/ INEX 2005
: Workshop
Pre-Proceedings

November 28-30, 2005

Schloss Dagstuhl

International Conference and Research
Center for Computer Science

http://inex.is.informatik.uni-duisburg.de/2005/

Norbert Fuhr
Eﬂ_t_l'.uuu!:_:;_- MOU n ia Lal mas

DigimAL Saadia Malik
LIBRARIES . .
Gabriella Kazai

s

M. v /
: 'H?"l:\,d' W
ey

.,

http://inex.is.informatik.uni-duisburg.de/2005/

Table of Contents

Organisers vi
Preface vii
Acknowledgement viii
Schloss Dagstuhl ix
Methodology

EPRUM metrics and INEX 2005 1

Benjamin Piwowarski

HiXEval: Highlighting XML Retrieval Evaluation 11
Jovan Pehcevski, James A. Thom

XCG Overlap at INEX 2004 25
Alan Woodley, Shlomo Geva

The Interpretation of CAS 40
Andrew Trotman, Mounia Lalmas

Multiple tracks

TIJAH Scratches INEX 2005 Vague Element Selection, Overlap,

Image Search, Relevance Feedback, and Users 54
Vojkan Mihajlovi¢, Georgina Ramirez, Thijs Westerveld, Djoerd Hiemstra, Henk Ernst
Blok and Arjen P. de Vries

XFIRM at INEX 2005: ad-hoc, heterogeneous and relevance feedback
tracks - Preliminary work 72
Karen Sauvagnat, Lobna Hlaoua and Mohand Boughanem

Ad-hoc track
University of Amsterdam at INEX 2005: Adhoc Track 84
Borkur Sigurbjornsson, Jaap Kamps, Maarten de Rijke

Searching XML Documents — Preliminary Work 95
Marcus Hassler, Abdelhamid Bouchachia

TRIX Experiments at INEX 2005 110
Paavo Arvola, Jaana Kekéldinen and Marko Junkkari

B’-SDR: Basic Building Blocks for Structured Document Retrieval 125
Roelof van Zwol

Field-Weighted XML Retrieval Based on BM25
Wei Lu, Stephen Robertson, Andrew Macfarlane

XML retrieval based on direct contribution of query components
Gilles Hubert

Experimenting various user models for XML Retrieval
Yosi Mass, Matan Mandelbrod

The University of Kaiserslautern at INEX 2005
Philipp Dopichaj

Parameter Estimation for a Simple Hierarchical Generative Model
for XML Retrieval
Paul Ogilvie, Jamie Callan

Probabilistic Retrieval, Component Fusion and Blind Feedback
for XML Retrieval
Ray R. Larson

GPX - Gardens Point XML IR at INEX 2005
Shlomo Geva

An Implementation of High-Speed and High-Precision XML
Information Retrieval System on Relational Databases
Kei Fujimoto, Toshiyuki Shimizu, Kenji Hatano, Yu Suzuki, Toshiyuki
Amagasa, Hiroko Kinutani, Masatoshi Yoshikawa

The Dynamic Retrieval of XML Elements
Carolyn J. Crouch, Sudip Khanna, Poorva Potnis, Nagendra Doddapaneni

TopX & XXL at INEX 2005
Martin Theobald, Ralf Schenkel, Gerhard Weikum

When a few highly relevant answers are enough
Miro Lehtonen

RMIT University at INEX 2005
Jovan Pehcevski, James A. Thom, S. M. M. Tahaghoghi

SIRIUS: A Lightweight XML Indexing and Approximate Search
System at INEX 2005
Eugen Popovici, Gildas Ménier, Pierre-Frangois Marteau

An Evaluation of Relevance Ranking Methods for XML Using Both
Document and Query Structures
Sihem Amer-Yahia, Kenji Hatano, Jayavel Shanmugasundaram, Divesh Srivastava

Machine Learning Ranking and INEX’05
Jean-Noél Vittaut, Patrick Gallinari

i

126

138

150

158

169

182

195

199

200

201

215

217

234

249

251

Relevance feedback track

Relevance Feedback for Structural Query Expansion
Ralf Schenkel and Martin Theobald

Natural language query track

NLPX at INEX 2005
Alan Woodley, Shlomo Geva

From natural language to NEXI, an interface for INEX 2005 queries
Xavier Tannier

Heterogeneous track

Processing Heterogeneous Collections in XML Information Retrieval
Diego Vinicius Castro Pereira, Klérisson Vinicius Ribeiro Paixdo, Maria Izabel
Menezes Azevedo

Interactive track

The Interactive Track at INEX2005
Birger Larsen, Saadia Malik, Anastasios Tombros

University of Amsterdam at INEX 2005: Interactive Track
Jaap Kamps, Maarten de Rijke, Borkur Sigurbjérnsson

Kyungpook National University at INEX 2005: Interactive Track
Heesop Kim, Heejung Son

B’-SDR @ Interactive Track: User Interface Design Issues
Roelof van Zwol, Sandor Spruit, Jeroen Baas

Context matters? User behaviour and element retrieval
Ragnar Nordlie, Nils Pharo

Document mining track

XML documents clustering by structures with XCLS
Richi Nayak, Sumei Xu

A Flexible Structured-based Representation for XML Document Mining
Anne-Marie Vercoustre, Mounir Fegas, Saba Gul, Yves Lechevallier

Sequential Pattern Mining for Structure-based XML Document Classification
Calin Garboni, Florent Masseglia, Brigitte Trousse

11

260

274

289

304

313

327

333

335

336

337

349

350

Categorization and Clustering of XML documents using Structure and
Content Information
Ludovic Denoyer, Patrick Gallinari

Transforming XML trees for efficient classification and clustering
Laurent Candillier, Isabelle Tellier, Fabien Torre

Clustering XML Documents using Self-Organizing Maps for Structures
F. Trentini, M. Hagenbuchner, A. Sperduti, A.C. Tsoi, F. Scarselli, M. Gori

Multimedia track

INEX 2005 Multimedia Track
Roelof van Zwol, Gabriella Kazai, Mounia Lalmas

Integrating Text Retrieval and Image Retrieval in XML Document Searching
D. Tjondronegoro, J. Zhang, J. Gu, A. Wardhani, S. Geva

Combining Image and Structured Text Retrieval
D.N.F. Awang Iskandar, Jovan Pehcevski, James A. Thom, S. M. M. Tahaghoghi

Multimedia Extensions for B-SDR based on Principle Component Analysis
Roelof van Zwol

APPENDIX

Ad-hoc track

INEX 2005 Guidelines for Topic Development
B6 rkur Sigurbjérnsson, Andrew Trotman, Shlomo Geva, Mounia Lalmas,
Birger Larsen, Saadia Malik

INEX 2005 Retrieval Task and Result Submission Specification
Mounia Lalmas

INEX 2005 Relevance Assessment Guide
Mounia Lalmas, Benjamin Piwowarski

INEX 2005 Evaluation Metrics
Gabriella Kazai, Mounia Lalmas

Heterogeneous track

INEX 2005 Heterogeneous Track Tasks and Result Submission Specification
Ray R. Larson

v

351

352

353

354

364

365

373

375

385

391

401

407

Multimedia track

INEX 2005 Multimedia Track - Working Document
Roelof van Zwol, Mounia Lalmas, Gabriella Kazai

Interactive track

INEX iTrack Daffodil

Logging guidelines

Introduction to the experiment
Instructions to searchers

Questionnaires

Guidelines for Post-experiment Interviews

Document mining track

Mining XML documents: Bridging the gap between Machine Learning and

Information Retrieval

Relevance feedback track

Relevance Feedback Task

Natural language query track

NLPX Task:Natural Language Processing for XML Information Retrieval

411

418
423
427
432
438
445

447

457

460

Organisers

Project leaders

Norbert Fuhr (University of Duisburg-Essen)
Mounia Lalmas (Queen Mary University of London)

Contact persons

Saadia Malik (University of Duisburg-Essen)
Zoltan Szlavik (Queen Mary University of London)

Topic format specification

Borkur Sigurbjormsson (University of Amsterdam)
Andrew Trotman (University of Otago)

Online relevance assessment tool
Benjamin Piwowarski (Universitad de Chile)

Metrics

Gabriella Kazai (Queen Mary University of London)
Arjen P. de Vries (CWI)

Paul Ogilvie (Carnegie Mellon University)
Benjamin Piwowarski (Universitad de Chile)

Relevance feedback task

Yosi Mass (IBM Research Lab)
Carolyn Crouch (University of Minnesota Duluth)

Natural language processing task

Shlomo Geva (Queensland University of Technology)
Alan Woodley (Queensland University of Technology)

Heterogeneous collection track
Ray Larson (University of California, Berkeley)

Interactive track

Birger Larsen (Royal School of Library and Information Science)
Anastasios Tombros (Queen Mary University of London)
Saadia Malik (University of Duisburg-Essen)

Document mining track

Ludovic Denoyer (Université Paris 6)
Anne-Marie Vercoustre (Inria-Rocquencourt)
Patrick Gallinari (Université Paris 6)

XML multimedia track

Roelof van Zwol (Utrecht University)
Gabriella Kazai (Queen Mary University of London)
Mounia Lalmas (Queen Mary University of London)

vi

Preface

Welcome to the 4™ workshop of the Initiative for the Evaluation of XML Retrieval (INEX)!

Now, in its fourth year, INEX is an established evaluation forum for XML information
retrieval (IR), with over 50 participating organisations worldwide. Its aim is to provide an
infrastructure, in the form of a large XML test collection and appropriate scoring methods, for
the evaluation of XML IR systems.

XML IR plays an increasingly important role in many information access systems (e.g. digital
libraries, web, intranet) where content is more and more a mixture of text, multimedia, and
metadata, formatted according to the adopted W3C standard for information repositories, the
so-called eXtensible Markup Language (XML). The ultimate goal of such systems is to
provide the right content to their end-users. However, while many of today’s information
access systems still treat documents as single large (text) blocks, XML offers the opportunity
to exploit the internal structure of documents in order to allow for more precise access, thus
providing more specific answers to user requests. Providing effective access to XML-based
content is therefore a key issue for the success of these systems.

2005 was an exciting year for INEX, and brought with it a lot of changes and new
aspects to the evaluation. In total seven research tracks were included in INEX 2005, which
studied different aspects of XML information access: Ad-hoc, Interactive, Multimedia,
Relevance Feedback, Heterogeneous, Document Mining and Natural Language (NLP). The
Multimedia and Document Mining tracks were new for the 2005 campaign; the other tracks
reached their second year. The interactive track expanded in the numbers of tasks offered and
in the number of participating groups; the track tries to answer some fundamental questions of
XML IR. The heterogeneous track expanded by studying new collections with different DTDs
and their effect on XML IR system effectiveness. The relevance feedback track investigated
approaches for queries that also include structural hints (rather than content-only queries in
2004). The NLP track included a new task in 2005 that allows new participants with NLP
expertise to join the INEX workshop without the need to develop a search engine, and thus
encouraging wider accessibility. The consolidation of the existing tracks, and the expansion to
new areas offered by the two new tracks, allows INEX to grow in reach.

INEX 2005 has also introduced a new relevance assessment procedure and new evaluation
metrics.

The aim of the INEX 2005 workshop is to bring together researchers in the field of XML IR
who participated in the INEX 2005 evaluation campaign. During the past year participating
organisations contributed to the building of a large-scale XML test collection by creating
topics, performing retrieval runs and providing relevance assessments. The workshop
concludes the results of this large-scale effort, summarises and addresses encountered issues
and devises a work plan for the future evaluation of XML retrieval systems.

vil

Acknowledgements

INEX is funded by the DELOS Network of Excellence on Digital Libraries, to which we are
very thankful. We would also like to thank the IEEE Computer Society for providing us the
XML document collection.

We gratefully thank organisers of the various tracks for their great work in setting up the new
tracks, and carrying on and refining the existing tracks.

As always, special thanks go to the participating organisations and people for their
contributions and hard work throughout the year! Also, many thanks to everyone who has
contributed to the lively email discussions on the various mailing lists — resulting in a record
number of emails, and a reputation of the INEX community as one of the most vivacious.

We hope you have enjoyed the INEX 2005 campaign and have fruitful and stimulating
discussions at the workshop.

Norbert Fuhr, University of Duisburg-Essen
Mounia Lalmas, Queen Mary University of London
Saadia Malik, University of Duisburg-Essen
Gabriella Kazai, Queen Mary University of London
November 2005

viil

Schloss Dagstuhl

iX

Schloss Dagstuhl or Dagstuhl manor
house was built in 1760 by the then
reigning prince Count Anton von
Ottingen-Soetern-Hohenbaldern. After
the French Revolution and occupation
by the French in 1794, Dagstuhl was
temporarily in the possession of a
Lorraine ironworks.

In 1806 the manor house along with the
accompanying lands was purchased by
the French Baron Wilhelm de Lasalle
von Louisenthal.

In 1959 the House of Lasalle von
Louisenthal died out, at which time the
manor house was then taken over by an
order of Franciscan nuns, who set up an
old-age home there.

In 1989 the Saarland government
purchased the manor house for the
purpose of setting up the International
Conference and Research Center for
Computer Science.

The first seminar in Dagstuhl took place
in August of 1990. Every year
approximately 2,000 research scientists
from all over the world attend the 30-35
Dagstuhl Seminars and an equal number
of other events hosted at the center.

http://www.dagstuhl.de/

EPRUM metrics and INEX 2005
DRAFT

Benjamin Piwowarski

Centre for Web Research, Universidad de Chile
bpiwowar@dcc.uchile.cl

Abstract. Standard Information Retrieval (IR) metrics are not well suited for
new paradigms like XML or Web IR in which retrievable information units are
document elements or sets of related document. These units are neither prede-
fined nor independent, and the elements returned by IR systems may overlap and
contain near misses. Part of the problem stems from the classical hypothesis on
the user behaviour that do not take into account the structural or logical context
of document elements or the possibility of navigation between units. This paper
proposes a more realistic user model which encompasses a large variety of user
behaviours, makes explicit the hypothesis underlying the user on explicit formal
grounds. Based on this user model, we propose an extension of the probabilistic
precision-recall metric which allows coping with the different problems encoun-
tered with these new IR paradigms. In this paper, we present the EPRUM metric
used for evaluating the official submissions of INEX 2005. We also discuss the
implication of such a metric on several key problems of XML Information Re-
trieval: the notion of the ideal list, the problem of the overlap.

1 Introduction

This document describes the EPRUM metric in the context of XML Retrieval. EPRUM
is a metric that aims at providing a unique and comprehensive framework for the evalu-
ation of XML Retrieval systems', by defining a precise user model and an extension of
the notion of precision at a given recall level. As Generalised Recall [3] and Precision-
Recall with User Modelling [4], EPRUM is based on a probabilistic model of the user
and of the relevance that are directly used while computing precision and recall. This
user model has parameters that can be tuned so that they mimic the “average” user
behaviour.

The EPRUM user and relevance model also has consequences (1) on the interpreta-
tion of the INEX scale and (2) on the definition of what is an ideal run and its relation
with the user model. With respect to the latter we define precisely what is user satis-
faction and what is its relationship with the INEX scale. With respect to the former,
diverging from our initial algorithm [3], we follow the one described in [1].

A note about relevance: we distinguish between the relevance of an element (the
element contains some relevant material) and the idealism of an element (the fact

! but not limited to: the relevance model could be used in standard information retrieval and its
user model could be reused in passage retrieval, web retrieval, video retrieval, etc.

that the element is the unit the user wants to see, i.e. that it belongs to the ideal
recall base). In order to compute the ideal set, we used the algorithm described by G.
Kazai in [1].

2 The EPRUM metric

EPRUM is an extension of precision-recall. Precision is defined as the ratio of the
minimum number of ranks that a user has to consult in the list returned by an ideal
system and by the evaluated system, given that the user wants to see a given amount of
ideal units. At a given recall level / (0 < [< 1), precision is defined formally as:

Precision(/) =

Minimum number of consulted list items

B Achievement indicator for achieving a recall / (over all lists)

X
for arecall Minimum number of consulted list items
for achieving a recall / (system list)

It is easy to see that this is just an alternative definition of the precision at a given
recall level. In classical IR, if a system retrieves A + B documents, where A is the num-
ber of relevant documents and B the number of not relevant documents, then an ideal
system would achieve the same recall with a list reduced to A documents. The above
definition would result in a precision AAW which is the exact definition of precision —
the ratio of the number of relevant documents to the number of retrieved documents.
The achievement indicator is used to set the precision to O if the recall level cannot be
achieved; this is also the classical definition of precision-recall.

The following example illustrates the definition of the EPRUM metric; let the list
returned by a system be the following:

@® ©O 6

where gray nodes are ideal units while white nodes are not ideal. The standard
definition of precision would assign a precision of respectively 1, 0.25 and 0 for recalls
of 1,2 and 3 (or more). With the definition we chose, we get the same values (just forget
about the mathematical expectation for now!):

Recall 1 The minimum number of elements the user has to consult, over all possible
lists, is 1. The value is the same for the system list and the user was able to see one
element. Precision is 1.

Recall 2 The minimum number of elements the user has to consult, over all possible
lists, is 2. For the evaluated system, the user will have to consult the list until d -
that is, the minimum number of items that she has to consult is 4. Precision is 0.5.

Recall 3 In this case, the same process would give us a precision of 3/5 (because the
user has to consult the whole list), but has the recall cannot be attained by the user,
the achievement indicator is 0 and hence precision is also 0.

As shown in this example, this definition of precision-recall gives the same results as
the standard definition. The interest of this formulation is that we can define and use
more complex user and relevance models, and starting from the same definition, derive
a generalisation of precision-recall. It is possible to proof that, using the final formula
of EPRUM and settings its parameters so as to mimic the standard user behaviour in
“flat” IR, we get exactly the same result as trec_eval.

3 What is needed to compute EPRUM?

EPRUM can be computed given three different sets of parameters:

1. The probability that a user consults an element of the corpus. In standard IR, we
say that a user consults a document when she clicks on the link in the list returned
by the system. This probability reflects the fact that a user will have to click from
a result in the list returned by a the IR system and will eventually have look at the
element(s) that are associated with the list item. In the context of XML Retrieval,
we have to distinguish two cases: the Fetch&Browse task and the others. In the case
of the Focussed task, we suppose that a user will always consider an element after
having clicked on its surrogate in the list. In the case of the Fetch&Browse task, the
user model is more complex and is described latter.

2. The probability that a user browses from a considered element to any neighbour ele-
ment. That is, a user, when considering an element, will most probably look around
to its close context (i.e., in an XML documents this would be the previous siblings,
next siblings, ancestors, etc.). This behaviour is stochastic, that is defined by a prob-
ability, since we don’t expect all the users to behave the same. The probability of
browsing from a considered element x to an element y could be measured, in a user
experiment, by the proportion of users that would see y after having considered x.

3. The probability that a user finds a unit ideal. This probability is closely related to
the concept of quantisation but has a well defined meaning in EPRUM: In a user
experiment, its value would be the proportion of users that would find the given
unit ideal if they had exactly the same information need.

Unfortunately, we still don’t have enough user data to compute even an approximated
user model. Nevertheless it is possible to define simple yet realistic behaviours. In INEX
2005, we chose user models close to the ones implied by xCG (where only elements
overlapping with an ideal unit can be rewarded) and defined the following user models:

1. For the consideration,

Focussed In the focussed task, we made the hypothesis, like for standard IR, that a
user always considers elements pointed by list item. That is, if the third list item
is element-x then the user will consult the element-x (she will see the content
of this element). The probability of considering an element for the focussed
task is either O (the element in the not in the i first ranks) or 1 (the element is in
the first i list elements):

p (C) _ 1 if X’ is within the first i elements of the list
710 otherwise

Fetch&Browse Here, an item in the list is not anymore only one element but a set
of elements from the same document. We view this task as follows: The user
clicks on the document in the list. She is presented a document where system
selected elements are highlighted and ordered — imagine that there is button
that can focus the user window on each selected element in turn. The user then
begins to see the first ranked element, then the second, etc. for a given article.

We make the hypothesis that the probability that the user keeps on consulting
the list of elements depends on the amount of irrelevant material contained in
the previous consulted elements — this is somehow similar to the T2I (tolerance
to irrelevance) user model [2]. That is, the probability that the user keeps on
going after having consulted an element in the document directly depends on
the element overlap with the ideal elements. For an element ranked i within a
document group, the probability that the user considers it is defined as:

size of the element

size of intersection with ideal elements
P(Ci.x,-):P(Ci,x,-,1> X <k+(l—k)>< >

where P (C,-_,L]) = 1 by definition.

The coefficient k is the minimum probability for a user to consider the next
element in the list. For INEX 2005, we set k to 0.8. For example, if the three first
elements, say of size 10 characters, returned for an article have no intersection
with an ideal element, the probability that the user considers the second one is
0.840.2 x 0 = 0.8, that she considers the third one is 0.8 x (0.8 4+0.2 x 0) =
0.64, etc. Note that a run that returns only elements within (or equal to) ideal
targets have their probability of considering an element always equal to 1. In
this case (and only in this case), the order among elements within the article
doesn’t change the performance of the system with respect to this instantiation
of EPRUM parameters.

2. For the browsing or navigational behaviour, we chose a simple user model — the
user, from a considered element, can go up or down. We call this behaviour “hi-
erarchic”: The proportion of users that navigate from an element to one of its de-
scendant, or from an element of its ancestor, is equal to the ratio of the sizes of the
elements:

sizeofy .
sizeof ¥ if y is an ancestor of x
_) sizeofy .o .
P(x —y) = q 2222 if x is an ancestor of y

0 otherwise

For instance, 30 % of the users would go from a section of size 10 its enclosing
paragraph of size 3. Note that more realistic user models, like the T2I one, could be
used. We chose this simple model because submitted runs were optimised for the
inex_eval or the XCG metrics which have an implicit user definition which is close
to the hierarchic behaviour.

3. For the idealism of an element, we used the Exh quantisation

0 if "too small”

P(x is ideal) if exhaustivity is 0
X =
if exhaustivity is 1

1 if exhaustivity is 2

Note that when an element has a probability O of being ideal, it does not mean that a
system returning this element will not be rewarded because a user can still browse
to the ideal element. Note also that no “too small” element can be an ideal unit.
We interpret the probability that an element is ideal as the percentage of users that
would be satisfied by the element.

4 Examples

Document 1 Document 2

» (O (o0 ()
OION XX

Fig. 1. The example database, composed of two documents and twelve elements. Two elements
are highly exhaustive (b and h, with a black background) for the query and one of them is fairly
exhaustive (k). The size of each element is 1 + the size of its children (in an imaginary unit: this
could be for instance the number of words divided by 100): the size of e (f, h, m, k or 1) is 1, the
size of b is 3, the size of a is 5, etc. The probability of navigating from an element to the other

being the ratio of sizes, the probability to navigate from f to b is for instance %

We present in this section the evaluation of four lists for the Focussed (and SVCAS,
VVCAS) and Fetch&Browse tasks. We used a small database where only two (or three)
elements are ideal, as illustrated in Fig. 1.

The precision can be rewritten, for a given recall value r (r is the number of ideal
units the user wants to see):

Precision(r) = E

Minimum number of consulted list items (E1)
for achieving a recall / (over all lists)

Achievement indicator
for a recall /
x E — — (E2)
Minimum number of consulted list items
for achieving a recall [(system list)

It can be shown that:

(E1)= Y i(P(F >r)—P(F >r))

rank i

(E2)= ¥ (P> 1) —P(Fr 1 > 1)

rank i |

where F; (resp. F;*) is the number of ideal elements found by the user after she
consulted the i first ranks of the system returned list (resp. the ideal list). If we consider
the classical case, where an ideal element is or not retrieved at each rank, then P(F; > r)
is either O or 1. In this case, it is easy to see that the expected value E1 (resp. E2) is the

actual value (or inverse value) of the rank where the r ideal element has been retrieved.

4.1 Focussed and VVCAS, SVCAS

We use the following lists:

A List b,h.k: This is the ideal list, composed of the ideal elements - with the most ideal
first.

B Listk, h, b: This is the ideal list, but ordered by increasing order of relevance

C Listf, h, k: The list A but with b (first element) replaced by one of its child

D Listh, f, k: The list D, swapping the two first elements

We assume that the probability that the user has seen more than one ideal element
before beginning to consult the list is 0; that is, P(Fy > r) = 0 for r > 0. We then
distinguish two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75 % of the users —
there is a justification that we don’t present here):

Recall 1 (level 1/2) (E1)is 1; (E2)isresp. 1, 3, I x (3 —0)+ 3 x (1—1) =3,

and 1 for lists A, B, C and D. Precision is 1, %, %, and 1
Recall 2 (level 1) (E1) is 2; (E2) is resp. %, %, % X (% —-0)= é, and é for lists A,
B, C and D. Precisions are 1, %, % and %

2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):

Table 1. Evolution of the different probabilities, with respect to the different lists (A, B, C, D)
for the Focussed, VVCAS, and SVCAS tasks. The three columns below probability P(S,-J) cor-
respond respectively to the probability that element a, b, or ¢ is seen by the user after rank i. The
probability P, (resp. Pp) is the probability that the user found at least ... ideal elements after rank
i, given that she only is satisfied with elements at least highly (resp. fairly) exhaustive.

List (b.h,k): A List (k.h,b): B
P(Si.o)|[Pa(Fi =) |[P1(Fi >)[[P(Six)|[Pa(Fi 2)||P2(Fi >)
rank|[blh[k[[1] 2 [[1]2[3 [bh[k|[1] 2 [1]2[3
1 [[t[o[o]t] o tfo[o [oJo[1][o[0 T[1[o[o
2 [[a[ifo] 1 [a[a] o Jo[t[t]1] o [[i] 0
3 [fa] e a1 a1
List (fh,k) C List (b,i,k): D
P(Six)||[P2(Fi >)[[P1(F >)|[P(Six)||P2(Fi >)||P1(F >)
rank|[bh[k[[1] 2 [[1][2] 3 [b[h[k([1] 2 [1]2] 3
1 [[3[o[o][i] o [3]o] o [[ifoJo]l1] o T[1]o] o
SNt TRt
= 3 3 3 3 3 3
Recall 1 (level 1/3) (E1)is 1; (E2)isresp. 1, 1, I x (3 —0)+3x(1—%)=%, and

1 for lists A, B, C and D. Precisionis 1, 1, %, and 1.

Recall 2 (level 2/3) (E1) is 2; (E2) is resp. %, 1, 4 x
and 17—8 for lists A, B, C and D. Precisions are 1

Recall 3 (level 1) (E1) is 3; (E2) is resp. 1, 1,

B, C and D. Precisions are 1, 1, % and %

i ¢']

There is a way to combine the two sets of precisions that we do not describe here but
give an example instead. If a user wants to see more than two third of the ideal elements
for list B, then for 75 % of the users this means a precision of % and for 25 % of them
this means 1: Hence the precision of .75 x % + .25 x 1 = .875. For the same list, if a
user wants to see between % (excluded) and % (included) of the ideal elements, then for
75 % of the users that means seeing 2 ideal elements with a precision %, and for 25 %
of the users that means seeing 2 ideal elements with a precision 1. Hence, a precision
of 75x 2 +.25x 1=.75.

The evaluations order the runs in an order which is appropriate: A has the maximum
score and C is worse than D (D and C have their two first list item swapped, and D has
a fully ideal element as its top ranked element). B, containing only ideal elements, is
overall better than C and D.

4.2 Fetch & Browse

We use the following lists:

A List D2[h,k] D1[b]: this is the ideal list

Table 2. Precision-recall for the Focussed, VVCAS, and SVCAS tasks. The precision for the four
lists and four recall intervals are shown. The line “correspondence” show what are the number of
ideal elements the user wants to see if (1) she considers that only elements with an exhaustivity 2
are ideal (2) she considers that elements with an exhaustivity at least 1 are ideal.

recall level]0,%} 13.51113,5]]%, 1]
correspondence| 1,1 2| 2, 2,3
1 1 1 1

0.63(0.63| .75 |0.88
0.67 [0.69 | 0.44 | 0.33
1 [094|0.441]0.33

— [l
[N

o Q= >

B List D1[b] D2[h,k]: the ideal list in reverse order

C List D2[i,k] D1[b]: the first document returned contains a near miss (i); as i is fully
specific (contained in an ideal element), the probability that the user consults the
next element (k) is 1.

D List D2[g,k] D1[b]: in this list, the first element of the first returned document is an
element that overlaps partially with an ideal element; hence, the user will consider
the element k of D2 with a probability inferior to 1. Said otherwise, not all the user
will continue to consult the highlighted elements within D2. The actual probability
that the user consults the element k is 0.8 +0.2 x % = 0.9 as one half of g overlaps
with h: At the first rank the user sees h with a probability .5, and k with a probability
.9. Another thing to note, is that if h and k satisfy the user, then she sees at first rank
at least one ideal element with a probability % X .9+ % x .14 % x.9= %, the three
terms of the sum being the case where (1) the user sees h and k, (2) the user sees k
but not h, and (3) the user sees k but not h.

Note also that the only real difference between lists C and D is that the first element is
not fully specific (because the same proportion of users will browse to h from element
g than from element 1).

Like in the previous Section, we distinguish two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75 % of the users —
there is a justification that we don’t present here):
Recall 1 (level 1/2) (E1)is 15 (E2)isresp. 1, 1, 1 x (3 —0)+ 1 x (1-1)=32,and
% for lists A, B, C and D. Precisionis 1, 1, 5, and %.
Recall 2 (level 1) (E1)is2; (E2) istesp. 3, 3, 3 X (5 —0) = 1, and § for lists A,
B, C and D. Precisions are 1, 1, % and %

Al

2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):
Recall 1 (level 1/3) (E1)is 1; (E2)isresp. I, I, I, and 1 x (42 —0)+ 1 x (1 —
1—29) = % for lists A, B, C and D. Precisionis 1, 1, 1, and %.

Recall 2 (level 2/3) (E1) is 1; (E2) istesp. 1, 3, Ix (§—0)+ 4 x (1—-1) =3,
and 1 x (79 -0) +% X (% — 79) =¥ for lists A, B, C and D. Precisions are 1,
13 2.8
257 and =

Table 3. Evolution of the different probabilities, with respect to the different lists (A, B, C, D) for
the Fetch and Browse tasks. The three columns below probability P(S;) correspond respectively
to the probability that element a, b, or ¢ is seen by the user after rank i. The probability P, (resp.
Py) is the probability that the user found at least ... ideal elements after rank 7, given that she only
is satisfied with elements at least highly (resp. fairly) exhaustive.

List D2[h,k] D1[b]: A List D1[b] D2[h,k]: B

P(Si.o)|[Pa(Fi =) [[P1(Fi >)|[P(Six)||Pa(Fi 2)||Pa(Fi >)
rank|[blh[k[[1] 2 [[1]2[3 [bh[k|[1] 2 [1]2[3
1 J[o[i]t][1] o uft] o [[t[o[o[[1] 0 [t]o] O

11]1

2 |11 1] 1 11 1 1 1 J11f 1

List D2[i.k] D1[b]: C List D2[g.k] DI[f]: D
P(Si) |[P2(F; =) [Py (Fi >)[[P(Si) ||P2(F; =) || P1(Fi >)
rank|[blh[k[[1] 2 [[1]2] 3 [b[h][k([1] 2 [[1]2]3
1 [o[F[t][3] o [i[i] o Jo[3][9]3] o [L[3]o
2 [z e]fe] 3 fafa] X Oggeli] o1 %8

Recall 3 (level 1) (E1)is2; (E2)isresp. 3, 5,4 x (5 —0)={,and 3 x (5 —0) =
9 for lists A, B, C and D. Precisions are 1, 1, :

Using the same technique that in the previous section, we know combine the precisions
for these two sets of users.

Table 4. Precision-recall for the list A-D (Fetch&Browse). The precision for the four lists and
four recall intervals are shown. The line “correspondence” show what are the number of ideal
elements the user wants to see if (1) she considers that only elements with an exhaustivity 2 are
ideal (2) she considers that elements with an exhaustivity at least 1 are ideal.

