . . for this run we evaluate the structural
conditions exactly and we use the ontology index for
query expansion.

Because of some technical problems, we did not run all 30
CAS–topics. As an example for the ontology–based query
evaluation on CAS–topics we present the generalized results
for the CAS–topic 63. The strict evaluation of the first and
the second run provides an average precision of 1.0.

klas
65

klas
65

klas
65

klas
67

klas
65

klas
65

klas
65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: SCAS:init:63

quantization: generalized; topics: SCAS
average precision: 0.1224

(empty topic results ignored)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

P
re

ci
si

o
n

Recall

INEX 2003: SCAS:onto:63

quantization: generalized; topics: SCAS
average precision: 0.2025

(empty topic results ignored)

This experiments shows that the XXL search engine is able
to evaluate conditons on XML structure as well as conditions
on XML contents. In addition, the ontology–based query
expansion for the content condition provides much better
average precision and better recall.

7. CONCLUSIONS
The results obtained for our XXL Search Engine in the
INEX benchmark clearly indicate that exploiting semantic
similarity generally increases the quality of search results.
Given the regular structure of the INEX data, we could not
make use of the features for structural similarity provided
by XXL.

To further extend the result quality, we plan to add a rel-
evance feedback step to incrementally increase the quality.
Additionally, we will integrate information from other, ex-
isting ontologies into our ontology and extend the ontology
to capture more kinds of relationships (e.g., instance-of re-
lationships).

For future INEX benchmarks we would appreciate to have
data that has a more heterogenous structure. The INEX
data that is currently available is well suited for exact struc-
tural search with long paths, but not for search engines that
exploit structural diversity.

8. REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivastava. Tree

pattern relaxation. In Jensen et al. [13], pages
496–513.

[2] H. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors. Intelligent Search on XML Data,
volume 2818 of Lecture Notes in Computer Science.
Springer, Sept. 2003.

[3] S. Boag, D. Chamberlin, M. F. Fernandez,
D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language. W3C recommendation, World
Wide Web Consortium, 2002.
http://www.w3.org/TR/xquery.

[4] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
D. Eppstein, editor, Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms
(SODA), pages 937–946. ACM Press, 2002.

[5] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
XSEarch: A semantic search engine for XML. In
VLDB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, September
9-12, 2003, Berlin, Germany. Morgan Kaufmann,
2003.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, 2nd edition,
2001.

[7] S. DeRose, E. Maler, and D. Orchard. XML linking
language (XLink), version 1.0. W3C recommendation,
2001. http://www.w3.org/TR/xlink/.

[8] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. XML-QL. In QL ’98, The Query
Languages Workshop, W3C Workshop, Boston,
Massachussets, USA, Dec. 1998.

[9] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, 1998.

[10] T. Grust. Accelerating XPath location steps. In M. J.
Franklin, B. Moon, and A. Ailamaki, editors,
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, 2002, Madison,
Wisconsin, pages 109–120. ACM Press, New York, NY
USA, 2002.

[11] T. Grust and M. van Keulen. Tree awareness for
relational DBMS kernels: Staircase join. In Blanken
et al. [2].

[12] L. Guo, F. Shao, C. Botev, and
J. Shanmugasundaram. XRANK: ranked keyword
search over XML documents. In A. Y. Halevy, Z. G.
Ives, and A. Doan, editors, Proceedings of the 2003
ACM SIGMOD International Conference on
Management of Data, San Diego, California, USA,
June 9-12, 2003, pages 16–27. ACM Press, 2003.

[13] C. S. Jensen, K. G. Jeffery, J. Pokorný, S. Saltenis,
E. Bertino, K. Böhm, and M. Jarke, editors. Advances
in Database Technology - EDBT 2002, 8th
International Conference on Extending Database
Technology, Prague, Czech Republic, March 25-27,
Proceedings, volume 2287 of Lecture Notes in
Computer Science. Springer, 2002.

[14] C. D. Manning and H. Schuetze. Foundations of
Statistical Natural Language Processing. The MIT
Press, 1999.

[15] R. Schenkel, A. Theobald, and G. Weikum.
Ontology-enabled XML search. In Blanken et al. [2].

[16] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An
efficient connection index for complex XML document
collections. In 9th International Conference on
Extending Database Technology (EDBT), Heraklion –
Crete, Greece, March 14-18, 2004, 2004.

[17] A. Theobald and G. Weikum. Adding Relevance to
XML. In D. Suciu and G. Vossen, editors, The World
Wide Web and Databases: Third International
Workshop WebDB 2000, Dallas, Texas, USA, May
18-19, 2000, volume 1997 of Lecture Notes in
Computer Science, pages 105–124, Berlin, Heidelberg,
2000. Springer.

[18] A. Theobald and G. Weikum. The index-based XXL
search engine for querying XML data with relevance
ranking. In Jensen et al. [13], pages 477–495.

klas
66

klas
66

klas
66

klas
68

klas
66

klas
66

klas
66

Using value-added document representations in INEX

Birger Larsen, Haakon Lund, Jacob K. Andresen and Peter Ingwersen

Department of Information Studies

Royal School of Library and Information Science

Birketinget 6, DK-2300 Copenhagen S, Denmark

{blar,hl,jaa,pi}@db.dk

ABSTRACT
Viewing Information Retrieval from the cognitive
viewpoint we generated different functional and
cognitive representations of the INEX corpus using
both the XML structure and external sources. This
included the use of a citation index and intellectually
assigned descriptors, and an expansion of the document
representation through a domain thesaurus. The aim
was to investigate the possible benefits from applying
the principle of polyrepresentation [3]. Results showed
that neither the descriptors nor the expanded document
representation through the thesaurus could improve
results with the natural language queries used. The
citation index achieved a similar performance to that
obtained using various kinds of titles extracted from the
XML structure.

1 INTRODUCTION
Highly structured XML documents offer unique
opportunities for extracting many different
representations of documents for Information Retrieval
(IR) purposes. In this paper we describe our efforts to
work with combinations of different representations
generated from the corpus of the INEX collection as
well as from external sources. The purpose of the
experiments was to initiate tests of the principle of
polyrepresentation [3] with different cognitive and
functional representations of the document corpus.

The paper is structured as follows: The principle of
polyrepresentation and the cognitive theory of IR
interaction from which it is derived are briefly
discussed as a theoretical framework for the
experiments in section 2. Section 3 describes the
experimental setup, and section 4 analyses the results.
Section 5 gives tentative conclusions.

2 POLYREPRESENTATION
The cognitive theory of IR interaction and the principle
of polyrepresentation derived from it [3] provides a
theoretical background for working with different
representations from several sources. In summary, it is

hypothesised that overlaps between different cognitive
and functional representations of both users’
information needs as well as documents can be
exploited for reducing the uncertainties inherent in
Information Retrieval (IR), and thereby improve the
performance of IR systems. Two or more different
cognitive representations pointing at the same
documents is regarded as multi-evidence of those
documents being relevant, and suggests to apply a
principle of ‘intentional redundancy’ [2] with the
purpose of reducing the uncertainties by placing
emphasis on overlaps between representations. Better
results are expected when cognitively unlike
representations are used, e.g., the document title (made
by the author) vs. intellectually assigned descriptors
from indexers.

Although cognitive theory of IR interaction and the
principle of polyrepresentation is holistic in nature and
amalgamates user-oriented approaches with both
Boolean and best match principles it is, however,
inherently Boolean in much of its reasoning. This is
apparent in the pronounced focus on cognitive retrieval
overlaps, i.e., sets of documents retrieved based on
different cognitive representations, see, e.g., the
appendix example in [3]. A little discussed, but
inherent point is that the structure ensures the quality of
the sets that are matched. But this structure does not
necessarily have to be of a Boolean nature – other
kinds of structure may be implemented. Such may
include the probabilistic query operators in the InQuery
IR system for instance as utilised by [4] to achieve
various degrees of structure in queries.

Inspired by the work of Madsen and Pedersen [12]
Larsen [9] proposes the idea of a polyrepresentation
continuum (See Figure 1 below) as a model for
discussing how structured a given implementation of
polyrepresentation is.

klas
67

klas
67

klas
67

klas
69

klas
67

klas
67

klas
67

UnstructuredStructured

The Polyrepresentation Continuum

Exact match
Sets
Overlaps
Pseudo-ranking

Best match
Thresholds

Fusion of ranks
Continuous ranking

UnstructuredStructured

The Polyrepresentation Continuum

Exact match
Sets
Overlaps
Pseudo-ranking

Best match
Thresholds

Fusion of ranks
Continuous ranking

Figure 1. The polyrepresentation continuum [From 9, p.

36]

At the structured pole of the continuum the
implementations are based on exact match principles,
leading to sets of retrieved documents for each
representation from which overlaps can be formed and
a pseudo-ranking be constructed. At the unstructured
pole of the continuum the implementations are based
on best match principles leading to a rank of the
documents that are retrieved as input for
polyrepresentation. Rather than straight generation of
overlaps between sets, the implementations at the
unstructured pole of the polyrepresentation continuum
will consist of fusing ranks to produce a final ranked
output, perhaps aided by thresholds to provide the
necessary quality by restricting the ranks to be fused to
the top ranked documents only.

Few empirical investigations that explicitly tests the
principle of polyrepresentation have been carried out so
far. Larsen [8] reports a small online Boolean
experiment at the structured end of the continuum. The
MSc thesis of Madsen and Pedersen [12] combines a
highly structured Boolean approach with probabilistic
query operators in a best match system, and is as such
placed closer to the middle of the continuum.

3 METHODS
The main focus of the runs submitted to INEX2003
was on obtaining functionally and cognitively different
representations of the documents. Only simple fusion
strategies for combining the representations were used
because of lacking time to experiment with more
advanced ones (See section 3.2). The runs submitted to
INEX2003 were therefore close to the unstructured
pole of the polyrepresentation continuum. The
investigation of more advanced strategies for how to
combine these in a suitable structured manner
according to the principle of polyrepresentation is the
subject of future work. Note that the purpose of the
experiments reported in the present paper was to
retrieve whole documents, and not document
components as in most approaches in INEX.

Functionally different representations are defined as
representations originating from the same cognitive
agent, e.g., the article title or figure captions made by
the author [3]. In relation to IR, representations are
regarded as cognitively different if they originate from
other cognitive agents than the author, e.g., descriptors
from a thesaurus assigned intellectually to the
documents, or later citations or links to the document
by other authors. The corpus of the INEX test
collections offers excellent opportunities for the
generation of functionally different representations
originating from the author because of the elaborate
XML structure of the documents. In addition, a range
of cognitively different representations of the
documents are available because the journals in the
corpus are indexed in the INSPEC database. A further
opportunity offered by the INEX corpus is to exploit
the references in the bibliographies to generate citation-
based representations.

The InQuery IR system was used for all runs because it
offers the possibility to store different representations
of the documents in fields and to combine these using
both Boolean and softer query operators.

3.1 Indexes and fields1
Two indexes were constructed, each containing three
fields: one with author generated representations, one
with intellectually assigned descriptors from a domain
thesaurus, and one with a citation index generated from
the corpus (See Figure 2 and Figure 3).

The first field consists of different types of titles from
the documents: the article title, the section headings at
all levels, and the cited titles from the bibliographies.
These are either generated or selected by the author.
The inclusion of section headings is inspired by the
Subject Access Project (SAP) [1; 19] where section
headings, figure and table captions were extracted as
representations in addition to the article titles. The use
of cited titles has been proposed by Kwok [6; 7], and
tested by Salton and Zhang [17]. The latter experiment
did not show any general gains from including cited
titles. However, only those articles that were also
source documents in the test collections used were
included in the experiment, i.e., only a limited selection
of cited titles was used in their experiments. The INEX
corpus has all cited titles and may thus provide better
results with the cited titles. The path used for extracting
the cited titles was //bb/atl. This includes the titles of
cited journal articles and conference papers, but not the

1 After submission we discovered a number of errors in the
indexing process. Attempts have been made to correct these,
and the methods and results reported here are for the
corrected runs.

klas
68

klas
68

klas
68

klas
70

klas
68

klas
68

klas
68

titles of cited books or reports. More than 7,000
documents contained such cited titles with an average
of 9.9 cited titles per document.

Titles (FLD001)
(Article title, section
titles, and cited titles)

//fm/tig/atl
//st
//bb/atl

Descriptors (FLD002) Intellectually assigned
descriptors

Citation index (FLD003)
(Boomerang effect)

Best possible tuning with
INEX2002 test collection

Figure 2. Index A (without expansion on descriptors)

The second field consists of intellectually assigned
descriptors from the INSPEC thesaurus. These were
available for 7,711 of the 12,107 documents in the
INEX corpus. Because only relatively few descriptors
are assigned to each document by the INSPEC indexers
this representation contained relatively few index keys.
In an effort to enlarge this representation we expanded
the descriptors by adding all the synonyms (the used
for (UF) relation) as well as the narrower terms (NT)
from the INSPEC thesaurus. Index A contained the un-
expanded descriptors (Figure 2), and Index B contained
the expanded descriptors (Figure 3).

Titles (FLD001)
(Article title, section
titles, and cited titles)

/fm/tig/atl
//st
//bb/atl

Descriptors (FLD002)
(expanded document
representation)

Intellectually assigned
descriptors, expanded
from the INSPEC
thesaurus (NT, UF)

Citation index (FLD003)
(Boomerang effect)

Best possible tuning with
INEX2002 test collection

Figure 3. Index B (with descriptors expanded from the
thesaurus)

The third field in both indexes contained data for
constructing a citation index, i.e., data to identify the
references in each document. When indexed in the
database documents can be retrieved that refer to (cite)
a particular seed document. Such search strategies have
shown promising results [See, e.g., 13; 14; 16], but
have rarely been exploited in IR research2. This is
probably partly due to a lack of citation data in the test
collections developed in the last decade, and partly due
to the lack of seed documents to represent the
information need. A particular approach to identify

2 Increasingly, web search engines exploit link data.
However, there are indications that although similar in
conception links and citations may be quite different in
practice, see e.g., [18]. CiteSeer is an exception because it
uses citations extracted from scientific papers [11].

such seeds automatically was used to construct queries
for the citation index (See section 3.2). The index was
constructed based on the cited titles discussed above in
combination with the cited year. Because there were
numerous typos etc. in the cited titles an
implementation of the edit distance algorithm was used
to identify variants to the same cited document3. 7,111
documents contained references with both cited titles
and cited years. In these documents there were 70,634
unique citations after merging of variants, and these
were mentioned a total of 192,881 times in the
documents. The citations were represented by id-
numbers to ease processing.

3.2 Queries
Only content only (CO) topics were used because only
whole documents were retrieved with the tested
approach.

The same queries were used for both the title field and
the field containing descriptors (FLD001 and FLD002).
These were constructed manually from the title
elements of the CO topics translating the INEX
operators into InQuery’s probabilistic query operators
(See Figure 4).

In order to be able to match the content of the citation
index with the topics, the latter had to be translated into
citations. This was done with a best match version of
the so-called boomerang effect proposed in [8; 10]. In
short, the boomerang effect extracted the citations from
sets of documents retrieved by natural language queries
from a range of functional and cognitive
representations. These citations were used as seeds in a
citation search that can retrieve later documents that
cite the seeds. The occurrence of the citations between
representations and their frequency was used to weight
and select which citations to use as seeds as well as to
weight the seeds in the query (See [10] for details). The
boomerang effect used was the best possible tuning
based on the INEX2002 test collection: citations were
extracted from 8 documents resulting in 252 seed
documents in average per query.

InQuery’s #sum operator was used to combine the
fields (See Figure 4). Only a simple strategy was used
to fuse the fields because the main focus was on
obtaining functionally and cognitively different
representations of the documents. Therefore the runs
can be characterised as being at the unstructured end of
the polyrepresentation continuum. The same queries
were used for index A and index B.

3 We greatly acknowledge the Department of Information
Studies, University of Tampere, Finland for making the
source code for this implementation available to us.

klas
69

klas
69

klas
69

klas
71

klas
69

klas
69

klas
69

#sum (

#field (FLD001 #and(#1(natural language processing)
(#1(human language))) #not(#1(programming
language)) #not(#1(modeling language)))

#field (FLD002 #and(#1(natural language processing)
(#1(human language))) #not(#1(programming
language)) #not(#1(modeling language)))

#field (FLD003 #WSUM(1 3797.98 CIT_ID46361
2404.53 CIT_ID28456 1898.99 CIT_ID43757 1898.99
CIT_ID43816 1898.99 CIT_ID57141 ...)))

Figure 4. Sample query (CO topic 111). Note that the
citation query in FLD003 has been shortened.

3.3 Runs
The two main runs were the runs on index A and index
B to study the effect of the expanded descriptors. We
also did runs on the individual fields to assess their
contribution to the overall result. Six runs are reported
here: IndexA_run, IndexB_run, Titles_run,
Descriptor_run, Descriptor_expanded_run, and
Citation_index_run.

4 RESULTS
Table 1 shows the results for the strict and generalized
quantification functions in inex_eval. Overall, the
results display a low performance compared to the best
runs in INEX2003: For instance, the highest strict
AvgP value was 0.04292 for the Titles_run. The top 10
in INEX2003 was in the 0.1214-0.0664 range.

Run name AvgP
(strict)

AvgP
(generalized)

IndexA_run 0.03818 0.01508
IndexB_run 0.03811 0.01510
Titles_run 0.04292 0.01550
Citation_index_run 0.03359 0.01198
Descriptor_run 0.00996 0.00724
Descriptor_expanded_run 0.00829 0.00699

Table 1. Overall results. Strict and generalized
quantification functions.

Figures 5 to 7 show P-R curves for the runs. It is
obvious from Figure 6 and Figure 8 as well as Table 1
that the expansion of the descriptor document
representation did not improve performance; it rather
decreased it slightly. The difference between the
original and the expanded descriptors are not great
though, and consequently the difference between the
IndexA and IndexB runs are minimal (Figure 5 and
Figure 7).

Figure 6 shows the performance each individual field.
The un-expanded descriptors in themselves perform
quite poorly (AvgP_strict = 0.00996), and the idea of

expanding this representation is supported. The
Titles_run have the best performance of all 6 runs
(AvgP_strict = 0.04292), followed by the
Citation_index_run (AvgP = 0.03359). The same
patterns can be found when the results are measured
with the generalized quantification function; the
general level of performance is lower though.

0,00

0,20

0,40

0,60

0 0,5
Recall

Pr
ec

is
io

n

IndexA_run

IndexB_run

Figure 5. P-R curves for IndexA and IndexB run using
the strict quantification function in inex_eval.

0,00

0,20

0,40

0,60

0 0,5
Recall

Pr
ec

is
io

n

Titles_run
Citation_index_run
Descriptor_run
Descriptor_run_expanded

Figure 6. P-R curves for the individual fields using the
strict quantification function in inex_eval.

klas
70

klas
70

klas
70

klas
72

klas
70

klas
70

klas
70

0,00

0,20

0,40

0,60

0 0,5
Recall

Pr
ec

is
io

n

IndexA_run

IndexB_run

Figure 7. P-R curves for IndexA and IndexB run using
the generalized quantification function in inex_eval.

0,00

0,20

0,40

0,60

0 0,5
Recall

Pr
ec

is
io

n

Titles_run
Citation_index_run
Descriptor_run
Descriptor_run_expanded

Figure 8. P-R curves for the individual fields using the
generalized quantification function in inex_eval.

5 CONCLUSIONS
The overall aim of our runs submitted to INEX2003
was to work on obtaining functionally and cognitively
different representations of the documents. Two of
these were successful: The titles representation
consisting of the article title, headings and cited titles,
and the citation index, which performed fairly well.

The intellectually assigned descriptors did not perform
well, and it was attempted to expand these in the
document representation by using the INSPEC
thesaurus. This was not a success: the expansion
resulted in slightly decreased performance.

Future work includes the investigation of other
expansion techniques on the query side can also be
implemented, e.g., similar to the ones tested in [5]. The
approach tested in the runs was close to the un-
structured pole of the polyrepresentation continuum.
Future work also includes investigations of more
advanced structured query strategies to improve the
quality of the initial set used, and move the tests closer
to the structured pole of the continuum.

6 ACKNOWLEDGMENTS
The InQuery IR system was provided by the Center for
Intelligent Information Retrieval, University of
Massachusetts, Amherst, MA, USA. The edit distance
implementation used was based on the source code for
the ‘like’ approximate string matching program [See,
e.g., 15] kindly lent to us by the Department of
Information Studies, University of Tampere, Finland.
We wish to thank both for the use of these resources
without which the research reported in this paper would
not have been possible.

7 REFERENCES
1. Atherton-Cochrane, P. (1978): Books are for use :

final report of the subject access project to the
Council on Library Resources. Syracuse, N. Y.:
School of Information Studies, Syracuse
University. 172 p.

2. Ingwersen, P. (1994): Polyrepresentation of
information needs and semantic entities : elements
of a cognitive theory for information retrieval
interaction. In: Croft, W. B. and van Rijsbergen, C.
J. eds. SIGIR '94 : Proceedings of the seventeenth
annual international ACM-SIGIR conference on
research and development in information retrieval,
organised by Dublin City University, 3-6 July 1994,
Dublin, Ireland. London: Springer-Verlag, p. 101-
110.

3. Ingwersen, P. (1996): Cognitive perspectives of
information retrieval interaction : elements of a
cognitive IR theory. Journal of Documentation,
52(1), 3-50.

4. Kekäläinen, J. and Järvelin, K. (1998): The impact
of query structure and query expansion on retrieval
performance. In: Croft, W. B., Moffat, A., van
Rijsbergen, C. J. and Zobel, J. eds. Proceedings of
the 21st Annual International ACM SIGIR
Conference on Research and Development in

klas
71

klas
71

klas
71

klas
73

klas
71

klas
71

klas
71

Information Retrieval (ACM SIGIR '98),
Melbourne, Australia, August 24-28, 1998. New
York: ACM Press, p. 130-137.

5. Kristensen, J. (1993): Expanding end-user's query
statements for free text searching with a search-aid
thesaurus. Information Processing & Management,
29(6), 733-744.

6. Kwok, K. L. (1975): The use of titles and cited
titles as document representations for automatic
classification. Information Processing &
Management, 11(8-12), 201-206.

7. Kwok, K. L. (1984): A document-document
similarity measure based on cited titles and
probability theory, and its application to relevance
feedback retrieval. In: van Rijsbergen, C. J. ed.
Research and development in information retrieval
: proceedings of the third joint BCS and ACM
symposium, King's College, Cambridge, 2-6 July
1984. Cambridge: Cambridge University Press, p.
221-231.

8. Larsen, B. (2002): Exploiting citation overlaps for
information retrieval: generating a boomerang
effect from the network of scientific papers.
Scientometrics, 54(2), 155-178.

9. Larsen, B. (2004): References and citations in
automatic indexing and retrieval systems :
experiments with the boomerang effect.
Copenhagen: Royal School of Library and
Information Science. XIII, 297 p. ISBN: 87-7415-
275-0. (PhD thesis - accepted for defence)
[http://www.db.dk/blar/dissertation, visited 11-2-
2004]

10. Larsen, B. and Ingwersen, P. (2002): The
boomerang effect : retrieving scientific documents
via the network of references and citations. In:
Beaulieu, M., Baeza-Yates, R., Myaeng, S. H. and
Järvelin, K. eds. Proceedings of SIGIR 2002 : the
twenty-fifth annual international ACM SIGIR
conference on research and development in
information retrieval, August 11-15, 2002,
Tampere, Finland. New York: ACM Press, p. 397-
398. (Poster paper) [http://www.db.dk/blar
(Preprint), visited 3-8-2003]

11. Lawrence, S., Giles, C. L. and Bollacker, K. D.
(1999): Autonomous Citation Matching. In:
Etzioni, O., Müller, J. P. and Bradshaw, J. M. eds.

AGENTS '99. Proceedings of the Third Annual
Conference on Autonomous Agents, May 1-5, 1999,
Seattle, WA, USA. New York: ACM Press, p. 392-
393. (Poster paper)
[http://citeseer.nj.nec.com/lawrence99autonomous.
html (preprint), visited 16-8-2003]

12. Madsen, M. and Pedersen, H. (2003):
Polyrepræsentation som IR metode : afprøvning af
polyrepræsentationsteorien i et best match IR
system [Polyrepresentation as IR method : test of
the theory of polyrepresentation in a best match IR
system]. [Copenhagen]: Danmarks Biblioteksskole.
106 p.+ XLIII p. (In Danish - unpublished MLIS
thesis)

13. McCain, K. W. (1989): Descriptor and citation
retrieval in the medical behavioral sciences
literature: Retrieval overlaps and novelty
distribution. Journal of the American Society for
Information Science, 40(2), 110-114.

14. Pao, M. L. (1993): Term and citation retrieval - a
field-study. Information Processing &
Management, 29(1), 95-112.

15. Pirkola, A., Keskustalo, H., Leppänen, E., Känsälä,
A.-P. and Järvelin, K. (2002): Targeted s-gram
matching : a novel n-gram matching technique for
cross- and monolingual word form variants.
Information Research, 7(2), -paper no. 126.
[http://informationr.net/ir/7-2/paper126.html,
visited 23-8-2003]

16. Salton, G. (1971): Automatic indexing using
bibliographic citations. Journal of Documentation,
27(2), 98-110.

17. Salton, G. and Zhang, Y. (1986): Enhancement of
text representations using related document titles.
Information Processing & Management, 22(5),
385-394.

18. Thellwall, M. (2003): What is this link doing here :
begining a fine-grained process of identifying
reasons for academic hyperlink creation.
Information Research, 8(2), paper no. 151.
[http://informationr.net/ir/8-3/paper151.html,
visited 8-11-2003]

19. Wormell, I. (1985): Subject Access Project : SAP :
improved subject retrieval for monographic
publications. Lund: Lund University. 141 p.

klas
72

klas
72

klas
72

klas
74

klas
72

klas
72

klas
72

Accurate Retrieval of XML Document Fragments using
EXTIRP

Antoine Doucet
∗

Lili Aunimo Miro Lehtonen Renaud Petit
Department of Computer Science
P. O. Box 26 (Teollisuuskatu 23)

FIN–00014 University of Helsinki
Finland

[Antoine.Doucet|Lili.Aunimo|Miro.Lehtonen|Renaud.Petit]@cs.Helsinki.FI

ABSTRACT
EXTIRP1, a novel XML retrieval system, aims at finding
elements with exact coverage by first dividing XML docu-
ments into a set of minimal XML fragments and then rank-
ing and combining them into retrieved document fragments.
With respect to a query, a similarity measure is computed
for each fragment by combining the scores of a vector space
model with term-based features and a text phrase model.
The similarity measures are propagated bottom-up from the
smallest units to article-sized ancestor elements. The system
also includes query expansion, with which the score calcula-
tion can be iterated.

1. INTRODUCTION
In this paper, we focus on the problem of finding an an-
swer with optimal coverage of the topic, given an unstruc-
tured query (CO topics in INEX). That is, we want to find
a trade-off between responding to a query with a 15 page
article and a fragment that is not sufficient when deprived
of its context. The architecture of the interactive part of the
system is presented in Figure 1. As input, the system takes
a CO topic, and as output, it gives a ranked list of document
fragments. In Figures 2 and 3, the non-interactive part of
the system is described. This non-interactive part is run
offline when the system is taken into use or when the docu-
ment collection changes. Figure 2 shows how the document
collection is transformed into inverted indices consisting of
document fragments of different granularities. Figure 3 il-
lustrates how an inverted text phrase index is created for
each of the different granularities. MFS stands for Maximal
Frequent Sequence (see Section 3.3.1 for definition).

Previously, every single element of the document collection
has been indexed, e.g., see [6, 7], but modeling and comput-
ing a Retrieval Status Value (RSV) for each element causes
a clear problem with efficiency. We limit the set of indexed
elements to those that can be retrieved on their own, and
define the minimal unit of retrieval, such that none of its
parts is big enough to be of interest by itself. An RSV
is computed for each minimal unit using words as features
in the vector space model and multiword expressions. The

∗This author is supported by the Academy of Finland
(project 50959; DoReMi - Document Management, Infor-
mation Retrieval and Text Mining)
1EXacT coverage IR based on static Passage clusters

INPUT: A topic

Topic processing

EXTIRP:
Match topic with records

from document
fagment databases,

calculate joined
 RSV value,

perform upward
 propagation

Processed topic
Document
fragments

represented as
word features

Document
 fragments

represented as
MFS features

Query expansion

Expanded topic

OUTPUT: Ranked list of
document fragments

Figure 1: The system architecture of the interactive
part of EXTIRP.

RSVs of the minimal units are finally propagated upwards
to their ancestors. One or more query expansion steps can
be iterated to form more extensive topic descriptions.

Section 2 describes the XML-related processing of the doc-
ument collection. Our document and query models are pre-
sented in Section 3, followed by the corresponding tech-
niques to evaluate similarities within these models in Sec-
tion 4. We explain our query expansion technique in Sec-
tion 5. The system description ends in Section 6, where we
present the method used to propagate RSVs upwards. We
finally describe our runs in Section 7 and conclude.

2. PREPARATORY PROCEDURES
Finding the most relevant text documents for each given
topic is the basic problem to be solved in traditional IR.
But, as the document collection is in XML format, we can
identify two additional challenges that must be overcome
before any traditional IR methods can be applied. First, the
document collection consists of 125 XML documents which
alone are too big to be retrieved on their own. Therefore, the
collection is divided into smaller XML units which we shall
call XML fragments. Second, the XML fragments contain all
the XML markup that is present in the original XML format.

klas
73

klas
73

klas
73

klas
75

klas
73

klas
73

klas
73

IEEE
document
collection

Create
MRUs

Section
collection

Paragraph
collection

Processing
(stop word pruning

and stemming)

Inverted word
term index
for sections

Inverted word
term index

for paragraphs

OUTPUT:

INPUT:

Figure 2: This module transforms the IEEE docu-
ment collection into word term indices.

Document
fragments

represented by
word features

INPUT:

K-means
clustering
algorithm

JOIN
Concatenate

the MFS indices
into one

MFS index Inverted MFS
index for

document fragmentsOUTPUT:

k clusters :

k MFS indices:
Form MFSs
separately
for each
cluster

Figure 3: This module forms MFS indices. It is run
separately for each of the different levels of granu-
laritry.

Our goal is to convert the XML fragments into a text-only
format where all XML markup has been removed without
losing any of the information that is implicitly or explicitly
coded in the XML structure of the original documents.

2.1 Division of the collection
The division of the collection was performed at two differ-
ent levels of granularity called section-level and paragraph-
level divisions. The levels for these two separate divisions
were defined manually by looking into both the XML DTD
and the XML documents. For example, the division into
section-sized fragments concerned the following XML ele-
ments: sec, fm, bm, dialog, vt. In the document tree,
all of these elements are close descendants of the article

element, and none of them have text node children. In a
similar fashion, the paragraph-sized elements taken into ac-
count in the paragraph-level division are p, p1, p2, ip1,

ip2, ip3, bq. These elements have text node children, and
also, most of the text content of the collection is covered by
choosing these elements. A similar approach with a different
set of element names was chosen by Ben-Aharon et al. [3].

By carefully defining the set of similar elements for each
level, we intend to approximate an unsupervised division
into fragments that is based on structural features only.
Moreover, concentrating on structural similarity and dis-
carding the information about element names will set us
free from any particular document type or DTD. One might
argue that contextual information is neglected by ignoring
information specific to the document type. We believe, how-
ever, that identical content should be valued equally whether
its parent element is called sec (section) or bm (back mat-
ter). Automating the division still remains part of our future
work.

Intra-document links create connections between related XML
elements. For example, footnotes are linked to the para-
graphs that have a reference to the footnote element. Other
examples include figure and table captions, biographical and
bibliographical information, and other out-of-line content.
Fragmentation of the collection separates linked elements
unless both ends of the link belong to the same fragment.
To avoid this, we have included some of the referred content
that would increase the informational value of the fragment.
Again, finding the intra-document links is possible without
knowing the document type by a careful analysis of attribute
values.

After the division, we have a collection of XML fragments.
Each fragment is considered independent of the others, al-
though information about the origin of the fragment is still
included. The fragments can be combined later to make
results with wider coverage, but dividing them further is
hardly sensible as the size of a fragment is already sup-
posed to be sufficiently small. In our system, these XML
fragments constitute what are defined as Minimal Retrieval
Units (MRU).

2.2 Structural conversion
The XML structure of an MRU is not ideal for linguistic
processing. Although XML is a textual format and the
tag names often are words, the semantics of the markup
is different from that of the actual text content and thus

klas
74

klas
74

klas
74

klas
76

klas
74

klas
74

klas
74

should be treated differently. Our goal of a text-only format
is achieved by simply removing all markup; however, this
would lead to the loss of all the information carried by the
structure. To avoid this unnecessary information loss, we
suggest that the structure be analysed and utilised to the
greatest extent possible before being removed.

Unlike Ben-Aharon et al., we set a goal that the structural
analysis must not be specific to any document type. As a
consequence, no particular element type has a special way of
being processed, and also, elements of the same type are pro-
cessed differently under different structural circumstances.
Only the structural properties of an element should deter-
mine the way it is handled.

The starting point of the analysis is the highest level of text
nodes in the tree representation of the XML fragment. Any
text node at a lower level is seen to stand out, and it is
usually formatted differently in a printable version of the
document. For example, all the text with added emphasis is
marked with inline-level tags which often imply changes in
the current typeface. Although not all inline-level elements
denote a change in the typeface, we have found heuristics
with which we can automatically determine whether added
emphasis or other inline-level content is in question. Af-
ter detecting the emphasised content, we can remove the
tags and preserve the emphasis by giving the content more
weight in the index than the unemphasised content, e.g. by
repetition.

3. DOCUMENT AND QUERY MODELS
In our approach, we represent the MRUs by word features
of the vector space model, and by multiword expressions
accounting for the sequential aspect of text. An RSV is
computed for each of those two representations. These val-
ues are later combined to form a single RSV per MRU, that
will later be propagated to parent nodes as described in Sec-
tion 6.

3.1 Preprocessing
The first step of the modeling phase is to cleanse the data.
We do this by skipping a set of words that are considered
least informative, the stopwords. We also discarded all words
of small size (less than three characters).

In addition, we reduced each word to its stem using the
Porter algorithm [10]. For example, the words “models”,
“modelling” and “modeled” were all stemmed to “model”.
This technique for reducing words to their stems allows fur-
ther reduction of the number of term features.

This feature selection phase brings more computational com-
fort for the next steps since it greatly reduces the size of
the document collection representation in the vector space
model (the dimension of the vector space).

3.2 Modeling document fragments
The set of the remaining word stems W is used to represent
the MRUs of the document collection within the vector space
model. Each minimal retrieval fragment is represented by
a ‖W‖-dimensional vector filled in with a weight standing
for the importance of each word w.r.t. that fragment. To

calculate this weight, we used a normalized tfidf variation
following the “tfc” term-weighting components as detailed
by Salton et al. [13], that is:

tfidfw =
tfw · log N

nw� �
wi∈W � tfwi

· log N
nwi � 2

,

where tfw is the term frequency of the word w. N is the
total number of MRUs in the document collection and n the
number of MRUs in which w occurs.

3.3 Extracting Maximal Frequent Sequences

3.3.1 Definition and technique
Maximal Frequent Sequences (MFS) are sequences of words
that are frequent in the document collection and, moreover,
that are not contained in any other longer frequent sequence.
Given a frequency threshold σ, a sequence is considered to
be frequent if it appears in at least σ documents.

Ahonen-Myka presents an algorithm combining bottom-up
and greedy methods in [1], that permits to extract max-
imal sequences without considering all their frequent sub-
sequences. This is a necessity, since maximal frequent se-
quences may be rather long.

Nevertheless, when we tried to extract the maximal frequent
sequences from the collection of MRUs obtained as described
in Section 2, their number and the total number of word fea-
tures in the collection did pose a clear computational prob-
lem and did not actually permit to obtain any result.

To bypass this complexity problem, we partitioned the col-
lection of MRUs into several disjoint subcollections, small
enough so that we could efficiently extract the set of max-
imal frequent sequences of each subcollection. Joining all
the MFS sets, we obtained an approximate of the maximal
frequent sequence set for the full collection. This process is
shown in Figure 3.

We conjecture that more consistent subcollections permit to
obtain a better approximation. This is due to the fact that
MFSs are formed from similar text fragments. Followingly,
we formed the subcollection by clustering similar documents
together using the common k-means algorithm (see for ex-
ample [17, 5]).

3.3.2 Main Strengths of the MFSs
The method efficiently extracts all the maximal frequent
word sequences from the collection. From the definitions
above, a sequence is said to be maximal if and only if no
other frequent sequence contains that sequence.

Furthermore, a gap between words is allowed: in a sentence,
the words do not have to appear continuously. A parameter
g tells how many other words two words in a sequence can
have between them. This parameter g usually gets values
between 1 and 3.

klas
75

klas
75

klas
75

klas
77

klas
75

klas
75

klas
75

For instance, if g = 2, a phrase “president Bush” will be
found in both of the following text fragments:
...President of the United States Bush...

...President George W. Bush...

Note: Articles and prepositions were pruned away.

This allowance of gaps between words of a sequence is prob-
ably the strongest specificity of the method, compared to
the other existing methods for extracting text phrase de-
scriptors. This greatly increases the quality of the phrases,
since the variety of natural language is taken into account.

Another strength of the technique is the ability to extract
maximal frequent sequences of any length. This permits
to obtain a very compact description of documents. For
example, by restricting the length of phrases to 8, a maximal
frequent sequence of 25 words would have to be represented
by thousands of phrases of size 8, even though they would
represent the same knowledge !

3.4 Modeling queries
To build our queries, we only considered words found in
the <title> and <keywords> elements. For consistency, we
applied the same preprocessing to them as to MRUs.

Vector space model. A novelty in INEX 2003 was the
possibility to precede keywords with various operators. A
keyword preceded by “-” meant that this word was not de-
sired, whereas a keyword preceded by “+” indicated that
this word was especially important. We attached different
weights to keywords preceded by such operators:

• no prefix operator: the normal case, weight 1

• +: especially important, weight 1.5

• -: especially not desired, negative weight -1

In practice, things were not that simple, since the same word
could occur within two phrases with contradictory operators
(e.g., “language” in topic 111 occurs in -“programming lan-
guage” and in +“human language”). In such rare cases, we
ignored the word (weight: 0).

Keyphrases. All the phrases occurring in the <title> and
<keywords> elements are stored in the (possibly empty) set
of keyphrases representing the topic. For example, topic 117
(see Figure 4) will be represented by the 4 phrases: “Patri-
cia Tries”, “text search”, “string search algorithm”, “string
pattern matching”.

4. EVALUATING DOCUMENTS
Once document fragments and queries are represented within
our two models, a way to estimate the relevance of a frag-
ment w.r.t. a query remains to be found. As mentioned
earlier, we compute separate RSVs for the word features
vector space model and the MFS model. In a second step,
we aggregate these two RSVs into one single relevance score
for each document fragment w.r.t. a query.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="117" query_type="CO"

ct_no="98">

<title>Patricia Tries </title>

<description>Find documents/elements that describe

Patricia tries and their use.</description>

<narrative>To be relevant, a document/element

must deal with the use of Patricia Tries for text

search. Description of the standard algorithm,

optimisied implementation and use in Information

retrieval applications are all relevant.

</narrative>

<keywords>Patricia tries, tries, text search,

string search algorithm, string pattern matching

</keywords>

</inex_topic>

Figure 4: Topic 117.

4.1 Word features RSV
The vector space model offers a very convenient framework
for computing similarities between MRUs and queries. In-
deed, there exists a number of techniques to compare two
vectors. Eucclidean distance, Jaccard and cosine similarity
being the most frequently used in IR. We have used co-
sine similarity because of its computational efficiency. By

normalizing the vectors, cosine(
−→
d1,

−→
d2) indeed simplifies to

vector product (d1 · d2).

4.2 MFS RSV
To compute a RSV using MFSs, the first step is to create
an MFS index for the MRU collection. Once a set of MFSs
has been extracted and each document fragment has been
attached to its corresponding phrases, as detailed in Sec-
tion 3.3, it only remains to define the procedure to match
a phrase describing a MRU to a keyphrase and compute a
corresponding RSV for each MRU.

Note that from here onwards, keyphrase denotes a phrase
found in a query, and maximal sequence denotes a phrase
extracted from a document fragment.

To compare keyphrases and MFSs, our approach consists
of decomposing keyphrases of a query into pairs. Each of
these pairs is bound to a score representing its quantity of
relevance. Informally speaking, the quantity of relevance of
a word pair tells how much it makes a document relevant
to include an occurrence of this pair. This value depends
on the specificity of the pair (expressed in terms of inverted
document frequency) and modifiers, among which an adja-
cency coefficient, reducing the quantity of relevance given to
a pair formed by two words that are not adjacent.

4.2.1 Definitions:
Let D be a collection of N document fragments and A1 . . . Am

a keyphrase of size m. Let Ai and Aj be 2 words of A1 . . . Am

occurring in this order, and nAiAj
be the number of MRUs

of the collection in which AiAj was found. We define the
quantity of relevance of the pair AiAj as:

klas
76

klas
76

klas
76

klas
78

klas
76

klas
76

klas
76

Qrel(AiAj) = idf(AiAj) · adj(AiAj),

where idf(AiAj , D) represents the specificity of AiAj in the
collection D:

idf(AiAj) = log � N

nAiAj � ,

and when decomposing the keyphrase A1 . . . Am into pairs,
adj(AiAj) is a score modifier to penalize word pairs AiAj

formed from non adjacent words. d(Ai,Aj) indicates the
number of words appearing between the two words Ai and
Aj (d(Ai,Aj) = 0 means that Ai and Aj are adjacent):

adj(AiAj) = ���
��

1, if d(Ai,Aj) = 0
α1, 0 ≤ α1 ≤ 1, if d(Ai,Aj) = 1
α2, 0 ≤ α2 ≤ α1 if d(Ai,Aj) = 2
. . .

αm−2, 0 ≤ αm−2 ≤ αm−3, if d(Ai,Aj) = m−2

Followingly, the larger the distance between the two words,
the lowest quantity of relevance is attributed to the corre-
sponding pair. In our runs, we will actually ignore distances
higher than 1 (i.e., (k > 1) ⇒ (αk = 0)).

4.2.2 Example:
For example, ignoring distances above 1, a keyphrase ABCD
is decomposed into 5 tuples (pair, adjacency coefficient):

(AB, 1), (BC, 1), (CD, 1), (AC, α1), (BD, α1)

Let us compare this keyphrase to the documents d1, d2, d3, d4

and d5, described respectively by the frequent sequences AB,
AC, AFB, ABC and ACB. The corresponding quantities of
relevance brought by the keyphrase ABCD are shown in
table 1.

Assuming equal idf values, we observe that the quantities
of relevance form a meaningful order. The longest matches
rank first, and matches of equal size are untied by adjacency.
Moreover, non adjacent matches (AC and ABC) are not
ignored as in many other phrases representations [9].

4.3 Aggregated RSV
In practice, some queries do not contain any keyphrase, and
some documents do not contain any MFS. However, there
can of course be correct answers to these queries, and those
documents can be relevant answers to some queries. Also, all
document fragments containing the same matching phrases
get the same MFS RSV. Therefore, it is necessary to find
a way to separate them. The word-based cosine similarity
measure is very appropriate for that.

Another possible response would have been to further de-
compose the pairs into single words and form fragment vec-
tors accordingly. However, this would not be satisfying, be-
cause the least frequent words are missed by the algorithm
for MFS extraction. An even more important category of

missed words is that of frequent words that do not frequently
cooccur with other words. The loss would be considerable.

This is the reason to compute another RSV using a basic
word-features vector space model. To combine both RSVs
to one single score, we must first make them comparable by
mapping them onto a common interval. To do so, we used
Max Norm, as presented in [14], which permits to bring all
positives scores within the range [0,1]:

New Score =
Old Score

Max Score

Following this normalization, we aggregate both RSVs us-
ing a linear interpolation factor λ representing the relative
weight of scores obtained with each technique (similarly as
in [8]).

Aggregated Score = λ·RSVWord Features+(1−λ)·RSVMFS

The evidence of experiments with the INEX 2002 collection
showed good results when weighting the single word RSV
with the number of distinct word terms in the query (let
a be that number), and the MFS RSV with the number of
distinct word terms found in keyphrases of the query (let b

be that number). Thus:

λ =
a

a + b

For example, in Figure 4 showing topic 117, there are 11
distinct word terms and 7 distinct word terms occurring in
keyphrases. Thus, for this topic, we have λ = 11

11+7
.

5. QUERY EXPANSION
Query expansion (QE) was used in two of the three runs that
we submitted to INEX 2003. Both of these runs performed
better than the one with no expansion at all. However, as
the two official runs using QE also contained some other pa-
rameters that differed from those used in the run without
QE (See Section 7 for a detailed description of the parame-
ters.), these runs cannot be used to assess the performance
of QE. We did a separate experiment to assess the perfor-
mance of QE alone, and it showed that the average precision
was increased by 11,5 % (from 0.0357 to 0.0398) when using
the strict measure and by 44 % (from 0.0207 to 0.0298) when
using the generalized measure. In the rest of this chapter
we will first describe some background concepts of QE. In
Section 5.2, we will describe our QE method, and in 5.3, we
will describe further work in developing the method.

5.1 Background
It is generally agreed that modern variants of query expan-
sion improve the results of a query engine [2]. However, there
are many different ways in which QE can be performed.
Some methods are based on relevance feedback, which can
be blind or which can involve feedback from the user. In
both cases, the QE approach is local because it is based

klas
77

klas
77

klas
77

klas
79

klas
77

klas
77

klas
77

Document MFS Corresponding pairs Matches Quantity of relevance

d1 AB AB AB idf(AB)
d2 ACD AC CD AD AC CD idf(CD) + α1·idf(AC)
d3 AFB AF FB AB AB idf(AB)
d4 ABC AB BC AC AB BC AC idf(AB) + idf(BC) + α1·idf(AC)
d5 ACB AC CB AB AC AB idf(AB) + α1·idf(AC)

Table 1: Quantity of relevance stemming from various MFSs w.r.t. a keyphrase query ABCD

on the retrieved set of documents. A global QE approach
uses the the information derived from the whole document
collection. Modern global QE methods usually use an auto-
matically constructed thesaurus [11, 4]. Other methods are
based on manually crafted thesauri, such as WordNet, but
experimental studies have shown that if the expansion terms
from such theasuri are selected automatically, QE can even
degrade the performance of the system [16].

5.2 The Process
Our QE process can be considered a form of blind relevance
feedback that has been inspired by the standard Rocchio
way [12] of calculating the modified query vectors. However,
it is different from the traditional relevance feedback frame-
work in that it takes into account only positive terms and
no negative terms and in that it does not take into account
all of the terms in the fragments, but only the best ones.
This limits in practice the number of expansion terms per
QE iteration between zero and ten. However, experimen-
tal studies have shown that even a few carefully selected
QE terms can considerably improve the performance of a
system [15].

Here is the outline of the process:

1. Run EXTIRP. The output from EXTIRP is a set of
ranked lists of document fragments. There is one list
per topic and the fragments are ranked according to
their RSVs with regard to the topic.

2. Take the ten topmost items of each list.

3. Calculate the similarity threshold value.

4. For each topic do:

(a) Take those fragments whose RSV is greater than
the similarity threshold value. Make a list of
words occurring in these fragments followed by
their frequency count, and sort by frequency.

(b) Take the ten topmost words and expand the topic
with them.

(c) Multiply the weights of the old terms by two and
give the new terms a weight of 1.

5. Run EXTIRP with the expanded topics.

We will now describe each of the steps in the process in
more detail. In steps 1 and 5 EXTIRP is run with the same
parameters and the RSV is calculated according to these.
This means that the only things that change from the first

iteration to the second are the keywords in the topic and
the threshold value for similarity.

In step 3, the similarity threshold for a given topic is deter-
mined in the following way: Read the topmost RSV of the
matches for each topic and maintain a list of the six smallest
values. The threshold value is the highest one among the
six smallest values. This way of determining the similarity
threshold value implies that there are always at least six
topics that are not expanded. The topics vary a lot and it
is thus necessary to treat them differently from each other.
The number six was determined by training the QE method
on the topics and assesments of the year 2002. This step
of determining the similarity threshold value is crucial to
the success of the QE step, because running EXTIRP with
different parameters results in radically different RSVs.

In step 4 (a), a list of words occurring in the fragments is cre-
ated. This list is pruned from stopwords, and the remaining
words are stemmed with the Porter stemmer2[10]. A stan-
dard list for English language as well as a collection-specific
list is used as a stopword list. The collection-specific list is
created simply by gathering the most frequent terms in the
collection.

In step 4 (c), the weights of the old terms are multiplied
by two and the new terms are given a weight of 1. The
possible weights of the old terms are: -1, 1 and 1.5. This
means that the term weights in the expanded topic vectors
can have the following values: -2, 1, 2 and 3. The topic
vectors are normalized so that their length is one when they
are processed by EXTIRP.

5.3 Improvement and further work
The above QE method can be developed further in many
ways. We plan to treat different topics in more individual
ways, run the method through more iterations and perform
QE on negative query terms as well. For example, EXTIRP
can be run separately for each topic instead of running it for
all topics at the same time. This would mean a loop in step
4. In this loop, EXTIRP would be run for each topic until
the RSVs of the resulting fragments reach a stable level. In
this way, the number of iterations performed per topic would
vary. The topics that perform well in the beginning would
receive less attention than those which do not perform well
in the beginning but that have a potential for improvement.

Expansion of negative query terms can be performed in a
similar way as expansion of positive query terms. In negative

2The program was obtained from
http://www.tartarus.org/ martin/PorterStemmer/

klas
78

klas
78

klas
78

klas
80

klas
78

klas
78

klas
78

1. Initialisation:

• ∀n ∈ N , score(n)=0

• ∀m ∈ M , score(m)=RSV(m)

2. Iterate:

• ∀m ∈ M : ∀nm ∈ N such that nm is an ancestor
of m, score(nm) = score(nm) + score(m)

3. Final step:

• ∀n ∈ N , score(n)= score(n)

(size(n))UP F

Figure 5: Greedy upward propagation algorithm.

expansion, we will run EXTIRP with the negative terms and
expand the topics with those terms that are most common
in the matches of this negative query.

6. UPWARD PROPAGATION OF MRU’S
The result of the previous steps is the assignment of an RSV
to each MRU of the document collection. In this section, we
propose a technique for assigning an RSV to each of their
ancestors.

Its principle is to propagate upwards the relevance value of
each MRU, weighting it upon the size of the corresponding
element. We define the size of an element to be the sum of
the sizes of all its MRU descendants. In turn, the size of an
MRU is the number of characters it contains.

Let A be an XML document, N the set of elements of A,
and M the set of MRUs of A. We compute the score of
each element n ∈ A as shown in Figure 5. UPF (Upward
Propagation Factor) is a parameter that modulates the im-
portance of the size of the elements. High UPF values give
more penalty to big elements, and cause smaller ones to be
promoted. On the other hand, if UPF=0, for any given
article, the best score will always be given to the full article.

Because we assume that users go through answers in in-
creasing rank order, we decided to avoid to propose them a
document fragment they had already seen. Therefore, as a
postprocessing, we decided to prune every element having an
ancestor with a higher rank. This implies for instance, that
if UPF=0, the set of answers will only contain full articles.

7. OUR RUNS
Our three official runs are described below. More details
and the corresponding results are presented in Table 2.

• UHel-Run1.

– Number of clusters: 200

– MFS frequency threshold: σ = 7

• UHel-Run2.

– Number of clusters: 100

– MFS frequency threshold: σ = 7

• UHel-Run3.

– Number of clusters: 100

– MFS frequency threshold: σ = 7

The results of our first run are based on the paragraph-level
division. Section-sized and bigger results are composites of
the paragraph-sized fragments. Combining the paragraphs
relies heavily on the upward propagation method described
in Section 6. Due to their small size, paragraph-level frag-
ments could benefit from Query Expansion more than bigger
fragments, which partly explains the low evaluation scores
of our first run. Also, small elements are more sensitive to
changes in the fragment combination process.

The minimal result granularity of the second and the third
run is a section. The section-level fragment count is sub-
stantially smaller than the corresponding paragraph count,
which makes it slightly easier to find the best fragments for
each query.

8. CONCLUSIONS
We came up with a new technique for exploiting the logi-
cal structure of XML documents so as to give more focused
answers to information retrieval queries. We developed a
system with the new ideas implemented, and the runs were
submitted to INEX 2003. After preliminary observation, we
notice that EXTIRP performs best at the very beginning of
the top 1,500 answers where recall is relatively low. Consid-
ering the answers ranking between 1 and 50, our best runs
are among the top of all submissions for CO topics.

There is a number of improvements to be achieved. First, we
plan to reuse the clusterings formed prior to the extraction of
maximal frequent sequences, aiming at query optimization.
The idea is that by comparing queries to centroids of MRU
clusters, we will be able to efficiently skip large quantities of
MRUs, without having to compute similarity measures for
each minimal unit individually.

Another concern is the fact that the current upward prop-
agation formula is exponential in nature, meaning a small
variation in the UPF factor can cause a switch from a set
of answers with a large majority of minimal units to a set
of answers with a large majority of full articles. Part of our
future work is to explore the various ways to smooth this
effect.

9. REFERENCES
[1] H. Ahonen-Myka. Finding All Frequent Maximal

Sequences in Text. In Proceedings of the 16th
International Conference on Machine Learning
ICML-99 Workshop on Machine Learning in Text
Data Analysis, Ljubljana, Slovenia, pages 11–17. J.
Stefan Institute, eds. D. Mladenic and M. Grobelnik,
1999.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, ACM Press,
New York, 1999.

[3] Y. Ben-Aharon, S. Cohen, Y. Grumbach, Y. Kanza,
J. Mamou, Y. Sagiv, B. Sznajder, and E. Twito.

klas
79

klas
79

klas
79

klas
81

klas
79

klas
79

klas
79

Runs MRU Granularity UPF QE strict generalized

UHel-Run1 paragraph 2 no 0.0061 (51st) 0.0105 (46th)
UHel-Run2 section 2 yes 0.0323 (31st) 0.0222 (39th)
UHel-Run3 section 5 yes 0.0449 (20th) 0.0235 (38th)

Table 2: Results and ranks of our official runs (out of 56).

Searching in an XML Corpus Using Content and
Structure. In Proceedings of the Second Workshop of
the Initiative for the Evaluation of XML Retrieval
(INEX), Schloss Dagsuhl, Germany, 2003.

[4] C. J. Crouch and B. Yang. Experiments in automatic
statistical thesaurus construction. In Proceedings of
the 15th ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 77–88,
Copenhagen, Denmark, 1992.

[5] A. Doucet and H. Ahonen-Myka. Naive clustering of a
large XML document collection. In Proceedings of the
First Workshop of the Initiative for the Evaluation of
XML Retrieval (INEX), pages 81–87, Schloss Dagsuhl,
Germany, 2002.

[6] K. Hatano, H. Kinutani, M. Yoshikawa, and
S. Uemura. Information Retrieval System for XML
Documents. In Proceedings of the 13th International
Conference on Database and Expert Systems
Applications (DEXA 2002), pages 758–767, 2002.

[7] D. Hiemstra. A Database Approach to Content-based
XML Retrieval. In Proceedings of the First Workshop
of the Initiative for the Evaluation of XML Retrieval
(INEX), pages 111–118, Schloss Dagsuhl, Germany,
2002.

[8] J. Kamps, M. Marx, M. de Rijke, and
B. Sigurbjörnsson. The Importance of Morphological
Normalization for XML Retrieval. In Proceedings of
the First Workshop of the Initiative for the Evaluation
of XML Retrieval (INEX), pages 41–48, Schloss
Dagsuhl, Germany, 2002.

[9] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An
analysis of statistical and syntactic phrases. In
Proceedings of RIAO97, Computer-Assisted
Information Searching on the Internet, pages 200–214,
1987.

[10] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[11] Y. Qiu and H. Frei. Concept based query expansion.
In Proceedings of the 16th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 160–169, Pittsburgh, PA, USA, 1993.

[12] J. J. Rocchio. Relevance feedback in information
retrieval. In Salton, G., editor, The SMART Retrieval
System - Experiments in Automatic Document
Processing. Prentice Hall Inc., 1971.

[13] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing
and Management: an International Journal,
24(5):513–523, 1988.

[14] C. C. Vogt and G. W. Cottrell. Predicting the
performance of linearly combined IR systems. In
Research and Development in Information Retrieval,
pages 190–196, 1998.

[15] E. Voorhees. Relevance feedback revisited. In
Proceedings of the 15th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1–10, Copenhagen, Denmark, 1992.

[16] E. Voorhees. Query expansion using lexical-semantic
relations. In Proceedings of the 17th ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 61–69, Dublin, Ireland,
1994.