]

—
—

recall level]0,%] 13,2
correspondence| 1,1 | 1,2

1 1 1 1
1 | 88 | .88 | 1
81 1 .75 | .56 | .50
811 .74 | 55| .49

,1
23

o Q| =| >

The evaluations are as expected; list A has the maximum score, followed by list
B (where the two documents were swapped). Then list C is superior to D, although
very close: the difference lies in that the user did not continue to explore the document
as the first element, for list D, was not fully specific.

5 Discussion

In this article, we presented the EPRUM metric and how it was used in INEX 2005
to evaluate participant submissions. EPRUM is a generalisation of precision-recall. For
instance, it reduces to standard recall-precision if browsing between elements is not
allowed and element relevance is binary.

Most metrics used to compare the performance of semi-structured document search
engines rely — sometimes implicitly — on a simplistic user behaviour: The user is sup-
posed to consult exclusively the elements of the list returned by the engine. This user
model is no more adapted to recent IR tasks like XML. In particular it does not allow
considering user ability to navigate between elements, using the list as entry points to
the information she seeks.

Eval)

EPRUM is implemented in the Evall software, along with all the other metrics of INEX.
It can be downloaded from this URL:
http://evalj.sourceforge.net http://evalj.sourceforge.net

References

[1] G. Kazai and M. Lalmas. Notes on what to measure in inex. In A. Trotman, M. Lalmas, and
N. Fuhr, editors, Proceedings of the INEX 2005 Workshop on Element Retrieval Methodol-
ogy. University of Otago, Univerisity of Glasgow, Information Retrieval Festival, 2005.

[2] G. Kazai, M. Lalmas, and A. P. Vries. The overlap problem in content-oriented XML re-
trieval evaluation. In Proceedings of the 27th annual international conference on Research
and development in information retrieval, pages 72—79, Sheffield, UK, July 2004. ACM
Press.

[3] B. Piwowarski and P. Gallinari. Expected ratio of relevant units: A measure for structured
information retrieval. In N. Fuhr, M. Lalmas, and S. Malik, editors, INitiative for the Evalua-
tion of XML Retrieval (INEX). Proceedings of the Second INEX Workshop, Dagstuhl, France,
Dec. 2003.

[4] B. Piwowarski, P. Gallinari, and G. Dupret. An extension of precision-recall with user mod-
elling (PRUM): Application to XML retrieval. submitted for publication, 2005.

10

HiXEval: Highlighting XML Retrieval
Evaluation

Jovan Pehcevski and James A. Thom

School of CS and IT, RMIT University, Melbourne, Australia
{jovanp, jat}@cs.rmit.edu.au

Abstract. This paper describes our proposal for an alternative XML
retrieval evaluation that is solely based on the highlighted relevant text.

1 Introduction

How to properly evaluate the XML retrieval effectiveness is still an open research
problem. INEX, as in previous years, is used as arena to investigate the behaviour
of a variety of metrics. However, unlike in previous years, a new set of official
metrics is adopted in INEX 2005, which belong to the eXtended Cumulated Gain
(XCG) family of metrics [5, 6].

The following three metrics are the official INEX 2005 metrics used to mea-
sure the retrieval effectiveness of submitted runs:

1. nxCG — for a given rank r, nxCG[r] measures the relative gain a user has
accumulated up to that rank, compared to the gain they could have accu-
mulated if the system had produced the optimal ranking.

2. ep/gr (effort-precision/gain-recall) — measures the amount of relative effort
(as the number of visited ranks) a user is required to spend compared to
the effort they could have spent when inspecting an optimal ranking for a
cumulated gain level.

3. Q and R — modified normalised cumulated gain measures which employ bonus
gain functions that directly incorporate the rank position of the cumulated
gain level.

The three official INEX 2005 metrics are explained in detail by Kazai and
Lalmas [4].

In an effort to simplify the XML retrieval evaluation, we propose to solely
incorporate the knowledge of the highlighted information for a given INEX topic.
To obtain this knowledge, we use the statistics stored in the INEX 2005 relevance
judgements gathered during the highlighting assessment task at INEX 2005.

The highlighting task is as follows: first, for a returned article the assessor
is asked to highlight all its relevant content. Second, after the assessment tool
automatically identifies the elements that enclose the highlighted content, the
assessor is asked to judge the level of exhaustivity of these elements, and of all
their ancestors and descendants. Last, based on the highlighted text, the level of

11

<file collection="ieee" name="co/2000/r7108">

<element path="/article[1]" E="1" size="13556" rsize="5494"/>

<element path="/article[1]/bdy[1]" E="1" size="9797" rsize="4594"/>

<element path="/article[1]/bdy[1]/sec[1]" E="1" size="1301" rsize="409"/>
<element path="/article[1]/bdy[1]/sec[2]" E="1" size="2064" rsize="2064"/>
<element path="/article[1]/bdy[1]/sec[2]/st[1]" E="7" size="30" rsize="30"/>
<element path="/article[1]/bdy[1]/sec[4]/p[1]" E="1" size="731" rsize="731"/>
<element path="/article[1]/bm[1]/app[1]" E="1" size="2085" rsize="900"/>
<element path="/article[1]/bdy[1]/sec[6]/ip1[1]" E="1" size="706" rsize="177"/>
</file>

Fig.1. A sample from the INEX 2005 CO topic 203 relevance judgements for the
relevant file co/2000/r7108. For each judged element, E shows the value for exhaustivity
(with possible values ?, 1 and 2), size denotes the element size (measured as total
number of contained words), while rsize shows the actual number of words highlighted
as relevant by the assessor.

specificity is computed automatically as a ratio of highlighted to fully contained
text.

Table 1 shows a sample of relevance judgements obtained for the INEX 2005
CO topic 203. For each judged element, E shows the exhaustivity value of the
element (with possible values 7, 1 and 2), size denotes the total number of words
contained by the element, while rsize shows the actual number of highlighted
words by the assessor.

One approach of measuring the relevance of an element is to combine values
obtained from the two INEX relevance dimensions. For example, if the observed
value for E is 1 and both values for size and rsize are the same, the element is
deemed as highly specific but only partially exhaustive. A quantisation function
is then used to combine these two values into a number that is subsequently used
to reflect the relevance of the element. However, the official INEX 2005 metrics
treat each element with an E value of ? as non-relevant, which means that these
‘too small’ elements do not bring any gain for the retrieval evaluation. We argue
that a system-oriented evaluation metric should also take these elements into
account, particularly because they do contain highlighted (and thus relevant)
information.

We contend that the purpose of the XML retrieval task is to find elements
that contain as much relevant information as possible, without also containing
a significant amount of non-relevant information. Therefore, to measure the ex-
tent to which an XML retrieval system returns relevant information, we follow
an approach that only takes into account the amount of highlighted text in a
retrieved element, without considering the E value of that element. We propose
HiXEval (pronounced hi—ex—eval) — an alternative evaluation metric for XML
retrieval that is based on the traditional definitions of precision and recall which

12

have been extended to include the knowledge obtained from the INEX 2005
highlighting assessment task.

In INEX 2004, the set-based overlap was used as an indicator of the level of
overlap between the returned elements [2]. In this paper we describe four overlap
indicators, of which three are derived from the set-based overlap. We believe that
by having more than one indicator of overlap, the nature of the overlap problem
can be understood better.

The remainder of this paper is organised as follows. In Section 2 we provide a
brief description of our hybrid XML retrieval approach that is used to generate
the INEX 2005 runs. Samples of these runs are used as preliminary examples in
this paper. In Section 3 we provide a formal definition of our alternative INEX
2005 evaluation metric, and provide some preliminary observations of what is
measured. In Section 4 we describe the four overlap indicators, which aid in
better understanding of the nature of the overlap problem. In Section 5, by
using the alternative INEX 2005 metric, we evaluate the retrieval effectiveness
of our official INEX 2005 runs for each retrieval strategy in the INEX 2005 C0+S
sub-task. We conclude in Section 6 by outlining possible avenues for future work.

2 Description of the hybrid XML retrieval approach

In this section we provide a very brief description of our hybrid XML retrieval
approach used to generate the INEX 2005 runs. For further details see our INEX
2005 ad hoc paper [8].

The system we use in INEX 2005 follows a hybrid XML retrieval approach,
combining information retrieval features from Zettair! (a full-text search engine)
with XML-specific retrieval features from eXist? (a native XML database). The
hybrid approach can be seen as a “fetch and browse” [1] XML retrieval approach,
since full articles estimated as likely to be relevant to a query are first retrieved
by Zettair (the fetch phase), and then the most specific elements within these
articles are extracted by eXist (the browse phase) [10].

Three similarity measures are currently implemented in Zettair, each based
on one of the following three information retrieval models: the vector-space
model, the probabilistic model, and the language model. For the fetch phase
of our hybrid system, we investigate which of the three information retrieval
models (PCosine, Okapi, or Dirichlet) yields best effectiveness for full article
retrieval.

To identify and rank the appropriate granularity of elements to return as
answers, we use a retrieval module that utilises the structural information in
the eXist list of extracted elements. Our retrieval module presents what we call
Coherent Retrieval Elements (CREs) as final answers. For the browse phase
of our hybrid system, we investigate which combining choice — among the two
ways for identifying CREs (nCRE and oCRE) and the two XML-specific heuristics

! http://www.seg.rmit.edu.au/zettair/
2 http://exist-db.org/

13

Article nCRE answer element T-matches P-length F-frequency

€0/2000/r7108 /article[1]/bdy[1]/sec[2] 3 3 9
€0/2000/r7108 /article[1]/bdy][1] 3 2 31
€0/2000/r7108 /article[1] 3 1 39
€0/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 2 4 2
€0/2000/r7108 /article[1]/bm[1]/app[1] 2 3 8
€0/2000/r7108 /article[1]/bdy[1]/sec[1] 2 3 5

€0/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 1 4 2
Table 1. Ranked list of nCRE elements using the TPF heuristic combination for article
c0/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

for ranking the CREs ((TPF and PTF2)) — yields best effectiveness for element
retrieval.

To identify the appropriate element granularity, two types of answer elements
are returned by our retrieval module: oCRE and nCRE. The oCRE answer elements
typically represent less specific elements, with the expectation that they would
provide better context for the contained text than that provided by more specific
elements. The nCRE answer elements, on the other hand, additionally include
most specific (leaf) elements as answers, with the expectation that these newly
included elements would also allow for more focused retrieval.

With the TPF ranking heuristic, first the CREs are sorted in a descending
order according to the number of distinct query terms a CRE contains (the more
distinct query terms it contains, the higher its rank). Next, if two CREs contain
the same number of distinct query terms, the one with the longer length of its
absolute path is ranked higher (which ensures that more specific elements are
preferred over less specific ones). Last, if the lengths of the two absolute paths
are also the same, the CRE with more frequent query term appearances is ranked
higher than the CRE where query terms appear less frequently. The final answer
list when the TPF ranking heuristic is used is shown in Table 1.

With PTF2, the CREs are first sorted in a descending order according to the
length of the absolute path of a CRE (where the longer CRE path results in a
higher rank, although the CREs containing exactly one query term are moved
at the end of the ranked list). Next, if the absolute path lengths of two CREs
are the same, the one that contains more distinct query terms is ranked higher.
Last, if it also happens that both numbers of distinct query terms are the same,
the CRE with more frequent query term appearances is ranked higher. The final
answer list when the PTF2 ranking heuristic is used is shown in Table 2.

3 HiXEval — an alternative metric for XML retrieval
evaluation

The HiXEval metric credits systems for retrieving elements that contain as much
highlighted (relevant) textual information as possible, without also containing a

14

Article nCRE answer element P-length T-matches F-frequency
€0/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 4 2 2

[
€0/2000/r7108 /article[1]/bdy][1]/sec[2] 3 3 9
€0/2000/r7108 /article[1]/bm[1]/app[1] 3 2 8
€0/2000/r7108 /article[1]/bdy[1]/sec[1] 3 2 5
€0/2000/r7108 /article[1]/bdy[1] 2 3 31
€0/2000/r7108 /article[1] 1 3 39
€0/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 4 1 2

Table 2. Ranked list of nCRE elements using the PTF2 heuristic combination for article
c0/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

significant amount of non-relevant information. Therefore, to measure the extent
to which an XML retrieval system returns relevant information, we only take
into account the amount of highlighted text in a retrieved element, without
considering the exhaustivity value of that element. We propose to extend the
traditional definitions of precision and recall as follows.

amount of relevant information retrieved

Precision = - - -
total amount of information retrieved

amount of relevant information retrieved

Recall =

total amount of relevant information

For each element e that belongs to a ranked list of elements returned by
the system for an INEX topic, we denote rsize(e) as the number of highlighted
(relevant) words in e, and size(e) as the total number of words contained by
e. Three distinct scenarios are possible for each element e that belongs to this
ranked list:

1. e is a not-yet-seen element (NS);
2. e has been fully seen previously (FS), and
3. e is an element-part (EP), which has been in part seen previously.

To measure the amount of retrieved relevant information from an element e
at a given rank r, a relevance value function pre,(e) is defined as follows.

reles) if eis NS
pre.(e) = (1—a) 52 if eis FS

Tsize(e)—z rsize(e’) .
<! +(1—a) =z e is EP

size(e)

Q- size(e)

15

where €’ represents an already retrieved element, descendant of e, which appears
before r in the ranked list (if any).

The function pre,(e) is used to ensure that, to achieve a precision gain at
rank r, the retrieved element e needs to contain as little non-relevant informa-
tion as possible. The parameter « is a weighting factor, and it represents the
importance of retrieving non-overlapping elements in the ranked list. Setting «
to 1 ensures that the system will only be credited for retrieving relevant infor-
mation that has not been previously retrieved by other overlapping elements.
On the other hand, setting « to 0 ensures that the system is always credited for
retrieving relevant information, regardless of whether the same information has
already been retrieved.

To measure the amount of relevant information retrieved from an element e
at a given rank r, a relevance value function rec,(e) is defined as follows.

rsize(e) if e is NS

rec,(e) = (1 —a)-rsize(e) if e is FS

a (Tsize(e) - %:rsize(e’)) +(1—a)- rsize(e) if e is EP

The function rec,(e) is used to ensure that, to achieve a recall gain at rank r,
the retrieved element e needs to contain as much relevant information as possible.
The parameter « is used for the same purpose of indicating the importance of
retrieving non-overlapping elements as with the pre,(e) function.

Let Trel be the total amount of relevant information for an INEX topic (if
a = 1, then this is the number of highlighted words across all documents; if
a = 0, then this is the number of highlighted words across all elements). Given
the above definitions of the two relevance value functions, we define precision
and recall at a given rank r as follows:

r
3" prei(e)
Precision@r = =1
r

> rec;(e)
Recallor = =2
ecall@Qr Trol
To combine both values for precision and recall into a single value for a given
rank r, we define the F-measure (the harmonic mean) as follows.

2
Far =

1 + 1
Precision@r Recall@Qr

16

PrecisionQr Recall@r Far
Run 1 3 5 7 1 3 5 7 1 3 5 7 iAP nAP

nCRE-TPF 1.00 0.44 0.26 0.19 0.38 1.00 1.00 1.00 0.55 0.61 0.42 0.32 0.73 0.69
nCRE-PTF2 0.25 0.56 0.44 0.31 0.03 0.57 1.00 1.00 0.06 0.57 0.61 0.48 0.54 0.47

Table 3. Evaluation results with using HiXEval for two INEX 2005 CO run samples.
Value 1 was used for a, which gives a value of 5494 for Trel. The best results for each
measure are shown in bold.

By comparing the F@r values obtained from different systems, it would be
possible to see which system yields the best trade-off between precision and recall
for a given rank. That is, in line with our previous argument, it would be possible
to see which system is more capable of retrieving as much relevant information
as possible, without also retrieving a significant amount of non-relevant — or even
redundant — information.

3.1 Preliminary experiments

To test the proposed metric, we evaluate results obtained from two samples
taken from two of our INEX 2005 runs: nCRE-TPF and nCRE-PTF2. The first
sample uses the TPF ranking heuristic to present the resulting elements (shown
in Table 1), while the second uses the PTF2 ranking heuristic (shown in Table 2).
We use the relevance judgements shown in Fig. 1 as a recall-base in this example.

Table 3 shows evaluation results with using HiXEval for the two run sam-
ples. The value for parameter « is set to 1, which means that overlap between
retrieved elements is considered. The value for Trel in this case is 5494, reflect-
ing the total number of highlighted words that need to be retrieved to find all
the relevant information. In addition to the measures explained previously, we
also report values for iAP and nAP, which represent the interpolated average
precision (calculated at 11 recall points) and non-interpolated average precision
(calculated at each natural recall point), respectively.

We observe that the run sample that retrieves more general elements early
in the ranking (TPF) produces better recall for all ranks, and it is also better
on average than the run sample that retrieves less general elements first (PTF2).
However, its precision quickly drops after a few elements are retrieved, since in
this case all the relevant information has already been retrieved previously, so
the system is not credited for retrieving the same information again. The sys-
tem using the PTF2 ranking heuristic, on the other hand, retrieves new relevant
information at each rank, resulting in increased precision and recall. As shown
in the table, the trade-off between precision (retrieving as little non-relevant
information as possible) and recall (retrieving as much relevant information as
possible) is correctly captured by the F-measure, which produces higher values
for the PTF2 run sample after five elements are returned.

Table 4 shows evaluation results when the value for parameter « is set to 0,
which means that overlap between retrieved elements is not considered. The

17

PrecisionQr Recall@r Far
Run 1 3 5 7 1 3 5 7 1 3 5 7 iAP nAP

nCRE-TPF 1.00 0.62 0.51 0.55 0.14 0.84 0.92 0.99 0.25 0.72 0.66 0.71 0.66 0.63
nCRE-PTF2 0.25 0.56 0.49 0.55 0.01 0.22 0.57 0.99 0.02 0.31 0.53 0.71 0.52 0.49

Table 4. Evaluation results with using HiXEval for two INEX 2005 CO run samples.
Value 0 was used for «, which gives a value of 14399 for Trel. The best results for each
measure are shown in bold.

value for Trel in this case is 14399, reflecting the total number of (overlapping)
highlighted words contained within all the relevant elements for this topic. We
observe that the TPF run sample consistently produces better scores, irrespective
of which measure is used. Ignoring overlap between retrieved elements, therefore,
does not seem to properly reflect the actual performance of the two run samples.

4 Measuring Overlap

When measuring the retrieval performance of each submitted run, INEX also re-
ports the observed level of overlap between the returned elements. In INEX 2004,
the set-based overlap was used as an indicator of the level of overlap between
the returned elements [2]. As currently defined, for a set of retrieved elements it
measures the percentage of elements that either contain or are contained by at
least one other element in the set. However, Hiemstra and Mihajlovic [3] argue
that the set-based overlap appears to be a somewhat unstable measure, and that
a probabilistic overlap measure could be a better indicator of the observed level
of overlap. To support their argument for a probabilistic overlap measure, they
refer the following example: Consider the set of 1500 retrieved elements, of which
1499 are non-overlapping, and there is only one element that fully contains each
of the 1499 elements (we call this set as Set 1500). According to its current def-
inition, the set-based overlap would be 100%, which does not correctly capture
the nesting relationships among these elements.

We describe four different ways of measuring overlap [9], of which three are
derived from the set-based overlap. They are defined as follows.

1. Overall overlap (0-overlap), which is identical to the set-based overlap as
defined previously;

2. Ascendants overlap (A-overlap), which for a set of retrieved elements mea-
sures the percentage of elements that contain at least one other element in
the set;

3. Descendents overlap (D-overlap), which for a set of retrieved elements mea-
sures the percentage of elements that are contained by at least one other
element in the set; and

4. Probabilistic overlap (P-overlap), which for a set of retrieved elements mea-
sures the probability that two randomly chosen elements from the set overlap
with each other.

18

Overlap measure (%)
Set O-overlap A-overlap D-overlap P-overlap

(@5) (@5) (@5) (@5)

Set A 100.00 40.00 80.00 60.00
Set B 80.00 20.00 60.00 30.00
Set 1500 100.00 0.07 99.93 0.13

Table 5. Overlap values at five elements retrieved for three element sets, when four
different overlap measures apply.

Consider the two sets of retrieved elements shown in Tables 1 and 2, respec-
tively. The two sets, which we name Set A and Set B, are drawn from two INEX
2005 CO runs that use different ranking heuristics (TPF and PTF2). We apply
the four overlap indicators, as defined above, to measure the level of overlap in
the following three cases: Two cases when each of the two sets, Set A and Set
B, is considered individually, and a case when only Set 1500 is considered.

Table 5 shows the overlap values at five elements retrieved (@5) for each of
these three cases, when four different overlap measures apply. We observe that
the 0-overlap measure constantly produces high overlap values, irrespective of
which set is used. On the other hand, both A-~overlap and D-overlap can be seen
as useful, informative complements to 0-overlap. Indeed, D-overlap provides
information about the proportion of elements that are contained by at least
one other element in the set, whereas A-overlap indicates how these contained
elements are distributed among the containing ancestors (which corresponds to
the number of nesting layers in the hierarchy). For example, the lower A-overlap
value for Set B (20% compared to 40% for Set A) indicates that the distribution
of overlapping elements for Set B is likely to be less hierarchical than that for
Set A (which is actually the case). This is particularly evident in the case of
Set 1500, where the observed A-overlap value is 0.07% — a very low value
that confirms the flat inner distribution of the 1499 elements in the only one
containing element.

Table 5 also shows that, although the P-overlap measure exhibits rather dif-
ferent behaviour than any of the other three measures, it still appears to correctly
capture the nature of overlap when both sets A and B are considered individu-
ally: Indeed, the probability of randomly choosing two overlapping elements is
lower for Set B than for Set A (30% compared to 60%). However, an inherent
property of P-overlap is that when a set of elements that belong to different
files is considered (which is usually the case with submitted runs), P-overlap
typically reports a low overlap value, since for such sets there are many possi-
ble combinations of randomly choosing two elements, but few of them actually
consider elements that belong to the same file (such that there is a possibility
for them to overlap). Nevertheless, the P-overlap measure still seems to be a
reliable overlap indicator in cases where the overlapping elements belong to the
same file. In the case of Set 1500, for example, the observed P-overlap value

19

is 0.13% — a value far lower than the one observed when using the O-overlap
measure.

The above examples clearly show that more than one overlap indicator needs
to be used if the nature of overlap is to be understood better. The three overlap
indicators, 0-overlap, A-overlap, and D-overlap, have also been chosen to be
used as official INEX 2005 overlap indicators.

5 Experiments and results

In this section, we present evaluation results of our submitted INEX 2005 runs
obtained from HiXEval for each retrieval strategy in the CO+S sub-task. We
set the value of a to 1 and report a range of F-measure values, along with
the values for iMAP and nMAP, which represent the interpolated mean average
precision (calculated at 11 recall points) and non-interpolated mean average
precision (calculated at each natural recall point), respectively.

Three retrieval strategies are explored in the CO+S sub-task at INEX 2005:
Thorough, Focused, and FetchBrowse [7]. We use different variations of HiXEval
for each of these three strategies. For example, for the Focused strategy we use
a HiXEval variation which does not tolerate retrieving overlapping elements,
regardless of whether the retrieved element has been seen fully or in part. On the
other hand, for the FetchBrowse strategy we use a HiXEval variation which does
not tolerate retrieving elements that are not properly grouped by an article. In
both cases, such retrieved elements are regarded as non-relevant elements, which
is subsequently reflected in the evaluation scores. In the following we present the
performance results of our runs for each of the three strategies.

5.1 Thorough and Focused retrieval strategies

The evaluation results of our INEX 2005 CO+S runs for the Thorough strategy
are shown in the upper part of Table 6. At 500 or less elements returned, better
system performance is achieved with returning oCRE answer elements than with
returning the nCRE elements. Similar behaviour is observed for the Focused
retrieval strategy (shown in the lower part of Table 6). In fact, we observe 16%
relative iMAP performance improvement when oCRE elements are returned for
both retrieval strategies.

For the Thorough strategy at ten or less returned elements, the system per-
formance is higher when using the TPF ranking heuristic than when using PTF2,
although when retrieving more than ten elements we observe better performance
with the PTF2 ranking heuristic. The two mean average precision values also con-
firm that better overall performance is achieved with the PTF2 ranking heuristic.

The above findings show that, to gain best retrieval value for the Thorough
retrieval strategy under HiXEval, an XML retrieval system first needs to identify
all the contertual elements that may represent relevant answers, and then retrieve
the most specific among them.

20

F@ar

Run 5 10 15 25 50 100 500 1000 1500 iMAP nMAP
Thorough
nCRE-PTF2 0.043 0.061 0.075 0.093 0.108 0.107 0.079 0.061 0.050 0.112 0.122
nCRE-S-PTF2 (.101 0.127 0.129 0.112 0.109 0.094 0.065 0.049 0.039 0.134 0.161
nCRE-TPF 0.066 0.071 0.072 0.068 0.068 0.066 0.038 0.027 0.021 0.087 0.082
nCRE-S-TPF 0.116 0.127 0.126 0.103 0.091 0.075 0.042 0.027 0.020 0.122 0.137
oCRE-PTF2 0.052 0.075 0.094 0.121 0.130 0.127 0.083 0.060 0.045 0.131 0.135

oCRE-S-PTF2 0.106 0.127 0.132 0.125 0.118 0.101 0.068 0.048 0.037 0.140 0.165

Focused

nCRE-PTF2-NO 0.043 0.065 0.090 0.108 0.131 0.143 0.102 0.079 0.057 0.132
nCRE-S-PTF2-NO 0.105 0.124 0.132 0.121 0.116 0.111 0.079 0.059 0.043 0.145

0.179
0.199

nCRE-TPF-NO 0.083 0.099 0.118 0.131 0.153 0.155 0.094 0.053 0.036 0.149

0.185

nCRE-S-TPF-NO 0.130 0.148 0.147 0.132 0.130 0.120 0.073 0.042 0.029 0.156 0.200

oCRE-PTF2-NO 0.064 0.095 0.128 0.154 0.164 0.150 0.099 0.064 0.045 0.152
oCRE-S-PTF2-NO 0.110 0.130 0.144 0.140 0.131 0.112 0.077 0.050 0.035 0.147

0.198
0.199

Table 6. Evaluation results of our INEX 2005 CO+S runs for the Thorough (upper part)
and Focused (lower part) retrieval strategies, when using the HiXEval metric. For each
retrieval strategy, the best results under each measure are shown in bold.

For the Focused retrieval strategy at 100 or less returned elements, we ob-
serve that the TPF ranking heuristic performs better than PTF2. In this case
better overall performance is also achieved with TPF. Thus, to gain best re-
trieval value for the Focused retrieval strategy under HiXEval, the system needs
to identify and retrieve non-overlapping, contextual, and less specific elements.
This is in contrast with our finding for the Focused retrieval strategy when the
nxCG evaluation metric is used, where the best system performance is achieved
by using nCRE answer elements with the PTF2 ranking heuristic [8].

We investigate the usefulness of using structural hints in the +S topics by
comparing the performances of the CO+S runs that ignore and strictly interpret
these hints, respectively. As shown in Table 6, each of the three +S runs performs
consistently better than its corresponding CO run at 15 or less elements returned,
irrespective of the retrieval strategy used. Interestingly, we also observe that
all the three +S runs produce higher mean average precision values than their
corresponding CO runs.

A useful feature of the HiXEval metric is that it allows a seamless compar-
ison between the performance of runs used in different retrieval strategies. For
example, by comparing each Focused run with its corresponding Thorough run,
it is possible to determine which retrieval strategy brings better gain in retriev-
ing relevant information. As shown in Table 6, each CO and +S run used in the
Focused retrieval strategy performs consistently better than its corresponding
run used in the Thorough strategy. The latter finding shows that the HiXEval
metric is capable of penalising systems that retrieve redundant relevant informa-

21

F@r

Run 5 10 15 25 50 100 500 1000 1500 iMAP nMAP
FetchBrowse-D
nCRE-Okapi-PTF2 0.153 0.141 0.137 0.127 0.104 0.069 0.020 0.010 0.007 0.128 0.101
nCRE-PCosine-PTF2 0.145 0.151 0.153 0.133 0.105 0.072 0.021 0.010 0.007 0.130 0.097
nCRE-Dirichlet-PTF2 0.136 0.137 0.134 0.127 0.100 0.068 0.020 0.010 0.007 0.117 0.099
FetchBrowse
nCRE-Okapi-PTF2 0.043 0.061 0.075 0.093 0.108 0.107 0.079 0.061 0.050 0.112 0.122
nCRE-S-0Okapi-PTF2 0.101 0.127 0.129 0.112 0.109 0.094 0.065 0.049 0.039 0.134 0.161
nCRE-PCosine-PTF2 0.026 0.052 0.067 0.087 0.091 0.100 0.076 0.060 0.049 0.096 0.105
nCRE-S-PCosine-PTF2 0.094 0.110 0.109 0.110 0.098 0.098 0.062 0.048 0.040 0.124 0.137
nCRE-Dirichlet-PTF2 0.037 0.059 0.077 0.087 0.108 0.109 0.080 0.061 0.050 0.108 0.125
nCRE-S-Dirichlet-PTF2 0.077 0.117 0.125 0.116 0.107 0.093 0.062 0.048 0.040 0.130 0.154

Table 7. Evaluation results of our INEX 2005 C0+S runs for the FetchBrowse-D (upper
part) and FetchBrowse (lower part) retrieval strategies, when using the HiXEval metric.
For each retrieval strategy, the best results under each measure are shown in bold.

tion — a feature that has also been identified as useful by users in interactive XML
retrieval experiments [11]. With their current setup, none of the official INEX
2005 metrics are capable of comparing runs across different retrieval strategies.

5.2 FetchBrowse retrieval strategy

Table 7 shows evaluation results of our INEX 2005 C0+S runs for the FetchBrowse
retrieval strategy.

The upper part of Table 7 shows results when only full articles represent
units of retrieval. We observe that at five articles returned Okapi produces the
best performance, whereas PCosine is dominant when returning ten or more
articles. At 1000 and more returned articles, the system performance is identical
regardless of which of the three measures is used. Overall, PCosine seems to
perform best for full article retrieval, followed by Okapi and Dirichlet. This
is in contrast with our reported finding when inex_eval is used with strict
quantisation function, where best overall system performance is achieved with
the Okapi similarity measure [8].

The lower part of Table 7 shows results for the FetchBrowse retrieval strategy
when elements are units of retrieval, where we investigate the extent to which
each of the three similarity measures influences the system performance. We
observe that Okapi yields best element retrieval at 50 or less elements returned,
while Dirichlet is dominant when more than 50 elements are returned. Overall,
Okapi seems to perform best for element retrieval, followed by Dirichlet and
PCosine.

When structural constraints in the +S topics are strictly followed, we observe
a constant increase in precision at 50 or less elements returned, irrespective of the

22

similarity measure used. As in the previous two retrieval strategies, all the three
+S runs produce higher mean average precision values than their corresponding
CO runs. This finding shows that using structural hints in the INEX +S topics is
also a useful feature for the FetchBrowse retrieval strategy as it is for the other
two strategies.

6 Discussion

The simple idea behind HiXEval could also be applied to the XCG family of
metrics. Indeed, for the Focused retrieval task the XCG metric first needs to build
the so-called ‘ideal recall-base’, which is subsequently used with the full recall-
base to evaluate the XML retrieval effectiveness [5]. Instead the currently used
methodology to select the ideal nodes, we propose an alternative methodology
where each relevant element may be assigned a relevance score that represents
the F-measure value obtained solely for that element. As an example, the score
of each element that belongs to the recall-base sample shown in Fig. 1 can be
determined by first separately calculating the values for precision and recall for
that element in isolation, and then by combining the two values into an F-
measure value. For instance, for the element /article[1]/bdy[1] we calculate
the following:

Precision[bdy] = 4594/9797 = 0.47 (the fraction of retrieved relevant in-
formation obtained solely from that element), Recall[bdy] = 4594 /5494 = 0.84
(the fraction of relevant information retrieved obtained from the element), and
finally F[bdy] = 2 % 0.47 % 0.84/(0.47 + 0.84) = 0.60 (the harmonic mean). The
relevant elements could then be sorted in a descending order according to their
assigned harmonic mean values. Finally, to identify the ideal elements, a top-
down filtering approach could be applied to remove all the overlapping elements.

As a result of applying the above methodology, we identify the two ele-
ments, /article[1]/bdy[1] and /article[1]/bm[1]/app[1], as our ideal el-
ement nodes for our recall-base sample shown in Fig. 1.

In this paper we have only reported experiments with HiXEval using our
submitted INEX 2005 runs for the CO+S sub-task. We plan to extend this work
by generating performance numbers for our submitted CAS runs. Naturally, we
also aim to evaluate and report the performance of all the official INEX 2005
runs submissions.

Our preliminary results of using HiXEval with o = 0 suggest that the overlap
could be seen as a controlled variable when measuring the retrieval performance;
that is, it would be interesting to see the extent to which a change in the observed
level of overlap influences the observed system performance. We also plan to
pursue this investigation further as part of our future work.

References

1. Y. Chiaramella, P. Mulhem, and F. Fourel. A model for multimedia information
retrieval. Technical report, FERMI ESPRIT BRA 8134, University of Glasgow,
April 1996.

23

10.

11.

A. de Vries, G. Kazai, and M. Lalmas. Evaluation metrics 2004. In INEX 200/
Workshop Pre-Proceedings, Dagstuhl Castle, Germany, December 6-8, 2004, pages
249-250, 2004.

D. Hiemstra and V. Mihajlovic. The simplest evaluation measures for XML in-
formation retrieval that could possibly work. In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, pages 6-13, Glasgow, UK, 2005.

G. Kazai and M. Lalmas. INEX 2005 evaluation metrics. 2005.

Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.

G. Kazai and M. Lalmas. Notes on what to measure in INEX. In Proceedings of the
INEX 2005 Workshop on Element Retrieval Methodology, pages 22-38, Glasgow,
UK, 2005.

G. Kazai, M. Lalmas, and A. P. de Vries. The overlap problem in content-
oriented XML retrieval evaluation. In Proceedings of the ACM-SIGIR Interna-
tional Conference on Research and Development in Information Retrieval, pages
72-79, Sheffield, UK, 2004.

M. Lalmas. INEX 2005 retrieval task and result submission specification. 2005.
Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.

J. Pehcevski, J. A. Thom, and S. M. M. Tahaghoghi. RMIT University at INEX
2005. In Pre-Proceedings of the Fourth INEX Workshop, Dagstuhl, Germany,
November 28-30, 2005, 2005.

J. Pehcevski, J. A. Thom, S. M. M. Tahaghoghi, and A.-M. Vercoustre. Relevance
for XML retrieval: The user perspective. (submitted for publication).

J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. Hybrid XML retrieval: Combining
information retrieval and a native XML database. Information Retrieval, 8(4):571—
600, 2005.

J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. Users and assessors in the context
of INEX: Are relevance dimensions relevant? In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, pages 47-62, Glasgow, UK, 30 July
2005.

24

XCG Opverlap at INEX 2004

Alan Woodley Shlomo Geva

School of Data Communications and Software Engineering
Queensland University of Technology
PO Box 2434, Brisbane 4001, Queensland

{ap.woodley@student.qut.edu.au, s.gevalqut.edu.au}

Abstract. Since 2002, the INitiative for the Evaluation of XML Retrieval (INEX) has set the
benchmark for rigorous evaluation of XML information retrieval (XML-IR) systems and ap-
proaches. INEX has based much of its evaluation methodology on that of earlier text retrieval
IR workshops, in particular TREC. However, INEX evaluation was modified for the specific
requirements of XML-IR since unlike traditional IR, which is concerned with document re-
trieval, XML-IR is concerned with the retrieval of the most suitable document component in
response to a query. It is much closer to passage retrieval, but is oriented towards XML docu-
ments with rich structural semantics. Under the current INEX metric, systems are evaluated
against a complete recall base, which includes many overlapping elements. The treatment of
overlapping elements has been the most contentious issue at INEX, with the accepted conjec-
ture been that the system rank of participants would dramatically change if the metric treated
overlap differently. In this paper, we show that contrary to popular belief the treatment of over-
lap does not dramatically affect system ranks. This has significant implications for the interpre-
tation of INEX performance comparisons.

1 Introduction

In XML-IR the unit of retrieval is not a document but an XML element within the
document tree. The objective of XML-IR is to identify the optimal unit of retrieval in
response to a user query. Therefore, it is necessary to evaluate all Candidate Units of
Retrieval (CUR) within a document. Overlap between CURs exists when an element is
deemed relevant, as well as one or more of its ancestors/descendents. For instance, a
section may be deemed relevant as well as several paragraphs within the section.
Usually only a few of these units (or even only one unit) may be deemed to be optimal
units of retrieval, but any of these units may be deemed to be a suitable unit of re-
trieval. The evaluation of a particular retrieval run (a list of ranked result elements in
response to a query) necessitates the creation of a recall base that contains all suitable
elements and consequently many overlapping elements.

A problem with evaluation arises when a system returns relevant overlapping ele-
ments. The traditional evaluation procedures reward the return of all relevant results
because overlap does not usually arise in document based collections (except in the

25

case of finding several copies of the same document). However, overlap exists in
XML-IR due to the inherent hierarchal nature of XML documents.

Since 2002, the INitiaive for the Evaluation of XML Retrieval (INEX) has been the
benchmark for evaluating the performance of XML-IR systems. The existing INEX
metric, INEX 2002, was based on the traditional evaluation models, and consequently
systems that return overlapping elements are rewarded for each returned element.
From the end-user perspective, overlap is not a desirable property since the same
information may be returned multiple times. Therefore, a number of systems that
participate in INEX attempt to pick only the optimal units of retrieval within a docu-
ment. This creates two classes of systems: some that are concerned with focused re-
trieval, and others that are concerned with thorough retrieval. When evaluated with
the INEX 2002 metric, which does not consider overlap, the focused systems are dis-
advantaged. Since 2002 there have been 5 different metrics proposed, each with 8
different quantisations. The objective of these new metrics was to devise a scheme that
will not reward systems that return overlapping results, or conversely, will not penal-
ize systems that return overlap-free results. Previous work has indicated that there is
little correlation between the rank of systems using the new metrics and the existing
INEX 2002 metric. However, it is unknown to the extent (if any) that the new metrics
penalise systems with overlapping results and reward systems that return overlap-free
results.

We have taken a different approach to investigating overlap. Instead of deriving a
new metric to handle overlap, we explicitly remove overlap from all INEX 2004 sub-
missions and then re-evaluate them using the XCG metric, thereby allowing us to
investigate the extent that the XCG metric penalises high-overlap systems. We also re-
evaluate the original INEX 2004 submissions with the XCG metric, and compare the
two systems ranks. These two system ranks are analogues to the focused and thorough
tasks at INEX 2005. This comparison allows us to determine if the better scoring
systems are retrieving more relevant results and therefore have a superior retrieval
strategy, or if they are being unfairly rewarded via overlap. While others have previ-
ously compared the effect of explicitly removing overlap from a single submission
[14], this is the first time that such a comprehensive analysis of INEX submissions has
been conducted. It is also the first time that non-overlapping systems will be compared
with other non-overlapping systems. Our results indicate that the XCG metric does
penalise against system with overlapping systems. Furthermore, while that removing
overlap from systems may change their rank, the difference is not as dramatic as first
thought.

The rest of the paper is organised as follows: Section 2 provides an overview of
XML-IR and INEX. Section 3 details the nature of overlap within XML-IR including
metrics used to overcome the overlap ‘problem’. Section 4 describes our own solution
for dealing with overlap. Finally, Section 5 presents the results of our experiments.

26

2 INitiative for the Evaluation of XML Retrieval (INEX)

2.1 Task and Overview

The main task for traditional information retrieval systems is to present a list of ranked
documents in response to a user query. However, the separation of content and struc-
ture in XML documents allows XML-IR users to receive results more precise than the
document level. Therefore, the task of XML-IR systems is two-fold: first the ability to
locate elements that satisfy the user’s information need, and second the ability to
choose the most appropriately sized elements. In practice, this means that users of
XML-IR systems might retrieve a relevant section, sub-section or paragraph from a
relevant document, rather than the document itself. The user may explicitly request the
unit of retrieval (Content and Structure queries) or it may be completely up to the
retrieval engine to determine the appropriate unit (Content Only queries).

The INitiative for the Evaluation of XML Retrieval (INEX) provides the infra-
structure for the evaluation of XML-IR systems via a large XML test collection and
appropriate scoring mechanisms. INEX, like TREC, uses an evaluation process based
upon the Cranfield methodology [2]. Each year the following process is followed:

1. Participants contribute topics (end user queries) and a subset of topics is selected
for evaluation. INEX uses two types of topics to evaluate systems, Content Only
and Content and Structure.

2. The topics are distributed to participants who execute them on their search engines
and for each topic produce a ranked list of results. The top 1500 ranked results for
each topic are combined into a single submission file. Participates are allowed to
send between 1 and 3 submissions per task to INEX.

3. The top n (currently set to 100) results from each submission are pooled together,
disassociated from their originating submissions and duplicates are eliminated. This
is called the system pool.

4. The results in the system pool are individually judged by the original topic con-
tributors, who act as end users manually assessing the relevance of the results.
When judges find a document with a relevant result they must search the document
for other relevant results, thereby increasing the size of the pool.

5. Using the assessment set and a standard evaluation module, the participating search
engines are scored in terms of performance (recall/precision) using seven variations
of the INEX 2002 metric. The scores are aggregated to produce an official Aggre-
gate Mean Average Precision (AMAP), which is used to officially rank systems.

6. Results are returned to participants who then write and present papers at the work-
shop.

Historically, the method of system pooling and relevance assessments has not been
without criticism. The two main criticisms have been how the results are chosen for
assessments, and how to handle the subjective nature of relevance. In INEX, the as-
sessed results are chosen by a modified version of system pooling. Unfortunately,

27

pooling inherently misses some relevant results because all results ranked below the
pool depth are automatically regarded as irrelevant. However, Research by Zobel [25]
concluded that while a system pool will only find about 70% of the relevant results in
a collection the impact of system ranking was not significant. The second criticism is
that a result’s relevance is subjective to whoever is judging the result. Evidence has
shown inconsistent judgements made between several people and even by the same
person. However, research by Voorhees [24] concluded that although judges may
disagree, it does not significantly affect system ranking.

However, the hierarchical nature of XML documents raises several issues in re-
gards to XML-IR evaluation that are not found in the evaluation of traditional docu-
ment retrieval systems. In particular, both the notion of relevance and the metrics used
to evaluate the performance of systems are different. We will explore these differences
in the next section.

2.2 Relevance in XML-IR

Central to the evaluation of IR systems is the (fuzzy) concept of relevance. There is no
single and precise definition of relevance accepted by the IR community [5], even
though there has been several attempts to define one [4,16,20]. Such a definition is
beyond the scope of this paper. Therefore, we will use the same definition of rele-
vance as is used during the INEX evaluation phase, where a result is judged relevant if
it fulfils the information need of the user.

Key to this definition of relevance is end user relevance assessments. Like TREC,
INEX uses an evaluation process similar to the one used during the Cranefield ex-
periments. However, several changes were needed in order to adapt to the specific
needs of XML-IR system evaluation. Theses changes relate to how judges assess the
relevancy of individual results. Here we outline those changes and compare them with
traditional document retrieval.

1. First, relevance is judged over two dimensions: exhaustiveness and specificity.
Exhaustiveness measures how much a particular result fulfils the user’s information
need, that is, how thoroughly a particular result discusses the subject matter of the
query. In comparison specificity measures the focus of a particular result, that is,
how much relevant information in comparison with irrelevant information is con-
tained in the element. In document retrieval, relevance tends to be judged on a sin-
gle dimension.

2. Second, relevancy is not independent between ancestors and descendants.
Imagine we have a result with the logical XPath article/body/section/paragraph.
Logically each ancestor node contains all the information contained in each of its
descendant nodes. So if a judge assessed the left element (paragraph) as relevant,
then its parent node (section) contains at least the same information, then it must
also be relevant. This logic traverses up the XML tree to the root node (article).
INEX handles this constraint by enforcing that every relevant child node must have
a relevant parent node, and consequently, that every relevant parent must have at

28

least one relevant child. In contrast, in traditional IR relevancy of results (docu-
ments) is said to be independent.

3. Third, element relevance is non-binary. As one propagates up an XML tree, the
values for the two dimensions are bound to change. In general, ancestor nodes tend
to be more exhaustive than descendants since they contain a larger amount of in-
formation. Conversely, descendant nodes tend to be more specific than ancestors
since they contain less irrelevant information. Hence, in structured retrieval rele-
vance needs to be evaluated on a graded rather than binary scale. In INEX, each
dimension is judged as one of four values from zero to three where zero is judged
as irrelevant. Also, an element cannot have a zero score in one dimension and a
non-zero score in another. This produces nine possible levels of relevancy, plus a
single non-relevant level. In contrast, most document-level evaluation methods tend
to classify documents as either relevant or irrelevant.

2.3 The INEX Metrics

Once the results in the system pool are judged by the assessors. The assigned scores,
along with a set of metrics, are used to evaluate the performance of retrieval systems.
Most of the metrics used in XML-IR are based upon those already used in traditional
IR, albeit slightly modified to handle the nature of XM-IR. Since the inception of
INEX, several metrics have been either used or proposed, however, in this section we
will only describe the INEX 2002 metric (also called the inex_eval metric), since it
was the official metric used in INEX 2004. Discussion of other metrics will be saved
until later in the paper.

2.3.1 INEX 2002 Metric. The INEX 2002 metric has been used since the inception
of INEX. It is based upon Raghavan et al.’s [19] precall measure and calculates the
probability that a result viewed by a user is relevant (P(rellretr)):

(1) P(rellretr)(x) = X n
x-n+esl,.,

where esl denotes the expected search length [2],that is, the expected number of ir-
relevant results retrieved until an arbitrary recall point of x is achieved, and n is the
total number of relevant results for a particular topic. A more detailed account of the
metric can be found in the proceedings of first INEX workshop [9].

To apply the INEX 2002 metric the two dimensions must be mapped to a single
relevance value by applying a quantisation function fy,.n(e,s) : ES — [0,1]. INEX
currently employs a number of quantisation functions each representing a different
user preference. Some of the quantisations score results on a purely binary scale, such
as the strict metric, while others score results based on their degree of relevance such
as the generalised and specificity-orientated generalised metrics. A detailed descrip-
tion of all the quantisation can be found in [13] and [7].

29

section describes overjap in more detail and outlines the reasons why some research-

The main criticism {of the INEX 2002 metric is that it ignores overlap. The next
ers perceive it as a problem.

3 The Problem with Overlap

3.1 Problem Description

Imagine the following results (all from the same document) are retrieved in response
to a user query:

1. /article[1]/sec[1]

2. /article[1]/sec[1]/p[1]
3. /article[1]/sec[2]

4. /article[1]/sec[1]/p[2]
5. /article[1]

6. /article[1]/sec[2]/p[1]
7. /article[1]/sec[2]/p[2]

This list is a good example of overlap, where a result has a descendant or ancestor
in the same list. Pehcecski et al. [17] identified two ways to measure overlap:

e set-based overlap, which for a set of results measures the percentage of re-
sults that have an ancestor in the set; and

e list-based overlap, which for a set of results measures the percentage of re-
sults for which there exists a higher ranked ancestor in the set.

Since the inception of INEX, overlap has been a controversial issue. Overlap has
been criticised both from a user-orientated standpoint since it lacks a faithful end-user
model, and from theoretical standpoint as it produces an over-populated recall base.
Here, we summarise the previous research on this topic, outline some of the criticisms
of overlap and present our responses.

3.1.1 Lack of Faithful End User Model. Due to the hierarchal nature of XML
documents, relevance between nodes in a single document tree (XPath) is not inde-
pendent. So, if a leaf is found relevant then so are all its ancestors, up to and including
the root node. However, the INEX 2002 metric assumes result independence; thereby,
rewarding each result solely by its quantised relevance value, regardless of if the re-
sults descendant or ancestor has already been rewarded. Hence, it is possible for the
information contained in single leaf node to be rewarded multiple times.

There is no argument that overlap boosted the retrieval scores of systems, since
most of the better performing systems at INEX have milked a lot of their results (for

30

instance: in 2004 9 out of the top 10 systems in the CO task had overlap of over
70%). However, overlap alone does not guarantee that a retrieval system will achieve
a high score, since it will only benefit systems that retrieve relevant results in the first
place. So, just as a system will be rewarded multiple times for a relevant leaf node it
will be penalised multiple times for retrieving irrelevant leaf nodes.

However, Trotman [22] argues that overlapping results are of no intrinsic value to
users since it may not provide the users any new relevant information. This is a view
supported by the experiments of INEX interactive track [15,21]. It is important to
consider the needs of end-users when rewarding systems since the entire INEX meth-
odology is based on the needs of end users. For example, INEX topics are based upon
the type of queries commonly produced by end users. Secondly, during assessment
judges are instructed to act as end users when evaluating the relevancy of results. To
combat this problem some have proposed applying a user-based model into the
evaluation of XML-IR systems.

However, a central problem with user-based XML-IR evaluation is that a proper
understanding of the requirements of XML-IR users has not yet been formulated. Part
of this problem has been a notable lack of research in XML-IR (and IR in general)
devoted to user-based rather than laboratory-based (or batch) analysis. We already
know that in document retrieval the results of user-based evaluation can differ greatly
to the results of system-based evaluation [11, 23]. Therefore, one can argue that fur-
ther research on the precise needs of XML-IR users should be conducted before a
user-based model can fully be incorporated to the evaluation of XML-IR systems.

3.1.2 Overpopulated Recall Base. Recall-precision curves (RP curves) are a
standard measure of IR system performance. RP curves record the precision (number
if relevant results / number of retrieved results) of a retrieval system at various points
of recall (for example: 10%, 20%,...,100%). For each recall point, a retrieval system’s
precision value is set to a normalised score between 0 and 1. In essence, the
performance of retrieval systems are plotted against the performance of a perfect
retrieval system (called the ideal recall base). In general, the ideal recall base should
have a precision value of 1 for all recall points, however, this is not a situation that
occurs within the INEX 2002 metric.

As identified by Kazai et al. [12] there are two reasons for this anomaly. The first is
due to graded rather than binary relevance; however, the second reason is that the
ideal recall base is ‘over populated’, meaning that a ‘perfect’ submission would have
to return all relevant results, including those with overlap. Kazai et al. argue that this
behaviour is contrary to the task of XML retrieval and has led to skewed INEX RP
curves, with participants precision plotted at much lower values than the participants
at other workshops (for example: TREC, CLEF).

We have already addressed the first of Kazai et al.’s criticisms, and while their sec-
ond criticism is correct, it also warrants discussion. The discussion centres on the
purpose of RP curves for comparing the performance of systems. It is important to
understand that the scores presented in RP curves should be interpreted as relative
rather than absolute values. We know that the values in RP curves can change depend-
ing on the topics, collection and judges used at the various stages of evaluation [24].
However, as long as the ranking of participants does not significantly change, then the

31

RP curves and the metrics that produced them are valid for system comparison. Like-
wise, while INEX RP curves may appear to be plotted at lower values than those using
other datasets, as long as it does not affect the relative performance of systems then it
is also a valid method for comparing system performance.

3.2 Previous Solutions

The present solution to deal with overlap in XML-IR has been the derivation of new
metrics. These metrics, unlike the INEX 2002 metric, are designed to handle overlap
in various ways, so that systems with low overlap are not disadvantaged. Here we
describe these metrics, emphasising how each one handles overlapping results.

3.2.1 INEX 2003 Metric. The INEX 2003 metric (also called inex_ng) was the first
metric designed to handle overlap by including both component size and overlap in
the definitions of recall and precision [8]. The metric uses the total size of results as its
basic parameter, as opposed to other metrics that measure the recall or precision after
a certain number of results. Overlap is measured by considering the increment in text
size of previously seen results. The metric has been criticised, first, because it does not
address the problem of an overpopulated recall base, second, because it assumes that
relevant information is distributed uniformly within a component and third, because it
treats the two relevance dimensions in isolation, even though the task definition states
that both are needed to properly identify the most appropriate unit of retrieval [13].

3.2.2 XCG Metric. The cumulated gain for XML (XCG) metrics [8] are an extension
of the cumulative gain (CG) metrics proposed by Jarvelin and Kekéldinen [10]. The
CG metrics were designed to evaluate traditional information retrieval systems using
multi-graded, rather than binary, relevance values. For each rank in a results list, the
CG metric calculates the sum of relevance up to and including that rank of a results
list. It also produces and ideal gain vector derived from the full non-overlapping recall
base and sorted decreasingly by relevance. The normalised cumulated gain (nCG)
measure is calculated by dividing the CG vector with the ideal gain vector. The XCG
metrics extend the CG metrics by applying an INEX quantisation function [7] to the
results lists and full recall base to derive the ideal gain vector. While the XCG
managed to separate the user-behaviour model from the metric, the proper relevance
value function is still open to debate and as are the interpretation of the curves after
the actual and ideal CG curves meet.

3.2.3 PRUM Metric. The Precision-Recall with User Modelling[18] extends Ragha-
van’s [19] probabilistic precision-recall metrics to include users’ browsing behaviour.
PRUM eliminates independence between components on the same XPath, by allowing
users to consult the context (ancestors, descendants, siblings) of returned results.
PRUM defines users’ behaviour stochastically, by deriving the probability that a user
has seen a particular element. For example: if it is known that a user has seen a parent
result with probability 1, then the probability that the user has seen the result’s first

32

child is 0.95. The PRUM metric assumes an ideal results set and is defined as the
probability that a user sees a newly relevant element when consulting the context of
the retrieved element, while knowing that the user wants to see a given amount of
relevant units.

3.2.4 T,I Metric. The idea of the Tolerance to Irrelevance (T,I) metric [6] is to pro-
vide the user with a set of entry points into a document that is close to relevant infor-
mation. Starting at the entry point, the user reads (the portion of) the document until
the predefined tolerance to irrelevance (number of words or sentences) has been
reached, at which point the user moves onto the next result. T,I rewards systems that
return more specific elements since their entry point is more likely to be closer to
relevant information than large elements. In fact, the entry point for some large ele-
ment could be so far away from the relevant information that the tolerance to irrele-
vance is exhausted before the relevant information is reached. The problem of the
overpopulated recall base is eliminated by extending the definition of relevance to
include previously seen relevant results as irrelevant. T,I variants of other existing
evaluation metrics can be found in [6].

4 Our Solution

The central criticism of the INEX 2002 metric is that it ignores overlap by assuming
independence between ancestor and descendant nodes. It has been conjectured that
some systems exploit this feature by returning several nodes along an XPath, and
hence being (unfairly?) rewarded multiple times for the same piece of information.
The fact that the majority of the high scoring systems in INEX 2004 also had high
overlap, while the poorer scoring system also had low overlap has been provided as
evidence to support this conjecture. However, the following question remains un-
solved: did these high overlap system score highly because of overlapped results, or
because they had a better underlying retrieval algorithm that found more relevant
results than the low scoring systems?

In some ways, INEX’s use of the INEX 2002 metric has made answering this ques-
tion difficult since systems it compares systems with high overlap to those with little
or no overlap. The INEX 2002 metric is overlap positive, in that it inherently rewards
systems that return relevant overlapping elements, thereby penalising non-overlap
systems. Recently, researchers have tried to derive metrics that handle rather than
ignore overlap. These new metrics are in effect, implicitly removing overlap from the
submissions. However, it is not fully known if these metrics are overlap neutral,
thereby not penalising nor rewarding overlap, or if they are overlap negative, in that
they penalise overlap. Our approach is different. We explicitly remove overlap from
the submissions before the evaluation phase. By explicitly removing overlap our ap-
proach is overlap neutral. We used two techniques to remove overlap:

33

e Highest Rank (HR): where a result is removed from the list if it has a higher
ranked ancestor or descendant; and

e Leaves Only (LO): where a result is removed from the list if it has a higher
or lower ranked descendant.

So assuming that the following results list (introduced earlier and from the same
document) was submitted:

1. /article[1]/sec[1]

2. /article[1]/sec[1]/p[1]

3. /article[1]/sec[2]

4. /article[1]/sec[1]/p[2]

5. /article[1]

6. /article[1]/sec[2]/p[1]

7. /article[1]/sec[2]/p[2]

Applying the Highest Rank technique would produce:

1. /article[1]/sec[1]

2. /article[1]/sec[2]

While applying the Leaves Only technique would produce:

1. /article[1]/sec[1]/p[1]
2. /article[1]/sec[1]/p[2]
3. /article[1]/sec[2]/p[1]
4. /article[1]/sec[2]/p[2]

We performed these two techniques on all the INEX 2004 submissions to produce
two new sets of submissions. While previous work has been performed on removing
overlap from single submissions [14], this is the first time that such an extensive in-
vestigation has been performed on a large amount of submissions. We evaluated the
modified submissions using the recall-XCG metric using the standard parameters for
focused retrieval (that is overlap = on). Then we ranked each of the modified submis-
sion sets by decreasing order of Mean Average Precision (MAP) to produce modified
submission ranks. We also evaluated the original submissions using the recall-XCG
metric using the standard parameters for thorough retrieval (that is overlap = off).
While previous research has investigated the effect of evaluating INEX submissions
using variations of the XCG metric[12], those submissions contained a mixture of
high-overlap and low-overlapping system. This is the first time that submissions with
zero overlap are compared with each other.

Our experiments allow us to explore two unanswered questions. First, what to what
extent does the XCG metric penalise systems with overlapping results, thereby deter-
mining if the XCG metric is overlap negative or overlap neutral. And second, is there
a strong correlation between the original and overlap removed submissions. If the two
system ranks did not correlate then the high ranks achieved by the high scor-

34

ing/overlap systems were likely due to unfairly rewarding overlapped results. Alterna-
tively, if the systems ranks correlated then the high ranks achieved by the high scor-
ing/overlap systems were likely due to them retrieving more relevant results. The next
section presents the results of our experiments.

5 Results

5.1 Single Submission

Here we present the result of removing overlap from a single submission. First, we
produced a CO and CAS submission from our current version of GPX that contained
overlapping elements (i.e. a 2005 thorough submission) using the 2004 topic set. Then
we applied both the overlap removal techniques introduced above to produce highest
rank and leaves only versions of the submission. These algorithms removed overlap-
ping elements from the submissions, thereby, decreasing their run length. Then we
evaluated the submission using the recallXCG metric and sog quantisation, and re-
corded the MAP. Figures 1 and 2 present the ep/gr plots for our three submissions,
while tables 1 presents their MAP.

Metric: recallXCG Quantisation: sog1 Metric: recallXCG Quantisation: sog1
Topic: ALL Topic: ALL
100 1 100 ¢
0.95 | 0851
0.0 9 o.e0 ‘
0386 | 085 |
080 1 060 {
0757 o7s ‘
S 070 S o701
T 0.5 | 2 oes |
2 os0y 2 os0
E 0.55 1 E 055 ':
& 050 T 050
2045 S 045
£ 040 £ 040
£ 035 £ 035
Z 030 = 0304
025 0.25
0201 = 0.20 =

10

o0.00 ’ ’ y y e = 0.00 + . - . - 4 E —— .
01 02z 02 04 05 08 07 08 08 10 00 o1 02 03 04 05 08 07 08 09
Recall Recall
Wpta_T {_WVCAS Metiic: recallxC 1 B p19_ThoroughHighest_VVCAS Metiic: recallXCGansog 1
W p19_ThoroughLeaves_VVDAS Wetric: recalliCGansog W p19_ThoroughLeaves_WVCAS Metic: recallXDGonsagt
p19_Thorough_VVCAS Wletric: recalliCGonsog 1 B18_Thorough_VVCAS Metric: recallXCGonsog1
Fig. 1. CO SOG ER/GP Plot Fig. 2. VVCAS SOG ER/GP Plot

35

Table 1. MAP SOG for Thorough and Overlap Reduced Submissions

Cco VCAS
Thorough 0.02393 0.02865
HighestRank 0.05358 0.06560
LeavesOnly 0.04319 0.07026

As the figures and table show, under the recall-XCG metric the thorough submis-
sion performs worse than the modified overlap removed submissions. This verifies
that the XCG metrics are overlap negative, and justifies our use of the overlap re-
moval algorithm as a precursor to systems rank comparison.

5.2 All Submissions

Here, we present the results of executing the overlap removal algorithms on all the
INEX 2004 submissions. As before, we removed overlap from the submissions and
then evaluated them with recall-XCG metric and sog quantisation. We also evaluated
the original submissions with the overlap parameter set to off. We noticed however,
that since more results would be removed from the systems with high original overlap
then this technique could be biased towards the original low overlap systems. As a
countermeasure, we executed the experiment multiple times using submissions with
smaller result lengths. Figures 3 — 10 present the rank comparison between the overlap
removed and original submissions at run lengths 100 and 1500. Tables 2 and 3 pre-
sents the rank correlations (Spearman-Rho and Kendall-Tau) between the overlap
removed and original systems at various run lengths.

HighestRank - CO - 50 HighestRank -CO - 1500

Fig. 3. HighestRank - CO - 50 Fig. 4. HighestRank - CO - 1500

36

LeavesOnly - CO - 1500

LeavesOnly - CO - 50

1Bt
i i
i

%
i

i B
ngx

Fig. 6. LeavesOnly - CO - 1500

Fig. 5. LeavesOnly - CO - 50

HighestRank - CAS -1500

HighestRank - CAS- 50

juxoeeusE
i Jisaluown

jwxgnenb
juix g uepiaIswen
jwxgne
Jwxpneno

jux pineinb.
jwxginepb.

Fig. 8. HighestRank - CO - 1500

Fig. 7. HighestRank - CAS - 50

LeavesOnly - CAS -1500

LeavesOnly - CAS - 50

1
ol

Jux gwepslswen
e
i pinei

jwx gewsmn

Fig. 10. LeavesOnly - CAS - 1500

Fig. 9. LeavesOnly - CAS - 50

37

Table 2. Correlation Scores HighestRank/Original

50 100 150 300 500 1000 | 1500

CO (Kendall) 0.6863 | 0.6300 | 0.5499 | 0.7502 | 0.7485 | 0.7076 | 0.5012
CO (Spearman) | 0.8210 | 0.8852 | 0.5843 | 0.8789 | 0.8638 | 0.8087 | 0.4761
CAS(Kendall) 0.7506 | 0.9624 | 0.6690 | 0.6580 | 0.7600 | 0.7020 | 0.5153
CAS(Spearman) | 0.8766 | 1.0000 | 0.7302 | 0.7460 | 0.8545 | 0.7945 | 0.4686

Table 3. Correlation Scores LeavesOnly/Original

50 100 150 300 500 1000 | 1500
CO (Kendall) 0.6658 | 0.7017 | 0.5302 | 0.7221 | 0.7221 | 0.7101 | 0.5277
CO (Spearman) | 0.7762 | 0.9416 | 0.5265 | 0.8366 | 0.8270 | 0.7891 | 0.5085
CAS(Kendall) 0.7490 | 0.8133 | 0.6737 | 0.6675 | 0.7678 | 0.7145 | 0.5373
CAS(Spearman) | 0.8690 | 0.9231 | 0.7271 | 0.7738 | 0.8657 | 0.8129 | 0.5085

As the figures and tables show there is little correlation between the overlap re-
moved and original submission when run lengths of 1500 are considered. However,
the curvature of the plots indicate a strong correlation between the MAP of the origi-
nal and modified submissions at a lower result length. The correlation is not perfect,
and some systems were disadvantaged by metrics that ignore overlap, however not as
many systems were disadvantaged as originally thought. Furthermore, the correlation
is strong enough to suggest that systems score well because they find more relevant
results than low-scoring systems regardless of if the metric considers overlap.

6 Conclusion

The aim of this paper was to investigate the role of overlap in XML information re-
trieval. We dispute the existing conjecture that the high overlap/scoring systems in
INEX 2004 performed strongly under metrics that reward well only because they were
been reward multiple times for the same information. Rather, we show that the high
overlap/scoring systems perform strong regardless of how overlap is handled.