[17] P. Willett. Recent trends in hierarchic document
clustering: a critical review. In Information Processing
and Management, 24(5):577–597, 1988.

klas
80

klas
80

klas
80

klas
82

klas
80

klas
80

klas
80

Keyword-based XML Fragment Retrieval: Experimental
Evaluation based on INEX 2003 Relevance Assessments

Kenji Hatano�, Hiroko Kinutani�, Masahiro Watanabe�

Yasuhiro Mori�, Masatoshi Yoshikawa�, Shunsuke Uemura�

� Nara Institute of Science and Technology, Japan
������������	��
���������	�����

� Japan Science and Technology Agency, Japan
��������
���������������

� The National Institute of Special Education, Japan, ������	�
��������
� Nagoya University, Japan

��	�
������������������ ��������
���������������

ABSTRACT
�� ���� ��������� � 	�
��������� ��� �������� ���������
�
���� ����� �� ���������� �� ��� ��������� �� �������
���� ��� �Æ�����
 ��� ������������ �� ��� �
����� ���
�����
� ��������� ����������� ��� 	�
��������� ��� ����
���� ��������� �
����� ��� �������� ���
 �
 ��� � !� ���"���#
���� �� �������� ��� �
���� ����� ����� $������� ��� �
�
��� �������� �����
 ���� ������� �� ��������� �������
 �����
��� � !� %&&' ��������� ������������ �� ���� ������ �� ��
��
(� ��� �) ������ ����� �� ���������� �� ������ ��� ����
����� ��� ������ ��� �*���������� �������� +���� ����������
��� �*���������� �� ����� ���� ��� �
��� �� �) ������ ��
������� �� ��� � !� %&&' ��������� ����������� ��� ��� ��
�� ������� ���� �� ��� �*���������� ������������

Categories and Subject Descriptors
$�'�, -����������� 	����
� ��� ��������./ 0
�����
��� 0�������1����������� �	�
����� ��Æ����� ��� ���
����	������

General Terms
����������� ���������� 2���������� ����������

Keywords
3�
��������� ��� �������� ���������� !��������� �� ����
�Æ�����
 ��� ������������� +���
��� �� ��������� �����������

1. INTRODUCTION
!*�������� ���	�� �������� 4���5 -6. �� �������� �����

���� �� � �������� �������� ������ �� ���
 �����������
�������� �� ��� ���� ������� �� ������� ���� � ����� ����
��
 �� ��������� ���� �� �������� �� ���# ���������� �� �
������� ��
 �� ���������� ��� ������ �������� ��� �����
������ ��������� �
����� ���� ������ ���
 ��������� �����
��� ����� ������� �� �*����� ��� ��������� �� ��� ��������
�� � ������
 ���������

�7���
 -,.� �������� �
 ��� ����� ���� ��� ����������
4�'�5� �� 	���� �� � �������� 8���
 �������� ��� �������
��� ��������� �� ��� ���������� 9���� �7���
� ����� ���
����� � :�*���� 8���
 ���������� �� ���� ���� 	�
����� ���

�2��� ����������� �� ����� ������
 ���� 	�������� �� ���
��������� �� ��� ���������� ����� ��� ����� �7���
��
��
8������� $������� ����� ��� � ��� �� ��� ��������� �����
��� ������� ��� �������� �� ���� ������ ��� �� � �������
�����
 ��� ����� ���� � ���������� 8���
 ���� �����������
��������� �
������ �����8�����
� �� ������� ���� ��� ��
������� �
����� ������ �����
 � ���� ������� ���� �� 8���

���� �� 	�
���� ������ ��������� 3�
���� ������ �������� ��
���� ����� �� �������� ������ ����������� �
 ��������� ����
���� � ������ ���������� �� ��� ���������� ��� ���� ������� ��
��������� ��������� ������� ����� ����� ���� �� 	��� �������
� 8���
 �������� ��� ��� ��������� �� ����

;������ �� ��� �������������� ���	������ �� ��� �����
������ ���������� ����� ��������� ��� �������
 ���� ���� ��
� 	�
��������� ��� �������� ��������� �
����� 0���
	�
��������� ��� �������� ��������� �
����� ���� ������

���� ���� ���������� <��
 ������ ��� �*������� �� ��� ���
����� �
�� ������������ ����� �������� �� ������ �� ���	��
������������ ���� ������� � ���������
�� ��=������ 4><>5
��� � ����� �� ��� ���������� +� � ������� ���
 ��� ����
���� ���
 ��� �
�� �� ��� ���������� �� �� ���� ���� ���
><> ����������� ��� ����������� �� ��������� �������
 ���
��������� ����� �� 	�
��������� ��� �������� ���������
�
������ $������� ��� ��������� �� ��� �������� �� �
������
 �������� �� ��� ����
� ������� ><>�# ���� ���

������ ���� ���� �������� �
��� �� ��� ��������� �����
���������� ��� �������� �� ���� ������ ;������ ��� ���
��������� ������� ���
 �
��� �� �������� ����������� �
��*����������� ��� ������ ������ ���� ���� �� ����� ���
��������� ����� ���������� ��� ���������

<� ���� ���� ��� �������� ��������� ������ �� ���� ��
������� � 	�
��������� ��� �������� ��������� �
����
����� ���������� �� ��� ��������� -?%.� �� ��� ��������
���������� �� ������ ���� ����� �*�������
 ������
 8���
 	�

�����# ����� �� ������� ���� ��� ��(� �� ��������� ������� ��
���� ����� �������� �� �������� ����������)� ��� �����
����� �� ���� ������� ���� �*������
 ����� ��� ���������
���� ������� ��
�� ��� ������ �
 ����������� <� ����� ����

���������
� ��� ��� 7���
 ���	��� ����� �� "��� ��������
�� ������� ������*� ������ ��������� -%� @.�

klas
81

klas
81

klas
81

klas
83

klas
81

klas
81

klas
81

�������� �� �������� �� ��� �������� ��������� �
����
���� ��� ������ ����� 4��� ��� �*������
 �����5 ��� �����
������
 ������ ��� ��������� �� ��������� ��������

+�������� �� -?,.� ��� � !� %&&% ��������� �����������
������ �� ������ �������(� ��� ��������� �� ������� ��
������� �������� <��� ���� ��� ��� ���� ������� �� ��� ���
�������� ��������� �
����� �� ��� � !� %&&' ��������� ��
��������� ��� ���� ������� �� ��� �������� ���� ��� �
����
����� ������� �����
 �� ��� ��������� �������
� �� �� ���������
��������
 �� ����
(� ��� �������� �) ������ �� ��� � !�
%&&' ��������� ����������� �� ��������� ������� ���
 ����
��� ��������

�� ���� ������ �� ����
(� ��� � !� %&&' ��������� ������
����� ����� �� ����� ����������� ��� �������� ��� �
����
����� �) ������ ��:������ ��� ����
���� �� ������� ����
����
(��� ��� ��������� ����������� ����� �� ���� ���������
��� ��*� ������� �� ��� ��������� ����������� ��� �������
��� �Æ�����
 ��� ������������ �� ��� �
�����

<�� ��������� �� ���� ����� �� ������(�� �� �������� A����� ��
�������� ��� 	�
��������� ��� �������� ��������� �
����
�� 0������ %� <���� �� ������ ����
��� �� ��� � !� %&&'
��������� ����������� �� 0������ ' ��� ������� �������������
������ �� �) ������ �� ��� � !� %&&' ��������� �����������
�� 0������ ,� A�����
� �� �������� ���� ����� �� 0������ 6�

2. OUR XML FRAGMENT RETRIEVAL SYS-
TEM

<��� ������� ���������� �������� ��������� ����� ��� ���
������� �� ��� 	�
��������� ��� �������� ��������� �
�
���� �� ���� ������ ����������
 �*���������� ������� ��
������ ����� ��� �
����� ��� �*����� ��� ������������ ��
������� ��� �������� ����������

2.1 Data Model and Retrieval Model
A�� ���������
� ��� �
����B� ���� ����� �� ������� �� ����
�� ��� �2��� ���� ����� -C.� ������� ��� �� ������� ��
� ������������ ����� +������
� ��� ���
 ��������� �������
��� �2��� ���� ����� ��� ���� �� ���� ��������� ���� ��
�������� �� � ����� �� �� ������� ������

�� ��������� ��� ��� ��	� �� ���
 �������������� ��� �
����B�
��������� ����� ����� � ����� ����������� �� ��� ���*����
����� ����� -?C.� ;�������
� ��� ������� ����� �� �� ���
�������� �� � ������� ����� ���� ���� �� �� ������� �����
)�� �
���� ��� �������
 ��� ��������� �
 ����� ���������
������� ������� ���� �������� �����# ���������� ��� �
�
��� ��� ������ ������������ ������� ����B� 8���
 ��� ���
��������� ����� �� ����� �������� �������

2.2 Purpose of Our Research
�� ����������� ��� �
��� �� 	�
��������� ��� ��������
��������� �
������ <��� ����� ������ �� ����� ��� �
��� �� �
�
���� �� ��� ���� �����	�
 ������� ��� ��� ���������
�����	�
 �������� ��� ��� ��	� �� ������������ <�� ������
�� ����� �� ���������� �� �������������� �������� �
�����
���� 	�
���� ���*����
 ������ ��������� ���� ��� �������

��� ������� ���� ��� ���� ��������� ����� ���� ���� �����
������ ����� ���
 ��� ����� �
 ��� ������� �����

�� ������� ������� ����� ��� ����� ���������� �� ��� ��
���������� ������� �� ������� ��� � ���������� ��� ��
����� �������� -?� ??� ?'.� >������ ���� ��� ��������� ��
��� ������ ����������� ��� ����������� �� 	�
���������
����������� ��������� �
������ ����� ��� ���� �� ������� ���
��������� ���������� �Æ������
�)� ��� ����� ����� ��� ���
��� ��� ���� ��������� �� ��� �������� =��� �� �����������
��������� -D� E.� ��� ������� �� �� �������� ��� ���������
������� ���������� ������� ����� �� ��� ���������� <��
����� ��������� ������� ��� ��� ��������� �
����� ��� ���
��� ����������� ��������� �
����� ������� ���� ���� ����
����������� �� ����� ��������� �������� �� ������ �� ��������
���� ��� ������ ������� �����
 �� ����������� ��� ����
������ ������� ��� ������ ����� ���� ��������������� ������
�� ��� ���������� ������ ��� ��� ���� ��������� �
�����
��� ��� ����������� ��������� �
����� ��������
 ������
��� �*������� �� ><> �� ��� ���������� �� �� � ���� ����
><> ����������� ��������� ��������� �������
 ��� ���������
����� �� ����� �
������ $������� ����� ��� ���� ��������
���������� ���� ��������� ��� ��������� �� ��� ��������
�� � ������
 ��������� �� ��������� �� 0������ ?# ���� �����
�
��� �� ��� ��������� �
������ ����� �� ��� �����(� ><>�
��� ��8������ �����8�����
� ��� ��������� �
����� �� ���
������ ���� ���� �� ���� ���� ��� ��������� ����� �����
����� ��� ���������

<� ���� ��� ����� �� ��� ��� ������������ �� ��� ���������
�
������ �� ���� ��������� � 	�
��������� ��� ����
���� ��������� �
���� ����� ���������� �� ��� ���������
-?%.�)�� �
���� ������� �� ��������� �� ���������������
��� ��������� ������ ���� ���� �� ����������� ����� ���
���� ��� �����(� ��
 ����������� �� �������� �� ������� �����
�� ��� ���������� ������� ��� �
����� ���������� �����
��	� ��������� �� ���� ����������� ��� 8���
��� ��� ����*
��� �� ��� ����������)�� �������� �������� ���� ���
��������� ���� �� ������� ���� ��������� �� ����� �� ��
����� � 	�
��������� ��� ��������� �
����� ;������ ���
�� � ���	�� ��������� ��� ��������� ��� �� ��������
����
 ������� ���� ����� ��������� ����� ����� ���	�� -?6.# �
������� ��������� �������� ������� ���� ����� ���� �� �� ��
���������� ��������� �� ��� ���������� �� ����� ������ ��
��	�� ���
 ���� ���� �� �������� ��� ��������� ������� ��
� 	�
��������� 8���
 ����� ��� ��������� A�� ���� �������
��� ���������� �*������� ��� ��� ���������� ��� ����������
���
 ��� ��������� ����� ��� ����������� ������ ��� ���
����������� ��������� ����� �� �������

2.3 Evaluating Our System based on INEX
2003 Relevance Assessments

�� ���� �������� �� ������ ��� ��������� �������
 �� ��� 	�
����
����� ��� �������� ��������� �
���� ����� �� � !� %&&'
��������� ������������ <�� ��������� ����������� ��=���
��� �������� ������ ��� ��������(��# ���� �� ��������� �*
���������� ����������� ����� �� ���� �������� <�� ���
���� ���� ��� ��������� F�*������������G ��� F�����=���
�G
��� 8�����
 ������� �� �H ������������� <�� ������ �� ���
������ ��� ��������� ��� �������� �� ��������� �� � ������
-?D.�� ;���� �� ��� �������� �� ���� ��������������� ������

�<���� �� � ����������� ��� � ��������������� ���� ��
��� ��������� �� -'.�
�+������ ��
 �� ���� ���������� ��������� �� � ��������� ��
���� -?&.# �������� �� ��� ��� ����
 �� �� ���� ������

klas
82

klas
82

klas
82

klas
84

klas
82

klas
82

klas
82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

p
r
e
c
i
s
i
o
n

n=0

n=20

n=50

n=100

n=150

n=200

n=250

n=300

��
��� �� ���������� �� ��� ������ ����� �� ����
���� ��������� ����������� ��������

�� �������� ��� ��� �������� ��������� �
����� A����� ?
��� % ���� ��������������� ������ �� ��� �
���� ����� ��
� !� %&&' ��������� ������������ �� ����� =������ � �����
��� ������� ������ �� ��	���� ����� �� ��=��� �� �����
���� �*������
 ����� ��� ��������� ���� ��������� ���������
�� ������ �� � ������� ������� ��� ��������� �������
 �� ���
�
���� ���� ���������� �� ���� ��� �
����B� ��������� ������

+� ����� �� ����� ��� =������ �� ����	 ���� ��� 	�
����
����� ��� �������� ��������� �
���� ��
 �� ����������
�����
� +������� �� �������(� ��� �������� �������� �� ���
�
������ �� �� ������� ���� ��� �������� ��
 ��� ���
 ������
�� ��� �
����� ��� ���� �� ��� ��������� ������������ �� ���
� !� %&&' ��������� ����������� ���� �� ������ �������(�
��� ��������� �� ������� ��������� ������� �� ������
 ����
��� � !� %&&% ��������� ������������ ��� �
���� ���� �� �
�����
���������� ��� �������� ��������� �
����� �������
��� �
���� ����� �� �������� ����� ��� ���������� ��� ���
�*������
 ����� ����� �� ��������� ������� ��������� �� 0��
���� ?� +� � ������ �� ����� �� ��� ���� ����� ��� ���������
�� ��� ������ �� ��	��� �� ?6& 4�� ������ ��������� ������
�����5 �� ?&& 4�� ��������(�� ����5� ��� �
���� ���� ���	
�������
 4��� <���� ?5� A��� ��� ������������ �� ��������
���� ���� ������ �� ��	��� �� ���
 ����� ��� ��� ��������
���������� ������� ��� ������ �� ��	��� �� ���������� ��
��� ��������� ����� ���� ���� �� ���� ���� �� �� � ��
����� �� <���� %� �� ���� �������� ��� ��� ��������
��������� �� ������ ����� �� �������� ��� ��������� �����
�������� �� ����� ��� ��������� ����� ��(� �� ���� ����
4���5�������� �� ��� � !� �������� ���������� �� ���������
�������� <��������� �� ��� �������� ���� ��������� ������� �

��� �
���� ����� ���� ����� ��� ��������� ���� ������

�<�� ��(� �� ��� ��������� �� ������������ �� ��� ������
�� ��	��� ��������� �� ��� ��� ����������
�)�� �
���� ������ ��������� ������������ ������� � 8���

��� ��� ��������� ����� ���
 �������� �� ��� ����������

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

p
r
e
c
i
s
i
o
n

n=0

n=20

n=50

n=100

n=150

n=200

n=250

n=300

��
��� �� ���������� �� ��� ������ ����� �� ����
���� ��������� ����������� �
�������!���

"���� �� #����
� $�������� �� ��� ������

� ������ ��������(��

& &�&'6@ &�&'E&
%& &�&,'@ &�&,C@
6& &�&6&% &�&6&6
?&& &�&6@D &�&6@D
?6& &�&@@E &�&6%6
%&& &�&@'& &�&6&'
%6& &�&6C% &�&,?@
'&& &�&?@' &�&?'&

��� ��������� ���������� �� ��� � !� %&&' ��������� ��
�����������

;���� �� ��� �������������� ������� �� ����
(� ������ ���
��������� �� ��� ������ �� � !� %&&' ��������� ������������
������ ��� ������ �������� ��� ��� �
����� ��� ���������� ���
�
����B� ��������� �������
 �� ��������� �� � ������� �������
�� ��� ��������� ������������

3. ANALYSES OF INEX RELEVANCE AS-
SESSMENTS

3.1 Analyses of the Relevance Assessments
+� �� ��������� �� ��� �������� �������� �� �������� ���� ���
� !� %&&' ��������� ����������� ��
 ���	 ������� ���
�������� ��������� �
������ ����� ���� �� ������ �������(�
��� ��������� �� ������� ��������� �������� �����8�����
�
�� ����
(� ������ ��� ��������� ��=��� �� ��� ���������
������������)�� �
���� ��� ���� ���� ���
 ����������

�)� ������� ���� �� ��� �������� �� -?@.� ��� ������� �������
���� 6&& ����� �� ����� ��� ������ ��� ���������� <��
������ ��(� �� ������ ��� ��������� ������� �� ��� ��
������� �������� �� ���� � !� ������������

klas
83

klas
83

klas
83

klas
85

klas
83

klas
83

klas
83

0

20

40

60

80

100

120

140

160

180

200

91 92 93 94 95 96 97 98 99 100 101 102103 104 107 108 109 110111 112 113 115 116 117119 121 123 124 125 126

topic ID

#
 o
f
an
sw
er
 X
M
L
 p
o
rt
io
n
s

0

500

1,000

1,500

2,000

2,500

3,000

3,500

#
 o
f
to
k
en
s

of answer XML portions

max. # of tokens

min. # of tokens

ave. # of tokens

��
��� �� #������� �� �%� ���� ���� ��������� �����������

4�)5 ������ �� ��� ��������� �����������# ����� ���
 ������
��� ��������� �� �) ������ ��� ����
(�� ����� �� ����
�������� �� ����
(� ��� ������ ��� ��������� ����� �*
������������ ��� �����=���
 ��� '�

A����� ' ����� ����
��� �� �) ������ �� ��� � !� %&&'
��������� ������������ +��� ���� ��������� ��� ��*�����
�������� ��� ������� ������ �� ��	��� �� ������ ���
���������� ��� ���� ���� �������� ��� ������� �� ������
��� ���������� +� ����� �� ���� =����� �� =��� ����� ����
=�� �) ������ �� ��� ��������� ����������� 4����� ����� �>�
��� IE%� I?&&� I?&%� I??6� ��� I?%?5 ��� ��� ���� ��
���� ��� ���������� �� �� �������� ���� ����� ������ ����
������� �� ��� �) ������ �� ��� ��������� ������������ ��
����� �� ����	 ���� ��� �) ������ ���� ��� ������ ���
��������� ��� ��� ������������� ��� ��� ��������� ������
������ ��������� �� ���� ����� ���� ��� ������� ������
�� ��	��� �� ������ ��� �) ������ �*������ ?&&� �� ������
����� ��� ������� ������ �� ��	��� �� �) ������ ����� �>�
��� IE6� IE@� I?&C� I??&� ��� I??? ��� 6&& ��� �����#
���������� ����� �) ������ ���������
 ���	 ������� ��� �
�
���� A����������� ��� ������ �� ������ ��� ���������
������������
 ������ ���� ���� �) ������

A��� ��� �������������� ������� �� ������ ?, �) ������
4IE'� IE,� IEC� IED� IEE� I?&?� I?&,� I?&D� I??%�
I??'� I??@� I?%'� I?%6� I?%@5 �� ��� ��������� ������
����� �������� ��� ��� �
����� ��� ���������� ��������� ��
�����
 �� ��� �
���� ����� �� ���� �� ��� ��*� ��������

3.2 Reevaluation of Our System
A������ , ��� 6 ���� ��������������� ������ �� ��� �
����
����� �� ������� �������� �� � !� %&&' ��������� ������

������ ����� <���� ' ����� ������� ��������� �� ���� ������
��������� ������ �� ���������� ���� �������� �����������
��������� �� 0������ %�'� ��� ��������� �������
 �� ��� �
�
��� ����� �� ����������� �� '�66J �� ���� �*��������� ��
�� ����� ���� ��� �
���� �������� ������ ������� �� ����� ��
������ �) ������� <�� ����� ����� �� ���� �� ������ �� ���
��������� ��������� �������
 �� ��� �
����� ��� �������� ��
��� �
��� �� �) ������ �� ��� �������� ���������� �� ������
��� �) ������ ��� ��������� �������(� ��� ��������� ��	�
��� �
���� ����� ��������� �������
 �� ��� �
����� �����
�*������ ��
 ��� �
���� ����� ��� ������ ��� ��� ����
����� �������� �� �) ������ �� ��� ��������� ����������� ��
��� �������� ������������ ������� �� ��
� �� �� ��� 	���
������� ��� �
����B� ��������� �������
 �� ������ ���� ����
�� ����� � !� ������������B �
������ ������ �� ����� ���
=�� ������������� ������ �� ��� ��������� ����������� ��� ���
�
�����

<� ������ ��� ����� �� ���� ���������� �� ���� �� ������

���� ��� �������� ��������� ��� �� �� ��Æ���� �� ��=�� ���
����������
 �� ��� ��������� ��� ��� �������� ���������#
�������� �� ����	 ���� �� �� ��������� ��� � !� ������������
�� ��������� ������ �� ��� ��������� ����������� ��������
��� ����� ��������� �������� ��� �� ������������
 ������ ���
������ ��� ���������� �
 ����� ���������� ��������� �
������
�� ��� ���� �� ��� 	�
��������� ��� �������� ���������
�
����� ����� ��� �����������
 ������ ��� ��������� ���
��=��� �� ������� ��������� �������# ����� �� �������� ����
��� ���
 ������ �� �� ��� ��� ��������� ����������� �*�������
�� 0������ '�?�

4. DISCUSSION
+� �� ��������� �� ��� �������� �������� ��������� �������
 ��
��� �������� ��������� �
����� ������� �� ��������� ���

klas
84

klas
84

klas
84

klas
86

klas
84

klas
84

klas
84

"���� �� 	���������� �������� �� �&' ���
�����

�������
I �� ��� I �� ��	���
��������� ������� ��*���� �������

���� '�@?%�%&% %D�DEC @,�?D? @�',?
���	��� @�'?,�@%' C�',% ?,�E&' '�ED%
�	����� ??�D&?�6C6 EC, ,�C%C %E
��� E�%C?�,%' C@6 '�E,' ??
����! C%�EE' @%' ?�6E' %'&
�� '�?%6�%6, '?& %�D@' %
������ ,?�'?C %?% E&@ ?E
��� ?,�&CD�,?6 %&? %�@?' ?
��� ?�@@%�?E& ?E, ?�E6E D
���� ?�@@%�@,& ?E, ?�E6E D
��� D?%�E%' ?'D ?�'6' %
��� C�D6,�,?' ?%C %�?&E ?
��� ?�6&E�''C E% ?�%@? ?
�� ??�@,% E? '%6 E
"� CEC�?%' @6 %DE E
��	��� '@'�?&% @% ,&? %
�	��" %%E�?,, @& D&? 6
#� ?�&%?�6&& 66 %'6 %
�� ?D�@C& 6% C,6 6
�����	� %D�E%' 6& %C% ,

"���� �� #����
� $�������� �� ��� ������ ����� ��
������� ���� ���� ��������� �����������

� ������ ��������(��

& &�&6@, &�&@'&
%& &�&@@@ &�&@EC
6& &�&@DE &�&@@C
?&& &�&CCC &�&CC,
?6& &�&D@@ &�&C'?
%&& &�&C@E &�&@E6
%6& &�&@?? &�&@,6
'&& &�&%6' &�&%?C

���� �� ���� ����� �� ��� ��������� ������������ �� ������
�� ��� �������� ��������� �
���� �������� �����
 �� ��
������� �������
 �� ��� ��������� ������� �� �� ��� ��������
��������� �
���� ���� ��� ���������� �� ������ ��� ����
����� �� ��� ������� �� ��� ���� �� ��� �
����� ����� 4���
�*������
 �����5 ��� �����������
 ������ ��� ���������
��� ��������� �� ��������� �������� $������� ���� ������ ����
�� �������� ����� ��� ���������� ������� ���� ��� �
����
��������� �����
 �� ��������� �������
� <��������� �� ���
����� ���� ��� ��� �������� ��������� �
����� ���� ����
�� ������ ����� ��� ��������� �� ��������� ������� ���� ���
����� ���� �� ��������� �������
� �� ���� �������� �� ��	�
�����=� ������� �� ��� ������������� ������ ����� �) ������
�� ��� � !� %&&' ��������� ������������

4.1 Characteristics of CO Topics
+� �� ��������� �� 0������ '�?� ��� ��(� ��� ��� ������ ��
������ ��� ��������� �� �) ������ ���
 4��� A����� '5�
������ �� �� ������ ����� ��� ��� �
��� �� �) ������ �� ���
��������� ����������� 4��� 0������ '�%5�)�� �� ��� ���������
�����=� ��� ��������� 40�)5 ��� ��� ����� �� ��� ���������
���������� ��� ��������� 4+�)5� 7���
 	�
����� �� 0�)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

p
r
e
c
i
s
i
o
n

n=0

n=20

n=50

n=100

n=150

n=200

n=250

n=300

��
��� (� ���������� �� ��� ������ ����� �� �������
���� ���� ��������� ����������� ��������

������ ��
 ������� �� ���� ������ ������ ���� �� F�������
;�������G F����G ��� F���	���G �����8�����
� 0�) ���
��� ���� �� �������� �������(� ��� ����������)� ��� �����
����� +�) ������ ���� �� �������� �*�������� ��� ����
������ ��������� �� ����� ������ ��� ����������

�� ����	 ��� �*������� �� ��� �
��� �� �) ������ ��� ���
������ �
 ��� ��������� ����������� ������������/

� <���� , ����� ��� ������ �� ��� � !� %&&' ���������
����������� ���� ���� ���� ���� �� ������� �� 6&& ��
	��� �� ������ ��� ��������� ����� 4��������	�����4
5�
���������4�55 �� �8��� �� 4'� '5� �� �������� ����
��� ��(�� �� ��� ������ ��� ��������� ��� �������
���� ����� �� ��� ��������� ����� 4
� �5 K 4'� %5 ��
4'� ?5� ����� ����� ��� ������� ������ �� ��	��� ��
������ ��� ��������� ������ ���� �� ��������

� <���� 6 ����� ��� ������ �� ��� � !� %&&' ���������
����������� ���� ���� ���� ���� �� ������� �� 6&& ��
	��� �� ��� ������ ��� ���������� + ������ �� �����
������ �� �*�������� ������� ���
 �� ��� ������� ��

�����=� 	�
������ <��� �� �� ��
� ��� ������ ���
��������� ������ ����� ����������� �� ��� �������� ��
��� ������ +� � ������� �� �*���� ���� ��� ��� ����
������ ����� ��� �������� �� 4
��5 K 4'� '5� ������
���������� ��� ��������� ���� ������������
 �����
����������
�

������� ��������� ����������� �� ��� �������� ����� ������
������� ������� ��� �� ������� ���� ����������� ����� ������
����� �� ��������� � ����8�����
 ���� ���������� ��� ���
�������� ���������� �� ������ � ����8�����
 ���� ����������
��� �� ������������ ��� �������� ��������� �
����� ���

���� �� ���� ���� ��� ���� �
��� �� �) �������

klas
85

klas
85

klas
85

klas
87

klas
85

klas
85

klas
85

"���� (�)* ��$��� �� �%� ���� ���� ��������� �����������

�����
I �� ��	��� 4�������5

�>
����� 4
� �5

4'� '5 4'�%5� 4'� ?5 4%� '5
E' F������� ;������G ��������� ���� ?D@ '�'CC @%
E, F�
������	 ����
���G LF����� ������������G %'% D' '''
EC ���������� A������ ������ ���� ?D@ C6' %C
ED F����������� !*������G L��� F����������� �����������G 'D' & ',C
EE ���� �������� @E '?, ?D
?&? LF� ����G L����������� %%D '@, %%%
?&, <�
 0���
 ??, C'6 &
?&D �������
 ���������� �������� F��� ��G ��������� �*����� ,@@ DC% '@C
??% LF��������� 0�
�� 0�����G F������� 0��������� 0
����G %%D ''% @?
??' F���	�� ������G F���� ��������G ,'D ?�&?& E&
??@ F�������� �������� ���G F�������� ��������� ���G ''& C&% %&C
?%' ���������������� ����* F������� �������� ������G %,6 6,@ ,D
?%6 L�������� ���8������ ������ ��������� ������� ?6, %,E ,C
?%@)��� ��������� ��� ������� ����� �� �������� �������� %DD C?& ,66

"���� +� #)* ��$��� �� �%� ���� ���� ��������� �����������

�����
I �� ��	��� 4�������5

�>
����� 4
��5

4'� '5 4'�%5� 4'� ?5 4%� '5
E6 L���� ����������� �������� E,& 6E' ,D@
E@ LF�������� ���� ����������G DD6 ?�?C, 6'C

?&C
F����=���� ������������G +� ��������� ����������� �������

?�,DC & @''F���� �����G

??&
F������ �������
G F������ �
�������(�����G ����� �����

D?? @@E ?@%��������� ������������

???
F������� �������� ����������G F����������� ��������G

D&@ ,C, %6'F�������� ��������G LF����� ��������G

4.2 Consistent Criteria
+� �� ��������� �� 0������ %�'� ����� ��� ��� ��������� �*
������������ ��� �����=���
� �� ��� � !� %&&' ��������� ��
���������� ;��� �*������������ ��� �����=���
 ���� ����
������� ������ ��� ��=������� �� ���� ����� ��� ��� ����� ���
�� �� ���������
 �������� ����� ��� ��������� ��� ��������
�� � ����� ������

A�� �*������ <���� @ ����� ��� ��� ��������� ���� ����
�������� �� 4
� �5 K 4'� '5 �� ����� I?%6� �� ����� �� <����
@ ���� ����� ��� ���� ������ ������������� ����� ��� ���
���������� ������ �� ���� ����� �� ��� ��� ���������� ���
�� �������� ���	� �� ��� ��� ��������� ������� �� ��� ������
�� ����	 ���� ��� ��������� ������� �� � ����� ������
�� ��������� ������� �� ��� �����# ��������� ����� ��� � ���
�� �������� �������������� �� ���� ����������� � ���� ���
��������� ����� 0��� ��������������� ����� ���������� ����
���������� ������ ����������� �� ��� �������� ��������� �
�
����� �� ��� � !� %&&% ��������� ������������ ��� ���������
F���������G ��� F���������G ������� ����� ������� � ������
���� ��� ��� �������� ����� �� ��� ��� ���������# ����� ��
����	 ��� ����� �������� ��� ��� ������ �����8�����
� ���
� !� %&&' ��������� ����������� ���� ��8���� ��������� ��
"������� ���� ������ �� �*������������ ��� �����=���
� +�
�������� �� �������� ���� � ��=������ �� ������ ��� �����
������ ����� ��� �������� �� ��� ���� �������� �� �����
I?%6 �� <���� @� <��� �� �� ��
� �� ������� ���� �� ������
������
 ��=�� ���� ��� ������ ��� ��������� �� �� ��� ���
������ ����������� ��� ������ ������ ��������� ����� ��
����� � !� �������������

5. CONCLUSION
�� ���� ������ �� ����
(�� ��� � !� %&&' ��������� ������
����� ����� �� ���������� �� ����� ������ ��� ���������
�� �) ������� ��� �������� ���� ������������� ������ �� ���
��������� ������������

�� �������
 ��������� "������ ��� �������
 �� ���� �����# ��
���������� � ����� ���� ��� �� ������ ��� ��������� �� ���
�� ��� ���
 � ��� ������ ��� ��������� �� �����8���� ���
��� ������ �� ��������� ������������ �� ���� ����� ���� �����
��� ��� �
��� �� �) ������ ��� ����
(��� ��� ��������� ������
������)�� �
���� ����� �� ������ ����� ��� ��������� ��
��������� �������� ���� �� �������� �����
 �� ��������� �������

����� ��� ������ ��� ��������� ���������� ��� ����������
H�������� �������� �� ��� �������� ��������� �
����� ���
��������� ��	��� �� ��Æ���� �� ��������� ��������� ������
����� ���� ���� ��� ��8��������� �� ��� ��� �������� ��
������� �
������ $������� �� ���� �� ���� �� �������� ���
�������� ��������� �
����� �� ���� �
���� ��� ������ ���
������ ���� ���=�� ��� ��������� �������� �� ��� ���������� ���
�����
 �� ������������ ��� � !� %&&, ��������� �����������
�� ��=�� 0�) ��� +�) ������ ����� ������� ��� ��� �����
)� ������� ��� �������� ��������� �
����� ������ �������
�����
 "���� �
��� �� ������ ��� ������ ��� �� ���� ���������
������� �� ��� ������ �
 ����������

��������� �� ����	 ���� �� �� ��������� �� ��=�� ��� � !�
���� ����������
��� �

���� ��8������ ���� �*������� ������
�� �������� ���� ��� � !� %&&%M%&&' ��������� ������������
��� �� ������ �� � !� %&&,� �� ����������� �� ���� �� ��
=�� ��� �������� �� �*������� ������� �� �������� �� ��������

klas
86

klas
86

klas
86

klas
88

klas
86

klas
86

klas
86

"���� ,� �&' ���
����� ��������� 4
� �5 K 4'� '5 �� ��$�� -��+

=�� ���� I �� ��	���
��$�%%%$	�&'($�	�����)�* ??%D
��$�%%%$	�&'($�	�����)�*$���)�* D@'
��$�%%%$	�&'($�	�����)�*$���)�*$���) * %?6
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$"��)�* 'C
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$"��)�*$�	�)�* ??
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$"��)�*$"��)�* %,
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$�)�* @'
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$�)�* ,E
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$�) * '%
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$�)+* ''
��$�%%%$	�&'($�	�����)�*$���)�*$���) *$�)'* D%
��$�%%%$	�&'($�	�����)�*$���)�*$���)'* ','
��$�%%%$	�&'($�	�����)�*$���)�*$���),* '&D
��$�%%%$	�&'($�	�����)�*$��)�*$���)�*$�)�* @6
��$�%%%$	�&'($�	�����)�*$��)�*$���)�*$�)�* @D
��$�%%%$	�&'($�	�����)�*$��)�*$���) *$�)�* ',
��$�%%%$	�&'($�	�����)�*$��)�*$���) *$�)�* 6,
��$�%%%$	�&'($�	�����)�*$��)�*$���) *$�) * %6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
recall

p
r
e
c
i
s
i
o
n

n=0

n=20

n=50

n=100

n=150

n=200

n=250

n=300

��
��� +� ���������� �� ��� ������ ����� �� �������
���� ���� ��������� ����������� �
�������!���

��� ������ �� � !� %&&%M%&&' ��������� ����������� ����
���� ��� �������� �� ������ �� ��� � !� %&&, ����� 9����(
��� ���������� �� ������ ��� ��������� �� ��� ���������

6. ACKNOWLEDGMENTS
<��� ���	 ��� �����
 ��������� �
 ��� �������
 �� !��
������� �������� 0������ 0������ ��� <��������
 4�!�<5�
N����� ����� ������ I?,CD&?'&� I?,CD&'%6 ��� I?6&?C%,'�
��� ���� ��������� �
 ��� ���� H������� ��� !����������

0������ ��� <��������
 4�H!0<5 2������ F+������� ��
��� <��������
 ��� !���
��
 ������G �� ��� N���� 0������
��� <��������
 +����
 4N0<5� N�����

7. REFERENCES
-?. 0� +������� 0� ������������� ��� O� >���

>;�������/ + 0
���� ��� 3�
����;���� 0����� ����
H��������� >��������� �� ����� �� ��� ����
�����������
 ���������� �� ���� ���������� �����
6P?@� �!!! �0 2����� A���M���� %&&%�

-%. 0� +���Q���� ��� 2� ����� �7���
 ��� �2���
A���<�*� 9�� ������
����-$$���� �	�$.�$!��/��	��"������!�����������$�
A��� %&&'� �'� ���	��� >���� ?, A������
 %&&'�

-'. $� �� ;���	��� <� O����� $�N� 0���	� H� 0����	���
��� O� ���	��� �������� ����

���� ����� �� ���
����! "##
������! ���������! ����
�!
��#
����������! ��� $�������%�� ������ %D?D ��
�&� � 0�������R������ 0��� %&&'�

-,. 0� ;���� >� ����������� �� A� A�������(�
>� A�������� N� H����� ��� N� 0��S���� �7���
 ?�&/ +�
��� 7���
 ���������
����-$$���� �	�$.�$!/��	�� ��� %&&'� �'�
���	��� >���� ?% ������� %&&'�

-6. <� ;��
� N� 2����� �� �� 0���������7����� ���
!� ������ !*�������� ���	�� �������� 4���5 ?�&
40����� !������5� ����-$$���� �	�$.�$��0�!���
)��� %&&&� �'� H������������� @)������ %&&&�

-@. 0� ;�*��� ��� �� H
�� �7���
 ��� �2��� A���<�*�
H�8����������
����-$$���� �	�$.�$!/��	��"������!��	�/��	������$�
��
 %&&'� �'� ���	��� >���� &% ��
 %&&'�

-C. N� ����	 ��� 0� >�H���� ��� 2��� ��������
4�2���5 R������ ?�&� ����-$$���� �	�$.�$!�����
 ��� ?EEE� �'� H������������� ?@ ������� ?EEE�

-D. 0� ������ N� ������ Q� 3��(�� ��� Q� 0�����
�0!����/ + 0������� 0����� !����� ��� ���� ��
����� �� '(�� �����������
 ���������� ��)��� �����
���� $����� ����� ,6P6@� ������ 3�������� 0���
%&&'�

klas
87

klas
87

klas
87

klas
89

klas
87

klas
87

klas
87

-E. � OT������ � A���� �� +����������� ���
3� O��U"������ �������)������� ��� H�������� ����
$
H!�� �� ����� �� ��� *��� +��%���# �� ���
�����	� ��� ��� �	�
����� �� ��� ,����	�
� �����
%@P'%� !H���� ���� %&&'�

-?&. � OT������ O� 3�(��� � A���� ��� �� �������
!��������� ��� !����������� �� ��������������� ���
H��������� <�������� ������� 9��������
 �� >��������
�������� 0������ @� 0��� %&&'�

-??. �� O��� A� 0���� �� ;����� ���
N� 0���������������� �H+ 3/ H��	�� 3�
����
0����� ���� ��� >��������� �� ����� �� ��� '--.
"�� �/�0� �����������
 ���������� ��
���������� �� ����� ����� ?@P%C� +�� 2����� N���
%&&'�

-?%. 3� $������ $� 3�������� �� ��������� �� Q����	����
��� 0� 9������ >���������� ��� 9��� �� H��������
H������ ��� ��� >��������� �� ����� �� ��� *���
+��%���# �� ��� �����	� ��� ��� �	�
����� �� ���
,����	�
� ����� 6CP@,� !H���� ���� %&&'�

-?'. R� $��������� Q� 2���	������������ ��� +� ;������
3�
���� 2��*����
 0����� �� ��� O������ �� �����
�� ��� �(�� �����������
 ���������� �� ����
���������� ����� '@CP'CD� �!!! �0 2����� ����
%&&'�

-?,. N� 3����� �� ���*� �� �� H�"	�� ���
;� 0�����"T�������� ��� H��������/ ���� �� H�������V
�� ����� �� ��� '1�� "����
 �����������
 "�� �/�,
���������� �� ,������� ��� ��	�
�#���� �
��������� ,����	�
� ����� ,&EP,?&� +�� 2�����
N���M+��� %&&'�

-?6. �� 3��(��� ��� N� W����� 2������ H�������� H���������
�� ����� �� ��� '-�� "����
 �����������
 "�� �/�,
���������� �� ,������� ��� ��	�
�#���� �
���������� ,����	�
� ����� ?CDP?D6� +�� 2�����
N��
 ?EEC�

-?@. N� ���� ��� +� �� R����� ��� �� � !�%&&%� �� ����� ��
��� *��� +��%���# �� ��� �����	� ��� ��� �	�
�����
�� ��� ,����	�
� ����� ?''P?,&� !H���� ���� %&&'�

-?C. O� ������ ��� H� ;��(�Q����� 2��*���� ����/ +
����� �� 7���
 >������� >�������� �
 ������� ���
0��������� "�� 2���������� �� ����������
 ������� ?64,5/,&&P,'6�)��� ?EEC�

-?D. +� R����� >� $�������� O� 3�(��� N� 3����� N� <����
3� $������ � A���� � OT������ 2�)�������
<� HT�����	�� ��� Q� ����� !��������� �������
���	�����B� H������
����-$$/��	���/�������$���!$1�����$�� ���	�����"�
>��� %&&%�

klas
88

klas
88

klas
88

klas
90

klas
88

klas
88

klas
88

An Approach to Structured Retrieval Based on the Extended Vector Model
Carolyn J. Crouch

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Sameer Apte
Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

apte0002@d.umn.edu

Harsh Bapat
Persistent Systems Pvt. Ltd.

Pune, India 411016
+91 (20) 567 8900

harsh_bapat@persistent.co.in

ABSTRACT
In this paper, we describe our approach to XML retrieval,
which is based on the extended vector space model initially
proposed by Fox [5]. The current implementation of our
system and results to date are reported. The basic functions
are performed using the Smart experimental retrieval
system. Early results confirm the viability of the extended
vector space model in this environment.

1. INTRODUCTION
When we began our work with INEX last year, our goal
was to confirm the utility of Salton’s vector space model
[10] in its extended form for XML retrieval. Long
familiarity with Smart [9] and its capabilities led us to
believe that it could be used for this purpose. Our
approach was described in the proceedings of last year’s
workshop [3]. Much initial effort was spent on the
translation of documents and topics from XML to internal
Smart format and the subsequent translation of results back
into INEX format. When we reported our results in [3],
our system was still in a very rudimentary stage.
In 2002, we had an idea and began implementation.
During the past year, we have built upon and extended that
work. We now have an operational system. For the sake
of clarity, a brief overview follows.

1.1 Background
Everyone involved in information retrieval is familiar with
the vector space model, wherein documents and queries are
represented as weighted term vectors. The weight assigned
to a term is indicative of the contribution of that term to the
meaning of the document. Very commonly, tf-idf weights
[11] or some variation thereof [12] are used. The similarity
between vectors (e.g., document and query) is represented
by the mathematical similarity of their corresponding term
vectors.
In 1983, Fox [5] proposed an extension of the vector space
model—the so-called extended vector space model—to
allow for the incorporation of objective identifiers with
content identifiers in the representation of a document. An
extended vector can include different classes of
information about a document, such as author name,
publication date, etc., along with content terms. In this
model, a document vector consists of a set of subvectors,
where each subvector represents a different class of

information (i.e., concept class or c-type). Our current
representation of an XML document/topic consists of 18 c-
types (i.e., abs, ack, articl_au_fnm, article,au_snm, atl,
au_aff, bibl_atl, bibl_au_fnm, bibl_au_snm, bibl_ti, ed_aff,
ed_intro, kwd, rname, st, ti, pub_yr, bdy) as defined in
INEX guidelines. Subjective subvectors are those with a
body of text associated with them (i.e., abs, ack, atl,
bibl_atl, bibl_ti, ed_intro, kwd, bdy). Similarity between
extended vectors is calculated as a linear combination of
the similarities of the corresponding subvectors.
Use of the extended vector model for document retrieval
normally raises at least two problems: the construction of
the extended search request [4, 6] and the selection of the
coefficients for combining subvector similarities. For
XML retrieval, the CO query in particular can be roughly
translated into extended vector form by distributing the
keywords across the subjective subvectors. (CAS queries
are more difficult; we are working on automating this
process.) The second problem—the weighting of the
subvectors themselves—remains open to investigation.
Another issue of some interest here is the weighting of
terms within the subvectors. (We have produced some
useful results in relation to the term weighting issue; our
work on the weighting of subvectors is promising but not
well developed. In any case, subvector weighting is
unlikely to have a measurable effect within the large INEX
window.)
The extended vector capability of Smart appeared to us
well suited for XML with respect to the retrieval of
documents. But there is no facility for retrieving at the
element level (or at various levels of granularity), which is
a requirement of INEX tasks. We are interested in
determining the feasibility of incorporating the
functionality (i.e., flexibility and granularity) required for
XML retrieval within the extended vector environment.
We are currently investigating methods that have been
suggested by others (e.g., Grabs and Schek [7, 8]).
However, more work is necessary before conclusions can
be drawn.

1.2 System Description
Our system handles the processing of XML text as follows:

(1) The documents are parsed using a simple XML
parser available on the web. Each of our 18 c-
types is now identifiable in terms of its XML path.

klas
89

klas
89

klas
89

klas
91

klas
89

klas
89

klas
89

(2) The documents and queries are translated into
Smart format and indexed by Smart as extended
vectors. (The results reported in this paper are all
based on an indexing which considers the body of
the document as a single entity; i.e., paragraphs
and sections, for example, are not recognized.)

(3) Retrieval takes place by running the queries
against the indexed collection. The result is a list
of articles ordered by decreasing similarity to the
query. (A number of term weighting schemes are
available through Smart.)

(4) For each query, the top 100 articles are converted
back into INEX format and reported.

The retrieval itself is straight-forward. The only variation
is the splitting of certain CAS queries into separate portions
which are then run in parallel to ensure that the elements
retrieved meet the specified criteria. See Section 2.2 for an
example of this type.

2. EXPERIMENTS
In the following sections, we describe the experiments
performed with respect to the processing of the CO and
CAS topics, respectively. In all cases, we used only the
topic title and keywords as search words in query
construction. As indicated previously, this year’s effort
focused on producing a working system—by our
definition, a system that returns competitive results with
respect to at least some INEX task(s). To demonstrate that
our system is functional, we first processed the INEX 2002
topics (under the original inex_eval) to compare our results
to those already reported. We then processed the 2003
topics. The results are all reported here.

2.1 Using CO Topics
Our first task is to formulate the CO topic in extended
vector form. Of the 18 c-types composing the extended
vector, 8 contain subjective identifiers (i.e., abs, ack, atl,
bibl_atl, bibl_ti, ed_intro, kwd, bdy). The extended vector
topic is formed by associating the search words of the topic
with each of these 8 c-types. The remaining c-types
contain objective identifiers and are not used in
formulating CO queries. Our more interesting experiments
are discussed briefly below. (See [1] for details.) The
subvectors are equally weighted in all these cases.

2.1.1 2002 Topics
Our term weighting experiments include:

Tuned Lnu-ltu Term Weighting: In this experiment, we
tuned the collection as indicated by Singhal, et. al., in [13].
Results under generalized quantization were 0.065 whereas
strict quantization produced 0.095.
Augmented tf-idf (atc) Term Weighting: 2002 topics
under generalized quantization produced an average
precision of 0.033.

Retrieval at the Element Level: In this experiment, we
used indexings of the collection at the paragraph and
section levels in addition to the article level. (Untuned or
estimated Lnu-ltu weights were used in these early
experiments.) For each query, the rank-ordered lists were
sorted and the top 100 elements reported. Average
precision was 0.042 under generalized quantization.

2.1.2 2003 Topics
Our 2003 CO submission was based on parameters that
produced the best results for 2002 CO topics, i.e., Lnu-ltu
term weighting with equal subvector weights. The recall-
precision graphs for 2003 CO topics under the revised
inex_eval are given below in Figures 1 and 2. The results
under inex_eval_ng (overlap ignored) are shown in Figures
3 and 4. Corresponding results under inex_eval_ng
(overlap considered) are shown in Figures 5 and 6.

Figure 1. Recall-precision for CO, Gen

klas
90

klas
90

klas
90

klas
92

klas
90

klas
90

klas
90

Figure 4: Recall-precision for CO, Strict under ng

(overlap ignored)
Figure 2. Recall-precision for CO, Strict

Figure 5: Recall-precision for CO, Gen under ng

(overlap considered)
Figure 3: Recall-precision for CO, Gen under ng

(overlap ignored)

klas
91

klas
91

klas
91

klas
93

klas
91

klas
91

klas
91

Figure 6: Recall-precision for CO, Strict under ng

(overlap considered)

To recap: Our results for 2003 INEX CO topics are on the
whole good, ranking in the top 10 of the 4 evaluations
(Figures 3, 4, 5, and 6) under inex_eval_ng. Yet although
we were able to produce decent results for the 2002 CO
topics under the original inex_eval, our results for the 2003
CO topics under the revised inex_eval fall far from the top.
We are still assessing the causes.

2.2 Using CAS Topics
We were able to formalize the extended vector CO topics
fairly easily. The extended vector CAS topic formulations,
on the other hand, present more of a challenge. Direct use
of the extended vector model does not guarantee that each
keyword will occur in the specified context. To effect this
result, we currently split certain CAS queries into separate
portions which are then run in parallel to ensure that the
elements retrieved meet the specified criteria. Consider,
for example, the title section of CAS query 8:
 <title>
 <te>article</te>
 <cw>ibm</cw><ce>fm/aff</ce>
 <cw>certificates</cw><ce>bdy/sec</ce>
 </title>
In this case, the query is to return a ranked list of articles as
specified by the target element <te>. The narrative
specifies that the body or sections of relevant documents
should contain information about the use of certificates for
authenticating users on the Internet. And since the context
of the content word ibm is fm/aff, the author(s) of those
documents must be affiliated with IBM. Thus the query

should retrieve only those articles on the use of certificates
whose author(s) are affiliated with IBM. To guarantee that
the system returns only those articles, we split the query
into two parallel queries as follows:

Q1: <cw>ibm></cw><ce>fm/aff</ce>
 Q2: <cw>certificates</cw><ce><bdy/sec</ce>
Affiliation and section are two different c-types. So query
1 searches for documents containing the objective identifier
ibm in the affiliation subvector. Query 2 seeks articles
whose body or section(s) contain the term certificate.
Smart returns a ranked list of documents for both queries.
The intersection of these lists is the final, ranked list of
documents returned. This approach—the splitting of a
query into parts—is a first step in the process of using
objective ctypes to filter results appropriately.
This year we experimented with different term weighting
schemes for CAS topics. We performed these experiments
first on the 2002 topics. Equal subvector weighting was
applied in each case. Experiments performed during the
past year using the INEX 2002 queries are described
briefly below. (See [2] for details.) Evaluation for these
topics was performed through the original inex_eval.

2.2.1 2002 Topics
Untuned Lnu_ltu Term Weighting: All subvectors are
weighted in this fashion. Average precision was 0.179
under generalized and 0.222 under strict quantization.
Lnu_ltu (for subjective subvectors) and nnn (for objective
subvectors) Term Weighting: Here we used simple term
frequency weights (nnn) for the objective subvectors
combined with Lnu_ltu weights for the subjective
subvectors. Average precision was 0.187 under
generalized and 0.235 under strict quantization.
Augmented tf-idf (atc) Term Weighting: All subvectors
were weighted with atc weights. Average precision was
0.194 and 0.238 under generalized and strict quantization,
respectively.
Augmented tf-idf (atc—for subjective subvectors) and nnn
(for objective subvectors) Term Weighting: These weights
returned an average precision of 0.192 under generalized
and 0.243 under strict quantization.
All of these results rank in the top 10 when compared to
the best case results reported for INEX 2002 topics.

2.2.2 2003 Topics
Our 2003 submission used atc term weighting for all
subvectors with equal subvector weights. Due to the
exigencies of the academic schedule, we were able to
submit only under VCAS. Results await availability of the
corresponding INEX evaluation package, but we do not
expect them to be useful at this point. We need to modify
our methods so that the appropriate filters are applied

klas
92

klas
92

klas
92

klas
94

klas
92

klas
92

klas
92

before results are returned.
During the past year, we produced a working system. An
overview of our results may be seen in Table 1. The
column labeled UMD (for University of Minnesota Duluth)
presents our results, which may be compared with the best
result reported for that task (in the INEX column).

3. CONCLUSIONS
In 2003, our efforts were directed at producing a working
system for structured retrieval based on the extended vector
model. In our view, this year’s results have demonstrated
the viability of such an approach. However, structured
retrieval requires additional capabilities beyond the scope
of normal vector-based systems, and thus the question
remains. Is our model—the extended vector model—able
to support the functionality required in this environment?
Our system is still in an early stage of development. The
issue of term weighting has now become clearer; the
weighting of the subvectors themselves is still an open
question. The major challenge is to develop a method of
returning results at the element level, i.e., to retrieve at the
desired level of granularity. Our plans include further
investigation of the methods of others along with the
development of an approach that may be better suited to
our own environment. Another major focus is the
development of appropriate techniques for handling CAS
topics effectively.

Table 1. Comparison of Best Case Avg Precision for CO Topics

 UMD INEX

 gen strict gen strict
'02 Topics 0.0650 0.0950 0.0700 0.0880
'03 Topics:
inex_eval 0.0263 0.0648 0.1036 0.1214

'03 Topics:
inex_eval_ng* 0.1331 0.1312 0.1783 0.1857

'03 Topics:
inex_eval_ng**

0.1433

0.1575

0.1542

0.1584

* overlap ignored; ** overlap considered

4. REFERENCES
[1] Apte, S. Adapting the extended vector space model for

content-oriented XML retrieval. Master’s Thesis,
Dept. of Computer Science, University of Minnesota
Duluth (2003).
www.d.umn.edu/~ccrouch/publications.html

[2] Bapat, H. Adapting the extended vector space model
for structured XML retrieval. Master’s Thesis, Dept.
of Computer Science, University of Minnesota Duluth
(2003). www.d.umn.edu/~ccrouch/publications.html

[3] Crouch, C., Apte, S., and Bapat, H. Using the extended
vector model for XML retrieval. In Proc of the First
Workshop of the Initiative for the Evaluation of XML
Retrieval (INEX), (Schloss Dagstuhl, 2002), 99-104.

[4] Crouch, C., Crouch, D. and Nareddy, K. The
automatic generation of extended queries. In Proc. of
the 13th Annual International ACM SIGIR Conference,
(Brussels, 1990), 369-383.

[5] Fox, E. A. Extending the Boolean and vector space
models of information retrieval with p-norm queries
and multiple concept types. Ph.D. Dissertation,
Department of Computer Science, Cornell University
(1983).

[6] Fox, E., Nunn, G. and Lee, W. Coefficients for
combining concept classes in a collection. In Proc. of
the 11th Annual International ACM SIGIR
Conference, (Grenoble, 1988), 291-307.

[7] Grabs, T. and Schek, H. Generating vector spaces on-
the-fly for flexible XML retrieval. In Proc of the
ACM SIGIR Workshop on XML and Information
Retrieval, (Tampere, Finland, 2002), 4-13.

[8] Grabs, T. and Schek, H. ETH Zurich at INEX:
Flexible information retrieval from XML with
PowerDB-XML. INEX 2002 Workshop Proceedings,
(Dortland, 2002), 35-40.

[9] Salton, G. Automatic information organization and
retrieval. Addison-Wesley, Reading PA (1968).

[10] Salton, G., Wong, A., and Yang, C. S. A vector space
model for automatic indexing. Comm. ACM 18, 11
(1975), 613-620.

[11] Salton, G. and Buckley, C. Term weighting approaches
in automatic text retrieval. In IP&M 24, 5 (1988),
513-523.

[12] Singhal, A. AT&T at TREC-6. In The Sixth Text
REtrieval Conf (TREC-6), NIST SP 500-240 (1998),
215-225.

[13]Singhal, A., Buckley, C., and Mitra, M. Pivoted
document length normalization. In Proc. Of the 19th
Annual International ACM SIGIR Conference,
(Zurich,1996), 21-19.

klas
93

klas
93

klas
93

klas
95

klas
93

klas
93

klas
93

Cooperative XML (CoXML) Query Answering at INEX 03
Shaorong Liu and Wesley W. Chu

UCLA Computer Science Department, Los Angeles, CA 90095
{sliu, wwc}@cs.ucla.edu

ABSTRACT

The Extensible Markup Language (XML) is becoming
the most popular format for information representation
and data exchange. Much research has been done in
providing flexible query facilities while aiming at
efficient techniques to extract data from XML documents.
However, most are focused on only the exact matching of
query conditions. In this paper, we describe a cooperative
XML query answering system, CoXML, which
cooperates with the users by extending query relaxation
techniques and provides approximate matching of query
conditions. We also present our participation effort in the
Initiative for the Evaluation of XML Retrieval (INEX)
with CoXML.

1. INTRODUCTION
With the growing popularity of the Extensible Markup
Language (XML) [13], much information is stored and
exchanged in the XML format [1]. XML is essentially a
textual representation of hierarchical (tree-like) data
where a meaningful piece of data is bounded by matching
starting and ending tags, such as <name> and </name>.

To cope with the tree-like structures in the XML model,
several XML-specific query languages have been
proposed (e.g., XPath [16], Quilt [3], XML-QL [14] and
XQuery [17]) lately. All these XML query languages aim
at only the exact matching of query conditions. Answers
are found when those XML documents match the given
query conditions exactly. However, this may not always
be the case in the XML model. To remedy this condition,
we are developing a query relaxation framework for
searching answers that match the given query conditions
approximately. Query relaxation enables systems to relax
a query to a less restricted form to derive approximate
answers. Such a technique has been successfully used in
the relational databases (e.g., CoBase [5]) and has proven
to be a valuable technique for deriving approximate
answers.

In the XML domain, the need for query relaxation
increases since the flexible nature of the XML model
allows varied structure or values, and the non-rigid XML
tag syntax enables users to embed a wealth of meta-
information in XML documents. Query relaxation is more
important for the XML model than for the relational
model because:

1. The schema in the XML model [15] is substantially
larger and more complex than the schema in the
relational model. Therefore, it is often unrealistic for
users to understand the full schema and compose
very complex queries. Thus, it is critical to be able to
relax a user’s query when the original query yields
null or insufficient answers.

2. As the number of data sources available on the web

increases, it is becoming increasingly common to
build systems that gather data from the
heterogeneous data sources. The structures of these
data sources are different although using the same
ontology for similar contents. Therefore, the
capability to query against differently-structured data
sources is becoming increasingly important [8, 9].
Query relaxation allows a query to relax its structure
and matches data sources with relaxed structures.

Query relaxation in the XML model, however, introduces
new challenges. Query relaxation in the relational model
is basically focused on the value aspect. For example, for
a relational query “find a person with a salary range 50K
– 55K”, if there is no answer or not enough answers
available, it can be relaxed to a query “find person with a
salary range 45K – 60K.” In the XML model, in addition
to the value relaxation, a new type of relaxation called
structure relaxation is introduced. Structure relaxation
relaxes the nodes and/or edges of a query tree.

Further, we shall develop a methodology to provide
automatic structure relaxations and to evaluate the
effectiveness of XML structure relaxations.

A knowledge-based relaxation index structure called
XML Type Abstraction Hierarchy (X-TAH) is introduced
to provide scalable XML query relaxations. X-TAH is a
hierarchical tree-like knowledge structure that builds
multi-level knowledge representation about the XML data
tree. X-TAH can be used to guide the XML query
relaxation process.

The paper is organized as follows: section 2 provides
some background information including XML data model,
query model and XML query relaxation types. Section 3
describes the system architecture used for INEX 03
retrieval task. Query execution and query relaxation
processes are presented in Section 4. The experimental
performance is discussed in Section 5. Finally we

klas
94

klas
94

klas
94

klas
96

klas
94

klas
94

klas
94

summarize our participation effort in INEX 03 and
discuss future works in Section 6.

2. BACKGROUND
We first briefly describe the XML data and query model
and then introduce query relaxation types in the XML
model.

2.1 Data Model and Query Model
An XML document can typically be represented as an
ordered, labeled tree where nodes correspond to elements
and attributes, and edges represent element inclusion
relationships. Each node has a label which is the tag name
of its corresponding element or attribute. Elements’ text
content or attributes’ values become the values of their
corresponding nodes. Similarly, a query against an XML
document can be represented as a tree with two types of
edges: a parent-child edge denoted as “/”, or an ancestor-
descendant edge denoted as “//”.
Note that in the paper, we treat an attribute as a sub-
element of an element and a reference IDREF as a special
type of value.

2.2 Query Relaxation Types
In the XML model, there are two types of query
relaxations, value relaxations and structure relaxations:

2.2.1 Value Relaxation

In the XML context, value relaxation involves expanding
the value scope of certain nodes to allow the matching of
additional answers. A value can be relaxed to a range of
numeric values or a set of non-numeric values. Figure 1
illustrates an example of numeric value relaxation and an
example of non-numeric value relaxation. The query in
Figure 1b is a relaxed query for that in Figure 1a by a
numerical value relaxation, and the query in Figure 1d is
a relaxed query for that in Figure 1c by a non-numeric
value relaxation.

2.2.2 Structure Relaxation

In the XML context, structural relaxation is the process of
relaxing the nodes and/or edges of a query tree. After the
relaxation, a new query tree may have a different

structure than the original query tree. There are three
types of structural relaxations.
1) Node Re-label
In this relaxation type, certain nodes can be re-labeled to
similar or equivalent tag names according to the domain
knowledge. For example, in INEX 03, domain experts
have identified sets of equivalent tags as shown in Figure
2. With this domain knowledge, the query
/article/bdy//sec[about(., “XML”)] can be relaxed to
/article/bdy//section[about(., “XML”)] by generalizing
node sec’s label to section. Thus, subsections (i.e.,
/article/bdy//ss1, /article/bdy//ss2 and /article/bdy//ss3)
about XML can also be returned as approximate answers.

2) Edge Relaxation
In an edge relaxation, a parent-child edge ('/') in a query
tree can be relaxed to an ancestor-descendant edge ('//').
The semantics of an edge relaxation is that while the
original query finds answers with only a parent-child
relationship, the new query will be able to find answers
with an ancestor-descendent relationship which is a
superset of a parent-child relationship. For example, a
query /article /bdy/sec[about(.,“IR”)] can be relaxed to
/article/bdy //sec[about(.,“IR”)] by relaxing the structural
relationship between bdy and sec from “/” to “//”.
/article/bdy// sec[about(., “IR”)] can be further relaxed to
/article/bdy//section[about(., “IR”)]. As a result, any
subsection within an article’s body about IR is also
returned as an approximate answer.
3) Node Deletion
In this relaxation type, certain nodes can be deleted while
preserving the “superset” property. When a node v is a
leaf node, it can simply be removed. When v is an internal
node, the children of node v will be connected to the
parent of v with ancestor-descendant edges (“//”). For
example, a query /article/bdy/sec[about(., “IR”)] can be
relaxed to /article//sec[about(.,”IR”)] by deleting internal
node bdy so that a section in an article’s appendix about
IR can also be returned as an approximate answer.

paragraph

p1 p2 p3 ip1 ip2 ip3 ip4 ip5 ilrj item-nonep

section

sec ss1 ss2 ss3

(a) Equivalent names for paragraph-like tags

(b) Equivalent names for section-like tags

Figure 2: Domain knowledge for equivalent tags in INEX.

article

year

2001-2003

article

year

1998-2003

article

title

“XML

(d)

Figure 1: Two examples of value relaxation.

article

title

“Semi-structured
Data”

(c) (b) (a)

klas
95

klas
95

klas
95

klas
97

klas
95

klas
95

klas
95

3. THE CoXML FRAMEWORK

Figure 3 shows the architecture of the cooperative XML
query answering system (CoXML), which performs two
types of functions: document indexing and query
processing.
Document Indexing
While a SAX parser [12] parses XML documents, the
Index Builder builds indices on the data based on the
index configurations provided by the Index Configuration
module (Section 3.1). The Index Builder module builds
several types of indices (Section 3.2) for query processing.
Query Processing
An XML query is first parsed by the Query Parser to
check its correctness. If the query is invalid, it will be
returned to the user with the error information. Otherwise,
the Query Processor will consult the Index Manager to
load the corresponding indices to process the query. If
there are enough XML answers returned, the Result
Ranking module will rank the results based on their
relevancy to the query and return the ranked results to the
user. If there are null or insufficient answers available, the
X-TAH in the Knowledge Base will guide the Query
Relaxation Manager to relax the query. Then the relaxed
queries will be resubmitted to the Query Processor for
answering. This process will be repeated until there are
enough answers available or the query is no longer
relaxable.

3.1 Index Configurations
XML documents in the INEX collection are document-
centric. There are two types of tags in these documents: 1)

semantic tags, and 2) presentation tags. Semantic tags
describe the semantics of the elements, such as <article>,
<bdy> and <sec> in Figure 4. Presentation tags, however,
encode no semantics but the presentation styles of their
embedding texts. For example, <scp> in Figure 4 is a
presentation tag: it informs a browser to display the text
bounded by <scp> and </scp> in small caps.

Presentation tags sometimes are undesirable in query
processing. For example, suppose a user wants to find an
article that has a section with a title containing a keyword
“knowledge”, which can be expressed in XPath as
//article [contains(//sec/st, “knowledge”)]. Intuitively, the
XML document fragment in Figure 4 is an answer
because the title of the article’s section (Line 4-7) is
“Knowledge Based…”. However, if we do not ignore the
markup <scp> and </scp> (Line 4), it will not be
returned as relevant since the presentation tag <scp>
separates “K” from “NOWLEDGE”.
To support keyword and phrase matching in document-
centric XML documents, it is necessary to ignore such
presentation tags [2]. The set of ignorable tags during
indexing is listed in the Index Configuration module
(Figure 3). For XML documents in the INEX collection,
the list of ignorable tags for index configurations is
shown in Table 1.

Category Ignorable Tags

List-items item-bold, item-both, item-bullet, item-
diamond, item-letpara, item-mdash, item-
numpara, item-roman, item-text

Lists li, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le,
list, numeric-list, numeric-rbrace, bullet-list

Text font,
style, size,

emphasis etc

ss, tt, b, ub, it, rm, scp, u, sub, super, large,
ariel, bi, bu, bui, cen, rom, h, h1, h1a, h2, h2a,
h3, h4

3.2 Indexing XML Documents
Each node in an XML data tree is represented by a triple
(ID, size, level), where ID uniquely identifies the node in
the XML document collections, size indicates the size of
the sub-tree rooted at this node and level describes the

SAX
Parser

XML Documents

Index
Builder

Index
Manager

Knowledge Base
(X-TAH)

Query
Parser

Query
Processor

Query Relaxation
Manager

XML Query

Relaxed
Queries

Result
Ranking

Query Results

XML
Indices

Figure 3: The CoXML System Architecture.

Index
Configuration

Document Indexing

Query Processing

Human

1. <article>
2. <bdy>….
3. <sec>
4. <st>K<scp>NOWLEDGE</scp> B<scp>ASED</scp>
5. S<scp>EMANTIC</scp> T<scp>EMPORAL</scp>
6. I<scp>MAGE</scp> M<scp>ODEL</scp>
7. </st> …
8. </sec> ….
10. </bdy> ….
11. </article>

Figure 4 : An XML document fragment.

Table 1: Index configurations used in INEX 03.

klas
96

klas
96

klas
96

klas
98

klas
96

klas
96

klas
96

node’s height in the data tree. The advantage of this
encoding scheme is that the hierarchical relationship
(either parent-child or ancestor-descendant) between any
pair of nodes can be checked in constant time.
Values of nodes are processed in the following three steps:
1) A stop word list is used to delete words with weak
discriminative powers (such as articles, pronouns,
conjunctions and auxiliary words). This step significantly
reduces the index size.
2) The Lovins stemmer [7] is used to derive word stems.
For example, the stem for “clustering”, “clusters” and
“clustered” is “cluster”. Word stemming reduces the
index size and also supports keyword matching.
3) Each stem is represented as a pair (ID, pos), where ID
is the unique identifier of a node containing this stem and
pos is its relative position in the node’s value. We assign
a node’s ID to its corresponding value to avoid the
expensive join operations between nodes and their values;
and keep each stem’s relative position in a node’s value to
support phrase matching. The use of relative position
minimizes index size. More importantly, relative
positions are easily adaptable to changes in XML
documents. Deleting a stem from or inserting a new stem
into a node v in an XML document only affects the
relative positions of the stems in node v, but not any other
stems in the XML document. Using a stem’s global
position in a document to represent a stem, however, is
expensive to maintain in case of any change in XML
documents. Deleting a stem from or inserting a new stem
into an XML document affects the global positions of all
the following stems in the XML document.
To support efficient and scalable query processing, the
Index Builder builds several types of indices, as listed
below:
 Tag Name Index (tag name name identifier)

Each tag name s is mapped to a unique name
identifier (NID) to minimize index size and
computation overhead by eliminating string
comparisons.

 Node Index (name identifier (ID, size, level))
Each name identifier is mapped to a set of nodes (in
the form of (ID, size, level)) whose labels are the
same as the one represented by the name identifier.

 Inverted Stem Index (stem s (ID, pos))
Each stem s is mapped to a set of pairs (ID, pos),
where ID is the unique identifier of the node that
contains stem s and pos is its relative position in the
node’s value.

 Text Size Index (ID text size)

For each node that has a value, its ID is mapped to
the number of words it contains. The text size index
is useful for result ranking (Section 4.4).

The indices for the XML document in Figure 5 are shown
in Table 2, which consist of four indices: a tag name
index (Table 2.a); a node index (Table 2.b); an inverted
stem index (Table 2.c) and a text size index (Table 2.d).

Stem (ID, pos) pairs

bas (3, 1) (7, 2)

imag (3,2) (4, 3)

knowledg (3, 0) (7, 1)

retrief (3, 3) (4, 1)

3.3 Knowledge Base
Knowledge Base is an important part in the system
architecture, which facilitates XML query relaxation and
consists of the following two parts:

1) Domain Ontology

Domain ontology provides the semantic relationships
among the tag names in an XML dataset, such as groups
of equivalent or similar tag names, which can guide the
node re-label. For example, Figure 2 lists two sets of
equivalent or similar tag names for INEX 03, one for
paragraph-like nodes (Figure 2a) and another for section-
like nodes (Figure 2b).

Tag Name NID

article 0

appendix 1

body 2

section 3

NID Nodes (ID, size, level)

0 (1, 5, 1)

1 (5, 1, 2)

2 (2, 2, 2)

3 (3, 0, 3) (4, 0, 3) (7, 0, 3)

ID Text Size

1 1000

2 600

… …

7 100

article

body

section section

appendix

section

“Knowledge Based
Image Retrieval…”

“It retrieves
the images…”

“A knowledge
base is …”

Figure 5 : A sample XML document tree.

2

3 4

5

7

1

Table 2: Indices for the XML document in Figure 5: a)
maps a tag name to a unique name identifier; b) maps a
name identifier to a set of nodes in the format of (ID, size,
level); c) maps a stem to a set of (ID, pos) pairs; and d)
maps a node ID to its text size.

(c) An inverted stem index

(b) A node index (a) A tag name index

(d) A text size index

klas
97

klas
97

klas
97

klas
99

klas
97

klas
97

klas
97

2) Knowledge-based XML Relaxation Index (X-TAH)

Query relaxation enlarges the search scope of query
conditions which can be accomplished by viewing a
query object at a higher conceptual level. To support
query relaxation in the XML model, we are generating
two types of relaxation index structures, XML Type
Abstract Hierarchy - X-TAH: value relaxation index and
structure relaxation index for guiding value and structure
relaxations respectively.