References

1. Clarke, C. L. A,, Tilker, P., L. (2005) : MultiText Experiments for INEX 2004, in Advances in XML
Information Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Re-
trieval, INEX 2004, Dagstuhl, Germany, December 68, 2004, Revised Selected Papers.

2. Cleverdon, C. and Keen, E. (1966): Aslib Cranfield Research Project: Factors determining the per-
formance of indexing systems (Vol. 1: Design, Vol. 2: Results), Cranfield, England.

3. Cooper, W. S. (1968): Expected search length; a single measure of retrieval effectiveness based on the
weak ordering action of retrieval systems. American Documentation 19(1):30-41.

4. Cooper, W. S. (1971): A definition of relevance for information retrieval. Information Storage and
Retrieval 7:19-37.

5. Crestani, F., Lalmas, M., Van Rijsbergen, R. J., and Campbell, T. (1998): Is this document relevant?
Probably: A survey of probabilistic models in information Retrieval. ACM Computing Surveys, 30(4).

38

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

de Vries, A. P., Kazai, G., Lalmas, M. (2004) : Tolerance to irrelevance : A user-effort orientated
evaluation of retrieval systems without predefined retrieval unit. In Recherche d’Informations Assistee
par Ordinateur (RIAO 2004), Avignon, France.

de Vries, A. P., Kazai, G., Lalmas, M. (2005) : Evaluation Metrics 2004, in Advances in XML Infor-
mation Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Retrieval,
INEX 2004, Dagstuhl, Germany, December 68, 2004, Revised Selected Papers.

Govert, N., Kazai, G., Fuhr, N., Lalmas, M. (2003): Evaluating the effectiveness of content-orientated
XML Retrieval. Technical Report Computer Science 6, Technischer bericht, University of Drotmund.
Govert N. and Kazai G (2003): Overview of the initiative for the evaluation of XML retrieval (INEX)
2002. In Proceedings of the First Workshop of the INitiative for the Evaluation of XML Retrieval
(INEX), Dagstuhl, Germany, 1-15.

Jarvelin, K., and Kekildinen, J (2002): Cumulated gain-based evaluation of IR techniques. ACM
Transactions on Information System, 20(4):551-556.

Hersh, W., Turpin, A., Price S., Chan, B., Kramer, D., Sacherek, L.Olson, D. (2000): Do batch and
user evaluation give the same results? In Proceedings of The 23rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Athens, Greece, 23:17-23, ACM.
Kazai, G., Lalmas, M., de Vries, A. (2004): The overlap problem in content-orientated XML retrieval
evaluation. In Proceedings of The 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Sheffield, England, 27:72-79, ACM.

Kazai, G. (2004): Report of the INEX 2003 metrics working group. In Proceedings of the 2nd Work-
shop of the INitiative for the Evaluation of XML Retrieval (INEX), Dagstuhl, Germany, 184-190,
ERCIM Publications.

Kekaldinen, J., Junkkari, M., Arvola, P., and Alto, T. (2005): Trix 2004 — strugling with overlap. In
Advances in XML Information Retrieval: Third International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2004, Dagstuhl, Germany, December 6-8, 2004, Revised Se-
lected Papers, 127-139, Berlin: Springer (LNCS ; 3493).

Kim, H. and Son, H. (2004): Interactive searching behavior with structured XML documents. In
Advances in XML Information Retrieval: Third International Workshop of the Initiative for the
Evaluation of XML Retrieval, INEX 2004, Dagstuhl, Germany, December 6-8, 2004, Revised Se-
lected Papers, 424-436, Berlin: Springer (LNCS ; 3493).

Mizzaro, S. (1996): Relevance: The whole (hi)story,. Techical Report UDMI/12/96/RR (Dec.), Dipar-
timento di Matematica e Informatica, Universita’ di Udine, Italy.

Pehcevski, J., Thom, J. Vercoustre,A-M (2005): User and Assessors in the Context of INEX: Are
Relevance Dimensions Relevant? In Proceedings of INEX 2005 Workshop on Element Retrieval
Methodology, Glasgow, Scotland, 42-57.

Piwowarski, B., and Gallinari, P. (2005): Precision recall with user modeling: application to XML
retrieval. Submitted for publication.

Raghavan, V., Bollman, B. Jung G. (1989): A critical investigation of recall and precision. ACM
Transaction on Information Systems, 7(3):205-229.

Seracevic, T. (1970): The concept of “relevance” in information science: A historical review. In Intro-
duction to Information Science. Chapter 14. SERACEVIC T. (ed), RR Bower Company, New York.
Tombros, A., Larsen, B., Malik, S. (2004): The interactive track at INEX 2004. In Advances in XML
Information Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Re-
trieval, INEX 2004, Dagstuhl, Germany, December 68, 2004, Revised Selected Papers, 410-423, Ber-
lin: Springer (LNCS ; 3493).

Trotman, A. (2005): Wanted: Element Retrieval Users. In Proceedings of INEX 2005 Workshop on
Element Retrieval Methodology, Glasgow, Scotland, 58-64.

Turpin, A. and Hersh, W. (2001): Why batch and user evaluation give the same results? In Proceed-
ings of The 24th Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, Athens, Greece, 24:225-231, ACM.

Voorhees, E. M. (1998): Variations in relevance judgments and the measurement of retrieval effec-
tiveness. Proceedings of The 21st Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Melbourne, Australia, 21:315-323, ACM Press.

Zobel, J. (1998): How reliable are the results of large scale information retrieval experiments, Proceed-
ings of The 21st Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, Melbourne, Australia, ACM Press.

39

The Interpretation of CAS

Andrew Trotman! and Mounia Lalmas?

! Department of Computer Science, University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz,
2 Department of Computer Science Queen Mary University of London, London, UK
mounia@dcs.qgmul.ac.uk,

Abstract. There has been much debate over how to interpret the struc-
ture in queries that contain structural hints. At INEX 2003 and 2004,
there were two interpretations: SCAS in which the user specified target
element was interpreted strictly, and VCAS in which it was interpreted
vaguely. But how many ways are there that the query could be inter-
preted? In the investigation at INEX 2005 (discussed herein) four differ-
ent interpretations were proposed, and compared on the same queries.
Those interpretations (SSCAS, SVCAS, VSCAS, and VVCAS) are the
four interpretations possible by interpreting the target elements, and the
support elements, either strictly or vaguely. An analysis of the submitted
runs shows that those that share an interpretation of the target element
correlate - that is, the previous decision to divide CAS into the SCAS
and VCAS (as done at INEX 2003 and 2004) was sound. The analysis
is supported by the fact that the best performing VSCAS run was sub-
mitted to the VVCAS task and the best performing SVCAS run was
submitted to the SSCAS task.

1 Introduction

Does including a structural hint in a query make a precision difference and if so
how should we interpret it? At INEX 2005 the ad hoc track has been investigating
this question. Two experiments were conducted, the CO+S experiment, and the
CAS experiment.

In the CO+S experiment the participants were asked to submit topics with
content only (CO) queries containing just search terms, and optionally an addi-
tional structured (4S) query specified in the NEXT [10] query language. Given
these two different interpretations of the same information need it is possible
to compare the precision of queries containing structural hints to those that do
not for the same information need. The details of the CO+S experiment are
discussed elsewhere.

In a separate experiment participants were asked to submit topics containing
queries that contain content and structure (CAS) constraints specified in NEXI
[10]. These topics were used to determine how the structural hints, necessarily in
a CAS topic, should be interpreted by a search engine. The two extreme views
are the database view that all structural constraints must be upheld, and the

40

information retrieval view that satisfying the information need is more important
than following the query.

This contribution discusses the mechanics of the CAS experiment from the
topic submission process, the document collection, through to the evaluation
methods. The different tasks are compared using Pearson’s product moment
correlation coefficient showing that there were essentially only two tasks, those
that in previous years have gone by the name VCAS and SCAS. Further analysis
shows that of the tasks SSCAS is the easiest and VVCAS the hardest.

2 CAS Queries

Laboratory experiments in information retrieval following the Cranfield method-
ology (described by Voorhees [12]) require a document collection, a series of
queries (known as topics), and a series of judgments (decisions as to which doc-
uments are relevant to which topics). In element retrieval this same process is
followed - except with respect to a document element rather than a whole doc-
ument.

Content and structure queries differ from content only queries in so far as
they contain structural hints. Two types of structural hints are present, those
that specify where to look (support elements) and those that specify what to
return to the user (target elements). In INEX topic 258

//article[about(.,intellectual property)]//secl[about(., copyright law)]

the search engine is being asked to identify documents about intellectual prop-
erty and from those extract sections about copyright law. The target element
is //article//sec (extract //article//sec elements), and the support elements are
//article for one clause (with support from //article about intellectual property)
and //article//sec for the other (and support from //article//sec about copy-
right law). Full details of the syntax of CAS queries is given by Trotman and
Sigurbjornsson [10]. The applicability of this language to XML evaluation in the
context of INEX is also discussed by Trotman and Sigurbjérnsson [11].

2.1 Query Complexity
The simplest CAS queries contain only a single structural constraint. Topic 270,

//article//sec[about(., introduction information retrieval)]

asks for //article//sec elements about “introduction information retrieval”. A
more complex query can be decomposed into a series of single constraint queries
(or child queries). Topic 258,

//article[about(.,intellectual property)]//secl[about(., copyright law)]

could be written as a series of single constraint queries, each of which must be
satisfied. In this case it is decomposed into topic 259,

41

//article[about(.,intellectual property)]
and topic 281,
//article//seclabout(., copyright law)]

if both hold true of a document then the (parent) query is true of that document
- and the target element constraints can be considered. The same decomposition
property holds true for all multiple constraint CAS topics (so long as the target
element is preserved) - it is inherent in the distributive nature of the query
language.

Having separate parent and children topics it is possible to look at different
interpretations of the same topic. As a topic is judged according to the narrative
the judgments are by definition vague. Strict conformance of these judgments to
the target element can be generated using a simple filter. This is the approach
taken at INEX 2003 and 2004 for the so-called SCAS and VCAS tasks. But what
about the sub-clauses of these topics? Should they be interpreted strictly or
vaguely? With the judgments for the child topics, vague and strict conformance
to these can also be determined. With the combination of child and parent
judgments it is possible to look at many different interpretations of the same
topic.

2.2 Topic format

INEX captures not only the query, but also the information need of the user.
These are stored together in XML. Methods not dissimilar to this have been
used at TREC [2] and INEX [1] for many years. As an example, INEX topic 258

<?7xml version="1.0" encoding="IS0-8859-1"7>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="258" query_type="CAS" ct_no="72">
<InitialTopicStatement>

I have to give a computer science lesson on intellectual property
and I’m looking for information or examples on copyright law to
illustrate it. As I’m looking for something which is specific, I
don’t think I can find a whole article about it. I’m consequently
looking for section elements.

</InitialTopicStatement>

<castitle>

//article[about(.,intellectual property)]//secl[about(., copyright law)]
</castitle>

<description>

Return sections about copyright law (information or examples) in an
article about intellectual property.

</description>

<narrative>

I have to give a computer science lesson on intellectual property,
and I’m looking for information or examples on copyright law to

42

illustrate it. More precisely, I’d like to have information about
authors rights and how to protect your creation. As I’m looking for
something which is specific, I don’t think I can find a whole
article about it. I’m consequently looking for section elements.
Information or examples can concern copyright on software,
multimedia or operating systems. Copyright on literary work can help
but only for examples. Information concerning domain names and
trademarks is not relevant.

</narrative>

</inex_topic>

contains several parts all discussing the same information need:

e <InitialTopicStatement> a description of why the user has chosen to use
a search engine, and what it is that the user hopes to achieve.

e <castitle> the CAS query specified in the NEXI language [10].

e <description> a natural language expression of the information need using
the same terms as are found in the <castitle>. This element is used by the
natural language track at INEX [13].

e <narrative> a description of the information need and what makes a result
relevant. When judgments are made they are made against this description so
it is important that it precisely describes the difference between relevant and
irrelevant results. For experiments that additionally take into account the
context of a query (such as the interactive track [8]), the purpose for which
the information is needed (the work-task) is also given in the narrative.

Both the parent query and the child queries are stored in this way - but
an additional element, the <parent> element, is present in child topics. This
element stores the castitle of the child’s parent. This method of linking children
to parents was chosen over using identifiers as it was considered less likely to be
prone to human input error.

2.3 Query Interpretation

A contentious point about CAS queries is how to interpret them. The database
(strict) view is that the structural hints are constraints which must be followed
exactly in order for a returned element to satisfy the query. The information
retrieval (vague) view is that the structural hints are hints and can be ignored
so long as a returned element is relevant in the mind of the user (it satisfies the
information need).

A single clause query might be interpreted strictly, or vaguely - that is the
constraint might be followed or can be ignored. If, for example, a user asks
for an article abstract about “information retrieval”, then perhaps an article
introduction might just as well satisfy the need - or perhaps not.

With multiple clause queries, there are many possible interpretations. In
the CAS experiment at INEX 2005, the strict and vague interpretations are
applied to both the target element, and the support elements. This gives four

43

interpretations written XYCAS where X is the target element and Y is the
support element, and either X or Y can be S for strict or V for vague. Those
interpretations are:

e VVCAS: The target element constraint is vague and the support element
constraints are vague. This is the information retrieval view of the topic.

e SVCAS: The target element constraint is strict, but the support element
constraints are vague.

e VSCAS: The target element constraint is vague, but the support element
constraints are followed strictly.

e SSCAS: Both the target element constraint and the support element con-
straint are followed strictly. This is the database view.

3 Document Collection

The document collection used in the experiments was the INEX IEEE document
collection version 1.8. This collection contains 16,819 documents taken from
IEEE transactions and magazines published between 1995 and 2004. The total
size of the source XML is 7056MB. This is the latest version of the INEX collection
at publication date.

4 Data Acquisition

This section discusses the acquisition of the queries from the participants and
the verification that they are representative of previous years. It also discusses
the acquisition of the judgments and the construction of the different judgment
sets.

4.1 Query Acquisition

The document collection was distributed to the participating organizations. They
were then each asked to submit one CAS topic along with any associated single
clause child-topics (should they exist). These topics then went through a se-
lection process in which queries were parsed for syntactic correctness, semantic
correctness, consistency, and validated against their child topics. A total of 17
queries passed this selection process.

The breakdown of CAS topic complexity (excluding child-topics) for each of
INEX 2003, 2004, and 2005 is given in Table 1. From visual inspection it can
be seen that the breakdown in 2005 is representative of previous years, most
queries contain two clauses with approximately the same number of three and
one clause topics. In 2005 there were no topics with more than 3 clauses.

44

Table 1. A Breakdown of the complexity of INEX 2005 CAS topics shows that they
are representative of previous years

Clauses 1 2 3 4+
2003 7 12 6 5
2004 4 22 4 4
2005 3 12 2 0

Table 2. The 17 topics and the topic numbers of their children

Parent Children ||Parent Children |[Parent Children
244 245, 246 258 259, 281 270

247 248, 249, 276 (260 275 274, 273

250 251, 252 261 262, 263 280 277, 278, 279
253 254, 255 264 282, 283 284 266, 285

256 272, 271 265 267, 268 288 242, 243

257 269 286, 287

4.2 Child Topics

Each topic and child topic was given a unique identifier (stored in the topic.id
attribute of the inex_topic tag). Table 2 shows which topics are parent topics
and which topics are their children. Topic 258, for example, has topics 259 and
281 as children whereas topic 260 is a single clause query and has no children.

It may appear at the onset that these child topics can be used as part of the
evaluation giving a total of 47 topics. This, however, is not the case. The guide-
lines for topic development [7] identifies that for evaluation purposes queries must
be diverse, independent, and representative. Using both the parent and the chil-
dren topics for computing performance violates the independence requirement -
and weights evaluation in favor of longer topics (which have more children).

Using just the child topics, and discarding the parents, violates the require-
ment that topics are representative. In Table 1, the breakdown of topics from
previous years is shown. Most topics have two clauses, whereas child topics (by
definition) have only one. The children, without their parents, are not represen-
tative.

4.3 Judgment Acquisition

The topics and child-topics were distributed to the participants. Each partici-
pating group was invited to submit up to two runs for each CAS task. At least
one was required for VVCAS. A run consisted of at most 1,500 ranked results
for each parent and child topic. There were no restrictions on which part of the
topic was used to generate the query - participants were permitted to use the
narrative, or description, or castitle if they so chose.

45

These results were then pooled in a similar manner to that used at TREC
(and shown to be robust there by Zobel [15]). The details of the INEX pooling
method are give by Piwowarski and Lalmas [6] and a discussion of the robustness
is provided by Woodley and Geva [14].

The pool identifies which documents and elements the search engines consid-
ered relevant to the query. Using a graphical interface (the 2005 version of X-Rai
[5,6]) to the document collection, the original author of the query (where possi-
ble) was asked to identify which elements of which documents in the judgment
pool were, in fact, relevant to the information need. Assessors first highlighted
relevant passages from the text, and then they assigned relevance values to all
elements in this region on a three points scale: highly exhaustive, partly ex-
haustive, or too small. This assessment was performed for the parent topics in
isolation of the child topics - and not necessarily by the same assessor.

As a topic may contain many different interpretations of the information
need (for example the description and the castitle) all judgments were made
with reference to the description contained in the topic narrative.

4.4 CAS Relevance Assessments

Table 3. Topics assessed by more than one assessor, and which pool was assigned to
which assessment set

Pool
Topic| Set-a | Set-b
(official)|(other)

261 350 362
244 354 358
250 356 369
258 289 360

In a separate experiment the consistency of the judgments is being measured
across multiple assessors. This is done by asking two or more judges to assess
the same topic, without knowledge of the other’s decisions. Of the CAS topics,
those listed in Table 3 were multiple-judged.

The consequence of this multiple assessment process is that there is no single
set of relevance assessments. Inline with INEX 2004, the assessments are divided
into two groups: set-a, and set-b (see Pehcevski et al. [4] and Trotman [9] for a
discussion of the 2004 results of this experiment). The INEX 2005 assignment
was made based on proportion of completion at the date the first relevance as-
sessments were released. Those judgments that, from visual inspection, appeared
most complete were assigned to set-a, while the other was assigned to set-b. In
this way set-a, the set used to generate the official results, was most complete
and therefore most reliable.

46

Internal to X-Rai (the online assessment tool), each assessment of each topic
by each judge is given an internal identifier - the pool id. Table 3 also shows
which pool ids were assigned to which judgment set.

4.5 CAS Relevance Sets

From set-a, four sets of judgments were generated, one for each of the four CAS
interpretations - each derived from the same initial set of judgments.

e VVCAS: The assessments as done by the assessors (against the narrative).

e SVCAS: Those VVCAS judgments that strictly satisfy the target element
constraint. This set of judgments was computed by taking the VVCAS judg-
ments and removing all judgments that did not satisfy the target element
constraint. This was done by a simple matching process in all except topic
260 in which the target element is specified as //bdy//*. In this case all
descendants of //bdy (excluding //bdy) are target elements.

e VSCAS: A relevant element is not required to satisfy the target constraint,
however the document must satisfy all other constraints specified in the
query. In all except two cases, this constraint is that for a judgment of the
parent topic to be relevant, it must come from a document that also has
SVCAS judgments for all its children. In one exception (topic 247), this
conjunction is replaced with a disjunction. In the other exception (topic
250) there are (presently) no judgments as the assessment task has not been
completed.

e SSCAS: Those VSCAS judgments that satisfy the target element con-
straint. These are computed from the VSCAS judgments in the same way
that SVCAS judgments are computed from VVCAS judgments - strict con-
formance to the target element.

The guidelines for topic development [7] identify groups of tags that are
equivalent. For example, for historic paper publishing reasons the sec, ssl, ss2
and ss3 tags are all used to identify sections of documents in the collection. The
strict conformance to a given structural constraint occurs with reference to the
equivalence list - //article//bdy//ssl strictly conforms to //article//sec.

5 Measurement

The official metric used to report the performance of a system at INEX 2005 is
MAep, the mean average nxCG rank at 1500 elements. This measure is described
by Kazai and Lalmas [3]. The results (produced using xcgeval) for the INEX 2005
CAS task are available from INEX. There were 99 runs submitted to the CAS
tasks, of which 25 were SSCAS, 23 SVCAS, 23 VSCAS, and 28 VVCAS!.

Of the 17 topics used for evaluation (the parent topics of Table 2) judgments
currently exist for only 10 topics - at the time of writing the assessment task

! Submissons version 1 and judgments version 7 are used throughout

47

had not been completed for the other 7 topics. Of those 10 topics, only 7 have
any elements that strictly conform to their child topic structural constraint. The
comparison of systems herein is based only on these topics.

Table 4. Number of relevant elements for each topic using generalised quantization

Topic|SSCAS|SVCAS|VSCAS|VVCAS
253 0 23 0 156
256 492 724 1431 2101
257 96 96 711 711
260 5159 5159 5264 5264
261 0 59 0 4437
264 6 40 155 1272
265 0 40 0 211
270 35 35 850 850
275 111 183 12870 16965
284 2 111 326 14265

Table 5. Number of relevant elements for each topic using strict quantization

Topic|SSCAS|SVCAS|VSCAS|VVCAS
253 0 0 0 11
256 139 162 198 228
257 0 0 0 0
260 66 66 66 66
261 0 0 0 2
264 0 0 12 44
265 0 0 1
270 1 1 2 2
275 18 22 330 424
284 0 5 4 196

In Table 4 and Table 5 the number of relevant element for each topic of
each task is shown. The judgments for strict quantization are highly sparse -
for the SSCAS task, there are only 4 topics with highly specific and highly
exhaustive judgments. It does not seem reasonable to draw any conclusions from
only 4 topics so the remainder of this analysis applies to only the generalized
quantization of results.

By correlating the results of one task with those of another (say, VVCAS
with SSCAS), it is possible to see how well a system designed to target one

48

interpretation performs when evaluated using a different interpretation. This is
the case when a search engine is designed to answer in one way, but the user
expects results in another. Taking all the CAS runs (including the “unofficial”
runs) the IBM Haifa Research Lab run VVCAS_no_phrase_no_tags submitted
to the VVCAS task performs best using the VVCAS judgments (with a MAep
score of 0.1314), but if the user need included a strict interpretation of the topic
(it was evaluated using the SSCAS judgments) then it is at position 50 with a
score of 0.0681.

By comparing the performance of runs submitted to each task it is possible
to determine if one task is inherently easier, or harder, than the others. With a
harder task there is more room for improvement - further investigation into this
task might result in improvements all-round.

5.1 Do the Judgment Sets Correlate?

Table 6. Pearson’s product moment correlation coefficient between each CAS task

SSCAS|SVCAS|VSCAS|VVCAS
SSCAS | 1.0000 | 0.8934 | 0.4033 | 0.3803
SVCAS| 0.8934 | 1.0000 | 0.3409 | 0.3768
VSCAS| 0.4033 | 0.3409 | 1.0000 | 0.9611
VVCAS| 0.3803 | 0.3768 | 0.9611 | 1.0000

Table 6 shows the Pearson’s product moment correlation coefficient computed
for all runs when scored at each task. Scores close to 1 show a positive correlation,
those close to -1 a negative correlation and those at 0 show no correlation.

It is clear from the table that VVCAS and VSCAS are strongly correlated.
A search strategy that performs well at one task performs well at the other.
SSCAS and SVCAS, both with a strict interpretation of the target element are
less strongly correlated. There is little correlation between a strict interpretation
of the target element and a vague interpretation of the target element (SVCAS
and VSCAS, for example).

Figure 1 shows this correlation for the vague target element tasks. There is
a cluster of best-scoring runs at the top-right of the graph. They are runs that
have performed well at both VVCAS and VSCAS. These four runs are those
from IBM Haifa Research Lab. Although different runs perform best on the
VVCAS and VSCAS task, both “best” runs were submitted to the VVCAS task
- providing further evidence of the correlation of the two tasks.

Figure 2 shows the same for the strict target element tasks. The cluster is
not seen. The best performing run measuring on the SVCAS task was submitted
to the SSCAS task (again IBM Haifa Research Lab). These same runs were
only bettered by the four from the University of Tampere when measured for

49

the SSCAS task. Although Tampere produced runs that performed well at the
SSCAS task and not at the SVCAS task, IBM Haifa Research Lab produced runs
that performed well at both tasks. Again further evidence of the correlation of
the two tasks.

Figure 3 shows the performance of SSCAS against VVCAS. It is clear from
this figure that those runs that perform well at one task do not perform well at
the other. It appears, from visual inspection, that they are average performers
at each other’s tasks.

Performance of Vague Target Tasks

0.1400
0.1200 1
0.1000 1
0.0800 %3

.

0.0600 -

VVCAS (MAep)

0.0400 PLIRARS

0.0200 - JOREL

0.0000 +-> : : : : ; ; ;
0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600

VSCAS (MAep)

Fig. 1. Plot of performance of all submitted runs using VVCAS and VSCAS shows a
strong correlation of one to the other

5.2 Tasks Complexity

For each task the mean performance (MAep) of the best 21 runs submitted to
that task was additionally computed. This number was chosen because different
numbers of runs were submitted to each task, and for all tasks there were at
least 21 runs with a non-zero score. The mean and best performances are shown
in Table 7 where it can be seen that as far as the runs are concerned, SSCAS
is easier than SVCAS, which is easier then VVCAS, and the hardest is VSCAS.
The SSCAS task may be easiest because the required structural constraints are
specified explicitly in the query and the search engine can use this as a filter to
remove known non-relevant elements from the result list.

50

Performance of Strict Target Tasks

0.2500

0.2000 - .
G .
< , .
S 01500 .
2 .t .t . * 0.
S 0.1000 1 5T e :
> ..o
v . ‘e . . * Lo

0.0500 c oot

o oot ? M
0.0000 T T T T
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
SSCAS (MAep)

Fig. 2. Plot of performance of all submitted runs using SVCAS and SSCAS shows a
strong correlation of one to the other

Performance Across Different Targets

0.1400

0.1200
2 0.1000 .
< LI
= 0.0800 1 . . s
2 ¢ . .
& 0.0600 1 N e L. e
> . . . eed
> 0.0400 fe e e T

.o. e o o - . M
0.0200 1 " ¢ -, <
0.0000 +— ‘ ‘ ‘ ‘
0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
SSCAS (MAep)

Fig. 3. Plot of performance of all submitted runs using VVCAS and SSCAS shows
little correlation of one to the other

51

Table 7. Mean performance of top 21 runs from each task

SSCAS|SVCAS|VSCAS|VVCAS
Mean | 0.1285 | 0.0832 | 0.0628 | 0.0690

Std Dev| 0.0510 | 0.0484 | 0.0439 | 0.0310
Best | 0.2343 | 0.1922 | 0.1508 | 0.1314
Worst | 0.0381 | 0.0292 | 0.0039 | 0.0208

6 Conclusions

The Pearson’s correlation shows that there are only two different interpretations
of the query, those with a strict interpretation of the target element and those
with a vague interpretation of the target element (the database and the infor-
mation retrieval views). It is possible to ignore the interpretation of the child
elements and concentrate on only the target elements. In previous years, INEX
has made a distinction between strict and vague conformance to the target ele-
ment, but has disregarded conformance to child constraints (the so-called SCAS
and VCAS tasks). This finding suggests the experiments of previous years did,
indeed, make the correct distinction. Checking child constraints does not appear
worthwhile from an evaluation perspective.

The vague task has proven more difficult than the strict task. Strict confor-
mance to the target element can be computed as a filter of a vague run - from
those vague elements, remove all that do not conform to the target element con-
straint. The vague interpretation of CAS is a better place to concentrate research
effort.

If the CAS task continues in future years, a single set of topics, without
the child topics is all that is necessary for evaluation and participants should
concentrate on the vague interpretation of topics.

References

1. Fuhr, N., Govert, N., Kazai, G., and Lalmas, M. (2002). INEX: Initiative for the
evaluation of XML retrieval. In Proceedings of the ACM SIGIR 2000 Workshop on
XML and Information Retrieval.

2. Harman, D. (1993). Overview of the first TREC conference. In Proceedings of the
16th ACM SIGIR Conference on Information Retrieval, (pp. 36-47).

3. Kazai, G., and Lalmas, M. (2005). INEX 2005 evaluation metrics. In Proceedings
of INEX 2006.

4. Pehcevski, J., Thom, J. A., and Vercoustre, A.-M. (2005). Users and assessors in the
context of INEX: Are relevance dimensions relevant? In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 47-62).

5. Piwowarski, B., and Lalmas, M. (2004). Interface pour 1’évaluation de systémes de
recherche sur des documents XML. In Proceedings of the Premiere COnference en
Recherche d’Information et Applications (CORIA’04).

52

10.

11.

12.

13.

14.

15.

Piwowarski, B., and Lalmas, M. (2004). Providing consistent and exhaustive rele-
vance assessments for XML retrieval evaluation. In Proceedings of the 13th ACM
conference on Information and knowledge management, (pp. 361-370).
Sigurbjornsson, B., Trotman, A., Geva, S., Lalmas, M., Larsen, B., and Malik, S.
(2005). INEX 2005 guidelines for topic development. In Proceedings of INEX 2005.
Tombros, A., Larsen, B., and Malik, S. (2004). The interactive track at INEX 2004.
In Proceedings of INEX 2004, (pp. 410-423).

Trotman, A. (2005). Wanted: Element retrieval users. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 63-69).
Trotman, A., and Sigurbjornsson, B. (2004). Narrowed Extended XPath I (NEXT).
In Proceedings of INEX 2004, (pp. 16-40).

Trotman, A., and Sigurbjornsson, B. (2004). NEXI, now and next. In Proceedings
of INEX 2004, (pp. 41-53).

Voorhees, E. M. (2001). The philosophy of information retrieval evaluation. In
Proceedings of the The Second Workshop of the Cross-Language Evaluation Forum
on Evaluation of Cross-Language Information Retrieval Systems, (pp. 355-370).
Woodley, A., and Geva, S. (2004). NLPX at INEX 2004. In Proceedings of INEX
2004, (pp. 382-394).

Woodley, A., and Geva, S. (2005). Fine tuning INEX. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 70-79).
Zobel, J. (1998). How reliable are the results of large-scale information retrieval
experiments? In Proceedings of the 21st ACM SIGIR Conference on Information
Retrieval, (pp. 307-314).

53

TIJAH Scratches INEX 2005
Vague Element Selection, Overlap, Image
Search, Relevance Feedback, and Users

Vojkan Mihajlovié!, Georgina Ramirez?, Thijs Westerveld?, Djoerd Hiemstra!,
Henk Ernst Blok!, and Arjen P. de Vries?

! University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands
{v.mihajlovic, d.hiemstra, h.e.blok}@utwente.nl
2 Centre for Mathematics and Computer Science,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{georgina, thijs, arjen}@cwi.nl

Abstract. Retrieving information from heterogeneous data sources in
a flexible manner and within single (database) framework is still a chal-
lenge for many data retrieval systems. In this paper we present the ex-
tension of our prototype database system TIJAH developed for struc-
tured retrieval. The extension is aimed at modeling vague selection of
XML elements and image retrieval. All three levels (conceptual, logical,
and physical) of the TIJAH system are enhanced to support these new
concepts. Additionally, we analyze different ways of removing overlap,
explain how structural information can be used for relevance feedback,
and investigate what real users want from structured documents.

1 Introduction

In this paper we discuss our participation at INEX 2005 with TIJAH, a three-
level database system for structured information retrieval. The TIJAH [12-14] is
developed as a transparent XML-IR database system consisting of conceptual,
logical, and physical levels. TIJAH can handle queries with the strict selection of
XML elements, specified in the NEXI query language [20] and to reason about
textual information. This year we extended it in two directions: towards handling
vague specification of XML elements in the query (similar to [5]), and towards
supporting retrieval from heterogeneous domains (images and videos), following
the guidelines from multimedia retrieval database systems [3]. Moreover, we
analyze the performance of different approaches to remove overlap, continue with
the relevance feedback experiments [17] using the TIJAH system, and study real
users’ information needs when searching structured documents.

The first point that we want to address in this paper is handling imprecise
specification of elements in the XML search. Similarly as user gives only a num-
ber of terms as hints for searching within a document, XML elements specified
within the query need not be considered as a strict requirement but as a hint for

54

structural search. Therefore, when formulating a query the user can state that
the search (support) element or answer (target) element should be treated as a
hint or as a constraint in the retrieval process. To support this vague search we
introduced vague element search as a concept in our TIJAH system.

On the other hand, to cope with the heterogeneous data sources (images and
videos) the TIJAH system is extended with new features on each level that can
express image search. The image search is handled in the same framework as the
text search at the conceptual level where additional syntactical specification is
added to the NEXT query language, and at logical level where new operators are
introduced in the Score Region Algebra (SRA) [13]. However, due to different
nature of the domain data, images are stored and handled in a different manner
than textual XML data at the physical level.

We also present our approaches for removing overlap and relevance feedback.
To remove overlap, we define an wutility function that intends to capture the
amount of useful information each element contains. We use this function to
decide which is the most appropriate retrieval unit for each of the parent-children
relationships. Our relevance feedback approach uses the structural characteristics
of the relevant elements to update the priors in a language modeling framework.

Finally, our participation in the interactive track aims at studying and clas-
sifying different types of user needs when searching structured documents.

1.1 Overview

The following section explains the extensions introduced in the TIJAH system
to model vague XML element specification. Section 3 details our approach for
image retrieval. The relevance feedback and overlap approaches are discussed
in Section 4 and 5 respectively while the intended user studies are explained in
Section 6. We wrap-up the paper with the results from the numerous experiments
performed for each track and its sub-tasks in Section 7 and with conclusions and
future directions in Section 8.

2 Vague Node Selection

This section details the motivation and the implementation of vague selection of
nodes in our three-level database framework. We explain the extensions on each
level aimed for vague search on elements.

2.1 Vague element node selection in NEXI

Instead of extending our conceptual parser for rewriting content-and-structure
(CAS) queries into SVCAS, VSCAS, and VVCAS (SSCAS is equal to CAS in
our case), where prefix ‘S’ or ‘V’ stands for vague specification of target and sup-
port elements, we decided to extend the NEXI grammar with one extra symbol
‘~’, The ‘tilde’ symbol is used in front of the element name in the query specifi-
cation, denoting that the element name does not have to be strictly matched in

55

the query evaluation. We support this decision by arguing that the user should
be responsible for stating his confidence in the knowledge of the hierarchical
organization of the data he is querying, or whether he is certain or not what is
the element name in which he wants to search for information.

The vague element selection can be treated similarly as a query expansion on
terms in traditional IR. For example, if a user searches for the term ‘conclusion’,
he might also be satisfied with terms ‘decision’, ‘determination’; ‘termination’,
or ‘ending’ in the answer. In structured documents, if a user asks for ‘car’ el-
ements, he would probably not mind getting ‘auto’ or ‘vehicle’ elements as an
answer. Furthermore, he might also agree with the answers: ‘van’, ‘sports-car’,
or ‘convertible’.

While the list of possible synonyms, hypernyms, and hyponyms for terms can
be considered as relatively static over time (e.g., WordNet [15]) and the degree
of similarity can be pre-specified, in the case of element name expansion the
problem is more complex and dynamic. Besides the terms that have the same or
similar meaning, like the ones given above, it can happen that element names
follow different naming pattern. Thus, elements might have complex element
names such as: ‘sport_car’, 'sport-car’, ‘vehicles_list’, etc.. Abbreviations could
also be used, such as for section elements in INEX TEEE collection: ‘sec’, ‘ss1’,
‘ss2’, ‘ss3’. Additionally, if a user asks for elements denoting one concept it might
not be wrong if the answer is an element from a similar concept. Plenty of such
examples can be identified in INEX e.g., if a user asks for sections, he might be
satisfied with paragraphs (see the extensive list of equivalence classes in [11]),
abstracts, or even short articles (summaries). Furthermore, the list of element
names can be larger in semantically richer and heterogeneous XML collection
and it can evolve over time with the introduction of new XML collections.

The problem of element name matching is studied in the research area of
schema matching and numerous techniques exist that try to resolve this problem
(see [4,16] for survey). However, we decided to simplify the vague element name
search task and use the results from INEX 2004 assessments to find the expanded
element names. We define the list of expanded element names based on the list of
element names assessed as highly exhaustive elements in INEX 2004 assessments
process. The lists are given in Table 1 and we term these lists element name
expansion lists>.

2.2 Introducing complex selection operator for vague node selection

The vague node selection at the conceptual level (NEXI) is translated into com-
plex vague node selection operator at the logical level. However, the vague node
selection operator in score region algebra has more expressive power than the
simple NEXT extension on the conceptual level. It allows much finer specification
of search and answer elements than a simple vague ‘~’ node name specification.
The vague node selection operator in SRA is defined as a union of all XML

3 Other elements in INEX IEEE collection are not included in Table 1 as they were
not present as target elements in the 2004 topic set.

56

Table 1. Element name expansion list based on INEX 2004 assessments.

Element name|Expanded element names

abs abs, fm, kwd, vt, p, sec, article, bdy, ref
article article, bdy, sec, abs, fm, bm, bib, bibl, bb, p, ref
atl atl, st, fgc

bb bb, bm, bibl, bib, atl, art

bdy bdy, article, sec, abs, p, ref

bib bib, bm, bb, atl, art

fig fig, sec, st, p, fgc, st, atl

fm fm, sec, abs, kwd, vt, p, article, bdy, ref
kwd kwd, abs, fm, st, fgc, atl

P p, vt, abs, sec, fm, article, bdy, st

sec sec, abs, fm, vt, p, article, bdy, bm, app
st st, atl, fgc

tig tig, bb

vt vt, p, sec, bm, fig

element regions that match the names of the ‘expanded name regions’ within
the element name expansion list. By default all ‘expanded regions’ are down-
weighted by a predefined factor. The definition of the operator is as follows:

expansion(class)
n=name,t=node

(R1) :==A{r|lr1 € R1 A (s,e,n,t):= (s1,e1,n1,t1) A ¢t =node

A (n,p) € expansion(class, name)} (1)

Here expansion(class) is a set that contains all the expansions for all the region
names in one expansion class, where expansion list for each region name is
denoted as expansion(class,name) (with cardinality n):

expansion(class,name) := {(exn1, exwi), (exnz, ex_ws), ..., (exny, ex_wy)}

Here ex_n; is a expanded element name and ex_w; is a real number in the range
expansion(class)

[0, 1] denoting the down-weight factor. The operator o, 2" 7 7 (R1) assigns
name (ex_n) and score (ex_w) values to the region name (n) and score (p) based
on the name and score values in the expansion list expansion(class, name).

The simple selection operator in basic score region algebra operator set (see
[14]) can be considered as a complex selection operator where expansion(class)
set is empty. Note that the complex selection operator can also be expressed
using the basic SRA selection operator and scaling operator as follows:

L L
prmansion(elass) ()] (Onmeanstmnode (R) ® ex-:)

(2)

(ex-n;, ex-w;) € expansion(class, name)

We defined two expansion classes for our INEX 2005 participation: (1) based
on the equivalence classes defined for INEX IEEE collection [11], termed eq_class,

57

and (2) based on a fusion of equivalence classes and our INEX 2004 expansion el-
ement name lists given in Table 1 such that every expanded element name in this
table that has the equivalent name in the eq_class name part is also expanded
with the eq_class equivalent names for name, termed uni_class. Therefore, the
eq_class selection on section elements can be expressed as azgfigj,zii(sgﬁass) (R),
and vague node selection ~sec can be transformed into the next SRA opera-
Zﬁi‘;jj}jiﬁjj;jl““)(z%). In such a way we can transparently define the set
of expanded nodes and their respective weights and use them for vague node

selection in a vague element name selection retrieval scenarios.

tion o

2.3 The implementation of vague selection operator

On the physical level, since we are working with the known INEX IEEE data
collection, and as we used static INEX equivalence element name list and expan-
sion element name list based on INEX 2004 assessments, we decided to replicate
the two lists and store them as tables at the physical level, i.e., in MonetDB [1].
Thus, we have two tables with (entity_name, expansion_name, expansion_weight)
for uni_class and (entity_name, equivalent_name)?* for eq_class sets. The com-
plex selection operator is then implemented as an additional MIL (MonetDB
Interpreter Language) function, based on the definition given in the previous
section, that uses the information from these tables.

For example, the vague name selection operator on region table R and the
‘expansion regions’ table S for the uni_class element names, in relational algebra
could be defined as:

Tr.s,r.e,r.n,r.t,s.weight (Usn:name (S) Ws.n=r.n (Unt:node(R)))

2.4 Retrieval models

We based the instantiation of retrieval models on the best models used for flat-
file information retrieval, as well as XML retrieval: language models [7], Okapi
(INQUERY) model [2, 18], and Garden Point XML (GPX) [6]. Based on experi-
mental results in [13] we instantiated the following functions for assigning score
values to regions in SRA. For the relevance score computation on regions we
used: Equation 3 for language models, Equation 4 for Okapi, and Equation 5 for
GPX.

ZTQERQ\T2<T1 b2
size(ry)

| R2|

LM SN —
5 (r, Re) = p1- (A size(Root)

+(1=X)) ®3)

freCln=nm} —|{reCn=niA3ra € RoAra <71} +0.5
{relCln=niAIra € RoAre <711} +0.5
(kl + 1) : ZTQERQ\T2<TI P2

' size(r (4)
kl((l - b) + bang,ieb)zl)) + ZT26R2\T2<T1 P2

fél)kapi(,r,17 RQ) =pm n

4 In the preliminary experiments we did not store weights for equivalent region names
as we assumed that their default weight is 1.0.

58

GPX Zrz ERo|ro <71 P2
(Ry) = py - =r2falrazn 77 5
a (7’1 2) p1 |R2| ()

For upwards score propagation we used either weighted sum (Equation 6) or sum
(Equation 7), while for downwards score propagation we employed Equation 8.

ZTQERZM"2<T1 b2 - Size(TQ)

fo(ri,R2) =p1-

size(r1)

fo(ri,Re) =p1- Z D2 (7)
ro€Ra|r1<r2

fa(r1,R2) =p1- Z D2 (8)

ro€Ra|ro<ry

Abstract operators ® and & are implemented both as simple sum, or as product
and sum, except in the case of GPX model where the instantiation is given in
Equation 9.

p1+ p2 ifp1:0\/p2:()
P1@p2 =p1-p2 = 9)
A - (p1 + p2) otherwise

3 Image similarity search

To enable search on multimedia collection (provided by Lonely Planet) we also
introduced extensions to the TIJAH system defined along three levels of our
prototype DB.

3.1 Extending the NEXI syntax for image search

To include the image search in TIJAH we extended the TIJAH system with
the about image. The NEXI syntax is extended with an extra token ‘src:’ that
defines the location of the source image with which the destination image should
be matched. Therefore, in the multimedia query 1:

//destination[about(.//images//image, buddha src:/images/BN417_16.jpg)]
//*[(about(., asia) or about(., asian))
and (about(., buddha) or about(., buddhist))]

the first about contains a request for image similarity search. The destination
image that need to be matched is located under the local images directory with
the name of BN417_16.jpg. In the preprocessing step, the ‘src:’ part of the
about is transformed into about_image and its relative path given in the NEXI
‘src:’ specification is resolved into the path to the location where the data for
image matching is stored. The image about command is then forwarded to the
logical level.

59

3.2 Image search in SRA

None of the SRA operators defined at the logical level could handle such about_image
statement. Therefore, to express image search in SRA we extended the SRA op-
erator set with the additional operators o and :I;. The o operator has similar
definition as basic score region algebra operator ,—name,t=type, €xcept that the
score p is now computed by a call to an external function (f?). The function f?
uses information extracted from the reference figure and the figure that should
be selected and it computes the score of an image region based on similarity
between the reference image and the selected image:

ix~sample
n=name,t=attr

(R1):=A{rlri € R1 A Tr2€C A 12 <r1 A t2 =attrwal A

(s,e,n,t) ;= (s1,e1,m1,t1) A t=attr A n=name A p= f'(n2,sample)} (10)

Here sample is the location of the reference image data specified with the ‘src:’
statement in the NEXI query, resolved in the preprocessing step, C is a set of
all regions in the database, attr it the attribute node, and attr_val is value of
the attribute attr.

The operator :lzi, is defined in the same way as 1, operator (for the exact
definition see [13]), except that it allows computing score of a region containing
images with the usage of different scoring formula than for terms given in Equa-
tions 3 to 5. Therefore, the about_image in the multimedia query 1 is transformed
into the next SRA expression:

i _i~‘BN417_16.jpg’
o—n:‘imagel,t:n(?dﬁ(c) p Un:file-name,t:att'r(c)

3.3 Implementation of image search

At indexing time, we estimated a generative probabilistic model of each of the
images in the collection (see below); the model parameters are stored in separate
tables in the database. In addition, we constructed a table that links the image
identifiers to the corresponding nodes in the collection tree. The image selection
operator is implemented as a new MIL function that computes the Gaussian
mixture model similarity score between each collection image model and the
example image.

3.4 Retrieval model

Similarity between example images and collection images is estimated using
Gaussian mixture models (GMM). To this end, each of the images in the col-
lections (w(n;)) is modeled as mixtures of Gaussians with a fixed number of
components K:

Ng

P(z|w(ni)) = Y P(Kix) G, py g, Dir), (11)
k=1

60

where Nk is the number of components in the mixture model, K; j is component
k of class model w(n;) and G(x, p, X) is the Gaussian density with mean vector
p and covariance matrix X

1 L@ TE (@)
G(x, 1, %) = ———ze 2H) 12
(z, 1, X) b (12)

T is the matrix

where d is the dimensionality of the feature space and (x — w)
transpose of (x —).

These Gaussian mixture models are used to represent the images. The score
of an image given an example image from a query, is determined by the likelihood
that the corresponding model generates the feature vectors (X = {x1,x2,...,Tn})
representing the example image. Like in the LM case for text, we interpolate with

a background model based on collection statistics:

fl(ni,sample) =] - Pl@lw(ng)) + (1= A) - P(z|w(n:))] (13)

we‘xscwnple

The feature space of the vectors x is based on the DCT coefficients obtained
from 8x8 pixel blocks. For details of the feature vectors and the GMMs, see [21,
22].

On the other hand the scores in the operation R, :I;'7 Rs are computed as a
multiplication of score values of regions from the left operand and score values
of the contained regions from the right operand, since each image element in the
Lonely Planet collection containd only one image.

4 Relevance feedback

The main idea of any relevance feedback strategy is to use the knowledge of
relevant items to retrieve more relevant items. So far, research has concentrated
on using content-related information from the known relevant elements. However,
for XML retrieval the structural characteristics of the relevant elements might
also play an important role. Following the lines of what we started last year [14],
we investigate the potential of the structural information for this type of task and
analyze if retrieving structurally similar elements improves retrieval effectiveness.

4.1 Structural information in relevant elements

We study two different aspects of the structure of documents that can help the
retrieval system to discriminate between relevant and non relevant elements.
Namely, the containing journal of an element and the element type. Table 2
shows the number of different journals and element types judged relevant per
topic. If we compare these numbers to the total number of different journals
(24) and different element types (187) contained in the new collection, we can
see that the knowledge of which journals and element types are relevant for each

61

Table 2. Number of different journals and element types judged relevant per topic.
Statistics taken from relevance assessments 2005 version 2. Average over 28 CO topics.
All degrees of relevance are taken into account.

|Type info.|Avg.|Median|Max|Min|
Journals 7.9 |8 16 |2
Elements (34.4 |34.5 73 19

of the topics is a very important piece of information that can help retrieval
systems to perform a better search.

One way to use the knowledge of which structural characteristics are relevant
for a certain topic is to increase the a priori belief in relevance of the elements
that have the same structural characteristics. In this way, we use the informa-
tion of which relevant journals and element types are found in the top 20, to
calculate priors and increase the a priori belief in relevance of the elements that
are contained in that journal or that are from that specific element type.

4.2 Updating priors in a language modeling framework

For our baseline experiments, we used statistical language models (see Sec-
tion 2.4). Using Bayes’ rule and assuming independence between query terms,
the probability of an element E given a query) can be estimated as the product
of the probability of generating the query terms ¢; from the element’s language
model and the prior probability of the element:

P(E|Q) x [[P(a:|E)P(E) (14)

G EQ

Typically, little prior knowledge about the probability of an element is avail-
able and either uniform priors are used, or P(F) is taken to be related to the
element’s length (i.e.,long elements are assumed to be more likely to contain
relevant information) (cf. [9]). However, once we have some information about
relevant elements, for example from a user’s relevance judgments, we can use
this information to update the priors. From the judgments, we can discover the
characteristics of relevant elements and update the priors in such a way that
elements with similar characteristics are favored®. Note that this does not re-
quire updating of the content models, i.e., the elements’ language models do not
change.

Therefore, once we get information about the structural characteristics of
the relevant elements for a given topic, we define the priors for the journals and
element types and use them to retrieve structurally similar elements. However,
since in the top 20 we may not have seen all relevant journals or element types,
there is the risk of assigning a prior equal to zero to element types or journals
that do actually contain relevant information. To avoid this effect of relying too

5 Strictly speaking P(E) can no longer be called a prior, since it depends on the topic
at hand.

62

much on what is seen in the top 20, we interpolate P(x(E)|rel) with the general
probability of seeing elements from z(FE). Thus the prior becomes:

P.(E) = aP(m(EWeg(ﬁ;(%); o) P(z(E)) as)

where z(F) identifies the journal (element type) to which E belongs, P(xz(E)|rel)
is estimated as the fraction of relevant items belonging to the journal (element
type) and P(z(E)) is the fraction of elements in the collection that belongs to
that journal (element type).

5 On overlap

To identify the appropriate element to return is not an easy problem. A com-
mon approach to remove overlap from result lists is to select the highest scored
element from each of the paths. In our opinion, this approach has two main
drawbacks. On the one hand, it does not consider the length of the elements.
If a high scored element is rather small, all the other elements from that path
(maybe only slightly lower scored) will be removed without considering if they
would be more appropriate (size wise) retrieval units. On the other hand, this
approach does not consider relationships between elements in the tree. If, for
example, all the paragraphs within a section are high scored but only some are
the highest elements of their path, only these ones will be returned. We argue
that, in this scenario, it might be more appropriate to return the section that
contains all the paragraphs than only some of the paragraphs on their own.

We believe that the appropriate retrieval unit will be determined by the total
amount of useful information that unit contains. If a very high scored element is
very short, the amount of useful information that carries is also small. Whereas
if a not so high scored element is longer, the amount of useful information that
the user will read is larger. Thus, the decision of which elements to return will be
related not only to their retrieval model score but also to their size. In the same
way, whether to return several siblings or their parent will be decided according
to the amount of irrelevant information the user will have to read if the parent is
returned. If the reminding text of the parent element contains somehow relevant
information (even if not highly relevant), the parent should be returned and not
the children.

To implement this idea, we define an wtility function, related to the elements
size and score, and calculate its value for each of the nodes in the tree. The nodes
with a higher wtility value than the sum of their children’s ones are returned. In
the case that the children need to be returned, only the ones with the utility value
higher than a threshold are returned. Details on the different utility functions
used and the results will be reported in the final version of this paper.

63

6 Users and information needs

The overall motivation of the interactive track at INEX is twofold. First, to
investigate the behavior of users when interacting with components of XML
documents, and second to investigate and develop approaches for XML retrieval
which are effective in user-based environments [19]. A very important aspect of
the track is the collaborative effort done in order to gather as much data on
users’ behavior as possible. For that, common user experiments are carried out
by all participants and evidence is collected. These experiments not only record
users’ behavior but also question the users about several aspects of the search
process such as interface and system issues, tasks, granularity of the answers,
and users’ satisfaction.

One of the new issues introduced in this year experiments is that users are
asked to describe and perform the search based on their own information need.
Our main interest is to analyze and classify different types of users’ information
needs and to understand what are their expectations regarding XML retrieval
systems. Since the collected data has not yet been made available to all the
participants, we will report our analysis in the final version of the paper.

7 Experiments

Among numerous tracks and scenarios specified for INEX 2005, we participated
in the following: all CO and CAS ad-hoc track sub-tasks, multimedia track,
interactive track, and relevance feedback track. Below, after introducing the
metrics reported in the paper, we will explain in detail our approaches for each
of these (sub)tasks. The runs given in bold are the official ones, but run on the
updated (correct) volume files in INEX document collection.

7.1 Metrics

The official INEX metrics for 2005 ad-hoc and relevance feedback track are
based on extended Cumulative Gain (xCG) metrics [10]. The official metrics
are: normalized xCG (nxCG), effort-precision/gain-recall (ep/gr), and extended
Q and RS. The evaluation can be done either with the generalized or with the
strict quantization. In this paper we report the evaluation results obtained with
nxCG at various recall points: 10, 25, and 50 and mean average ep/gr. For
multimedia track we report mean average precision (MAP) values.

Note that for any document cut-off value, say 10, it can be shown that, if
strict quantization is used (or any other binary quantization), and overlap is not
taken into account, and the total number of relevant elements is bigger than 10,
then nXCG at 10 and precision at 10 give exactly the same results. However,
if the number of relevant elements is smaller than 10 for some topics, then this
might have a big impact on the measured performance.

6 http://inex.is.informatik.uni-duisburg.de/2005 /inex-2005-metricsv4.pdf

64

For instance, IBM Haifa’s run “SSCAS_no_phraseno_plus” and Max Planck
Institute’s (MPI) run “MPII_TopX_SSCAS” have the same average precision at
10 over 4 topics with relevant elements: 0.225 for both runs (over topic 256, 260,
270 and 275). That is, on average 22.5% of the elements inspected in the top
10 is highly exhaustive and specific. However, for one of these 4 SSCAS topics
(topic 270), only 1 relevant document is known. Because of this, the nXCG at 10
over the 4 topics is twice as high for MPT (0.450), which found the document in
its top 10, as it is for IBM (0.225), which did not find it in its top 10. Apparently,
a 100% gain in nXCG does not have to say much about the actual percentage
of relevant items seen by the user. Precision at x is less sensitive to the total
number of known relevant elements than XCG at z, and therefore defining the
ideal recall base as needed for XCG is not really an issue for precision [8].

7.2 Ad-hoc track: CO queries

Thorough The aim of the Thorough retrieval strategy is to find all highly
exhaustive and specific elements. Thus, to find all relevant information regardless
of overlapping results. This year we submitted only two runs with the aim of
using them as baseline runs for the other tasks and sub-tasks. Description and
results for these two runs are given in Table 3.

Table 3. Results for CO.Thorough experiments with strict (°) and generalized (%)
quantization.

|Run id |Description [nXCG[10]|nXCG[25][nXCGI[50]|ep/gr|
LMs_04_1p” LMs, A=0.4, lp [0.0880 0.0897 0.0996 0.0024
CO_LMs_trm_085° |[LMs, \ = 0.85, 1p|0.0923 0.0855 0.0859 0.0022
LMs_04_1p® LMs, A=0.4, lp [0.2388 0.2540 0.2303 0.0849
CO_LMs_trm_085%|LMs, \ = 0.85, Ip|0.2161 0.1856 0.1839 0.0610

Although under the strict quantization there are not big differences between
the two runs, under the generalized, one of the runs (A = 0.4) outperforms
the other considerably. We used this run as baseline for the rest of the CO
experiments.

Focussed The aim of the Focussed retrieval strategy is to find the most exhaus-
tive and specific element in a path. Once the element is identified and returned,
none of the remaining elements in the path should be returned. In other words,
the result list should not contain any overlapping elements.

The goal of our experiments for this task is twofold. We investigate if there
are big differences in effectiveness between different approaches to remove over-
lap, and we evaluate the effectiveness of our own approach for different wutility
functions (see Section 5). As mention before, we do not have yet the results
for our approach but they will reported in the final version of this paper. To
investigate differences in performance between approaches, we implemented two

65

already known ways of removing overlap: namely, the naive and the common
approach. The naive approach filters out from the result list everything except
one specific type of element (assuming that there is not overlap between elements
of the same type). The common approach is implemented as follows: first, we
select the highest scored element from the result list and remove its ancestors
and descendants, then we take the second highest scored element and remove its
ancestors and descendants, and then we continue recursively until all elements
from the result list have been either selected or removed. The results from these
implementations are shown in Table 4.

Table 4. Results for CO.Focussed experiments with strict (°) and generalized (¢)
quantization.

|Approach [nXCG[10]|[nXCG[25][nXCG[50][ep/gr]
Baseline, with overlap® [0.0817 0.0713 0.0777 0.0510
Naive: select articles” 0.0080 0.0080 0.0120 0.0043
Naive: select sections® 0.0320 0.0434 0.0421 0.0142

Naive: select paragraphs® [0.1257 0.1600 0.1703 0.0676
Common® 0.1097 0.0971 0.1134 0.0531
Baseline, with overlap® [0.1441 0.1340 0.1260 0.0467
Naive: select articles® 0.1557 0.1217 0.1031 0.0452

Naive: select sections® 0.1852 0.1801 0.1560 0.0664
Naive: select paragraphs®|0.2372 0.2262 0.2172 0.0834
Common® 0.2296 0.1940 0.1986 0.0796

The approach that performs better is the one that retrieves only paragraphs.
In general, for the naive approach, and as expected for a Focussed retrieval task,
the longer the element, the lower the performance. It is however more surprising
that, for the strict case, it is more desirable to return overlapping elements
(baseline) than to return e.g. only the sections. In our opinion, for a focussed
retrieval task the overlapping elements are not desired and therefore, should be
stronger penalized. The common approach performs well although, due to the
drawbacks mentioned before, some relevant information is removed.

Fetch and Browse The aim of the Fetch and Browse retrieval strategy is to
first identify relevant articles (fetching phase), and then to identify the most
exhaustive and specific elements within the fetched articles (browsing phase).

To achieve this task, several decisions need to be taken: e.g., how to rank
the articles, how to rank the elements within an article, how many from these
elements should be shown to the user (do we want to show more articles and
few elements within them or many elements inside fewer articles?), do we want
to return overlapping elements?

For this year experiments, we decided to rank the articles by its own score
(the one given by the retrieval model) and to remove overlap inside the articles.
We experimented with the number of elements to return within an article and

66

the way to remove overlap. We only submitted two official runs and as we can
not evaluate additional ones, the results of these experiments will be reported
in the final version of the paper.

7.3 Ad-hoc track: CAS queries

Since we decided to extend the NEXI syntax with the vague selection we had
to manually rewrite the queries for each CAS scenario except the SSCAS. For
example, the (SS)CAS query 225:

//article[about(.//fm//atl, "digital libraries")]
//seclabout (. ,"information retrieval")]
is rewritten into three variants:

— SVCAS: //article[about(.//~fm//~atl, "digital libraries")]
//seclabout(.,"information retrieval")]

— VSCAS: //articlelabout(.//fm//atl, "digital libraries")]
//~sec[about(.,"information retrieval")]

— VVCAS: //article[about(.//~fm//~atl, "digital libraries")]
//~sec[about(.,"information retrieval")]

We decided not to consider the ‘article’ element as a vague element in case it is
not the target element or it is not the element in which the about search should
be performed, as in these cases the ‘article’ element just serves as a focusing
element for deeper search in the XML tree.

We also aimed at comparing vague node selection with two query rewriting
techniques that we used previous years for INEX [12,14]. These rewriting tech-
niques treat structural constrains as strict but mix the terms in different about
clauses. In the first rewriting approach (rw I), all terms that are in different
about clauses in the same predicate expression, and are not at the top level (i.e.,
not in about (., term) expression), are added to an extra top-level about close
in the same predicate expression. The second approach (rw II), is an extension
of the first one, where not only the terms from non top-level abouts are added
to the new about, but also all the terms from the other predicate?, if there exists
any, are added to the top-level about in each predicate.

The results for different scenarios and the comparison of the approaches are
given in the Table 5. For the official submissions we used the uniform down-
weighting factor (either w = 0.55 or w = 0.65) based on the outcome of our
experiments on INEX 2004 test collection. We report only the results with gen-
eralized quantization as only four out of seven assessed topics have highly ex-
haustive and highly specific elements for SSCAS sub-task.

Based on the experimental results given in Table 5 we can conclude that the
rewriting techniques in general improve relevance score at early nxCG (except

" Note that the NEXI syntax allows only two predicates with the about clauses to be
specified in one query.

67

Table 5. Results for various CAS experiments with generalized quantization.

|Sub-task|Description |nXCG[10] |nXCG[25] |nXCG[50] |ep/gr|
LMs, A =0.5 0.218 0.3141 0.4139 0.1191

SSCAS Okapi, k1 = 1.5, b=0.75 0.1671 0.2132 0.3846 0.1001
LMs, A=0.5,rw I 0.2194 0.3991 0.4516 0.1248

LMs, A =0.5, rw II 0.3129 0.424 0.466 0.1428

LMs, A=0.5 0.2138 0.2665 0.3082 0.1167

SVOAS LMs, A =0.5, w = 0.55 0.2203 0.2622 0.2868 0.1173
LMs, A=0.5, rw I 0.1956 0.2774 0.3248 0.1187

LMs, A = 0.5, w = 0.55, rw 11/0.2951 0.2989 0.3241 0.1315

LMs, A=0.5 0.2697 0.2754 0.257 0.0595

VSCAS LMs, A\ =0.5, w = 0.55 0.2 0.2263 0.2304 0.0925
LMs, A = 0.5, w = 0.55, rw I |0.1995 0.25 0.2464 0.0814

LMs, A =0.5, rw II 0.298 0. 2908 0.2559 0.0648

LMs, A=0.5 0.2677 0.2815 0.2659 0.0509

LMs, A =0.5, w = 0.55 0.2364 0.254 0.2425 0.0741

VVCAS |LMs, A = 0.5, w = 0.65 0.2295 0.2644 0.2322 0.0737
LMs, A= 0.5, w = 0.55, rw I |0.2246 0.2679 0.2467 0.0699

LMs, A = 0.5, w = 0.55, rw 11/0.2823 0.2931 0.2554 0.1001

for rewrite I for nxCG[10]) for all sub-tasks, no matter if they are used in com-
bination with the vague selection or not. Furthermore, the rewrite II technique
in combination with the vague element selection seams to give the best scores.
However, for ep/gr the rw I gives lower scores, while the rw II gives higher scores
only in combination with the vague element selection. The vague element selec-
tion itself tends to improve the ep/gr but not the nxCG scores. Due to a small
set of assessed topics we take this outcomes as a hypothesis.

7.4 Ad-hoc track: COS queries

Since COS queries have the same form as CAS queries we applied the same
manual rewriting to COS queries. Thus, we made four different scenarios for
COS queries, that we denote SSCOS, VSCOS, SVCOS, and VVCOS, and due
to the limited number of submissions we submitted only SSCOS, VSCOS, and
VVCOS as official runs. In our experiments we planned to test the degree of
improvements in the effectiveness using the strict or vague structural constrains.
The outcome for COS.Thorough can be seen in Table 6. We can see that with
more vagueness we the results are better, for both metrics. However, for the
COS.Thorough, as opposed to CAS subtasks, rw I seams to be more adequate
than rw II in combination with the vague element selection. The analysis of the
Fetch and Browse and Focussed scenarios will be given in the final paper.

7.5 Multimedia track: image queries

An important goal of our multimedia extension was to showcase and test the
flexibility and extendibility of the SRA approach. In addition, we tested if us-

68

Table 6. Results for COS.Thorough experiments with strict (°) and generalized (¢)
quantization.

|Sub-task|Description [nXCG[10]|[nXCG[25][nXCG[50][ep/gr]
SSCOS? [LMs, A = 0.4 0.0529 0.0536 0.0571 0.0014
SVCOS® [LMs, A = 0.4, w = 0.55 0.0529 0.0489 0.0559 0.0014

VSCOS® [LMs, A = 0.4, w = 0.55 0.0882 0.0736 0.0724 0.0020
VVCOS® [LMs, A = 0.4, w = 0.55 0.0882 0.0736 0.0895 0.0021
VVCOS® |[LMs, A = 0.4, w = 0.55, rw I [0.0882 0.0883 0.0918 0.0021
VVCOS® |LMs, A = 0.4, w = 0.55, rw I1]0.0882 0.0859 0.0859 0.0020

SSCOS% [LMs, A = 0.5 0.2677 0.222 0.176 0.0304
SVCOS® [LMs, A = 0.4, w = 0.55 0.2734 0.2265 0.1963 0.0351
VSCOS% |LMs, A = 0.5, w = 0.4 0.2625 0.2426 0.2104 0.0443
VVCOS®|LMs, A = 0.5, w = 0.4 0.2659 0.2551 0.2367 0.0677
VVCOS®[LMs, A = 0.5, w = 0.4, rw I [0.2943 0.27 0.2454 0.0706

VVCOSY|LMs, A = 0.5, w = 0.4, rw II |0.2686 0.2441 0.2179 0.0664

ing visual similarity can contribute to better multimedia retrieval results. To
this end, we compared the multimedia queries discussed in Section 3 to similar
queries with all image similarity clauses (src:) removed. The results of these two
approaches using three different models for text search is given in Table 7. Lan-
guage models and GPX clearly perform better than Okapi, but we did not find
any improvement using visual similarity, in fact the best run uses only textual
language models and is significantly better than its multimedia counterpart.