An X-TAH is a tree-like multi-level knowledge
representation of the structure and value characteristics of
an XML data tree. X-TAH can be automatically
generated by first identifying a set of similar objects (i.e.,
similar values or similar structure fragments) based on
XML relation types, then clustering these objects based
on their inter-object distance, and finally assigning
meaningful internal node representatives [6]. Objects in
an XML value relaxation index are values of XML
elements and attributes, while objects in an XML
structure relaxation index are structure fragments of XML
data trees. X-TAH has two types of nodes: internal nodes
and leaf nodes. This differentiates it from a traditional
cluster which has no internal nodes. An internal node in
an X-TAH is a representative that summarizes the
characteristics of all the objects in that cluster, while a
leaf node is an object that is either a value (in the XML
value relaxation index) or a structure fragment of an
XML data tree (in the XML structure relaxation index).
For example, Figure 6 is an X-TAH for the values of
//fig//no in the INEX collection. Figure 7 is an X-TAH for
structure relaxation for //article/*//sec.

4. QUERY PROCESSING&RELAXATION
The control flow for processing the INEX query topics is
illustrated in Figure 8. First, each topic is translated into a
tree representation that the Query Processor can follow

and process. Next, the query is executed to produce a set
of results. If there are enough answers produced, the
Result Ranking ranks each result based on its relevancy to
the query. Otherwise, the Query Relaxation Manager
relaxes the query based on an X-TAH (Knowledge Base).
The relaxed queries are then submitted to the Query
Processor for deriving approximate answers. This process
will iterate until either there are enough answers or the
query is no longer relaxable.

4.1 Transformation of INEX Query Topics
The topic transformation can be accomplished by the
following three steps:
1) Translating each INEX query topic expressed in XPath
[16] into a tree representation. This is a straightforward
step as most XPath expressions use tree structures.
2) Categorizing each term and phrase in the <title></title>
part of a query into one of the three categories as defined
below:

 Figure 6: An Example of value relaxation index.

Value relaxation index for
//fig//no values in the INEX
document collections

O2 O3 O4

R1

O5 O6 O7

R2

O8 O9

R3

R4

R5

O1

O10

Figure 7: An example of structure relaxation index.

Structure Relaxation Index
for query pattern
//article/*//section

Query Topic

Query Processor

Query Relaxation
Manager

Enough
Answers?

Relaxed
Query

Result
Ranking

Query Results

Y

N

KB
(X-TAH)

15

7

4 3

3-4 2 1

1-2

6 5

5-6

3-6

1-6

9 8

8-9

7-9

11 10

10-11

7-11

1-11

1-15

O1: //article/bdy/sec O2: //article/bdy/sec/ss1
O3: //article/bdy/sec/ss1/ss2 O4: //article/bdy/sec/ss1/ss2/ss3
O5: //article/bm/sec O6: //article/bm/sec/ss1
O7: //article/bm/sec/ss1/ss2 O8: //article/bm/app/sec
O9: //article/bm/app/sec/ss1 O10 : //article/bm/app/sec/ss1/ss2
R1 : //article/bdy//sec R2 & R4: //article/bm//sec
R3 : //article/bm/app//sec R5 : //article//sec

 Figure 8: The control flow of CoXML query processing.

klas
98

klas
98

klas
98

klas
100

klas
98

klas
98

klas
98

 PREFER (P): any term or phrase prefixed by “+”
belongs to this category.

 REJECT (R): any term or phrase prefixed with “-“ or
appearing after “!=” operator belongs to this category.

 NORMAL (N): any term or phrase not in the
PREFER or REJECT category is classified in the
NORMAL category.

3) Expanding a query’s value predicates in the
<title></title> part with terms and phrases in the
<keyword></keyword> part that do not appear in the
<title></title> part. Such terms and phrases are in the
KEYWORD (K) category.
For example, the tree representation for the INEX 03
query topic 89 (Figure 9) with classified terms and
phrases and expanded keyword value predicates is shown
in Figure 10.

4.2 Query Processing
After topic translation, a query tree is sent to the Query
Processor for execution. Several query processing
strategies have been proposed for XML tree pattern
queries (e.g., [10, 11]). The basic idea of these query
processing strategies is to decompose an XML tree
pattern query into a set of basic structural relationships
(i.e., parent-child and ancestor-descendant) between pairs
of nodes. Query answers can be derived by first matching
each of these basic structural relationships and then
combining these basic matches. Matching each structural
relationship is usually based on XML indices and
structural join algorithms (e.g., [10, 4]). We leverage on

these query processing strategies for deriving the exact
matched query answers with additional care for
processing value constraints in a query tree.
As illustrated in section 4.1, each term and phrase in the
<title></title> and <keyword></keyword> part of a query
topic is classified into one of the four categories. The
semantics for terms and phrases in the PREFER,
NORMAL and KEYWORD categories are quite clear.
The semantics for terms and phrases in the REJECT
category, however, is context sensitive. If a value
predicate in a query contains only REJECT category
terms and phrases, it is interpreted as “strictly MUST
NOT”. Otherwise it means “fuzzy MUST NOT”. For
example, for the query tree in Figure 10, the semantics for
“R: SOFT, SOM” under node bdy is different from that
for “R: Kohonen” under node snm. The semantics for the
first one is that if an article’s body (bdy) contains either
term “SOFT” or “SOM”, it is still an answer but with
lower relevancy. However, the semantics for the second
one is that if an author’s surname (snm) contains the term
“Kohonen”, it will not be returned as an answer.

4.3 Query Relaxation
If there is no answer or not enough available answers, the
Query Processor will call the Query Relaxation Manager
to relax the query in the following three steps:
1) A set of relaxable conditions as well as their respective
relaxation order are generated. For example, for INEX 03
query topic 85, //article[.fm//yr >= 1998 and .//fig//no
>9]//sec[about(.//p, ‘VR, “virtual reality”, “virtual
environment”, cyberspace “augmented reality”’)], the set
of relaxable conditions and their relaxation order may be
assigned as: relaxing the value of figure numbers
(//article//figure/no > 9) first and then relaxing the value
of the article’s year (//article/fm/yr >= 1998).
2) For each relaxable condition, a relaxation index (X-
TAH) will be selected to guide the relaxation process.
The Query Relaxation Manager will first examine the
internal representatives to find the one that contains the
exact or closest match to the relaxable condition and relax
the query condition accordingly. There are two types of
operations in an X-TAH: i) Generalization – moving up
the hierarchy to enlarge the search scope; and ii)
Specification – moving down the hierarchy to narrow the
search scope. The query relaxation process may incur a
sequence of Generalization and Specification operations.
3) The relaxed queries will be sent to the Query
Processor to derive approximate answers. This relaxation
process will continue until there are enough answers or
the query is no longer relaxable.
For example, in the query topic 85, to relax the query
condition, //article//figure//no > 9, the Query Relaxation
Manager will select the value relaxation index in Figure 6

<inex_topic topic_id="89" query_type="CAS" ct_no="123">
<title>
//article[about(./bdy,'clustering "vector quantization" +fuzzy +k-means
+c-means -SOFM -SOM')]//bm//bb[about(.,'"vector quantization"
+fuzzy clustering +k-means +c-means') AND about(./pdt,'1999')
AND ./au/snm != 'kohonen']
 </title>
<description>
Find articles about vector quantization or clustering and return
bibliography details of cited publications about clustering and vector
quantization methods, from recent years, not authored by Kohonen.
</description>
<narrative>
Bibliography elements of publications, preferably from around 2000
(1996 to 2002 is fine, descending relevance thereafter). Preferred
documents have reference to k-means or c-means clustering. Not
interested in publications where the author is Kohonen, or in his work
on self organizing feature maps (SOM SOFM). The citing article and
the cited publication should be about clustering or vector quantization
methods.
</narrative>
<keywords>
cluster analysis,adaptive clustering,Generalized Lloyd, LBG, GLA
</keywords>
</inex_topic>

Figure 9: INEX 03 Query Topic 89.

klas
99

klas
99

klas
99

klas
101

klas
99

klas
99

klas
99

to guide the relaxation process. The system first locates
the closest matched internal representative, which is 8-9,
and then relaxes the query condition to
//article//figure//no > 8 to derive approximate answers.

Similarly, to relax the structure constraint //article/bdy/sec
in the query topic 69 (i.e., /article/bdy/sec[about(.//st,
‘“information retrieval”’)]), the Query Relaxation
Manager will first locate the closest matched internal
representative, which is //article/bdy//sec, and then relax
the query topic to //article/bdy//sec[about(.//st,
‘“information retrieval”’)] to derive approximate
answers.

4.4 Result Ranking
The query results are ranked by the Result Ranking
module before returning them to the user. Query results
are ranked according to the following priorities: first
query results from the original query and then
approximate answers from the relaxed queries. The
approximate answers are further ranked according to the
relaxation order. For example, for the query topic 85,
there are two relaxation conditions: 1) //article//fig//no >
9 and 2) //article/fm//yr > 1998. The relaxation order
between them is to relax the first condition and then the
second one. As a result, the approximate answers for the
first relaxation condition are ranked before the
approximate answers for the second relaxation condition.
For the query results in the same category, they are
ranked according to the following formula:

| |

i = P, N, K, R 1

()
| |

iC
iji

u
ji

frequency of termwrank
C Text Size of node u=

= ∑ ∑

where wi is the weight assigned to one of the four
categories Ci (i = P, N, K R); |Ci| is the total number of
stems (a phrase is counted as a term) in the category;
frequency of termij is the number of occurrence of termj
from category Ci in node u; and Text Size of node u refers

to the total number of words in node u, which can be
accessed from the text size index.

5. EXPERIMENTAL OBSERVATIONS
We implemented XML indexing and query processing
algorithms in Java; and carried out INEX 03 experiments
on a Linux machine with a 2.4GHz XEON III CPU and 1
GB main memory. We shall now discuss the experimental
results based on two performance measurements: index
size and query execution times.
The indices for all the INEX document collections occupy
about 1.2GB, which is roughly about twice the size of the
XML document collections. Four types of indices are
built by the Index Builder: tag name index, node index,
text size index, and inverted stem index. The first three
are relatively small and the last one is quite large.
Query processing time depends on the following factors:
1) Number of stems and phrases in a query and their
corresponding frequency in the XML data.
The query processing time depends on the number of
stems and phrases a query contains and their
corresponding frequencies in XML documents. More
frequent stems and phrases require longer query
processing time than less frequent ones.
2) Number of structure constraints in a query and their
corresponding frequency in the XML data.
The required query processing time is sensitive to the
number of structure constraints a query contains. It is also
sensitive to their frequencies in XML documents. For
example, a less frequent structure constraint, Q1
//article/fm//pdt, can be processed much faster than a
more frequent one Q2 //article/bdy//p. (Q1 returns the
publication date (pdt) element of an article in its front
matter part (fm) and Q2 returns the paragraph (p) elements
of an article in its body part (bdy)).

article

bdy

N: clustering, “Vector quantization”
P: fuzzy, k-means, c-means,
R: SOFT, SOM
K: “cluster analysis”, “adaptive
clustering”, “Generalized Lloyd”,
LBG, GLA

bm

bb

pdt au

snm

R: Kohonen
N: 1999

N: clustering, “Vector quantization”
P: fuzzy, k-means, c-means,
K: “cluster analysis”, “adaptive
clustering”, “Generalized Lloyd”,
LBG, GLA

Figure10: The tree representation of query topic 89 in INEX 03.

klas
100

klas
100

klas
100

klas
102

klas
100

klas
100

klas
100

3) The level of query relaxation and the number of
relaxable conditions existed in the query.
The more relaxable query conditions a query topic
contains, the longer it takes to derive the approximate
answers.
Depending on the complexity of its value and structure
constraints, a content-and-structure (CAS) query takes
from several seconds to over a minute to get exact
matched answers. For a relaxable query, it might take
several minutes to generate the relaxed queries and derive
approximate answers.
Due to the unavailability of VCAS relevancy assessment,
we did not report the precision/recall performance of our
cooperative query answering system in this paper.

6. SUMMARY AND FUTURE WORKS
In this paper, we describe how we index XML documents
and extend the query relaxation technique to the XML
model to support cooperative XML query answering.
During our INEX 03 investigation, several problems were
discovered, which needs future investigations:
1) Index Configurations
Our current index configuration only contains a list of
ignorable tags. We plan to support other index
configurations, such as ignorable annotations in which
both elements and their value can be ignored.
2) Uniform Value Index Scheme
In our current system, we index the elements’ text content
and attributes’ values in XML documents uniformly.
Each non-stop word is stemmed without considering the
value’s characteristics. Such an index approach
sometimes may return undesirable results. For example,
for a content-only (CO) query ”web, internet”, the
document fragment
“<author><snm>webb</snm></author>” will be
returned as an answer since “webb” and “web” share the
same stem: “web”. To avoid such undesirable results, we
plan to work on a configurable value index framework
which supports multiple value processing options and
index types based on the value’s characteristics.
3) Ranking Functions
Our current system only supports relative ranking.
Ranking functions for query results needed to be
investigated to provide more user and context sensitive
ranking.
4) Query Relaxation Language

No explicit relaxation constructs is available in a query
topic for specifying the relaxable query conditions as well
as their relaxation order. We plan to develop a

cooperative query language that enables users to specify
relaxation constructs in the queries.

ACKNOWLEDGEMENT
This work is supported by NSF Award ITR#: 0219442.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

web: from relations to semistructured data and XML.
Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[2] S. Amer-Yahia, M. Fernandez, D. Srivastava, Y. Xu.
Phrase Matching in XML. In VLDB 2003.

[3] D. Chamberlin, J. Robie, and D. Florescu. Quit: An
XML query language for heterogeneous data sources.
In WebDB, May 2000.

[4] S. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C.
Zaniolo. Efficient Structural Joins on Indexed XML
Documents. In VLDB 02.

[5] W. W. Chu, H. Yang, K. Chiang, M. Minock, G.
Chow, and C. Larson. CoBase: A Scalable and
Extensible Cooperative Information System. J.
Intelligent Information Systems (JIIS), 6(2/3):223-
259, May 1996.

[6] S. Liu and W. W. Chu. A Knowledge-Based
Approach for Cooperative XML Query Answering.
Technical Report, UCLA CS Dept., 2003.

[7] J. B. Lovins. Development of a Stemming Algorithm.
In Mechanical Translation and Computational
Liguistics, 11(1-2), 11-31, 1968.

[8] Y. Kanza, W. Nutt, and Y.Sagiv. Queries with
Incomplete Answers over Semi-structured Data. In
ACM PODS, 1999.

[9] Y. Kanza and Y.Sagiv, Flexible Queries over Semi-
structured Data. In ACM PODS, 2001

[10] D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N.
Koudas, J. M. Patel, and Y. Wu. Structural joins: A
primitive for efficient XML query pattern matching.
In ICDE 2002.

[11] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G.
Lohman. On Supporting Containment Queries in
Relational Database Systems. In SIGMOD 2001.

[12] SAX http://www.saxporject.org.
[13] XML http://www.w3.org/XML/.
[14] XML-QL
 http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.
[15] XML Schema http://www.w3.org/xml/Schema.
[16] XPATH http://www.w3.org/TR/xpath.
[17] XQuery http://www.w3.org/TR/xquery.

klas
101

klas
101

klas
101

klas
103

klas
101

klas
101

klas
101

The TIJAH XML-IR system at INEX 2003

Johan List1 Vojkan Mihajlovic2 Arjen P. de Vries1 Georgina Ramı́rez1

Djoerd Hiemstra2

1CWI
P.O. Box 94079

1090GB Amsterdam
The Netherlands

{jalist, arjen, georgina}@cwi.nl

2CTIT
P.O. Box 217

7500 AE Enschede
The Netherlands

{vojkan,hiemstra}@cs.utwente.nl

ABSTRACT
This paper discusses our participation in INEX (the Initia-
tive for the Evaluation of XML Retrieval) using the TIJAH
XML-IR system. TIJAH’s system design follows a ‘stan-
dard’ layered database architecture, carefully separating the
conceptual, logical and physical levels. At the conceptual
level, we classify the INEX XPath-based query expressions
into three different query patterns. For each pattern, we
present its mapping into a query execution strategy. The
logical layer exploits probabilistic region algebra as the basis
for query processing. We discuss the region operators used
to select and manipulate XML document components. The
logical algebra expressions are mapped into efficient rela-
tional algebra expressions over a physical representation of
the XML document collection using the ‘pre-post numbering
scheme’. The paper concludes with a preliminary analysis
of the evaluation results of the submitted runs.

1. INTRODUCTION
This paper describes our research for INEX 2003 (the Initia-
tive for the Evaluation of XML Retrieval). We participated
with the TIJAH XML-IR retrieval system, a research pro-
totype built on top of the MonetDB database kernel [1].
Key feature of the TIJAH system is its layered design, fol-
lowing the basic system architecture of relational database
management systems.

Traditional information retrieval systems represent a docu-
ment as a ‘bag-of-words’. Inverted file structures provide the
basis for implementing a retrieval system for such ‘flat’ doc-
uments. In the case of structured documents however, we
think designing the retrieval system following ‘the database
approach’ is best to keep the more complex data represen-
tation manageable.

The main characteristic of the database approach is a strong
separation between conceptual, logical and physical levels,
and the usage of different data models and query languages
at each of those levels [20]. In relational database systems, a
significant benefit of this data abstraction (through the sep-
aration between the levels in database design) is to enable
query optimization. A SQL query (a ‘calculus expression’)
at the conceptual level is first translated into relational al-
gebra. The algebraic version used at the logical level is then
rewritten by the query optimizer into an efficient physical
query plan. The physical algebra exploits techniques like
hashing and sorting to improve efficiency [8].

For XML-IR systems, following this separation in layers
gives another, additional advantage: by choosing the ap-
propriate level of abstraction for the logical level, the devel-
opment of probabilistic techniques handling structural in-
formation is simplified, and kept orthogonal to the rest of
the system design. Section 3 details our approach, based on
a probabilistic extension of text region algebras.

The paper is organized along the layers of the TIJAH sys-
tem design. The following Section describes the query lan-
guage used at the conceptual level, identifies three patterns
in the INEX topic set, and explains how the language mod-
eling approach to information retrieval is used for the about
operator. Section 3 presents a probabilistic region algebra
for expressing the three query patterns. Section 4 explains
how the algebraic expressions are mapped into efficient re-
lational algebra expressions over a physical representation
of the XML document collection using the ‘pre-post num-
bering scheme’. We conclude with a discussion of the ex-
periments performed with our approach for the three INEX
search tasks.

2. CONCEPTUAL LEVEL
For the conceptual level, we used the INEX query language
as proposed by the INEX Initiative in 2002. The INEX
query language extends XPath with a special about function,
ranking XML elements by their estimated relevance to a
textual query. As such, the invocation of the about function
can be regarded as the instantiation of a retrieval model.

The retrieval model used for the about function is essentially
the same as that used at INEX 2002 [12, 14]. We calculate
the probability of complete relevance of a document com-
ponent, assuming independence between the probability of
relevance on exhaustivity and the probability of relevance
on specificity.

The probability of relevance on exhaustivity, P (RE), is es-
timated using the language modeling approach to informa-
tion retrieval [11]. Instead of document frequency, we have
used collection frequencies for the background model. The
probability of relevance on specificity, P (RS), is assumed
to be directly related to the component length (following a
log-normal distribution). Its steep slope at the start dis-
counts the likelihood that very short document components
are relevant. Its long tail reflects that we do not expect long
document components to be focused on the topic of request

klas
102

klas
102

klas
102

klas
104

klas
102

klas
102

klas
102

either.

The language model as used by our system disregards struc-
ture within a document component, i.e., the model treats a
document component as a ‘flat-text’ document. This model
property, and an informal inspection of the INEX 2003 topic
list, led us to use only a subset of possible location step axes
within an about function call; we only used the descendant-
or-self::qname location step axis. Allowing other axes, like
sibling::qname or following::qname requires correct proba-
bilistic modeling for estimating probabilities in the language
model, which our model did not offer at the time of evalua-
tion.

Table 1: SCAS and VCAS pattern set. Note that
xp, xp2, axp, axp1 and axp2 are location steps, and
’t/p’ denotes any set of terms or phrases to search
for.
Pattern Pattern definition

P1 xp[about(axp, ’t/p’)]

P2 xp[about(axp1, ’t1/p1’) AND about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’) OR about(axp2, ’t2/p2’)]

P3 xp[about(axp1, ’t1/p1’)]/xp2[about(axp2, ’t2/p2’)]

xp[about(axp1, ’t1/p1’)]//xp2[about(axp2, ’t2/p2’)]

Since we did not have an automatic query processing facility,
we processed the queries manually but in a mechanic fashion.
Processing the INEX query patterns takes place in two steps:

• classify the query into (a sequence of) three basic query
patterns (shown in Table 1);

• create a query plan to process the queries. The query
patterns are visualized in Figure 1.

The basic pattern for all XPath based queries is the sin-
gle location step, as defined in [7], augmented with an about
function call (pattern P1 in Table 1). When referring to,
for example xp, we refer to the node-set representing the
location step xp; in other words, a path leading to a cer-
tain location (or node) in the XML syntax tree. The first
query pattern consists of one location step to identify the
nodes to be retrieved, ranked by an about expression over a
node-set reached by a second location step. The two other
(more complex) patterns P2 and P3 are essentially multiple
interrelated instances of the basic pattern P1 . The XPath
location steps may also apply (Boolean) predicate filters,
e.g. selecting nodes with a particular value range for yr.

3. LOGICAL LEVEL
The logical level is based on a probabilistic region algebra.
Region algebra was introduced by Burkowski [2], Clarke et
al. [3], and Tova and Milo [4]. The aim of the earliest text
region algebra approaches has been to enable structured text
search. Later, it has been applied to related tasks as well,
including search on nested text regions [13], processing of
structured text [17], and ranked retrieval from structured
text documents [15].

The basic idea behind region algebra approaches is the rep-
resentation of text documents as a set of ‘extents’, where

title:[1..4] bdy:[5..24]

sec:[6..14]

article:[0..25]

sec:[15..23]

‘dating’:[17..17]

p:[11..13] p:[19..22]p:[16..18]p:[7..10]

‘...’:[3..3]

‘...’:[20..20] ‘...’:[21..21]
‘Maxima’:[12..12]

‘Willem−Alexander’:[8..8]

‘...’:[2..2]

‘...’:[9..9]

@lang

@pdate

Figure 2: Example XML syntax tree with start and
endpoint assignment.

each extent is defined by its starting and end position. The
application of the idea of text extents to XML documents is
straightforward. If we regard each XML document instance
as a linearized string or a set of tokens (including the doc-
ument text itself), each component can then be considered
as a text region or a contiguous subset of the entire lin-
earized string. Therefore, a text region a can be identified
by its starting point sa and ending point ea within the en-
tire linearized string. Figure 2 visualizes an example XML
document (as a syntax tree) with the start point and end
point numbering for the nodes or regions in the tree. As
an example, the bdy-region corresponds to (closed) interval
[5..24].

Let us introduce the basic set of region operators. We use
capital letters (A, B, C) to denote the region sets, and their
corresponding non-capitals to denote regions in these region
sets (a, b, c). The operators take region sets as input and
give a result which is again a region set. The definition of
region operators is given in Table 2. Interval operator I (t)
returns the region set representing the occurrences of term t
as a content word in the XML document; note that it gives
a result set in which sa = ea for every region, assuming t
is a single term and not a phrase. Location operator L(xp)
denotes the sequential application of XPath location steps,
i.e., axis- and node-tests (a definition of axis- and node-tests
can be found in [16]). Optionally, location step operator L
also processes predicate tests on node or attribute values
specified in the XPath expression.

Table 2: Region Algebra Operators.
Operator Operator definition

I(t) {a|sa, ea are pre and post index of term t}
L(xp) C = XPath(xp)
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≤ sb ∧ ea ≥ eb}
A � B {a|a ∈ A ∧ b ∈ B ∧ sa ≥ sb ∧ ea ≤ eb}
A4B {c|c ∈ A ∧ c ∈ B}
A5B {c|c ∈ A ∨ c ∈ B}

Table 3 expresses the patterns identified in the previous Sec-
tion using region algebra operators (ignoring ranking for

klas
103

klas
103

klas
103

klas
105

klas
103

klas
103

klas
103

Pattern 1 Pattern 2 Pattern 3

AXP

XP

AXP2‘...’

AXP1

XP

AXP1 XP2

AXP2

XP

Figure 1: Example instances of the three defined patterns.

Table 3: Pattern definitions based on pure region algebra operators.
Pattern Algebraic expression

P1 (xp, axp) L(xp) � (L(axp) � I(t))
L(xp) � ((L(axp) � I(t1))4 (L(axp) � I(t2))4 ...4 (L(axp) � I(tn)))

P2 (xp, axp1 , axp2) P1(xp, axp1)4 P1(xp, axp2)
P1(xp, axp1)5 P1(xp, axp2)

P3 (xp1 , xp2 , axp1 , axp2) P1(xp2, axp2) � P1(xp1, axp1)

now). Pattern 1 distinguishes between term (t) and phrase
expressions (p = {t1 , t2 , ..., tn}). Patterns 2 and 3 are rewrit-
ten into several interrelated instances of pattern 1. Table 4
introduces a probabilistic extension of the pure region alge-
bra operators. In order to introduce ranking, we extend the
notion of region with its relevance score; i.e., every region a
has an associated relevance score pa. In cases where pure re-
gion algebra operators are used, the value of the introduced
relevance score is equal to a predefined default value (e.g.,
pa = 1) for each resulting region in a region set.

Table 5 gives the probabilistic region algebra expressions
corresponding to the INEX query patterns identified be-
fore. The tp1 is used to denote ’t1/p1’ or the combination
of ’t1/p1’ and ’t2/p2’ (the choice between these options is
made at the conceptual level). Similarly, tp2 is either ’t2/p2’
or a combination of ’t2/p2’ and ’t1/p1’.

Expressing query plans using the operators given in Ta-
ble 4 preserves data independence between the logical and
the physical level of a database. Similarly, these operators
enable the separation between the structural query process-
ing and the underlying probabilistic model used for ranked
retrieval: a design property termed content independence
in [6]. The instantiation of these probabilistic operators is
implementation dependent and does not influence the global
system architecture. This gives us the opportunity to change
the probabilistic model used or to modify the existing model
while keeping the system framework, creating the opportu-
nity to compare different probabilistic models with minimal
implementation effort.

4. PHYSICAL LEVEL
The physical level of the TIJAH system relies on the Mon-
etDB binary relational database kernel [1]. This Section
details implementation and execution strategy for each of
the patterns.

The text extents used at the logical level are represented by
XML text regions at the physical level, and encoded using a
preorder/postorder tree encoding scheme, following [9, 10].
The XML text regions are stored as three-tuples { si, ei, ti },
where:

• si and ei represent the start and end positions of XML
region i ;

• ti is the (XML) tag of each region.

The set of all XML region tuples is named the node index
N . Index terms present in the XML documents are stored
in a separate relation called the word index W. Index terms
are considered text regions as well, but physically the term
identifier is re-used as both start and end position to reduce
memory usage. The physical layer has been extended with
the text region operators shown in Table 6. Boolean pred-
icate filters are always applied first. For further details on
this indexing scheme, refer to [5, 14].

4.1 Pattern 1
Pattern 1 for VCAS Processing pattern 1 in Table 1 re-
quires two basic steps: relating node-sets xp and axp to each
other, and processing the about operator. Nodesets xp and
axp must have a parent - descendant1 structural relation-

1Parent - child relationships are considered a specific variant
of parent - descendant relationships.

Table 6: Text region operators at the physical level.
Operator Definition

a ⊃ b true ⇐⇒ sb > sa ∧ eb < ea

a ⊂ b true ⇐⇒ sa > sb ∧ ea < eb

A 1⊃ B {(sa , sb)| a ← A, b ← B , a ⊃ b}
A 1⊂ B {(sa , sb)| a ← A, b ← B , a ⊂ b}

klas
104

klas
104

klas
104

klas
106

klas
104

klas
104

klas
104

Table 4: Probabilistic region algebra operators. Note that the “ranked containing” and “ranked and” operators are

used to define the about function.
Operator Operator description Operator usage examples

A . B ranked containing (based on LM) L(axp) . I(t)
A � B average containing L(xp) � (L(axp) . I(t))
A∆B ranked and (based on LM) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2)))
A � B average contained (L(xp1) � (L(axp1) . I(t1))) � (L(xp2) � (L(axp2) . I(t2)))
A4B complex and (L(xp) � (L(axp1) . I(t1)))4 (L(xp) � (L(axp2) . I(t2)))
A5B complex or (L(xp) � (L(axp1) . I(t1)))5 (L(xp) � (L(axp2) . I(t2)))

Table 5: Pattern definitions based on probabilistic region algebra operators.
Pattern Algebraic expression

P1 (xp, axp, t) L(xp) � (L(axp) . I(t))
P1 (xp, axp, p) L(xp) � ((L(axp) . I(t1))∆(L(axp) . I(t2))∆...∆(L(axp) . I(tn)))
P2 (xp, axp1 , axp2 , tp1 , tp2) P1(xp, axp1, tp1)4 P1(xp, axp2, tp2)

P1(xp, axp1, tp1)5 P1(xp, axp2, tp2)
P3 (xp1 , xp2 , axp1 , axp2 , tp1 , tp2) P1(xp2, axp2, tp2) � P1(xp1, axp1, tp1)

L

Nxp

W Q

1

L

Nxp

L

axp N

1⊃

1⊂

1⊂

about

avg-groupby

Figure 3: Physical query plan for pattern 1.

klas
105

klas
105

klas
105

klas
107

klas
105

klas
105

klas
105

ship. So, the pattern is processed as follows (visualized in
Figure 3):

• Determine the correct axp node-set for ranking. On
the physical level, this is done by executing a contain-
ment join between the node-sets xp and axp: axp 1⊂ xp.
The result of this containment join is cxp or the set of
those nodes of axp which are contained within nodes
in xp;

• Perform the about operation on the nodes in cxp (the
combination of . and ∆ operators on the logical level);

• Return the ranking for the xp node-set, based on the
rankings of the nodes present in cxp. Note that it is
possible that the ranking returns a ranking for mul-
tiple axp descendant nodes for a single xp node (for
example, multiple sections within an article). In that
case, we take the average as the final score for the xp
node in question. This step is the physical equivalent
of the logical . (one descendant of the type of axp)
or logical � (multiple descendants of the type of axp)
operator.

Pattern 1 for SCAS The processing of pattern 1 for the
SCAS run does not differ from the processing performed
for the VCAS run. The containment join will automatically
remove those xp nodes not containing one or more axp nodes.
This ensures only the ‘correct’ axp nodes, those within a
node from the xp node-set, will be ranked.

4.2 Pattern 2
Pattern 2 for VCAS For the processing of pattern 2
for the VCAS scenario, we assume that conjunctions and
disjunctions specified in the query relate to the structure,
and never to the query terms. In case node-sets axp1 and
axp2 are equal, the pattern is rewritten to a pattern 1. If
the node-sets axp1 and axp2 are not equal, it is possible
these node-sets represent completely different parts of the
(sub)tree below xp, as depicted in Figure 1. In path-based
terms, if the (sub)tree starting at xp does not contain both
paths axp1 and axp2, that xp tree cannot be relevant for the
strict scenario.

However, for a more vague query scenario, we argue that the
absence of a descendant node does not render the requested
(ancestor) target node irrelevant completely. Consider the
following expression:

/article[
about(./abstract, ’information retrieval’)

AND about(.//section, ’XML data’)
]

If an article contains no abstract, but it does score on ‘XML
data’ in one or more of the sections, the question is whether
the article is completely irrelevant. For a vague retrieval
scenario this might not be the case. Therefore, we decided
to process these expression types as follows. We split up
the expression into a series of pattern 1 expressions, and
combine the results of the individual pattern 1 executions.
The example above is split up into the following two pattern
1 expressions:

- /article[about(./abs, ’information retrieval XML data’)]
- /article[about(.//sec, ’information retrieval XML data’)]

Both subpatterns are processed as pattern 1. The two re-
sulting node-sets need to be combined for a final ranking.
An intuitive combination function for the 4 operator is tak-
ing the minimum of the (non-zero) descendant scores, and
for the5 operator the maximum. Note that, alternatively,
a more formal probabilistic choice would be to use product
and sum instead of minimum and maximum; whether this
yields better results is an open question for further research.

Pattern 2 for SCAS For the SCAS scenario, all of the de-
scendant nodes present in axp1 and axp2 need to be present
in the context of an xp node. In path-based terms: if the
path xp does not contain both a path axp1 and a path axp2,
the path xp cannot be relevant. We filter out those xp paths,
not containing both the axp1 and axp2 paths. This addi-
tional filtering step and the choice of operator to implement
the complex ‘and’ (4) and ‘or’ (5) operators define together
the difference between strict and vague scenarios.

4.3 Pattern 3
Pattern 3 for VCAS Pattern 3 can be processed like pat-
tern 2, except for the fact that the target element now lies
deeper in the tree. We process this pattern by first splitting
it up into multiple instances of pattern 1:

- xp[about(axp1, ’t1/p1 t2/p2’)]
- xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

The pattern 1 execution already provides for aggregation of
scores of a set of nodes of the same type, within a target
element. The question remains however how to combine
the scores of the nodes present in node-sets /xp/axp1 and
/xp/xp2/axp2. Like before, these node-sets can represent
nodes in completely different parts of the (sub)tree.

Based on the observation that the user explicitly asks for
the nodes present in the /xp/xp2 node-set, we decided to
use the rankings of those nodes as the final rankings. The
first about predicate reduces node-set xp to those nodes for
which a path axp1 exists. For the vague scenario however,
we argue that absence or presence of axp1 does not really
influence target element relevance (similar to pattern 2 in
subsection 4.2).

Summarizing, the first about predicate in the pattern men-
tioned at the start of this subsection is dropped, rewriting
the resulting pattern to a pattern 1 instance:

/xp/xp2[about(axp2, ’t1/p1 t2/p2’)]

This results in the following execution strategy for pattern
3 under the VCAS scenario: remove all about predicates
from all location steps, except for the about predicate on
the target element.

Pattern 3 for SCAS The processing of pattern 3 for the
SCAS scenario is stricter in the sense that we can not simply

klas
106

klas
106

klas
106

klas
108

klas
106

klas
106

klas
106

drop intermediate about predicates, as we did for the VCAS
scenario. The general procedure consists of:

• splitting up the pattern into separate location steps;

• structural correlation of the resulting node-sets of each
location step.

The target elements are ranked by their corresponding about
predicate only; thus, ignoring the scores produced for the
other about clauses in the query. Like in pattern 1, the
target element can have multiple descendants; in that case,
the descendants’ scores are averaged to produce the target
element scores.

As an example, consider the following expression:

/article[about(./abstract, ’t1/p1’)]
//section[about(./header, ’t2/p2’)]
//p[about(., ’t3/p3’)]

We first split up the above expression into:

- /article[(about(./abstract, ’t1/p1 t2/p2 t3/p3’)]
- //section[about(./header, ’t1/p1 t2/p2 t3/p3’)]
- //p[about(., ’t1/p1 t2/p2 t3/p3’)]

All of the patterns above produce intermediate result node-
sets that have to be structurally correlated to each other.
We can choose to perform a top-down correlation sequence,
or a bottom-up correlation sequence consisting of contain-
ment joins. The choice between a top-down or bottom-up
sequence can be an optimization decision, made at runtime
by the retrieval system. For example, if a collection contains
many paragraph elements, not contained within article ele-
ments, the system might decide to limit the amount of un-
necessary executed about predicates by choosing a top-down
approach. In the current implementation, the patterns are
always processed top-down.

5. EXPERIMENTS
For the content only (CO) topics, we designed three exper-
imentation runs. The first run (Rart) represents the base-
line run of ’flat-document’ retrieval, i.e., retrieval of doc-
uments which possess no structure. After examination of
the document collection, we decided to perform retrieval of
article-components. The second run regarded all subtrees
in the collection as separate documents (Rcomp). For the
third run we re-used the result sets of the second run and
used a log-normal distribution to model the quantity dimen-
sion (Rcomp−logn). To penalize the retrieval of extremely
long document components, as well as extremely short doc-
ument components, we set the mean at 2516. Experiments
for INEX 2002 showed that 2516 words was the average doc-
ument component length of relevant document components
according to the strict evaluation function used in INEX
2002. Table 7 gives a summary of our experimentation runs.

For both the SCAS (strict content-and-structure) and VCAS
(vague content-and-structure), we submitted one run each

Table 7: Original CO experimentation runs; note
that we used a length of 2516 as preferred compo-
nent length for the Rcomp−logn run. The experiments
for INEX 2002 showed 2516 was the average doc-
ument component length of relevant components,
according to the strict evaluation function used in
INEX 2002.

Run Retr. Unit Dimension(s) MAP

Rart {tr(′article ′)} topicality 0.0392
Rcomp {tr(′∗′)} topicality 0.0387
Rcomp−logn {tr(′∗′)} top., quant .(2516) 0.0374

(not mentioned in Table 7); the topics executed according
to the conceptual, logical and physical SCAS and VCAS
pattern rule-sets as detailed in the previous Sections. The
mean average precision (MAP) value of the SCAS run is
0.2595.

The originally submitted CO-runs all used the keywords
present in the keyword-element of each topic. Before ex-
ecuting each topics, query stop words were removed using
the SMART query stop word list, and all remaining key-
words were stemmed with the Porter stemmer. Stop word
removal (using the SMART stop word list) and stemming
was also performed on the indexed collection terms, as well
as the removal of those terms shorter than 2 characters and
longer than 25 characters.

We performed several additional CO runs of which the mean
average precision values are summarized in Table 8.2 First,
we extracted, for each topic, the terms occurring in the title
about clauses (T) and in the description (D) and keyword
(K) component text. We then made combinations of the
T, D and K keyword sets, and used the combinations in
additional runs (TD and TK). Second, we also created CO-
runs where we replaced the log-normal element length prior
(logn runs) with a standard element length prior (logs runs):

lp(E) = log(P (E)) = log(
∑

t

tf(t, E))

Finally, after observing a big difference in system perfor-
mance with the approach by Sigurbjörnsson, Kamps and
de Rijke [19], which is based on the same language mod-
eling technique, we decided to reproduce their approach of
combining surrounding document evidence with element ev-
idence (aw runs).

From the average precision values in Table 8, the following
observations are clear:

• large elements should not be discounted (under the
current metrics of evaluation; difference between logn
and logs runs);

• combining element scores with their surrounding con-

2The differences between the Rcomp and Rcomp−logn MAP
scores in Tables 7 and 8 originate from the (different) order-
ing of elements with equal score.

klas
107

klas
107

klas
107

klas
109

klas
107

klas
107

klas
107

Table 8: Mean average precision values for the addi-
tional CO runs. The last three columns denote the
topic part used for the run: T for title, TD for title
and description terms, and TK for title and keyword
terms. For evaluation, the strict evaluation measure
(for 2003) was used.

Run Task K TD TK

Rcomp CO 0.0341 0.0383 0.0447
Rcomp−logn CO 0.0351 0.0390 0.045
Rcomp−logs CO 0.0652 0.0766 0.0740
Rcomp−logn−aw CO 0.0697 0.0863 0.0905
Rcomp−logs−aw CO 0.1043 0.1224 0.1205

text scores appears to improve performance signifi-
cantly (aw runs);

• in spite of the noise in the description text, using the
description terms improves retrieval results (compar-
ing columns K and TD).

We plan to further investigate the cause of the performance
difference between the logn and logs runs. One explanation
could be that the log-normal’s mean value of 2516 words,
as desired component size, is not the correct value given the
relevance assessments. Another explanation for this discrep-
ancy between evaluation results and our intuition, expressed
in the log-normal length prior, could be sought in the current
evaluation metrics that reward exhaustivity over specificity.

Besides measuring the effectiveness of our retrieval system,
we also measured the efficiency of indexing and querying the
collection. Table 9 shows the average topic execution times
of all created runs. For a given run, we averaged the topic
execution times of the topics in that given run (with CO runs
having 36 topics and the SCAS and VCAS runs having 30
topics). All measurements are wallclock timings, measured
in seconds. The hardware used for the executions of the
runs is an AMD Opteron machine, running at 1.4GHz and
having 2GB of main memory. The indexing time is divided
into two separate parts:

• the time needed for insertion of data Tinsert, measured
at 176 seconds;

• the time needed for post-processing Tpostprocess, mea-
sured at 191 seconds. Post-processing consists of deter-
mining collection frequencies, component text lengths
(component lengths disregarding markup) and index-
ing of topics.

Memory use of our system varied between 250MB and 1GB,
where 1GB was reached when materializing large compo-
nents, or large component sets (large with regard to the
number of components in the result set) for executing the
language model. Moreover, memory use was increased by
behavior of the database kernel used: the kernel loads ta-
bles completely into memory when they are needed, even if
not all parts of the table are used. This redundant mem-
ory use as a result of loading irrelevant data can be avoided

Table 9: Average topic execution times for all runs,
in seconds (wallclock time). Note that the first row
is the original article run, performed with keywords
only (the K column). The execution times of our
originally submitted three runs are displayed in the
first three rows and the third column (boldfaced).
The other timings are the timings for the additional
unofficial runs, and the last two rows show the exe-
cution times for our original SCAS and VCAS runs.

Run Task K TD TK

Rart CO 6.75 - -
Rcomp CO 44.08 68.19 53.22
Rcomp−logn CO 45.13 69.58 54.47
Rcomp−logs CO 45.25 69.69 54.47
Rcomp−logn−aw CO 47.16 72.22 56.80
Rcomp−logs−aw CO 47.25 74.44 57

Rscas SCAS - - 35.37
Rvcas VCAS - - 35.24

by, for example, horizontal fragmentation of the tables as in
[18]. The extra time needed for the logn and logs runs (when
compared to the comp run) can be explained by extra join-
operations against parts of the index, needed for retrieving
the component text lengths and calculation of the logarithm
values. Also, the aw runs take more execution time as a re-
sult of the extra containment joins needed to resolve the
specified structural constraints.

The time needed for indexing can be reduced further. First,
for the sake of simplicity, the system indexes the full XPath
(in string format) for each component in the collection. This
full XPath indexing is redundant and can be replaced by a
facility to resolve the component XPaths when presenting
results to the user, or by a more compact index structure.
Second, we are looking into possibilities for encoding other
parts of the index into more compact structures, e.g., bitvec-
tors.

6. CONCLUSIONS AND FUTURE WORK
Our participation in INEX can be summed up as an exer-
cise in applying current and state of the art information re-
trieval technology to a structured document collection. We
described a relatively straightforward approach to simplify
the implementation of retrieval models that combine struc-
tural and content properties. We hope to take advantage
of this flexibility to a larger extend in our future research,
as the current approach to retrieval has only used a small
proportion of all the structural information present in XML
documents. Other research includes more extensive exper-
imentation in the area of relevance feedback, and develop
a different normalization mechanism to remove the bias of
the language model on short components. Lastly, we aim to
improve the efficiency of the system, both memory and CPU
wise, by applying horizontal fragmentation and encoding of
data into more compact structures.

7. REFERENCES
[1] P. Boncz. Monet: a Next Generation Database Kernel for

Query Intensive Applications. PhD thesis, CWI, 2002.

klas
108

klas
108

klas
108

klas
110

klas
108

klas
108

klas
108

[2] F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. In Proceedings of the 15th ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 112–125, 1992.

[3] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An
Algebra for Structured Text Search and a Framework for
its Implementation. The Computer Journal, 38(1):43–56,
1995.

[4] M. Consens and T. Milo. Algebras for Querying Text
Regions. In Proceedings of the ACM Conference on
Principles of Distributed Systems, pages 11–22, 1995.

[5] A. P. de Vries, J. A. List, and H. E. Blok. The Multi-Model
DBMS Architecture and XML Information Retrieval. In
H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), Springer-Verlag,
pages 179–192. Springer-Verlag, Berlin, New York, etc.,
August 2003.

[6] A.P. de Vries. Content independence in multimedia
databases. Journal of the American Society for Information
Science and Technology, 52(11):954–960, September 2001.

[7] M.Fernández et al. XML Path Language (XPath 2.0).
Technical report, W3C, 2003.

[8] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, June 1993.

[9] T. Grust. Accelerating XPath Location Steps. In
Proceedings of the 21st ACM SIGMOD International
Conference on Management of Data, pages 109–120, 2002.

[10] Torsten Grust and Maurice van Keulen. Tree Awareness for
Relational DBMS Kernels: Staircase Join. In H. M.
Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), pages 179–192.
Springer-Verlag, Berlin, New York, etc., August 2003.

[11] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, Twente, The
Netherlands, 2000.

[12] D. Hiemstra. A database approach to content-based XML
retrieval. In Proceedings of the First Workshop of the
Initiative for the Evaluation of XML Retrieval, 2002.

[13] J. Jaakkola and P. Kilpelainen. Nested Text-Region
Algebra. Technical Report C-1999-2, Department of
Computer Science, University of Helsinki, 1999.

[14] J.A. List and A.P. de Vries. CWI at INEX 2002. In
Proceedings of the First Workshop of the INitiative for the
Evaluation of XML Retrieval (INEX), ERCIM Workshop
Proceedings, 2002.

[15] Katsuya Masuda. A Ranking Model of Proximal and
Structural Text Retrieval Based on Region Algebra. In
Proceedings of the ACL-2003 Student Research Workshop,
2003.

[16] V. Mihajlovic, D. Hiemstra, and P. Apers. On Region
Algebras, XML Databases, and Information Retrieval. In
Proceedings of the 4th Dutch-Belgian Information Retrieval
Workshop, to apear, 2003.

[17] R.C. Miller. Light-Weight Structured Text Processing. PhD
thesis, Computer Science Department, Carnegie-Mellon
University, 2002.

[18] A.R. Schmidt, M.L. Kersten, M.A. Windhouwer, and
F. Waas. Efficient Relational Storage and Retrieval of XML
Documents. In International Workshop on the Web and
Databases (in conjunction with ACM SIGMOD), pages
47–52, 2000.

[19] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An
element-based approach to XML retrieval. In N. Fuhr,
M. Lalmas, and S. Malik, editors, Proceedings of the Second
Workshop of the INitiative for the Evaluation of XML
retrieval (INEX), ERCIM Workshop Proceedings, 2004.

[20] D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS
framework report of the study group on database
management systems. Information systems, 3:173–191,
1978.

klas
109

klas
109

klas
109

klas
111

klas
109

klas
109

klas
109

XPath Inverted File for Information Retrieval

Shlomo Geva
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
s.geva@qut.edu.au

Murray Leo-Spork

Centre for Information Technology Innovation
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434 Brisbane Q 4001 Australia

m.spork@qut.edu.au

ABSTRACT
In this paper we describe the implementation of a
search engine for XML document collections.
The system is keyword based and is built upon
an XML inverted file system. We describe the
approach that was adopted to meet the
requirements of Strict Content and Structure
queries (SCAS) and Vague Content and Structure
queries (VCAS) in INEX 2003.

Keywords: Information Retrieval, Inverted
File, XML, XPath, INEX, Assessment,
Evaluation, Search Engine

1. Introduction
Recently, the widespread use of Extensible
Markup Language (XML) has led to appropriate
Information Retrieval methods for XML
documents [4]. A key difference between XML
documents and conventional text documents is
the separation of structure and content [5]. A
standard solution for efficient Information
Retrieval is to use an inverted file index. Zobel
[6] identifies two dominate methods for indexing
of large text databases: inverted files and
signature files. Zobel compared these two
methods and concluded that inverted files are
superior in almost every respect, including speed,
space and functionality.

In an inverted file, for each term in the collection
of documents, a list of occurrences is maintained.
Information about each occurrence of a term
includes the document-id and term position
within the document. Maintaining a term
position in the inverted lists allows for proximity
searches, the identification of phrases, and other
context-sensitive search operators. This simple
structure, combined with basic operations such as
set-union and set-intersect, support the
implementation of rather powerful keyword
based search engines.

XML documents contain rich information about
document structure. The objective of the XML
Information Retrieval System that we describe in
this paper is to facilitate access to information
that is based on both content and structural
constraints. We extend the Inverted File scheme

in a natural manner, to store XML context in the
inverted lists.

2. XML File Inversion
In our scheme each term in an XML document is
identified by 3 elements. File path, absolute
XPath context, and term position within the
XPath context.

The file path identifies documents in the
collection; for instance:

C:/INEX/ex/2001/x0321.xml
The absolute XPath expression identifies a leaf
XML element within the document, relative to
the file’s root element:

/article[1]/bdy[1]/sec[5]/p[3]
Finally, term position identifies the ordinal
position of the term within the XPath context.

One additional modification that we adopted
allowed us to support queries on XML tag
attributes. This is not a strictly content search
feature, but rather structure oriented search
feature. For instance, it allows us to query on the
2nd named author of an article by imposing the
additional query constraint of looking for that
qualification in the attribute element of the XML
author element. The representation of attribute
values is similar to normal text with a minor
modification to the XPath context representation
– the attribute name is appended to the absolute
XPath expression. For instance:

 article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]

Here the character ‘@’ is used to flag the fact
that “rid” is not an XML tag, but rather an
attribute of the preceding tag <ref>.

An inverted list for a given term, omitting the
File path and the Term position, may look
something like this:

Context
XPath

article[1]/bdy[1]/sec[6]/p[6]/ref[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@type[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]

klas
110

klas
110

klas
110

klas
112

klas
110

klas
110

klas
110

Context
XPath

article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/day[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/@id[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/ti[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/obi[1]

In principle at least, a single table can hold the
entire cross reference list (our inverted file).
Suitable indexing of terms can support fast
retrieval of term inverted lists. However, it is
evident that there is extreme redundancy in the
specification of partial absolute XPath
expressions (substrings). There is also extreme
redundancy in full absolute XPath expressions
where multiple terms in the same document share
the same leaf context (e.g. all terms in a
paragraph). Furthermore, many XPath leaf
contexts exist in almost every document (e.g.
/article[1]/fm[1]/abs[1]).

We have chosen to work with certain imposed
constraints. Specifically, we aimed at
implementing the system on a PC and base it on
the Microsoft Access database engine. This is a
widely available off-the-shelf system and would
allow the system to be used on virtually any PC
running under any variant of the standard
Microsoft Windows operating system. This
choice implied a strict constraint on the size of
the database – the total size of an Access
database is limited to 2Gbyte. This constraint
implied that a flat list structure was infeasible
and we had to normalise the inverted list table to
reduce redundancy.

3. Normalized Database Structure
The structure of the database used to store the
inverted lists is depicted in Figure 1. It consists
of 4 tables. The Terms table is the starting point
of a query on a given term. Two columns in this
table are indexed - The Term column and the
Term_Stem column. The Term_Stem column
holds the Porter stem of the original term. The
List_Position is a foreign key from the Terms
table into the List Table. It identifies the starting
position in the inverted list for the corresponding
term. The List_Length is the number of list
entries corresponding to that term. The List table
is (transparently) sorted by Term so that the
inverted list for any given term is contiguous. As
an aside, the maintenance of a sorted list in a
dynamic database poses some problems, but
these are not as serious as might seem at first,
and although we have solved the problem it is
outside the scope of this paper and is not

discussed any further. A search proceeds as
follows. Given a search term we obtain a starting
position within the List table. We then retrieve
the specified number of entries by reading
sequentially.

The Document and Context tables contain the
actual file path and absolute XPath of a given
term, respeciively. The inverted list for a given
term is thus obtained by a Join (SQL) of the
selected List table entries (as described above)
with the Document and Context tables to obtain
the complete de-normalised inverted list for the
term. The XPath context is then checked with a
regular expression parser to ensure that it
satisfies the topic’s <Title> XPath constraints.

The retrieval by Term_Stem is similar. First we
obtain the Porter stem of the search term.

Figure 1: Database Schema for XML Inverted
File.

Then we search the list by Term_Stem – usually
getting duplicate matches. All the lists for the
duplicate hits on the Terms table are then
concatenated. The Context_Position is the
ordinal position of the term within the leaf node
of the article’s XML tree. Phrases and other
proximity constraints can be easily evaluated by
using the Context_Position of individual terms in
the List table.

We have not compressed XPath expressions to
minimise the extreme redundancy of XPath
substrings in the Context table. With this
normalization the database size was reduced to
1.6GByte and within the Microsoft Access limits.

4. The CASQuery Engine
Before discussing the implementation details of
the CASQuery engine it is necessary to
introduce some terminology. We then describe
the implementation of the search engine.

4.1 Terminology
• XPath Query: An XPath Query is a query

that meets the criteria of the INEX query
specification. It can be considered a subset
of the W3C’s XPath language.

klas
111

klas
111

klas
111

klas
113

klas
111

klas
111

klas
111

• Step: A Step is a component of an XPath
query that specifies some Axis (child,
descendant, descendant-or-self etc.) a
NodeTest (e.g. a NameText that tests the
name of an element) and optionally some
Predicate

• Path: A Path is a sequential list of Steps
• Predicate: A predicate contains a filter that

specifies some condition that a node must
meet in-order to satisfy it. This filter may be
an “about” function or an equality
expression.

• Context: The context for an element is an
absolute XPath expression denoted by a list
of child steps with a numerical index e.g.
“/article[1]/bdy[1]/sec[1]/p[4]”

• ReturnElement: A ReturnElement is an
element (qualified by the document name
and a context) that satisfies the full path
expression of a query (or query fragment)
not including any path expression in a filter.
The context of the ReturnElement is the one
returned by the query engine to the user.

• SupportElement: A SupportElement is an
element (qualified by the document name
and a context) that satisfies the full path
expression of a query (or query fragment)
including any path expression in a filter. The
context of the ReturnElement is not returned
to the user but can be used to “support” the
validity of the ReturnElement (in other
words: shows why the ReturnElement was in
fact returned).

The search engine was designed to operate on the
<Title> element of CAS topics. It operates in the
same manner for both strict (SCAS) and vague
(VCAS) interpretation of the queries. The only
difference is in the definition of equivalence tags:
 SCAS Equivalent tags:

• Article,bdy
• p|p[1-3]|ip[1-5]|ilrj|item-none
• sec|ss[1-3]
• h|h[1-2]a?|h[3-4]
• l[1-9a-e]|dl|list|numeric-list|numeric-

rbrace|bullet-list
 VCAS Equivalent tags:

• Article,bdy,fm
• sec|ss[1-3]|p|p[1-3]|ip[1-5]|ilrj| item-

none
• h|h[1-2]a?|h[3-4]
• yr|pdt
• snm|fnm|au
• bm|bibl|bib|bb
• l[1-9a-e]|dl|list|numeric-list|numeric-

rbrace|bullet-list

4.2 Parsing the Query
We used the Programmar[2] parser development
toolkit to generate a parser for XPath[3] queries.
Programmar accepts a Backus Naur Form (BNF)
grammar as input and is able to generate a parser
that can parse an instance of that query into a
parse tree. The Programmar library then
provides an API to access and walk the parse tree
that it constructed.

We used the XPath BNF grammar as defined by
the W3C as input to the Programmar IDE. Some
small modification to the BNF syntax was made
in order to make the task of walking the parse
tree and gathering the required information
simpler.

Our approach was to walk the parse tree and
construct an abstract syntax tree, which
represents that same query but at a higher level
of abstraction than the parse tree generated by the
Programmer toolkit. Representing the query at a
higher level of abstraction meant that
implementing the query engine that processes
that query was made simpler.

4.3 The Abstract Syntax
The abstract syntax was contained within a
separate module that is kept independent of the
QueryEngine that processes it. Thus we allow for
the possibility that the abstract syntax for XPath
queries may be utilised in other applications. For
example it would be possible to implement a
more traditional XPath processor on top of this
abstract syntax. Therefore there is a dependency
from the Query Engine to the Abstract Syntax
package but no reverse dependency.

The basic structure of an XPath query (in the
abstract syntax) is that it consists of a Path that
contains a list of Steps. This is consistent with
the terminology used by the XPath standard.
Steps must contain a node test – and may also
contain zero to many filters (or predicates).

4.4 Evaluateable Fragments
Once the XPath parser has constructed the
abstract syntax, the query engine performs one
further transformation on the query before
executing. The path, or list of steps, must be
broken down into EvaluateablePathFragments.
Each step in the query that contains an
EvaluatableExpression will be treated as the last
step in an EvaluateablePathFragment.

An EvaluatableExpression is a step filter that can
be evaluated by the QueryEngine.

In our implementation we are using an index of
inverted lists that map a term to a list of contexts
(full absolute XPath path plus document name).
Therefore, for a filter to be evaluateable it must
filter based on some term that can be looked up
in the index. For example the filter:

klas
112

klas
112

klas
112

klas
114

klas
112

klas
112

klas
112

 /article/bdy[count()=1]
would not be evaluateable in our system as no
terms is given in the filter. However the filter:

 /article//yr[. = “1999”]

is evaluateable as the term “1999” will be in the
index.

As an example, the query:
//article[//yr=’1999’]//sec[about(./,‘DEHOMAG')]

 would be broken down into two fragments:

1. //article[//yr = “1999”)]
2. //article//sec[about(//p, 'DEHOMAG')]
Notice that the second fragment contains the full
path including the “article” step.

Next each EvaluatablePathFragment is evaluated
– the eval() method will return a set of nodes
whose contexts match the full path for that
fragment. For example fragment 2 above may
return a node with the context:

 /article[1]/bdy[1]/sec[2]

4.5 Merging Fragments
After each fragment is evaluated independently,
we will have a list of node sets (one for each
fragment) that must be merged. For example
when merging the two sets from the above
fragments, we will wish to include only those
elements returned from the first fragment if they
also have a descendent node contained in the set
returned from the second fragment. In fact, what
we need to return are elements with a context
that matches the full path of the last fragment (in
the case above they must have a context that
matches //article//sec – the last named element in
the context must be “sec”). What is meant by
“including elements from the first fragment” is
that the SupportElements for those
ReturnElements in the first set will be added to a
descendant ReturnElement (if it exists) in the 2nd
set.

For example: let us say that the first set contains
a ReturnElement with the context “/article[1]”
and that ReturnElement has an attached
SupportElement of “/article[1]/fm[1]/yr[1]” (for
the purposes of this example assume that all
contexts are in the same document.) Then let us
say that the second set contains a ReturnElement
of “/article[1]/bdy[1]/sec[2]”. This element is
supported by /article[1]/bdy[1]/sec[2]/p[3]. In
this case the ReturnElement in the 2nd is a
descendant of the ReturnElement in the 1st set –
so we can merge the supports from the 1st
ReturnElement into the supports of the 2nd and
we will end up with a ReturnElement
(“/article[1]/bdy[1]/sec[2]”) that has 2 supports
(“/article[1]/fm[1]/yr[1]” and
“/article[1]/bdy[1]/sec[2]/p[3]”).

When merging sets we must determine whether
to do a strict merge or a union merge. For
example if we need to merge the 2 fragments
above, fragment 1 is “strict” – all elements that
we merge from fragment 2 must also have an
ancestor “article” element that contains a “yr”
element for “1999”.

The last fragment will always require a strict
merge. This is because of the requirement stated
above, that all elements returned by the query
must have a context that satisfies the full path of
the query.

However, a Union merge can be appropriate
when we are merging two fragments where
neither are the last fragment in the query, and
both are non-strict (for example both only
contain “about()” filters. In this case all
ReturnElements will be retained, whether an
element returned from the second fragment is a
descendant of some element from the first
fragment or not.

4.6 Support Elements
Support elements are elements that were found to
contain at least one instance of a term that was
specified in the filter. The element that contains
this term must satisfy the full path for that filter
including the context path.

In our example above the first filter (first
fragment) looks for occurrences of the term
“1999” in elements whose context matches the
path “//article//yr”. If we find that the term
“1999” occurs in an element with the context
“/article[1]/bdy[2]/sec[1]/p[1]” this is not a valid
support for this filter. However, if we find a
single occurrence of “1999” in the context
“/article[1]/fm[1]/yr[1]” this would be a valid
support.

Once we have removed all supports that do not
represent valid supports (according to the filter),
we then can create the return elements for this
filter. In this case the return path is “//article” so
the return element would have the context
“/article[1]” with an attached support element
with the context “/article[1]/fm[1]/yr[1]” and
having one “hit” for the term “1999”. It is
possible that a return element contains more than
one support element. For example, if within the
same document we find another element with the
context “/article[1]/fm[1]/yr[2]” that contains 2
hits on the term “1999” we would add another
support element to the return element and record
2 hits on it. (This example is spurious as in the
case of an equality constraint you actually only
want to find one hit on the term. However it
would make sense in the context of the “about()”
filter).

klas
113

klas
113

klas
113

klas
115

klas
113

klas
113

klas
113

4.7 Ranking
Previous works on document ranking in text
retrieval are too numerous and diverse to
mention in the INEX context. However, some
relevant work has been done on ranking schemes
of XML [7]. Many of them apply techniques
used in classical Information Retrieval such the
vector space model and apply them to structured
documents, taking into account that relevance
should be usually judged on a level smaller than
that of a document

The approach we adopted in ranking was a multi-
stage sorting process.

• First sort by filter satisfaction.
• For ReturnElements that satisfy the same

number of filters - sort by number of distinct
terms and phrases that were hit.

• For ReturnElements with the same number
of filters satisfied and the same number of
distinct terms - calculate a score based on
total number of terms hit adjusted by a factor
that penalises terms that are very common in
the document collection.

5.7.1 Filter Satisfaction
A ReturnElement is considered to have satisfied
a filter where it is a valid ReturnElement for that
filter, and it has a least one SupportElement that
has recorded a hit for at least one term in the
filter. A valid ReturnElement is one whose
context matches the path expression of the filter.

In its simplest form, the filter satisfaction
algorithm will rank higher a ReturnElement that
has satisfied a greater number of filters. There
are a number of refinements to this rule:

• Where two filters appear as Predicates
to different Steps in the query
expression (e.g. //article[//yr = “1999”]
//sec[about(./, 'DEHOMAG')]), each
one of these filters that is satisfied will
count towards the overall filter
satisfaction count.

• Where two filters appear in the same
Predicate and they are and-ed together
(e.g. //article//sec[[//yr = “1999”] AND
about(./, 'DEHOMAG')]), each one of
these filters that is satisfied will count
towards the overall filter satisfaction
count.

• Where two filters appear in the same
Predicate and they are or-ed together
(e.g. //article//sec[[//yr = “1999”] OR
about(./, 'DEHOMAG')]), if both filters
are satisfied only one will be counted
towards the overall filter satisfaction
count.

• If any unwanted terms (prefixed by a
minus) are hit in a SupportElement for
the ReturnElement, then the filter

satisfaction count will be reduced by a
count of 2.

5.7.2 Distinct terms and phrases
This algorithm is a second stage sort after the
filter satisfaction sort. Where two
ReturnElements have the same filter satisfaction
count, the distinct terms algorithm is applied to
determine their relative rank. Here we rank
ReturnElements based on the number of distinct
terms and phrases that they satisfy.

If a SupportElement has recorded hits for a
particular term, its containing ReturnElement
will have it’s distinct terms and phrases count
incremented by one. Take for example the query:

//article[about(.//st,'+comparison') and

 about(.//bib,'"machine learning"')]
Let us take the case where we have two
ReturnElements that satisfy both filters. The first
ReturnElement has supports that hit the terms
“comparison” and “machine”. The second
ReturnElement has supports that hit the terms
“comparison”, “machine” and “learning”. In this
case the second ReturnElement will be ranked
higher. Note that it does not matter how many
times each term is hit – it only matters if a term
was hit at least once, or not at all.

The distinct terms and phrases count secondly
takes into account the number of phrases that a
ReturnElement has supports for. For example,
take the query and the second ReturnElement we
discussed above. If this ReturnElement also
contained a support for the phrase “machine
learning” - that is to say a context was found
where the words “machine” and “learning”
appear directly adjacent to each other – the
distinct terms and phrases count algorithm will
increment the count by one.

5.7.3 Scorer penalizes frequent terms
The final stage algorithm of the 3 stage sort is
only invoked where two ReturnElements have
the same filter satisfaction count and distinct
terms and phrases count. This algorithm
calculates a score based on the total number of
instances that terms were hit by
SupportElements. The total number of hits for a
term is normalized based on heuristic that takes
into account how frequently that term occurs in
the entire documents collection. This
normalization factor is calculated as follows:

• Hits: Total number of instances that this
term appears in the ReturnElements
supports.