Table 7. Results for MM track.

|LM |MAP||Okapi |MAP||GPX |MAP|
text only |0.2751||text only |0.2110||text only [0.2567
multimedia|0.2600||{multimedia|0.2133||multimedia|0.2627

7.6 Relevance feedback track

To analyze the effects of using structural information in the relevance feedback
process as described in Section 4, we designed two main experiments. The first
one varies the values for a in Equation 15 to analyze the effects of assigning
different importance to the structural information found in the top 20. The
values used are: 0.75, 0.5 and 0.25. This experiment is done on top of one of our
runs for the CO.Thorough task that uses language models and a linear length
prior.

The second experiment aims to identify which of the two types of structural
information provides better improvement to the overall effectiveness of the IR
system. Therefore, we fix the value of o in Equation 15 to 0.5 and analyze the gain
obtained when using journal priors, element priors, and both priors at the same
time. This experiment is done on top of one of our runs for the COS.Thorough
task that uses the VVCAS approach explained in Section 2.

69

There is a common run in both experiments that is intended to show the
differences in gain when using the journal priors (o = 0.5) on top of a CO
baseline and when using them on a COS baseline. Our goal is to see if the fact
that the second baseline already uses structural information diminishes the effect
of the priors.

In the time of writing this paper, there are not official results available. Thus,
we will report them in the final version of the paper.

8 Conclusions and Future Work

Throughout the paper we show that the TIJAH database system is flexible
enough to incorporate new advanced search techniques, such as vague element
selection and relevance feedback, and search on heterogeneous data sources, such
as a combination of images and text.

We plan to continue the experimental evaluation of different scenarios for
search in structured documents: (1) the approaches for handling overlap and for
supporting user searching behavior (fetch and browse), (2) the vague element
search with non-uniform down-weighting (based on assessment results) and its
combination with rewriting techniques, (3) the usage of structural relevance
feedback, and (4) image search for improving retrieval results.

9 Acknowledgments

We would like to thank Roberto Cornacchia at CWI, Amsterdam, for providing

the visual similarity code and for pre-processing the Lonely Planet images.
Many thanks to the Netherlands Organisation for Scientific Research (NWO)

for funding the research described in this paper (grant number 612.061.210).

References

1. P. Boncz. Monet: a Next Generation Database Kernel for Query Intensive Appli-
cations. PhD thesis, CWI, 2002.

2. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY Retrieval System.
In Proceedings of the 3rd DEXA Conference, 1992.

3. A.P. de Vries. Content and Multimedia Database Management Systems. PhD
thesis, University of Twente, Twente, The Netherlands, 1999.

4. A. Doan and A.Y. Halevy. Semantic Integration Research in the Database Com-
munity. Al Magazine, 26:83-94, 2005.

5. N. Fuhr and K. Gro{johann. XIRQL: An XML Query Language Based on Informa-
tion Retrieval Concepts. ACM Transactions on Information Systems, 22(2):313—
356, 2004.

6. S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004. In
N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Third Workshop of
the INitiative for the Evaluation of XML retrieval (INEX), volume 3493 of Lecture
Notes in Computer Science, pages 276-291, 2005.

70

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, Twente, The Netherlands, 2001.

D. Hiemstra and V. Mihajlovic. The simplest evaluation measures for xml informa-
tion retrieval that could possibly work. In Proceedings of the INEX 2005 Workshop
on Element Retrieval Methodology, 2005.

Jaap Kamps, Maarten de Rijke, and Borkur Sigurbjérnsson. Length Normalization
in XML Retrieval. In SIGIR ’04: Proceedings of the 27th Annual International
Conference on Research and Development in Information Retrieval, pages 80-87,
2004.

G. Kazai, M. Lalmas, and A.P. de Vries. The Overlap Problem in Content-oriented
XML Retrieval Evaluation. In Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2004.

G. Kazai, M. Lalmas, and S. Malik. INEX’03 Guidelines for Topic Developments.
In Proceedings of the Second Initiative on the Fvaluation of XML Retrieval (INEX
2003), ERCIM Workshop Proceedings, 2004.

J. List, V. Mihajlovié, A. de Vries, G. Ramirez, and D. Hiemstra. The TIJAH XML-
IR System at INEX 2003. In Proceedings of the 2nd Initiative on the Evaluation
of XML Retrieval (INEX 2008), ERCIM Workshop Proceedings, 2004.

V. Mihajlovié¢, H.E. Blok, D. Hiemstra, and P.M.G. Apers. Score Region Algebra:
Building a Transparend XML-IR Database. In Proceedings of the ACM CIKM
Conference, 2005.

V. Mihajlovié¢, G. Ramirez, A.P. de Vries, D. Hiemstra, and H.E. Blok. TIJAH at
INEX 2004: Modeling Phrases and Relevance Feedback. In N. Fuhr, M. Lalmas,
and S. Malik, editors, Proceedings of the Third Workshop of the INitiative for the
Evaluation of XML retrieval (INEX), volume 3493 of Lecture Notes in Computer
Science, pages 276-291, 2005.

G.A. Miller, C. Fellbaum, R. Tengi, S. Wolff, P. Wakefield, H. Langone, and
B. Haskell. WordNet: A Lexical Database for the English Language.

E. Rahm and P.A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal - The International Journal on Very Large
Databases, 10:334-350, 2001.

G. Ramirez, T. Westerveld, and A.P. de Vries. Structural Features in Content
Oriented XML Retrieval. In Proceedings of the ACM CIKM Conference, 2005.

S. E. Robertson and S. Walker. Some Simple Effective Approximations to the
2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of the 17th
ACM SIGIR Conference, 1994.

A. Tombros, B. Larsen, and S. Malik. The Interactive Track at INEX 2004. In
N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Third Workshop of
the INitiative for the Evaluation of XML retrieval (INEX), volume 3493 of Lecture
Notes in Computer Science, pages 410—423, 2005.

A. Trotman and R. A. O’Keefe. The Simplest Query Language That Could Possibly
Work. In N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Second
Workshop of the INitiative for the Evaluation of XML retrieval (INEX), ERCIM
Publications, 2004.

T. Westerveld. Using generative probabilistic models for multimedia retrieval. Ph.d.
thesis, University of Twente, Enschede, The Netherlands, November 2004.

Thijs Westerveld and Arjen P. de Vries. Generative probabilistic models for mul-
timedia retieval: query generation versus document generation. IEFE Proceedings -
Vision, Image and Signal Processing, 152(6):852-858, 2005.

71

XFIRM at INEX 2005: ad-hoc, heterogeneous
and relevance feedback tracks.
Preliminary work

Karen Sauvagnat, Lobna Hlaoua, and Mohand Boughanem

IRIT-SIG,
118 route de Narbonne, F-31 062 Toulouse Cedex 4, France

Abstract. This paper describes experimentations carried out with the
XFIRM system in the INEX 2005 framework. The XFIRM system uses a
relevance propagation method to answer CO and CAS queries. Runs were
submitted to the ad-hoc, heterogeneous and relevance feedback tracks.

1 Introduction

The approach we used for our participation at INEX 2005 is based on the
XFIRM system, and uses a relevance propagation method. The XFIRM sys-
tem was adapted for submitting runs to the ad-hoc track (for CO, CO+S, and
CAS tasks), the heterogeneous track and the relevance feedback track.

2 Experimental setup

2.1 XFIRM data model

The XFIRM system is based on a relevance propagation method. We use a
generic data model that allows the implementation of many IR models and the
processing of heterogeneous collection. We consider that a structured document
sd; is a tree, composed of leaf nodes In;; and attributes a;; and simple nodes
n;; (all nodes that are not leaf nodes or attributes).

Structured document: sd; = ({n;},{lni;},{ai;})

In order to easily browse the document tree and to quickly find ancestors-
descendants relationships, the model uses a representation of nodes and at-
tributes based on the Xpath Accelerator approach [2].

All leaf nodes are indexed, because even the smallest leaf nodes can be relevant
or can give information on the relevance of their ancestors. Intuitively, title or
subtitle nodes are not informative, but if a query term occurs in those nodes,
such information can be useful for evaluating the relevance of the ancestor node.
Such an approach has other advantages: the index process can be done automat-
ically, without any human intervention and the system will be so able to handle
heterogeneous collections automatically; and secondly, even the most specific
query concerning the document structure will be processed, since all the docu-
ment structure is stored.

72

During query processing, relevance values are assigned to leaf nodes and rele-
vance score of inner nodes are then computed dynamically, thanks to a propaga-
tion of leaf nodes score through the document tree. An ordered list of subtrees
is then returned to the user.

2.2 Evaluation of leaf nodes scores

Whatever the considered type of queries, a first step in query processing is to
evaluate the relevance value of leaf nodes In according to the query. Let ¢ =
t1,...,t, be this query. Relevance values are computed thanks to a similarity
function RSV,,(q,In), where m is an IR model.

n

RSV, (q,In) = wa s wl" (1)

i=1

Where w] and w; In are respectively the weights of term ¢ in query ¢ and leaf
node [n.

According to previous experiments [5], we choose to use the following term
weighting scheme, which aims at reflecting the importance of terms in leaf nodes,
but also in whole documents:

w! = tf? wi™ = tfI" «idf; x ief; (2)

Where tf{ and tf!" are respectively the frequency of term 4 in query ¢ and leaf
node In, idf; = log(|D|/(|di| + 1)) + 1, with |D| the total number of documents
in the collection, and |di| the number of documents containing i, and ief; is the
inverse element frequency of term 7, i.e. log(|N|/|nfi:| + 1) + 1, where |n f;| is the
number of leaf nodes containing ¢ and |N| is the total number of leaf nodes in
the collection.

Inner nodes relevance values are evaluated thanks to one or more propagation
functions, which depend on the searching task. Such propagation functions are
described in the following sections.

3 CO task

3.1 Inner nodes relevance values evaluation

In our model, each node in the document tree is assigned a relevance value
which is function of the relevance values of the leaf nodes it contains. Terms
that occur close to the root of a given subtree seem to be more significant for
the root element that ones on deeper levels of the subtrees. It seems therefore
that the larger the distance of a node from its ancestor is, the less it contributes
to the relevance of its ancestor. This affirmation is modelled in our propagation
formula by the use of the dist(n,Ing) parameter. dist(n,lny) is the distance
between node n and leaf node Iny in the document tree, i.e. the number of arcs
that are necessary to join n and Iny.

It is also intuitive that the more a node contains relevant leaf nodes, the more it
is relevant. We then introduce in the propagation function the |L! | parameter,

73

which is the number of leaf nodes being descendant of n and having a non-zero
relevance value (according to equation 1).

A relevance propagation function using these parameters has been tested in the
INEX 2004 framework. In the 2005 evaluation campaign, we propose to add two
parameters:

— We propose to increase small nodes importance during propagation. Indeed,
we think that authors of documents use small nodes to highlight impor-
tant informations. These nodes can therefore give precious indications on
the relevance of their ancestors. In our propagation function, this intuition
corresponds to the G(Iny) parameter.

— We introduce the p parameter, inspired from work presented in [3], which
allows the introduction of document relevance in inner nodes relevance eval-
uation. The idea behind context is: an element in a relevant document should
be better ranked than an identical element in a non-relevant document.

The relevance value 7, of a node n is therefore computed according the following
formula:

rn=p*|L7| Z adistln) =1 4 B(Ing) « RSV (¢, Ing)

Ing €Ly,
+(1 _ p) " |Lr| Z adist(roonlnk)fl *6(1'”]@) *RSV(qJnk)
Ing€L
=px|Lyl. Y a® T B ing) « RSV (g, Ing)
Ing €L,
+(1 = p) * Troot (3)

where Iny are leaf nodes being descendant of n, L, is the set of leaf nodes being
descendant of n, and

l/ALif dist(n,ing) =1 and I, < Al
B(lng) = log(Al/ly) if dist(n,lng) > 1 and I, < Al (4)
1 else

with [the length of node Iny and Al the average length of leaf nodes in the
collection.

3.2 Runs

CO.Thorough strategy. For the CO.Thorough task, all nodes having a non-zero
relevance value are returned by the XFIRM system. We experimented using
various values of p € [0..1].

CO.Focussed strategy. In order to reduce/remove nodes overlap, we use two
different algorithms:

1. For each relevant path, we keep the most relevant node in the path (around
20% of nodes overlap still remains)

2. For each relevant path, we keep the most relevant node in the path. The
results set is then parsed again, to eliminate any possible overlap among
ideal components.

74

CO.FetchAndBrowse strategy. In this task, elements are first ranked by the
relevance of the document they belong to, and then by their own relevance. We
use the following algorithm:

1. relevance values are computed for each document in the collection;

2. relevance values are computed for each node of the collection;

3. documents are ranked by decreasing order of relevance;

4. for each document, elements they contain are ranked by decreasing order of
relevance and are returned to users.

Documents relevance are computed with the Mercure system [1].
3.3 Results

All results described in this paper use the inex1.8 version of the collection, which
is the official 2005 collection. However, due to a misunderstanding, our official
submissions were obtained with the inex1.6 version of the collection. For infor-
mation, official submissions are mentioned in italic characters and are followed
by the "*’ symbol.

CO.THOROUGH strategy. Tables 1 and 2 show the results obtained with dif-
ferent values of p.

nxCG[10] |nxCG[25] |nxCG[50] |ep/gr - MAP|Q R
p=1 0,1684 0,168 0,1772 0,0562 0,1100 |0,2231
p=09 * 10,15 * 0,156 * 0,174 * 10,043 * 0,085 * 0,188 *
p=09 [01712 |0,1696 |0,1786 |0,0577 0,1089 [0,2179
p=038 0,1634 0,1845 0,1859 0,0569 0,1057 10,2138
p=0.7 10,1727 0,2006 0,1883 0,0569 0,1044 10,2110
p=06 (01713 |0,2058 [0,1928 [0,0565 0,1031 {0,2078
p=0.> 0,1762 0,2036 0,1894 0,0561 0,1019 10,2051
p=04 0,1802 0,2075 0,1897 0,0557 0,1009 |0,2040
p=03 (0,931 |0,2116 |0,188 0,0555 0,1001 [0,2020
p=0.2 0,2049 0,2126 0,1857 0,0553 0,0996 |0,2010
p=0.1 0,2083 0,2144 0,1868 0,0548 0,0986 |0,2011
p=0 [02384 02126 [0,1862 [0,0542 0,0976 [0,1981

Table 1. CO.Thorough strategy. Quantisation: Generalised

Best results are obtained with small values of p, especially for the strict
quantisation function. This seems to show that root relevance (i.e. document
relevance) has a high impact on elements relevance.

CO.FOCUSSED strategy. Tables 3 and 4 show the results obtained with differ-
ent values of p.

Algorithm 2 (results without any nodes overlap) allows to obtain better re-
sults than algorithm 1 for all metrics. As opposed to results obtained for the
CO.Thorough strategy, document relevance seems to have no impact on element
relevance (best results were obtained with p = 1).

75

nxCGJ10] [nxCG[25] |nxCGI[50] |ep/gr - MAP|Q R

p=1 0,012 0,0299 _ |0,0464 _ |0,0009 0,0012 |0,0208

p=09* (0011 * [0,025* (0,047 * |0,001 * 0,001 * |0,021 *

p=20.9 0,012 0,0258 0,0462 0,0012 0,0015 |0,0216

p=08 0,008 0,0329 10,0475 |0,0014 0,0016 [0,0213

p=20.7 0,008 0,0425 0,0514 0,0015 0,0017 |0,0216

p=20.6 0,008 0,0505 0,0522 0,0016 0,0018 |0,0218

p=05 0,012 0,0569 |0,0546 |0,0017 0,0019 [0,0209

p=0.4 10,016 0,0585 0,0555 0,0017 0,0019 |0,0206

p=0.3 0,024 0,0617 0,0555 0,0017 0,0020 |0,0199

p=02 0,036 0,0633 |0,0555 |0,0018 0,0020 [0,0199

p=0.1 0,044 0,0633 0,0563 0,0019 0,0021 10,0199

p=0 0,0684 0,0636 0,0579 0,0019 0,0021 |0,0194

Table 2. CO.Thorough strategy. Quantisation: Strict
nxCG[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R
p=1 0,1202 0,1214 0,1279 0,0393 0,0798 |0,1543
p=0.9 0,112 0,1073 0,0941 0,0260 0,0609 |0,1249
Algorithm 1 [p=0.8 |0,1146 0,106 0,093 0,0256 0,06042 (0,1208
p=01 [0,1042 {0,094 0,0852 |0,0231 0,0577 10,1177
p=0 0,0951 0,0901 0,078 0,0235 0,0607 (0,1172
p=17% |0,119 * |0,122* |0,119 * 0,030 * 0,060 * 0,132 *
p=1 0,1364 0,1445 0,1453 0,0396 0,0748 10,1579
p=09% 10.104 * |0.104 *]0.089 * |0.022 * 0.052 *10.106 *
p=0.9 0,1299 0,1171 0,1021 0,0276 0,0624 10,1271
Algorithm 2 |p =0.8 {0,1235 0,1144 0,0988 0,0271 0,0622 (0,1258

p=0.1 0,1131 0,1033 0,092 0,0256 0,0613 |0,1197
p=0 0,0951 0,0901 0,078 0,0235 0,0607 (0,1172

Table 3. CO.Focussed strategy. Quantisation: Generalise

CO.FETCHBROWSE strategy.

Results obtained with the CO.FetchBrowse
strategy are described in table 5. Results are good, since we were ranked in
the top 5 for both quantisation functions. More over results are significantly
better for the MAP metric than those obtained for the CO.Thorough strategy
(see tables land 2).

4 CAS task

4.1 Inner nodes relevance value evaluation

The evaluation of a CAS query is carried out as follows:

1. INEX (NEXI) queries are translated into XFIRM queries
2. XFIRM queries are decomposed into sub-queries SQ and elementary sub-
queries ESQ, which are of the form: ESQ = tg[q], where tg is a tag name,

i.e. a structure constraint, and ¢ = t1, ...

of simple keywords terms.

76

,tn is a content constraint composed

nxCGJ[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R
p=1 0,012 0,016 0,0336 |0,0024 0,0034]0,0051
p=0.9 0,014 0,0156 0,0188 0,0030 0,0038 10,0015
Algorithm 1 [p=0.8 0,014 0,0156 0,0196 0,0031 0,0039 |0,0011
p=0.1 0,004 0,0056 0,0128 0,0011 0,0016 |0,0008
p=0 0 0,004 0,012 0,0009 0,0015 |0
p=1%* 10011 * 0,006 * [0,025* 0,002 * 0,003 *10,004 *
p=1 0,016 0,0112 0,0296 0,0034 0,0046 |0,0066
p=0.9* 10014 * 0.020 * 0.028 * 0.004 * 0.004 *10.002 *
p=0.9 10,014 0,0172 0,0204 0,0031 0,0039 (0,0018
Algorithm 2 [p=0.8 0,014 0,0172 0,0236 0,0031 0,0039 |0,0011
p=0.1 0,004 0,0072 0,0176 0,0013 0,0019 |0,0011
p=0 0 0,004 0,012 0,0009 0,0015 |0
Table 4. CO.Focussed strategy. Quantisation: Strict
Generalised Strict
p=1 0,1167 0,0063
p=09* 0,108 * 0,006 *
p=0.9 0,1229 0,0068
p=0.1 0,1183 0,0065
p=0 0,0731 0,0042

Table 5. CO.FetchBrowse strategy. ep/gr - MAP-Element metric

3. Relevance values are then evaluated between leaf nodes and the content
conditions of elementary sub-queries

4. Relevance values are propagated in the document tree to answer to the
structure conditions of elementary sub-queries

5. Sub-queries are processed thanks to the results of elementary sub-queries

6. Original queries are evaluated thanks to upwards and downwards propaga-
tion of the relevance weights

Step 3 is processed thanks to formula 1. In step 4, the relevance value r,, of
a node n to an elementary subquery ESQ = tg[q] is computed according the
following formula:

=

where the construct(tg) function allows the creation of set composed of nodes
having tg as tag name, and RSV (q, Iny) is evaluated during step 2 with equation
1. The construct(tg) function uses a Dictionnary Index, which provides for a
given tag tg the tags that are considered as equivalent. For example, a title node
can be considered as equivalent to a sub-title node. This index is built manually.
More details about CAS queries processing are can be found in [5].

Y inger, adistln) =1« RSV (q,Iny) if n € construct(tg)
0 else

(5)

77

4.2 Runs

In order to answer the different searching tasks, we used different Dictionnary
indexes:

— The DICT index is composed of equivalencies given in the INEX guidelines.
For example, ss1, ss2 and ss3 nodes are considered as equivalent to sec nodes.

— The ExtendedDICT is composed of very extended equivalencies. For exam-
ple, sec, ssl, ss2 and ss3 nodes are equivalent to both p and bdy nodes.

SSCAS strategy. We use the DICT index and results are filtered in order to
answer strictly to constraints on the target element and support elements.

VVCAS strategy. We use the EXtendedDICT index, and no filter is applied on
results.

SVCAS strategy. We use the DICT index. No filter is applied on results: they
match the structure constraint on the target element in a strict way (since the
DICT index is used), and their relevance score is eventually increased by the
relevance score of results of subqueries on support elements.

VSCAS strategy. We use the DICT index on support elements and the Ex-
tendedDICT on target elements.

4.3 Results

Results for all strategies are showed in tables 6, 7, 8 and 9. Results are good,
since we are in the top 10 for almost all metrics.

nxCGJ[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R
Generalised |[DICT * 0,329 * 10,397 * 0,374 * 0,105 * 0,157 * 0,258 *
DICT 0.2861 0.2722 0.338 0.109 0.178]0.246
Strict DICT * 10,325 * 0,31 * 0,32 * 0,016 * 0,02 * 0,121 *
DICT 0.35 0.329 0.338 0.0166 0.021 |0.1169

Table 6. SSCAS strategy

nxCG[10] [nxCG[25] [nxCGI[50] |ep/gr - MAP|Q R
Generalised |ExtendedDICT * 0,29 * 0,258 * 10,246 * |0,061 * 0,101 * 0,206 *
ExtendedDICT |0.3047 0.2727 0.2487 0.0687 0.115]0.219
Strict ExtendedDICT * |0,067 * 0,076 * 0,136 * 0,005 * 0,006 * 0,047 *
ExtendedDICT |0.0885 0.0756 0.1244 0.0054 0.0059 |0.0468

Table 7. VVCAS strategy

78

nxCGJ[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R

Generalised |DICT * 0,303 * 0,272 * 0,276 * 0,105 * 0,181 * 0,301 *

DICT 0.2645 0.2758 0.2916 0.1378 0.2318 |0.330
Strict DICT * (0,42 * |0,408 * 0,416 * |0,017 * 0,02 * 0,1 *

DICT 0.44 0.4571 0.4662 0.017 0.022 |0.11

Table 8. SVCAS strategy
nxCG[10] [nxCG[25] [nxCG[50] |ep/gr - MAP|Q R

Generalised |DICT+ExtendedDICT * (0,194 * (0,21 * 0,207 * 10,07 * 0,119 * 10,218 *

DICT+ExtendedDICT |0.237 0.2346 0.2292 0.047 0.069 10.159
Strict DICT+ExtendedDICT * |0 0,007 * 0,023 * 0,007 * 0,008 *|0,07 *

DICT+ExtendedDICT |0.1667 0.15 0.15 0.006 0.007]0.05

Table 9. SVCAS strategy
5 CO+4S task
5.1 Inner nodes relevance value evaluation
In the CO+S task, queries are processed as in the CAS task. Nodes relevance
values are evaluated using equation 5.
5.2 Runs
+S. THOROUGH strategy and +S.FOCUSSED strategy. We either use the
DICT or ExtendedDICT dictionnary index, since the aim of the task is to in-
vestigate the usefulness of the structural hints.
+S.FETCHBROWSE strategy We follow the same algorithm as the one used
for the CO.FETCHBROWSE strategy.
5.3 Results and comparison to the CO task
nxCG[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R

DICT * 0,172 * 0,147 * |0,123 * 0,016 * 0,03 * 10,089 *
DICT 0,1759 (0,162 0,1422 [0,0192 0,0369 |0,1022
ExtendedDICT* 0,169 * 0,191 * 0,187 * 0,045 * 0,088 * 10,001 *
ExtendedDICT 0,1787 [0,2037 |0,206 0,0569 0,1086 |0,2166

Table 10. COS.Thorough strategy. Quantisation: Generalised

+S. THOROUGH strategy. Results are not as good as those obtained without
structural hints (see table 1 and 2 for comparison).

+S.FOCUSSED strategy As opposed to results obtained for the +S. THOROUGH
strategy, results here are better than those obtained without using structural
hints (see tables 3 and 4 for comparison).

79

nxCG[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R

DICT * 0,024 * |0,037 * 0,047 * |0 * 0* 0,008 *
DICT 0,0242 [0,0321 |0,0362 |0,0003 0,0004 |0,0062
ExtendedDICT* 0,027 * (0,042 * 10,056 * 0,001 * 0,001 * (0,019 *
ExtendedDICT 0,0308 [0,0434 |0,0532 |0,0012 0,0014 |0,0210

Table 11. COS.Thorough strategy. Quantisation: Strict

nxCG[10] |nxCG[25] |nxCG[50] |ep/gr - MAP|Q R
DICT 01567 [0,1362 _ |0,121 0,0458 0,1046 |0,1783
ExtendedDICT* 0,144 * 0,128 * 0,127 * {0,031 * 0,069 *10,143 *
ExtendedDICT 0.1586 0.1497 0.1428 0.0410 0.0855 |0.1674

Table 12. COS.Focussed strategy. Quantisation: Generalised

nxCG[10] |nxCG[25] [nxCG[50] |ep/gr - MAP|Q R
DICT 0,0231 0,0308 0,0345 0,0096 0,01183 10,0166
ExtendedDICT* 0,009 * 10,009 * 0,025 * {0,002 * 0,004 * |0,004 *
ExtendedDICT 0.0154 0.0163 0.0571 0.0032 0.0046 |0.0086
Table 13. COS.Focussed strategy. Quantisation: Strict
Generalised Strict

DICT * 0,111 * 0,015 *

DICT 0.0155 0,0008

ExtendedDICT * 0.0747 * 0,005 *

ExtendedDICT 0,072 0.0058

Table 14. +S.FetchBrowse strategy. ep/gr - MAP-Element metric

+S.FETCHBROWSE strategy. As for the +S. THOROUGH strategy, results
obtained without using structural hints are better than those obtained for the
+S.FETCHBRWOSE strategy (see table 5 for comparison).

6 Heterogeneous track

In progress.

7 Relevance feedback track

For the RF track, we used the three different algorithms described below.

7.1 Structure-oriented Relevance Feedback

Our goal in what we call structure-oriented RF is to enrich the initial CO query
by adding structural constraints. Results of CO queries are components of dif-
ferent granularities. Even if a user does not ask for a particular component type,
he’s often interested in a few types of components (like for example references
or sections).

Our approach consists in extracting from the set of judged elements the structure
that could contain the information needed by the user. The idea in structure-
oriented RF is therefore to find for each query the appropriate generic structure,

80

which is the generic structure shared by the greatest amount of relevant ele-
ments.

This structure will be added to the initial query in order to improve the infor-
mation retrieval effectiveness.

Our algorithm consists in carrying out the intersection of each structure of
the elements judged as relevant with the rest of relevant elements structures. As
a result, we obtain a set of Common Structures, called SC.

Let E™ be the set of relevant elements and e; be an element € E”. e; is character-
ized by a path p; and a relevance score w; computed by the relevance evaluation
process. A simple path sp; composed of tag names can be derived from p;. For
example, the simple path corresponding to the path /article[1]/bdy[1]/sec[3] is:
Jarticle/bdy/ sec.

For each element e; € E", and for each e; € E” — {e;}, we apply the SCA func-
tion, which allows to retrieve (and to weight) the simple path of the smallest
common ancestor of n; and n;. This simple path is then added to the set of
common structures SC. The SCA fuction is computed for each pair elements of
E". More precisely, we use the following algorithm for SC A:

SCA(ei, ej)
begin
If sp;.last = spj.last, then w; «— w; + w;
if e, (spp, wp), with sp, € SC/spp.last = sp;.last then w, «— w, + w;
else SC « sp;
If sp;.last # spj;.last, then sp; < tail(sp;)
wj — wj/2
SCA(ei, ej)
end

with sp.last is the last tag of the path sp and tail(sp) is a function allowing
to contract the path sp, i.e. to remove the last tag of the path. For example,
tail(/article/bdy/section) = [article/bdy.

In order to express the new (CAS) query, we then extract the top ranked struc-
ture in the SC set. This structure will be either used as it is in the new query
(complex form) or simplified in a simple tag form. Original query terms are then
added to the structural constraint.

For example, let /article/bdy/sec be the top ranked structure of the SC set
and ”information retrieval”’ be the original CO query. The new CAS query
will either be ”/article/bdy/sec(about(.,information retrieval)” (complex form)
or "sec(about(.,”information retrieval”)” (simple form).

7.2 Content-Oriented Relevance Feedback

Our Content-Oriented Relevance Feedback approach is based on the Rocchio’
algorithm [4]. Our aim is to extract the most expressive terms from relevant
elements. The content-oriented RF processes as follows :

81

— Let’s consider the set of relevant elements (E") : E" = e, €5, ..., €}, ...€},

— A relevant element e}, is composed of a set of leaf nodes(In;) : ef, = Inf, ..., In¥, .Ink
— A leaf node lnf is a sequence of terms: In; = {t;;}.

For each term is assigned a score according to the following formula:

tf!
size(ln;)

(6)

score(t;j, lnf) =

Where tff is the frequency of term ¢; in leaf node lnf and size(In;) is the number
of terms in In;.

We then compute the score of terms for each relevant element. For each term,
we sum its scores in different leaf nodes.

score(t;, e},) = Z score(t;, Inj) (7)

Inj€ej,

As a result, we obtain a set of expressive words for each element judged as
relevant. Best terms are selected according to the scores in the set of relevant
elements E":

score(t;) = Z score(t;, e},) (8)

e EET

The new query is finally composed of terms ranked in the top k according to
formula 8, that are added to the original query terms.

7.3 Content-and-Structure-Oriented Relevance Feedback

In this approach, we propose to combine the structure-oriented Relevance Feed-
back method and the content-oriented Relevance Feedback described above. The
new query (CAS) is composed of the most appropriate generic stucture (complex
or simple form) and of terms ranked in the top k according to formula 8, that
are added to the original query terms.

7.4 Runs

CO.Thorough task. For this task, we used two approaches. The first uses the
Structure-oriented Relevance Feedback method (described in section 7.1). The
final CAS is composed of the most appropriate generic structure (specifying the
most appropriate generic path: complex form) and of the original query terms.
We considered relevant elements having an exhaustivity value E > 1.

The second approach we used is the Content-and-Structure-Oriented Relevance
Feedback. We added to the original query the terms ranked in the top 15 and
the most appropriate generic structure (specifying the most appropriate generic
tag: simple form).

82

COS.Thorough and VVCAS task. We applied in the same way two approaches
for the COS.Thorough and VVCAS queries.