• TF (TermFrequency): Count of number of
times this term appears in total document
collection

klas
114

klas
114

klas
114

klas
116

klas
114

klas
114

klas
114

• TFC (TermFrequencyConstant): A constant
(determined using heuristics)

• Score: The ranking score for this
ReturnElement

• Terms: The set of terms the score is based on

• i: Denotes the term

• SM (ScarcityMultiplier) = 1 + (TF / TFC)

• Score = ? i in Terms (hitsi * (1/ SMi))

4.8 Discussion on Ranking
Our overall ranking strategy was based on a series of
heuristics.
5.8.1 Filter Satisfaction
It is clear that our strategy places a high degree
of importance to whether a particular collection
of query terms are aggregated into one filter or if
they are put in separate filters. For example, let
us take the following two queries:
• //article[about(.,'clustering distributed') and

about(., 'java')]

• //article[about(.,'clustering distributed java')]

Whilst these filters may appear logically
equivalent, our filter satisfaction algorithm will
mean that lists returned from each query
formulation will vary significantly in how they
are sorted. With the first query, the term “java” is
raised to the same level of importance as that of
both the other terms (“clustering” and
“distributed”). By contrast, with the second
query, a result that hits “clustering” and
“distributed” (but not “java”) will rank equal to a
result that hits “distributed” and “java” (but not
“clustering”). However, if the first query
formulation is used the second result would be
ranked higher as it satisfies two filters whereas
the first result only satisfies one.

 We believe this ranking strategy works well due
to the psychology involved in creating these two
filters. It can be inferred that when a query writer
aggregates terms into one filter he/she considers
all terms so aggregated of equal importance. In
contrast, where a query writer puts terms in
separate filters they are indicating that whilst
each filter should be treated of equal importance,
terms contained in separate filters are not
necessarily of equal importance.

The second thing worth discussing about the
filter satisfaction algorithm is the way it treats or-
ed filters versus the treatment for and-ed filters.
Let us take another two filters by way of
example:

//article[about(.,'clustering) and

about(.,’distributed')]//sec[(about(‘java’)]
//article[about(.,'clustering) or

about(.,’distributed')]//sec[(about(‘java’)]

Further, let us assume we have returnElement1
that hits the terms “clustering” and “distributed”
and returnElement2 that hits the terms
“clustering” and “java”.

In this case query 1 will rank returnElement1and
returnElement2 equal (both with a filter
satisfaction count of 2). However query 2 will
treat these quite differently. The returnElement2
will still have a filter satisfaction count of 2 but
the returnElement1 will have a filter satisfaction
count of only one.

Again we believe this makes intuitive sense. The
second query construction implies that the user
wants one of “clustering” or “distributed” to be
hit – they don’t care which – and if they are both
hit then this is not as important as if “java” is
also hit. It is interesting to note that the following
query would be equivalent to the second query:

//article[about(.,'clustering distributed')]//
 sec[(about(‘java’)]

One final thing to note about this algorithm is
how it treats unwanted terms (i.e. terms preceded
by a minus sign). The algorithm is very harsh in
how it treats the occurrence of such terms (by
deducting 2 from the overall filter satisfaction
count). However, We have found this works well
in practice as the specification of such unwanted
terms by the query writer appears to indicate a
very strong aversion to that term.

5.8.2 Distinct Terms and Phrases
The distinct terms and phrases algorithm is
important in two respects:

• It places a greater importance on the
number of distinct terms hit, than on the
total number of instances that a term or
terms are hit. (This can also be said
about the filter satisfaction algorithm).

• Phrases are given prominence by the
fact that they in effect count as an
additional distinct term.

Let us consider the consequences of first point
above. Take as an example the filter
“//article[about(.,'clustering distributed java')]”.
Let us say that a ReturnElement records hits on
the term “clustering” and “distributed”; both
terms with 100 instances of this term occurring in
the return’s supports – a total of 200 recorded
hits. Then let us take another ReturnElement that
records just the one instance of a hit on each of
“clustering”, “distributed” and “java”. It may
surprise that this second ReturnElement will be
ranked higher when it only recorded 3 separate
hits versus the 200 of the first ReturnElement.

However, we believe this strategy has worked
quite well in reality. What we have found that
this in effect gives a greater prominence to those

klas
115

klas
115

klas
115

klas
117

klas
115

klas
115

klas
115

terms that do not occur frequently – that is it
weights infrequent terms more heavily than
frequent terms. This makes intuitive sense as an
infrequent term that appears in a query is more
likely to aid the precision of the recall than
frequent terms. The more frequent a term is in
the overall document collection the less value it
has to determining the requirements of the user.

As regards the 2nd point above about giving
phrases prominence, this should be self
explanatory. Phrases occur much less frequently
than individual terms, so it makes sense to treat
them with a level of importance equivalent to the
individual terms.

5.8.3 Scorer penalizes frequent terms
Finally we discuss the algorithm that is invoked
where the above two algorithms still cannot
separate two equally ranked ReturnElements. It
is only in this final stage algorithm that we take
into account how “strong” the support is for a
ReturnElement – that is how many instances of
hits on terms have been recorded in a
ReturnElement’s SupportElements.

As per our discussion for the distinct terms and
phrases algorithm, here we also wish to penalize
infrequent terms. The algorithm we developed to
do this was refined by running a series of
experiments and running our own assessment on
the results to see if the modified algorithm
improved the results. The
TermFrequencyConstant gives us the ability to
adjust the normalization factor for penalizing
frequent terms.

4.9 Exceptions
Some INEX topics included conditions that could
not be easily evaluated in the absence of external
knowledge. For instance, a conditions such as
about[.//yr,2000]. Such a condition can be
easily evaluated if a user, or an external schema
can be consulted, in which the meaning of
“about” in relation to <yr> can be determined.
Furthermore, in practical terms, the
implementation must take account of the type of
the element (e.g, is it numeric or alphanumeric?).

The treatment of equality functions involving
years (i.e. a "yr" tag) is straightforward: a string
comparison is made between the value in the tag
and the constant. However, the treatment of
inequality functions (i.e. those involving
inequality operators "<", ">", "<=", ">=") is
more complex. The greater than operator is
undecideable as the upper range of year values to
search the index for is unbounded. The less than
operator may be decideable if we take the year 1
as the lower bound - but in this case the practical
consequence of having to search the index for
upwards of 1,990 terms is that we need to define
a more reasonable lower bound. As such, we

allowed for the lower and upper bound of year
terms to be configured via our configuration file.
This results in a managable range of year terms
for which we have to search the index for any
reasonable year based inequality predicate. The
“about” was also defined in a configuration file
(3 years either side of specified “about” year).

5. Experimental Results
The system was only designed for Content and
Structure queries (CAS). Only the <Title>
element was used in topic evaluation. The
system was not designed to take advantage of
information contained in the <Description> and
<Keywords> elements of a Topic.

5.1 Strict Content and Structure
The best results were obtained with the SCAS
query and strict quantization metric. The average
precision was 0.26 (the submission was ranked
3rd.) With the Generalized quantization metric
the system was ranked 8th. These results are
somewhat surprising given that we only used the
<Title> element of a topic. One would have
expected the use of additional keywords from the
<Description> and <Keywords> elements to
assist retrieval and ranking.

Figure 2: Retrieval results for Strict Content
and Structure (SCAS) topics, quantization
Strict

klas
116

klas
116

klas
116

klas
118

klas
116

klas
116

klas
116

Figure 3: Retrieval results for Strict Content
and Structure (SCAS) topics, quantization
Generalized.

5.2 Vague Content and Structure
Results for VCAS are not available at the time of
writing this paper.

6 Discussion
There is no question that the formulation of the
<Title> element of an XML topic at INEX 2003
is not end user oriented. However, it does allow
for exact specification of structure and content
constraints. We were able to implement a search
engine that evaluates CAS <title> expressions
with good accuracy and reasonable response
time. Furthermore, we were able to construct the
search engine on top of a generic XML inverted
file system. This allows the application of the
system to XML collections without explicit
reference to the underlying XML Schema (or
DTD). It seems however that in the definition of
INEX CAS Topics the authors did not always
specify the intent of the topic (as evident in the
topic’s narrative) in an accurate manner. This
ultimately must have lead to low precision
(across all submissions from all participants).

We were not able to solve the problem in a
completely generic fashion because some topics’
structural constraints could not be easily
interpreted in a generic manner (e.g treatment of
about conditions over <year>). This problem can
be overcome to some extent with the use of an
XML Schema in future evaluations at INEX.

REFERENCES
[1] Proceedings of the First Workshop of the

Initiative for the Evaluation of XML
Retrieval (INEX), DELOS Network of
Excellence on Digital Libraries, ERCIM-03-
W03

[2] Programmar™ Developers Toolkit, NorKen
Technologies, Inc.,
http://www.programmar.com/

[3] “XML Path Language (XPath) Version 1.0”
http://www.w3.org/TR/xpath

[4] Govert, N. (2002), Content-oriented XML
Retrieval with HyRex, Proceedings of the
First Workshop of the Imitative for the
Evaluation of XML Retrieval, Schloss
Dagstuhl, Germany, December 9-11, pp 26-
32a

[5] Ceponkus, A. (1999), Applied XML: A
Toolkit for Programmers, John Wiley &
Sons, New York

[6] Zobel, J. Moffet, A., and Ramamohanarao,
K (1995). Inverted files versus signature
files for text indexing. Tech Rep. CITRI/TR-
95-5, Collaborative Information Technology
Research Institute, Department of Computer
Science, Royal Melbourne Institute of
Technology, Australia, July

[7] Proceedings of the First Woorkshop of the
Initiative for the Evaluation of XML
Retrieval (INEX), Ed: Fuhr, Goevert, Kazai,
Lalmas, 2002.

[8] Schlider T. & Meuss, H. (2002), Querying
and Ranking XML Documents, JASIST,
53(6), pp. 487 503

[9] Fullerr, M. Mackie, E., Sacks-Davis, R. and
Wilkinson, R. (1993), Structured Answers
for a large Structured Document Collection",
in Proceedings of ACM SIGIR '93,
Pittsburg, PA, 204-213, June 1993

[10] Lamas, M. (1997), Dempster-Shaferâ€™s
Theory of Evidence Applied to Structured
Documents: Modelling Uncertainty. in
Proceedings of the 20th Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, pp.
110 118, July 1997

[11] Crestani, F. Lamas, M., Van Rijsbergen, C.
J., Campbell, I., Is This Document Relevant?
Probably. A Survey of probabilistic Modells
in Information Retrieval. ACM Computing
Surveys, 30(4), 2001 Strzalkowski, T.,
Prezez-Carballo & Marinescu M. (1996)

klas
117

klas
117

klas
117

klas
119

klas
117

klas
117

klas
117

Applying the IRStream Retrieval Engine
to INEX 2003

Andreas Henrich, Volker Lüdecke
University of Bamberg

D-96045 Bamberg, Germany

{andreas.henrich|volker.luedecke}@wiai.uni-
bamberg.de

Günter Robbert
University of Bayreuth

D-95440 Bayreuth, Germany

guenter.robbert@uni-bayreuth.de

ABSTRACT
Last year, in the context of the INEX evaluation initiative,
we could show that our retrieval system IRStream is success-
fully applicable as a retrieval engine for XML-documents.
Nevertheless, we have to point out that IRStream can be
further optimized in many directions.

In the present paper we show, how IRStream was extended
and improved for its application to INEX 2003 in order to
achieve better retrieval results. Furthermore, we present
some first retrieval results, which demonstrate the impact
of the improvements of IRStream concerning the quality of
the retrieval result.

1. MOTIVATION
Last year, as a participating organization at the INEX eval-
uation initiative [11], we applied IRStream to the collection
of XML documents provided by INEX. Hereby, we investi-
gated the usability of IRStream for structured text docu-
ments. By the application of IRStream as retrieval system
for XML-documents, we have recognized that IRStream can
be further improved and optimized in many respects.

As two of the main drawbacks of IRStream we have iden-
tified the absence of a component for an automatic gener-
ation of queries based on topic data and the problem that
IRStream sometimes provided wrong granules as the result
of a query. Therefore we decided to improve and extend
IRStream in order to avoid these drawbacks.

In this respect is intended to provide a powerful framework
to search for components of arbitrary granularity – ranging
from single media objects to complete documents. IRStream
combines traditional text retrieval techniques with content-
based retrieval for other media types and fact retrieval on
meta data. In contrast to other retrieval services which per-
mit set-oriented or navigation-oriented access to the doc-
uments, we argue for a stream-oriented approach. In the
following paper, we shortly describe the significant features
of this approach and describe the system architecture of
IRStream. Furthermore, we present the application of an
extended and improved version of our IRStream retrieval
engine as a retrieval system for XML documents in the con-
text of INEX 2003 [4].

The paper is organized as follows: In section 2 we will
give a short overview of the ideas and main components

of IRStream. The architecture of our IRStream implemen-
tation is presented in section 3. Section 4 shows how we
improved our retrieval system IRStream in order to use it
as a retrieval engine for XML documents in the context of
INEX 2003. In section 5 we present some first experimental
results concerning the improved version of IRStream. Sec-
tion 6 concludes the paper.

2. STREAM-ORIENTED QUERY
PROCESSING

“Stream-oriented” means that the entire query evaluation
process is based on components producing streams, one af-
ter the other. First, there are components creating streams
given a base set of objects and a ranking criterion. We call
these components rankers. Other components consume one
or more input streams and produce one (or more) output
stream(s). Combiners, transferers and filters are different
types of such components.

2.1 Rankers
The starting point for the stream-oriented query evaluation
process are streams generated for a set of objects based on
a given ranking criterion. For example, text objects can be
ranked according to their content similarity compared to a
given query text and images can be ranked with respect to
their color or texture similarity compared to a given sample
image.

Such “initial” streams can be efficiently implemented by ac-
cess structures such as the M-tree, the X-tree, the LSDh-
tree, or by approaches based on inverted files. All these
access structures can perform a similarity search in the fol-
lowing way: (1) the similarity search is initialized and (2)
the objects are taken from the access structure by means
of some sort of “getNext” method. Hence, the produced
streams can be efficiently consumed, one after the other.

2.2 Combiners
Components of this type combine multiple streams provid-
ing the same objects ranked with respect to different ranking
criteria. Images are an example of media types, for which no
single comprehensive similarity criterion exists. Instead, dif-
ferent criteria addressing color, texture and also shape sim-
ilarity are applicable. Hence, components are needed which
merge multiple streams representing different rankings of
the same base set of objects into a combined ranking.

klas
118

klas
118

klas
118

klas
120

klas
118

klas
118

klas
118

Since each element of each input stream is associated with
some type of retrieval status value (RSV), a weighted aver-
age of the retrieval status values in the input streams can be
used to derive the overall ranking [3]. Other approaches are
based on the ranks of the objects with respect to the single
criteria [12, 7]. To calculate such a combined ranking effi-
cient algorithms, such as Fagin’s algorithm [1, 2], Nosferatu
[14], Quick Combine [5] and J∗ [13] can be deployed.

2.3 Transferers
With structured documents, ranking criteria are sometimes
not defined for the required objects themselves but for their
components or other related objects. For example, searching
for images where the text in the “vicinity” (for example in
the same section) should be similar to a given sample text.
In such situations the ranking defined for the related objects
has to be transferred to the desired result objects.

To put it more precisely, we are concerned with a query
which requires a ranking of objects of some desired object
type otd (image for example). However, the ranking is not
defined for the objects of type otd, but for related objects of
type otr (text for example).

We assume that the relationship between these objects is
well-defined and can be traversed in both directions. This
means that we can determine the concerned object - or ob-
jects - of type otd for an object of type otr and that we can
determine the related objects of type otr for an object of
type otd. The characteristics of these traversal operations
depend on the database or object store used to maintain
the documents. In objectrelational databases join indices
and index structures for nested tables are used to speed up
the traversal of such relationships. For a further improve-
ment additional path index structures can be maintained on
top of the ORDBMS (cf. section 3).

Furthermore, we assume there is an input stream yielding a
ranking for the objects of type otr. For example, this stream
can be the output of a ranker or combiner.

To perform the actual transfer of the ranking we make use
of the fact that each object of type otr is associated with
some type of retrieval status value (RSVr) determining the
ranking of these objects. As a consequence, we can trans-
fer the ranking to the objects of type otd based on these
retrieval status values. For example, we can associate the
maximum retrieval status value of a related object of type
otr with each object of type otd. Another possibility would
be to use the average retrieval status value of all associated
objects of type otr. In [10] you will find a detailed descrip-
tion of an algorithm called “RSV-Transfer”, which is used
by IRStream to perform the transfer of rankings between
different object types.

2.4 Filters
Of course, it must be possible to define filter conditions for
all types of objects. Accordingly, it is necessary that fil-
ter components are used for our stream-oriented approach.
These filter components are initialized with an input stream
and a filter condition. Then only those objects from the in-
put stream which fulfill the given filter condition are passed
to the output stream.

����������	
������� ����	 ��	�����������	���	 ��� � � ��	 � � �

� � 	�����

 ��!�� ��	���� � "���#%$

&(' � �)� *���	

+ 	�� '-, � !����/.�����	0� ��� ��	��1��!��

243�576 8�9�:�;=< >=?@2

ACB7D B(EGFCH�IKJ�L
M IKBON�NCL7I

B�J7J7LOEGE0EGD IKH�JOD HCIKL
M IKB7NCN�LOI

EGD IKL7B7P
M IKB7NCN�LOI

���

���

Q RS T
U TS T

��	 ��� �V	1��	�W
� '�' � �V!���� � �����
' ��	�����	1)� � +
���)� � ��	�� � W
X .���	�� ���

������� .�	1��Y-Z�� 	���!�� ��	 [\��� 	�� !��

[\] [_^��Y�] �`Y�a
��� ���

bdcfe(g7hdi(jlk

monqpsrqtvu

Figure 1: Architecture of the IRStream system

3. THE IRSTREAM ARCHITECTURE
The architecture of our IRStream system is based on the idea
that the data is maintained in external data sources. In our
implementation, an ORDBMS is used for this purpose. The
stream-oriented retrieval engine is implemented in Java on
top of this data source and provides an API to facilitate the
realization of similarity based retrieval services. Figure 1
depicts this architecture.

The core IRStream system — shaded grey in figure 1 —
comprises four main parts: (1) Implementations for rankers,
combiners, transferers, and filters. (2) Implementations of
various methods for the extraction of feature values as well
as corresponding similarity measures. (3) A component main-
taining meta data for the IRStream system itself and appli-
cations using IRStream. (4) Wrappers needed to integrate
external data sources, access structures and stream imple-
mentations.

Feature Extractors and Similarity Measures

A feature extractor receives an object of a given type and
extracts a feature value for this object. The similarity mea-
sures are methods which receive two feature representations
— usually one representing the query object and an object
from the database. The result of such a similarity measure
is a retrieval status value.

Ranker, Combiner, Transferer, Filter, . . .

All these components are subclasses of the class “Stream”.

klas
119

klas
119

klas
119

klas
121

klas
119

klas
119

klas
119

The interface of these classes mainly consists of a specific
constructor and a getNext method.

For example, the constructor of a ranker receives a specifi-
cation of the data source, a feature extractor, a similarity
measure and a query object. Then the constructor inspects
the meta data to see if there is an access structure for this
data source, this feature extractor, and this similarity mea-
sure. In this case, the access structure is employed to speed
up the ranking. Otherwise, a table scan with a subsequent
sorting is performed.

For the construction of a combiner two or more incoming
streams with corresponding weights have to be defined. Here
it is important to note that combiners such as Fagin’s algo-
rithm or Quick Combine rely on the assumption that ran-
dom access is supported for the objects in the input streams.
The reason for this requirement is simple. When these al-
gorithms receive an object on one input stream, they want
to calculate the mixed retrieval status value of this object
immediately. To this end, they perform random accesses on
the other input streams. Unfortunately, some input streams
are not capable of such random access options, or a random
access would require an unreasonable high effort. In these
cases, other combine algorithms — such as Nosferatu or J∗

— have to be applied.

For the construction of a transferer, an incoming stream, a
path expression and a transfer semantics have to be defined.
In our implementation, references and scoped references pro-
vided by the underlying ORDBMS are used to define the
path expressions.

To construct a filter, an incoming stream and a filter predi-
cate have to be defined.

Meta Data

This component maintains data about the available fea-
ture extractors, similarity measures, access structures, and
so forth. On one hand, this meta data is needed for the
IRstream system itself in order to decide if there is a suit-
able access structure for example. On the other hand, the
meta data is also available via the IRstream-API for appli-
cations.

Wrapper

IRstream makes the extension of the retrieval service in var-
ious directions possible by the use of wrappers and inter-
faces: Data source wrappers are needed to integrate systems
maintaining the objects themselves into our retrieval sys-
tem. At present, objectrelational databases can be used via
JDBC. Whereas access structure wrappers can be used to
deploy access structures originally not written for our sys-

tem. For example, we incorporated an LSDh-tree written in
C++ via a corresponding wrapper. In contrast, the stream
wrapper interface is used to incorporate external sources for
streams into our system. It can be used to incorporate ex-
ternal stream producers. At present, the text module of the
underlying ORDBMS is integrated via a stream wrapper.

On top of the IRStream API various types of applications
can be realized. An example is a graphical user interface
where the user can define the query as a graph of related
query objects [9]. Another possibility is to implement a
declarative query language on top of the API. At present,
we are working on a respective adaptation of our POQLMM

query language [6, 8].

4. EXTENSIONS AND IMPROVEMENTS
OF IRSTREAM FOR INEX2003

In INEX 2003 every retrieval system had to be able to per-
form an automatic query generation from topic data. While
a topic is interpreted as a representation of an information
desire, a query in this context is an internal representation
for the system’s retrieval process. Thus, the first extension
of IRStream was to integrate a query generation step into
this retrieval process. An evaluation of last year’s results
shows that one of main problems of IRStream02 was the de-
termination of a fitting granule of retrieval results for CO-
topics, and furthermore an automatic processing of struc-
tural constraints of CAS-topics, as well as automatically
generating multiple results from one document (e.g. a list
of authors). To solve these problems, the retrieval process
of the system was completely redesigned, which is described
in this section.

To determine fitting granules for retrieval results (and their
corresponding identifying paths), a retrieval system has to
be able to perform two tasks: First, to extract (possibly
several) fragments of one document and to determine their
unique paths (including node indices). In this case a path
expression is given as part of the query, which describes a
structural constraint for result granules, as is the case with
CAS-topics. Second, the system must be able to process
queries which do not contain a constraint regarding the re-
sult granule (CO-topics). In this case, the decision on the
fitting granule is to be made automatically within the re-
trieval process.

4.1 Automatic query generation
The queries used internally by a retrieval system, generated
from the topic data, may influence the quality of retrieval
results significantly. In order to compare the results of dif-
ferent retrieval systems or even the result of a retrieval sys-
tem in various development states, the influence of manual
(pre-) processing must be eliminated. Therefore an auto-
matic query generation was added to the IRStream system,
which was also a requirement for retrieval systems partici-
pating in INEX 2003. For reasons of performance, two differ-
ent approaches for CO- and CAS-topics were used, although
every CO-topic may be converted into CAS-format by inter-
preting a CO-topic title as //[about(.,’CO-title’)]. The
different retrieval processes for these two topic types will be
described later in this section.

The general architecture is the same for both variants. A
wrapper-class Topic parses a topic file and provides means
of access via a Java-API. The system is thereby also pre-
pared for changing topic-formats, which will result in ad-
ditional sub-classes of this wrapper. The methods provided
by Topic are used by a QueryBuilder component specialized
in CO-topics or CAS-topics respectively. This component

klas
120

klas
120

klas
120

klas
122

klas
120

klas
120

klas
120

���������
	������������� ���

������������������������� �	

������ "!��

������ "!��

�������
�����#�$� ��%���&
�������'��(

) ����� ��*
+ �����������

, �-������.����� �����, �������/0��� & 1����

2 34
5 6 7�8 92 9

:;<
=>
8 92 9

?�@A!A��B

C������ADE!�F !���G

H IKJ"L M

Figure 2: Architecture of query generation

creates the queries internally used by the Rankers of the
core-retrieval system. To configure the query generation, a
QueryOptions class is used, which contains all kinds of pa-
rameters used in the generation process. Figure 2 gives an
overview of the general architecture and the differentiation
between query generation and query processing.

Every query may make use of any of the following three topic
parts: the title, the description and the keywords. Within
the topic title, terms may further be categorized in must-
terms (marked by a +), must-not terms (marked by a -) and
terms not marked at all. For each part or each category of
terms, the QueryOptions class contains parameters about:

Consideration: Shall these terms be considered for query
generation at all?

Weighting: What weight shall be associated to these terms
(1-10)?

Stemming: Shall the stemming operator of the underlying
ORDBMS be used for these terms?

Connectors: Which connecting operator (OR, AND, AC-
CUMulate) shall be used to connect terms of this class
or between classes of terms?

Compound terms: Which way shall compound terms be
treated?

4.2 CAS-topics
A CAS-topic contains structural constraints as well as con-
tent information, so that three logic parts of a CAS-topic
may be identified: First, a constraint regarding the gran-
ule of result elements. Second, content and structure in-
formation about the result element itself — i.e. its inner
context —, which shall be called content constraint. Third,
there may be content and structure information about the
result element’s parent or sibling elements — i.e. the ele-
ment’s environment —, which shall be called structure con-
straint.

The differentiation between content and structure constraint
may easily be done by looking at the syntax of a CAS-topic
title:

[node [filter]]* target-node filter

Every filter (which corresponds to constraints) before the
target-node belongs to the structure constraint, while the
filter given for the target-node contains the content con-
straint.

The title of a CAS-topic contains a path expression that
must be matched by the path of a result element. For the
automatic query generation, this path expression is simply
the concatenation of all nodes. Normally, there are several
elements within a document with matching paths, since the
path expression may contain wildcards and does not have to
use node indices. Thus, a retrieval system not only has to
find relevant documents and determine fitting sub-elements
of that element, but it also has to determine relevance scores
for each sub-element. Therefore we inserted a new table into
the underlying ORDBMS which contains every addressable
element of the document collection, i.e. every element that
matches the XPath-expression //*, which are about 8 mio
elements. Each table entry consists of an element with all
its sub-elements and their textual content, its unique path
expression, and its path expression without indices. To de-
termine the unique path of an element, which is needed for
the creation of the submission-file, this data can simply be
read from this table. To fulfill the structural constraint of a
CAS-topic regarding the result granule, only a selection of
those elements is evaluated whose path matches the path ex-
pression given in the topic title. Apparently, this approach
implies a high degree of redundancy, since the table contains
every textual content multiple times. Further developments
of IRStream will address this problem, probably by making
extended use of the transferer functionality.

The content constraint includes every information that is
given about the result element itself. That may be content
only, but also constraints concerning the internal structure
of an element, like a section having a title about information
retrieval:

/article/bdy/

sec[about(.,//st,’"information retrieval"’)]

klas
121

klas
121

klas
121

klas
123

klas
121

klas
121

klas
121

The crucial factor of this logic part of the topic is that every
information needed is within the result element itself and
thus may be addressed via the table mentioned above.

The structure constraint includes every information given
about the environment of the result element, i.e. its sibling
and parent elements. This may include both structure and
content information which is not contained in the result el-
ement itself and therefore cannot be addressed via the table
mentioned above, since the table entries are decoupled from
their environment. To fulfill this constraint, a document as
a whole has to be evaluated, i.e. it refers to a whole article
instead of a result element only.

By looking at an example (topic 77), the retrieval process
of IRStream for CAS-topics and the integration of a query
generation step into this process will be depicted. The title
of topic 77 states:

//article[about(.//sec,’"reverse engineering"’)]//

sec[about(.,’legal’) OR about(.,’legislation’)]

The concatenation of all nodes is //article//sec, which is
the given path expression that all result elements have to
fulfill. Therefore only elements with the fitting granule will
be ranked in the query process, which is implemented via a
corresponding WHERE-clause.

The content constraint, referring to the result element itself,
is contained in the last filter. It says that the result element
has to be about concepts of legal or legislation. The
query generation component successively reads all about-
clauses and their connectors. Each about-clause is trans-
lated into a corresponding INPATH-clause of the ORDBMS,
which reads (terms INPATH path) and includes any given
structural constraints. In this example, (legal INPATH

/sec) would be the resulting query part. The INPATH-
clauses, their connectors and the result element’s path ex-
pression form the main part of the content query, which is
applied to the table containing every addressable element.

The structure query on the other hand has to be applied to a
table of whole articles, which contain the complete structure
information of a document. The query generation is done
accordingly, reading each filter successively and connecting
the resulting INPATH-expressions. The last filter in the topic-
title may or may not be part of the structure query. Not
including it means that some articles are probably marked
relevant that do not contain any elements that satisfy the
content constraint. IRStream therefore considers the con-
tent query to be a part of the structure query.

In order to get a result ranking, these two queries have each
to be processed by a ranker-component and then be joined
into a final ranking. These two rankers create streams of
two different object types — article (structure query) and
element (content query) —, which cannot directly be com-
bined by a combiner-component. Therefore a transferer-
component is needed, which transfers the ranking of an ar-
ticle to all its sub-elements. A special filter-component fil-
ters all elements whose path does not fulfill the given path
expression. The output of this filter is a stream of elements,

�����������

����	
 ��� �

�����������

�������� 	������������ �

	 �������� �������

����	
 ��� �����
�������� ��������	

��������
 �����

�	 ������	 ����� ������	 ����	

�������� 	

�
 � 	 ���

�������� 	������������ �

Figure 3: CAS-topic processing

and thus a combiner can finally merge the two streams into
a result ranking. This procedure is shown in figure 3.

Obviously, this (general) procedure can be optimized, be-
cause the transferer creates hundreds of elements that are
immediately eliminated by a filter. Therefore the task of
ranking, transferring and filtering was integrated into a spe-
cialized component InexRanker, which relocates the trans-
ferring-process into the DBMS. The three logical steps de-
scribed above can thereby be performed by a single SQL-
query:

1. ranking an article in reference to the structure query

2. transferring the RSV to all sub-elements, identified via
foreign key relationship

3. selection of those elements that fulfill the given path
expression

4.3 CO-topics
The special challenge while processing CO-topics is that the
retrieval system has to decide autonomously, which granule
of the result elements is the most fitting. For INEX 2003,
the procedure for handling CO-topics is based on the table
mentioned above, which contains every addressable element
including all its textual content and that of its sub-elements.
A single ranker-component simply creates a ranking of all

klas
122

klas
122

klas
122

klas
124

klas
122

klas
122

klas
122

those elements, and an element’s filename and unique path
may be read from this table. The aim of this approach
was to evaluate whether it is worthwhile basing further op-
timizations on it, which are obviously possible, since this
table contains about eight million elements, every layout-
tag (italic, bold etc.) being contained.

For CO-topics, four characteristics can be identified. Based
on these, the general applicability of this approach is to be
shown:

CO-topics do not contain structural information

The elements in the table used are decoupled from
their structural environment and are treated as single
documents. No structure information is needed for this
query processing.

CO-topics do not contain constraints regarding the granule
of result elements

By this procedure, elements of all granules are ranked
likewise, so that every granule may be contained in
the result ranking. Possible optimizations will be ad-
dressed in section 6.

An ideal result element satisfies the information need com-
pletely

A retrieval system cannot validate a complete answer-
ing of an information need, but this requirement has to
be considered in the process of determining relevance
scores. Regarding an XML-document as being a tree
of elements, that one element obviously fulfills that re-
quirement best, which is superior to all elements which
contain relevant information. If several paragraphs are
marked as relevant, for example, their corresponding
section seems to be the best fitting element. The cal-
culation of a score-value that is done by the underlying
ORDBMS provides an according evaluation, because
it is in principle based on absolute term frequencies.
Thus, superior elements normally get a relevance score
which is equal to or greater than that of their child el-
ements.

An ideal result element is specific about the topic’s theme

For INEX 2003, IRStream did not eliminate multiple
result elements within a branch of the document tree,
the consequences of which with respect to retrieval ef-
fectiveness has not yet been evaluated, but it will be
addressed in the near future. If several elements of a
branch have the same RSV-score, it is obviously the
smallest element that conforms best to this require-
ment. It remains to be seen whether elimination of
such duplicates or considering document lengths will
improve retrieval effectiveness.

The query generation for CO-topics is similar to that of
CAS-topics, but here only one query has to be created, and
no structural information has to be included. Terms in the
title of CO-Topic may be marked by a + (declared as must-
terms). The IRStream query generation allows to interpret
these markings as strict or vague. A strict interpretation
means that only those elements may be relevant that contain

all must-terms. Therefore these terms are connected to each
other by AND-operators, and must-terms and all other terms
are each encapsuled by brackets which are also connected by
an AND-operator. Interpreting these terms as vague, other
connecting operators may be used, like ACCUMulate or OR.

5. EVALUATION OF THE NEW IRSTREAM
ENGINE AT INEX 2003

With the runs submitted to INEX 2003, two things were to
be looked at: First, we wanted to see, whether our interpre-
tation of CAS-topics and thus the differentiation between
content and structure constraints would lead to good re-
sults compared to those of the other participating retrieval
systems. Second, we wanted to get an estimation of how
applicable our approach for processing CO-topics is.

Figures 4 and 5 show the recall/precision graphs for
IRStream’s CAS-run — with strict and generalized quan-
tization — in comparison to all officially submitted retrieval
runs. Rank 12 of 38 for strict quantization and rank 10 of 38
for generalized quantization seem promising that the chosen
query architecture forms a solid basis for further efforts.

INEX 2003: second_scas

quantization: strict; topics: SCAS
average precision: 0.2277

rank: 12 (38 official submissions)

Figure 4: summary CAS strict

The recall/precision graphs for IRStream’s CO-run are
shown in figures 6 and 7. Rank 10 of 56 for strict and rank 7
of 56 submissions for generalized quantization indicate that
further efforts to optimize our approach seem to be worth-
while.

In order to compare the results of IRStream02 and
IRStream03 — and thus to evaluate the effect of the sys-
tem changes — we used the new system to create a retrieval
run on the topics of INEX 2002. Since the topic syntax for
CAS-topics has changed, only those topics were processed
in this run which could be converted to the new syntax.
Topics without explicitly stating a target element or those
with multiple target elements do not conform to INEX 2003
syntax and thus were omitted.

Figures 8 to 11 show that — especially considering the re-

klas
123

klas
123

klas
123

klas
125

klas
123

klas
123

klas
123

INEX 2003: second_scas

quantization: generalized; topics: SCAS
average precision: 0.1983

rank: 10 (38 official submissions)

Figure 5: summary CAS generalized

INEX 2003: _co_second

quantization: strict; topics: CO
average precision: 0.0677

rank: 10 (56 official submissions)

Figure 6: summary CO strict

call — the results of IRStream03 are noticeably better than
those of IRStream02, which is mainly caused by a more
vague interpretation and processing of topic data. Due to
the manual optimization of the queries used in IRStream02,
its precision at low recall values is slightly better than that
of IRStream03, which uses a fully automated query process-
ing.

6. CONCLUSION
In this paper, we have presented an improved version of
our retrieval system called IRStream, which was success-
fully used in the context of INEX 2002. The main idea
of IRStream is to complement traditional query processing
techniques for queries dominated by similarity conditions.
The IRStream retrieval engine has been implemented as a
prototype in Java on top of an ORDBMS and first experi-
mental results achieved with this prototype are promising.

INEX 2003: _co_second

quantization: generalized; topics: CO
average precision: 0.0717

rank: 7 (56 official submissions)

Figure 7: summary CO generalized

IRStream 2002 vs. 2003
quantization: strict; topics: CAS

new: 0.278
old: 0.213

Figure 8: improvement CAS strict

IRStream 2002 vs. 2003
quantization: generalized; topics: CAS

new: 0.284
old: 0.159

Figure 9: improvement CAS generalized

klas
124

klas
124

klas
124

klas
126

klas
124

klas
124

klas
124

IRStream 2002 vs. 2003
quantization: strict; topics: CO

new: 0.058
old: 0.036

Figure 10: improvement CO strict

IRStream 2002 vs. 2003
quantization: generalized; topics: CO

new: 0.106
old: 0.041

Figure 11: improvement CO generalized

With regard to INEX2003 IRStream was extended and im-
proved in several respects. IRStream now supports auto-
matic query generation as well as the automatic detection
of the best fitting result granule for a given query.

In the near future, we will develop a query language for
this approach and consider optimization issues regarding
the interaction between the underlying ORDBMS and the
IRStream system. Last but not least, IRStream should build
a good basis for the integration of further query criteria —
like context information or domain specific thesauri — into
the query execution in order to improve the precision of the
system.

7. REFERENCES
[1] R. Fagin. Combining fuzzy information from multiple

systems. Journal of Computer and System Sciences,
58(1):83–99, 1999.

[2] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In Proc. 10th
ACM Symposium on Principles of Database Systems:
PODS, pages 102–113, New York, USA, 2001.

[3] R. Fagin and E. L. Wimmers. A formula for

incorporating weights into scoring rules. Theoretical
Computer Science, 239(2):309–338, 2000.

[4] N. Fuhr and M. Lalmas. Initiative for the Evaluation
of XML retrieval (INEX). Online available: url:
http://inex.is.informatik.uni-duisburg.de:2003, 2002.

[5] U. Güntzer, W.-T. Balke, and W. Kießling.
Optimizing multi-feature queries for image databases.
In VLDB 2000, Proc. 26th Intl. Conf. on Very Large
Data Bases, pages 419–428, Cairo, Egypt, 2000.

[6] A. Henrich. Document retrieval facilities for
repository-based system development environments.
In Proc. 19th Annual Intl. ACM SIGIR Conf. on
Research and Development in Information Retrieval,
pages 101–109, Zürich, Switzerland, 1996.

[7] A. Henrich and G. Robbert. Combining multimedia
retrieval and text retrieval to search structured
documents in digital libraries. In Proc. 1st DELOS
Workshop on Information Seeking, Searching and
Querying in Digital Libraries, pages 35–40, Zürich,
Switzerland, 2000. ERCIM Workshop Proceedings.

[8] A. Henrich and G. Robbert. POQLMM: A query
language for structured multimedia documents. In
Proc. 1st Intl. Workshop on Multimedia Data and
Document Engineering, MDDE’01, pages 17–26, Lyon,
France, 2001.

[9] A. Henrich and G. Robbert. A graphical user interface
for complex similarity queries on structured
multimedia documents. In Proceedings of the 3rd
International Workshop on Multimedia Data and
Document Engineering (VLDB Workshop), Berlin,
Germany, 2003.

[10] A. Henrich and G. Robbert. RSV-Transfer: An
algorithm for similarity queries on structured
documents. In Proceedings of the 9th International
Workshop on Multimedia Information Systems (MIS
2003), pages 65–74, Ischia, Italy, May 2003.

[11] G. Kazai, N. Gövert, M. Lalmas, and N. Fuhr. The
INEX evaluation initiative, pages 279–293. Lecture
Notes in Computer Science. Springer, Heidelberg et
al., 2003.

[12] J. H. Lee. Analyses of multiple evidence combination.
In Proc. 20th Annual Intl. ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 267–276, Philadelphia, PA, USA, 1997.

[13] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and
J. S. Vitter. Supporting incremental join queries on
ranked inputs. In Proc. 27th Intl. Conf. on Very Large
Data Bases, pages 281–290, Los Altos, USA, 2001.

[14] U. Pfeifer and S. Pennekamp. Incremental Processing
of Vague Queries in Interactive Retrieval Systems. In
Hypertext - Information Retrieval - Multimedia ’97:
Theorien, Modelle und Implementierungen, pages
223–235, Dortmund, 1997.

klas
125

klas
125

klas
125

klas
127

klas
125

klas
125

klas
125

Distributed XML Information Retrieval

Wayne Kelly
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
w.kelly@qut.edu.au

Shlomo Geva

Centre for Information Technology Innovation
Faculty of Information Technology

Queensland University of Technology
GPO Box 2434 Brisbane Q 4001 Australia

s.geva@qut.edu.au

Tony Sahama
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
t.sahama@qut.edu.au

Wengkai Loke
Centre for Information Technology Innovation

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434 Brisbane Q 4001 Australia
w.loke@qut.edu.au

ABSTRACT
In this paper we describe the implementation
of a distributed search engine for XML
document collections. The system is based on
a generic P2P collaborative computing
framework. A central server coordinates query
and search results distribution. The server
holds no documents nor does it hold any
indexes. The document collection is
distributed amongst multiple PC based
workstations, where it is also indexed and
searched. The system is scalable to databases
several orders of magnitude larger than the
INEX collection, by using a system of standard
networked PCs.

Keywords: P2P, INEX, XML, Distributed
Database, Information, Retrieval, Inverted
File, XPath, Assessment, Evaluation, Search
Engine
1. Introduction
Web search engines such as Google are
enormously valuable in allowing ordinary
users to access information on a vast array of
topics. The enormity of the information being
searched and the massive number of clients
wishing to make use of such search facilities
means, however, that the search mechanisms
are inherently constrained. The data being
searched needs to be a priori indexed.
Searching is limited to finding documents that
contain at least one occurrence of a word from
a list of words somewhere within its body. The
exact relationship of these words to one
another cannot be specified. These limitations
mean that it is often difficult to specify exactly
what you want, consequently clients are
overwhelmed by an avalanche of query results
– if users don’t find what they are looking for

in the first couple of pages of results they are
likely to give up.

XML documents contain rich structural
information that can be used by information
retrieval system to locate documents, and part
thereof, with much greater precision than text
retrieval systems can. However, systems
capable of searching XML collections by
content are typically resource hungry and are
unlikely to be supported extensively on central
public servers for some time to come, if at all.

Peer to Peer (P2P) file sharing systems such as
KaZaA, Gnutella and Napster enable
documents to be searched and accessed
directly from end user’s PCs, i.e., without
needing to publish them on a web server, but
again the indexing for retrieval is a priori. This
is fine if you are searching based on well
defined metadata keys such as song title or
performer, but not if you are trying to search
based on the content of the data.

The greatest degree of search specificity is
achieved if the search engine can potentially
access the content of the entire collection for
each and every query. Obviously this is
infeasible for huge document collections such
as the entire WWW. If, however, we limit
ourselves to smaller collections such as
documents archived by a “community” of
individuals that are collaborating on some
project or share some common interest, then
such a precise Information Retrieval paradigm
is feasible and highly desirable.

The P2P framework that we propose is based
on search agents that visit the workstations of
participating individuals to perform custom
searches. Individuals wishing to perform a
search can choose from a library of “standard”
search agents, or they can implement their own

klas
126

klas
126

klas
126

klas
128

klas
126

klas
126

klas
126

agent that implements an arbitrarily
sophisticated search algorithm. The agents
execute on the individual workstations within
our P2P host environment that “sand-boxes”
them, preventing them from doing “harm” to
the workstations and allowing the workstation
owners to control exactly which “resources”
can be accessed. Resources potentially
accessed include files, directories and
databases. The key advantages of our system
compared to web search engines such as
Google are:

- Arbitrarily sophisticated algorithms can be
used to perform highly selective searches,
since the query is known before the actual
document collection is scanned.
- The documents don’t have to be explicitly
published to a central server – they are
accessed in place. This saves time and effort
and means that working documents can be
made immediately available from the time they
are created, and work can continue on those
documents locally while still being externally
accessible.
- Volunteers have the option to only partially
publish documents. This means they allow a
client’s search agent to examine their
documents, but they limit the response that
such search agents can return to the client. The
response could be as limited as saying “Yes - I
have a document that matches your query”. In
most cases, the agent will return some form of
URL which uniquely identifies the matching
document, but our framework doesn’t in itself
provide a mechanism for the client to retrieve
that document from the volunteer. The exact
mechanism by which such documents are
retrieved is beyond the scope of this paper, but
it could for example be a manual process,
whereby the owner of the volunteer
workstation will access each such client
request based on the identity of the client and
the document being retrieved. This might
happen, for example, in a medical setting with
doctors requesting patient records from other
doctors, or in a law enforcement setting with
police agencies requesting criminal histories
from other jurisdictions.

The remainder of this paper is organized as
follows. In section 2 we describe the system
underlying the distributed search engine. In
section 3 we describe the XML search engine
that is distributed and executed by search
agents on the distributed database. In section 4
we discuss the results of testing the systems
against the INEX collection. In section 5 we
discuss and summarize the lessons learnt from
the INEX exercise.

2. System Architecture
Our system is termed P2P in that the actual
searching is performed on peer nodes. The
internal architecture of our system is, however,
client/server based - for a number of reasons.
The underlying architecture of our system is
illustrated in Figure 1. The client PCs that
make up the “leaves” of system belong to the
individuals in the community and can play two
distinct roles; they can be a searcher or they
can volunteer to be searched. A searcher is a
PC that submits queries to the system. The
volunteers are the PCs on which the documents
reside and on which the queries are processed.
Individual PCs can play either or both of these
roles at various points in time. PCs volunteer
themselves to be searched typically only when
they are otherwise idle. This is a form of cycle
stealing, as the execution of the search agents
may consume considerable CPU time and
memory bandwidth of the machine while it is
running.

The clients of the system - the searchers and
the volunteers come and go over time; the
search server is the only part of the system that
remains constant. It acts as a central point of
contact for searchers wishing to submit queries
and for volunteers willing to be searched. It
also acts as a repository for queries waiting to
be processed and query results waiting to be
retrieved. At the point in time when a searcher
submits a query, there may be some volunteers
“currently connected” to the server that would
be willing to process that query immediately.
In such a case some results may be able to be
returned to the searcher almost immediately
(allowing of course, for the time to perform the
search on the volunteer machines - which can
be arbitrarily long depending on the
complexity of the search algorithm and the size
of the document collection being searched on
each PC).

Often, however, the relatively small set of set
of volunteers that are currently connected, will
either produce no results for the query, or at
least will produce no results that are
satisfactory to the searcher (note that this is
made more probable by the high degree of
query specificity that is possible with an agent
based search framework). In such a case, we
assume the searcher will often be willing to
wait (minutes, hours, days or perhaps even
weeks) for other volunteers to connect to the
system and hopefully contribute interesting
new results. This is the key difference between
our distributed search engine and traditional
cycle stealing systems. In a traditional cycle
stealing system, all volunteers are considered
equal – once a computational task has been
carried out by one machine there is no point if
having any other volunteer machine repeat that

klas
127

klas
127

klas
127

klas
129

klas
127

klas
127

klas
127

Figure 1: System Architecture

Query

Repository

Web

Server

HTTP HTTP

Searchers

Search Server

Volunteers
(Document Sources)

 1) submit query

4) retrieve result

2) fetch queries

3) submit results

same computation. In our distributed search
system, however, each PC is assumed to
archive a different set of documents – so even
if a query has been processed on one volunteer,
it still makes sense to keep that query around
for other volunteers to process when they
connect later.

Having a query and results repository allows
the submission of queries and results to be
separated in time from the fetching and
processing of those queries and results. Having
a central server means that once a client has
submitted a query, it can disconnect from the
system, and only reconnect much later when it
expects to find a significant collection of
results. More importantly, the wide spread use
of corporate firewalls will often mean that
PC’s performing searchers cannot directly
communicate with many potential volunteers
and vice versa. Having a central server that is
able to receive HTTP requests from anywhere
on the Internet has the effect of providing a
gateway for searchers and volunteers to work
together who would otherwise be unable to
communicate. Note, installing a web server on
all searcher and volunteer PC’s would not
achieve the same effect – a HTTP request
message generally can not be sent to a machine
behind a firewall, even if that machine hosts a
web server.

The search server exposes interfaces to
searchers and volunteers as SOAP web
services transported using HTTP. Searchers
can submit queries and fetch results and
volunteers can fetch queries and submit results.
All communication is initiated by either the
searchers or the volunteers, and connections
are not left open; i.e, the server can’t push

either queries or results to the searchers or the
volunteers - they must request them. From the
volunteer’s perspective, the server is stateless.
The server maintains neither a list of currently
“connected” volunteers, nor a list of all
potential volunteers. Anyone can volunteer at
any time (subject to any authentication that the
server may implement to ensure that the
volunteer is a member of “the community”).
When a volunteer connects to the server (after
having been “disconnected” for a period of
time) it receives a list of all queries that have
been submitted to the server since that
volunteer last connected. Each volunteer is
responsible for keeping a “time-stamp” (in
reality a sequence number allocated by the
server) that represents the point in time at
which that volunteer last requested queries
from the server. In this way, the server is
spared from maintaining information specific
to each volunteer yet is able to respond to
requests from individual volunteers in a
personalized manner.

The time period that a query remains on the
server is determined by a number of factors.
Firstly, the searcher can specify a “time-to-
live” when they submit the query. This may be
overridden by the server which may dictate a
system wide maximum “time-to-live” for all
queries. Individual volunteers may also
implement their own policies, such as refusing
to process queries that are older than a certain
date. Finally, the searcher can manually retract
a query from the server as soon as they have
received satisfactory result(s) to their query or
if they realize that the query was incorrect or
too inexact.

klas
128

klas
128

klas
128

klas
130

klas
128

klas
128

klas
128

3. The XML Search Engine
The search engine is based on an XML
inverted file system, and a heuristic approach
to retrieval and ranking. These are discussed
in the following sections.

3.1. The XML Inverted File
In our scheme each term in an XML document
is identified by 3 elements. File path, absolute
XPath context, and term position within the
Xpath context.

The file path identifies documents in the
collection ; for instance :

C :/INEX/ex/2001/x0321.xml
The absolute Xpath expression identifies a leaf
XML element within the document, relative to
the file’s root element:

/article[1]/bdy[1]/sec[5]/p[3]
Finally, term position identifies the ordinal
position of the term within the Xpath context.

One additional modification that we adopted
allowed us to support queries on XML tag
attributes. This is not a strictly content search
feature, but rather structure oriented search
feature. For instance, it allows us to query on
the 2nd named author of an article by imposing
the additional query constraint of looking for
that qualification in the attribute element of the
XML author element. The representation of
attribute values is similar to normal text with a
minor modification to the Xpath context
representation – the attribute name is appended
to the absolute Xpath expression. For
instance:

 article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]

Here the character ‘@’ is used to flag the fact
that “rid” is not an XML tag, but rather an
attribute of the preceding tag <ref>. An
inverted list for a given term, omitting the File
path and the Term position, may look
something like this:

Context
Xpath

article[1]/bdy[1]/sec[6]/p[6]/ref[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@rid[1]
article[1]/bdy[1]/sec[6]/p[6]/ref[1]/@type[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pdt[1]/day[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]
article[1]/bm[1]/bib[1]/bibl[1]/bb[15]/@id[1]

In principle at least, a single table can hold the
entire cross reference list (our inverted file).
Suitable indexing of terms can support fast

retrieval of term inverted lists. However, it is
evident that there is extreme redundancy in the
specification of partial absolute Xpath
expressions (substrings). There is also extreme
redundancy in full absolute Xpath expressions
where multiple terms in the same document
share the same leaf context (e.g. all terms in a
paragraph). Furthermore, many Xpath leaf
contexts exist in almost every document (e.g.
/article[1]/fm[1]/abs[1]).

We have chosen to work with certain imposed
constraints. Specifically, we aimed at
implementing the system on a PC and base it
on the Microsoft Access database engine. This
is a widely available off-the-shelf system and
would allow the system to be used on virtually
any PC running under any variant of the
standard Microsoft Windows operating system.
This choice implied a strict constraint on the
size of the database – the total size of an
Access database is limited to 2Gbyte. This
constraint implied that a flat list structure was
infeasible and we had to normalise the inverted
list table to reduce redundancy.

3.2 Normalized Database Structure
The structure of the database used to store the
inverted lists is depicted in Figure 2. It
consists of 4 tables. The Terms table is the
starting point of a query on a given term. Two
columns in this table are indexed - The Term
column and the Term_Stem column. The
Term_Stem column holds the Porter stem of
the original term. The List_Position is a
foreign key from the Terms table into the List
Table. It identifies the starting position in the
inverted list for the corresponding term. The
List_Length is the number of list entries
corresponding to that term. The List table is
(transparently) sorted by Term so that the
inverted list for any given term is contiguous.
As an aside, the maintenance of a sorted list in
a dynamic database poses some problems, but
these are not as serious as might seem at first,
and although we have solved the problem it is
outside the scope of this paper and is not
discussed any further. A search proceeds as
follows. Given a search term we obtain a
starting position within the List table. We then
retrieve the specified number of entries by
reading sequentially.

The inverted list thus obtained is Joined (SQL)
with the Document and Context tables to obtain
the complete de-normalised inverted list for the
term. The XPath context is then checked with a
regular expression parser to ensure that it
satisfies the topic’s <Title> XPath constraints.
The retrieval by Term_Stem is similar. First we
obtain the Porter stem of the search term.

klas
129

klas
129

klas
129

klas
131

klas
129

klas
129

klas
129

Figure 2: Database Schema for the XPath
based Inverted XML File.

Then we search the list by Term_Stem –
usually getting duplicate matches. All the lists
for the duplicate hits on the Terms table are
then concatenated. Phrases and other
proximity constraints can be easily evaluated
by using the Context_Position of individual
terms in the List table.

With this normalization the database size was
reduced to 1.6GByte and within the Microsoft
Access limits. This is of course a trade-off in
performance since costly join operations may
be necessary for the more frequent terms.

3.3 Searching the Database
The database structure enables the
identification of inverted lists corresponding to
individual terms. Each term that appears in a
filter of an INEX <Title> element has an
associated Xpath context. Terms that appear
in a <keywords> element of a topic have the
default context of /article. With simple SQL
statements it is easy enough to retrieve
inverted lists for terms that satisfy a filter.

3.3.1 SCAS topics
Our search strategy for SCAS topics consists
of several steps, as follows.

We start by fragmenting the INEX <Title>
element into several sub-queries, each
corresponding to a filter on the path. So, for
instance:
<title>//article[about(.//st,'+comparison')/
 bm[about(.//bib,'machine learning')]</title>

is transformed to a set of 2 individual queries:
S|//article|//article//st|+comparison
R|//article/bm|//article//bm//bib|machine learning

This formulation identifies two sub-queries,
each with 4 parts delimited by a ‘|’. The S
denotes a support element and the R denotes a
Returned Element. The support element has
the Xpath signature /article. The return
element has the XPath signature /aticle/bm.
The support element filter looks for elements
with the Xpath signature //article//st, containing
the term “comparison”. The returned element

filter looks for elements with the Xpath
signature //article/bm//bib, containing the
phrase “machine learning”.
Strict compliance to the XPath signature of the
various elements is enforced. However, this is
moderated by the use of equivalent tags.
SCAS Equivalent tags:

• Article,bdy
• p|p[1-3]|ip[1-5]|ilrj|item-none
• sec|ss[1-3]
• h|h[1-2]a?|h[3-4]
• l[1-9a-e]|dl|list|numeric-

list|numeric-rbrace|bullet-list

Each of the elements is scored in the following
way – we count the number of times that each
term in the filter is found in the element. If
more than one term is found then the term
counts are multiplied together. This has the
desired heuristic that elements containing
many search terms are scored higher than
elements having fewer search terms.
The score of a returned element is the sum of
the scores of all its support elements. So in the
example above, the score of a //article/bm
element is the sum of all the corresponding
//article//st elements (within the same
<article>) and all //article/bm//bib elements
(within the same <article> and same <bm>).
At one extreme a returned element may be
supported by numerous elements from all
filters. At the other extreme it may only have
support in one term of the returned element
filter. We accept all such return elements as
candidates for results. However, the returned
elements are sorted first by the number of
support filters that they satisfy and then by
their score.
Topics that make use of AND clauses and OR
clauses in the <Title> are handled by
generating separate query for each clause. We
do not distinguish between AND and OR and
effectively allow ranking to take care of it.
The heuristic justification is that if all terms
appear then the score should be higher
regardless of whether AND or OR were used.
Also, if AND was specified, but only satisfied
by some of the terms, we still want the
partially matching elements as potentially valid
results – after all, this may be the best that we
can find.
The <Keywords> element of topic is also used
– it defaults to a query on the entire <article>
and considered a support to all returned
elements within the same article.
3.3.2 VCAS topics

The VCAS queries were treated in exactly the
same manner as SCAS queries, except that we
expanded the equivalence tag interpretation.

VCAS Equivalent tags:

klas
130

klas
130

klas
130

klas
132

klas
130

klas
130

klas
130

• Article,bdy,fm
• sec|ss[1-3]|p|p[1-3]|ip[1-5]|ilrj|

item-none
• h|h[1-2]a?|h[3-4]
• yr|pdt
• snm|fnm|au
• bm|bibl|bib|bb
• l[1-9a-e]|dl|list|numeric-

list|numeric-rbrace|bullet-list

3.3.2 CO Topics
The CO topics were handled in the same
manner as CAS topics. However, all terms
from both the <Title> and <Keywords>
elements of the CO topic were combined to
form a single query – after removing duplicate
terms. The return element was assigned the
default XPath signature //* which means that
any element in the article was returnable
(subject to support). For instance, topic 91 –

<title>Internet traffic</title>
<keywords>internet, web, traffic, measurement,
congestion </keywords>

 is transformed to the following query:

R|//*|//article|Internet,traffic,web,measurement,
congestion

Every element with the context of //article (this
includes descendents) and which contains at
least one of the terms in the query is suitable
for return. However, since only leaf nodes in
the XML tree contain terms (with very few
exceptions) there is a need to associate a score
with other non-leaf elements in the tree in
order to qualify them for selection. The search
engine propagates the score of matching
elements upwards, recursively, to ancestor
nodes, in the following manner. If an ancestor
has a single child it receives half the child’s
score. If it has multiple children it receives the
sum of their scores. In this manner, for
instance, a section with multiple scoring
paragraphs receives a score higher than any of
its paragraphs and will be ranked higher. A
section having only one scoring paragraph will
be ranked lower.
3.3.4 Selection by Year
Selection by year was treated as an exception.
The search engine expands conditions with
respect to years to allow for a range of years.
It allows up to 5 years below for a Less Than
condition, up to 5 years above for a Greater
Than condition, and 2 years either side for an
about condition. Equality is treated strictly.
This is necessary for two reasons. The inverted
list structure does not support range queries so
it is necessary to translate such conditions to
explicit values that can be searched. It is also
not possible to interpret the about condition

over <year> without some pre-conceived idea
of what might be a reasonable year range.
3.3.4 Term expansion
The search engine can optionally expand
keywords in one of two ways. It can perform
plural and singular expansion, or it can use the
full porter stem (pre-stored in the database). In
the case of phrases, the program also attempts
to construct an acronym. So for instance, the
phrase “Information Retrieval” generates the
additional term “IR”. A common writing
technique is to introduce an acronym for a
phrase and thereafter use the acronym for
brevity. For instance, at INEX, we defined
“Strict Content and Structure” as “VCAS”.
Subsequent references are to VCAS only. So
the idea here is to try and guess acronyms. We
use several simple rules that attempt to
manipulate the phrase initials to construct a
few acronyms. If an acronym thus generated is
found in the inverted list it is used as an
additional term.

4. Results
Two aspects of the system were tested. The
precision/recall values were measured through
the standard INEX evaluation process. The
performance of the distributed search engine
was also tested on a distributed database.

4.1 Performance
The system was tested as a stand alone search
engine in a single PC and on a distributed
configuration. On a single PC (Pentium 4,
1.6GHz, 500MB RAM) the search times for
topics varied between 5 seconds and one
minute, depending on the number of terms and
their frequency in the database.

The database can be distributed in a logical
manner by placing each of the 18 journals on a
different PC. Each search engine was set to
return the N best results. We used a threshold
N=100, but this is a run-time argument. The
communications overhead of the system is
about 5 seconds (pretty much fixed, given a
reasonably fast connection.) The search over a
single journal is very quick and takes less than
3 seconds. The INEX collection can thus be
searched in less than 10 seconds even for the
most elaborate topics. The total search time is
pretty much upper limited by the longest
search time on any of the distributed
components. Nevertheless, results arrive
asynchronously, so the user can view early
results before the entire distributed search is
complete.

The system scales up well. If the full database
is duplicated on several PCs the search time is
virtually constant – as long as the number of
results returned is reasonably capped.

klas
131

klas
131

klas
131

klas
133

klas
131

klas
131

klas
131

Results are ranked independently by each
distributed search component. Consequently,
the results can be displayed in order, either
globally, or within each Journal. A difference
between the single complete database and the
distributed database results can arise if there
are useful results in one journal that are ranked
below the allowed threshold N. However, this
difference will only affect the lower end of the
ranked list and in any case this problem can be
easily circumvented. An obvious variation is
to determine the return threshold by rank rather
than by count. In this manner poor results can
be avoided while better results are allowed to
arrive in larger numbers from fruitful searches
of distributed database compartments.

5.2 Precision/Recall
The better results were obtained in the SCAS
track with plural/singular term expansion. It
scored an average precision (generalized) of
0.195 (rank 12/38). The Porter stemming
expansion of terms produced somewhat lesser
results with an average precision of 0.186.
Without term expansion the results had an
even lower score with an average precision of
0.174.

VCAS results are not available at the time of
writing this paper.

In the CO track results were similar. The
better results were obtained with full Porter
stemming, with an average precision
(generalized) of 0.0525 (rank 14/56).
Somewhat lesser, but essentially similar results
were obtained with plural/singular expansion
with an average precision of 0.0519. Without
term expansion the average precision was
0.0505.

 Figure 3: Plural/Singular expansion

 Figure 4: Full Porter stemming

 Figure 5: Without Term expansion

klas
132

klas
132

klas
132

klas
134

klas
132

klas
132

klas
132

 Figure 6: Full Porter stemming

 Figure 7: Plural/Singular expansion

 Figure 8: Without Term expansion

5. Discussion

The search engine that was developed and
tested performs reasonably well in terms of
precision/recall. It performs very well in terms
of speed, and scales almost linearly.

Inspection of our results suggests that while
the system was able to retrieve the most
significant <article> elements, it fell short in
terms of ranking the various descendents.
With CAS queries the loose interpretation of
AND, OR, and equality constraint might have
contributed to violations of topic <title> XPath
constraints leading to selection of undesirable
elements. With CO queries the ranking
heuristics that we used were generic. We only
took account of abstract tree structure
considerations. It might have been
advantageous to also apply heuristics that are
specific to the INEX collection and perceived
intent of topic authors (in general, not
specifically). For instance, paragraphs might
be better units of retrieval than sections. More
analysis and experimentation with ranking is
required.

6. REFERENCES
[1] Proceedings of the First Workshop of the

Initiative for the Evaluation of XML
Retrieval (INEX), DELOS Network of
Excellence on Digital Libraries, ERCIM-
03-W03

[2] “XML Path Language (XPath) Version
1.0” http://www.w3.org/TR/xpath

klas
133

klas
133

klas
133

klas
135

klas
133

klas
133

klas
133

RMIT INEX experiments: XML Retrieval using Lucy/eXist

Jovan Pehcevski
School of CS and IT

RMIT University
Melbourne, Australia 3000

jovanp@cs.rmit.edu.au

James Thom
School of CS and IT

RMIT University
Melbourne, Australia 3000

jat@cs.rmit.edu.au

Anne-Marie Vercoustre
CSIRO-ICT Centre

Melbourne, Australia 3000

Anne-Marie.Vercoustre@csiro.au

ABSTRACT
This paper reports on the RMIT group’s approach to XML
retrieval while participating in INEX 2003. We indexed
XML documents using Lucy, a compact and fast text search
engine designed and written by the Search Engine Group at
RMIT University. For each INEX topic, up to 1000 highly
ranked documents were then loaded and indexed by eXist,
an open source native XML database. A query translator
converts the INEX topics into corresponding Lucy and eX-
ist query expressions, respectively. These query expressions
may represent traditional information retrieval tasks (un-
constrained, CO topics), or may focus on retrieving and
ranking specific document components (constrained, CAS
topics). With respect to both these expression types, we
used eXist to extract final answers (either full documents
or document components) from those documents that were
judged highly relevant by Lucy. Several extraction strate-
gies were used that differently influenced the ranking order
of the final answers. The final INEX results show that our
choice for a translation method and an extraction strategy
leads to a very effective XML retrieval for the CAS topics.
We observed a system limitation for the CO topics resulting
in the same or similar choice to have little or no impact on
the retrieval performance.

Keywords
XML Search & Retrieval, eXist, Lucy, INEX

1. INTRODUCTION
During INEX 2002, different participants used different ap-
proaches to XML retrieval. These approaches were classified
into three categories [1]: extending well known full-text in-
formation retrieval (IR) models to handle XML retrieval;
extending database management systems to deal with XML
data; and XML-specific, which use native XML databases
that usually incorporate existing XML standards (such as
XPath, XSL or XQuery). Our modular system utilises a
combined approach using traditional information retrieval
features with well-known XML technologies found in most
native XML databases.

Lucy1 is RMIT’s fast and scalable open source full-text search
engine. Lucy follows the content-based information retrieval
approach and supports Boolean, ranked and phrase queries.
However, Lucy’s smallest unit of retrieval is a whole docu-
ment, thus ignoring the structure specified using the doc-
ument schema as in the XML retrieval approach. Indeed,
1http://www.seg.rmit.edu.au/lucy/

when dealing with information retrieval from a large XML
document collection, sections that belong to a document,
or even smaller document components such as paragraphs,
may be regarded as appropriate units of retrieval. Accord-
ingly, it is important to have an IR-oriented XML retrieval
system that will be able to identify and rank these units of
retrieval.

eXist2, an open source XML database, follows the XML-
specific retrieval approach. It is the XML-specific approach
that deals with both the content and the structure of under-
lying XML documents and incorporates keyword, Boolean
and proximity search. Most of the retrieval systems that fol-
low this approach use databases specifically built for XML.
These databases are often called native XML databases. How-
ever, most of these systems do not support any kind of rank-
ing of the final answers, which suggests a need of applying
an appropriate retrieval strategy to determine the relevance
of the answers to a given retrieval topic.

The XML retrieval approach we consider at INEX 2003 is
that for many retrieval topics, one way of obtaining satis-
factory answers is to use either proximity or phrase search
support in XML retrieval systems. That is, a final an-
swer is likely to be relevant if it contains (almost) all of
the query terms, preferably in a desired order. The native
XML databases, as explained above, provide all the required
support to enable this functionality. However, when a na-
tive XML database needs to load and index a large XML
collection, the time required to extract the most relevant
answers for a given query is likely to increase significantly.
Moreover, the XML database needs to determine a way to
somehow assign relevance values to the final answers. Ac-
cordingly, it would be more efficient if the XML database
has to index and search a smaller set of XML documents
that may have previously been determined relevant for a
particular retrieval topic. The database would then need
to decide upon the most effective strategy for extracting
and ranking the final answers. We have therefore decided
to build a system that uses a combined IR/XML-specific
retrieval approach. Our modular system effectively utilises
Lucy’s integrated ranking mechanism with eXist’s power-
ful keyword search extensions. The INEX results show that
our system produces effective XML retrieval for the content-
and-structure (CAS) INEX topics.

2http://exist-db.org/

klas
134

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="117" query_type="CO" ct_no="98">

<title>

Patricia Tries

</title>

<description>

Find documents/elements that describe

Patricia tries and their use.

</description>

<narrative>

To be relevant, a document/element

must deal with the use of Patricia Tries

for text search. Description of the standard

algorithm, optimised implementation and use

in Information retrieval applications are all

relevant.

</narrative>

<keywords>

Patricia tries, tries, text search,

string search algorithm,

string pattern matching

</keywords>

</inex_topic>

Figure 1: INEX Topic 117

2. INEX TOPICS
As in the previous year, INEX 2003 has used the same set
of XML documents that comprises 12107 IEEE Computer
Society articles published within the period 1997-2002 and
stored in XML format. INEX 2003 also introduced a new set
of ad-hoc retrieval topics which in contrast to the previous
year were differently formulated. Revised relevance dimen-
sions, exhaustivity and specificity, for assessing the relevance
of the retrieval topics were also introduced.

Two types of XML retrieval topics are explored in INEX:
content-only (CO) topics and content-and-structure (CAS)
topics. A CO topic does not refer to the existing document
structure. When dealing with CO topics, an XML retrieval
system should follow certain rules that will influence the size
and the granularity of a resulting document component. Not
every document component can be regarded as a meaningful
answer for a given query. Some of them are too short to act
as meaningful answers while some of them are too broad.
Thus, if an XML retrieval system shows poor performance
(in terms of its effectiveness), the rules that decide upon the
answer size and granularity should be changed accordingly.

A CAS topic, unlike a CO topic, enforces restrictions with
respect to the existing document structure by explicitly spec-
ifying the type of the unit of retrieval (section, paragraph,
or other). When dealing with CAS topics, an XML re-
trieval system should (in most cases) follow the structural

constraints described in the topic, which will result in an-
swers having the desired (or similar) structure. In this case,
the size and the granularity of a final answer are determined
in advance.

The rest of this section describes INEX topics 117 and 86,
which are respectively the CO and CAS topics proposed and
assessed by our group. Some issues were observed during our
relevance assessments for these topics. Our final results at
INEX 2003 show that these issues, when addressed correctly,
significantly improve the performance of an XML retrieval
system. We also discuss the implications of these INEX
topics for using the combined Lucy/eXist retrieval system
and report other comments and suggestions.

2.1 INEX Topic 117
Figure 1 shows the INEX CO topic 117. This topic searches
for documents or document components focusing on algo-
rithms that use Patricia tries for text search. A document
or document component is considered relevant if it provides
description of the standard/optimised algorithm implemen-
tation or discusses its usage in information retrieval appli-
cations.

Our first observation is that this topic (unintentionally) turned
out to be a difficult one, since:

• Patricia (usually) represents a person’s first name, rather
than a data structure;

• tries is a verbal form, and

• keywords like text, string, and search appear almost
everywhere in the INEX IEEE XML document collec-
tion.

The relevance assessments were long and difficult, mainly
because there were too many answers (due to Patricia and
tries), there were not many highly relevant answers, and
the few somewhat relevant answers were hard to evaluate
consistently both for exhaustivity and specificity.

For this and similar topics, it appears that the only way to
obtain satisfactory results is to use either proximity opera-
tors or phrase search support in full text retrieval systems.
In the context of XML, an interesting question is whether
the granularity of XML document components can be used
as the proximity constraint. For example, it is more likely
that paragraphs containing few of the query keywords will
be regarded more relevant than a document that contains all
keywords in different sections. On the other side, since users
expect meaningful answers for their queries, the answers are
expected to be rather broad, so retrieved document compo-
nents should at least constitute a section, possibly a whole
document. Accordingly, an XML retrieval system should
follow an effective extraction strategy capable of producing
more relevant answers.

2.2 INEX Topic 86
Figure 2 shows the INEX CAS topic 86. This topic searches
for document components (sections) focusing on electronic

klas
135

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="86" query_type="CAS" ct_no="107">

<title>

//sec[about(.,’mobile electronic payment system’)]

</title>

<description>

Find sections that describe technologies

for wireless mobile electronic payment systems

at consumer level.

</description>

<narrative>

To be relevant, a section must describe

security-related technologies that exist

in electronic payment systems that can be

implemented in hardware devices.

The main interests are systems that can be

used by mobile or handheld devices.

A section should be considered irrelevant

if it describes systems that are designed

to be used in a PC or laptop.

</narrative>

<keywords>

mobile, electronic payment system,

electronic wallets, e-payment, e-cash,

wireless, m-commerce, security

</keywords>

</inex_topic>

Figure 2: INEX Topic 86

payment technologies implemented in mobile computing de-
vices, such as mobile phones or handheld devices. A section
will be considered highly relevant if it describes technologies
that can be used to securely process electronic payments in
the mobile computing devices.

In order to consistently assess the relevance of the resulting
document components (for this topic, most of these com-
ponents were sections), two assessment rules were applied:
document components focusing only on mobile computing
devices were considered irrelevant, and document compo-
nents focusing on security issues in general were also con-
sidered irrelevant.

It is evident from the above rules that for a document com-
ponent to be considered marginally, fairly or highly relevant,
it should at least contain a combination of some important
words or phrases, such as mobile, security, electronic pay-
ment system, e-payment, and so on. In this sense, the is-
sues encountered while assessing INEX CAS topic 86 were
very similar with the ones discussed earlier for INEX CO
topic 117. The only difference is that for this topic, the unit
of retrieval is known in advance (<sec> identifies the type
of document component to be retrieved), although by no

means this should be regarded as a mandatory constraint,
since the INEX DTD specifies different types of document
components that may be regarded as sections (such as sec,
ss1, or ss2). It is therefore reasonable to expect that the ex-
traction strategy previously applied to the CO topics would
lead to more effective results for the CAS topics. The final
INEX results for the CAS topics shown later in Figure 5
confirm this expectation.

2.3 Implications of INEX topics
It is evident from the previous observations that using ei-
ther Lucy or eXist will partially satisfy the information need
expressed with both the CO and the CAS topics. Lucy sup-
ports phrase search and ranking, however proximity support
is limited, and the unit of retrieval is a whole document. eX-
ist supports proximity operators and phrase search, and ad-
ditionally allows final answers containing any of the query
terms. However, it does not rank the final answers, and
unless explicitly specified in the query, it does not impose
additional constraints on the granularities of the returned
answers. We identify later that this missing feature repre-
sents a serious system limitation for the CO topics. Accord-
ingly, we decided to take into account the positive aspects of
both systems and build a modular system that incorporates
a combined approach to XML retrieval. Section 3 describes
our approach in detail.

2.4 Other comments and suggestions
As a result of our active INEX participation this year, partic-
ularly while creating the INEX topics 86 and 117 and assess-
ing the relevance of corresponding documents and document
components, we observed some additional issues.

• In proposing a retrieval topic, should a participant
make a statement about what XML retrieval feature
he/she is trying to evaluate?

• Should the INEX initiative start making a classifica-
tion of these various features? The features that we
refer here might include, for example, usefulness of ex-
isting links and references in XML documents, prox-
imity search, selection criteria, granularity of answers,
and so on.

Although the INEX 2003 assessment tool was much better
than the one used in 2002, the assessment task is still very
time consuming. We suggest whether less answers could
be pooled for assessment and whether the assessment tool
could be furthermore improved to reduce some interaction
required by users. The last suggestion might for example
include less required “clicks” and the ability to select a group
of answers as irrelevant (regardless whether they represent
documents or document components).

3. MODULAR SYSTEM ARCHITECTURE
For INEX 2003, we decided to build a modular system that
uses a combined approach to XML retrieval, comprising two
modules: the Lucy full-text search engine and the eXist na-
tive XML database. Before we explain our approach in de-
tail, we briefly summarise the most important features of
both modules.

klas
136

3.1 Lucy search engine
Lucy is a compact and fast text search engine designed and
written by the Search Engine Group at RMIT University.
Although Lucy primarily allows users to index and search
HTML3 (or TREC4) collections, we have successfully man-
aged to index and search the entire INEX IEEE collection of
XML documents. However, Lucy’s primary unit of retrieval
is a whole document and currently it is not capable of in-
dexing particular document components, such as <author>,
<sec>, and <p>. Lucy has been designed for simplicity as
well as speed and flexibility, and its primary feature, which
is also evident in our case, is the ability to handle a large
amount of text. It implements an inverted index structure,
a search structure well researched and implemented in many
existing information retrieval systems. Witten et al. [8] pro-
vide a detailed explanation for efficient construction of an
inverted index structure such as implemented in Lucy.

Lucy is a fast and scalable search engine, and incorporates
some important features such as support for Boolean, ranked
and phrase querying, a modular C language API for inclu-
sion in other projects and native support for TREC exper-
iments. It has been developed and tested under the Linux
operating system on an Intel-based platform, and is licensed
under the GNU Public License.

3.2 eXist: a native XML database
Since January 2001, when eXist [3] started as an open source
project, developers are actively using this software for vari-
ous purposes and in different application scenarios. We use
eXist as a central part of our modular XML retrieval system.
eXist incorporates most of the basic and advanced native
XML database features, such as full and partial keyword
text searches, search patterns based on regular expressions,
query terms proximity functions and similar features. Two
of eXist’s unique features are efficient index-based query pro-
cessing and XPath extensions for full-text search.

Index-based query processing. For the purpose of evaluating
XPath expressions in user queries, conventional native XML
database systems generally implement top-down or bottom-
up traversals of the XML document tree. However, these
approaches are memory-intensive, resulting in slow query
processing. In order to decrease the time needed for pro-
cessing the queries, eXist uses an inverted index structure
that incorporates numerical indexing scheme for identifying
the XML nodes in the index. This feature enables eXist’s
query engine to use fast path join algorithms for evaluat-
ing XPath expressions. Meier [3] provides detailed techni-
cal explanation of this efficient index-based query processing
implementation in eXist.

XPath extensions for full-text searching. Standard XPath
implementations do not provide very good support for query-
ing document-centric XML documents. Document-centric
documents, as oppose to data-centric ones that usually con-
tain machine-readable data, typically include mixed content
and longer sections of text. eXist implements a number
of XPath extensions to efficiently support document-centric
queries, which overcome the inability of standard XPath

3http://www.w3.org/MarkUp/
4http://trec.nist.gov/

functions (such as contains()) to produce satisfactory re-
sults. For example, the &= operator selects document com-
ponents containing all of the space-separated terms on the
right-hand side of the argument. |= operator is similar, ex-
cept it selects document components containing any of the
query terms. In the next section we provide examples of the
way we used these operators in the INEX topic translation
phase.

eXist is a lightweight database, completely written in Java
and may be easily deployed in several ways. It may run
either as a stand-alone server process, or inside a servlet-
engine, or may be directly embedded into an existing appli-
cation.

3.3 A combined approach to XML retrieval
Section 2 observes the implications of the INEX topics that
influenced our choice for a combined approach to XML re-
trieval. However, due to the advanced retrieval features de-
scribed previously it becomes evident that using eXist alone
should suffice in satisfying the XML retrieval needs. In-
deed, some applications have shown that eXist is already
able to address real industrial needs [3]. Despite all these
advantages, we were not able to use eXist as the only XML
retrieval system for two main reasons: first, we were using
eXist version 0.9.1, which did not manage to load and index
the entire IEEE XML document collection needed for INEX,
and second, although we could retrieve relevant pieces of
information from parts of the IEEE document collection,
eXist does not assign relevance values to the retrieved an-
swers. Accordingly, since ranking of the retrieved answers
is not supported, we decided to undertake a combined XML
retrieval approach that utilises different extraction strate-
gies to rank the answers. With respect to a specific ex-
traction strategy, a document component may represent a
highly ranked answer if it belongs to a document that has
previously been determined relevant for a particular retrieval
topic.

Figure 3 shows our combined approach to XML retrieval.
The system has a modular architecture, comprising two mod-
ules: Lucy and eXist. We use INEX topic 86, as shown in
Figure 2, to explain the flow of events.

First, the INEX topic is translated into corresponding queries
understandable by Lucy and eXist, respectively. Depending
on the type of the retrieval topic (CO or CAS), the topic
translation utility follows different rules. For the INEX CO
topics, such as topic 117 shown in Figure 1, queries that are
sent to both Lucy and eXist include only terms that appear
in the <Keywords> part of the INEX topics. For the INEX
CAS topics, as shown in Figure 3, query terms that appear
in both <Title> and <Keywords> parts of the INEX topics
were used.

For example, we use the query terms from the <Keywords>

part of the INEX topic 86 to formulate the Lucy query:

.listdoc

’mobile "electronic payment system"

"electronic wallets" e-payment e-cash wireless

m-commerce security’

klas
137

//sec[. &=’mobile electronic payment system’]
collection(’/db/INEX/CAS/86’)

"electronic wallets" e−payment e−cash wireless
m−commerce security’

Lucy

’mobile "electronic payment system"
.listdoc

eXist

Highly Ranked

Docs by Lucy

TOP 1000

INEX Topic 86

Topic translation

FINAL ANSWERS

(<sec> components)

eXist

Query
Lucy

Answers

Index

Query

Answers Index

document collection
INEX XML

(12107 IEEE articles)

Figure 3: A modular system architecture.

However, before submitting a query to the system, the INEX
document collection needs to be indexed. We use Lucy to
create an inverted index from all the documents in the large
IEEE XML collection. We then search this indexed data by
entering the queries derived from the translation rules, as
explained above. For the purpose of ranking its answers for
a given query, Lucy uses a variant of the Okapi BM25 [5]
probabilistic ranking formula. Okapi BM25 is one of the
most widely used ranking formula in information retrieval
systems. It is thus expected that, for a given INEX topic,
Lucy will be able to retrieve highly relevant XML docu-
ments early in the ranking. Therefore, for each INEX topic,
we retrieve (up to) 1000 highest ranked XML documents
by Lucy. It is our belief that the information contained
in these documents is sufficient to satisfy the information
need expressed in the corresponding INEX topic. However,
at this phase of development, Lucy’s only unit of retrieval
is a whole document. Accordingly, for a particular INEX
topic, we still have to extract the relevant parts of these
highly ranked documents. Wilkinson [7] shows that sim-
ply extracting components from highly relevant documents
leads to poor system performance. Indeed, there may be
cases when a section belonging to highly ranked document
is irrelevant as opposed to a relevant section belonging to
lowly ranked document. However, we believe that the re-
trieval performance of a given system may be improved us-
ing a suitable extraction strategy. We implemented several
extraction strategies using eXist’s XPath extensions. We
provide examples how we use these XPath extensions while
translating INEX topic 86 as follows.

For INEX CAS topics in general, and INEX topic 86 in par-
ticular, the terms that appear in the <Title> part are used
to formulate eXist queries. However, since a document com-
ponent is likely to be relevant if it contains all or most of
the query terms that appear in the <Title>, we undertake
several extraction strategies while implementing our INEX
runs. The extraction strategies are described in detail in Sec-
tion 4, were we also explain how we constructed our INEX
runs. In general, these strategies depend on the combined
usage of Boolean AND and OR operators, identified by the &=

and |= operators in eXist, respectively. In that sense, the
INEX topic 86 may be translated either as:

collection(’/db/INEX/CAS/86’)

//sec[. &=’mobile electronic payment system’]

if one wants all query terms to appear in the resulting sec-
tion, or:

collection(’/db/INEX/CAS/86’)

//sec[. |=’mobile electronic payment system’]

if one wants any of the query term to appear in the resulting
section.

We follow the first translation rule for our example in Fig-
ure 3. Final answers will thus constitute <sec> document
components (if any) that contain all the query terms. By fol-
lowing this rule, we reasonably expect these document com-
ponents to represent relevant answers for the INEX topic
86. On the other hand, it is clear that if the second transla-
tion rule is applied for the same topic, it may produce very
many irrelevant answers as well as some further relevant an-
swers. Accordingly, it is very important to decide upon the
extraction strategy that will yield in highly relevant answers
for a given INEX topic. We discuss the results for different
extraction strategies in the following section.

4. INEX RUNS AND RESULTS
The retrieval task performed by the participating groups in
INEX 2003 was defined as ad-hoc retrieval of XML docu-
ments. In information retrieval literature this type of re-
trieval involves searching a static set of documents using a
new set of topics, which represents an activity very com-
monly used in library systems.

Within the ad-hoc retrieval task, INEX 2003 defines addi-
tional sub-tasks. These represent a CO sub-task, which in-
volves content-only (CO) topics and a CAS sub-task, which
involves content-and-structure (CAS) topics. The CAS sub-
task comprises a SCAS sub-task and a VCAS sub-task. The
SCAS sub-task requests that the structural constraints in
a query must be strictly matched, while VCAS allows the
structural constraints in a query to be treated as vague con-
ditions.

For each topic belonging to a particular sub-task up to 1500
answers (full documents or document components) were re-
quired to be retrieved by the participating groups. In order
to assess the relevance of the retrieved answers, the revised
relevance dimensions (exhaustivity and specificity) need to
be quantized in a single relevance value. INEX uses two
quantization functions: strict and generalised. The strict
function can be used to evaluate whether a given retrieval
method is capable of retrieving highly relevant and highly
focused document components, while the generalised func-
tion credits document components according to their degree
of relevance (by combining the two relevance dimensions,
exhaustivity and specificity).

Our group submitted 6 official runs to INEX 2003, 3 for each
CO and SCAS sub-task, respectively. Figures 4 and 5 show

klas
138

Figure 4: Results for the RMIT CO runs using both strict and generalised quantization functions

the results for both the CO and SCAS runs when both strict
and generalised quantization functions are used. The rank-
ings of the runs are determined according to the average pre-
cision over 100 recall points considering each corresponding
INEX topic. Two of our three runs for each sub-task were
automatically constructed while one was manually. The au-
tomatic runs were constructed using the translation rules
explained in the previous section. We manually constructed
the other runs in order to produce more meaningful queries
for each INEX topic. Each run was constructed by using
elements in the following answer lists: [A] that uses eXist’s
&= (logical AND) operator and enforces strict satisfaction of
logical query conditions (the elements that belong to the an-
swer list [A] will therefore represent document components
containing all the query terms or phrases); [B] that uses
the |= (logical OR) operator, “relaxes” the query conditions
and allows for document components containing any of the
query terms or phrases; and a combined answer list that
contains the elements in the answer list [A] followed by the
elements in the answer list [B–A].

Three retrieval runs were submitted for the CO sub-task.
We constructed the first CO run by retrieving the 1500 high-
est ranked documents for each INEX topic. As described
in the previous section, the <Keywords> part of each INEX
topic was automatically translated as an input query to the
Lucy search engine. The final rank of a document was then
determined by its similarity with the given query as calcu-
lated by Lucy using a variant of Okapi BM25. As shown in
Figure 4 this run performed better than the other two CO
runs in both cases when strict and generalised quantization
functions are used, which suggests that a whole document
is often likely to be considered a preferable answer for an
INEX CO topic.

For the other two runs, for each INEX CO topic we first
used Lucy to extract (up to) the 1000 highest ranked doc-
uments. Then we used eXist to index and retrieve the fi-

nal answers from these documents. We reasonably expected
that the most relevant document components required to
be retrieved for each INEX topic were very likely to appear
within the 1000 highest ranked documents. Since the CO
topics do not impose constraints over the structure of result-
ing documents or document components, we used the //**

eXist construct in our queries. The “**” operator in eXist
uses a heuristic that retrieves answers with different sizes
and granularities. For our second CO run, the <Keywords>

part of each topic was automatically translated as an input
query to the eXist database, and its final answer list includes
only elements from the answer list [B]. We used the manual
translation process for our third run, where the final answer
list includes the elements in the answer list [A] followed by
the elements in the answer list [B–A]. Although we expected
the third run to perform better than the second, Figure 4
shows that both these runs performed poorly in both cases
when strict and generalised quantization functions are used,
regardless of choices for the translation method and the ex-
traction strategy. At this phase of development, the heuris-
tic implemented in the “**” operator in eXist is not able
to determine the most meaningful units of retrieval nor in-
fluence the desired answer granularity for a particular CO
topic. Next we show that this is not the case for the CAS
topics, where the type of the unit of retrieval is determined
in advance and the choices for the translation method and
the extraction strategy have a significant impact on the sys-
tem’s performance.

Three runs were submitted for the SCAS sub-task. As dis-
cussed previously, both <Keywords> and <Title> parts from
INEX CAS topics were used to generate the input queries
for Lucy and eXist, respectively. Our first SCAS run was
automatic and its final answer list includes the elements
in the answer list [A] followed by the elements in the an-
swer list [B-A]. The queries for the second SCAS run were
manually constructed and its final answer list includes the
elements from the same answer lists as for the first run.

klas
139

Figure 5: Results for the RMIT SCAS runs using both strict and generalised quantization functions

Figure 5 shows that these runs performed relatively better
when using a strict quantization function compared with the
runs from other participating groups at INEX 2003. Since
the type of the unit of retrieval is determined in advance
for the SCAS runs, the choice of the extraction strategy
implemented in both runs appears to be very effective for
retrieving highly exhaustive and highly specific document
components. It can be observed that our system performs
slightly more effective for the first than for the second run
(6th compared to 7th out of 38 systems), and the first run
performs better for recall values lower than 0.2. However,
the choice of the translation method has an effect on the sys-
tem’s performance for recall values greater than 0.3, where
the second run performs better than the first run. Figure 5
also shows that the choice of the extraction strategy is not
as effective when using a generalised quantization function,
where marginally/fairly exhaustive or marginally/fairly spe-
cific document components are regarded as partly relevant
answers. Indeed, the ranks for both runs when evaluated
using the generalised quantization function are not among
the ten highest ranked INEX runs. In this case, the choice
of the translation method results in second run performing
better than the first run overall.

The third SCAS run was automatic, however its final an-
swer list includes only the elements from the answer list [B].
By choosing this strategy we reasonably expected some ir-
relevant answers in the final answer list, but we hoped to
find more relevant components in highly ranked documents.
Indeed, as Figure 5 shows, irrespective of whether a strict
or a generalised quantization function is used, our retrieval
system is ranked lower for the third SCAS run compared to
the previous two runs.

5. LIMITATIONS OF OUR SYSTEM
Previous sections describe the XML retrieval approach that
we implemented while participating in INEX 2003. How-

ever, during different phases of our INEX involvement, par-
ticularly while constructing the INEX runs and assessing the
relevance of retrieved results, we observed several system
limitations. Although they can and should be considered
as a weakness of our approach, the fact that we are able
to identify them influences our future research directions.
Some of these limitations include the following.

No IR ranking of the final answers. The choice of imple-
menting an extraction strategy that may influence the rank
of a final answer suggests that our system does not consider
an IR ranking score for a particular answer. Although for a
given INEX topic Lucy ranks the XML documents in a de-
scending order of their query similarity, the unit of retrieval
represents a whole document, and there is no support for
existing XML technologies. eXist, on the other hand, has a
tight integration with existing XML development tools and
technologies, but does not rank the final answers according
to their query similarity. We have thus decided that a par-
ticular extraction strategy should influence the final ranking
score for a resulting document or document component. We
have decided upon different extraction strategies while we
constructed our INEX runs, and have shown that for the
CAS topics some of them have a significant impact on the
retrieval performance of our modular system.

Complex usage. Since our system has a modular architec-
ture that incorporates a combined IR/XML-specific oriented
approach to XML retrieval, its usage is very complex. It
comprises two different retrieval modules (Lucy and eXist),
each having different internal architectures and rules of use.
Instead, it would be preferable to have only one system that
incorporates the best features from the above modules.

Significant space overhead. The size of the INEX IEEE XML
document collection takes around 500MB disk space. The
inverted index file maintained by Lucy additionally takes

klas
140

20% of that space. For each topic, (up to) 1000 XML docu-
ments are indexed by eXist, which adds up to approximately
12% of the space for the INEX collection. Although both
Lucy and eXist implement efficient retrieval approaches, it
becomes evident that their combination leads to significant
disk space overhead. As for the previous limitation, one
system that can deal with the above issues would also be
preferable.

6. RELATED WORK
Even before INEX, the need for information retrieval from
XML document collections had been identified in the XML
research community. As large XML document collections
become available on the Web and elsewhere, there is a real
need for having an XML retrieval system that will efficiently
and effectively retrieve information residing in these collec-
tions. This retrieval system will need to utilise some form of
an XML-search query language in order to meet the growing
user demand for information retrieval. Thus, the needs and
requirements for such a query language have to be carefully
identified and appropriately addressed [4].

At INEX 2002 the CSIRO group proposed a similar ap-
proach to XML retrieval. Their XML retrieval system uses
a combination of a selection and a post-processing module.
Queries are sent to PADRE, the core of CSIRO’s Panoptic
Enterprise Search Engine5, which then ranks the documents
and document components on the basis of their query simi-
larity. In contrast to Lucy, whose primary unit of retrieval is
a whole document, PADRE combines full-text and metadata
indexing and retrieval and is capable of indexing particular
document components, such as <author>, <sec> and <p>.
Different “mapping rules” determine what metadata field is
used to index the content of a particular document compo-
nent. A post processing module was then used to extract
and re-rank the final answers from documents and document
components returned by PADRE [6].

In an effort to reduce the number of document components
in an XML document that may represent possible answers
for a given query, Hatano et al. [2] propose a method for
determining the preferable units of retrieval from XML doc-
uments. We consider investigating these and similar meth-
ods for improving the effectiveness of our system for the CO
topics.

7. CONCLUSION AND FUTURE WORK
We have described the combined approach to XML retrieval
that we used during our participation in INEX 2003. Our re-
trieval system implements a modular architecture, compris-
ing two modules: Lucy and eXist. For each INEX topic, we
used Lucy, a full-text search engine designed by the Search
Engine Group at RMIT, to index the IEEE XML document
collection and retrieve the top 1000 highly ranked XML doc-
uments. We then indexed those documents with eXist, and
implemented different topic translation methods and extrac-
tion strategies in our INEX runs. The INEX results show
that these methods and strategies result in an effective XML
retrieval for the CAS topics. Since our system is not yet able
to identify the preferred granularities for the final answers,
the methods and strategies are not as effective for the CO

5http://www.panopticsearch.com

topics. Further investigations need to be done in order to
improve this functionality.

We have also observed several limitations of our modular
system. In order to overcome these limitations, we intend
to investigate more effective ways to use and combine the
most advanced features of Lucy and eXist. It is our belief
that they will result in more accurate and interactive XML
retrieval.

Acknowledgements
We would like to thank Wolfgang Meier for providing as-
sistance with using eXist and to Falk Scholer, Nick Lester,
Hugh Williams and other members of the Search Engine
Group at RMIT for their useful suggestions and support
with using Lucy.

8. REFERENCES
[1] N. Govert and G. Kazai. Overview of the Initiative for

the Evaluation of XML retrieval (INEX) 2002. In
Proceedings of the First INitiative for the Evaluation of
XML Retrieval (INEX) Workshop, Dagstuhl, Germany,
December 2002.

[2] K. Hatano, H. Kinutani, M. Watanabe, M. Yoshikawa,
and S. Uemura. Determining the Unit of Retrieval
Results for XML Documents. In Proceedings of the First
INitiative for the Evaluation of XML Retrieval (INEX)
Workshop, Dagstuhl, Germany, December 2002.

[3] W. Meier. eXist: An Open Source Native XML
Database. In A. B. Chaudri, M. Jeckle, E. Rahm, R.
Unland (editors): Web, Web-Services, and Database
Systems. NODe 2002 Web- and Database-Related
Workshops, Erfurt, Germany, October 2002.

[4] J. Pehcevski, J. Thom, and A.-M. Vercoustre.
XML-Search Query Language: Needs and
Requirements. In Proceedings of the AUSWeb 2003
conference, Gold Coast, Australia, July 2002.
http://ausweb.scu.edu.au/aw03/papers/thom/.

[5] S. Robertson and S. Walker. Okapi at TREC-8. NIST
Special Publication 500-246: The Eight Text REtrieval
Conference (TREC-8), November 1999.

[6] A.-M. Vercoustre, J. A. Thom, A. Krumpholz,
I. Mathieson, P. Wilkins, M. Wu, N. Craswell, and
D. Hawking. CSIRO INEX experiments: XML Search
using PADRE. In Proceedings of the First INitiative for
the Evaluation of XML Retrieval (INEX) Workshop,
Dagstuhl, Germany, December 2002.

[7] R. Wilkinson. Effective Retrieval of Structured
Documents. In W.B. Croft and C.J. van Rijsbergen
(editors): Proceedings of the 17th Annual International
Conference on Research and Development in
Information Retrieval, Dublin, Ireland, July 1994.

[8] I. Witten, A. Moffat, and T.C.Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers, Los Altos, CA
94022, USA, 2nd edition, 1999.

klas
141

IRIT at INEX 2003
Karen Sauvagnat

IRIT/SIG-RFI
118 route de Narbonne

31062 Toulouse cedex 4
+33-5-61-55-68-99

sauvagna@irit.fr

Gilles Hubert
IRIT/SIG-EVI

118 route de Narbonne
31062 Toulouse cedex 4

+33-5-61-55-74-35

hubert@irit.fr

Mohand Boughanem
IRIT/SIG-RFI

118 route de Narbonne
31062 Toulouse cedex 4

+33-5-61-55-74-16

bougha@irit.fr

Josiane Mothe
IRIT/SIG-EVI

118 route de Narbonne
31062 Toulouse cedex 4

+33-5-61-55-63-22

mothe@irit.fr

ABSTRACT
This paper describes the retrieval approaches proposed by IRIT in
the INEX’2003 evaluation initiative. The primary approach uses
Mercure system and different modules to perform content only
and content and structure queries. The paper also discusses a
second approach based on a voting method previously applied in
the context of automatic text categorization.
Keywords

Information Retrieval, XML retrieval, connectionist model,
voting method, automatic text categorization

1. INTRODUCTION
XML (eXtensible Markup Language) has recently emerged as a
new standard for representation and data exchange on the Internet
[29]. If this tendency goes on, XML will certainly become a
universal format and HTML (Hypertext Markup Language) will
disappear in aid of XML. Consequently, the information retrieval
issue in XML collections becomes crucial.

A growing number of approaches are dealing with structured
documents like XML. They can be divided into three main
groups: database, XML-oriented specific approaches and IR
approaches. The database community considers XML collections
as databases, and tries to develop models for representing and
querying documents, according to the content and the structure of
these documents. Many languages have been developed for
querying and updating these databases [1][18][24][30][11]. XML
specific oriented approaches estimate the relevance of document
parts according to the relevance of their structurally related parts.
They are also named aggregation-based methods [8][15][7][13]
[16]. In IR approaches, traditional IR models are adapted to be
used on structured collections [17][20][22].

In this paper, we present two IR approaches applied to structured
documents retrieval, within the context of INEX’2003: the first
approach uses Mercure information retrieval system, while the
second one is based on a voting method used initially for
automatic text categorization. Section 2 presents the INEX
initiative. Section 3 describes the Mercure model, and the INEX
search approach with Mercure system is reported in section 4.
Section 5 and 6 present first the voting method defined in the
context of categorization and then the adaptations we integrated
within the INEX'2003 context.

2. THE INEX INITIATIVE
2.1 Collection
INEX collection, 21 IEEE Computer Society journals from 1995-
2002, consists of 12 135 (when ignoring the volume.xml files)

documents with extensive XML-markup. All documents respect
the same DTD.

2.2 Queries
As last year, participants to INEX’2003 have to perform two
types of queries. CO (Content Only) queries are requests that
ignore the document structure and contain only content related
conditions, e.g. only specify what a document/component should
be about. CAS (Content and Structure) queries contain explicit
references to the XML structure, and restrict the context of
interest and/or the context of certain search concepts. Both CO
and CAS topics are made up of four parts: topic title, topic
description, narrative and keywords.
Within the ad-hoc retrieval task, three sub-tasks are defined: (1)
the CO task, using CO queries, (2) the SCAS task, using CAS
queries, for which the structural constraints must be strictly
matched, (3) the VCAS task, also using CAS queries, but for
which the structural constraints can be considered as vague
conditions.

3. MERCURE SYSTEM
Mercure is a full-text information retrieval system based on a
connectionist approach and modeled by a multi-layer network.
The network is composed of a query layer (set of query terms), a
term layer (representing the indexing terms) and a document layer
[4].
Mercure includes the implementation of retrieval process based
on spreading activation forward and backward through the
weighted links. Queries and documents can be used either as
inputs or outputs. The links between layers are symmetric and
their weights are based on the tf-idf measure inspired by OKAPI
[23] and Smart term weighting.
The query-term links are weighted as follows :

>

−=
otherwise

)(nq if
*

u

ui

ui
uiu

uiu

ui

qtf

qtf
qtfnq
qtfnq

q (1)

Where:
- qui : the weight of the term ti in the query u
- qtfui: the frequency of the query term ti in the query u
- nqu: the number of terms in the query u
The term-document link weights are expressed by :

klas
134

klas
134

klas
134

klas
136

klas
134

klas
134

klas
142

ij
l

j

i
ij

ij

tfh
dl

hh

n
Nhhtf

d
**

))log(*(*

543

21

+
∆

+

+
=

 (2)

Where:
- dij : term-document weight of term ti and document dj
- tfij: term frequency of ti in the document dj
- N: total number of documents
- ni: number of documents containing term ti
- h1,h2,h3,h4 and h5: constant parameters
- ∆l : average document length
- dlj :number of terms in the document dj

The query evaluation function computes the similarity between
queries and documents.
Each term node computes an input value:

uii qtIn =)(

and an activation value: Out , where g is the term
layer activation function.

))(()(ii tIngt =

Each term node propagates then this activation value to the
document nodes through the term-document links. Each document
node computes an input value: In and an

activation value: Out , where g is the document

layer activation function.

∑=
i

ijij dtOutd *)()(

))(()(jj dIngd =

Documents are then ranked by ascending order of their activation
value.
The ranking function (activation) is modified to take into account
term proximity in a document [14]. Thus, documents having close
query terms compute a new input value:

∑∑
−

=
i iii

ijij prox
dtOutdIn

1,
))(()(α (3)

Where:

- α is a constant parameter so that 1prox 1i,i
≥

−
α . α is set to 4 for

INEX’2003 experiments.
- proxi,i-1 is the number of terms separating the query terms ti and
ti-1 in the window of α terms in the document. The query terms
are ranked according to their position in the query text.
In other words, documents having close query terms (i.e. no more
than α words separate two consecutive query terms in the
document content) increase their input value.
In addition, we have implemented two modules that are used to
process structured documents. The aim of these modules is to
filter the most specific1 and exhaustive2 elements of the
documents returned by Mercure [15].
The first module, which is content-oriented (we will call it CO-
module), deals with queries composed of simple keyword terms.

It browses through documents retrieved by Mercure, and finds
elements answering the queries in the most specific and
exhaustive way. Element types that can be retrieved are pre-
specified by the administrator of the system, according to the
DTD of the documents. For example, the administrator can decide
that the CO-module will only return article or section elements.
The CO-module performs as follow: for each document retrieved
by Mercure, it searches occurrences of query terms in all pre-
specified elements. It returns the elements containing the greatest
number of query terms. If more than k elements are supposed to
be the most specific and exhaustive, the module returns the whole
document.

1 An element is specific to a query if all its information content

concerns the query.
2 An element is exhaustive to a query if the element contains all

the required information.

The second module, which is content-and-structure-oriented (we
will call it CAS-module), performs queries containing both
explicit references to the XML structure and content constraints.
These queries can be divided into two parts : a target element and
a content constraint on this target element. As the CO-module, the
CAS-module browses documents returned by Mercure, and
returns specific elements (e.g. target elements) containing the
greatest number of query terms specified in the content
constraints. If the target elements do not contain any of the terms
of the content constraints, the document retrieved by Mercure is
removed from the list of results.
Thus, the main difference between the two modules is the way
they process the documents structure. In the CO-module, elements
that can be returned are pre-specified by the administrator of the
system. The user only gives keywords and cannot express
structural conditions in his query. Using the CAS-module, users
explicitly give a target element and content constraints on this
target element.
As a result for both modules, we obtain a ranked list of
elements/documents.

4. THE INEX SEARCH APPROACH WITH
MERCURE SYSTEM
4.1 Indexing the INEX database and the
queries
The INEX collection was indexed in order to take into account
term positions in the documents. Terms are stemmed with Porter
algorithm and a stop-word list is used in order to remove non-
significant terms from the index. No structural information is kept
in the index.
For both types of queries, terms are also stemmed with Porter
algorithm and terms appearing in the stop-word list are also
removed. However, depending on their type, queries are indexed
in two different ways.

4.1.1 Indexing CO queries
CO queries are indexed using title field of queries. We simply
remove terms preceded by minus (which means that the user does
not want these terms appear in the results) and keep all the other
terms.

4.1.2 Indexing CAS queries
CAS queries are first indexed using terms in the content
constraints of the title field and terms of the keyword field, in
order to build queries for Mercure system. They are then re-
indexed for the CAS-module. Indeed, as explained before, the

klas
135

klas
135

klas
135

klas
137

klas
135

klas
135

klas
143

CAS-module needs the target element of queries in order to
process them. Let us take some examples of CAS queries:

Top. Title field Description

63 //article[about(.,’”digital
library”’) AND about
(.//p,’+authorization
+”access control” +
security’)]

Relevant documents are
about digital libraries and
include one or more
paragraphs discussing
security, authorization or
access control in digital
libraries.

66 >/article[.//yr <=’2000’]
//sec[about(.,’”search
engines”’)]

The user is looking for
sections of articles published
before 2000, which discuss
search engines.

84 //p[about(.’overview
“distributed query
processing” join’)]

The user wants paragraphs
that give an overview about
distributed query processing
techniques with a focus on
joins implementations.

90 //article[about(./sec,’ +trust
authentication “electronic
commerce” e-commerce e-
business marketplace’)
//abs[about(.,’trust
authentication’)]

The user wants to find
abstracts or article that
discuss automated tools for
establishing trust between
parties on the internet. The
article should discuss
applications of trust for
authenticating parties in e-
commerce.

Table 1: Examples of CAS queries
All the content constraints occurring in the about predicates are
first indexed for Mercure system, even though they are not on the
target element (in topics 63 and 90 for example). Targets elements
(article for topic 63, section for topic 66, paragraph for topic 84
and abstract for topic 90) are then indexed for CAS-module.
About 20% of the CAS topics (like topic 66) contain a constraint
on the year of publication. This constraint is also stored and will
be used to filter results of the CAS- module.

4.2 Retrieval
In both cases (CO queries and CAS queries), a first search is
performed with Mercure search engine using the content part of
the queries. As a result, a ranked list of 1000 documents is
selected for each query. Then, the CO- module is used to process
the results of CO queries, and the CAS-module is used for CAS
queries. Both modules return a ranked list of elements/documents,
derived from the first ordered list of documents returned by
Mercure system.

4.2.1 Retrieval with CO queries
According to the DTD, we have decided to allow the CO-module
to return only section or abstract elements. Indeed, section and
abstract elements are supposed to be large enough to be
exhaustive and small enough to be specific.

If the CO-module finds more than two relevant elements (k =2)
within a given document, the whole document is returned.

4.2.2 Retrieval with CAS queries
The CAS-module browses documents returned by Mercure, and
returns target elements containing the greatest number of query
terms specified in all the content constraints of CAS queries. If no
occurrence of terms contained in the content constraints is found
in target elements, the document returned by Mercure is removed
from the list of results. Indeed, the target element always have a
content constraint.
Then, if the query contains a year constraint, elements returned by
the CAS-module are filtered, according to the article publication
date .

4.3 Submitted runs
The first goal of our experiments in INEX’2003 is to test whether
a full-text information retrieval system can be easily adapted to
structured retrieval and to evaluate how suitable are the full-text
IR based techniques for such kind of retrieval. Our approach can
be compared to the fetch and browse method proposed in [5]. No
static structure is used a priori and so, all types of XML
documents can be processed. The second goal of our experiments
is to measure the effect of term positions in INEX query types.
Five runs performed with Mercure have been submitted to
INEX’2003:
- Mercure2.co_ti was performed for the CO task. Only title

field of queries was used for indexing
- Mercure2.pos_co_ti was also performed for the CO task,

using only title field of queries. Term positions were used by
Mercure to process queries

- Mercure2.cas_ti was performed for the SCAS task. Only title
field of queries was used for indexing

- Mercure2.pos_cas_ti was also performed for the SCAS task
using only title field of queries. Term positions were used by
Mercure to process queries

- Mercure2.pos_vcas_keyti was performed for the VCAS task.
Both title and keywords fields of queries were used for
indexing and terms positions were used by Mercure to
process queries.

4.4 First results
4.4.1 CO task
The following table shows the results of the 2 runs performed for
the CO task.

Strict
quantization

Generalized
quantization

Run

Average
precision

Rank Average
precision

Rank

Mercure2.co_ti 0.0056 50/56 0.0088 48/56

Mercure2.pos_co_ti 0.0344 28/56 0.0172 41/56

Table 2: Results of the 2 runs performed with Mercure system
for the CO task

klas
136

klas
136

klas
136

klas
138

klas
136

klas
136

klas
144

4.4.2 SCAS and VCAS tasks 5. A VOTING METHOD FOR
INFORMATION RETRIEVAL The following table shows the results of the 3 runs performed for

the SCAS and VCAS tasks.

Strict
quantization

Generalized
quantization

Run

Average
precision

Rank Average
precision

Rank

Mercure2.cas_ti 0.0719 33/38 0.0612 34/38

Mercure2.pos_cas_ti 0.1641 25/38 0.1499 24/38

Mercure2.pos_vcas_keyti / / / /

The proposed approach is derived from a process for textual
documents categorisation. This categorisation intends to link
documents with pre-defined categories. Our approach focuses on
categories organised as a taxonomy. The original aspect is that
our approach involves a voting principle instead of a classical
similarity computing.
Our approach associates each text with different categories as
opposed to most of the other categorisation techniques. The
association of a text to categories is based on the Vector Voting
method [21]. This method relies on the terms describing each
category and their automatic extraction from the text to be
categorised. The voting process evaluates the importance of the
association between a given text and a given category. This
method is similar to the HVV method (Hyperlink Vector Voting)
used within the Web context to compute the pertinence of a Web
page regarding the web sites referring to it [19]. In our context,
the initial strategy considers that the more category terms appear
in the text, the stronger is the link between the text and this
category.

Table 3: Results of the 3 runs performed with Mercure system
for the SCAS and VCAS tasks

The first result that can be drawn from Table 2 and Table 3 is that
runs using term positions are definitely better that simple search
for both query types (CO and CAS). Average precision for runs
using term positions (Mercure2.pos_cas_ti ,
Mercure2.pos_vcas_keyti, and Mercure2.pos_co_ti) is about four
times higher than average precision of runs performed with a
single Mercure search (Mercure2.cas_ti , Mercure2.co_ti).

The association principle between a document and categories is
composed of different steps: 4.5 Discussion and future works

Regarding this year experiments and results, some investigations
have to be performed. First of all, for the CO task, elements that
can be returned by the CO-module are pre-selected manually.
These types of elements are not always necessarily the most
exhaustive and specific: it depends on the way the DTD was
understood by the document creators. Statistics [12] or
aggregation methods [7] [13] may be used to find those elements
automatically. Then, the CAS-module is not able to perform all
the content and structural constraints. Indeed, it processes only
content constraints on the target element and year constraints. For
example, in topic 90, the first about predicate is on sections,
whereas the target element is abstract: the module does not insure
that the content constraint on sections is respected. However,
topics such as topic 84 are fully treated. According to these
remarks, the CAS-module seems to be more adapted to the VCAS
task. For this purpose, the run Mercure2.pos_vcas_keyti was
performed and submitted. Finally, query processing is relatively
slow, because the modules have to browse all documents returned
by Mercure in order to find relevant elements. Regarding these
limitations, an indexing model taking into account the structural
and content information of documents seems to be necessary.

– Compute the profile of each category. In automatic
categorisation, profiles generally correspond to a set of weighted
terms [25][27] which can be obtained by training from previous
categorised documents.
– Extract automatically the concepts describing a document and
their importance for the document. The extraction is based on a
set of rules to treat, for example, document tags, and on processes
to treat synonymy and to remove stop words.
– For each category of the hierarchy, compute a score with a
voting function which measures the way the category is
representative of the text. Different functions can be used as
voting function. They are based on measures such as term
importance in text and in hierarchy, text size, hierarchy size,
number of terms describing a category that appear in the text.
– Sort the winning categories according to their score, and
eventually select the best categories (for example, scores greater
than a fixed threshold, or n greatest scores).
We have studied different voting functions whose results are
presented in [2][3]. The voting function must take into account
the importance in the document of each term describing the
category, the discriminant power of each term describing the
category, the way the category is representative of the document.
The function providing the best results is described as follows :

Moreover, our approach uses the idf measure to compute a
retrieval status value for documents (and then documents are
browsed to return relevant elements). The idf measure is also used
in [7] and [26], in order to directly return relevant elements.
However, term occurrences in elements do not necessarily follow
a Zipf law [31]. The number of term repetitions can be (very)
reduced in XML documents and idf is not necessarily appropriate
[6][10]. The use of ief (Inverse Element Frequency) is proposed in
[28] and [9]. An indexing scheme storing different IR statistics
might be interesting on the INEX collection: thus, combinations
of IR and XML-specific approaches could be tested.

)(
),(

),(
)(

)(
),(),(ENT

DENT

Et
H e

HtF
HS

DS
DtFDEVote ⋅⋅= ∑

∈∀

(1)

where

- EH corresponds to the category E in the hierarchy H,
- D is a document,

klas
137

klas
137

klas
137

klas
139

klas
137

klas
137

klas
145

)(
),(

DS
DtF

This factor measures the importance of the term
t in the document D. F(t,D) corresponds to the
number of occurrences of the term t in the
document D and S(D) corresponds to the size
(number of terms) of D.

),(
)(

HtF
HS

This factor measures the discriminant power of
the term t in the hierarchy H. F(t,H) corresponds
to the number of occurrences of the term t in the
hierarchy H and S(H) corresponds to the size of
H.

)(
),(

ENT
DENT

This factor measures the presence of terms
representing the category in the text (importance
of the category). NT(E) corresponds to the
number of terms in the category E and NT(E,D)
corresponds to the number of terms of the
category E that appear in the document D

The above function (1) considers as equivalent the importance of
a term in the document and the discriminant power of this term in
the hierarchy. Applying the exponential function to the third
factor (i.e. the presence rate of terms representing the category in
the text) aims at accentuating its importance.
The function is completed with the notion of coverage. The aim
of the coverage is to ensure that only categories enough
represented in a document will be selected for this document. The
coverage is a threshold corresponding to the percentage of terms
from a category that appear in a text . For example, a coverage of
50% implies that at least half of terms describing a category have
to appear in the text of a document to be selected.

6. THE INEX SEARCH APPROACH WITH
A VOTING METHOD
6.1 Evolution of the categorisation process
From the topic point of view, CO and CAS topics are constituted
of different informative parts (title, keywords, description) that
can be exploited to construct their profile. Although our method
can use all the possible parts we first focused on to the title and
keyword parts for the INEX'2003 experiments. For both topic
types, stop words are removed and optionally terms can be
stemmed using Porter algorithm.
For CAS topics, an additional step identify the structural
constraints indicated in a topic. All the structural constraints
defined on target elements of topics are taken into account and
stored to be processed in a post categorisation step to filter the
results of the categorisation step. Only the results having expected
XPaths are kept. In structural constraints (for example
about(.//p,'+authorization +"access control" +security') or .//yr
<='2000'), only constraints on the article publication date are
taken into account and stored to filter the results. More complex
content constraints have not been treated for INEX'2003. Next
experiments are planned about the extension of the voting method
to take into account such constraints.
From the INEX collection point of view, the documents are
considered as sets of text chunks identified by XPaths. For each
document, concepts are extracted automatically with the different
XPaths identifying the chunks where they appear and their

importance in the chunk is calculated. For INEX'2003
experiments, all XML tags have been taken into account.
The voting method is applied without any modification. Topics
are considered as categories to which document elements have to
be assigned. The result is constituted of a list of topics associated
to each chunk of text (identified by its XPath) for each document.

6.2 Experiments
Our experiments aim at evaluating the efficiency of the voting
function and estimating the adaptations needed for the
categorisation process in a context such as INEX'2003.
Four runs based on the voting method were submitted to
INEX'2003. Applying or not a coverage is the main parameter
that distinguishes the runs (C50 corresponds to apply a coverage
of 50% i.e. half of the terms describing the topic must appear in
the text to keep the topic, C0 corresponds to no coverage). No
stemming process has been applied for the submitted runs,
although it can be added. The tcXX% parameter specifies that
only the elements having a score over a given percentage of the
best score will be kept (e.g. tc50% indicates that only the
elements having a score over the half of the best score are kept in
the results).

6.3 Results
The following table shows the preliminary results of the four runs
based on the voting method :

Strict
quantization

Generalized
quantization

Run

Average
precision

Rank Average
precision

Rank

VotingNoStemTKCO
tc75%C0nonorm

0.0012 54/56 0.0041 56/56

VotingNoStemTKVCAS
C50nonorm

/ / / /

VotingNoStemTKSCAS
tc50%C0nonorm

0.0626 34/38 0.0746 31/38

VotingNoStemTKVCAS
tc50%C0nonorm

/ / / /

Table 3: Results of the 4 runs performed with the voting
method

Results for VCAS topics are not yet known.

6.4 Discussion and future works
Regarding the performed experiments and the obtained results, we
can notice that:
- the voting method applied without coverage tends to promote

short chunks of text that only have one common term with
the topic. Introducing coverage intends to correct this, since
short chunks of text that have several common terms with the
topic are less frequent than longer ones. We plan to study
changes made to the voting function to evaluate their impact
on results, notably with regard to the size of text chunks.

- The elementary level has been considered to identify the
different chunks of text. This choice leads to miss complex
chunks of text constituted of different elementary chunks

klas
138

klas
138

klas
138

klas
140

klas
138

klas
138

klas
146

with high voting scores. A rebuilding of complex chunk
should be integrated in the process.

- Structural constraints defined on the content of topics have
not been taken into account. This aspect constitutes the main
axis of study to extend the voting method. The main idea is
to integrate the constraint when computing the voting score.
This will promote relevant text chunks regarding content
which respect the structural constraints, without eliminating
relevant chunks (regarding content) but that do not satisfy
the constraints.

7. ACKNOWLEDGMENTS
We thank Cécile Laffaire for her participation in this work.

8. REFERENCES
[1] Abiteboul, S. , Quass, D., Mc Hugh, J., Widom, J., Wiener,

J-L.. The Lorel query language for semi-structured data.
International Journaf on Digital Libraries, 1(1), 68-88, 1997.

[2] Augé, J., Englmeier, K., Hubert, G., Mothe, J. Catégorisation
automatique de textes basée sur des hiérarchies de concepts ,
19ième Journées de Bases de Données Avancées, Lyon, p. 69-
87, 2003.

[3] Augé, J., Englmeier, K., Hubert, G., Mothe, J. Classification
automatique de textes basée sur des hiérarchies de concepts ,
Veille stratégique, scientifique et technologique, Barcelone,
p. 291-300, 2001.

[4] Boughanem, M., Chrisment, C., Soule-Dupuy , C. Query
modification based on relevance back-propagation in ad-hoc
environment. Information Processing and Management, 35
(1999), 121-139, 1999.

[5] Chiaramella, Y. , Mulhem, P. , Fourel, F. A model for
multimedia search information retrieval. Technical report,
Basic Research Action FERMI 8134, 1996.

[6] Fuhr, N., Gövert, N., Röelleke, T. Dolores: a system for
logic based retrieval of multimedia objects. In Proceedings
of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998,
Melbourne, Australia, pages 257-265. ACM Press, 1998.

[7] Fuhr, N., Grossjohann, K. XIRQL: A query Language for
Information Retrieval in XML Documents. In Proceedings of
the 24th annual ACM SIGIR conference on research and
development in Information Retrieval, New Orleans, USA,
pages 172-180. ACM Press, 2001.

[8] Fuller, M., Mackie, E., Sacks-Davis, R., Wilkinson, R.
Structural answers for a large structured document
collection. In Proc. ACM SIGIR, pp. 204-213. Pittsburgh,
1993.

[9] Grabs, T., Sheck, H.J. ETH Zürich at INEX : Flexible
Information Retrieval from XML with PowerDB-XML. In
INEX 2002 Workshop Proceedings, p. 35-40, Germany,
2002.

[10] Grabs, T. Storage and retrieval of XML documents with a
cluster of databases systems. PhD thesis, Swiss Federal
Institute of Technology Zurich, 2003.

[11] Grosjohann, K. Query Formulation and Result Visualization
for XML Retrieval . In Proc of the SIGIR 2000 Workshop on
XML and Information Retrieval. Athens, Greece, 2000.

[12] Hatano, K., Kinutani, H., Watanabe, M. An Appropriate Unit
of Retrieval Results for XML Document Retrieval. In INEX
2002 Workshop Proceedings, p. 66-71, Germany, 2002.

[13] Kazai, G., Lalmas, M., Roelleke, T. Focused document
retrieval, 9th International Symposium on string processing
and information retrieval, Lisbon, Portugal, September 2002.

[14] Kean, E.M. The use of term position devices in ranked
output experiments, Journal of Documentation, v.47 n.1, p.1-
22, March 1991 .

[15] Lalmas, M. Dempster-Shafer’s theory of evidence applied to
structured documents : Modeling uncertainty. In Proc. ACM-
SIGIR, pp. 110-118. Philadelphia, 1997.

[16] Lalmas, M., Roelleke, T. Four-valued knowledge
augmentation for structured document retrieval. International
Journal of Uncertainty, Fuziness and Knowledge-based
systems (IJUFKS), Special issue on Management of
uncertainty and imprecision in multimedia information
systems, 11(1), 67-86, February 2003.

[17] Larson, R. R. . Cheshire II at INEX : Using a hybrid logistic
regression and Boolean model for XML retrieval. In INEX
2002 Workshop Proceedings, p. 2-7, Germany, 2002

[18] Levy, A., Fernandez, M., Suciu, D., Florescu, D., Deutsch
A. . XML-QL : A query language for XML. World Wide
Web Consortium technical report, Number NOTE- xml-ql-
19980819, 1998.

[19] Li, Y. Toward a qualitative search engine , IEEE Internet
Computing, vol. 2, n° 4, p. 24-29, 1998.

[20] Ogilvie, P., Callan, J. : Languages models and structured
documents retrieval. In INEX 2002 Proceedings, p. 18-23,
Germany, 2002.

[21] Pauer, B., Holger, P. Statfinder . Document Package
Statfinder, Vers. 1.8, may 2000.

[22] Piwowarski, B., Faure, G.E. , Gallinari, P. . Bayesian
Networks and INEX. In INEX 2002 Workshop Proceedings,
p. 7-12, Germany, 2002.

[23] Robertson, SE , Walker, S. Okapi/Keenbow at TREC-8. In
Proceedings of the TREC-8 Conference, National Institute of
Standards and Technology, pages 151-161, 2000.

[24] Robie , J., Lapp, J., Schach, D. XML Query Language
(XQL). Proceedings of W3C QL’98 (Query Languages 98).
Massachussets, 1998.

[25] Salton, G., The SMART Retrieval System . Experiments in
automatic document processing, Prentice Hall Inc.,
Englewood Cliffs, NL, 1971.

[26] Theobald, A., Weikum, G. The Index-Based XXL Search
Engine for Querying XML Data with Relevance Ranking. In
C. S. Jensen, K. G. Jeffery, J. Pokorny, S. Saltenis, E.
Bertino, K. Bäohm, and M. Jarke, editors, Advances in
Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, Prague,

klas
139

klas
139

klas
139

klas
141

klas
139

klas
139

klas
147

Czech Republic, volume 2287 of Lecture Notes in Computer
Science, pages 477-495. Springer, 2002.

[27] Van Rijsbergen, K. Information Retrieval . Butterworths,
London, Second Edition, 1979.
http://www.dcs.gla.ac.uk/Keith/Preface.html

[28] Wolff, J.E., Flörke, H., Cremers, A.B. Searching and
browsing collections of structural information. In Proc of
IEEE advances in digital libraries, pp. 141-150. Washington,
2000.

[29] World Wide Web Consortium. Extensible Markup Language
(XML) 1.0. http://www.w3.org/TR/REC-xml , Oct. 2000.

[30] World Wide Web Consortium. Xquery 1.0: an XML query
language. http://www.w3.org/TR/xquery/ , Aug. 2003.

[31] Zipf, G. Human Behaviour and the Principle of Least Effort.
Addison-Wesley, 1949.

http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xquery/
klas
140

klas
140

klas
140

klas
142

klas
140

klas
140

klas
148

Identifying and Ranking Relevant Document Elements
Andrew Trotman and Richard A. O’Keefe

Department of Computer Science
University of Otago

Dunedin, New Zealand
andrew@cs.otago.ac.nz, ok@otago.ac.nz

ABSTRACT
A method of indexing and searching structured
documents for element retrieval is discussed.
Documents are indexed using a modified inverted
file retrieval system. Modified postings include
pointers into a collection-wide document structure
tree (the corpus tree) describing the structure of
every document in the collection.
Retrieval topics are converted into Boolean queries.
Queries are used to identify relevant documents.
Documents are then ranked using Okapi BM25 and
finally relevant elements are identified using
coverage. Search results are presented sorted first
by document then coverage.
The design is presented in the context of the second
annual INEX workshop.

1. INTRODUCTION
Otago first entered INEX [2] during its second year.
There were three objectives: understand the
participation process, gain access to this and last
year’s judgments, and create a baseline for
comparing future experiments.
Participation involved design of six topics,
generation and submission of search results, and
online judging of three topics. Of these, generating
the results was the most problematic as it required
software changes.
The chosen retrieval engine was designed from the
onset for retrieval of whole academic documents in
XML [1]. A predecessor can be seen on BioMedNet
and ChemWeb [4]. This engine, like that used in the
IEEE digital library, returns relevance ranked lists
of whole documents – the natural (citable) unit of
information in an academic environment. From
experience, information vendors are not interested
in converting their documents from propriety DTDs
into a common DTD or any other format – so
software was needed to handle documents in
heterogeneous formats.
Boolean searching, field restricting and relevance
ranking were already supported, so modifications
focused on identifying and ranking document
elements. The modified retrieval engine can be
thought of as working in three parts. Candidate
documents are identified using a Boolean query.
Candidates are then ranked using Okapi BM25 [7].
Finally, relevant non-overlapping elements are

identified and presented as the result. Although it is
easier to understand in three parts, in fact the most
relevant elements of the most relevant documents
are computed in a single pass of the indexes.

2. INDEXING
Much of the index design has already been
described elsewhere [8]. Inverted file retrieval is
used. There is one dictionary file and each
dictionary term points to a single inverted list of
postings.
An unstructured inverted list is usually represented
{<d1, f1>, <d2, f2>, …, <dn, fn>} where dn is a
document ordinal number and fn is the frequency of
the given term in the given document. For
structured retrieval, each <dn, fn> pair is replaced by
the triple <dn, pn, fn>, where pn is a position in the
document. When phrase or proximity searching is
required, this triple is replaced with the triple <dn,
pn, wn> where wn is the ordinal number of the term
in the collection (starting from 0 at the start of the
collection, incrementing by 1 for each term, not
incrementing for tags, and not reset at the beginning
of each record). On disk the postings are stored
compressed.
The pn value in each posting is a position in the
corpus tree. The tagging structure for any one
document represents a tree walk. Start at the root of
the tree. When an open tag is encountered, the
branch labelled with the tag name is followed
downwards. When a close tag is encountered, the
walk backtracks one branch. For a well-formed
XML document, the walk will start and end at the
root. This tree-walking property also holds for a
collection of well-formed documents. The tree they
collectively describe is called the corpus tree and
can be built during single pass indexing. As each
node is encountered for the first time, a branch is
added to the tree and labelled with a unique ordinal
identifier, pn. Terms can lie either at the nodes or
the leaves of this tree.
The corpus tree includes every single path in every
single document, but is unlikely to match the
structure of any one document. In Figure 1, three
well-formed documents are given, as is the corpus
tree for those documents. For clarity, the branches
of the tree are labelled with which document they
describe although this information is not computed
and not stored.

klas
141

klas
141

klas
141

klas
143

klas
141

klas
141

klas
149

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p>Green Eggs</p>
<p>and Ham</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p c=“red”>Fox in Sox</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

<doc>
<sec><p>The Cat in the Hat</p></sec>
<sec><p>Comes Back</p></sec>
</doc>

doc[1]:1

sec[1]:2 sec[2]:5

@c[1]:4

p[2]:7p[1]:3 p[1]:6

doc[1]:1doc[1]:1

sec[1]:2 sec[2]:5sec[1]:2sec[1]:2 sec[2]:5sec[2]:5

@c[1]:4@c[1]:4

p[2]:7p[2]:7p[1]:3p[1]:3 p[1]:6p[1]:6

Figure 1: Three documents and the corpus tree
including every path through every document,

but not matching the structure of any one
document. For the purpose of this figure each
document is marked white, gray, or black and
each node with which documents include that

path. Each node is numbered with the instance
of the tag (e.g. p[2]) and the node id, pn (after the

colon).

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

wp1,1, wp1,2, …, wp1,n

dp1,1, dp1,2, …, dp1,n

p1

wp2,1, wp2,2, …, wp2,n

dp2,1, dp2,2, …, dp2,n

p2

wp3,1, wp3,2, …, wp3,n

dp3,1, dp3,2, …, dp3,n

p3

Term

Figure 2: The in-memory postings structure

allows quick access to only those postings
relevant to the required document elements.

The inverted lists are built and processed using the
structure represented in Figure 2. Postings for each
term are ordered by increasing pn. Each pn points to
the list of document ids (the d-sublist) and word ids
(the w-sublist) found at that point in the tree. Each
list is held in increasing order and compressed.
To search the collection for a given term, each d-
sublist is examined in turn. By doing so, documents
may not be examined in turn. This does not matter
so long as all documents that would be examined
are examined. Further, whole documents may not
be examined in turn – this, too, does not matter as
many ranking functions can be computed
piecewise1. To field-restrict a term, a restricted set
of sublists is examined. The w-sublists are used for
proximity searching.
Storing and processing the postings in this way has
computational advantages. For a field-restricted
search, postings not pertaining to the restriction can
be skipped. As postings are stored compressed,
they need not even be decompressed. Word
postings are used only for proximity searching. On
disk the w-sublists are collected together and stored
after all d-sublists. They are not even loaded from
disk if not needed.