The first uses the Content-oriented Relevance Feedback method (described in
the section 7.2). We added to the original query the terms ranked in the top 15.
We considered relevant elements having an exhaustivity value E > 1.

The second uses the Content-and-Structure-Oriented Relevance Feedback method.
We added to the original CAS query (thanks to the boolean operator 'OR’) the
most appropriate generic structure (specifying the most appropriate tag: simple
form) containing the 15 top ranked terms. We considered two cases for the rele-
vant elements: E > 1 and E =2.

References

1. M. Boughanem, T. Dkaki, J. Mothe, and C. Soule-Dupuy. Mercure at TREC-7. In
Proceedings of TREC-7, 1998.

2. T. Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, Wisconsin,
USA. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, ACM Press, 2002.

3. Y. Mass and M. Mandelbrod. Component ranking and automatic query refinement
for XML retrieval. In Proceedings of INEX 2004, Springer, pages 73-84, march
2005.

4. J. Rocchio. Relevance feedback in information retrieval. Prentice Hall Inc., Engle-
wood Cliffs, NJ, 1971.

5. K. Sauvagnat, M. Boughanem, and C. Chrisment. Using relevance propagation
for processing content-and-structure queries. Information Systems, special issue on
SPIRE 0, 2006.

83

University of Amsterdam at INEX 2005: Adhoc
Track

Bérkur Sigurbjornsson®, Jaap Kamps''2, and Maarten de Rijke!

! Informatics Institute, Faculty of Science, University of Amsterdam
2 Archives and Information Science, Faculty of Humanities, University of Amsterdam

Abstract. In this paper we describe the University of Amsterdam’s
participation in the INEX 2005 adhoc track. Our main research questions
for this round of INEX were to investigate selective indexing strategies
and different methods for using structural constraints in queries. As a side
question, we did experiment with the automatic creation of structured
queries.

1 Introduction

In this paper we describe the University of Amsterdam’s participation in the
INEX 2005 adhoc track. In previous years we have made our runs based on an
index of all overlapping XML elements. Our main objective this year was to
experiment with different methods of creating a more selective index. The aim
is to create a more efficient retrieval system without sacrificing much of retrieval
effectiveness. In our experiments with structured queries in the previous years we
have found that structural constraints lead to improvements in initial precision.
This year we wanted to explore whether different types of structural constraints
contribute differently to this gain.

For the CO.Focussed task we experiment with different non-overlapping runs.
First of all, we retrieve from our full overlapping element index and perform
result list based overlap removal as a post processing step. Second, we retrieve
from a non-overlapping element index. In our case, we used an index of all
<sec> elements. Last, and perhaps least, we retrieve from an article index. For
the CO.Thorough task we experiment with two pruning methods. One based on
previous relevance assessments and the other based on the length of the XML
elements. We compare the selective indexes to our full overlapping element index.
For the CO.FetchBrowse task we use our CO.Focussed runs as a basis and simply
group results for each article.

For the different CO+S tasks we experiment with different extents to use the
structural constraints. First of all, we only use the target constraint. Second we
use only the field constraints. Third we use both target and field constraints. For
the CO queries which do not have a structural version, we introduce structured
constraints using pseudo relevance feedback. For efficiency reasons, our system
is restricted to handle a limited set of structural constraints. The appropriate
set of structural constraints is chosen by studying content-and-structure queries
of previous years..

84

This paper is further organized as follows. In Section 2 we introduce our
indexing schemes. We describe our CO and CO+4S runs in Sections 3 and 4
respectively. Section 5 gives a summary of our results. Finally we provide some
discussion and conclusions in Section 6.

2 Indexing

For effective and efficient XML retrieval indexing plays an important role. Any
element can, in theory, be retrieved. It has been shown, however, that not all
elements are equally likely to be appreciated as satisfactory answers to an infor-
mation need [2]. In particular, retrieval of the very many, very small elements
is not likely to be rewarded by users. Furthermore, users (and hence metrics)
may be willing to partially reward near misses. This prompts us to investigate
whether we can reduce our indexing size, both in terms of retrievable units and
storage size. We believe that this gives us more efficient retrieval without loosing
any, or at least little, of retrieval effectiveness.

Element Indexes For retrieving elements we build four indexes.

— FElement index We build the “traditional” overlapping element index in the
same way as we’ve done in the previous years (see further [4, 5]).

— Length based index: It has been shown that very short elements are not likely
to be regarded as relevant. We analyze the average length of elements bearing
different tag-names. We then index only element types having an average
length above a certain threshold. For INEX 2005 we set the threshold to be
25 terms. The term count was applied before stop-words were removed.

— Qrel based index: It has been shown that elements with certain tag-names
are more likely than others to be regarded as relevant. We analyze the assess-
ments and look at which elements are assessed more frequently than other.
We index only elements that have appeared relatively frequently in previ-
ously assessment sets (i.e., they should constitute at least 2% of the total
assessments). We index article, bdy, sec, ssi, ss2, p, ipl, and fig.

— Section index: Retrieval of non-overlapping elements is a hot topic in XML
retrieval. We want to investigate how simple you can make your non-overlap-
ping retrieval. We build an index based on non-overlapping passages, where
the passage boundaries are determined by the structure. The simplest solu-
tion is to index only sections (<sec>). We believe that this simple strategy
is effective, despite (due to) the fact that the sections do not provide a full
coverage of the collection.

Article Indexes For retrieving articles we build two indexes.

— Article index: the “normal” article index

— Query fields: An article index containing both content and a selection of
fields. The fields are chosen based on structure of previous structured queries.
The fields chosen for INEX 2005 were: abs, fm//au, fm//atl, kwd, st,

85

Table 1. Properties of the the different indexes. Unit stands for the number of retriev-
able units. Storage stands for the size occupied in physical storage. Query time stands
for the time needed to retrieve 1000 retrieval units from the index for each of the INEX
2005 topics. All retrieval times are relative to the maximum retrieval time. (This table
will be completed in the proceedings version of this paper.)

Index Units Storage Query time
Element index 10,629,617 1.9G 1.0
Length based 1,502,277 1.3G t.b.a.
Qrel based 1,581,031 1.1G t.b.a.
Sections 96,600 223M t.b.a.
Articles 16,819 204M t.b.a.
Query fields 16,819 275M t.b.a.

bb//au, bb//atl, and ipl. The fields were chosen from a set of fields that
were used in the INEX 2003 and INEX 2004 content-and-structure queries.

For all indexes, stop-words were removed, but no morphological normaliza-
tion such as stemming was applied. Table 1 shows some statistics of the different
indexes.

3 Content-Only Runs

For all our runs we use multinomial language model [1]. We use the same mixture
model implementation as we used in INEX 2004 [5]. We assume query terms to
be independent, and rank elements according to:

k
P(elg) o P(e) - [[P(tile), (1)
i=1
where ¢ is a query made out of the terms tq,...,t;. We estimate the element

language model by taking a linear interpolation of three language models:
P(tz|e) = >\e . Pmle(ti|e) +)\d : Pmle(ti‘d) + (1 - /\e -)\d) : Pmle(ti)7 (2)

where P, (+|e) is a language model for element e; Py, (-|d) is a language model

for document d; and Py, (+) is a language model of the collection. The parameters

Ae and A4 are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

Ple) = 3)

where |e] is the size of an element e.

86

3.1 CO.Focused

In our focused task we experiment with two different ways of choosing focused
elements to retrieve. First, based on the hierarchical segmentation of the collec-
tion. Second, based on a linear segmentation of the collection. We also wanted to
compare these two approaches with a non-focused baseline, namely a document
retrieval system. We submitted three runs:

— Article run (UAmsCOFocArticle) A baseline run created using our article
index. We used a A = 0.15 and a normal length prior.

— Element run (UAmsCOFocElements) A run created using a mixture model
of the overlapping element index and the article index. We set A = 0.4 and
Ag = 0.4. No length prior was used for this run. Overlap was removed in
a list-based fashion, i.e. we traversed the list from the most relevant to the
least relevant and threw out elements overlapping with an element appearing
previously in the list.

— Section run (UAmsCOFocSections) A run created using a mixture model of
the section index and the article index. We set A, = 0.05 and \gy = 0.1. A
normal length prior was used.

3.2 CO.Thorough

The main research question is to see if we can get away with indexing only
a relatively small number of elements. In our runs we compare three element
indexes. The “normal” element index, the qrel-based element selection and the
length-based element selection. We submitted three runs:

— Full element run (UAmsCOTElementIndex) A run using a mixture model
of the full element index and the article index. We set A\, = 0.05, A\q = 0.1,
and used a normal length prior.

— Qrel-based run (UAmsCOTQrelbasedIndex) A run using a mixture model
of the qrel-based element index and the article index. We set A\, = 0.05,
Aq¢ = 0.1, and used a normal length prior.

— Length-based run (UAmsCOTLengthbasedIndex) A run using a mixture
model of the length-based element index and the article index. We set
Ae = 0.05, \y = 0.1, and used a normal length prior.

3.3 CO.FetchBrowse

For the fetch and browse we mirror the focused task submissions, but cluster the
results so that elements within the same article appear together.

— Article run (UAmsCOFBArticle) This run is exactly the same as the article
run we submitted for the focused task.

— Element run (UAmsCOFBElements) We took the focused element run and
reordered the results in such a way that elements from the same document
are clustered together. The document clusters are ordered by the highest
scoring element within each document. We returned a maximum of 10 most
relevant elements from each article.

87

— Section run (UAmsCOFBSections) We took the focused section run and
reordered the result set in such a way that the elements from the same
document are clustered together. The document clusters are ordered by the
highest scoring section within each document.

4 Content-Only with Structure Runs

For the CO+S task we experiment with three ways of using structural con-
straints.

Target-only For queries that have a CAS title we only return elements which
satisfy the target constraint of the CAS title. For queries that ask for sections, we
accept the equivalent tags as listed in the topic development guidelines. NB! We
use the terms in the title field of the queries because we want a direct comparison
to CO runs. Retrieval is performed using a mixture model using the overlapping
element index and the normal document index.

Fields-only Here we use the document index with query fields. We process
the queries in three different ways, depending on their format. First, for the the
<castitle> queries with field constraints that match our fielded article index,
we rewrite the query such that it fits our index. For example, the query:

//article[about(.//abs, ipv6)]//sec[about(., ipv6 deployment) or
about (., ipv6 support)]

becomes
abs:ipv6 ipv6 deployment ipv6 support.

For the queries that only partly match our indexing scheme, we do additional
processing, i.e.

//*[about(.//au, moldovan) and about(., semantic networks)]
becomes
fm//au:moldovan bb//au:moldovan semantic networks

since our index makes distinction between article authors and referenced authors.
Second, for <castitle> queries that do not have fields that fit our index, we use
the simply extract the query terms. IL.e.

//article[about (.//bdy, synthesizers) and about (.//bdy, music)]
becomes

synthesizers music.

88

Third, for queries that do not have a <castitle>, we add structured query fields
using pseudo relevance feedback on the fielded article index [3]. We look at the
top 20 feedback terms and we add up to n fielded terms where n is the length
of the original query. For example,

computer assisted composing music notes midi
becomes

bb//atl:music bb//atl:musical st:music ipl:musical ipl:music
fm//au:university computer assisted composing music notes midi

We use those queries to create an article run using the fielded article index. Now
we do the following:

— We take an existing run and for each element in that run, we replace it’s score
with the score of it’s article (using the fielded index and fielded queries).

— We do a combSUM of the original element run and the “article score” element
run.

Target and Fields Constraints Here we process both the target and fields
constraints in the same ways as discussed above.

4.1 Runs

The ways of processing structural constraints discussed above, are applied to
each of the structured retrieval tasks.

+S.Focused

— Strict on target (UAmsCOpSFocStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set A, = 0.4
and Ay = 0.4. No length prior was used for this run. Target restriction was
implemented for queries that had one. Overlap was removed in a list-based
fashion

— Using constraints (UAmsCOpSFocConstr) We apply the fields-only approach,
described above, on the focused CO element run (UAmsCOFocElements).

— Using constraints and strict on target (UAmsCOpSFocConstrStrTarg) We
apply the fields-only approach on the strict on target run (UAmsCOpSFoc-
Strict Target).

+S.Thorough

— Strict on target (UAmsCOpSTStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set A, =
0.05 and Ay = 0.1. We apply a normal length prior. Target constraints are
respected for queries that have one.

89

— Using constraints (UAmsCOpSTConstr) We apply the fields-only approach,
described above, on the thorough CO element run (UAmsCOTElementIn-
dex).

— Using constraints and strict on target (UAmsCOpST ConstrStrTarg) We ap-
ply the fields-only approach on the strict on target run (UAmsCOpSTStrict-
Target).

+S.FetchBrowse

— Strict on target (UAmsCOpSFBStrictTarget) We reorder the focused strict
on target run (UAmsCOpSFocStrictTarget) such that results from the same
article are clustered together. Only the 10 most relevant elements are con-
sidered for each article.

— Using constraints (UAmsCOpSFBConstr) We reorder the focused run using
constraints (UAmsCOpSFocConstr) such that results from the same article
are clustered together. Only the 10 most relevant elements are considered
for each article.

— Using constraints (UAmsCOpSFBConstrStrTarg) We reorder the focused
run using constraints and strict targets (UAmsCOpSFocConstrStrTarg) such
that results from the same article are clustered together. Only the 10 most
relevant elements are considered for each article.

5 Results

In this section we will present and discuss our preliminary results. The results for
the Focussed and Thorough tasks are based on results from the INEX (lip6) web-
site as they appeared on November 6th, 2005. The results for the FetchBrowse
were taken from the website in November 10th, 2005.

5.1 The Focussed Task

Table 2 shows the results for both the CO.Focussed and CO+S.Focussed runs.

CO.Focussed The aim of the CO.Focussed submission was to compare 3 non-
overlapping retrieval strategies: element retrieval, section retrieval and article
retrieval. As we see in Table 2 the element based retrieval outperforms the other
two for almost all metrics. There are, however, some notable exceptions. Inter-
estingly, the article run outperforms the other two when we look at extremely
early precision of the generalized nxCG metric. For the generalized extended Q
and R metric the section run gives the best performance, followed by the article
run. This suggests that the element retrieval approach is a good approach when
considering the full recall base. However, for early precision, section retrieval
(and to some extent article retrieval) is a better alternative.

90

Table 2. Results for the CO.Focussed and COS.Focussed runs using various metrics

(a) nxCG (overlap=on, generalized)

Run MAnxCG| @1 @2 @3 @4 @5 @10 @50 @100
Elements .269(.195 .191 .221 .204 .209 .200 .165 .181
Sections .204|.213 .209 .190 .194 .178 .176 .158 .153
Articles .098].248 .250 .205 .191 .184 .170 .102 .089
StrTarg .225(.236 .230 .246 .236 .230 .224 .168 .168
Constr .300(.161 .215 .224 .232 .215 .203 .170 .190
ConStrTar .237(.289 .272 .257 .250 .231 .224 182 .175

(b) EP/GR (overlap=on, generalized) and Extended Q and R (generalized)

EP/GR |Ext. Q and R
Run iMAep MAep| Q R
Elements .056 .071|.115 .159
Sections .030 .064|.145 215
Articles .020 .048/|.133 195
StrTarg .049 .072[.135 .202
Constr .059 .074|.123 .166
ConStrTar| .057 .078|.144 .208

CO+S.Focussed The aim of the CO+S.Focussed submission was to compare dif-
ferent extents to which the structural constraints can be used. For the averaged
metrics the run using only the fields-only approach (Constr) outperforms both
the other runs using structured queries, as well as outperforming the runs using
no structure at all. For the early precision metrics, the runs using strict-target in-
terpretation (StrTarg and ConStrTarg) outperform the fields-only approach. The
run using both field-constraints and target-constraints generally outperforms the
run using target-constraints only. It seem thus that the field-constraints are gen-
erally useful for improving retrieval effectiveness, while the target constraints
are particularly useful for achieving high early precision.

5.2 The Thorough Task

Table 3 shows the results for the CO.Thorough and CO+S.Thorough runs.

CO.Thorough The aim of the CO.Thorough submission was to experiment with
two selective indexing approaches compared to a full element retrieval approach.
Table 3 shows that for the averaged metrics, the selective indexing approaches
to not have substantially worse performance than the full element retrieval ap-
proach. Furthermore, for the early precision metrics, the selective indexing ap-
proaches outperform the full element retrieval approach.

CO+S.Thorough The aims and the results for the CO+S.Thorough task are the

same as for the CO+S.Focussed task. Field-constraints are useful over-all, but
target constraints improve initial precision.

91

Table 3. Results for the CO.Thorough and CO+S.Thorough runs using various metrics

(a) nxCG (overlap=off, generalized)

Run MAnxCG| @1 @2 @3 @4 @5 @10 @50 @100
Element .309(.239 .191 .256 .265 .275 .265 .230 .218
Qrel .301|.266 .227 .293 .287 .289 .275 .245 .231
Length .302|.281 .247 .281 .272 .276 .264 .240 .218
StrTarg .192(.322 .260 .263 .245 .246 .225 .186 .168
Constr .334(.242 244 249 .250 .254 .261 .234 .246
ConStrTar .206(.311 .264 .246 .242 .235 .216 .198 .180

(b) EP/GR (overlap=off, generalized) and Extended Q and R (generalized)

EP/GR |Extended Q and R
Run iMAep MAep| Q R
Element .072 .085|.162 .269
Qrel .074 .089|.168 275
Length .070 .085|.166 272
StrTarg .046 .053|.098 .193
Constr .078 .089(.166 .270
ConStrTar| .049 .056(.101 .193

Table 4. Results for the CO.FetchBrowse and CO+-S.FetchBrowse runs using various
metrics

(a) ERPRUM (ideal: GK-SOG, quant: Exh, behaviour: Hierarchic)

Run Average| @1 @5 @10 @20 @100
Elements .091/.089 .039 .025 .016 .005
Sections .114(.123 .056 .031 .019 .005
Articles .027/.072 .033 .021 .012 .003
StrTarg .107/.098 .039 .026 .016 .005
Constr .064/.106 .047 .029 .019 .006
ConStrTar .070].116 .044 .027 .017 .005

5.3 The Fetch-and-Browse Task

FetchBrowse Table 4 shows the results for our FetchBrowse submissions. At
the time of writing, none of the FetchBrowse tasks have been evaluated with
an official INEX metrics which handled overlap. Since we submitted only non-
overlapping runs for this task, we report the EPRUM metric which takes over-
lap into consideration. Our section retrieval run outperforms the full element
retrieval run both w.r.t. average precision and initial precision. It is interesting
to note that for the Focussed task, the element run outperformed the section run
for the averaged metric. Note, however, that there are several crucial differences
between the results for the two tasks. First of all, the task is of course different.
Second, the tasks are evaluated with different metrics. Third, for articles where
more than 10 results were found, results 11 and above were removed from the
FetchBrowse runs.

92

Table 5. Results for the CO.FetchBrowse-D and CO+S.FetchBrowse-D runs using
various metrics

(a) inex_eval

generalized
Run MAP| @1 @5 @10 @20 @100
Element .186(.261 .207 .183 .154 .064
Sections .264/.359 .289 .216 .163 .064

Article .282(.424 285 .260 .202 .069
StrTarg .186(.293 .189 .171 .128 .057
Constr .2421.315 .239 .216 .175 .068

ConStrTar| .250(.326 .265 .225 .178 .066

FetchBrowse-D Table 5 shows the document-run evaluation of our FetchBrowse
submissions. The results seem to indicate that element retrieval is not an effective
strategy for improving document retrieval. These results will be analyzed further
in the proceedings version of this paper.

6 Conclusions

In INEX 2005 we set out to investigate several research questions.

— Does retrieval using the XML tree hierarchy improve significantly over using
a simpler linear segmentation of the documents?

— How do different types of structural constraints contribute to improved re-
trieval effectiveness?

— Can we prune our overlapping element index to gain efficiency without loos-
ing effectiveness?

— Can we create structured queries automatically using pseudo relevance feed-
back?

Our results show that retrieving from the full hierarchy of element outper-
forms retrieval from a linear segmentation. The segmentation based retrieval is
however competitive when we look at initial precision. Article retrieval is inter-
estingly effective at P@Q1 and PQ2 for the CO.Focused task.

We showed that fielded constraints are helpful for improving average retrieval
performance. Interpreting target constraints in a strict manner does hurt average
performance. The target constraints do however improve retrieval when we look
at early precision.

For the thorough task we experimented with two different pruning of the full
overlapping element index. Neither of the pruning strategies lead to a consid-
erably lower average performance. Both pruning strategies did however lead to
improved initial precision. The length based pruning lead to greater improvement
than the qrel based pruning.

For the FetchBrowse task the linear segmentation performed considerably
better than the hierarchical segmentation. This result is different from the Fo-

93

cussed task. It is however not clear whether this difference lies in different task
performed or in the different metric used to evaluate the two tasks.

For the document ranking part of the FetchBrowse task, ranking documents
based on their own retrieval score outperformed the document retrieval based
on the highest scoring element /section.

At this point we have not evaluated the effect of automatically creating struc-
tured queries through pseudo relevance feedback. This analysis remains as future
work and will be carried out before publication of the proceedings version of this
paper.

Future work includes looking at different granularities for the linear segmen-
tation. Instead of looking at section level, we could look at using subsections,
when available. Also we should include elements such as front-matter so that the
linear segmentation has a full coverage of the collection.

Our processing of the CO+S queries is a bit ad-hoc. Future research should
include a cleaner way of processing and retrieving using structural queries.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project numbers 017.001.190, 220-80-001, 264-70-050, 612-
13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.006, and 640.001.501.

References

1. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente, 2001.

2. J. Kamps, M. de Rijke, and B. Sigurbjornsson. The importance of length normal-
ization for XML retrieval. Information Retrieval, 8:631-654, 2005.

3. J. Ponte. Language models for relevance feedback. In W. Croft, editor, Advances in
Information Retrieval, chapter 3, pages 73-96. Kluwer Academic Publishers, Boston,
2000.

4. B. Sigurbjornsson, J. Kamps, and M. de Rijke. An Element-Based Approch to XML
Retrieval. In INEX 2008 Workshop Proceedings, pages 19-26, 2004.

5. B. Sigurbjérnsson, J. Kamps, and M. de Rijke. Mixture models, overlap, and struc-
tural hints in XML element retreival. In Advances in XML Information Retrieval,
LNCS 3493, pages 196-210, 2005.

94

Searching XML Documents — Preliminary Work

Marcus Hassler and Abdelhamid Bouchachia

Dept. of Informatics, Alps-Adria University Klagenfurt, Austria
marcus.hassler@uni-klu.ac.at, hamid@isys.uni-klu.ac.at

Abstract. Structured document retrieval aims at exploiting the struc-
ture together with the content of documents to improve retrieval results.
Several aspects of traditional information retrieval applied on flat doc-
uments have to be reconsidered. These include in particular, document
representation, storage, indexing, retrieval, and ranking. This paper out-
lines the architecture of our system and the adaptation of the standard
vector space model to achieve focussed retrieval.

1 Introduction and Motivation

Traditionally, content-based retrieval systems rely either on the Boolean model or
the vector space model (VSM) [1-3] to represent the flat structure of documents
as a bag of words. Extensions of these models have been proposed, e.g., the
fuzzy Boolean model and knowledge-aware models. However, all of these indexing
models do ignore the organization of text and the structure of documents until
recently with the advent of “queriable digital libraries”.

XML documents have a standard structure defined by a DTD or XML
schema. While this structure provides documents with hierarchical levels of
granularity, and hence more precision can be achieved by means of focussed
retrieval, it does, however, imply more requirements on the representation and
retrieval mechanisms. With the new generation of retrieval systems, the two
aspects, the structure and the content, have to be taken into account. To mini-
mally achieve that in presence of nested structure like chapter-section-subsection-
paragraph, the traditional information retrieval techniques, e.g., the VSM, have
to be adapted to fit the context of structure-aware retrieval. To design such
systems, four basic aspects are of high importance:

(a) Representation: Textual content of the hierarchically structured documents
is generally restricted to the leave nodes. Hence, representation mechanisms
of the inner nodes content have to be defined.

(b) Retrieval granularity: A basic question is whether the indexing/retrieval unit
must be known ahead of time or is completely dynamically decided by the
user or eventually by the system itself.

(¢) Ranking: Related to the first two aspects, a strategy for ranking the retrieved
results has to be decided.

(d) Result presentation: The way results are presented is a key issue [4-6] and has
to be considered early in the design of the system. Once ranked, the results

95

are displayed showing their context of appearance. Further functionality
enabling browsing is required.

Taking these aspects into account, we developed a retrieval system. It is fully
implemented in Java and consists of three modular subsystems: indexing, re-
trieval and RMI (Remote Method Invocation) communication server as depicted
in Fig. 1.

Index Thread

INDEXING

index(doc)

Content Storage

Relational
DataBase

RETRIEVAL

RMI INTERFACE

RMI server

Query Thread

user

query(q)

Result
i cachel

]

ookup NLP Analysis

Term Weighting
based on
Retrieval Unit

4
| L Query expansion |
| & extension |

Retrieval
Result
computation

Query Result
caching

Result
presentation

Result
refinement

Relevance
Feedback

Result selection I»

result(rs)

Fig. 1: Architecture of the system

The RMI server takes incoming requests for indexing and querying the system
and initiates a new thread for each call. The basic motivation behind this is to
achieve some degree of parallelism. The maximum number of parallel threads de-
pends on the performance of the hardware. From the software architecture point
of view, both index and query subsystem, use a pipelined pattern of processing
units (Fig. 1). Dashed components describe planned extensions. For portability
and tuning purposes, all subsystems are independently configurable via con-
fig files. During indexing, documents are transformed into our XML schema
(DataMapper), stored in the database (DataStorer), and indexed for retrieval
(Datalndexer). As soon as a query is sent to the system it is analyzed by a query
thread. Documents in the database are matched against the query and relevant
elements! are ranked in decreasing order.

! we use element and node interchangeable

96

] [P

— d | —
—

[[om] 20

I TXT TXT

Fig. 2: Example XML document

In this paper, we will discuss the aspects (a)—(d), but with more focus is
more on the representation and the indexing/retrieval problem. First, in Sec. 2,
a generic schema for document representation is presented, onto which the XML
documents are mapped. Section 3 describes the underlying database model used
for storing the content and the corresponding representation. The most inter-
esting issues namely indexing and retrieval are discussed in Sec. 4 and Sec. 5
respectively. Section 6 concludes the paper.

2 Document Structure

The hierarchical structure for the content of documents is usually described by
means of a set of tags (e.g. chapter, section, subsection, etc.), as shown in Fig. 22.
In order to represent a collection of documents having different structure, we
apply an XSLT transformation to derive a common document format (schema).
This step eliminates structural ambiguities and resolves semantic relativism [7].

As illustrated in Fig. 3a, we introduce a general document format (defined
through XML schema) that consists of only three main elements: DOC (docu-
ment), SEC (section) and FRA (fragment). The DOC element defines the root of
the document. SEC is the basic structural element of a document. By recursively
defining SEC (e.g., section) as either containing raw content FRAs (e.g., para-
graphs) and/or made up of other SECs (e.g., subsections), the depth of nested
structures is unlimited. To define smallest retrievable units for indexing and
retrieval, we rely on fragments (FRAs). They stand for the leaf nodes in our
document schema (see Fig. 3a).

A node in an XML document is viewed as a tuple (metadata,content), where
metadata refers to descriptive information of the node itself, while content refers
to the segments content, properly said (see Fig. 3b). Generally, the first type of
nodes requires database-supported matching during retrieval, while the second
type is subject to partial matching (VSM).

2 This example will be used throughout this paper

97

o]

i i
metadata | content |

H H
' '
' '
L ' L h

title 9 Fra 10 19 Sec24
author

11 Sec 18
(b) Metadata and Content
blocks

Fig. 3: XML document representation

2.1 Metadata

In addition to the content block, the metadata block of a node contains informa-
tion describing that node. Examples of metadata are author, year and keywords
for a DOC or the title for a SEC element. The fragment metadata block is used to
describe its actual content by means of content_type, language, and possibly
title (figures, tables).

To allow a semantic interpretation of the content of an element, a type hi-
erarchy is proposed by Goévert [8]. An extension of the proposed type hierarchy
for metadata is depicted in Fig. 4. There, types are derivated from a common
base element. The first level in the hierarchy (bold) corresponds to database
supported data types. Further types in subsequent levels in the hierarchy have
one of the basic database types as supertype (e.g., PersonName is a String). In
addition, data types predicates for comparison are defined. This allows to process
section titles, phone numbers, and author names for instance.

Base

‘ bate “ Biob ‘

af

ISBN
Number

Phone

Number Location

PersonName

‘ e ‘

English German

Fig. 4: Hierarchical metadata types

2.2 Content

Generally, the content block of DOCs and SECs are defined as ordered lists of
further (sub)SECs and FRAs. The content block of FRAs is defined as bytecode or
empty. For indexing and retrieval purposes, content is interpreted based on its
type (metadata). Defining a fragment’s content as text block (paragraph) only
might be too restrictive. Therefore, a fragment in our sense refers to paragraphs,
enumerations, lists, figures, tables, formulas, images, sounds, videos, definitions,
theorems, etc. On the other hand, a fragment (FRA) defines the smallest retriev-
able unit of a document. It can be understood as building block (elementary
content container). However, the granular unit is application specific and can be
set at wish to fit sentences as well as the whole text of a chapter.

From the structuring point of view, additional markup within a FRA’s content
might be needed. Our schema supports mathematical environments (using MATH)
and two types of links (using LINK), internal and external links. Internal links
are links within the same document, e.g., citations, figure/table references within
the text and the table of contents. External links refer to external resources,
including reference entries in the references section, references to email/internet
addresses and file references.

While the content block in DOCs and SECs is mandatory, in FRAs it is not.
This allows to include external content by its metadata only. An external source
attribute within the metadata block can be used to refer to the content some-
where else (e.g., a picture file). In contrast to SEC elements, which define their
own context based on their path, e.g., /DOC/SEC/SEC, fragments define a sep-
arate context. From the indexing and retrieval point of view, a fragment in a
section lies within the same context as a fragment in a chapter or subsubsection.
This difference is important in the context of a dynamic term space, discussed
in Sec. 5.3.

3 Storage

For efficiency purposes, we use a relational database to store the XML docu-
ments. The goal is to accelerate the access to various structural neighbors of each
node in the document (descendants, ancestors, and siblings). Being a tree, an
XML document can easily and unambiguously traversed. Therefore, each node is
represented by its document ID and preorder/postorder. We depart from the idea
of preorder and postorder introduced in [9, 10], supporting non-recursive ances-
tor/descendant detection and access. Table 1 shows an excerpt of the structural
information of a document representation. Likewise, we designed another for the
corresponding content.

A structural entry is described by the tuple (docID, pre, post, parentID,
tagID, pathID). The root element has pre = 1 and parentID = 0 (no parent)
per definition. The attribute tagl D is included for fast name lookup and access.
For the sake of performance, we added the elements path (XPath without po-
sitional information) pathID to circumvent recursive path generations by using
the parentlD relation.

99

Table 1: Structural entries

docl D pre post parentI D tag path

d1 1 36 0 Doc /Doc

d1 2 5 1 Sec /Doc/Sec

dq 3 4 2 Fra /Doc/Sec/Fra

d1 6 7 1 Fra /Doc/Fra

d1 8 25 1 Sec /Doc/Sec

dq 9 10 8 Fra /Doc/Sec/Fra

d1 11 18 8 Fra /Doc/Sec/Sec

d1 12 13 11 Fra /Doc/Sec/Sec/Fra
dy 14 15 11 Fra /Doc/Sec/Sec/Fra

The content of nodes (in particular leaf nodes) is stored in a separate table,
as suggested in [11]. However, the content of inner nodes can always be recovered
from their descendants as will be discussed in Sec. 4. Note that some content
entries do not have a corresponding representation entry (e.g. figures, tables).