3. SEARCHING
As the retrieval engine starts up, the corpus tree is
loaded and an additional structure is created from it,
the field list. For each instance of each tag, the list
of nodes at or below that node is collected. For
each tag, the same is collected. These lists are then
merged and sorted.

Table 1: The field list for the
corpus tree given in Figure 1.

Field Restriction

@c {4}
@c[1] {4}
doc {1, 2, 3, 4, 5, 6, 7}
doc[1] {1, 2, 3, 4, 5, 6, 7}
p {3, 4, 6, 7}
p[1] {3, 4, 6}
p[2] {7}
sec {2, 3, 4, 5, 6, 7}
sec[1] {2, 3, 4, 7}
sec[2] {5, 6}

The field list for the Figure 1 corpus tree is given in
Table 1. From this, a search restricted to ‘sec’
requires postings at or below all ‘sec’ nodes of the
corpus tree, or where pn={2, 3, 4, 5, 6, 7}. To

1 BM25 cannot, so the lists are merged then processed.

klas
142

klas
142

klas
142

klas
144

klas
142

klas
142

klas
150

search in ‘p[1]’, the postings are needed where
pn={3, 4, 6}. For a search restricted to ‘p[1] in sec’,
these two lists are ANDed together (giving pn={3, 4,
6}), and the members of this list are checked against
the corpus tree to ensure they satisfy ‘p[1] in sec’
and not ‘sec in p[1]’.
Equivalence tag restrictions are also computed from
the field list. The restrictions for each equivalent
tag are ORed giving the equivalent restriction. If,
for example, ‘p[2]’ and ‘@c’ were equivalent in
Table 1, the restriction would be pn={4, 7}.
Several extensions were added to support element
and attribute retrieval:
• Attributes are now distinguished from tags by

prefixing attributes with an @ symbol. This
symbol was chosen because it makes for easy
parsing of INEX queries, which use the same
symbol.

• The attribute value is considered to be content
lying not only within the attribute, but also the
tag. For example, “<tag att=“number”> term
</tag>”, is equivalent to “<tag> <@att> number
</@att> term </tag>”. In this way, a search for
“number in tag” will succeed.

• Tags can now be identified not only by their
name and path, but also by the tag instance.
Where before it was only possible to restrict to
paragraph for example, it is now possible to
restrict to the second paragraph.

Trotman [8] suggests the corpus tree will be small
for real data. In this extended model this no longer
holds true. In the TREC [3] Wall Street Journal
collection there are only 20 nodes, for INEX there
are 198,041 nodes after ‘noise’ nodes are removed
(4,789 with attributes and instances also removed).

Table 2: Tags ignored during indexing.
ariel en item-text ss
art entry label stanza
b enum large sub
bi f li super
bq it line tbody
bu item math tf
bui item-bold proof tfoot
cen item-both rm tgroup
colspec item-bullet rom thead
couplet item-diamond row theorem
dd item-letpara scp tmath
ddhd item-mdash sgmlf tt
dt item-numpara sgmlmath u
dthd item-roman spanspec ub

Many tags are used to mark elements too small to be
relevant. An example of such a tag is ‘ref’, used to
mark references in the text. This tag cannot be
relevant to any topic as the contents are simply
reference numbers. Some tags were used for visual
appearance such as ‘b’ used to mark text in bold.
Others were used as typesetting hints such as ‘art’
used to specify the size of an image. If any of these
tags, or those in Table 2 were encountered during
indexing, tagging was ignored (until the matching
close tag), but the content still indexed. Tags in this
group were hand selected even though automated
systems for choosing such tags have been proposed
[5].

4. QUERY FORMATION
The title of the topic is extracted and converted into
a Boolean query. This query is used to determine
which documents to retrieve. Ranking is computed
from the postings for the search terms.
For content and structure (CAS) topics, the target
element is computed and stored for later use. The
complete path for each about-function is computed
by concatenating the about-path to the context-
element restricting it. All equivalent paths are then
computed by permuting this path with the
equivalence tags. This fully specified path now
replaces the original about-path and the context-
element is removed.
At this point, the topic has been transformed from
INEX topic syntax into a query whereby each
about-clause is Boolean separated and explicitly
field restricted.

Create mandatory by ANDing each mandatory term (+)
Create optional by ORing each optional term
Create exclusion by ORing each exclusion term (-)
If all three sub-expressions are non-null, combine:
 mandatory AND (* OR optional) NOT
exclusion
If two sub-expressions are non-null, combine using one of:
 mandatory AND (* OR optional)
 optional NOT exclusion
 mandatory NOT exclusion
If only one sub-expression is non-null, use one of:
 mandatory
 optional
 * NOT exclusion
Where ‘*’ finds all documents

Figure 3: Algorithm to convert an about phrase
into a Boolean expression.

Examining the about-string, optional, mandatory
(+), and exclusion (-) terms are allowed. These
terms are converted into a Boolean expression.
Optional terms are collected and converted into a
sub-expression by ORing (“a b c” → “a OR b OR

klas
143

klas
143

klas
143

klas
145

klas
143

klas
143

klas
151

c”). Likewise, exclusion terms are also ORed.
Mandatory terms are collected and ANDed (“+d +e
+f” → “d AND e AND f”). These three sub-
expressions are then combined to form a complete
about-query. The whole algorithm is presented in
figure 3.
Separate about clauses are already Boolean
separated so these operators are preserved. Finally,
all context-elements must be satisfied so these are
ANDed together.
For content only (CO) topics, a Boolean expression
is computed exactly as for one about-string using
the algorithm presented in Figure 3.

5. RANKING
The retrieval engine is a Boolean ranking hybrid.
Result sets are computed in two parts; a bit-string of
documents satisfying a strict interpretation of the
query, and a set of accumulators holding document
weights.

5.1 Document Ranking
The Boolean expression constructed above is
converted into a parse tree then evaluated. At each
leaf, the posting are loaded and converted into a bit-
string, one bit per document.
If a given leaf in the parse tree is not tag-restricted,
each posting is examined in turn, and the bit at
position dn of each posting is set. Should the leaf be
tag-restricted, only those postings for the given tags
are examined (see Section 3) and converted.
The bit-strings are combined at the nodes of the
parse tree using the operator there. At the root of
the tree, the bit-string has set bits for all documents
exactly satisfying the query and unset for those that
do not.
The accumulator values are the sum of Okapi BM25
scores computed at each leaf of the parse tree.
Scores are summed regardless of the operators in
the parse tree.
For AND and OR nodes scores are summed because
the influence at these nodes is the sum of influences
of the children.
For NOT nodes, they are also summed. If a
document is excluded from the result set, the
accumulator value is irrelevant. If a document is
not, it is either re-included through other terms (e.g.
mammal OR (dog NOT cat)), or there is a double
negative in the query (e.g. cat NOT (dog NOT cat)).
In both cases, the document has successfully
satisfied a query leaf so receives a positive weight.

5.2 Element Ranking and Selection
The Boolean ranking hybrid engine was extended to
include element ranking. Although whole
documents are valid as results for CO topics, SCAS
topics specify a target element. This targeting

establishes the retrieval unit. If the target element is
‘sec’, this tag must be returned. It essentially directs
the retrieval engine to search and rank each given
tag instance separately.
Wilkinson [9] suggests that ranking whole
documents then extracting elements from these is a
poor ranking strategy. The opposite may hold for
this collection. A relevant element lies in the
greater context of a relevant document. A relevant
document will lie in a relevant journal, which, in
turn, lies in a relevant collection. To this end, every
paragraph of every section of every document is
contextually placed so extracting elements from
relevant documents may be a good approach.
The coverage of any one posting is computed as
those nodes in the document tree at or above the
posting. Each posting is already annotated with a
pointer into the tree, pn. To compute the coverage,
the tree is traversed upwards from pn to the root.
Coverage is computed for each document with
respect to each search term.

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]

Figure 4: Coverage of a term occurring at p[2].

The coverage includes all those nodes at and
above the occurrence node; those parts of the

tree that “cover” the term.
In figure 4, the term “ham” occurs at p[2]. The
coverage includes all nodes above that point in the
document tree. In this example that is sec[1] and
doc[1]; all nodes that “cover” the search term –
those highlighted in grey.
For each document in the result set, the weighted
coverage is computed as the covered branches of the
document tree and how many search terms cover
that branch. This is computed during a single pass
of the indexes by storing the weighted coverage as
part of each accumulator.
For the query “eggs and ham” against the
documents in Figure 1, the weighted coverage is
shown in Figure 5. doc[1] and sec[1] have a weight
of 2, while p[1] and p[2] each have a weight of 1.

klas
144

klas
144

klas
144

klas
146

klas
144

klas
144

klas
152

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]
11

2

2

doc[1]

sec[1] sec[2]

@c[1]

p[2]p[1] p[1]
11

2

2

Figure 5: Weighted coverage of each node is the
number of search terms that occur at or below

that point in the tree. Weighted coverage is
shown in the bottom right of those nodes with

weights greater than zero.
In any given document, the document root must
have the highest weighted coverage, but this can be
equal to that of other nodes. For CO topics, all
branches of the document tree with coverage less
than the root are pruned. The remaining leaves are
presented as the result set for that document (in
Figure 5, the result is //doc[1]//sec[1]). In this way,
the most information dense elements in the
document are considered most relevant and no part
of any document is returned more than once
(overlapping is eliminated).
If a target element is specified in a SCAS topic, all
non-target branches are pruned. From the remains,
those branches with the highest weighted coverage
are presented as the result set for that document.

5.3 Ranking summary
Recall is determined by evaluation of the Boolean
expression, documents are then ranked using Okapi
BM25, and elements are selected by weighted
coverage. As all the metrics needed for ranking are
available at search time, the search and rank process
is computed in a single pass of the postings.

6. RESULTS
Evaluation results are presented in Table 3.

Table 3: INEX performance measures
Strict Precision Rank

CO 0.0243 42nd

SCAS 0.1799 24th

CO-ng-o 0.1359 5th

CO-ng-s Unknown Not top 10

Generalized Precision Rank

CO 0.0241 34th

SCAS 0.1214 28th

CO-ng-o 0.1542 1st

CO-ng-s 0.1405 5th

The retrieval engine performed badly using the
INEX_EVAL measure. This is most likely because
this measure treats each tag in a hierarchy as
relevant but coverage eliminates overlapping tags –
the measure is inappropriate for this retrieval
technique.
Good results were shown when performance is
measured using INEX_EVAL_NG. NG measures
the ratio of relevant to irrelevant information
returned. Coverage finds those parts of the
document that contain most of the search terms.
The correlation between information density and
coverage is reflected in the result.
The results show the best performance when
generalized quantization is used. This suggests the
ordering of the results is not optimal for strict
quantization – or the most relevant documents are
not ranked before less relevant documents. This
may be a consequence of sorting into document
order before coverage order.

7. OTAGO AT INEX
The participation process involved the design and
contribution of six topics. Of these, four were
selected for inclusion in the final topic set. Otago
was assigned three of these to assess. The
assessment took three people one week each; this
was one week per topic.
The retrieval engine described herein was used for
designing the contributed topics. This was
somewhat problematic as the topic parser was
written at the same time the topics were being
written, each with few examples.
From the final CAS topic set, 19 required
corrections, corrections finally running to 12
rounds! This suggests the topic syntax is
unnecessarily complex. See our further contribution
[6] for a discussion on a possible language to use for
future workshops.
The assessors were overburdened by the multitude
of obviously irrelevant documents to assess.
Examining some of these documents suggests many
retrieval engines were aiming at high recall by
retrieving any document containing any of the title
terms. In particular, the word ‘java’ appeared in one
topic; this was a somewhat popular research area
over the years included in the IEEE collection. The
assessment task could be reduced by carefully
designing topics (and retrieval engines) to avoid this
problem.

8. CONCLUSIONS
Element ranking was added to a Boolean ranking
hybrid retrieval engine. Relevant documents were
identified using Boolean searching. Documents
were ranked using Okapi BM25. Finally coverage
was used to rank elements within documents.

klas
145

klas
145

klas
145

klas
147

klas
145

klas
145

klas
153

The results suggest coverage is a good method of
identifying relevant and non-overlapping elements.
Performance was best for generalized quantization,
so ordering is not ideal. This may be a consequence
of presenting results in document order.

9. ACKNOWLEDGEMENTS
In addition to the authors, Yerin Yoo contributed to
the assessment task. Without her contribution we
would not have been able to complete the task.
This work was supported by University of Otago
Research Grant (UORG) funding.

REFERENCES
[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M.,

Maler, E., Yergeau, F., & Cowan, J. (2003).
Extensible markup language (XML) 1.1 W3C
proposed recommendation. The World Wide
Web Consortium. Available:
http://www.w3.org/TR/2003/PR-xml11-
20031105/ [2003.

[2] Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M.
(2002). INEX: Initiative for the evaluation of
XML retrieval. In Proceedings of the ACM
SIGIR 2000 Workshop on XML and Information
Retrieval.

[3] Harman, D. (1993). Overview of the first TREC
conference. In Proceedings of the 16th ACM

SIGIR Conference on Information Retrieval, (pp.
36-47).

[4] Hitchcock, S., Quek, F., Carr, L., Hall, W.,
Witbrock, A., & Tarr, I. (1988). Towards
universal linking for electronic journals. Serials
Review, 24(1), 21-33.

[5] Kazai, G., & Rölleke, T. (2002). A scalable
architecture for XML retrieval. In Proceedings
of the 1st workshop of the initiative for the
evaluation of XML retrieval (INEX), (pp. 49-56).

[6] O'Keefe, R. A., & Trotman, A. (2003). The
simplest query language that could possibly
work. In Proceedings of the 2nd workshop of the
initiative for the evaluation of XML retrieval
(INEX).

[7] Robertson, S. E., Walker, S., Beaulieu, M. M.,
Gatford, M., & Payne, A. (1995). Okapi at
TREC-4. In Proceedings of the 4th Text
REtrieval Conference (TREC-4), (pp. 73-96).

[8] Trotman, A. (2003). Searching structured
documents. Information Processing &
Management, (to appear) doi:10.1016/S0306-
4573(03)00041-4, available on ScienceDirect
since 6 June 2003.

[9] Wilkinson, R. (1994). Effective retrieval of
structured documents. In Proceedings of the
17th ACM SIGIR Conference on Information
Retrieval, (pp. 311-317).

klas
146

klas
146

klas
146

klas
148

klas
146

klas
146

klas
154

The SearX-Engine at INEX’03:
XML enabled probabilistic retrieval

Holger Flörke
doctronic GmbH & Co. KG

Adenauerallee 45-49
D-53332 Bornheim, Germany

floerke@doctronic.de

ABSTRACT
In this paper we describe how we used our „out of the box“ search
engine for INEX’03. The SearX-Engine integrates structural
information into the query language and the retrieval function. It
is based on the widely used probabilistic retrieval (TF*IDF) and
uses additional indexes on document structure to evaluate queries.

1. INTRODUCTION
Due to the fact that in the real world a huge amount of structured
full-text documents is available, there is a growing need to search
within those documents. One simple way is to throw away all
structural information and use a well known retrieval method to
search an unstructured document collection. But if you deal with
finding all relevant documents to a user-query, you will be quite
happy about every small piece of information you can use to fulfil
the user’s information need.
Using the structural information within the documents and maybe
the query can help to retrieve more relevant and fewer irrelevant
documents. Therefore retrieval systems will do a better job if they
take the structure into account. New retrieval algorithms for
structured documents have to be designed and implemented.
The main goal of INEX (Initiative for the Evaluation of XML
Retrieval) [1] is to promote the evaluation of content-oriented
XML retrieval by providing a large test collection of XML
documents, uniform scoring procedures, and a forum for
organizations to compare their results.
The SearX-Engine [2] is a commercial product developed by
Doctronic for searching within collections of XML documents.
The author of this article is the chief of research and development
at Doctronic and is responsible for the main concepts of the
SearX-Engine. The SearX-Engine is integrated into Xaver, a
multi-channel publishing system for large and structured text
collections [3]. Xaver is mainly used by professional publishers in
the field of law, taxes, or technical documentation.

2. QUERY LANGUAGE
A query in the probabilistic retrieval model can be represented by
an unordered set of terms. The user can easily express his
information need by specifying some related terms.

To integrate structural assignments and weightings into the query
language, we introduce the concept of roles. One role (such as
‘author’ or ‘heading’) combines all parts of the collection with a
common semantics, so the user does not have to know about the
specific structure of the underlying collection.

The mapping from the collection data to structural roles is done at
indexing time by the content provider. In our scenario the content

provider should be seen as the person who prepares the collection
for publishing and retrieval. In the majority of cases this is not the
author, but the publisher or a technical service provider. The
content provider should know about the content of the collection
and the potential end user. Therefore he is qualified to define the
roles and any other search parameter.

Not only the user level is simplified by the concept of roles. Roles
can also help to search across heterogeneous collections where
each one provides its own mapping from collection-specific data
structures to general roles. At the implementation level roles can
help to keep the index structures and algorithms small and handy,
because the structural complexity is reduced.

The user can integrate structural information into his query by
assigning query terms to structural roles related to his information
need. He can also choose one retrieval role, which determines the
parts of the collection that should be returned and ranked.
The SearX-Engine also supports a mechanism to weight roles. If a
query term is found, the score of this occurrence will be
influenced by the structural context. This weighting is often made
by the publisher, who can provide his knowledge about the data
and the assumed information needs of the users.
The application knows the concept of headings, so structural
implications (eg scoring an article title should score all sections
within this article) can be expressed. Furthermore the term
operators '+' (must have) and '–' (must not have) and phrases are
supported.

3. RETRIEVAL FUNCTION
The SearX-Engine is based on the well known probabilistic
retrieval [4]. Within this framework the score of a document
consists of two parts. First the inverted document frequency
measure represents the entropy of the term occurring in both
document and query. The more documents exist containing the
term, the smaller the IDF gets. The second part reflects the term
frequency, which has to be normalized by the length of the
document. Those two parts of the score can be weighted for
different collection characteristics by the tuning factors C and K.

() ()

()

⋅−+

⋅+= ∑
∩∈

d

id

dqt
i

fKK

Cdq
i

maxfreq
1

IDF,ρ

d
dtf

n
nN

d

iid
i

i
i

in any term offrequency maximummaxfreq
in termoffrequency

logIDF

=
=

−
=

klas
147

klas
147

klas
147

klas
149

klas
147

klas
147

klas
155

Within collections of structured documents, the retrieval function
should not necessarily score an entire document. It should also be
able to score smaller (or larger) elements. A structured query
contains terms related to roles, and roles can be weighted by the
user and the publisher. Therefore we have to extend the retrieval
function in a number of ways.
The IDF is replaced by the inverted element frequency (IEF)
depending not only on a term, but also on a role.

()

ikst

ks

st

sts
ki

tsn
sN

n
nN

st

ki

k

ki

kik

 termand role having elements ofnumber
 role having elements ofnumber

log,IEF

,

,

,

=
=

−
=

To adapt the IDF, all elements having the same role are handled
as a document collection and the entropy over this collection is
measured.
The term frequency has to be calculated with respect to the
structural conditions in the query and the structural weighting has
to be considered.

() () ()()∑
′∈

′
′∈⋅′=

)roles(s
 of self-or-descendant is

k

eroles |)(max,freq,,

e
ee

iki sswetsetf

Putting the pieces together, the new retrieval function (ignoring
the tuning factors C and K) is:

() ()
()
∑
∈

∈
⋅=

et
qst e

ki
ki

i

ki

setfsteq

 , maxfreq

),,(,IEF,ρ

This formula is able to estimate the relevance of every element to
a query with structural assignments and structural weightings.

4. INDEX STRUCTURES
The index structures to evaluate the retrieval function of a query
on the collection are quite similar to the well known inverted files
[5] used for information retrieval on unstructured texts. There is a
lexicon populated with all the terms of the collections, their IEF
for each role, and a pointer to the list of postings. The list of
postings contains each occurrence for each term. Other than the
usual inverted files we have to record the structural context of
each occurrence. Because we need to know the complete path of
roles from the occurrence to the root of the document structure,
integrating the structural information within the list of postings
would introduce a huge overhead. Therefore we decided to use a
special index for the structure and store links to this index into the
list of postings. The structure index is a tree like index structure. It
represents the document structure and contains the set of roles for
each indexed element and the frequency of the most frequent term
of each element. This design reduces the storage requirements, but
introduces some runtime disadvantages.

5. INEX’03
To evaluate INEX’03 topics, we made a mapping of the used
structural assignments to roles and transformed the topics to our
query format described above. Weighting was done to push up
hits within article titles, abstracts and keywords. The values of this
weighting were guessed by the author and were not calculated
from INEX’02 or other collections.

5.1 CO-Topics
For Content-Only queries we decided to rank always whole
articles and search for the title and the keywords of the topic
description within the whole article. So we did not make any
structural assignments besides the weighting. The role article is
mapped to all articles in the collection.

5.2 CAS-Topics
The CAS-Mapping is somewhat more difficult because of the
CAS topic format introduced in INEX’03.

The last element in the path of the title is taken as the retrieval
element. Every about-predicate creates one query item (pair of
role and terms). All the paths within the CAS topics are used to
build the set of roles needed by the SearX-Engine. The XPath for
the role mapping is taken as the name.

A Filter on an explicit attribute value in the CAS title (eg
/article[.//yr <= '2000']) was translated into a SearX-Engine filter
to exclude document parts based on attribute values. Therefore we
are able to map every CAS query to our query format.

6. EVALUATION
We have submitted two CO and two VCAS runs. Within each
track there was one run created automatically and one created
manually from the INEX topic description. The results of the CO
submissions are shown in figure 1 (automatic) and 2 (manual).
Because at this time there are no metrics for the VCAS available,

klas
148

klas
148

klas
148

klas
150

klas
148

klas
148

klas
156

we have treated the VCAS submissions like SCAS. The results are
given in figure 3 (automatic) and 4 (manual).
The size of the indexed data was 876MB, that’s 111% of the
original size of the collection. This size includes all the data, the
search indexes, and a phrase index for the efficient evaluation of
phrase searches. Each CO topic was evaluated in 20s, each CAS
topic in 26s on average (RedHat Linux 8.0 on a P4/2.4GHz). As
opposed to an end user query, the given timings contain the
construction of the whole result set and the transformation to the
INEX submission format.

7. CONCLUSION
We were able to index the INEX document collection and
evaluate the INEX topics without any modification of the “out of
the box” SearX-Engine. The index structures needed by the
engine are quite small and each topic could be evaluated fast. The
results of the submitted runs show a good retrieval quality. We are
satisfied with the overall performance of the SearX-Engine.
The INEX’03 was a good exercise to show the flexibility of our
SearX-Engine. The results of the experiments may influence the
future development to improve performance and index sizes on
the one hand and the retrieval quality on the other. Without
INEX, retrieval quality improvements would be much harder.

8. REFERENCES
[1] Initiative for the Evaluation of XML Retrieval.

http://inex.is.informatik.uni-duisburg.de:2003
[2] doctronic SearX-Engine

http://www.doctronic.de/produkte/searx.html
[3] doctronic Xaver-Publishing.

http://www.doctronic.de/produkte/xaver.html
[4] N. J. Belkin and B.W. Croft. Retrieval Techniques. Annual

Review of Information Science and Technology, 22:109-145,
1987.

[5] William B. Frakes, and Recardo Baeza-Yates. Information
Retrieval – Data Structures and Algorithms. Prentice Hall,
Englewood Cliffs, New Jersey, 1992.

Figure 1. Evaluation of the automatically generated CO
runs with inex_eval_ng (overlapping considered).
Figure 2. Evaluation of the manually generated CO runs
with inex_eval_ng (overlapping considered).
Figure 3. Evaluation of the automatically generated
SCAS runs with inex_eval.
Figure 4. Evaluation of the manually generated SCAS
runs with inex_eval.

klas
149

klas
149

klas
149

klas
151

klas
149

klas
149

klas
157

Expected Ratio of Relevant Units:
A Measure for Structured Information Retrieval

Benjamin Piwowarski
LIP 6, Paris, France

bpiwowar@poleia.lip6.fr

Patrick Gallinari
LIP 6, Paris, France

gallinar@poleia.lip6.fr

ABSTRACT
Since the 60’s, evaluation has been a key problem for In-
formation Retrieval (IR) systems and has been extensively
discussed in the IR community. New IR paradigms, like
Structured Information Retrieval (SIR), make classical eval-
uation measures inappropriate. A few tentative extensions
to these measures have been proposed but are also inade-
quate. We propose in this paper a new measure which is a
generalisation of recall. This measure takes into account the
specificity of SIR, when elements to be retrieved are linked
by structural relationships. We show an instantiation of this
measure on the INEX database and present experiments to
show how well it is adapted to SIR evaluation.

1. INTRODUCTION
Information Retrieval systems aim at retrieving documents
that are relevant to a given user information need. The
notion of relevance is not only not well defined and ambigu-
ous [13, 9], it is also user specific. The evaluation of IR
systems appeared very early as a key problem of IR. Clever-
don experiments on the Cranfield collection [3] were the first
experiments that justified the development of entirely auto-
matic IR systems. Evaluation is useful for comparing differ-
ent systems and is used to justify theoretic and/or pragmatic
developments of IR systems.

Many different parameters can be used in order to measure
the performance of an IR system like for example time and
space taken by the system to answer the query and the user
effort to find relevant documents. Swets [14] was the first
to clearly define how a metric should be defined in order to
provide an objective evaluation of IR systems: a measure
should only reflect the ability of the system to discriminate
relevant documents from irrelevant ones.

A number of hypotheses are also necessary (even if they are
implicit) to develop evaluation measures. We can distin-
guish two kinds of hypotheses: those which are necessary to
the computation of the measure and those which are priors
on user behaviour. Examples of typical assumptions are the
following: (1) the user follows the ordered list of retrieved
elements beginning with the first element; (2) a relevant
document is still relevant even if the user has already seen
the same information in another document higher in the re-
trieved list. We will make such hypotheses explicit when
describing our measure.

There are many different approaches for IR evaluation [15,

1]. The expected search length [4] measures the amount
of irrelevant documents a user will consult before finding
a certain amount of relevant documents. Some measures
are based on the definition of a metric over some predefined
statistics [2, 15], some derive from rank correlation [10]. But
the most famous measures in IR are recall and precision.
Recall is defined as the ratio of the number of relevant doc-
uments that are retrieved to the total number of relevant
documents. Precision is the ratio of the number of rele-
vant documents that are retrieved to the total number of
retrieved documents.

Raghavan [12] proposed a probabilistic version of recall-
precision, which is not inconsistent as standard precision/recall
can be, especially when documents are not fully ordered. We
will not define more precisely their measure here. Instead,
we will detail an extension of precision and recall in the case
of a non-binary relevance scale, as it was used to evaluate
Structured Information Retrieval systems in the 2002 INEX
workshop. This extension was proposed by Kekäläinen and
Järvelin [7]. In that case, the set R is defined in a fuzzy
way: a document can be more or less relevant. When the
document is highly relevant, it will be in the set of the rele-
vant documents with a degree of 1. When the document is
not relevant, it will be in this set with a degree of 0. Every
value between 0 and 1 will be a measure of the relevance of
the document. This scale thus generalises the classic binary
scale (relevant/not relevant) that is used in IR. Let us de-
note j(d) the degree with which the document d belongs to
the relevant set of documents for a given query. Then, recall
and precision are computed as:

recall =

P

e∈L
j(e)

P

e∈E
j(e)

(1)

precision =

P

e∈L
j(e)

N
(2)

where N is the number of documents in the list, E is the set
of documents and L is the set of documents in the list. Those
two formulas generalise standard recall-precision: when j(d)
takes only the values 0 or 1, they give the same results.

In this paper, we propose a measure to evaluate SIR systems.
We will first introduce the new problem of SIR. We will
show how standard recall/precision have been extended to
evaluate such systems and why this is not well adapted to

klas
150

klas
152

klas
150

klas
150

klas
158

SIR evaluation. We will then introduce a new measure which
is related to the recall. We will compare our measure and
precision/recall extension on stereotypical systems using
the corpus provided by INEX1.

1.1 Evaluation and Structured Information Re-
trieval

Atomic units are usually documents in classical IR. With
the actual growth of structured documents 2, the atomic
unit is no more the whole document but any logical element
in the document. We will call such an element a doxel (for
DOCument ELement) in the remainder of this paper. Com-
pared to IR on unstructured collections, Structured Infor-
mation Retrieval (SIR) should not focus on returning doc-
uments but the smallest doxel that contains the answer to
the query. While that query can be only free text like in
standard IR (using the INEX terminology, those are Con-
tent Only queries, CO in short), a query can also specify
both constraints on the structure and on the content (those
are called Content And Structure queries, CAS in short).

We are interested in the evaluation of systems that answer
CAS and CO queries, but we will focus here mainly on CO.
We will say that a good answer (the smallest doxel) is SIR-
relevant to distinguish this notion from usual relevance.

Our work was greatly influenced by the recent INEX initia-
tive [6]. In this section, we describe briefly how SIR systems
were evaluated in INEX 2002, which was the first initiative
where a corpus of assessed XML documents was built. We
will show why the current evaluation methodology is not
well suited for SIR.

Let us first describe the INEX scale used for the user as-
sessments. This scale is neither binary, nor between 0 and
1, but is two-dimensional. The first dimension is related
to the extent with which the element is relevant. The rele-
vance does not take into account the non relevant part of the
doxel, even if that part is 99% of the doxel. For example, the
common ancestor of the whole database will be considered
as highly relevant even if only a small paragraph is highly
relevant. In INEX’02, four levels of relevance were distin-
guished: the doxel can be irrelevant (0) if it does not contain
any information about the topic of the request; marginally
relevant (1) if it mentions the topic of the request, but only
in passing; fairly relevant (2) if it contains more information
than the topic description, but this information is not ex-
haustive; highly relevant (3) if it discusses the topic of the
request exhaustively.

The second dimension, coverage, is specific to structured
document evaluation. Document coverage describes how
much of the document component is relevant to the request
topic. Again, there are four levels: no coverage (N) when
the query topic is not a theme of the document component;
too large (L) when the topic is only a minor theme of the
document component; too small (S) when the topic or an
aspect of the topic is the main or only theme of the docu-

1Initiative for the Evaluation of XML retrieval,
http://qmir.dcs.qmw.ac.uk/INEX/
2Where the textual (or multimedia) content of the document
is usually organised in a tree

fg : JINEX 7→ J[0,1]

j 7→

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if j ∈ {3E}

0.75 if j ∈ {2E, 3L, 3S}

0.50 if j ∈ {1E, 2L, 2S}

0.25 if j ∈ {1S, 1L}

0 if j ∈ {0N}

fs : JINEX 7→ J[0,1]

j 7→

(

1 if j ∈ {3E}

0 if j 6∈ {3E}

Table 1: Quantisations are used to convert an assess-
ment from the INEX scale JINEX to a binary or real
scale used to compute recall and precision. In INEX,
two quantisations were proposed: fs is a “strict”
quantisation, fgis a “generalised quantisation”

ment component, but the component is too small to act as
a meaningful unit of information; finally, exact coverage (E)
when the topic is the main theme of the doxel.

The two dimensions are not fully independent: a non rel-
evant element (0) must have no coverage (N). There are
only 10 different values in this scale (and not 16). In the
remainder of this paper, JINEX denotes this set of 10 val-
ues. Each of these values is a digit (relevance) followed by
a letter (coverage). Thus, 2E means “fairly relevant with
exact coverage”. Within this scale, the doxels that should
be returned by a perfect SIR system will be all the doxels
with an exact coverage, beginning with those with high rele-
vance: in the case of the INEX scale, SIR-relevant doxels are
those that have an exact coverage. Doxels with too small
or too big coverage in this scale are considered not relevant.
The motivation is that exact doxels are the doxels a user
is searching for, while “too small” doxels are contained in
an “exact” doxel and “too big” doxels contain an “exact”
doxel.

2. LIMITS OF CURRENT MODELS
The first measure proposed in INEX 2002 was standard re-
call and precision (i.e. using fs, see table 1). In this case,
only doxels with exact coverage and high relevance (INEX
scale) are the relevant elements (for the binary scale). A sys-
tem that does always returns a near match will have a recall
and a precision of 0. This should be avoided since the task
complexity is very high. Moreover, when one is assessing
the corpus one can find it difficult to give the exact match
to one doxel rather than to a smaller one. For example, the
list element in INEX often contains only one paragraph; the
textual content of both elements (list and paragraph) is thus
the same. It is impossible to make a choice and if we give
an exact coverage to both, a SIR system will have to return
both elements in order to have a perfect recall.

In order to cope with that problem, Gövert [5] proposed
to add some relevance to neighbouring doxels, using fg to
convert an assessment from the INEX assessment scale to a
value between 0 and 1. A highly relevant doxel with an exact

klas
151

klas
153

klas
151

klas
151

klas
159

match will have a relevance of 1 in the [0, 1] scale. Some of
the doxel neighbours will also have a non null relevance: its
ancestors – within the document boundary – will have a
relevance of 0.75 (too big); some of its children will have a
relevance of 0.25 (too small). Non relevant doxel will have
a 0 value for relevance. This choice might seem better than
the first one, but is still not adequate:

• For every SIR-relevant doxel, there will be a new set
of IR-relevant doxels. To give an example of what it
implies, consider a system that returns a doxel and
two ancestors: this system will have a recall of 2.25,
which is better than a system that returns two highly
SIR-relevant doxels.

• A system that returns all the SIR-relevant doxels will
not be considered as having retrieved all the relevant
information: this system will not have a recall of 1.

Those problems are more connected to relevance assessments
for free text queries, where there is no constraint on the
structure of the retrieved doxels. Nevertheless, the case of
structured queries can also be discussed. We will distinguish
two different cases:

• The topic formulation does not have any constraint
that forbids a doxel and a sub-doxel (a doxel contained
in this doxel like e.g. a paragraph in a section) to
be both retrieved like for example the query “find a
paragraph or a section that talks about cats”. Re-
call/precision are clearly not adapted to this case;

• The topic formulation does not allow a doxel and its
sub-doxel to be both retrieved (“chapters that talk
about photography”). In this case, we can use stan-
dard (or generalised) recall and precision without hav-
ing any problem.

Classical measures require the definition of the typical be-
haviour of a system user. This user consults the list of re-
trieved doxels one by one, beginning with the first returned
doxel and continuing in the returned order. In the next
section, we propose a measure based on a specific user be-
haviour, which takes into account the structure of the doc-
uments. In particular, we integrated in our measure the
fact that a user might explore the doxels which are near the
returned doxel in the structure.

In Web-based IR, classical precision/recall can be problem-
atic. Even if the problem is slightly different, some authors
have considered using the structural information (hyper-
links) of the corpus. For instance, Quintana, Kamel and
McGeachy [11] proposed a measure that takes into account
data on the displayed list of documents, on the user knowl-
edge of the topic and also on the links between the docu-
ments. They propose to estimate the mean time that a user
will spend before finding a relevant document. We follow
somewhat the same approach. The main difference is that
we rely upon a probabilistic model which makes our measure
sound and easily adaptable to new corpora.

3. A MEASURE FOR SIR
We will suppose an ideal situation where assessments in
the INEX 2002 corpus strictly follow the definition of SIR-
relevance (which is not the case). We will thus make the
following assumption that a SIR-relevant doxel can only
contain SIR-relevant doxels that are less relevant or have
a smaller coverage. This constraint states that the same
relevant information is assessed with “exact coverage” only
one time.

In this section, we describe our measure, beginning with
some general hypotheses and its definition. Then we present
the probabilistic events and the assumptions we made on
them, and finally we show how to calculate our measure.

3.1 Hypotheses
The definition of a measure is based on an hypothetical user
behaviour. Hypotheses used in classical measures are sub-
jective but do reflect a reality. In the SIR framework, we
will propose a measure that estimates the number of rele-
vant doxels a user might see. We will now describe how a
typical user behaves in the context of SIR retrieval. This be-
haviour will be defined by three different aspects: the doxel
list returned by the SIR system, the structure of the docu-
ments and the known relevance of doxels to a query. The
following hypotheses are similar to that supposed in classical
IR:

Order The user follows the list of doxels, beginning with
the first returned. He never discourages himself nor
does he jump randomly from one doxel to another;

Absolute relevance A doxel is still relevant even if the
user has already seen another doxel that contains the
same (or a part of the same) information;

Non-additivity Two non relevant doxels will never be rel-
evant even if they are merged.

The three last hypotheses are specific to our measure

Structure browsing The user eventually consults the struc-
tural context (parent, children, siblings) of a returned
doxel. This hypothesis is related to the inner structure
of documents;

Coverage influence The coverage of a doxel influences the
behaviour of the user. If the doxel is “too large”, then
the user will most probably consult its children. If
the doxel is “too small”, the user will most probably
consult the doxel ancestors;

No hyperlink The user will not use any hyperlink. More
precisely, he will not jump to another document. This
hypothesis is valid in the INEX corpus but can easily
be removed in order to cope with hyperlinked corpora.

The measure we propose is the expectation of the number
of relevant doxels a user sees when he consults the list of
the k first returned doxels divided by the expectation of the
number of relevant doxels a user sees if he explores all the

klas
152

klas
154

klas
152

klas
152

klas
160

N Number of doxels in the list consulted by the
user

NR Number of SIR-relevant doxels that have been
seen by the user

Le The doxel e is in the list consulted by the user
Se The user has seen the doxel e (either in the list

or by browsing from a doxel in the list)
e′ → e The user sees the doxel e after he consulted the

doxel e′

Table 2: Events

doxels of the database. We denote this measure by ERR
(for Expected Ratio of Relevant documents):

ERR =
E [NR/N = k]

E [NR/N = |E|]

This measure is computed for one query. The measure ERR
is normalised (ERR ∈ [0, 1]) as E [NR/N = |E|] represents
the maximum number of SIR-relevant doxels a user can see
in the whole corpus. The measure can thus be averaged over
different queries.

3.2 Events
We now have to compute the expectation E [NR/N = k]
with the assumptions on the user behaviour we just made.
We will introduce some events that are used to formally
model the user behaviour and will make some hypotheses on
the (probabilistic) relationships between these events. The
three different probabilities we introduce are respectively re-
lated to the assessments, to the retrieved doxels and to the
document structure. The set of events we use in this paper
is summarised in table 2.

Events
Let us denote E the set of doxels, e or e′ a doxel from E and
q a given query. A doxel e can be more or less relevant with
respect to the query. We will denote the probability of SIR-
relevance of a given doxel by P (Re/q). The list returned
by the SIR system is only partially ordered so that some
rearrangements of the list are possible. Depending on the
length N of the list, a doxel is then consulted by the user
with a probability P (Le/q, N = k).

When a user consults a doxel e′ from the list, he eventually
will use the structure to navigate to another doxel e from
the document. As it is difficult to make this process deter-
ministic, we will use P (e′ → e/q) as the probability that the
user goes from e′ to e. Note that this probability depends
upon the query, this will be illustrated in the next sections.

We will suppose that the IR user sees the doxel e iff:

• e is in the list;

• e′ is in the list and the user browses from e′ to e

This event is denoted Se and we can write:

Le ∨ (∃e′ ∈ E, Le′ ∧ e′ → e) ≡ Se

For simplicity, we will now drop the query q from the for-
mulas, as the measure is computed independently for every
new query.

Hypotheses
The following hypotheses are necessary for the computation
of the measure. Note that all these assumptions are made
knowing the query q and the length of the list N . The first
two hypotheses are intuitive. The first hypothesis states
that the relevance of a doxel does not depend on the fact
the user sees it:

P (Se ∧ Re) = P (Se)P (Re) (H1)

The second states that the behaviour of a user (going from
a doxel in the retrieved list to another doxel, e → e′) does
not depend on the fact that the doxel e is in the list (Le):

P (Le′ ∧ e′ → e) = P (Le′)P (e′ → e) (H2)

The third states that the fact that events R or L that are
related to different doxels are independent, and that in par-
ticular

Se ∧ Le or ¬(Se ∧ Le) and Se′ ∧ Le′ or ¬(Se′ ∧ Le′)
are independant

(H3)

This hypothesis has no intuitive meaning and has been in-
troduced only for allowing the measure computation. Nev-
ertheless, it can be justified by those two statements: the
relevance is assigned by the user and thus the probability
of SIR-relevance does not depend upon the SIR-relevance of
another doxel but on the user assessment (that is denoted
by our event q). The second point is that the fact Se that
the user sees a doxel e only depends on the fact that a doxel
e′ is in the list (which is known when we know the length of
the list N which is the case here) and that the user moves
from a doxel e′ in the list to another doxel e.

The third hypothesis is also a simplification of reality, but is
as necessary as the two first. It is related to the probability
Se that the user see a doxel e. The more the user can access
this doxel from the retrieved doxels by navigating along the
document structure, the more “chanches” he has to see that
doxel. As it is not possible to evaluate all the interactions
between previously seen doxels and this event, we make the
hypothesis that correspond to the “noisy-or”. This hypoth-
esis is used to compute the probability of the logical impli-
cation A1 ∨ · · · ∨ An ⇒ B as 1 − P (¬A1) . . . P (¬An). We
thus state that:

P (Se) = P
`W

e′∈E
(Le′ ∧ e′ → e)/N

´

= 1 −
Q

e′∈E P (¬(Le′ ∧ e′ → e)/N
(H4)

In this equation, we assumed that the event e → e is certain
(identity move), that is P(e → e) = 1 as the logical or is
over all doxels in E.

3.3 Theory
In this subsection, we describe how to compute the measure.
We now have to derive this measure from the behaviour of
a typical user. We will thus introduce a set of probabilities,

klas
153

klas
155

klas
153

klas
153

klas
161

each of which describes a part of the user behaviour. We will
also make several hypotheses in order to make this measure
computable. We now describe several hypotheses that are
related to the relevance assessments, to the returned list and
to the structure of the documents

We want to calculate E [NR/N = k], with 1 ≤ k ≤ |E|. We
know that by definition,

E [NR/N = k] =

|E|
X

r=1

rP (NR = r/N = k)

The user has seen r SIR-relevant doxels (NR = r) when
these two conditions are both met: (1) there exists a subset
{e1, . . . , er} ⊆ E of SIR relevant doxels that the user has
seen and (2) for every other doxel, either the doxel is not
SIR-relevant or the user has not seen it. If one considers the
set of all sets A that contains r doxels from E, this condition
can be written formally as:

NR = r ≡
_

A⊆E

|A|=r

^

e∈A

Se ∧ Re

!

∧

0

@

^

e∈E\A

¬(Se ∧ Re)

1

A

Events for two different sets are exclusive and using hypoth-
esis (H3) we can state that:

E [NR/N = k]

=

|E|
X

r=1

r
X

A⊆E

|A|=r

Y

e∈A

P (Se ∧ Re/N = k)

Y

e∈E\A

P (¬(Se ∧ Re)/N = k)

This formula can be reduced, using the hypothesis H1 we
obtain:

E [NR/N = k] =
X

e∈E

P (Se ∧ Re/N = k)

=
X

e∈E

P (Re)P (Se/N = k)

Using the definition of Se and the noisy-or hypothesis, we
have

P (Se/N = k) = 1 −
Y

e′∈E

P
`

¬(Le′ ∧ e′ → e)/N = k
´

Note that E [NR/N = |E|] can easily be computed as P (Se/N =
|E|) = 1. Then, using hypothesis (H2), we finally obtain
ERR(k):

P

e∈E

P (Re)

"

1 −
Q

e′∈E

(1 − P (Le′/N = k)P (e′ → e))

#

P

e∈E

P (Re)

3.4 INEX
In the last section, we derived the computation of the mea-
sure ERR, but we did not instantiate it in a practical case.
We now propose a way to compute some of the probabilities

for the INEX database3, namely for a query the probability
P (Re) of relevance of a doxel and the probability P (e → e′)
that the user browse from a doxel to another.

Computing P (Re)
INEX relevance assessments are given in a two dimensional
scale (coverage and relevance). For a given query, we will
compute P (Re) as4:

P0(Re) =

8

>

>

>

<

>

>

>

:

1 if j(e) = 3E

0.5 if j(e) = 2E

0.25 if j(e) = 1E

0 otherwise

where j(e) is the assessment of the doxel e for the given
query in the scale JINEX. To avoid counting the same rel-
evant information twice, we will furthermore suppose that
the probability of SIR-relevance of a doxel is zero whenever
the doxel has an ancestor that is relevant with exact match,
that is

P (Re) =

8

>

<

>

:

0 if ∃e′, j(e′) ∈ {1E, 2E, 3E}

and e′ is an ancestor of e

P0(Re) otherwise

Computing P (e′ → e)
To compute the probability that the user jumps from a doxel
to another, we will distinguish several relationships between
those doxels. Formulas below were only justified by our in-
tuition and can easily be replaced by others. We will denote
length(e) the length of doxel e. This length will usually be
the number of words contained in the doxel. We will denote
by d(e, e′) the distance between two doxels. We used the
number of words that are between those two doxels: for ex-
ample, the distance between the last paragraph of section 1
and the second paragraph in section 2 will be the number of
words in the first paragraph of section 2 (plus the number
of words of the section title). We can now give the formulas,
distinguishing four different cases.

e′ and e are not in the same document
We made the hypothesis that the user does not follow any
hyperlink:

P (e′ → e) = 0

e′ is a descendant of e
We will suppose that the more e′ is an important part of
e the greater the probability that a user goes from e′ to
e. e′ relevance has an influence on this probability: if the
e′coverage is S (or better, E), the probability is higher:

P (e′ → e) =

„

|e′|

‖e‖

«a

where a is 7
8

when the coverage is exact, 3
4

when the coverage

is too small and 1
2

otherwise.

3Note one can use the same definitions for any corpus of
structured documents.
4Other functions are of course possible, we chose one that
seemed “reasonable” to us

klas
154

klas
156

klas
154

klas
154

klas
162

e is in e′

This is a symmetric case. The only difference is the coverage
influence: a is 7

8
when the coverage is exact, 3

4
when the

coverage is too big and 1
2

otherwise.

Other cases
If in the same document two doxels are one after another
(like two sibling paragraphs), we will state that the proba-
bility that the user follows the path between the two doxel
is proportional to the inverse of the distance between the
two doxels:

P (e′ → e) =
`

2 + d(e′, e)
´−1

4. EXPERIMENTS
4.1 Settings
In this section, we show how the measure discriminates be-
tween different IR systems. In order to compare the be-
haviour of generalised precision-recall versus our measure,
we considered six different hypothetical “SIR-systems” which
make use of known assessments. These systems exhibit “ex-
treme” behaviours which illustrate a whole set of different
situations. The six systems are named:

perfect A system that returns the SIR-relevant doxels

document A system that returns all document in which a
SIR-relevant doxel appears

parent A system that returns always the parent of a SIR-
relevant document

ancestors A system that returns ancestors of a SIR-relevant
document with a score

biggest child The SIR system returns the biggest child (in
number of words)

In all these experiments, the score of the doxel was given by
the relevance (first dimension of JINEX) of its SIR-relevant
doxel: we scored 1 for a doxel which was highly relevant,
0.5 for a fairly relevant doxel and finally 0 for a marginally
relevant doxel.

In our experiments, we used all the content only queries for
which there were some assessments. We only kept the 1000
first documents returned by the different systems. Given
that scores can only take three values, the P/R curve was
computed using the Raghavan [12] probabilistic definition of
precision and recall (with a step of 0.1). We computed the
values at N = 0...1000 for our own measure. We averaged
our results for P/R and ERR in order to hide the specificities
of each assessment. We didn’t consider the case of standard
precision/recall (e.g. using fs) as almost all of the models
proposed here will have a near null precision-recall curve.

4.2 Results
In figure 1, we present the curves obtained with our measure
and in figure 2 the generalised recall/precision (GRP). We
will comment on those curves in this subsection: we will
point the shortcomings of the GRP and see how our measure
corrects the problem. When we analyse those curves, we can
at least identify four problems with the GRP:

1. The model perfect is not perfect for GRP. This can
be seen as it is not the best model and as precision
falls very quickly between recall 0.2 and 0.6. This is
because when using the generalised quantisation fg we
are adding relevant doxels (for precision/recall) that
are not SIR-relevant. Thus, even if the system returns
all the SIR-relevant systems, it does not return the
other relevant doxels. For our measure ERR, we can
see that after almost 400 doxels, model perfect has
retrieved all SIR-relevant doxels.

2. The model ancestors has a higher performance than
model perfect. This point is related to the previous
one: because the model ancestors returns more dox-
els that are relevant (due to the quantisation), recall is
better. Due to the limited size of the list and to the 4
possible values for scores, examination of the retrieved
doxels shows another thing: every SIR-relevant doxel
in the returned list is preceded by a list of its ancestors.
We can see this effect with our measure, as the mea-
sure increases slowly with the number of the retrieved
documents for the model ancestors. Our measures
also correctly discriminates those two models, as the
performance of model ancestors is far below the per-
formance of model perfect.

3. The model parent is much higher than the model
biggest child. This is not what could be expected,
as the parent can contain many irrelevant parts. This
effect is due to the fact that doxels with coverage “too
small” have a lower value in the real scale than those
with coverage “too big”. With our measure, model
performances are much closer.

4. The model document is close to the model biggest
child. This is not a good property of GRP, since we
want a measure that favours systems that retrieved
elements of smaller granularity than documents and
since the biggest child is very often close to the SIR-
relevant doxel (maybe as close as the document). With
ERR, this is not the case.

Those four observations show that our measure is better
suited to SIR evaluation than GRP. If we consider the the-
oretic foundations of our measure, it gives some guarantees
about its validity.

5. DISCUSSION
In this article, we have described a new measure for SIR sys-
tems called the Expected Ratio of Relevant document (ERR).
This measure is a generalisation of recall in classical IR:
when the probability of going from a doxel to another is
always null, the measure reduces to a form of generalised
recall. This measure is consistent with SIR, in the sense
that it favours systems that find the smallest relevant dox-
els. Other proposed measures like standard or generalised
precision and recall are not good indicators of the perfor-
mance of a SIR system, as was shown in the last section.
Note that results presented here should however be inter-
preted with care, as we took very specific systems to un-
derline the strange behaviour of GRP. Our measure has the
advantage of a sound theoretical foundation and explicitly

klas
155

klas
157

klas
155

klas
155

klas
163

integrates the structure of the documents in the modelling
of user behaviour5.

The presented measure could also be very easily adapted
in order to evaluate performance of systems in the case of
web retrieval. Another interesting property is that it could
favour systems that provide Best Entry Points to the doc-
ument structure [8], from which users can browse to access
relevant information. In this case, if from a retrieved doxel
there is a high probability that the user goes to some (SIR-
)relevant doxels, the measure will increase faster than if the
doxel is (SIR-)relevant but provides no (structural) links to
other (SIR-)relevant doxels.

The last step would have been to provide an extension of
precision as we did for recall. But when we tried to follow the
probabilistic approach of Raghavan, a number of problems
arose6 and it is still not clear which set of hypotheses could
be used to solve the problem. However, the curves we can
draw with the proposed measure are informative enough and
have good properties, so it could replace or complement the
GRP used for the evaluation of SIR-systems.

5This behaviour should be empirically validated.
6In particular, we need to calculate the probability of finding
NR relevant doxels in the retrieved list if this list has a
given length. This probability can only be computed in
O(2MR)where MR is the number of relevant doxels for the
query.

klas
156

klas
158

klas
156

klas
156

klas
164

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

ancestors
biggest child

parent
document

perfect

Figure 1: Measure ERR (log-scale for the axis of abscissas). The axis of abscissas represents the length of the
list of retrieved doxels. The axis of ordinate represents the measure ERR (in %). The measures are averaged
over the queries.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ancestors
biggest child

parent
document

perfect

Figure 2: Generalised precision-recall. The axis of abscissas represents recall and the axis of ordinate the
precision. Precision are averaged over the queries.

klas
157

klas
159

klas
157

klas
157

klas
165

6. REFERENCES
[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.

Modern Information Retrieval. Addison Wesley, New
York, USA, 1999.

[2] Peter Bollmann and Vladimir S. Cherniavsky.
Measurement-Theoretical Investigation of the
MZ-Metric. In Robert N. Oddy, Stephen E. Robertson,
C. J. van Rijsbergen, and P. W. Williams, editors,
Proc. Joint ACM/BCS Symposium in Information
Storage and Retrieval, pages 256–267, 1980.

[3] C.W. Cleverdon. The Cranfield tests on index
language devices. In Aslib proceedings, volume 19,
pages 173–192, 1967.

[4] William S. Cooper. Some inconsistencies and
misidentified modelling assumptions in probabilistic
information retrieval. In Nicholas J. Belkin, Peter
Ingwersen, and Annelise Mark Pej, editors,
Proceedings of the 14th ACM SIGIR, Copenhagen,
Danemark, 1992. ACM Press.

[5] Norbert Gövert. Assessments and evaluation measures
for XML document retrieval. In Proceedings of the
First Annual Workshop of the Initiative for the
Evaluation of XML retrieval (INEX), DELOS
workshop, Dagstuhl, Germany, December 2002.
ERCIM.

[6] Norbert Gövert and Gabriella Kazai. Overview of the
Initiative for the Evaluation of XML retrieval (INEX)
2002. In Proceedings of the First Annual Workshop of
the Initiative for the Evaluation of XML retrieval
(INEX), DELOS workshop, Dagstuhl, Germany,
December 2002. ERCIM.

[7] Jaana Kekäläinen and Kalervo Järvelin. Using graded
relevance assessments in IR evaluation. Journal of the
American Society for Information Science (JASIS),
53(13):1120–1129, 2002.

[8] Mounia Lalmas and Ekaterini Moutogianni. A
Dempster-Shafer indexing for the focussed retrieval of
a hierarchically structured document space:
Implementation and experiments on a web museum
collection. In 6th RIAO Conference, Content-Based
Multimedia Information Access, Paris, France, April
2000.

[9] Stefano Mizzaro. How many relevances in information
retrieval? Interacting With Computers, 10(3):305–322,
1998.

[10] Stephen M. Pollock. Measures for the Comparison of
Information Retrieval Systems. American
Documentation, 19(3):387–397, October 1968.

[11] Yuri Quintana, Mohamed Kamel, and Rob McGeachy.
Formal methods for evaluating information retrieval
in hypertext systems. In Proceedings of the 11th
annual international conference on Systems
documentation, pages 259–272, Kitchener-Waterloo,
Ontario, Canada, October 1993. ACM Press.

[12] Vijay V. Raghavan, Gwang S. Jung, and Peter
Bollmann. A critical investigation of recall and
precision as measures of retrieval system performance.
ACM Transactions on Information Systems,
7(3):205–229, 1989.

[13] Don R. Swanson. Historical Note: Information
Retrieval and the Future of an Illusion, pages
555–561. Multimedia Information and Systems.
Morgan Kaufmann, July 1997.

[14] John A. Swets. Effectiveness of Information Retrieval
Methods. American Documentation, 20(1):72–89,
January 1969.

[15] Cornelis J. Van Rijsbergen. Information Retrieval.
Butterworths, 1979.

klas
158

klas
160

klas
158

klas
158

klas
166

The Simplest Query Language That Could Possibly Work

Richard A. O’Keefe
Department of Computer Science

University of Otago
Dunedin, New Zealand

ok@cs.otago.ac.nz

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

ABSTRACT
The INEX’03 query language proved to be much too compli-
cated for the INEX participants to use well, let alone anyone
else. We need something simpler, but not too simple. Some-
thing which is basically a hybrid between Boolean IR queries
and a stripped down CSS will do the job.

1. INEX NEEDS A QUERY LANGUAGE.
In the INEX conferences, we are trying to develop a data
collection and a set of queries with known answers that can
provide a solid basis for research and experimentation with
XML information retrieval.

In order to communicate between researchers in the same
year, we need a common query language. For INEX’02 there
was such a language. In INEX’03 there was another. In
order to communicate between the researchers who produce
the queries in one year and the researchers who use them in
later years, we need a stable, well-defined language.

The designer(s) of the INEX’03 query language had every
reason to feel pleased. After the INEX’02 query language
proved to need revision, surely this was the simplest thing
that could possibly work: take an extremely well established
XML structural query language (XPath) and add to it a
minimal set of features for Information Retrieval.

It seems to be agreed that XPath is not a language for the
casual user. But this paper is not concerned with user query
languages. The query language we need is a query language
for use by researchers who are expert in information retrieval
and XML. What counts is whether the query language is
suitable for us, not users.

Unfortunately, the production of this year’s CAS queries
proved conclusively that the INEX’03 query language is far
too complicated for us:

• It proved too hard to use. Of the 30 CAS queries that
were selected, 19 (nearly 2

3
), were either syntactically

illegal or otherwise wrong. It took no fewer than 12
rounds of correction before we had a completed collec-
tion of queries.

• Like many W3C productions, XPath 1.0 is quirky, to
put it kindly. It is very powerful in some respects, but
there are queries that are very hard to express. For
example, //body//ip1//name | //body//ip2//name is

legal, but //body//(ip1|ip2)//name is not.

• It proved to be hard to implement. Presumably ev-
eryone who submitted a query for consideration had
already checked it with some XML IR engine; how
else could they have known that the query had about
the right number of relevant answers? Yet a large
number of queries were syntactically or semantically
wrong. That should have been noticed. At least one
implementor switched the semantics of the / and //
operators.

• It proved to be hard to implement for another rea-
son. XPath is quite powerful, in ways that are not
likely to be useful for information retrieval, and yet if
XPath was not implemented in full, were we really im-
plementing the INEX’03 query language? This year,
it turned out that most of the power of XPath was
not needed. It wasn’t the simplest thing that could
possibly have worked. For example, we[23] found that
there were 198,041 nodes in the index after ignoring
“noise” tags. Yet if ordinal position was also ignored,
there were only 10,522 distinct paths. Not one of this
year’s selected CAS queries used the ordinal position
([n]) feature of XPath.

• XPath has a clear definition of the “string value” of
a node; the definition is precise, but given the actual
XML markup in the document collection we are work-
ing with, it’s not the definition we want. For example,
if there is one mention of Joe Bloggs in the collection,
as 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉, then
the string value is “JoeBloggs” and a search for the
word “Bloggs” is guaranteed to miss it.

Worse, markup that is supposed to enclose numbers
very commonly includes punctuation as well; the rules
of XPath say that trying to convert such a string value
to numeric form is an error. Yet we want to query it.

2. THE INEX’03 QUERY LANGUAGE WAS
TOO HARD TO USE.

Every group had to submit 3 CAS and 3 CO queries. These
submissions were supposed to have been tested, and known
to have a reasonable number (not too high, not too low) of
relevant answers. In fact, some answers were provided with
each submission. So each submitted query should have been
a legal INEX’03 query.

klas
159

klas
161

klas
159

klas
159

klas
167

From this pool, 30 CAS and 36 CO queries were selected. Of
the 30 CAS queries, 19 had either syntax errors or serious
semantic errors. The most common semantic error was using
the “child” operator / when the “descendant” operator //
was intended.

This is a shocking error rate.

It wasn’t just hard to get the queries right in the first place;
it was hard to fix them. It took 12 rounds of corrections
before we had a workable set of queries, starting from what
were presumably the best queries in the first place.

Since a query language based on XPath 1.0 was too hard for
us to us, it is impossible to believe that a query language
based on the much more complicated XPath 2.0 could be
usable by us.

3. WHAT SHOULD WE LOOK FOR IN A
QUERY LANGUAGE?

3.1 We want something WE can use.
This paper is not about query interfaces or query languages
for end users. This paper is solely concerned with query
languages for researchers producing or using INEX data.
Complexity is not necessarily a problem for us, as long as
it is useful complexity. Requiring an intimate knowledge
of XML or XML related technologies is not necessarily a
problem for us. Requiring lots of punctuation in just the
right places is not necessarily a problem for us.

While complexity need not be a problem, we need to take
a step back and start with something much simpler than
XPath, because it is an empirically established fact that it
was too complicated for us. It is not likely that the query
language we propose in this paper will serve for all time;
what does matter is that it should be possible to automat-
ically translate it into whatever richer language may be de-
vised in the future. Simplicity now means easier conversion
in the future. So one guiding rule is that nothing should be
included in the query language unless it was actually used
in this year’s or last year’s queries.

We do not want to limit INEX participation to experimenters
following an “orthodox line” in query languages. Keep-
ing the query language simple keeps the conference open
to approaches with as yet unimagined index structures and
retrieval techniques. XPath and XPath-like languages pe-
nalise such approaches.

3.2 Databases and information retrieval are
different.

It is useful to distinguish between database query languages
and information retrieval query languages. They have some
similarities, but the differences are fundamental, and mean
that an XML database query language is unlikely to be a
good foundation for an XML information retrieval query
language.

The CODASYL database language, “network” databases,
the relational algebra, the relational calculus, SQL, the Ob-
ject Query Language (OQL) in the ODMG Object Database
Standard[4], and various spatial and temporal extensions

of relational databases, even the Smalltalk dialect used in
Gemstone, all have these fundamental characteristics in com-
mon:

• To a large extent, as [9] puts it, this “data is primarily
intended for computer, not human, consumption.”

• A “database” is made up of elementary values (num-
bers, strings, dates, and so on) aggregated using a pre-
defined set of container types with precise data struc-
ture semantics and labelled with user defined labels
(column names, relation names, and so on).

• The user-defined labels have user-defined semantics
which the database is aware of only to the extent that
constraints are stated.

• Even when there are user-defined structures (classes
in ODMG, Gemstone, and SQL3, for example), these
may be seen as instances of one of a fixed set of meta-
structures. For example, the ODMG standard pro-
vides an Object Interchange Format by means of which
any object database may be dumped as a text stream;
instances of classes all have a fixed format here and it
is clear that “class” is a single meta-structure.

• There is a structured query language with a (more-or-
less) formal definition which relates any legal query to
a precise semantics, by appealing to the data structure
semantics of the container types and meta-structures
and to any stated constraints.

• A query processor is expected to obey the semantics
of any query it accepts precisely ; it may exploit known
properties of the query language to transform a query
into one with better performance, typically by using
indexes.

• If a query has more than one answer, all of the answers
are relevant. Someone who doesn’t want all of the
answers is expected to write a more specific query.

Database query languages are just like programming lan-
guages. (Very bad programming languages, some of them,
notably SQL.) The person formulating the query is expected
to understand the relevant user-defined labels and constraints
and to “program” a query which expresses his or her needs.
A database query engine is required to obey the query liter-
ally, just as a C compiler is required to translate C faithfully,
even rubbish. If you ask an ODMG database the OQL query
select p from Persons p where p.address.city = “Dunedin”
and the answer includes a p for which p.address.city = “Mos-
giel”, you will be seriously unhappy, even though Mosgiel is
only 10 to 15 minutes’ drive from Dunedin.

Since SGML was designed, the SGML slogan has been “a
document is a database”. For many years there have been
SGML document database engines, notably SIM[16]. As
XML is a special case of SGML, it is natural to view an
XML document as a database.

• The elementary values are strings. The aggregates are
labelled attributed tree structures. The data structure

klas
160

klas
162

klas
160

klas
160

klas
168

semantics is provided by GROVEs, or the DOM. El-
ement type names and attribute names are the user
defined labels.

• Constraints are stated by means of DTDs or XML
Schemas. XML Schemas in particular express the no-
tion “a database is a document”.

What you get, on that view, is a database query language
for tree-structured databases.

Information retrieval is very different. Instead of saying
“the programmer knows precisely what s/he wants and how
that’s represented, I must do exactly what s/he says”, in-
formation retrieval engines say “the user wants to find out
about something and has given me a hint about what it is, I
must be helpful”. If you ask an information retrieval system
“agricultural research Dunedin” and it comes back with a
web page about “Invermay Agricultural Centre, Mosgiel”,
you are not angry with it for disobeying you but impressed
with how clever it was to find something so helpful.

The fact that information retrieval systems regard the user’s
query as a clue about what the user wants instead of a pre-
cise specification has enormous consequences for the design
of information retrieval languages. So does the fact that the
text they search is itself not in a precisely defined language.

When you construct a DTD or Schema for a family of XML
documents, you describe how the XML parts fit together.
But if you have free text in some of the elements, it remains
just as informal as free text on its own.

At one end, we have data without a known precise seman-
tics. At the other end, we have queries that are regarded as
clues rather than commands. As Shlomo Geva[13] pointed
out in the INEX mailing list, even the Boolean operators
are not taken all that seriously by some retrieval engines. If
two relational or object database engines holding the same
information give different answers to a single query, at least
one of them is broken. If two information retrieval engines
holding the same document collection give different answers
to a query, one of them might be better, but each of them
might find something useful that the other doesn’t. It cer-
tainly doesn’t mean that either of them is wrong. All of
this makes it hard to design elaborate information retrieval
query languages. What earthly use is elaborate precise syn-
tax when you don’t have, can’t have, and wouldn’t want,
precise semantics?

Of course we can embed a database query language in an IR
query language (find precisely this set of documents and use
that as a clue combined with the other clues in the query
to find what I really want instead), and we can embed an
IR query language in a database query language (give me
precisely the answers satisfying a bunch of tests one of which
is this clue about what I have in mind). Confusion seems
unavoidable; at least we should be clear about which parts
are precise and which parts are fuzzy.

3.3 It’s all about indexes.
The great strength of Information Retrieval systems is their
indexes.

An information retrieval language for XML should exploit
this. It should avoid “structural” queries that are hard to
handle with plausible index structures. This suggests keep-
ing XML “structure” and IR “content” parts of queries sep-
arate, rather than mingling them indiscriminately as XPath
does.

This does not mean that we should always be limited to
queries that can be expressed in terms of currently known
index structures. On the contrary, if someone comes across
a reasonable query that is not expressible in the INEX’04
query language, that’s a good thing, because it suggests a
research topic: what kind of index could support this kind
of query?

3.4 “Descendant” is more useful than “child”.
An extremely common mistake in the INEX’03 queries was
using the “child” axis (/) when the “descendant” axis (//)
was intended.

The designers of CSS recognised that “descendant” queries
were more common when they used the invisible operator
to mean “descendant”, making “descendant” easier to say
than “child”.

Consider //article/bdy/sec/ip1. That may be what you
want, but you might have wanted //article/bdy/sec/bq/ip1
elements as well, had you known about them. The query
//article//bdy//sec/ip1 is more likely to be what you re-
ally mean.

It turns out that none of the INEX’03 queries needs “child”
at all; in each case “descendant” will do. This frees us to
use the simple spelling “/” for “descendant”, as many INEX
contributors expected.

4. SOME XML QUERY LANGUAGES
The world is awash in query languages for semistructured
data, ranging from the complicated (CSS) to the mindbog-
glingly complicated (XQuery).

4.1 HyTime
HyTime[15, 14, 21] introduced many important things to
SGML. One of them was a query language, HyQ[19].

However, the current standard says “HyTime recommends
the use of the Standard Document Query Language (SDQL),
defined in the DSSSL standard, ISO/IEC 10179:1996 Doc-
ument Style Semantics and Specification Language, for the
queryloc and nmquery element forms. The SDQL language
includes equivalents of all the HyTime location address forms.”

Early drafts of XPath looked like a stripped down HyQ.

HyQ is all about precise location of points and ranges both
in trees and in multimedia coördinate systems. It is quite
complicated. But it is worthy of note as one of the two an-
cestors of most XML query languages. (The other is SQL.)

Because the query language presented here is not seman-
tically like XPath, it would be highly undesirable for it to
resemble XPath too much in syntax.

klas
161

klas
163

klas
161

klas
161

klas
169

4.2 DSSSL
DSSSL[17] is the SGML version of XSL and XSLT[6]. It con-
tains a Scheme-based query and transformation language. It
must be said that DSSSL is incomparably easier to read than
XSLT. The Standard Document Query language is basically
some datatypes for collections of nodes and some functions
that manipulate them. It’s a programming language, not an
IR query language.

4.3 CSS
A CSS[3] 〈selector〉 is a collection of 〈path〉s or-ed together.
In each 〈path〉, the focus is on the rightmost element; it is
that element which the following style will be applied to.
Working from right to left, an element must be a sibling
(‘+’), a child (‘>’), or a descendant (invisible operator) of
the element to its left.

An 〈element〉 test may check for an element 〈name〉 or not
(〈any〉 or omitted). It may check whether an element is
the ‘:first-child’ of its parent. This means that XPath’s
/*[3 and p] is expressible as *:first-child+*+p. But XPath’s
/p[3] is not quite expressible; p:first-child+p+p does not
allow other elements between the p elements.

A 〈filter〉may check whether an attribute is present, whether
it is present and has normalised value exactly equal to a
given text, whether it is present and contains a given white
space delimited word, or whether it is present, looks like an
xml:lang value, and has a given lang code as prefix. The
grammar is given in Table 1.

There is no negation anywhere in CSS. You cannot test
whether an attribute is present and not equal to a string.
Paths cannot be negated. Within its limits, CSS seems quite
usable.

4.4 XPath
This year’s query language was based on XPath 1.0. XPath
1.0 has several uses in W3C standards. One of them is
XPointer. XPointer provides a means of pointing precisely
to a location or range in a document. That is, XPointer,
and the underlying XPath, are database query languages for
XML.

We can get an idea of the complexity of various extensions
and relatives of XPath by looking at the sizes of the defining
reports; to master any of them requires reading at least this
much material. Since the reports are provided in HTML,
the page count depends on how you display it. Therefore we
normalise the number of screens by the number of screens
for XPath 1.0 in Table 2.

The “all up” entries include the Data Model and Func-
tions and Operators documents, which are essential parts of
XPath 2.0, XSLT 2.0, and XQuery 1.0. To get page counts
for the browser and paper size we used, multiply by left
column by about 28.

If XPath 1.0 was too complex for us to master, can any of
the other W3C query languages be easier? XML-QL looks
as though it might be, but it is not a W3C recommendation,
and [9] explicitly says that “. . . we take a database view, as

Table 2: Length of Specification (Normalised)
0.5 CSS 2.0 selectors[3]
1.0 XPath 1.0[7]
0.7 XML-QL[10]
1.5 XQL[22]
3.2 XSLT 1.0[6]
4.2 XSLT 1.0 + XPath 1.0 (XSLT includes XPath)
2.4 XQuery 1.0 and XPath 2.0 Data Model[11]
5.8 XQuery 1.0 and XPath 2.0 Functions&Operators[20]
3.1 XPath 2.0[1]

11.3 XPath 2.0 all up
9.0 XQuery 1.0[2]

17.3 XQuery 1.0 all up
10.1 XSLT 2.0[18]
18.3 XSLT 2.0 all up

opposed to document view, of XML. We consider an XML
document to be a database . . . ”.

In fact all of these languages take a database view, making
them unsuitable as foundations for an information retrieval
query language. Space does not permit thorough discus-
sion of YATL[8], XQL[22], Quilt[5] (Quilt and XPath 1.0
are closely related), YATL[8], or others.

4.5 XIRQL
XIRQL[12] was designed as an “information retrieval” query
language, not a “database” query language. However, it ex-
tends XQL, so parts of it resemble XPath, including the dis-
tinction between “child” and “descendant” which we failed
to master. In the INEX collection, it was not clear to most
of us what the root actually was, so the ability to refer to
the root is not useful to us either.

The abstract of [12] tells us that XIRQL integrates “weight-
ing and ranking, relevance-oriented search, datatypes with
vague predicates, and semantic relativism ... by using ideas
from logic-based probabilistic IR models.” This means that
important and attractive as XIRQL is, it is too closely tied
to one particular approach to be suitable for INEX.

We propose a much simpler and less capable language, which
can be seen as a very small sublanguage of XIRQL, and also
of other query languages.

5. THE STRING-VALUE PROBLEM
Practically everything in XPath 1.0 that involves strings is
defined in terms of the “string-value” of a node. The rules
are spelled out in section 5 of the XPath 1.0 specification.
Roughly speaking,

1. The string-value of a text item (parsed character data
or CDATA) is the obvious text value.

2. The string-value of an element or of the entire doc-
ument is the concatenation of the string-values of its
text descendants in document order.

3. The string-value of an attribute is its normalised value
as spelled out in the XML 1.0 specification. (An XML
processor that does not validate cannot be used as the
basis for an XPath implementation.)

klas
162

klas
164

klas
162

klas
162

klas
170

Table 1: CSS grammar
〈selector〉 ::= 〈path〉 (〈or〉 〈path〉)∗
〈or〉 ::= ‘,’
〈path〉 ::= (〈siblings〉 〈down〉)∗ 〈siblings〉
〈down〉 ::= ‘>’ | empty
〈siblings〉 ::= (〈element〉 〈followed-by〉)∗ 〈element〉
〈followed-by〉 ::= ‘+’
〈element〉 ::= (〈name〉 | 〈any〉 | 〈filter〉) 〈filter〉∗
〈any〉 ::= ‘*’
〈filter〉 ::= 〈exists〉|〈equals〉|〈word〉|〈prefix〉|〈first〉|〈lang〉
〈exists〉 ::= ‘[’ 〈name〉 ‘]’
〈equals〉 ::= ‘[’ 〈name〉 ‘=’ 〈value〉 ‘]’
〈word〉 ::= ‘[’ 〈name〉 ‘∼=’ 〈value〉 ‘]’
〈prefix〉 ::= ‘[’ 〈name〉 ‘|=’ 〈value〉 ‘]’
〈first〉 ::= ‘:first-child’
〈lang〉 ::= ‘:lang(’〈value〉‘)’

So 〈au〉〈fnm〉Joe〈/fnm〉〈snm〉Bloggs〈/snm〉〈/au〉 has string-
value “JoeBloggs”.

If you go looking for “Bloggs” in 〈au〉, XPath 1.0 guarantees
you won’t find it.

Of course, we don’t have to follow XPath’s definition of
string-value. But if we don’t do that, there isn’t much point
in following XPath’s complex and limiting syntax either.

This definition of string value goes back to HyTime; ev-
ery XML-related standard we’ve checked uses essentially the
same definition. CSS and XSLT provide means for trans-
forming a document by adding material at the beginning or
end of an element’s contents; the string value can be quite
different in the transformed document. XPath was too hard;
bringing XSLT into it would clearly be inadvisable.

There are three plausible ways around this problem.

• Add an extra space at the end of each text item. This
gives the answer “Joe Bloggs ”, which will work. In
rare cases like “〈u〉A〈/u〉ccelerator” this may break
words up, but it will almost always help.

• For items which should be treated as having word
breaks, add an attribute in the DTD:

<!ATTLIST snm INEXword #FIXED "break">

Ensure that there is at least one white space char-
acter at the boundaries of every element with INEX-
word=”break”.

• Allow the indexing software to make the decision just
as it does for stemming. Attributes like INEXword offer
guidance, not rigid command.

The first approach is simpler. If we were seeking the preci-
sion of database queries, the second approach would be bet-
ter. Examples like T〈scp〉itle〈/scp〉 W〈scp〉ords〈/scp〉 may
make it essential even for us (although the INEXscan at-
tribute should solve this problem). But whichever approach
we take, we are divorcing ourselves from XPath.

5.1 Numbers
An XML document contains only strings. Many of this
year’s queries involved numeric comparisons. That requires
converting strings to numbers. XPath specifies precisely how
that is done. (The rules are somewhat different in XPath
2.0, but do not affect the present point.)

The problem is that the INEX’03 document collection is a
realistic collection of sloppily marked up text. There are el-
ements such as 〈yr〉 which are supposed to contain numbers,
but also contain punctuation marks and other junk. Trying
to convert such a string to a number is an error in XPath.
If we want to know whether yr > 1999, we do not want our
query to be derailed by 〈yr〉2000, 〈/yr〉, as it must be in
XPath.

Not only do we need rules for converting text to numbers
that are different from the rules in XPath, we need to inter-
pret comparisons fuzzily. If you ask a database for a record
with date > 1999 and it reports a record with date = 1999,
that’s an error. If you ask an information retrieval sys-
tem for documents with yr > 1999 and it returns one with
yr = 1999, that’s not an error, it’s just somewhat less rele-
vant than one that matches the clue precisely.

6. ARCHITECTURAL FORMS
HyTime was really several interesting standards packaged
together. One of the key features presented was the idea of
“architectural forms” and of architectural form processing.

Basically, the idea is that a document may be marked up
(and validated) according to one DTD, yet processed ac-
cording to another (traditionally but confusingly called a)
meta-DTD. Attributes in the source DTD say how to map
the elements and attributes physically present to the ones
that ought to be present according to the target DTD. A
processing instruction with a special form is used to tell an
architectural-form-aware processor which attributes to use
for this purpose.

This may sound like XSLT, or, if you are into arcana, like
linkage declarations in SGML. In fact it is something much
simpler. Elements and attributes may be dropped, renamed,
or copied as they are.

klas
163

klas
165

klas
163

klas
163

klas
171

Why would you parse in one DTD and process according to
another? You might have a formatter that can handle many
structures, and a specialised DTD that is only intended to
use some of the features. You might have a meta-DTD writ-
ten using English words for markup, and Swedish users who
would like to use Swedish words, so they validate against
a DTD which uses Swedish words, but which uses architec-
tural form processing to map to the English version. You
might wish to make fine distinctions; for example you might
want to use 〈species〉 and 〈foreign〉 tags in your markup, but
they might both be simply mapped to 〈italic〉.

With the INEX collection, we have a collection of documents
marked up for printing. Some of the distinctions made in the
DTD are not important for information retrieval purposes.
The INEX’03 rules took this into account. For example,
〈ip1〉, 〈ip2〉, 〈ip3〉, 〈ip4〉 were all to be treated by the query
engine as equivalent to 〈p〉.

That’s the wrong time to do it. It had the unpleasant con-
sequence that you asked for p[n] the element you got could
be p[m] with m 6= n.

It is not the queries which determine which tags are equiv-
alent, but the DTD designer and document collector. The
replacement of tags by equivalents should be done before
the documents are indexed, so that the index and the query
agree about what elements are which. That is just what
architectural form processing can do for you.

We may not want to index some elements, either because
they do not contain text or because the text is never use-
ful. (We yearned mightily for some way to get rid of 〈ref〉
elements during evaluation. They should never have been
returned in the first place.)

Some elements may be presentation markup which it is use-
ful to ignore (see Table 2 in [23]). This is especially useful
because these are the tags which spoil the simple “add a
space after each element” rule for modified string-value. For
example, given 〈st〉V〈scp〉OICE〈/scp〉 XML〈/st〉 we would
like this to be treated as 〈st〉VOICE XML〈/st〉. We want to
ignore the tags of these elements, but not their contents.

In the spirit of architectural form processing, we can ad-
dress these issues by adding attribute declarations in the
DTD. XML allows us to add attribute declarations without
changing the original ones, so xmlarticle.dtd could become

<!ENTITY old-dtd PUBLIC "..." "oldarticle.dtd">

%old-dtd;

<!ATTLIST ...>

...

<!ATTLIST ...>

with the original xmlarticle.dtd renamed to oldarticle.dtd.
It is important that this can be done without touching the
original DTD or the original XML files in any way.

The three attributes we want to add are

• INEXscan

nothing do not index this tag or its descendants

content do not index this tag; index its content

element index this tag; do not index its content

all index this tag and its content

The evaluation tool should heed this attribute; it would
materially reduce the labour of judging.

• INEXname

if present, the name that is to be used in the index,
and in queries, instead of the original element type.

• INEXatts

a list of pairs of names: attr - means “do not index
@attr, attr alt means “index @attr under the name
@alt instead”. If an attribute is not in the list, it is
indexed as itself.

For example, we might have

<!ATTLIST ip1 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip2 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip3 INEXname NMTOKEN #FIXED "p">

<!ATTLIST ip4 INEXname NMTOKEN #FIXED "p">

<!ATTLIST scp INEXscan NMTOKEN #FIXED "content">

<!ATTLIST ref INEXscan NMTOKEN #FIXED "nothing">

The mapping can be handled by a trivial post-parser.

7. THE SIMPLEST THING THAT COULD
POSSIBLY WORK

The following query language was constructed to be just
powerful enough to handle the queries people actually wrote.
It clearly separates paths and text queries, allowing Boolean
combinations of text queries but not of paths.

〈topic〉 ::= 〈about〉
| 〈filtered-path〉 〈star〉? 〈about〉
| 〈filtered-path〉 〈about〉?
〈filtered-path〉 〈star〉? 〈about〉

An 〈about〉 is basically a Boolean query plus context for
the terms. A 〈filtered-path〉 describes a path in an XML
document; the attributes of elements may be checked. There
is no way of marking the “child” relation anywhere, or of
specifying ordinal position.

If P and Q match 〈filtered-path〉 and A and B match 〈about〉,
then A means “answer any elements that are about A”; PA
means “answer any instances of P that are about A”; PAQB
means “for instances of P that are about A return instances
of Q under that P which are about B”; and a missing A
imposes no constraint.

〈star〉 ::= ‘/’ ‘*’

A 〈star〉 may precede the final 〈about〉. This is to handle
the queries which used //* in XPath. It means that once
an instance of the preceding P or Q has been found, any
descendant of that instance which fits the last 〈about〉 may

klas
164

klas
166

klas
164

klas
164

klas
172

be reported. Such descendants are of course subject to rank-
ing in the same way as any others, elements which are too
“dilute” should not be a problem.

〈filtered-path〉 ::= 〈filtered-elem〉 (‘/’ 〈filtered-elem〉)∗
〈filtered-elem〉 ::= XML-name 〈filter〉∗

An XML-name is any XML identifier, possibly including
colons. The time to deal with namespaces will be when
we have to. The ‘/’ operator means “descendant”, not
“child”. This is what most people expected ‘/’ to mean
in the INEX’03 query language.

〈filter〉 ::= ‘[’ 〈attr-path〉 〈range-list〉 ‘]’
〈range-list〉 ::= 〈range〉 (‘,’ 〈range〉)∗
〈range〉 ::= number (‘..’ number?)?

| ‘..’ number
〈attr-path〉 ::= 〈attr〉|〈simple-path〉

| 〈simple-path〉 〈attr〉
〈attr〉 ::= ‘@’ XML-name
〈simple-path〉 ::= XML-name (‘/’ XML-name)∗

A filter compares text with a range of numbers. An 〈attr-
path〉 is followed to find some text; the text may be the
(modified) string value of an attribute or the (modified)
string value of an element. Spaces and punctuation are
trimmed from that modified string value; if the result can
be converted to a number, the filter is satisfied to the degree
that the number is in one of the ranges.

In a range x..y, x is the lower bound and y is the upper
bound. It is an error if x > y. Missing x means −∞;
missing y means +∞.

This query language does not use conventional notation like
< or =. There are two reasons for that. One is that these
queries are supposed to be easy to express in XML, and XML
makes it hard to use <. The second is that < and = are
associated with precise meanings. But this is an informa-
tion retrieval query language; a value which is not precisely
in range may still be somewhat relevant. Since we don’t
intend the standard meaning of the mathematical signs, we
shouldn’t use them; it is important not to lie to the user.

〈about〉 ::= ‘(’ 〈or-query〉 ‘)’
〈or-query〉 ::= 〈and-query〉 (‘|’ 〈and-query〉)∗
〈and-query〉 ::= 〈not-query〉 (‘&’ 〈not-query〉)∗
〈not-query〉 ::= 〈text-query〉 | ‘∼’ 〈text-query〉

An IR engine may interpret these Boolean operators the way
it would normally interpret any Boolean operators. The con-
ventional precedence of the Boolean operators is followed.
They need not be “precise”, and although it is tempting to
define algebraic identities for this query language, it would
be inappropriate. The ampersand is also awkward to express
in XML; some other spelling such as ‘;’ could be allowed.

〈text-query〉 ::= 〈basic-query〉
| 〈basic-query〉 ‘:’ 〈simple-path-list〉

〈basic-query〉 ::= (〈restriction〉 〈term〉)+ | 〈about〉
〈term〉 ::= word | ‘"’ word+ ‘"’ | ‘’’ word+ ‘’’
〈restriction〉 ::= empty | ‘+’ | ‘-’
〈simple-path-list〉 ::= 〈simple-path〉(‘,’〈simple-path-list〉)∗

A text query may ask whether a basic query matches the
current element, or whether it matches some descendant el-
ement. The commas in a simple path list mean “or” just as
they do in CSS.

A word is an XML-name that doesn’t include any dots,
colons, or underscores, or is a pair of such names with an
apostrophe in between, or is a number. A sequence of words
between matching quotation marks is a phrase. The ‘+’ and
‘-’ restrictions have the same meaning as in the INEX’03
query language.

That’s all there is to it. A parser for this language has been
built using Lex and Yacc.

Several features that were considered but deliberately ex-
cluded:

• Filtering on anything other than a numeric range. In
simple cases, this can be handled by the PAQB pat-
tern. Complex cases haven’t arisen. When they do, it
will be important to be clear about whether we want
precise matches, so that XHTML documents making
extensive use of the “class” attribute could be han-
dled, or information retrieval matches, in which case
we could simply have [〈attr-path〉 〈about〉].

• Any kind of language sensitivity. This is what the
CSS ‘| =’ predicate is for, and its ‘:lang” predicate.
When the INEX collection includes mixed-language
documents, we could perhaps use [:lang word].

• Any kind of position checks. It is easy enough to
add syntax for this, just copy XPath. What’s hard
is to interpret it. For example, as the XPath specifica-
tion points out, “The location path //para[1] does not
mean the same as the location path /descendant::para[1].”
Adapting [:first-child] from CSS would make more
sense.

• Allowing any number of 〈path〉〈about〉 pairs. There’s
no difficulty in adding this, it just isn’t needed.

• Allowing an axis other than “descendant”. From a
DTD, it is possible to compute a binary relation “can
have child”, the transitive closure of which is “can have
proper descendant”. This can be used to check the
plausibility of queries. CSS also allows “child” and
“sibling”, which are similarly checkable. The complex
mixing of axes in XPath makes it hard to check; we
don’t want to go there.

8. SOME SAMPLE INEX’03 QUERIES
Query 61 //article[about(.,’clustering +distributed’) and

about(.//sec,’java’)]

⇒ article(clustering +distributed & java:sec)

Query 64 //article[about(./, ’hollerith’)] //sec[
about(./, ’DEHOMAG’)]

⇒ article(hollerith) sec(DEHOMAG)

Query 66 /article[./fm//yr < ’2000’]//sec[
about(.,’”search engines”’)]

⇒ article[fm/yr ..1999] sec(”search engines”)

klas
165

klas
167

klas
165

klas
165

klas
173

Query 68 //article[about(., ’+Smalltalk’) or about(.,
’+Lisp’) or about(.,’+Erlang’) or about(., ’+Java’)]//
bdy//sec[about(., ’+”garbage collection” +algorithm’)]

⇒ article(+Smalltalk|+Lisp|+Erlang|+Java) bdy/sec(
+”garbage collection” +algorithm)

Query 71 //article[about(.,’formal methods verify correct-
ness aviation systems’)]/bdy//*[about(.,’case study ap-
plication model checking theorem proving’)]

⇒ article(formal methods verify correctness aviation
systems) bdy/*(case study application model checking
theorem proving)

Query 76 //article[(./fm//yr=’2000’ OR ./fm//yr=’1999’)
AND about(., ’”intelligent transportation system”’)]//
sec[about(., ’automation +vehicle’)]

⇒ article[fm/yr 1999..2000](”intelligent transportation
system”) sec(automation +vehicle)

Query 91 Internet traffic

⇒ (Internet traffic)

9. REFERENCES
[1] A. Berglund, S. Boag, D. Chamberlin, M. F.

Fernández, M. Kay, J. Robie, and J. Siméon. XML
Path Language (XPath) Version 2.0. W3C Working
Draft, The World Wide Web Consortium, August
2003.

[2] S. Boag, D. Chamberlin, M. Fernández, D. Florescu,
and J. Robie. XQuery 1.0: An XML Query Language.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[3] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading
Style Sheets, level 2; CSS2 Specification. W3C
Recommendation, The World Wide Web Consortium,
May 1998.

[4] R. Cattell, D. Barry, M. Berler, J. Eastman,
D. Jordan, C. Russell, O. Schadow, T. Stanienda, and
F. Velez. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, January 2000.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: an
XML query language for heterogeneous data sources.
In The World Wide Web and Databases: Third
International Workshop WebDB 2000, Dallas, TX,
USA, May 2000. Selected Papers, number 1997 in
Lecture Notes in Computer Science. Springer-Verlag,
January 2001.

[6] J. Clark. XSL Transformations (XSLT) Version 1.0.
W3C Recommendation, The World Wide Web
Consortium, November 1999.

[7] J. Clark and S. DeRose. XML Path Language
(XPath) Version 1.0. W3C Recommendation, The
World Wide Web Consortium, November 1999.

[8] S. Cluet, S. Jacqmin, and J. Simeon. The New YATL:
Design and Specifications. Technical report, INRIA,
1999.

[9] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and
D. Suciu. A Query Language for XML. Technical
report, AT&T Labs, 1998.

[10] A. Deutsch, M. Fernández, D. Florescu, A. Levy, and
D. Suciu. A query Language for XML. W3C
submission, The World Wide Web Consortium,
August 1998.

[11] M. Fernándex, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[12] N. Fuhr and K. Grosjohann. XIRQL: A Query
Language for Information Retrieval in XML
Documents. In Research and Development in
Information Retrieval, pages 172–180, 2001.

[13] S. Geva. Re: Semantics of CAS Topics for the SCAS
Task. E-mail to the INEX’03 participants, July 2003.

[14] C. F. Goldfarb. Hytime: A Standard for Structured
Hypermedia Interchange. IEEE Computer,
24(8):81–84, August 1991.

[15] C. F. Goldfarb, S. R. Newcomb, W. E. Kimber, and
P. J. Newcomb. Information
processing—Hypermedia/Time-based Structuring
Language (HyTime). Number 10744:1997 in ISO/IEC.
International Organization for Standardization (ISO),
second edition, 1997.

[16] T. R. M. D. S. Group. The Structured Information
Manager. Web Site, 2003. viewed in November 2003.

[17] ISO. Document Style Semantics and Specification
Language (DSSSL). Number 10179:1996 in ISO/IEC.
International Organization for Standardization (ISO),
1996.

[18] M. Kay. XSL Transformations (XSLT) Version 2.0.
W3C Working Draft, The World Wide Web
Consortium, November 2003.

[19] W. E. Kimber. HyTime and Sgml: Understanding the
HyTime HyQ Query Language. internal report, IBM,
August 1993. findable on the Web.

[20] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0
and XPath 2.0 Functions and Operators. W3C
Working Draft, The World Wide Web Consortium,
November 2003.

[21] S. R. Newcomb, N. A. Kipp, and V. T. Newcomb. The
HyTime Hypermedia/Time-Based Document
Structuring Language. Communications of the ACM,
November 1991.

[22] J. Robie, J. Lapp, and D. Schach. XML Query
Language (XQL). W3C submission, The World Wide
Web Consortium, 1998.

[23] A. Trotman and R. A. O’Keefe. Identifying and
Ranking Relevant Document Elements. In INEX ’03,
2003.

klas
166

klas
168

klas
166

klas
166

klas
174

Queries: INEX 2003 working group report

Börkur Sigurbjörnsson
Language & Inference Technology Group

University of Amsterdam
Amsterdam, The Netherlands

borkur@science.uva.nl

Andrew Trotman
Department of Computer Science

University of Otago
Dunedin, New Zealand

andrew@cs.otago.ac.nz

1. INTRODUCTION
This paper summarizes the discussion of the queries working
group at INEX 2003. The group discussed both Content-
Only (CO) and Content-And-Structure (CAS) queries. Dis-
cussion was however mainly on CAS query syntax, CAS
target elements and future CAS data types. The queries
working group consisted of: Holger Flörke, Norbert Fuhr,
Kenji Hatano, Börkur Sigurbjörnsson, Andrew Trotman,
Masahiro Watanabe

Content Only Topics
There was little discussion on CO topics in the working
group. This is to be interpreted as a support for leaving
the CO topic format unchanged for at least next year.

There was a brief discussion about query classification, simi-
lar to the classification in [2]. It was considered useful to cre-
ate a post-hoc classification of the CO queries. Participating
groups could then compare their systems performance w.r.t.
different types of queries.

Content And Structure Topics
The main discussion was about the complexity of the INEX
2003 CAS queries. It seems that people find it difficult to
formulate the XPath-like expressions of the topic title. In
the initially distributed (yet reviewed) set of CAS queries,
63% of the queries turned out to be in error [4]. This is in
line with research that shows that users have great difficulty
with boolean queries, both in databases and information re-
trieval [3]. Note however that the INEX topics were created
by experienced IR researchers. In view of the high error rate
there was discussion about syntax clarification, expressive-
ness restrictions and even a new syntax [4].

The possibility of creating a query generation tool was briefly
discussed. The idea was that this tool would help to elimi-
nate mistakes caused by a cumbersome syntax. No details
were discussed about the precise functionality of the tool.

There was little discussion about the VCAS task. It is prob-
lematic to tell if the CAS queries are suitable for the VCAS
task, since the evaluation method for VCAS has not been
developed. That is, it is not clear what the task actually is.

In the remainder of this paper we will discuss the two issues
which got the most attention from the working group; nat-
ural information need in CAS topics; and CAS topic format
for INEX 2004.

2. INFORMATION NEED (CAS)
On top of difficulties with the topic syntax, there was also
discussion about the difficulty of expressing a natural infor-
mation need with the current collection. It was questioned
whether topic authors add structural constraints because
they think it is useful or whether they do it only because
they need to write a structured query. The current collec-
tion is not very semantically rich and therefore there are
limited opportunities for introducing interesting structural
constraints.

The working group discussed separately the natural-ness of
target elements and structural conditions.

2.1 Target elements
The working group tried to identify natural target elements
for the INEX 2003 collection. The group could identify a
few semantically different types of targets.

Textual elements
Textual elements are elements such as sections and para-
graphs (<sec>, <ss1>, <p> etc.). It is not obvious which
textual tag-name is the most appropriate for a particular
query. The question of relevance is more based on the text
than the tag-name. It is therefore probably best to leave
this problem to the retrieval systems to solve.

Vitaes
Vitaes (<vt>) are indeed textual elements, but their seman-
tics is different from the layout semantics of the textual tags
in the previous section.

Abstracts
Abstracts (<abs>) are also textual elements with a slightly
different semantics, since they contain a condensed descrip-
tion of the content of an article, and no detail information.

Bibliographical entries
Bibliographic entries are a different class of answers, since
they contain only references to publications, but no real
“content” like the textual elements. They represent infor-
mation needs such as “find references to papers about com-
pression” or “give me all bibliographic details of publications
cited within papers about compression”.

Note that for example queries such as

klas
150

klas
150

klas
167

klas
169

klas
167

klas
167

klas
175

//article[about(.,’neural networks’)]//fm//au

which says something like ”give me authors of articles about
neural networks” are not considered interesting. From an IR
perspective this query is equivalent to the query ”give me
articles about neural networks”. The problem of extract-
ing the authors is trivial. Therefore author names is not
considered here as a natural target.

The above list is based on discussion in the working group
and it is not necessary complete. If topic authors find other
natural target elements they are encouraged to use them.

2.2 Structural conditions
The working group distinguished three natural types of struc-
tural conditions.

Co-occurrences
We want certain concepts to be covered in the same unit.
Say, for example we would like to retrieve documents that
discuss the use of handheld computers in health care. We
would like to minimize the change of getting documents that
discuss handheld computers and health care separately. We
could try to express this in a query that asks for articles
were handheld computers and health care are discussed in
the same section.

//article[about(.//sec,’handheld computers health
care’)]

Note that since we are doing IR, we do not enforce term
occurrence restrictions. By co-occurrences we are referring
to the co-occurrence of concepts but not terms.

Data-types
Data-types are interesting for retrieval in structured doc-
uments. For this particular collection they are of limited
use. They should however be considered in retrieval from
semantically richer collections which contain not only lay-
out semantics. Examples are markup for chemical processes,
financial market developments and geographical locations.

Roles
We want to restrict our attention to XML elements that
represent a certain role; such as article author, author af-
filiation, etc. For example if we want articles authored by
Bruce Croft:

//article[about(.//fm//au,’Bruce Croft’)]

Similarly if we want articles that cite Bruce Croft:

//article[about(.//bb//au,’Bruce Croft’)]

We could also restrict our attention to articles where an
author is affiliated in California:

//article[about(.//fm//au//aff,’California’)]

This list of natural constraints must be viewed in the context
of the current collection. Different collections have different
information needs. For collections that have a larger vari-
ety in tag-names it is probably easier to formulate natural
structural queries.

2.3 Separation of constraints and targets
It was discussed whether the structural constraints and tar-
gets needed to be expressed in the same expression. More
precisely the question was whether we should go back to the
INEX 2002 notation. The main reason behind abandoning
the INEX 2002 notation, was that the semantics of that
notation was unclear.

Consider for example the query

//sec[about(.,’solar powered robots’)
and about(.//fig,’robot on mars’)]

Where we want the retrieved sections to contain figures.
Note however, that this is perhaps not a good example for
the current LATEX–originated collection, since authors often
use tricks to include figures.

3. QUERY LANGUAGE FOR INEX 2004
This section will report on the discussion within the working
group about requirements for a query language. We will
then outline the syntax and semantics of a query language
that is currently being constructed as a future language for
INEX.

3.1 Requirements
The existing syntax of CO proved adequate. Any changes
must maintain compatibility with the existing CO topics.

As a query language for CAS titles, the group considered
an extension of a subset of XPath. The idea is to take
the current syntax extension of XPath, used at INEX 2003,
but restrict the usage to an ”IR minimum” as described
in [4]. This restriction in functionality supports all the im-
portant features used in previous workshops. Some queries
are known to contain deprecated features and are excluded
from this compatibility requirement.

There already exist two data types, numeric and string. This
is anticipated to expand in the future to include names, units
of measure, and even geographic locations. The language
must be extensible to include these at a future date.

Tag instancing is to be deprecated. Restricting a search
to a first paragraph (p[1]) was considered unnecessary and
unlikely to be used. Query 13 already uses this feature,
but this query was considered contrived. Furthermore no
relevance assessments are available for this query.

The use of XPath axis, the plethora of XPath syntax for
discussing paths, is to be limited to the descendant axis.
In particular, the child axis is to be outlawed. None of the
queries used so-far, relied on the usage of the child axis. The
child axis can be added at any time if a future collection
calls for such information need. Path filtering is to remain.
Application of multiple filters is to remain.

klas
151

klas
151

klas
168

klas
170

klas
168

klas
168

klas
176

Use of the (not)-equal operator is to be deprecated for the
string data-type. All textual queries are to be expressed in
terms of the about predicate. For arithmetic qualification
the operators are to be limited to >, <, =, >=, <=.

The semantics must be interpretable vaguely. The XPath se-
mantics are clearly defined making it a database language.
For INEX, an IR language is needed, one in which the se-
mantics can be determined by the retrieval engine. In par-
ticular, the meaning of the Boolean operators ”AND” and
”OR” is to become loose and vague.

Multiple target elements is to be deprecated. Queries can
specify only one target element. Queries with unspecified
target elements are to be added. In these queries the re-
trieval engine is to choose the most appropriate target ele-
ment.

Equivalence tags are to remain, but are beyond the scope of
the query language.

3.2 Syntax and Semantics
Work is going on to create a detailed description of a query
language for INEX 2004. We will mention the most impor-
tant features here but the full details are beyond the scope
of this paper and should be covered in the topic development
guidelines.

For the CO topics there is no change from last year.

For the CAS topics we will only discuss the topic title. Other
fields do not change between years. The CAS title queries
can take two forms

//A[B]

//A[B]//C[D]

where A and C are path specifications but B and D are
filters. To provide backward compatibility we should also
consider the form

//A[B]//C

but as mentioned in a previous section, the added value of
this type of topics for an IR test collection is none. The
projection //C is trivial.

Paths
A path through the XML tree is specified as a sequence
of nodes. The only relationship between nodes in a path
is descendant. Child relationships are not supported. The
wildcard ’*’ can be used as to refer to a unspecified type of
target element. There is a question whether there is a need
for including attributes for this collection. There is no (yet
assessed) topic that uses attributes.

Strict interpretation: ”//A” means any A tag in the tree.
”//A//B” means any B descendant of an A tag in the tree.
”//@C” means the C attribute of any tag. ”//A//@C”
means any C attribute anywhere in the tree beneath an A

tag in the tree. ”//A//*” is any descendant of A. ”//*” is
any descendant of the root, which also means any tag in the
tree.

Loose interpretation: There is likely to be relevant in-
formation in the document in places not specified in a user
query. The path specifications should therefore be consid-
ered hints as to where to look.

Filters
We support one string predicate and several numerical com-
parisons within the filters.

We use the about(path,text) string predicate used in INEX
2003. The textual part of this predicate should always be
interpreted in a vague fashion. That is, the validity of the
predicate will always need to be done by a human assessor.
For example, the query

//article[about(.//p, ’"information retrieval"’)]

is strictly interpreted as ”Return article tags for only those
documents that contain a p tag whose content is about in-
formation retrieval”. It is loosely interpreted as ”What I
want is most likely a whole article that discusses informa-
tion retrieval in a p tag. Relevant results are not limited to
this, but I’m pretty sure it’ll help you find what I want.”

For numeric values we support the operator <,>,=,>= and
<=. As with string qualification, this is specified with a
relative path. As an example. To ”strictly” retrieve article
tags from documents published during 2001 we write

//article[.//pdt//yr = 2001]

this query could equally be specified using string qualifica-
tion as

//article[about(.//pdt//yr, ’2001’)]

In this example, a loose interpretation could be to ignore the
qualification or to say that the article should be published
around 2001-ish.

The above search predicates and comparison operators can
be combined by the Boolean operators AND and OR. Also
brackets can be used. Strict interpretation would be that
the Boolean operators are strictly interpreted. Loose inter-
pretation: AND is interpreted as ANDish, OR as ORish.
The query contains the Boolean operators as hints on how
to resolve the information need.

Examples
Examples of some CAS queries are given here along with
strict interpretations. Loose interpretation of each is the
same ”I’m sure this’ll help find what I want”.

//sec[about(., ’mobile electronic payment system’)]

klas
152

klas
152

klas
169

klas
171

klas
169

klas
169

klas
177

Return sec tags where the sec tag mentions mobile electronic
payment systems.

//*[about(., ’singular value decomposition’)]

Return elements about singular value decomposition. This
is a combination CAS-CO query where the retrieval engine
must deduce the most appropriate element to return.

//article[.//fm//yr >= 1998]//sec[about(.,
’"virtual reality"’)]

Return sec elements of documents where the yr tag under
the fm tag under the article tag is numerically greater than
or equal to 1998, and where a sec tag discusses ’virtual re-
ality’.

//article[(.//fm//yr = 2000 OR .//fm//yr = 1999)
AND about(., ’"intelligent transportation system"’)]
//sec[about(., ’automation +vehicle’)]

Return sec elements about vehicle automation from docu-
ments published in 1999 or 2000 that are about intelligent
transportation systems.

We are currently working on a more detailed description
of the syntax and semantics of the future INEX query lan-
guage.

4. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley-Longman, 1999.

[2] K. Hatano, H. Kinutani, M. Watanabe, Y. Mori,
M. Yoshikawa, and S. Uemura. An evaluation of inex
2003 relevance assessments. In INEX 2003 Workshop
Proceedings, pages 25–32, 2003.

[3] M. Hearst. User Interfaces and Visualization,
chapter 10. In [1], 1999.

[4] R. A. O’Keefe and A. Trotman. The simplest query
language that could possibly work. In INEX 2003
Workshop Proceedings, pages 117–124, 2003.

klas
153

klas
153

klas
170

klas
172

klas
170

klas
170

klas
178

Inex 2003 Working group report: Relevance
 Jaana Kekäläinen

Dept. of Information Studies
33014 University of Tampere

Finland

jaana.kekalainen@uta.fi

In Inex 2003, relevance judgements were based on exhaustivity
and specificity as dimensions of topical relevance. Both these
dimensions were assessed on 4-point scale (i.e., not, marginally,
fairly, highly specific / exhaustive; see [1]). This definition of
relevance was chosen to suit the need to retrieve and rank
elements of different granularity typical for structured document
retrieval. The workshop, which attracted about 20 people, was not
so much concerned with the concept or definition of relevance;
rather the consequences of the chosen relevance definition on the
assessment process were discussed. The practical experiences
participants had on working with relevance assessments played a
vital role in discussions. Four main themes came up during the
sessions:

• How useful the dimensions of relevance are?

• What is the least meaningful unit to be assessed for
relevance?

• Are the relevance assessments reliable?

• What is the validity of the assessment of VCAS and
SCAS topics?

First, the issue of judging relevance along dimensions of
exhaustivity and specificity was raised. The argument against
these dimensions, and dimensions in general, was that it would be
easier for the assessor to give only one relevance figure for each
element to be assessed. This especially in case the used metric
returns only one performance figure. Another opinion – which
gained more support – was that the named dimensions help the
assessor to become aware of the factors affecting the assessment,
and thus help him to be more consistent. Should more dimensions
of relevance be considered in assessment? Perhaps, but the
question is how many balls the assessor can play with? This
ballgame is still in the area of topicality.

Second, many of the participants were frustrated when assessing
relevance of some minor elements that cannot really carry
relevant meaning alone (e.g. article number or references). This
was due to

the assessment system forcing to judge all ascendant / descendant
elements of any relevant element. This procedure is in accordance
with relevance assessment rules which try to ascertain that all
relevant elements are identified. However, the general opinion
was strongly for making a list of elements that should neither be
retrieved alone nor judged for relevance. Another argument in this
discussion was that some elements could not be judged alone
because ‘a whole can be more than its parts’. Here the solution
seemed to be that an element should be assessed on the basis of its
relevance as an alone standing unit. This debate also touched
upon the rules for assessment consistency in the online
assessment tool.

Third, the consistency and reliability of relevance assessments
were considered. Some participants thought that elements, which
should be relevant, were judged non-relevant, i.e. they were not
missed in assessment process but they were consciously assessed
non-relevant. In the discussion it was obvious that people with
different background had different understanding about the
relevance that should be used. Those active in information
retrieval were for topicality, but those working with DBMS were
for system relevance (for manifestations of relevance, see [2]).
This issue could not be agreed upon, yet the workshop made a
suggestion for getting multiple relevant assessments for some
topics in order to check the consistency of assessments. Later on
it turned out that there already are multiple assessments for some
topics, only the analysis of consistency is lacking.

Fourth, what is the role of ‘vagueness’ and ‘strictness’ in
relevance assessment of content and structure (CAS) queries?
This question seemed to divide opinions and practices: others had
tried to assess the relevance according to whether the structural
conditions were met or not; others had ignored the structural
conditions because they were difficult to check. The relevance
assessment guide gives support to both interpretations (see [1]).
The whole matter is even more complicated because it is not quite
clear how to implement ‘vagueness’ in retrieval and evaluation.
The organizers investigate this matter.

The workshop made some suggestions for the INEX projects to
come:

• It could be useful to re-use the old topics later on – with
new / elaborated systems – to see whether any progress is
made.

• The number of topics should be raised for better reliability
of data. This, however, should be achieved without
increasing the assessment load for individual groups. Two
obvious possibilities were suggested: the number of
participants could be higher, and the evaluation task could

klas
154

klas
154

klas
171

klas
173

klas
171

klas
171

klas
179

be made easier (for example, by the list of elements not to
retrieve / assess).

1. REFERENCES
[1] Kazai, G., Lalmas, M. & Piwowarski B. (2004). INEX'03

Relevance assessment guide. In INEX 2003 Workshop
PreProceedings, 154-159. Available at:
http://inex.is.informatik.uni-duisburg.de: 2003/.

[2] Saracevic, T. (1996). Relevance reconsidered ‘96. In P.

Ingwersen & N. O. Pors (Eds.), Proceedings of the Second
International Conference on Conceptions of Library and
Information Science: Integration in Perspective.
Copenhagen: The Royal School of Librarianship, 201–218.

klas
155

klas
155

klas
172

klas
174

klas
172

klas
172

klas
180

Working Group Report: the Assessment Tool

Benjamin Piwowarski
LIP 6, Paris, France

bpiwowar@poleia.lip6.fr

ABSTRACT
This paper is the report of the working group on the evalu-
ation assessment interface that was used in INEX’03. This
paper describes the changes that are planned for INEX’04
and the different issues that were raised during the working
group session.

1. INTRODUCTION
A description of the INEX’03 interface can be found in [1].

This year, the assessment tool was completely redesigned.
The first change was the user interface: a single document
view was used both to read the document and to assess
its components. This change was appreciated by almost
every participant. Some enhancements have been suggested
(section 2) to ease the assessment process through more user
assistance.

The changes were not only cosmetic, as rules ensuring con-
sistency and exhaustivity of assessments were a main com-
ponent of the interface. The consistency check (section 3.1)
ensures that assessments within the same document are con-
sistent with respect to the definition of the INEX scale. For
example, a non relevant element cannot contain relevant el-
ements. The exhaustivity check (section 3.2) ensures that
most (if not all) of the highly specific elements are found
within assessed documents. Finding highly specific elements
is an important point since finding those elements is the goal
of an XML information retrieval system. Obtaining consis-
tent and exhaustive relevance assessment is thus crucial for
the appropriate comparison of retrieval approaches.

Notations
In this report, an assessment value in the INEX’03 scale
is denoted by ExSy (exhaustivity is x, specificity is y), Ex
(exhaustivity is x, specificity is unknown) or Sy (specificity
is y, exhaustivity is unknown).

2. ENHANCEMENTS
In this section, enhancements that were proposed for the
next INEX campaign are described. Every point will be
considered when the current interface is extended, but time
constraints will possibly postpone some enhancements.

Efficiency
After each assessment, the server (which is actually in Paris)
is contacted in order to check the different constraints; its

answer updates the document view. This solution was cho-
sen as it was the easiest, but for assessors from distant coun-
tries – like e.g. USA, Australia, New Zealand – there was a
noticeable delay. Two solutions to this problem are possible:

1. Set up local mirrors;

2. Perform the constraint check on the host (e.g. with
javascript) and send the assessments for validation only
when leaving the document view.

The first solution is the easiest as it does not involve new
development. The second is the best because it allows to
centralise all the assessments, but it involves new develop-
ments.

Interface
Some participants proposed interface enhancements that would
help to speed up or ease the assessment process:

rules When assessing sets of elements, the interface some-
times fail to predict the set of values that those ele-
ments can take together. This clearly should not hap-
pen.

tree-view An XML tree view of the current document could
give a quicker access to distant parts of the structure.

bookmarks When assessing a document, it is often useful
to go and look around the element to assess and then
come back to this element: bookmarks should allow to
do this quicker.

keyword highlighting New highlighting modes like e.g.
background, border, font colour in order to distinguish
more easily different group of keywords.

New icon set
G. Kazai proposed a new icon set (figure 2) that is more
closely related to the INEX’03 scale. Hopefully, the scale
will not change next year so we can use them. An empty
disc is used to symbolise the “irrelevant” part of the compo-
nent; a plain disc (shades of blue, from highly to marginally
exhaustive) symbolises the “relevant” part of the compo-
nent.

klas
156

klas
156

klas
173

klas
175

klas
173

klas
173

klas
181

h
h

h
h

h
h

h
h

h
h

h
hh

Exhaustivity
Specificity

0 1 2 3

0
1
2
3

Figure 1: The new icon set for INEX’04

3. CONSISTENCY AND EXHAUSTIVITY
In this section, consistency and exhaustivity rules are de-
scribed. In each subsection, rules used for INEX’03 are first
exposed. To ensure even more consistency and exhaustiv-
ity1 in INEX’04 assessments, new rules are then proposed.
Some of the latter are still to be debated.

In the following, an element is one XML tag while its chil-
dren includes XML tags and XML text nodes. For example,
a paragraph with some text within a <it> tag will have
three children: a text node (before the <it>), the <it> node
and then another text node (after the </it>). Even if text
nodes cannot be assessed (this is an open issue), they are
taken into account while applying the consistency and ex-
haustivity rules.

3.1 Consistency
The consistency rules ensure a set of assessments within the
same document are consistent with respect to the definition
of exhaustivity and specificity. They are both used to check
an assessment is valid and to infer automatically some as-
sessments. In INEX’03, 7 % of assessments were automatic.
An element is automatically assessed when the rules reduces
the set of possible assessments to one element: defining new
rules not only ensures assessments are more consistent, it is
also useful to speed up the assessment process. An element
can also be inconsistent when this set is empty. This occurs
when some rules change or are added, or when the interface
fails to predict the possible choices. The latter can happen
when one is assessing a set of elements.

INEX’03
1. The exhaustivity of an element is always superior or

equal to the maximum of children exhaustivity. This
rule ensure no more relevant information is found in
an element than within each of its children.

2. The specificity of an element is inferior or equal to
the specificity of any of its child. That rule states that
the ratio of relevant information in the element cannot
be superior to the ratio of relevant information in its
children. For instance, we cannot assess the element
S3 if all its children are S2.

New rules
The following rules were not added in INEX’03 due to time
constraints, but can be somehow derived from the definition
of exhaustivity and specificity, except the third one.

1exhaustivity is not related to the one of the INEX scale
dimension, but to the extent with which all the S3 elements
are found

1. The first is the symmetric case of the INEX’03 rule 1.
It states that there cannot be more relevant informa-
tion in an element than in its children: the exhaustiv-
ity of an element is inferior or equal to the sum of its
children exhaustivity.

2. The ratio of relevant information in an element cannot
be inferior to the ratio of relevant information in all its
children: the element specificity is superior or equal to
the minimum specificity of its children.

3. The last rule is (and was!) heavily discussed. Its role
its to ensure that a highly specific element does not
have any descendant with the same exhaustivity since
it would imply that one of its descendants is as good as
the element for an XML information retrieval system
to retrieve. This rule is also an extension of the rule
1 in INEX’03: when the element is S3, the exhaustiv-
ity is always superior (and not anymore equal) to the
maximum of children exhaustivity. The main critic of
this rule is that the exhaustivity scale has only three
values: the maximum number of elements between the
root of the document and any leaf in the XML tree
which can be highly specific is thus 3. Furthermore,
descendants of an E1S3 element are not relevant with
this rule. It should be debated whether this is a too
restrictive hypothesis. Another solution would be to
restrict the application of this rule to elements assessed
E2S3 or E3S3 (and not anymore to elements assessed
E1S3).

3.2 Exhaustivity
Exhaustivity rules were much more discussed than consis-
tency rules. The main reason is that consistency rules are
somehow implied by the definition of exhaustivity and speci-
ficity, while exhaustivity is not yet fully understood. The
second one is that exhaustivity rules are applied after each
assessment and add new elements in the set of assessments
to be done. Adding too many elements increase the task
burden while adding too few elements does not ensure any-
more that we find all S3 elements. The balance between
those two extrema is difficult to find.

But the importance of those rules is fully illustrated by this
statistic: in INEX’03, 68 % of the S3 elements were not
initially in the pools – which implies that adding elements
is necessary to ensure the exhaustivity of the test collection.

INEX’03
1. When the element is not relevant, nothing is added.

This rule is useful since we do want non relevant doc-
uments to be assessed as fast as possible – as assessor
should concentrate on documents that contains rele-
vant parts.

2. When the element is S3, do not add children but do
add ancestors: when a highly specific element is found,
there is no need to assess its descendants as this is the
only kind of elements we are searching for. This is
especially true if we consider the third new consistency
rule.

3. Otherwise, add all the children and all the ancestors
of the assessed element. This rule is applied when the

klas
157

klas
157

klas
174

klas
176

klas
174

klas
174

klas
182

element is neither not relevant, neither highly specific:
there is some more specific elements within it that have
to be found.

New rules
Only one new rule is planned in order to reduce the num-
ber of elements to be added. This rule was obviously one
of the most discussed one. The main idea is to prevent any
“loss” of relevance between an element and its children, that
is to only add the children of a marginally or fairly specific
assessed element when there is no children that contain as
much relevant information as the assessed element. More
precisely, when the sum of the children exhaustivity is su-
perior or equal to the element exhaustivity, no children are
added. For example, if an element is assessed E3S2 and that
all the relevance of the element is found in one child (that
is, one child is E3), there is no need to ask for the assessors
to find other relevant parts within the other children of the
assessed element – though he can always assess them. Other
children are thus removed from the list of elements that have
to be assessed.

4. CONCLUSION
Some points that were discussed during this working group
were fully debated; this proves the assessment tool is not
only a graphical interface, it is also closely related to (1) the
assessor effort (2) the quality of the INEX collection (3) the
definition of what is relevance. This led to the “I don’t wish
to assess that” problem which is related to points (1), (2)
and (3). What if I really don’t want to assess an element?
This debate, if I recall well, ended up (or almost) in the
definition of a possible new value in INEX scale, namely the
“not meaningful” value – the element cannot be judged by
itself as it is too small (which implies descendants are also
not meaningful?).

The new interface used in INEX’03 will be extended next
year to include some of the changes described in this re-
port. Some issues, especially those related to exhaustiv-
ity, were much debated in the working group and there is
no full agreement upon participants. The new rules will
thus be discussed in a forum which is available on the web
(http://inex.lip6.fr), along with the possible proposition of
new ones.

Eventually, I would like to thank every participant of this
working group, feedback being an important part of the de-
velopment of a good interface for assessments.

5. REFERENCES
[1] G. Kazai, M. Lalmas, and B. Piwowarski. Relevance

assessment guide. In Proceedings of the Second Annual
Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), DELOS workshop, Dagstuhl,
Germany, Dec. 2003. ERCIM.

klas
158

klas
158

klas
175

klas
177

klas
175

klas
175

klas
183

Report of the INEX 2003 Metrics working group

Gabriella Kazai
Department of Computer Science
Queen Mary University of London

gabs@dcs.qmul.ac.uk

1 INTRODUCTION

This paper summarises the discussions of the metrics
working group at the INEX 2003 Workshop, Dagstuhl,
Dec 15-17 2003. Members of the group were Djo-
erd Hiemstra (U. of Twente), Jaap Kamps (ILLC, U.
of Amsterdam), Gabriella Kazai (Queen Mary U. of
London), Yosi Mass (IBM Haifa), Vojkan Mihajlovic
(U. of Twente), Paul Ogilvie (Carnegie Mellon U.), Jo-
van Pehcevski (RMIT U.), Arjen de Vries (CWI) and
Huyen-Trang Vu (LIP 6).

The aim of this workshop was to review the cur-
rent INEX metrics, collect issues and concerns regard-
ing the suitability of these metrics for the evaluation
of content-oriented XML retrieval approaches, and to
propose alternative solutions.

The discussions started with a summary of the eval-
uation objectives and the evaluation considerations to
be taken into account (section 2). This was followed by
an overview of the current INEX metrics (section 3)
and the presentation of proposed new metrics (sec-
tion 5). The results of the discussions are summarised
in sections organised by the topic of the discussion:
section 4 summarises the issues, opinions and sugges-
tions with respect to the current metrics, section 6 re-
flects the comments the proposed metrics received and
finally section 7 summarises any other voiced issues.

2 EVALUATION SETUP

2.1 What to evaluate?

INEX’03 defines three tasks: the CO (content-only),
SCAS (strict content-and-structure) and VCAS (vague
content-and-structure) ad-hoc retrieval of XML docu-
ments. Given the different retrieval paradigms these
tasks are based on, it is necessary to define the objec-
tive of the evaluation separately for all three tasks.

Within the CO task, the aim of an XML retrieval
system is to point users to the specific relevant por-
tions of documents, where the user’s query contains

no structural hints regarding what the most appropri-
ate granularity of relevant XML elements should be.
Here the evaluation of a system’s effectiveness should
hence provide a measure with respect to the system’s
ability to retrieve components that are both exhaustive
and specific to the user’s request, where highly exhaus-
tive and highly specific components should be ranked
first.

Within the SCAS task, the aim of a retrieval sys-
tem is to retrieve relevant nodes that strictly match
the structural conditions specified within the query.
The evaluation criterion should hence only consider a
match between a result and a reference element if these
conditions have been met.

In the VCAS task, the goal of a system is to re-
trieve relevant nodes that may not exactly conform to
the structural conditions expressed within the user’s
query, but are structurally similar. The evaluation cri-
teria employed here must therefore allow for a more
flexible match between result and reference elements.

Within the workshop, only the evaluation of the CO
task was considered in detail.

2.2 What to consider?

The evaluation considerations mentioned here are de-
tailed in [4]. These were mostly just summarised and
agreed upon in the workshop, but not discussed in de-
tail.

The first consideration is that a measure of effec-
tiveness within the framework of the INEX initiative
must be able to integrate the two dimensions of rele-
vance: exhaustivity and specificity. Second, it was ac-
knowledged that the independence assumption of clas-
sical IR, according to which the relevance of a docu-
ment is independent of the relevance of any other doc-
ument, does not hold in INEX. This issue was then dis-
cussed in more detail when trying to address the prob-
lem of overlapping result elements (section 4.1). An-
other important factor that the group members agreed
should be taken into consideration is the varying user
effort associated with result elements due to the vary-

klas
159

klas
159

klas
176

klas
178

klas
176

klas
176

klas
184

ing size (length) of returned components. This is
already addressed by one of the current INEX met-
rics (inex-2003), and some of the new proposals have
also integrated this parameter within their model (sec-
tion 5). The final aspect listed was that of linear vs.
non-linear output rankings. It was agreed to only con-
centrate on linear ordering.

3 OVERVIEW OF CURRENT
INEX METRICS

This section gives a brief summary of the inex-2002
(aka. inexeval) and inex-2003 (aka. inexeval ng)
metrics in order to provide the necessary background
information for their discussion in section 4. For a
more detailed description of the metrics please refer
to [3, 4].

3.1 The inex-2002 metric

The inex-2002 metric applies the measure ofprecall
[10] to document components and computes the prob-
ability P (rel|retr) that a component viewed by the
user is relevant:

P (rel|retr)(x) :=
x · n

x · n + eslx·n
(1)

whereeslx·n denotes theexpected search length[1],
i.e. the expected number of non-relevant elements re-
trieved until an arbitrary recall pointx is reached, and
n is the total number of relevant components with re-
spect to a given topic.

To apply the above metric, the two relevance
dimensions were first mapped to a single rele-
vance scale by employing a quantisation function,
fquant(e, s) : ES → [0, 1], whereES denotes the set
of possible assessment pairs(e, s):

ES = {(0, 0), (1, 1), (1, 2), (1, 3),
(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

Two quantisation functions were used:fstrict (Equa-
tion 2) andfgen (Equation 3). The former is used to
evaluate retrieval methods with respect to their capa-
bility of retrieving highly exhaustive and highly spe-
cific document components. The generalised function
credits document components according to theirde-
gree of relevance.

fstrict(e, s) :=
{

1 if e = 3 and s = 3,
0 otherwise. (2)

fgen(e, s) :=

1 if (e, s) = (3, 3),

0.75 if (e, s) ∈ {(2, 3), (3, {2, 1})},
0.5 if (e, s) ∈ {(1, 3), (2, {2, 1})},
0.25 if (e, s) ∈ {(1, 2), (1, 1)},
0 if (e, s) = (0, 0).

(3)

3.2 The inex-2003 metric

A problem with the inex-2002 metric is that it ignores
possible overlaps between result elements and rewards
the retrieval of a relevant component regardless if it has
already been seen by the user either fully or in part.

The inex-2003 metric aims to provide a solution
to this problem by incorporating component size and
overlap within the definition of recall and precision
(Equations 4 and 5). (For the derivation of the formu-
lae based on an interpretation of the relevance dimen-
sions within an ideal concept space [12] refer to [4].)
Instead of measuring, e.g., precision or recall after
a certain number of document components retrieved,
the total size of the retrieved document components is
used as the basic parameter, while overlap is accounted
by considering only the increment to the parts of the
components already seen. The calculations here as-
sume that relevant information is distributed uniformly
throughout a component.

recallo =

k∑
i=1

e (ci) ·
|c′

i|
|ci|

N∑
i=1

e (ci)
(4)

precisiono =

k∑
i=1

s (ci) · |c′i|

k∑
i=1

|c′i|
(5)

Componentsc1, . . . , ck in Equations 4 and 5 form a
ranked result list,N is the total number of components
in the collection,e(ci) ands(ci) denote the quantised
assessment value of componentci according to the ex-
haustivity and specificity dimensions, respectively,|ci|
denotes the size of the component, while|c′i| is the size
of the component that has not been seen by the user
previously. Given a component representation such as
a set of (term, position) pairs,|c′i| can be calculated as:

|c′i| = |ci −
⋃

c∈C[1,n−1]

(c)| (6)

wheren is the rank position ofci in the output list, and
C[1, n− 1] is the set of components retrieved between
the ranks[1, n− 1].

klas
160

klas
160

klas
177

klas
179

klas
177

klas
177

klas
185

Since the inex-2003 metric treats the two relevance
dimensions separately, the quantisation functions were
also redefined to provide a separate mapping for ex-
haustivity, f ′quant(e) : E → [0, 1] and specificity,
f ′quant(s) : S → [0, 1], whereE = {0, 1, 2, 3} and
S = {0, 1, 2, 3}. For the strict case, the result of the
quantisation was 1 ife = 3 or s = 3, respectively,
and 0 otherwise. For the generalised case, the quan-
tisation function was defined asf ′gen(e) = e/3 and
f ′gen(s) = s/3.

4 DISCUSSION OF CURRENT
INEX METRICS

4.1 Overlapping result elements

A criticism of the inex-2002 metric was that it did not
address the problem of overlapping result elements and
hence produced better effectiveness results for systems
that returned multiple nested components. Evidence to
show this effect was given by Benjamin Piwowarski.
Figure 1 shows the recall-precision graphs he obtained
for different simulated runs, each representing possible
retrieval approaches. The graph clearly illustrates that
better effectiveness is achieved by systems that return
not only the most desired components, but also their
parent or ascendant elements. It was agreed that such
a system behaviour should not be rewarded, but in fact
should be penalised.

A number of suggestions were made as to how the
problem of overlapping result elements should be ad-
dressed. One recommendation was to remove overlap-
ping results from the submissions prior to the evalua-
tion. This was later rejected as it was thought that such
a method would be too lenient while it would also lack
the ability to distinguish between systems that, cor-
rectly, do not return multiple nested components from
those that do. This approach would also provide false
effectiveness results given that it changes the actual re-
sult lists. An alternative solution is to penalise the re-
trieval of overlapping result elements. Here the ques-
tion of how such a penalty-scheme should work was
brought up. One suggestion was to only score the first
result element that matches a given relevant reference
component and regard any additional results that over-
lap with the same reference element as irrelevant. Two
concerns were voiced regarding this proposal. One is
that such a method may affect the recall base (i.e. lead-
ing to varying recall base), and, second, that it may
also prove to be too unstable (i.e. too sensitive to re-
trieval order). For example, given a section element,
s1, assessed as(3, 3), its article ascendant element,a1,
assessed as(3, 1), and two rankingsr1 = [a1, s1] and

r2 = [s1, a1], we obtain the following precision val-
ues (using the generalised recall and precision calcula-
tions of [8] and the generalised quantisation function
of Equation 3):

Pr1 = (0.75 + 0)/2 = 0.375

Pr2 = (1 + 0)/2 = 0.5

It was highlighted that the inex-2003 metric, which
already implements a strategy to penalise overlapping
results, may be more stable than the above method.
This is because contrary to the above method, which
only scores the first hit from a number of overlapping
results, the inex-2003 metric provides a scoring mech-
anism that gives partial score to overlapping results,
where the score is proportional to the not-yet-seen por-
tion of the component. For example, for the above two
rankings, we obtain the following precision values (us-
ing Equation 5):

Pr1 =
0.3 · len(a1) + 0 · len(s1− a1)

len(a1) + len(s1− a1)
= 0.3

Pr2 =
1 · len(s1) + 0.3 · len(a1− s1)

len(s1) + len(a1− s1)
= 1 · 0.1 + 0.3 · 0.9 = 0.37

Note that the above calculations assume that the sec-
tion forms1/10-th of the length of the article.

However, a criticism of the inex-2003 metric was
that it had separated the two dimensions of relevance
while according to the definitions both are required in
order to identify the most appropriate units of retrieval.
Members of the working group expressed concern re-
garding the exact meaning of such a measure of recall
or precision, which are solely based on the exhaustiv-
ity or specificity dimension, respectively. It was agreed
that further investigation of this issue would be benefi-
cial.

In summary, preference was given to the inex-2002
metric, although it was agreed that suitable mecha-
nisms should be developed to address the overlap of
result elements. The main concerns regarding the inex-
2003 metric concerned its separation of the two rel-
evance dimensions and its stability (or sensitivity to
small changes in the ranking).

4.2 Quantisation functions

Members of the working group expressed a clear pref-
erence towards the use of the strict quantisation func-
tions since the problem of overlapping results presents

klas
161

klas
161

klas
178

klas
180

klas
178

klas
178

klas
186

Figure 1: Generalised precision-recall for simulated runs

less of an issue in this case. It was also seen to provide
more comprehensible results compared with the gen-
eralised quantisation functions. Some members have
in fact suggested to base the evaluation solely on the
strict assessment criteria.

This suggestion has lead to a discussion question-
ing the validity of the methodology employed for con-
structing the test collection. The argument was that
if the evaluation only makes use of the components
assessed as(3, 3) then there should be no reason to
justify the currently required effort in collecting such
extensive assessments.

The main counter-argument against this proposal
was that the definition of the ad-hoc XML retrieval
task states that systems should findall relevant infor-
mation, i.e. not just highly relevant information (but
should rank highly relevant components first). There-
fore, evaluation based on(3, 3) elements only does
not provide suitable evaluation criterion in INEX. It
was pointed out that systems that do well on retrieving
(3, 3) components may not be appropriate for recall-
oriented retrieval tasks (this was also the finding of
[8]). In addition, it was emphasised that relevant el-
ements assessed other than(3, 3) are not simply a
means for the evaluation of near misses, but these com-
ponents contain relevant information to varying de-
gree, which may be of interest to the user. At this point,
Birger Larsen was also invited into the discussion. He
further detailed the benefits of graded relevance assess-
ments (see [8, 5, 11]), adding that “Future metrics can
make use of the rich data even if we do not yet know
how”.

Additional arguments against the use of only(3, 3)
assessments included points that the recall-base may

be too small for reliable evaluation, that assessors
would label more elements as(3, 3) due to the lack
of alternative relevance degrees, and that no automatic
mechanisms could be used to reliably infer the rele-
vance degree of ascendant or descendant relevant com-
ponents (unless binary relevance is adopted).

As a result of the discussion, it was agreed that it is
necessary to consider all levels of relevant components
within the evaluation. It was also agreed that due to
the overlap problem this criterion is currently not eval-
uated sufficiently in INEX (which is also believed to
be the primary reason why so much emphasis has been
attributed so far to the results of the strict evaluation
measures).

This has then lead to the agreement that the gen-
eralised quantisation functions must also be employed
within the evaluation. As mentioned earlier, the aim
of the generalised quantisation is to allow the scoring
of result elements proportional to their degree of rele-
vance. This viewpoint makes the generalised functions
more suitable for the evaluation of content-oriented
XML retrieval systems as it closer reflects the eval-
uation criterion compared with the strict quantisation
functions. However, the problem of overlapping result
components, which remains so far largely unsolved,
does present an issue regarding the output of such an
evaluation.

Aiming towards an intermediate solution to the
problem, a number of new quantisation functions were
defined to be used with the inex-2002 metric. The
originating idea here was to find a solution, which like
the strict quantisation functions minimises the overlap
problem, while at the same time, like the generalised
quantisation functions better reflects the evaluation cri-

klas
162

klas
162

klas
179

klas
181

klas
179

klas
179

klas
187

terion (i.e. finding all relevant elements). Two classes
of quantisation functions were defined: specificity-
oriented and exhaustivity-oriented functions. The
specificity-oriented functions apply strict quantisation
with respect to the specificity dimension only, while
allow to consider different degrees of exhaustivity.
They aim to evaluate systems according to their abil-
ity to retrieve the most specific relevant components,
where the exhaustivity of the component may vary
from marginally and fairly exhaustive to highly ex-
haustive (Equation 7) or only from fairly to highly ex-
haustive (Equation 8).

fs3 e321(e, s) :=
{

1 if e ∈ {3, 2, 1} and s = 3,
0 otherwise.

(7)

fs3 e32(e, s) :=
{

1 if e ∈ {3, 2} and s = 3,
0 otherwise. (8)

Similarly to the specificity-oriented functions,
exhaustivity-oriented quantisation functions were also
defined (Equations 9 and 10). Note, however, that
these exhaustivity-oriented functions suffer from the
same overlap problem as the generalised quantisation
functions.

fe3 s321(e, s) :=
{

1 if e = 3 and s ∈ {3, 2, 1},
0 otherwise.

(9)

fe3 s32(e, s) :=
{

1 if e = 3 and s ∈ {3, 2},
0 otherwise.

(10)

In summary, it was agreed that the strict quantisa-
tion functions, although are less effected by the overlap
problem, are not sufficient alone for the evaluation of
XML retrieval. They are useful and necessary, but they
reflect a rather strict evaluation criterion according to
which only highly exhaustive and highly specific ele-
ments are considered relevant for the user. On the other
hand, although the generalised quantisations allow a
more detailed evaluation, they suffer from the problem
of overlapping result elements. As an intermediate so-
lution new versions of the strict quantisation functions
were proposed.

5 PROPOSED METRICS

Two proposals were presented in detail: the Expected
Ratio of Relevant documents (ERR) and the Tolerance

to Irrelevance (T2I) metrics. An additional two pro-
posals, both based on extensions of the Cumulated
Gain based metrics [6], were only mentioned during
the workshop. This section provides a brief summary
of all these proposals.

5.1 Expected Ratio of Relevant

The Expected Ratio of Relevant documents (ERR)
was proposed by Benjamin Piwowarski and Patrick
Gallinary. This measure provides an estimate of the
expectation of the number of relevant document ele-
ments (doxels) a user sees when consulting the list of
the firstk returned doxels, divided by the expectation
of the number of relevant doxels a user would see when
exploring all the doxels of the database (i.e. the total
number of relevant elements for a given topic, denoted
by E). The value ofERR for eachk between1 and
the total number of retrieved doxelsN is given as:

ERR =
E[NR|N = k]
E[NR|N = E]

(11)

whereNR|N = k represents the total number of rel-
evant doxels the user has access to within the firstk
elements in the result list, andNR|N = E represents
the total number of relevant doxels within the whole
collection.

The actual calculation of this estimate is based on
a hypothetical user behaviour, which extends the as-
sumptions used in classical IR, e.g. users browse ele-
ments in the list in a linear order, etc., with two addi-
tional hypotheses. The first is that the user is assumed
to browse through the retrieved document’s structure
(that is, he/she can ”jump” with a given probability
from one element to another within the same docu-
ment). It is however assumed that users cannot use
hyperlinks (i.e. jump to another document). The sec-
ond hypothesis is that this browsing is influenced by
the specificity of the doxels. Based on these assump-
tions, the parameters within the model are estimated
leading to a final estimate of theERR value.

Further details on this metric are available in [9].

5.2 Tolerance to Irrelevance

Arjen de Vries, Gabriella Kazai and Mounia Lalmas
proposed a measure, which is based on an alternative
definition of correct results. The main idea is that a
user merely needs an entry-point into the document
that is ‘close’ to relevant information. Taking this
view, a retrieval system produces a ranked list of en-
try points. The user starts reading the retrieved article
from the suggested entry point, giving up when no rel-
evant information is found for some number of words

klas
163

klas
163

klas
180

klas
182

klas
180

klas
180

klas
188

or sentences. So, the user processes the retrieved infor-
mation until his or hertolerance to irrelevance(T2I)
has been reached, at which point the user proceeds to
the next system result.

This discourages systems from returning fragments
that are too large, since if the entry-point is too
far away from the relevant reference component, the
user’s tolerance to irrelevance will have been ex-
hausted before the relevant information has been
reached. The problem with multiple system results in-
tersecting the same reference component is eliminated
by extending the definition of irrelevance, according
to which a previously seen reference fragment is no
longer considered relevant.

T2I variants of three existing evaluation metrics
for system performance are given in [2]. Their com-
mon underlying principle is that retrieval systems are
ranked on their ability to maximise the number of rele-
vant fragments shown to the user while minimising the
amount of user effort wasted on irrelevant information.
The tolerance to irrelevance is expressed by a single
parameter,τNR, that represents the maximum amount
of non-relevant text the user is expected to read before
giving up. The length of retrieved relevant components
is ignored, assuming that each result has equal value to
the user.

5.3 Cumulated Gain for XML

Two separate proposals were made for the extension
of the Cumulated Gain (CG) based evaluation mea-
sures [6] for the evaluation of XML retrieval. One by
Huyen-Trang Vu and another by Gabriella Kazai.

Huyen-Trang Vu is currently working on a varia-
tion of the discounted cumulated gain (DCG) measure,
where the discount function employed makes use of a
component-length normalisation function. This func-
tion is similar to the length normalisation of the inex-
2003 metric and takes into account the size of the not-
yet-seen part of the retrieved component, where uni-
form distribution of relevant information within a com-
ponent is assumed. She is also working on an exper-
imental analysis of the INEX evaluation results with
the aim to reach some consensus about evaluation is-
sues raised in INEX such as the overlap problem and
the usage of graded assessments. A paper describing
the approach is currently in preparation.

The approach taken by Gabriella Kazai is to ex-
tend the (D)CG based metrics by separating the model
of user behaviour from the actual metric employed.
This is achieved via the definition of a set of relevance
value (RV) functions implementing scoring mecha-
nisms based on parameters including the relevance de-
gree of a retrieved component, the ratio of already

viewed parts, etc. Each such RV function models dif-
ferent possible user behaviours. Within the (D)CG
framework, an RV function is then used as a means
to calculate the relevance score of a document compo-
nent within the result list, hence, producing the gain
vector G, which forms the basis of the (D)CG cal-
culations. She also proposed different functions for
the estimation of a component-part’s relevance degree,
which moves away from the uniform distribution as-
sumption and is based on the assessment data of the
component’s child nodes. A paper describing the ap-
proach has since been submitted for publication [7].

6 DISCUSSION OF PROPOSED
METRICS

All proposals were welcomed by the group. ERR
was regarded as an encouraging measure although con-
cerns were raised regarding the use of possibly too
many parameters that needed to be estimated. T2I was
assessed as a promising, simple but potentially pow-
erful framework, which however so far lacked imple-
mentation details. Both metrics were said to benefit
from experiments and analysis of their working.

The CG based metrics were not discussed.

7 OTHER ISSUES

Additional issues raised during the workshop included
general problems, such as problems experienced when
trying to install the INEX evaluation software. An-
other criticism was the lack of documentation pro-
vided.

The point that systems could not be tuned due to
fact that the metrics were not published prior to the
task execution was also raised. A related issue con-
cerned the understanding of the metrics and of their
workings. A general recommendation was to pub-
lish metrics early on within the evaluation round. An-
other suggestion was to provide effectiveness results
for P@5, P@10, P@20 as part of the official evalua-
tion.

Concerns regarding the consistency of assessments
due to the increased cognitive load were also ex-
pressed. The organisers offered to investigate this issue
by providing an analysis of the collected assessments
of topics from multiple assessors.

Other issues raised included concerns that article
only retrieval was hard to beat. This has lead to ques-
tions regarding the quality of the topics used within
the test collection and the problem of how to ensure
that answer elements were components smaller than

klas
164

klas
164

klas
181

klas
183

klas
181

klas
181

klas
189

Task Metric
CO inex-2002

inex-2003
ERR
T2I

SCAS inex-2002
ERR
T2I

VCAS Extensions of the CO metrics to
provide partial score based on
structural similarity using
distance measures.

Table 1: Tasks and metrics

article elements while maintaining realistic informa-
tion needs. While no solution was identified, the issue
was raised as a concern that should be considered dur-
ing the topic development process.

The working group ended with a discussion on
which metrics can be used for the evaluation of which
tasks (i.e. CO, CAS and SCAS). This is summarised
in Table 1.

References

[1] W. Cooper. Expected search length: A single
measure of retrieval effectiveness based on the
weak ordering action of retrieval systems.Amer-
ican Documentation, 19(1):30–41, 1968.

[2] A. de Vries, G. Kazai, and M. Lalmas. Tolerance
to irrelevance: A user-effort oriented evaluation
of retrieval systems without predefined retrieval
unit. In Recherche d’Informations Assistée par
Ordinateur (RIAO 2004), Avignon, France, Apr.
2004. To appear.

[3] N. Gövert and G. Kazai. Overview of the
INitiative for the Evaluation of XML Re-
trieval (INEX) 2002. In N. Fuhr, N. G̈overt,
G. Kazai, and M. Lalmas, editors,Pro-
ceedings of the First Workshop of the INi-
tiative for the Evaluation of XML Retrieval
(INEX). Dagstuhl, Germany, December 8–11,
2002, ERCIM Workshop Proceedings, pages
1–17, Sophia Antipolis, France, March 2003.
ERCIM. http://www.ercim.org/publication/ws-
proceedings/INEX2002.pdf.

[4] N. Gövert, G. Kazai, N. Fuhr, and M. Lalmas.
Evaluating the effectiveness of content-oriented

XML retrieval. Technischer bericht, University
of Dortmund, Computer Science 6, 2003.

[5] K. Järvelin and J. Kek̈aläinen. IR evalua-
tion methods for retrieving highly relevant doc-
uments. In N. Belkin, P. Ingwersen, and M.-K.
Leong, editors,Proceedings of the 23rd Annual
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 41–48,
Athens, Greece, 2000.

[6] K. Järvelin and J. Kek̈aläinen. Cumulated Gain-
based evaluation of IR techniques.ACM Trans-
actions on Information Systems (ACM TOIS),
20(4):422–446, 2002.

[7] G. Kazai, M. Lalmas, and A. de Vries. The over-
lap problem in content-oriented XML retrieval
evaluation. Submitted for publication, Jan. 2004.

[8] J. Kek̈aläinen and K. J̈arvelin. Using graded rel-
evance assessments in IR evaluation.Journal
of the American Society for Information Science
and Technology, 53(13):1120–1129, 2002.

[9] B. Piwowarski and P. Gallinari. Expected ratio of
relevant units: A measure for structured informa-
tion retrieval. In N. Fuhr, M. Lalmas, and S. Ma-
lik, editors,Proceedings of the Second Workshop
of the INitiative for the Evaluation of XML Re-
trieval (INEX). Dagstuhl, Germany, December
15–17, 2003, 2004.

[10] V. Raghavan, P. Bollmann, and G. Jung. A crit-
ical investigation of recall and precision.ACM
Transactions on Information Systems, 7(3):205–
229, 1989.

[11] E. Sormunen. Liberal relevance criteria of
trec - counting on negligible documents? In
K. Järvelin, M. Beaulieu, R. Baeza-Yates, and
S. Myaeng, editors,Proceedings of the Twenty-
Fifth Annual ACM SIGIR Conference on Re-
search and Development in Information Re-
trieval, Tampere, Finland, 2002.

[12] S. Wong and Y. Yao. On modeling informa-
tion retrieval with probabilistic inference.ACM
Transactions on Information Systems, 13(1):38–
68, 1995.

klas
165

klas
165

klas
182

klas
184

klas
182

klas
182

klas
190

Appendix

Topic Development Guide

192

Retrieval Tasks and Run Submission Specification

 200

Relevance Assessment Guide

204

klas
166

klas
183

klas
185

klas
183

klas
183

klas
191

The aim of the INEX initiative

appropriate scoring methods, for the
initiative it is the task of the participa
that will contribute to the test collec
this collaborative effort.

1. Introduction
Test collections, as traditionally

documents, a set of information need
topic the set of relevant documents.

A test collection for XML retrie
Although it still consists of the same
IR test collections, documents are
generally treated as collections of ter
whether a document as a whole is
organise their content into smalle
document’s hierarchy, along with th
the use of XML query languages, us
and structural conditions within thei
elements within an XML collection.
consider the structural nature of the d

This guide deals only with the
their creation for INEX 2003.

2. Topic creation criter
Creating a set of topics for a test

well-known fact that the performan
variation is usually greater than the
topic. Thus, to judge whether one re
the retrieval performance must be ave
diagnostic tool, the average performa
nor too bad as little can be learned
documents.

When creating topics, a number o

1. The author of a topic shou

subject area covered by th
assessor of relevance!)

2. Topics should reflect what re
3. Topics should be representat
4. Topics should be diverse.
5. Topics may also differ in the

3. Query types
As last year, in INEX 2003 we di

• Content-only (CO) queries:

content related conditions,
(without specifying what tha
of XML retrieval stems fro
result components or are no

 INEX’03 Guidelines for
Topic Development

is to provide means, in the form of a large test collection and
 evaluation of content-oriented XML retrieval. Within the INEX
ting organisations to provide the topics and relevance assessments

tion. Each participating organisation therefore plays a vital role in

used in information retrieval (IR), consist of three parts: a set of
s called topics, and a set of relevance assessments listing for each

val differs from traditional IR test collections in many respects.
 three parts, the nature of these parts is fundamentally different. In
considered as units of unstructured text, topic statements are

ms and/or phrases, and relevance assessments provide judgements
relevant to a query or not. XML documents, on the other hand,
r, nested structural elements. Each of these elements in the
e document itself, is a retrievable unit. Regarding the topics, with
ers of an XML retrieval system are able to combine both content
r information need and restrict their search to specific structural
Finally the relevance assessments for an XML collection must also
ocuments and provide assessments at different structural levels.
 topics of the test collection and provides detailed guidelines for

ia
 collection requires a balance between competing interests. It is a
ce of retrieval systems varies largely for different topics. This
performance variation of different retrieval methods on the same
trieval strategy is in general more effective than another strategy,
raged over a large, diverse set of topics. In addition, to be a useful
nce of the retrieval systems on the topics can be neither too good

 about retrieval strategies if systems retrieve no or only relevant

f factors should be taken into account.

ld be either an expert or the very least be familiar with the
e collection! (Note that the author of a topic should also be the

al users of operational systems might ask.
ive of the type of service that operational systems might provide.

ir coverage, e.g. broad or narrow topic queries.

stinguish two types of query:

 are requests that ignore the document structure and contain only
e.g. only specify what a document/component should be about
t component is). The need for this type of query for the evaluation

m the fact that users either do not care about the structure of the
t familiar with the exact structure of the XML documents.

klas
166

klas
167

klas
184

klas
186

klas
184

klas
184

klas
192

• Content-and-structure (CAS) queries: are topic statements, which contain explicit references
to the XML structure, and restrict the context of interest and/or the context of certain search
concepts.

4. Topic format
Both CO and CAS topics are made up of four parts:

• Topic title: a short version of the topic statement. It serves as a summary of both the content

and structural requirements of the user’s information need. The exact format of the topic title
is discussed in more detail later in this section.

• Topic description: a one or two sentence natural language definition of an information need.
• Narrative: a detailed explanation of the topic statement and the description of what makes a

document/component relevant or not.
• Keywords: a set of comma-separated scan terms that are used in the collection exploration

phase of the topic development process (see Section 5.2) to retrieve relevant
documents/components. Scan terms may be single words or phrases and may include
synonyms, broader or narrower terms from those listed in the topic description or topic title.

The format of the topic title in 2003 is different to that used in INEX 2002. This year, the format is

based on XPath, the proposed language for addressing parts of XML documents. The XPath notation is
adopted in INEX 2003 to refer to the logical structure and the attributes of the XML documents.
However, since XPath is a very rich and powerful language, we restrict ourselves to a subset of XPath,
which has been identified by the INEX 2002 Topic Format working group as providing an “IR
minimum”. This subset corresponds (mainly) to the use of path expressions as described in Section 2 of
the document XML Path Language (XPath) Version 1.0, W3C Working Draft 16 November 1999
(available at http://www.w3.org/TR/xpath). More precisely, the topic format will make use of Axes
(Section 2.2), Predicates (Section 2.4), and will use the abbreviated syntax described in Section 2.5 of
the aforementioned document.

Below are examples of path expressions (taken from Section 2.5 of the XPath 1.0 standard):

• para selects the para element children of the context node
• * selects all element children of the context node
• @attr selects the attr attribute of the context node
• @* selects all the attributes of the context node
• para[1] selects the first para child of the context node
• */para selects all para grandchildren of the context node
• /doc/chapter[5]/section[2] selects the second section of the fifth chapter of doc
• chapter//para selects the para descendants element of the chapter element children of

the context node
• //para selects all the para descendants of the document root and thus selects all para

elements in the same document as the context node
• //olist/item selects all the item elements in the same document as the context node that

have an olist parent
• . selects the context node
• .//para selects the para element descendants of the context node
• .. selects the parent of the context node
• ../@lang selects the lang attribute of the parent of the context node
• para[@type=‘warning’] selects all para children of the context node that have a type

attribute with value warning
• para[@type=‘warning’][5] selects the fifth para child of the context node that has a

type attribute with value warning
• para[5][@type=‘warning’] selects the fifth para child of the context node if that child

has a type attribute with value warning
• chapter[title=‘Introduction’] selects the chapter children of the context node that

have one or more title children with string-value equal to Introduction

http://www.w3.org/TR/xpath
klas
167

klas
168

klas
185

klas
187

klas
185

klas
185

klas
193

• chapter[title] selects the chapter children of the context node that have one or more
title children

• employee[@secretary and @assistant] selects all the employee children of the
context node that have both a secretary attribute and an assistant attribute

4.1. The about() function
In INEX, an “aboutness” concept, in the form of an about(path, string) function, has been added to

the standard XPath syntax to deal with the content aspect of a user query. This concept was necessary
in order to introduce the uncertainty inherent in IR into the world of the more exact-match XPath
principle. The about() function should be used as the basis to provide a ranking of the retrieved
elements with respect to content. Note that the about(path,string) clause is different from the
contains(path,string) function of the XPath standard (see XPath 1.0, http://www.w3.org/TR/xpath).
The latter returns true if the text value of the element defined by the path contains the string argument,
and otherwise returns false. On the other hand, the about() function returns true if the element defined
by the path argument is “about” the concept(s) defined by the string argument without having to
actually contain the exact string value.

The about() function is usually applied to a context element, CE. This is described by the following

syntax: CE[about(path, string)]. A context element is described using a standard XPath path
expression (see the examples of path expressions in Section 4). It defines a “base node” against which
relative paths, using the “.” notation, can be defined within the path argument of the about() function.
For example, //article[about(.//sec,‘“XML retrieval”’)] represents the request to retrieve
articles that contain within them a section about “XML retrieval”. Another example is
//article[about(.//sec, ‘“XML retrieval”’) and about(.//sec,‘evaluation’)],
which is a representation of the request to retrieve articles, which contain a section about “XML
retrieval” and also a section on evaluation (where the two sections may be different or may be the
same). We will look at more complex structures when we discuss the format of the CAS topic titles.
The string parameter may contain a number of space-separated terms, where a term may be a single
word or a phrase encapsulated in double-quotes. Furthermore, the symbols + and − may be used to
express additional preferences for certain terms, where + is used to emphasise a concept and − is used
to denote an unwanted concept. In summary, a string parameter may incorporate the following
components:

• Terms (single words or phrases)
• “” (double-quotes to encapsulate phrases)
• + (expressing “must be about”)
• − (denoting “must not be about”)

The syntax of a string argument is:

String ::= term ‘ ’

| ‘+’term ‘ ’
| ‘−’term ‘ ’

Term ::= single word
| ‘”’phrase‘”’

A string must be enclosed between single quotes. For example, //article[about(.//sec,

‘“XML retrieval” +XML –“information retrieval”’)] would correspond to the request to
retrieve articles that contain a section which is about XML retrieval but not about information retrieval,
and where XML is characterised as an important concept.

Although at this point we are not talking about relevance assessment we would like to make a note

here to emphasise that for relevance assessments the symbols + and − should be interpreted with a
fuzzy “flavour” and not simply as must contain or must not contain conditions. Following on from the
definition of the about() function above, a component may be considered relevant even if it does not
contain the query term(s), but is “about” the concept(s) expressed by the query term(s). Similarly a
component may be relevant even if it contains, for example, only one half of a phrase.

http://www.w3.org/TR/xpath
klas
168

klas
169

klas
186

klas
188

klas
186

klas
186

klas
194

4.2 CO Topics
The topic title of a CO topic is a short, usually a 2-5 terms representation of the topic statement.

Since CO topics ignore the document structure, their topic title will only consist of one about() clause
applied to any context elements denoted by the path //*. The path argument of the about() function
must be set to “.” (dot) to refer to the context element. The string argument is made up of terms that
best describe what the user is looking for. Take as an example the topic title //*[about(., ‘“XML
retrieval"’), which is the representation of the request to retrieve any elements that are about
“XML retrieval”.

In order to simplify this syntax, we remove all components of the topic title that are the same for all
CO topics (e.g. the context element, the path argument, etc.). As a result, we end up with just the string
argument of the about() function, e.g. replacing //*[about(path, string)] with string, where
we also ignore the single quotes.

The topic title of a CO topic is therefore defined as a set of space separated terms, optionally

associated with the symbols + and −, where a term may be a single word or a phrase encapsulated in
double-quotes. The syntax of the CO topic titles hence matches the syntax of the string argument
specified above (Section 4.1).

Examples of CO topic titles
1. Retrieve documents/components about computer science degrees that are not master degrees:

<title>“computer science” +degree –master</title>

2. Retrieve document/components about summer holidays in England:
<title>“summer holiday” +England</title>

Example of a CO topic
<inex_topic topic_id=”1” query_type=”CO”>

<title>
"summer holiday” "winter holiday” +"England”

 </title>
 <description>

Winter or summer holidays in England.
 </description>
 <narrative>

To be relevant, a document or component must contain
information about winter or summer holidays in England.

 </narrative>
 <keywords>
 summer, winter, holiday, England, skiing, beach
 </keywords>
</inex_topic>

4.3 CAS Topic
The general structure of a CAS topic title is as follows:

CE [filter] CE [filter] … CE [filter] CE [filter]

CE refers to the context element. The series of context elements, where the first CE acts as the root
node, describes a branch of an XML tree. Each context element is relative to the context element that
precedes it in the sequence. This branch forms the path of the target element that is to be returned to the
user. A filter is defined as a set of about clauses (e.g. about(path, string)) and other predicate clauses
(e.g. @yr = ‘2001’), which are joined by Boolean expressions. The path argument of the about()
function can be expressed relative to the context element by using the “.” notation. For example,
//article[.//@yr = ‘2001’]//sec[about(.,‘+"XML retrieval"’), is the expression of a
request to retrieve sections about “XML retrieval” of articles written in 2001. This query has two
context elements, namely //article and //sec, which together define the target element.
//article//sec.

A filter may contain a set of about() functions and/or a set of standard XPath string operators: =, !=,
>, <, >= and <=. The conditions expressed by these functions and operators can be combined using the
Boolean operators: AND and OR, together with the use of parenthesis to group such conditions

klas
169

klas
170

klas
187

klas
189

klas
187

klas
187

klas
195

together. For example, //article[about(.//p,‘+“holiday”’) AND .//@yr=‘2002’],
retrieves articles that contain paragraphs about “holiday” and have a published date of 2002. Note that
while the series of context elements must describe a branch of the XML tree, the filter components
allow for the definition of content conditions on different branches of a tree within the context element.
Take the earlier mentioned example (Section 4.1) of //article[about(.//sec,‘“XML
retrieval”’) and about(.//sec,‘evaluation’)] requesting article elements, which contain
a section about “XML retrieval” and also a section on “evaluation” (where the two sections may be
different or may be the same). Here two independent branches of the tree rooted in //article are
described.
NOTE THAT FOR AN INEX CAS TOPIC, IT IS A REQUIREMENT THAT A FILTER
CONTAINING AN ABOUT() FUNCTION MUST BE SPECIFIED FOR THE LAST CONTEXT
ELEMENT! Multiple target elements are not allowed in INEX 2003. Also note that specifying one
context element only, and setting it to //*, while setting the path argument of the about() functions to
“.”, we arrive back at a CO topic title.

Examples of CAS topic titles1

1. Return section elements, which are about summer holidays, where the section element is a
descendent of article element, and the article is from 2001 or 2002:

<title>
//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’]//sec[about(.,
‘”summer holidays”’)]

</title>

The above query has two context elements, //article and //sec, each with their own filters,
one containing a standard Xpath predicate and the other containing an about() clause. The target
element defined by the above query is //article//sec.

Note that the following query is not a valid INEX query as it does not contain an about() function:
<title>

//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’]
</title>

The following query is not valid because there is no filter applied to the last context element (e.g.
//sec):

<title>
//article[.//@yr = ‘2001’ OR about(., ‘“summer holiday”’]//sec

</title>

In the remainder of the examples for simplicity we ignore the <title> </title> tags.

2. Retrieve all articles that were published in 2001 and are about summer holidays:

//article[.//@yr = ‘2001’ AND about(./, ‘”summer holidays”’)]

3. Return article elements published in 2001 that contain section elements about summer holidays:

//article[.//@yr = ‘2001’ AND about(.//sec, ‘”summer holidays”’)]

4. Return articles from 2001, which contain section elements about summer holidays or section
elements about winter holidays:

//article[.//@yr = '2001' AND (about(.//sec, '"summer holidays"')OR
about (.//sec, '"winter holidays"'))]

A query requesting articles from 2001 containing section elements about summer and winter
holidays would be as follows:

//article[.//@yr = ‘2001’ AND (about(.//sec, ‘+“summer holidays”
+“winter holidays”’)]

5. Return section elements, which are about summer holidays and that are the grandchildren of article
elements, where the article is from 2001 or 2002:

1 Note that these examples do not conform to the structure or content of the INEX document collection

klas
170

klas
171

klas
188

klas
190

klas
188

klas
188

klas
196

//article[.//@yr = ‘2001’ or .//@yr = ‘2002’]/*/sec[about(., ‘”summer
holidays”’)]

6. Return articles on XML retrieval, where the article contains a section on evaluation:
//article[about(., ‘“XML retrieval”’) AND about(.//sec, ‘evaluation’)]

7. Retrieve articles that were published in 2002 and contain a section about “XML retrieval”:
//article[about(.//sec, ‘“XML retrieval”’) AND .//@yr=’2002’]

8. Retrieve those sections of articles published in 2002 that are about “XML retrieval”:
//article[.//@yr=’2002’]//sec[about(.//sec, ‘“XML retrieval”’)]

9. Retrieve those sections of articles that contain both a figure about “CORBA” and a figure caption
about “XML”:

//article//sec[about(.//fig, ‘CORBA’) AND about(.//figc, ‘XML’)]

Example of a CAS topic
<inex_topic topic_id=”2” query_type=”CAS”>

<title>
//article[.//@yr = ‘2001’ OR .//@yr = ‘2002’]//sec[about(.,
‘”summer holidays”’)]

 </title>
 <description>

Summer holidays either of 2001 or of 2002.
 </description>
 <narrative>

Return section elements, which are about summer holidays, where
the sections is descendent of article element, and the article
is from 2001 or 2002.

 </narrative>
 <keywords>
 summer, holiday, 2001,2002
 </keywords>
</inex_topic>

4.4. Equivalent tags
This section lists the defined set of "equivalent" tags (alias/role/metedata) in the INEX test

collection. We are proposing aliases for the following classes of nodes (identified directly from the
DTD):

Paragraph-like nodes: ilrj|ip1|ip2|ip3|ip4|ip5|item-none|p|p1|p2|p3
Section nodes: sec|ss1|ss2|ss3
List environments: dl|l1|l2|l3|l4|l5|l6|l7|l8|l9|la|lb|lc|ld|le|list|numeric-list|numeric-rbrace|bullet-list
Headings: h|h1|h1a|h2|h2a|h3|h4

4.5. Topics DTD
The overall structure of the INEX topics is given in the DTD below (Note that additional attributes

may be added at a later stage).

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!ELEMENT inex_topic (title, description, narrative, keywords)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT narrative (#PCDATA)>
<!ELEMENT keywords (#PCDATA)>
<!ATTLIST inex_topic
 topic_id CDATA #REQUIRED
 query_type CDATA #REQUIRED
>

klas
171

klas
172

klas
189

klas
191

klas
189

klas
189

klas
197

5. Procedure for topic development
Each participating group will have to submit 3 CO and 3 CAS queries by the 30 May 2003 by

filling in the Candidate Topic Form (one per topic) at

http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html

This section outlines the procedures involved in the development of candidate topics. There are four

steps in creating topics for a test collection: 1) creating the initial topic statements, 2) exploring the
collection, 3) selecting final set of topics, and 4) refining the topic statements.

5.1. Initial topic statements
In this step, you should create a one or two sentence description of the information you are seeking.

This should be a simple description of the information need without regard to retrieval system
capabilities or document collection peculiarities. This should be recorded in the topic description field.

Use either a printout or directly the on-line version of the Candidate Topic Form to record all
information on a topic you are creating.

5.2. Collection exploration
In this step the initial topic statements are used to explore the document collection in order to obtain

an estimate of the number of relevant documents/elements in the collection and to evaluate whether this
topic can be judged consistently in the assessment phase. You may use any retrieval engine for this
task, including your own or HyRex (HyRex can be accessed via http://inex.is.informatik.uni-
duisburg.de:2003/internal/#topics).

Using the Candidate Topic Form record the set of keywords that you use for retrieval (make sure to
record all the keywords from all iteration of your search or if you use query expansion strategies the
query terms generated by the process). You should try and make your search queries (e.g. set of
keywords) as expressive as possible for the kind of documents you wish to retrieve: think of the words
that would make good scan words when assessing, and use those as your query keywords.

Next, judge the top 25 documents/components of your retrieval result. Using the Candidate Topic
Form record the number of found relevant components and the XPath path representing each relevant
element. If you have found less than 2 or more than 20 relevant components within the top 25 results,
you should abandon the topic and start with a new one! If you have found at least 2 relevant
components and no more than 20, perform a feedback search (don't forget to record the terms (if any)
that you decide to add to your query keywords). Judge the top 100 (some of them you will have judged
already), and record the number of relevant documents/components in Candidate Topic Form.

Finally write your detailed explanation on what makes a document/component relevant and record
this in the narrative field of the topic. Make sure your description is as exhaustive as possible as there
will be a couple of months gap before you will return to the topic for relevance assessments. The
expectation is that by judging 100 documents/components you will have determined how you will
judge the topic in the assessment phase. The narrative of the topic should reflect this.

To assess the relevance of a retrieved document/component use the following working definition:
mark a document/component relevant if it would be useful if you were writing a report on the subject
of the topic, or if it contributes towards satisfying your information need. Each document/component
should be judged on it own merits. That is, a document/component is still relevant even if it is the
thirtieth document/component you have seen with the same information. It is crucial to obtain
exhaustive relevance judgements. It is also very important that your judgement of relevance is
consistent throughout this task.

5.3. Refining topic statements
Refining the topic statement means finalising the topic title, description, keywords and narrative.

Note that it should be possible to use each of the four parts of a topic in a stand-alone fashion (e.g.
using only the title for retrieval, or only the description for filtering etc.).

Once you finished, submit the on-line Candidate Topic Form at

http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html.

Make sure you submit all 6 candidate topics no later than the 30 May 2003.

http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html
http://inex.is.informatik.uni-duisburg.de:2003/internal/
http://inex.is.informatik.uni-duisburg.de:2003/internal/
http://inex.is.informatik.uni-duisburg.de:2003/internal/TopicSubmission.html
klas
172

klas
173

klas
190

klas
192

klas
190

klas
190

klas
198

5.4. Topic selection
From the received candidate topics, we (the clearinghouse) will then decide which topics to use

such that a wide range of likely number of relevant documents is included. The data obtained from the
collection exploration phase will be used as input to the topic selection process. We will then distribute
final set of topics back to you to be used for the retrieval and evaluation.

We would like to thank you for your contribution.

Acknowledgements
The topic format proposed in this document is based on the outcome of a working group set up during
the INEX 2002 workshop in Dagstuhl and the intense discussions on the INEX 2003 mailing list. We
are very grateful for their contribution.

Authors:
Gabriella Kazai, Mounia Lalmas and Saadia Malik
06 May, 2003
Updated 12 May 2003

klas
173

klas
174

klas
191

klas
193

klas
191

klas
191

klas
199

INEX’03 Retrieval Task and
Result Submission Format
Specification

Retrieval Task
The retrieval task to be performed by the participating groups of INEX'03 is defined as the ad-hoc
retrieval of XML documents. In information retrieval literature, ad-hoc retrieval is described as a
simulation of how a library might be used, and it involves the searching of a static set of documents
using a new set of topics. While the principle is the same, the difference for INEX is that the library
consists of XML documents, the queries may contain both content and structural conditions and, in
response to a query, arbitrary XML elements may be retrieved from the library. Within the ad-hoc
retrieval task we define the following three sub-tasks:

CO: Content-oriented XML retrieval using content-only (CO) queries. As described in the

INEX’03 Topic Development Guide, CO queries are requests that ignore the document
structure and contain only content related conditions, e.g. only specify what a
document/component should be about (without specifying what that component is). The need
for this type of query for the evaluation of XML retrieval stems from the fact that users may
not care about the structure of the result components or may not be familiar with the exact
structure of the XML documents. In this task, it is left to the retrieval system to identify the
most appropriate XML elements to return to the user. These elements are components that are
most specific and most exhaustive with respect to the topic of request. Most specific here
means that the component is highly focused on the topic, while exhaustive reflects that the
topic is exhaustively discussed within the component.

SCAS: Content-oriented XML retrieval based on content-and-structure (CAS) queries, where the

structural constraints of a query must be strictly matched. CAS queries are topic statements,
which contain explicit references to the XML structure, and explicitly specify the contexts of
the user’s interest (e.g. target elements) and/or the contexts of certain search concepts (e.g.
containment conditions). In this task, the user’s query is considered as an exact formulation of
his/her information need, where the structural conditions specified within the query must be
satisfied exactly by the retrieved components.

VCAS: Content-oriented XML retrieval based on content-and-structure (CAS) queries, where the

structural constraints of a query can be treated as vague conditions. This task deviates from the
previous one in that XML elements ‘structurally similar’ to those specified in the query may
be considered correct answers. The idea behind this sub-task is to allow the evaluation of
XML retrieval systems that aim to implement a more fuzzy approach to XML retrieval, where
not only the content conditions within a user query are treated with uncertainty but also the
expressed structural conditions. These systems aim to return components that contain the
information sought after by the user even if the result elements do not exactly meet the
structural conditions expressed in the query.

The actual search queries put to the retrieval engines (e.g. used to search the document collection) may
be generated either manually or automatically from any part of the topics, with the exception of the
narrative. Please note that at least one submitted run for each sub-task must be with the use of
automatic queries.

klas
174

klas
175

klas
192

klas
194

klas
192

klas
192

klas
200

Result Submission
For each sub-task up to 3 runs may be submitted. The results of one run must be contained in one
submission file (e.g. up to 9 files can be submitted in total). A submission may contain up to 1500
retrieval results for each of the INEX topics included within that sub-task (e.g. for the CO sub-task only
submit the search results obtained for the CO topics).

Submission format
For relevance assessments and the evaluation of the results we require submission files to be in the
format described in this section. The overall submission format is defined in the following DTD:

<!ELEMENT inex-submission (description, topic+)>
<!ATTLIST inex-submission
 participant-id CDATA #REQUIRED
 run-id CDATA #REQUIRED
 task (CO | SCAS | VCAS) #REQUIRED
 query (automatic | manual) #REQUIRED
 topic-part (T | D | K | TD | TK | DK | TDK) #REQUIRED
>
<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic
 topic-id CDATA #REQUIRED
>
<!ELEMENT result (file, path, rank?, rsv?)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must specify the following information:

• participant-id: the participant ID of the submitting institute (available at
http://inex.is.informatik.uni-duisburg.de:2003/inex03/servlet/ShowParticipants),

• run-id: a run ID (which must be unique for the submissions sent from one organisation –
also please use meaningful names as much as possible),

• task: the identification of the task (e.g. CO, SCAS or VCAS),
• query: the identification of whether the query was constructed automatically or manually

from the topic,
• topic-part: the specification of whether the automatic or manual query was generated from

the topic title only (T), the topic description only (D), the keywords only (K), the combination
of the topic title and the topic description (TD), the combination of the topic title and the
keywords (TK), the combination of the topic description and keywords (DK), or the
combination of the topic title, topic description and keywords (TDK).

Furthermore each submitted run must contain a (brief) description of the retrieval approach applied
to generate the search results.

A submission should then contain a number of topics, each identified by its topic ID (as provided
with the topics). For each topic a maximum of 1500 result elements may be included. A result
element is described by a file name and an element path and it may include rank and/or retrieval
status value (rsv) information.

Before detailing these elements, below is a sample submission file:

<inex-submission participant-id="12" run-id="VSM_Aggr_06" task=”CO”
query=”automatic” topic-part=”TK”>
 <description>Using VSM to compute RSV at leaf level combined with

aggregation at retrieval time, assuming independence and using
acc=0.6.

 </description>

 2

http://inex.is.informatik.uni-duisburg.de:2003/inex03/servlet/ShowParticipants
klas
175

klas
176

klas
193

klas
195

klas
193

klas
193

klas
201

 <topic topic-id="01">
 <result>
 <file>tc/2001/t0111</file>
 <path>/article[1]/bm[1]/ack[1]</path>
 <rsv>0.67</rsv>
 </result>
 <result>
 <file>an/1995/a1004</file>
 <path>/article[1]/bdy[1]/sec[1]/p[3]</path>
 <rsv>0.1</rsv>
 </result>
 [...]
 </topic>
 <topic topic-id="02">
 [...]
 </topic>
 [...]
</inex-submission>

Rank and RSV
The rank and rsv elements are provided for submissions based on a retrieval approach producing
ranked output. The ranking of the result elements can be described in terms of

• Rank values, which are consecutive natural numbers, starting with 1. Note that there can be
more than one element per rank.

• Retrieval status values (RSVs), which are positive real numbers. Note that there may be
several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a
retrieval approach does not produce ranked output.

File and path
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX
collection, we need a way to identify these nodes without ambiguity. Within INEX submissions,
elements are identified by means of a file name and an element (node) path specification, which
must be given in XPath syntax.

File names must be given relative to the INEX collection’s “xml” directory (excluding the “xml”
directory itself from the file path). The file path should use '/' for separating directories. Note that only
article files (e.g. no “volume.xml” files) can be referenced here. The extension “.xml” must be left out.
Example:

 an/1995/a1004

Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

 Path ::= '/' ElementNode Path

| '/' ElementNode '/' AttributeNode
| '/' ElementNode

 ElementNode ::= ElementName Index

 AttributeNode ::= '@' AttributeName

 Index ::= '[' integer ']'

Example:

 /article[1]/bdy[1]/sec[4]/p[3]

This path identifies the element which can be found if we start at the document root, select the first
“article” element, then within that, select the first “bdy” element, within which we select the fourth
“sec” element, and finally within that element we select the third “p” element. Note that XPath counts

 3

klas
176

klas
177

klas
194

klas
196

klas
194

klas
194

klas
202

elements starting with 1 and takes into account the element type, e.g. if a section had a title and two
paragraphs then their paths would be given as: ../title[1], ../p[1] and ../p[2].

When producing the XPath expressions of result elements, the equivalent-tags rules (see INEX’03
Guidelines for Topic Development) must be ignored, e.g. result elements must be identified in line with
the original structure of the XML documents! For example, given the structure:
<sec><p>..</p><ip5>..</ip5><p>..</p></sec>) the following XPaths should be generated:
/sec[1], /sec[1]/p[1], /sec[1]/ip5[1], and /sec[1]/p[2]. Note that the same structure,
taking into account the equivalent-tags rules, would result in the XPaths: /sec[1], /sec[1]/p[1],
/sec[1]/p[2], and /sec[1]/p[3]. However, result elements identified by the latter XPaths will
lead to incorrect evaluations of the submitted runs.

A result element is identified unambiguously using the combination of its file name and element path.
Example:

<result>
 <file>an/1995/a1004</file>
 <path>/article[1]/bdy[1]/sec[1]/p[3]</path>
</result>

An application that can be used to check the correctness of a given path specification is available at

http://inex.is.informatik.uni-duisburg.de:2003/browse.html
Note that this application requires the input of a file name and element path. If these are correctly
given, the specified XML element within its container article element will be displayed.

Result Submission Procedure
An online submission tool will be provided. Details on how to submit will be circulated as part of a
separate document in the near future.

July 23, 2003
Gabriella Kazai, Mounia Lalmas, Norbert Goevert and Saadia Malik

 4

http://inex.is.informatik.uni-duisburg.de:2003/browse.html
klas
177

klas
178

klas
195

klas
197

klas
195

klas
195

klas
203

INEX’03 Relevance
Assessment Guide

1. Introduction
During the retrieval runs, participating organisations evaluated the 66 INEX’03 topics (36 content-only
and 30 content-and-structure queries) against the IEEE Computer Society document collection and
produced a list (or set) of document components (XML elements1) as their retrieval results for each
topic. The top 1500 components in a topic’s retrieval results were then submitted to INEX. The
submissions received from the different participating groups have now been pooled and redistributed to
the participating groups (to the topic authors whenever possible) for relevance assessment. Note that
the assessment of a given topic should not be regarded as a group task, but should be provided by one
person only (e.g. by the topic author or the assigned assessor).

The aim of this guide is to outline the process of providing relevance assessments for the INEX’03 test
collection. This requires first a definition of relevance for XML retrieval (Section 2), followed by
details of what (Sections 3) and how (Section 4) to assess. Finally, we describe the on-line relevance
assessment system that should be used to record your assessments (Section 5).

2. Relevance dimensions: exhaustivity and specificity
Relevance in INEX is defined according to the following two dimensions:

• Exhaustivity (e-value for short), which describes the extent to which the document component
discusses the topic of request.

• Specificity (s-value for short), which describes the extent to which the document component
focuses on the topic of request.

To assess exhaustivity, we adopt the following 4-point scale:

0: Not exhaustive, the document component does not discuss the topic of request at all.
1: Marginally exhaustive, the document component discusses only few aspects of the topic
of request.
2: Fairly exhaustive, the document component discusses many aspects of the topic of request.
3: Highly exhaustive, the document component discusses most or all aspects of the topic of
request.

To assess specificity, we adopt the following 4-point scale:

0: Not specific, the topic of request is not a theme of the document component.
1: Marginally specific, the topic of request is a minor theme of the document component
2: Fairly specific, the topic of request is a major theme of the document component.
3: Highly specific, the topic of request is the only theme of the document component.

A document component can be assessed as highly exhaustive (e-value 3) even if it is not specific to the
topic of request – that is, the topic of request can be a major theme (s-value 2) or a minor theme (s-
value 1) of the component – as long as all or most aspects of the topic is discussed (e.g. a component
may be highly exhaustive to the topic regardless of how much additional, irrelevant information it
contains). Similarly, a document component can be assessed as highly specific (s-value 3) even if it
discusses many (e-value 2) or only a few (e-value 1) aspects of the topic - as long as the topic of
request is the only theme of the component. However, a document component that does not discuss the
topic of request at all (e-value 0) must have an s-value of 0, and vice versa.

1 The terms document component and XML element are used interchangeably.

klas
178

klas
179

klas
196

klas
198

klas
196

klas
196

klas
204

3. What to judge
Depending on the topic, a pooled result set may contain initially between 500 and 1,500 document
components of 500 - 510 articles, where a component may be a title, paragraph, section, or whole
article etc.

Traditionally, in evaluation initiatives for information retrieval, like TREC, relevance is judged on
document level, which is treated as the atomic unit of retrieval. In XML retrieval, the retrieval results
may contain document components of varying granularity, e.g. paragraphs, subsections, sections,
articles etc. Therefore, to provide comprehensive relevance assessment for an XML test collection, it is
necessary to obtain assessment for the different levels of granularity.

This means that if you find, say, a section of an article relevant to the topic of the request, you will then
need to provide assessment - both with regards to exhaustivity and specificity - for the found relevant
component, for all its ascendant elements until you reach the article component, and for all its
descendant elements until you have identified all relevant sub-components.

Such comprehensive assessments are necessary as it is demonstrated by the following example.
Consider the XML structure in Figure 1. Let us say that you judged Section C, the document
component that encapsulates all text fragments relevant to the topic, as highly exhaustive (e-value 3)
and fairly specific (s-value 2). Given only this single assessment it would not be possible to deduce the
exhaustivity and specificity levels of the ascending or descending elements. For example, Body D and
Article E may be judged fairly or marginally specific depending on the volume of additional, irrelevant
information contained within the sections other than Section C. Looking at the sub-components of
Section C, it is clear that no conclusions can be drawn from Section C’s assessment regarding the
exhaustivity or specificity levels of its sub-components. For instance, both Sub-Sections A and B may
be marginally, fairly or highly exhaustive, and smaller components, such as Paragraph 3, could even be
irrelevant.

Figure 1. Example XML structure and result element

As a general rule it can be said that the exhaustivity level of a parent element is always equal to or
greater than the exhaustivity level of its children elements. This is due to the cumulative characteristics
of exhaustiveness. For example, the parent of a highly exhaustive element will always be highly
exhaustive since the child element already discusses all or most aspects of the topic. Another rule for
the exhaustivity dimension is that the parent of non-exhaustive child elements (i.e. all with e-value 0)
will also be not exhaustive (e-value 0). A rule regarding specificity is that an element has an s-value

klas
179

klas
180

klas
197

klas
199

klas
197

klas
197

klas
205

that is greater than 0 if one of its child elements has an s-value different from 0, and less or equal to the
maximum s-value of all its child elements. For instance, suppose that a parent element has tiny child
element with s-value 1 and a large child element with s-value 2, then the s-value of that parent element
will be 1 or 2. However, besides these general rules, no specific rules exist that would automate all the
assessment of ascendant and descendant elements of relevant components. Therefore, you will need to
explicitly judge all elements that contain relevant information. This is the only way to ensure both
exhaustive and consistent relevance assessments.

4. How to judge
To assess the exhaustivity and specificity of document components, we recommend a three-pass
approach.

• During the first pass, you should skim-read the whole article (that a result element is a part of -
even if the result element itself is not relevant!) and identify any relevant information as you go
along. The on-line system will assist you in this task by highlighting keywords within the article
(see Section 5).

• In the second pass, you should assess the exhaustivity and specificity of the relevant components
(i.e. identified in the first phase), and that of their ascendant and descendant XML elements.

• To ensure exhaustive assessments, in the third phase, you should assess the exhaustivity and
specificity of the descendant XML elements of all elements that have been assessed as relevant
during the second phase.

The on-line assessment system (see Section 5) will identify for you all elements that have to be
assessed for phases 2 and 3.

During the relevance assessment of a given topic, all parts of the topic specification should be
consulted in the following order of priority: narrative, topic description, topic title and keywords. The
narrative should be treated as the most authoritative description of the user's information need, and
hence it serves as the main point of reference against which relevance should be assessed. In case there
is conflicting information between the narrative and other parts of a topic, the information contained in
the narrative is decisive. The keywords should be used strictly as a source of possibly relevant cue
words and hence only as a means of aiding your assessment. You should not rely only on the presence
or absence of these keywords in document components to judge their relevance. It may be that a
component contains some or maybe all the keywords, but is irrelevant to the topic of the request. Also,
there may be components that contain none of the keywords yet are relevant to the topic. The same
applies to the terms listed within the topic title!

In the case of content-and-structure (CAS) topics, the topic titles contain structural constraints in the
form of XPath expressions. Although the structural conditions are there to impose a constraint on the
structure, you are asked as an assessor to assess the elements returned for a CAS topic as whether they
satisfy your information need (as specified by the topic) mainly with respect to the content criterion.
Therefore, you should not assess an element as “not relevant” because the structural condition is not
satisfied. In fact, your assessment of CAS topic should be very similar to that of content-only (CO)
topics, although in the former the structural conditions may influence your assessment (to a small
extent).

Note that some result elements are related to each other (ascendant/descendant), e.g. an article and
some sections or paragraphs within the article. This should not influence your assessment. For example
if the pooled result contains Chapter 1 and then Section 1.3, you should not assume that Section 1.3 is
more relevant than Sections 1.1, 1.2, and 1.4, or that Chapter 1 is more relevant than Section 1.3 or vice
versa. Remember that the pooled results are the product of different retrieval engines, which warrants
no assumptions about the level of relevance based on the number of retrieved related components!

You should judge each document component on its own merits! That is, a document component is still
relevant even if it the twentieth you have seen with the same information! It is imperative that you
maintain consistency in your judgement during assessment. Referring to the topic text from time to
time will help you maintain judgement consistency.

klas
180

klas
181

klas
198

klas
200

klas
198

klas
198

klas
206

5. Using the on-line assessment system
There is an on-line relevance assessment system provided at:

http://inex.lip6.fr

which allows you to view the pooled result set of the topics assigned to you for assessment, to browse
the IEEE-CS document collection and to record your assessments. Use your username and password to
access this system.

After logging in, you will be presented with the Home page (see Figure 2) enlisting the topic ID
numbers of the topics assigned to you for assessment (under the title “Choose a pool”). This page can
always be reached by clicking on the Home link on any subsequent pages.

Clicking on a topic ID will display the pool main page for that topic (see Figure 3).

At the top of the pool main page the following links are shown: Home, Pool, Topic and Keywords.
By clicking on the Pool link you can always return to this starting main pool page during your work.
By selecting the Topic link you can display the topic text in a popup window. This is useful as it allows
you to refer to the topic at any time during your assessment. The Keywords link allows you to edit a
list of coloured keywords (cue words or phrases). This feature allows you to specify a list of words or
phrases to be highlighted when viewing the contents of an article during assessment. These cue words
or phrases can help you in locating potentially relevant texts within an article and will aid you in
speeding up your assessment (so add as many relevant cue words as you can think of)! You may edit,
add to or delete your list of keywords at any time during your assessment (remember, however, to
reload the currently assessed document to reflect the changes). You may also specify the preferred
highlighting colour for each and every keyword. After selecting the Keywords link, a popup window
will appear showing a table of coloured cells. A border surrounding a cell signifies a colour that is

Figure 2. Home page of the assessment system

Figure 3. Pool main page

klas
181

klas
182

klas
199

klas
201

klas
199

klas
199

klas
207

already used for highlighting some keywords. You can move the mouse cursor over this cell to display
the list of keywords that will be highlighted in that colour. To edit the list of words or phrases for a
given colour, click on the cell of your choice. You will be prompted to enter a list of words or phrases
(one per line) to highlight. Note that the words or phrases you specify will be matched against the text
in the assessed documents in their exact form, i.e. no stemming is performed.

In the on-line assessment system, the following scheme is used:
1. Exhaustivity level is displayed in different shades of blue.
2. Geometric shapes are used for specificity level.

The tables below show the different icons used to indicate the relevance value of an XML element.

Element to assess

Element is not relevant

 Exhaustivity

Specificity

Highly exhaustive Fairly exhaustive Marginally exhaustive

Highly specific

Fairly specific

Marginally specific

Table 1: Icons used to indicate relevance values

Note that all icons except the ? icon can be used by assessors to specify the relevance value (the
exhaustivity and specificity level) of an element. The ? icon is used by the on-line assessment system
only to mark components that need to be assessed.

This year, the assessment system makes use of two types of inference mechanisms to ensure exhaustive
and consistent assessments: we refer to these as passive and active inferences. The passive type simply
identifies new elements to be assessed based on those already assessed. For example, for any relevant
element (e.g. any component assessed other than “not relevant”), the relevance of its child elements
must be assessed, even if these were not part of the original assessment pool (i.e. have not been
retrieved). With the application of the passive inference rules, these need-to-be-assessed components
will be marked with the ? icon. Unlike the passive rules, the active inference rules are able to derive the
relevance value of some elements. These inferred relevance values will be marked using a red border.
For example, denotes “inferred as not relevant”, which is assigned to a component if all its child
elements have been assessed as “not relevant”.

The on-line assessment system provides three main views:

1. The pool view
2. The volume view
3. The article view

In each of these views, a status bar appears at the bottom of the window and shows statistics on the
current view: how many elements have been assessed as highly exhaustive and highly specific, as
highly exhaustive and fairly specific, etc; how many elements have been assessed as not relevant (¥);
and how many elements remain to be assessed (?). Only when no more elements remain to be assessed
is the assessment for that view (pool / volume / article) complete.

klas
182

klas
183

klas
200

klas
202

klas
200

klas
200

klas
208

In the status bar, three arrows may be used to navigate quickly between the elements to be assessed.
The up arrow enables you to move from the article view to the volume view or from the volume view
to the pool view (you move in the opposite direction by selecting a volume and then an article from the
displayed lists). The left arrow can be used to go to the previous element to be assessed, while the right
arrow to go to the next element to be assessed.

It is in the article view that elements can be assessed. The article view displays all the elements that
form an article, whether these elements are to be assessed or not. In addition, the article view (see
Figure 4) shows every XML tag in the article but tries to keep an eye-friendly view of the article. XML
tags are displayed between brackets, in light blue, and according to their given (or inferred)
assessments when applicable. For instance, an <abs> tag that has been assessed as “highly exhaustive
and fairly specific” is displayed as follows:

The mouse cursor becomes a cross when it is held over an XML tag name. You can then:

• Control-click to scroll to the parent element. The parent element will be highlighted in less
than a second (in red).

• Click to display the assessment panel for the element. The assessment panel has three
components: the path (first line), the current assessment (second line), and the set of 11 icons
(reflecting all possible assignments shown in Table 1). Forbidden assessments (e.g. assessing a
parent element as not relevant where one of its child elements is relevant) are displayed in a
grey box. To assess the current element, click on the icon with the corresponding relevance
value. To hide the panel, click anywhere else in the panel.

Note that you do not need to save your relevance assessments, as the on-line assessment system will
automatically do this.

Acknowledgements
A working group was created to discuss the guidelines described in this document. Many thanks go to
them for the lively discussion and many inputs. People involved include: Shlomo Geva, Norbert
Goevert, Djoerd Hiemstra, Jaana Kekalainen, Shaorong Liu, Anne-Marie Vercoustre, and Arjen de
Vries. Also, many thanks to Norbert Goevert for preparing the pools.

17 September 2003
Gabriella Kazai, Mounia Lalmas, and Benjamin Piwowarski

Figure 4. Article view

klas
183

klas
184

klas
201

klas
203

klas
201

klas
201

klas
209

	�
	
	INEX 2003 Workshop Proceedings
	Schloss Dagstuhl

	http://inex.is.informatik.uni-duisburg.de:2003/
	Acknowledgement

	Schloss Dagstuhl
	Table of Contents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries:INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	Table of Contents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries:INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	overview.pdf
	Introduction
	Participating Organisations
	The retrieval tasks
	The Test Collection
	Documents
	Topics
	Topic Format
	The topic development process

	Submissions
	Assessments
	Evaluation metrics
	inex_eval: INEX 2003 metric for CO and SCAS topics
	inex_eval_ng: INEX 2003 metric for CO topics
	Expected Ratio of Relevant(ERR)

	Summary of Evaluation Results
	inex_eval and inex_eval_ng metric
	ERR metric

	Conclusion and Outlook on INEX 2004
	Acknowledgements
	REFERENCES -9pt
	LanguageModels.pdf
	Amsterdam-INEX2003.pdf
	1 Introduction
	2 Experimental setup
	2.1 Index
	2.2 Query processing
	2.3 Retrieval model

	3 Runs
	3.1 Content-Only task
	3.2 Strict Content-And-Structure task
	3.3 Vague Content-And-Structure task

	4 Results and Discussion
	4.1 Content-Only task
	4.2 Strict Content-And-Structure task
	4.3 Vague Content-And-Structure task

	5 Conclusions
	6 Acknowledgments
	7 REFERENCES

	overview.pdf
	Introduction
	Participating Organisations
	The retrieval tasks
	The Test Collection
	Documents
	Topics
	Topic Format
	The topic development process

	Submissions
	Assessments
	Evaluation metrics
	inex_eval: INEX 2003 metric for CO and SCAS topics
	inex_eval_ng: INEX 2003 metric for CO topics
	Expected Ratio of Relevant(ERR)

	Summary of Evaluation Results
	inex_eval and inex_eval_ng metric
	ERR metric

	Conclusion and Outlook on INEX 2004
	Acknowledgements
	REFERENCES -9pt

	ResultFusion.pdf
	YM.JuruXML-INEX'03.pdf
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	APPROACH FOR CO TOPICS
	The CO runs

	APPROACH FOR CAS TOPICS
	
	Example

	SCAS and VCAS
	The CAS runs

	RESULT CLUSTERING
	Clustering runs
	We used the following values for the clustering runs:
	ScoreThresh=0.45
	ManyDescendantThresh = 0.2
	SingleChildThresh=0.42.

	CONCLUSIONS AND FUTURE WORK
	ACKNOLEDGMENT
	REFERENCES

	OtherModels.pdf
	carolyn_final.pdf
	INTRODUCTION
	Background
	System Description

	EXPERIMENTS
	Using CO Topics
	2002 Topics
	2003 Topics

	Using CAS Topics
	2002 Topics
	2003 Topics

	CONCLUSIONS
	REFERENCES

	IRSystems.pdf
	IRIT-Paper-IRIT@INEX2003.pdf
	INTRODUCTION
	THE INEX INITIATIVE
	Collection
	Queries

	MERCURE SYSTEM
	THE INEX SEARCH APPROACH WITH MERCURE SYSTEM
	Indexing the INEX database and the queries
	Indexing CO queries
	Indexing CAS queries

	Retrieval
	Retrieval with CO queries
	Retrieval with CAS queries

	Submitted runs
	First results
	CO task
	SCAS and VCAS tasks

	Discussion and future works

	A VOTING METHOD FOR INFORMATION RETRIEVAL
	THE INEX SEARCH APPROACH WITH A VOTING METHOD
	Evolution of the categorisation process
	Experiments
	Results
	Discussion and future works

	ACKNOWLEDGMENTS
	REFERENCES

	INEX03_SearXEngine_Paper.pdf
	INTRODUCTION
	QUERY LANGUAGE
	RETRIEVAL FUNCTION
	INDEX STRUCTURES
	INEX’03
	CO-Topics
	CAS-Topics

	EVALUATION
	CONCLUSION
	REFERENCES

	inextopics.pdf
	Relevance_report.pdf
	REFERENCES

	Appendix.pdf
	Appendix

	INEXTopicDevGuide.pdf
	1. Introduction
	2. Topic creation criteria
	3. Query types
	4. Topic format
	4.1. The about() function
	4.2 CO Topics
	Examples of CO topic titles
	Example of a CO topic

	4.3 CAS Topic
	Examples of CAS topic titles
	Example of a CAS topic

	4.4. Equivalent tags
	4.5. Topics DTD

	5. Procedure for topic development
	5.1. Initial topic statements
	5.2. Collection exploration
	5.3. Refining topic statements
	5.4. Topic selection
	Acknowledgements

	INEX03_Retrieval_Task_and_Result_Format_Guide-July23.pdf
	Retrieval Task
	Result Submission
	Submission format
	
	Rank and RSV
	File and path

	Result Submission Procedure

	INEX03_Retrieval_Task_and_Result_Format_Guide.pdf
	Retrieval Task
	Result Submission
	Submission format
	
	Rank and RSV
	File and path

	Result Submission Procedure

	Appendix.pdf
	Appendix

	SchlossDagstuhl.pdf
	�
	
	INEX 2003 Workshop Proceedings
	Schloss Dagstuhl

	http://inex.is.informatik.uni-duisburg.de:2003/
	Schloss Dagstuhl

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	overview.pdf
	Introduction
	Participating organisations
	The retrieval tasks
	The test collection
	Documents
	Topics
	Topic format
	The topic development process

	Submissions
	Assessments
	Evaluation metrics
	inex_eval: INEX 2003 metric for CO and SCAS topics
	inex_eval_ng: INEX 2003 metric for CO topics
	ERR: Expected Ration of Relevant Units

	Summary of evaluation results
	inex_eval and inex_eval_ng mertics
	ERR metric

	Conclusion and outlook on INEX 2004
	Acknowledgements
	REFERENCES -9pt

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContents.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContentsFinal.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	
	Working Groups Report

	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

	TableofContentsFinal.pdf
	Table of Contents
	
	
	
	Language Model

	Using Language Models for Flat Text Queries in XML Retrieval
	HyREX at INEX 2003
	Other Probabilistic Models

	Searching in an XML Corpus Using Content and Structure
	XXL @ INEX 2003
	Accurate Retrieval of XML Document Fragments using EXTIRP
	An Approach to Structured Retrieval Based on the Extended Vector Model
	The TIJAH XML-IR system at INEX 2003
	XPath Inverted File for Information Retrieval
	Applying the IR Stream Retrieval Engine to INEX 2003
	Distributed XML Information Retrieval
	IRIT at INEX 2003
	
	Working Groups Report

	Queries: INEX 2003 working group report
	Working Group Report: the Assessment Tool
	Report of the INEX 2003 Metrics working group

	Appendix