To improve retrieval performance, metadata handling is completely shifted to
the database. This is achieved by grouping all metadata according to its element.
Instead of having multiple structural and content entries, a single row (docID,
pre, metay, ..., meta,) is used to store all metadata together. Metadata of
nodes (DOC, SEC, FRA) are stored in separated but very similar tables as shown
in Tab. 2 for the case of sections. The reason of supporting only a single set
of SEC metadata is that all SEC elements (chapters, sections, subsections, etc.)
are assumed to have quite homogenous metadata (e.g., title). Although this
may lead to some 'NULL’ values (unavailable metadata for some elements) in
the database, the whole set can be accessed by a single select statement. This
simplifies and speeds up querying of metadata considerably.

Table 2: Metadata entries for SEC)

docl D pre title author

dy 2 Introduction R. Smith
d1 8 XM1 Retrieval J. Alf
d1 11 Granularity NULL

A global view is depicted in Fig. 5. Both, metadata and content entries,
are optional. Additional types of representations (e.g. semantic concepts, figure
representations, etc.) can easily be integrated.

100

describes Documents
D it sitatedin locallDF
Transfers 1 -Server : String TSN ____ A
“RequestTime : Date 1-" downloaded ! |-DatalD : String Count :int
-TransferTime : Date -Filename : String %
- - Stri - 0
Status : String - 7954 1
Tag 4
D -int consigts of Path Terms
X use:
Metadata ‘Eag : String hhs D < int 1D - int
-Count : int 1 1.% h -Path : String -Term : String
-Depth : int
1 |-Count:int
0.1 4 Structure 1.4
. |-Preorder :int . . —
‘ -Postorder : int| belongs combinedIDF
i C consists of termiD : int
ontent e s
-inex_id : String -Title : String -Type : String 1 pamp : int
-inex_doi : String -Language : String -count : int
-proc_title : String -Title : String 0..1
-price : String "
-issn : String — A *
-copyright : String 0.1 ‘ ‘
-proc_month : String 0.1
-proc_year : String TXT vsm
-pages : String describes -Data: String | [Frequency : int
-author : String 1 ;
title : Stri .
title : String describes

Fig. 5: Conceptual database schema

4 Indexing

To represent texts as a vector of terms and their term frequencies, our natural
language processing (NLP) involves several subtasks containing tokenization,
tagging, term extraction, stemming, filtering and term frequency calculation.
Our implementation is based on abstract components. Taking advantage of the
the modularity aspect, different implementations of the same component can
be instantiated and selected during runtime. Hence, our system can easily be
adapted to process documents in other languages. Our prototype also involves
ready made-components like the tagger, and the stemmer.

During the indexing process, only the content of leaf nodes need to be parsed.
Their representation, a term frequency vector, is stored in the database (VSM
table). Consequent updates of the localIDF, combinedIDF table, and Terms
table are immediately done. These update operations are also carried out during
re-indexing or removal of documents.

The index of inner nodes is obtained by simply merging the index of its
descendants. This is done by summing up their term frequencies. This operation
is equivalent to process the concatenated contents of the descendant nodes. It
is also possible to store the result of the merge operation so that no index
computation is required later during the retrieval process. This reduces search
time, but increases the size of the database. It is important to stress that the
weight vectors are computed during retrieval using the available term frequency
vectors.

We define the contezt of a node as the set of all elements having the same
path (all chapters, all sections, etc.). In order to dynamically characterize both,
the granularity during indexing and retrieval, we applied a propagation of term

101

statistics (e.g. tf), in contrast to the weight propagation methodology [12]. In
addition, the inverse document frequency (idf) for each node is calculated dy-
namically based on the node’s context. Term weights are computed based on
the term frequencies and the idf in this context. This allows to perform focussed
retrieval on any level in the document tree. To achieve that in a given context,
tf of all nodes lying at this level will require ¢ fs of their descendants. Using term
statistic propagation, the descendants’ ¢f are simply summed up. We avoid re-
cursive data accesses by exploiting preorder and postorder of document elements
(only one SQL select statement).

As to term weighing, we use different idf; .s of the same term j in different
contexts c. This strategy weighs the same term with the same term frequency
differently depending on ¢ (e.g. chapter vs. subsection). Clearly our approach
puts more attention on the actual context during retrieval. If the unit of retrieval
is defined explicitly, elements in this context are focussed and compared only
among them. Representations of elements in other contexts do not influence the
result.

To implement this idea, we use two tables (see Fig. 5): a table LocalIDF stores
tuples of the form (docID, pathID, termID, n;), where n; refers to the number
of elements containing term termlID in the path pathID within a document
docID. Consider the example given in Tab. 3, the first Tab. 3a indicates that
the term “car” occurs twice in /DOC/SEC nodes of document d;. To calculate
the idf;. of a term j in a context ¢, we have to define N. and n;. N, is the
number of nodes with pathID = c¢. N, can simply be derived via the table
holding the structural entries (see Tab. 1). n; is given by counting the rows
containing pathID = ¢ and termID = j. In the above example, this results
in an inverse document frequency for the term “car” in the node /DOC/SEC
of idf.ar,)poc/sEc = log%. This definition of idf;. leads to different idfs in
different contexts.

Table 3: idf calculation

(a) Table locallDF (b) Table combinedIDF

docl D path term n; path term n

d1 /DOC/SEC car 2 /DOC/SEC car 3

di /DOC/SEC/SEC mouse 1 /DOC/SEC water 1

d> /DOC/SEC car 1 /DOC/SEC/SEC mouse 4

d2 /DOC/SEC/SEC dog 1 /DOC/SEC/SEC dog 3

d2> /DOC/SEC/SEC mouse 3 /DOC/SEC/SEC frog 1

ds /DOC/SEC water 1

ds /DOC/SEC/SEC dog 2

ds /DOC/SEC/SEC dog 2

102

Since Tab. 3a is quite large, we introduced a summarized shortcut-table
combinedIDF Tab. 3b with the overall goal to reduce the time access to idf
values. Same paths associated with the same terms are precalculated (e.g. term
“car”). For the sake of dynamic document environments (adding, removing and
re-indexing), we still need the information provided by Tab. 3a to adjust the n
values correctly. In addition, all N, values, the numbers of elements with the
same path, are stored in the Path table (see Fig. 5).

Given a particular context (e.g. /DOC/SEC), our indexing strategy allows on-
the-fly computation of the representations associated with these nodes (con-
sidered as documents). Hence, our indexing method stores only term frequency
vectors in the database; weight computation is totally executed on the fly during
the retrieval process. The advantages of this methodology are:

— It behaves exactly like the traditional models at the document level.

— There is no need for empirical parameters as augmentation weights.

— Elements of smaller granularity do not automatically have sparser feature
vectors (leading to smaller similarity), hence they define their own context.

— Documents can dynamically be added, removed, and re-indexed, without
impacting the weights of other representations.

5 Retrieval

This section explains the retrieval process. In particular, it describes how and
which information is required by the system to answer a user query appropriately.
This includes formulation of the query, setting of specific parameters, matching,
filtering, and presentation of the result.

5.1 Query formulation

The actual query input is done via an input interface which allows to enter differ-
ent types of queries: KWD (keyword) and NLQ (natural language query, free text),
which are translated into INEX queries. The INEX query supports NEXI-like in-
puts. Hence, we distinguish between metadata and content, we adapted our query
parser to support both kinds of information. Similar to the about (path,terms)
syntax, we added a construct: meta(path,condition). This allows us, for ex-
ample, to efficiently deal with queries like: “return all documents written by
Einstein” using the command //DOC [meta(.,author like ’%Einstein}’)].
In order to avoid long and confusing single-line queries, we use chains of INEX
queries. In our opinion, this concept is also closer to the natural way of ques-
tioning, by successively refining the list of results. Each subquery result works
as a strict filter, allowing only elements of the same or smaller granularity to be
retrieved. This improves the performance without skipping searched elements.
Furthermore, we use these chains for reweighing elements regarding to a user-
defined generality factor (gf), described below. In addition to the INEX-query
chains, several query parameters can be specified by the user (see Fig. 6):

103

Maximum results (mazRes): Defines the maximum number of returned
results ranging from 1 to MAXINT.

Minimum similarity (minSim): Defines the minimum similarity of re-
turned results ranging from 0 to 1, truncating the list of results below a
given similarity threshold.

Content importance (c¢i): Defines the importance of the content similarity
to calculate the retrieval status value (rsv). This parameter ranges from 0
(only meta similarity) to 1 (only content similarity). The final similarity is
computed as rsv = simCont ci + simMeta = (1 — ci).

Generality factor (gf): This parameter (€ [0,1]) influences the retrieval
granularity. The higher the parameter, the more importance of first sub-
queries, computed as $iMyeq = SiMoig * §f + SiMpew * (1 — gf).

Result type (rt): Defines which kind of results we wish to obtain: thorough
or focussed (see Sec. 5.6).

= Query Interface for SDR L‘g]
e —
INEX Query | 1 |
f:} Lol Y‘erywurdQuer”@NLQusryl
raeneral Settings
Query bype: ‘INEX v Language: | english v‘ ‘
FINER Quiery - < -Examples -
| JDOCUMENT[met ., documentMata,title like '#digital librariese)] D1 { 5 sec)
| JSECTIOM about,, "infarmation retrieval’)] D02 {~50 sec)
[03 {55 sec)
1L
Parameters
M It:
laximum results &‘} LIED_D |
Minimum similarity (%) (:} [g | :J
1A S S S A G I S Ry
o 25 S0 75 100
Generality (%) {:} i_zn | v J
e — | ' i | | |
o 25 50 75 100
e | -
Conkent importance (%) |20
G | == ; ,
o 25 c0 7 100
Result bype {:} (&) unfocussed
() Focussed

Fig. 6: Query Interface

104

5.2 Search and Retrieval paths

The search path specifies which elements are to be investigated and matched
against the current query. In contrast, the retrieval path specifies which ele-
ments are to be returned to the user. Generally these two path are equal, e.g.
//SEC[about (. ,wine)]. This means that the retrieval path is always the same
or more general as the search path. So first relevant documents, then relevant
sections within those documents, and at a last stage relevant fragments within
those sections are identified. Difficulties arise when relevant ancestor elements
contain smaller elements that are further specified. For instance, a query that
retrieves sections containing paragraphs about a certain topic is not easy given
the recursive structure that a section can have.

Our parser for NEXI-like queries implements the following strategy: if the
searched element satisfies the retrieval path, only the element itself is returned.
Otherwise, the closest parent satisfying the retrieval path condition is returned.
In all cases, at most one element is retrieved. So a query like //SEC[about (
./FRA,global warming)] retrieves all SEC elements at any level (retrieval paths)
containing FRA paragraphs about “global warming”. A more complex example is
// (DOC|SEC) [about (./SEC,anything)]. Here only sections containing sections
about “anything” are to be retrieved, not the sections themselves that are about
“anything”.

5.3 Dynamic term space

In the context of structured documents, the idea of representing elements at
different structural levels within the same term space has to be reconsidered.
Assume a number of document sections S = {s1 ... s,} containing a set of unique
terms Ty and a set of chapters C = {¢; ... ¢, } containing a set of unique terms
T.. Note the implicit relation between term space T, and term space T.: T; C
T.. Let ¢ be a query containing terms T, addressing sections S and chapters
C. To calculate the similarity sim(s;,q) between a section and a query, both
feature vectors have to be within the same term space. The same thing holds for
comparing chapters and the query sim(c;, q).

Neglecting the context, sections and chapters are represented in the same
(global) term space. As a consequence, the feature vectors of low level nodes
become sparser and their similarities compared to nodes of higher levels drop.
To overcome this problem, we adopted the concept of a “dynamic term space”.
In contrast to the global term space, and following the concept of context, nodes
in the same context generate a term space. Using a static term space improves
performance, but unfortunately decreases the similarity of low-level nodes com-
pared with higher ones. Reducing zero weighted elements in the feature vectors
leads to higher precision during the match of low-level nodes. The number of
different indexing representations (different contexts) is expected to be quite
limited. For instance, the mapped INEX collection does not exceed six struc-
tural levels (/DOC/SEC/SEC/SEC/SEC/FRA). During retrieval the term space for
each context is constructed once, so retrieval performance drops insignificantly.

105

5.4 Result computation

INEX queries are stated using keywords in the about (path, kwd; kwds ...kwd,)
syntax. This syntax allows to express several different semantics of keywords that
have to be considered:

— information retrieval techniques
— +information +retrieval techniques
— information retrieval -techniques
— "information retrieval" techniques
— +"information retrieval" techniques

'+ (MUST) and -’ (CANNOT) indicate whether a term has to be or should
not be present in an element. Based on this, a fast preselection is systematically
done on candidate elements. Hence, index terms are stemmed, also these terms
have to be for comparison.

More complex is the treatment of quoted keywords. Are the keywords books
and "books" equivalent? This depends on whether "books" should occur as it
is (noun in plural form), or should it be stemmed and treated so.

It is obvious that quoted expressions are particulary difficult to process. Con-
sider "red cars". The term red is an adjective, it is not included in the index.
Furthermore, it is possible that in another context (e.g. “Red Cross”), it is (part
of) a proper noun and, therefore, exists in the index. In our approach, we treat
quoted keywords in two steps: First, we treat them as unquoted, calculating the
similarity as given. Then, we apply a string matching strategy on the original
text associated with the element to sort the results.

Combinations of MUST/CANNOT and quoted expressions are treated as
if all terms within quotes are separately marked as MUST/CANNOT and an
initial result set is computed. This result is reduced to those node containing
exactly the quoted expression.

Note that the computed result consists of tuples of the form (docI D, preorder,
postorder, simMeta, simCont). docID (document ID), preorder and postorder
come directly from the database. simM eta and simCont are the calculated meta
similarity and content similarity.

5.5 Ranking and result presentation

Ranking is the task by which retrieved elements are decreasingly ordered by their
relevance. Therefore, we use a combination of metadata and content similarity
to compute a retrieval status value rsv (see Sec. 5.1). The ranking process itself
is impacted strongly by the desired granularity. Note that this granularity is
either pre-specified or stated explicitly in the user query. For example, if the user
specifies the document level (context), say section, the system should return only
relevant sections. The similarity can be calculated using two strategies: First,
it can be that of the document’s (root node) generated recursively from the
descendants. Second, it can be the maximum similarity of any of the document
nodes. In our experiments, we applied the latter strategy.

106

£ FOCUS @ Alps-Adria University Klagenfurt B@@

& Query Result Viewer #2 A#DOCUMENT[meta(. ,documentMeta.title like "% J#/SECTIONabout(. “information retrieval”)] [BE[E]
Result
Query Results Time

J/DOCUMENT[meta(,, documentieta. tle ke “diital bt arisss)]

J/SECTIoN aboutl.,“information retrieval®] A FaTine
ID:0 VecType:ststic Type:kwd Lang:engish ManRes: 1500 ResType: GenFac:0.2 ContImp:0.3 MinSim: 0.0
Document Element Msm | Csm RSY- ID/PrefPost Preview
Ny 0z |0309z o028 | IDrissl A
Fill: jroot it Search_cfgj. fxmljcoj1998]_r1093.xml Pathi Pre:2 o ot Searen aat Ahde G
itle: Cantent-Based Retrieval in Digial Libraries DOCUMENT/SECTION Post: 7 =1
Libraries index entire documents,
02 | D2876 | 02263 | ID:ig6l) -
File: jroot{xMLSearch_cfg..fxmljcoj1998] r1093.al Path: firesdi not sections or passages within.
itle: Cantent-Based Retrieval in Digial Libraries DOCUMENT/SECTION/SEC Post: 50 Hovever, in [ER3 T et 2
o there is signiricant work on
02 | 02849 | 02255 | ID:4153 =
File: froot{{MLSearch_cfgf. . fxmljexf1996/ x3008.=ml Path: e jrin=rsgrarmsiadexdnggruhtahishounld
itle: The role of ALin digital ibraries DOCUMENT/SECTION/SEC Mot e a natural part of a digital
mIoN library to prowide higher-fidelity
02 |02819 | 0.2246 | ID: 1861 information access.
File: jroot{xM_Search_cfg..fxmljcoj1998) r1093.ml Path: Bressl
Title: Cankent-Based Retrieval in Digial Libraries DOCUMENT/SECTION Post: 57

[Title: YIDED RETRIEVAL

0z 0.2765 | 0.223 1D: 10719

File: jroot{xMLSearch_cfaf..fxmijtp/1996/_0769.xml Path: Pre: 8
itlez Introduction to the Special Section on Digtal DOCUMENT/SECTION Past: 43
Libraties: Representation and Retrigval [Title: PAPERS IN THIS
0.z 0.2419 | 0.2126 1D: 1861
File: jraot{xMLSearch_cfg..fxmljcaj1998/ r1093.ml Path: Pre:s
Title: Cankent-Based Retrieval in Digtsl Libraries DOCUMENT/SECTION Post: 17
[Title: OBIECT RETRIEVAL v

*|

20 Bl Yiewing resuks 0- 19 ext 20 results (View document]

Fig. 7: Result Set

After all desired elements are matched against the user query, the combined
similarity values metaSim and contSim are used for ranking. The results are
presented to the user as a sorted list in decreasing order (see Fig. 7). The user
is then able to select a particular result, enabling a display of whole document
in an explorer-like view (see Fig. 8). The document structure is presented as an
expandable tree, where the selected element is expanded and focused. Having
similarity values available on the screen, the document can be efficiently browsed.
Different colors are used to reflect the degree of similarity of the matched ele-
ments.

5.6 Result filtering

In INEX 2004, two kinds of retrieval strategies, thorough and focussed, were
defined. Thorough retrieval returns all relevant elements of a document. Hence,
all ancestors of a relevant element are relevant to a certain degree. This may lead
to multiple result elements along the same path (e.g., a section and its contained
paragraphs).

Focussed retrieval, on the other hand, aims at returning only the most rel-
evant element along a path. Basically, it relies on two principles [13]: (a) if an
element is relevant to a certain degree, so must be its parent; (b) only one node
along a path of relevant elements is returned. Overlapping elements in the result
set are discarded. This strategy is implemented as post filtering process to re-

107

£ FOCUS @ Alps-Adria University Klagenfurt

£ Document - froot/XMLSearch_cfg/.. anlfex/1 996/ x3008.0aml

Document

OC: The role of Alin digital ibrariss | Elernent Meta Info

[#5EC: Information agents: A new chall
E#5EC; The digital lbrary as & communit | InternallD: 4153 Preorder: 95 Postorder: 38 Ty Similarity
-SEC: Digital ibrarians: beyond the di | Title: Subdocument search and indexing Type:

45201 he digeal reference lrarin || Sourcepath: faticol o1 Tsecle]js11] SECTION 0.2 /0.28485946

F-SEC: The digital acquisition librarian

Subdocument search and indexing A
{=-5EC: Beyond traditional library Funetic e Sub-Element Info (A =
LoFRA: text
Libraries index entire docuwents, not sections or passages SECTIONS (1)
within. However, in [Rias TSN PPCel there is significant sections (0)

work on finer-grain indexing, which should be a natural part of & subsections (1)

EC: Mare sophisticated informat | |digital likrary to provide higher—fidelity information access. Sugs“gsag'mf (o) -
EC: On-demand document sum S
{-SEC: Mutidocument summarizatic

FRAGMENTS {1}

-5EC; Multimedia search and inde e

- 5EC; Actess ta lve ar neardive iy text lists (o)
[-5EC; Active information sources figures (O}
[#-5EC; Symbiotic human-machine g tables (0)

£-5EC; Information on tap, anywh farmulas (0) -
£-SEC: The universal ibrary St

f SEC: References thearems (0}

[#-5EC: APPENDIX - Interesting URLs proofs {0}

£ SEC: APPENDIX - Coming in August references (0)
- SEC: Curricula vitae

Fig. 8: Result Browser

fine the result set. We rely on preorder and postorder to do this efficiently. This
strategy reduces the number of returned elements drastically.

5.7 Query Refinement

In most cases a final search result is achieved through iterative refinement of the
query. The number of results is reduced step by step by adding new information
to the query. To enable such a feature, we allow the user to include a list of
preliminary results together with a query. If such a result is set within a query
it acts as a strict filter during query computation.

6 Conclusion
The paper described the basic tasks of an XML retrieval system. Details on
the methodology are provided. An initial experimental evaluation is already, but

only partly, conducted showing promising results. However, a thorough empirical
work is still needed along with some additional features of the system.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
ACM Press, New York, Essex, England (1999)

108

10.
11.

12.

13.

14.

15.

Salton, G., Lesk, M.E.: Computer evaluation of indexing and text processing.
Journal of the ACM 15 (1968) 8-36

Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Cliffs, NJ (1971)

Grosjohann, K., Fuhr, N., Effing, D., Kriewel, S.: A user interface for XML docu-
ment retrieval. In: 32. GI-Jahrestagung. Springer (2002)

Grosjohann, K., Fuhr, N.; Effing, D., Kriewel, S.: Query formulation and result
visualization for XML retrieval. In: Proceedings ACM SIGIR 2002 Workshop on
XML and Information Retrieval, ACM (2002)

Fuhr, N., Grosjohann, K., Kriewel, S. In: A Query Language and User Interface
for XML Information Retrieval. Volume 2818 of LNCS. Springer (2003) 59-75
Fuhr, N., Grosjohann, K.: XIRQL: A query language for information retrieval in
XML documents. [14] 172-180

Govert, N.: Bilingual information retrieval with HyREX and Internet translation
services. In: Cross-Language Information Retrieval and Evaluation. Volume 2069
of LNCS. (2001) 237244

. Grust, T.: Accelerating XPath location steps. In: Proc. of the 2002 ACM SIGMOD,

ACM Press (2002) 109-120

Hiemstra, D.: A database approach to content-based xml retrieval. [15] 111-118
Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping
schemes for storing XML data in a relational database. Technical report (1999)
Abolhassani, M., Fuhr, N.: Applying the divergence from randomness approach for
content-only search in XML documents. In: 26th European Conf. on Information
Retrieval Research (ECIR), Springer Verlag (2004)

Kazai, G., Lalmas, M., Rélleke, T.: Focussed structured document retrieval. In:
Proceedings of the 9 Retrieval (SPIRE 2002), Springer (2002) 241-247

Proc. of the 24th ACM SIGIR. In: Proc. of the 24th ACM SIGIR, ACM Press
(2001)

INitiative for the Evaluation of XML Retrieval (INEX, Workshop). In: INitiative
for the Evaluation of XML Retrieval (INEX, Workshop), ERCIM (2003)

109

TRIX Experimentsat INEX 2005

Paavo Arvolal, Jaana K ekaldinent, and Marko Junkkari2

1 Deparment of Information Studies, Kanslerinrinne 1,
33014 University of Tampere, Finland
{jaana.kekalainen, paavo.arvola} @uta.fi

2 Department of Computer Sciences, Kanslerinrinne 1,
33014 University of Tampere, Finland

junken@cs.uta.fi

Abstract. This paper presents results of our runs at INEX 2005, where the fol-
lowing tasks were involved: CO.Focussed, CO.FetchBrowse, CO.Thorough
and all of the CAS tasks. Our retrieval system utilizes the natura tree struc-
ture of XML and is based on structura indices. While creating result lists, two
different overlapping models have been applied according to task. The weights
of the ancestors of an element have been taken into account in re-weighting in
order to get more evidence about relevance. This paper shows also how CAS
queries can be processed by utilizing structural indices.

1 Introduction to TRIX

The present study comprises of retrieval experiments conducted within the INEX
2005 framework addressing the following research questions: ranking of elements of
‘best size' for CO queries, query expansion, and handling of structural conditionsin
CAS queries. In INEX 2005 we submitted runs for the following tasks. CO.focussed,
CO.thorough, CO.FetchBrowse, and all of the CAStasks.

Next we introduce the TRIX (Tampere information retrieval and indexing of
XML) approach for indexing, weighting and re-weighting. Then, Sections 2 and 3
deal with the CO queries and CAS queries, respectively. Finally conclusions are
givenin Section 4.

1.1 Structural Indices and Basic Weighting Schema

In TRIX the management of structural aspects is based on the structural indices
[2,4,5,8]. The idea of structural indices in the context of XML is that the topmost
(root) element is indexed by &lfiand its children by al,1f 41,2 41,3 etc. Further,
the children of the dement with the index &l,1f are labeled by &1,1,1f &l1,1,2f
al,1,3fn etc. This kind of indexing enables analyzing of the relationships among ee-
ments in a straightforward way. For example, the ancestors of the element labeled by
al,3,4,2f are associated with the indices 41,3,4f 4l,3fiand 4lA In turn, any descen-

110

mailto:junken@cs.uta.fi

dant related to the index &l,3fis labeled by 41,3, xfiwhere xis a non-empty part of the
index. In the present approach the XML documents in the collection are labeled by
positive integers 1, 2, 3, etc. From the perspective of indexing this means that the
documents are identified by indices 4lfi &f &3 etc., respectively. The length of an
index xis denoted by len(x). For example len(4l,2,2,3f) is 4. Cutting operation d(x)
selects the subindex of the index x consisting of itsi first integers. For exampleif x=
aa,b,cfithen d,(X) = da,bfi In terms of the cutting operation the root index at hand is
denoted by ai(x) whereas the index of the parent element can be denoted by dleng-
1(%).

The retrieval system, TRIX, is developed further from the version used in the
2004 ad hoc track [3] and its basic weighting scheme for a key k is dightly simpli-
fied from the previous year:

IoggEﬁg
wik, x) = al x—ems (1)
A0 10g(N)

kfg+v>§l-b)+b e

kg

where
kf is the number of times k occurs in the x e ement,
N isthe total number of content e ementsin the collection,
misthe number of content e ements containing k in the collection,
X isthe number of all descendant content €l ements of the x element
Xy isthe number of descendant content elements of the x element containing k,
v and b are constants for tuning the weighting.

The constants v and b allow us to affect the ‘length normalization’ (Xfc/ xf)

component and tune the typical element size in the result set. In our runs for INEX
2005 b is used for tuning, while v is set to 2. Small values of b (0-0.1) yield more
large el ements, whereas big values (0.8-1) yield more small e ements.

The weighting formula above yields weights scaled into the interval [0,1]. The
weighting of phrases and the operations for + and - prefixes have the same property.
They are introduced in detail in [3]. A query termisakey or phrase with a possible
prefix + or -. A CO query g is a sequence of query terms kg, ..., k,. In relevance
scoring for ranking the weights of the query terms are combined by taking the aver-
age of the weights:

111

8 Wik, %) @
WG X) ==

After this basic calculation elements weights can be re-weighted. Next we consider
the used re-weighting method, called contextualization.

1.2 Contextualization

In our runs we use a method called contextualization to rank elements in more effi-
cient way in XML retrieval [1, see also 7]. Re-weighting is based on the idea of us-
ing the ancestors of an element as a context. In terms of a contextualization schema
the context levels can be taken into account in different ways. Here we applied four
different contextualization schemata.

1) Root (denotation: c;15(q, X))
2) Parent (denotation: cy(q, X))
3) Tower (denotation: c,(q, X))
4) Root + Tower (denotation: c(q, X))

A contextualized weight is calculated using weighted average of the basic weights
of target element and its ancestor(s), if exists. Root contextualization means that the
contextualized weight of an element is a combination of the weight of an element
and its root. In our runs the root is weighted by the value 1.5. This is calculated as
follows:

w(q,x) +1.5* w(q, a,(x)) 3)
2.5

Cr1s(d, X) =

Parent contextualization for an element is an average of the weights of the ele-
ment and its parent.

W(Q, X) + W(C, Gjen -1 (X))
Co(a, X) = > ent- @)

112

Tower contextualization is an average of the weights of an element and all its ances-
tors.

len(x)

a wq,d, (x)) ©)

_ i=1
(g, ¥ = et)

So called Root + Tower contextualizaton means the plain tower contextualization
with root multiplied by two. This can be seen as a combination of parent and root
contextualizations.

len(x) (6)
w(q,d,(x)) + a w(a,d, (x))

_ i=1
Crt(qv X) - Ien(X) +1

In Figure 1 the effects of the present contextualization schemata areillustrated. In
it, XML tree with elements assigned initial weights (w) and contextualized weights:
Root (wr), Parent (wp) and Root + Tower (wrt) is given. For instance, dement with
index 4l,1,2f has an basic weight of 0.2. Parent contextualization means an average
weight of 4l,1,2fland 41,1 Root is the average of 4l,1,2fiand &lfiand Root + Tower
the weighted average of weights of 4lfi, &l,1fiand 4&l,1,2/ where the weight of 4l
has been calculated twice.

Fig. 1. A tree presentation of an XML document illustrating different contextualization sche-

mata.

<=
w=0.5
<1,1> <1,2=
w=0.8 w=04
wr=0.65 wr=045
wp=0.65 wp=0.45
wrt=0.6 wit=0 4666
<1.1.1= <1.1.2» <121 «12.2=
w=0.1 w=0.2 w=0.1 w=0.3
wr=0.3 wr=0.35 wr=0.3 wr=0.4
wp=045 wp=0.5 wp=0.25 wp=0.$5
wr=0475 wrt=0.375 wrt=0.25 wit=0.4

113

In [1] we have discovered that a root element carries the best evidence related to the
topics and assessments of INEX 2004. However, contextualizing the root only has an
effect on the order of elements in the result list, and it does not change the order of
elements within a document. Generally, if we contextualize the weights of e ements
x and y with the weight of their ancestor z, the order of x and y will not change in
the result list. Further, the mutual order of x, y and z will not change if no re-
weighting (i.e. contextualization) method is applied to element z. The root element
possesses no context in our approach. Hence in the CO.FetchBrowse task, where
documents have to be ordered first, the Root contextualization will not have an effect
on the rankings of other elements. However, within a document there are still several
other context levels, and by utilizing those levels, it is possible to re-rank elements
within a document. This finding has been utilized in the CO.FetchBrowse task.

1.3 Overlapping Models

In Figure 2 two overlapping modds, which our system supports, areillustrated. First,
an element to be returned is marked with a letter P. On the left there is a situation
where al overlapping elements are excluded from the result list, even if their weight
would be sufficient, but smaller than P. That means the overlapping percentageis 0.
On the right side all elements can be accepted, regardless of their structural position
in the document.

Fig. 2. Two overlapping models

We have used the former mode in the CO.Focussed and CO.FetchBrowse tasks
and the latter modd in the CO.Thorough and all of the CAStasks.

2 CO Runs

In the CO runs we have used Root+Tower contextualization (Tampere ..._tower),
and Root contextualization (Tampere_..._roat). In addition we have applied a query

114

expansion method from Raobertson [6], taking 5 or 10 expansion words from 7 top
documents from the first result set (Corresponding runs. Tampere exp5 _b09_root,
Tampere_expl0 _bO1 root). Figure 3 shows the slight improvement of the expanded
run compared with a smilar run without any expansion. Topic-specific anlysis will
take place in the near future.

Because of the prevention of overlapping elements, promoting large el ements may
not be wise in the focussed task. That is because if alarge element is returned, then
every descendant is excluded from the results. However, in thorough task promoting
large elements is not that risky. Hence, we used small b values for the thorough and
large values for the focussed runs. Favoring small eements might have caused an-
other kind of problem, though. In the relevance assessments many of the paragraph
sized elements are marked as too small. That leads to a situation, where a whole
relevant branch is paralyzed, when atoo small leaf element is returned.

In the topic 229 there is a spelling error "latent semantic anlysis’, which in our
system would lead to a poor score. To minimize the error rate and also to improve
recall, we have opened the phrasesin all of the queries. For instance, query "latent
semantic anlysis' would become "latent semantic anlysis' latent semantic anlysis.
These features and also the effect of the contextualization improve recall and scores
in generalized quantization, although the top precision suffers dightly (see figures 3
and 4).

ncXG {overlap=on,generalised}

Tampere_exp5_b09_root

8.4
8.35 ’ :

nxCE
-]
ra
a

Tampere_b09_root

a a.1 8.2 a.3 a.4 a.5 8.6 a.7 a.86 8.9 1
rank?

Fig. 3. The nXCG curves of runsin CO.Focussed task with generalized quantization

115

nxCG

ncKG {overlap=off,generalised)

a a,2 a.4 a.6 a.8 1
rankX

Fig. 4. The nXCG curves of runs in CO.Thorough task with generalized quantization

3 CASRuns

3.1 Processing CAS Queries

In the CAS queries an element may have constraints concerning itself, its ancestors
or descendants. These constraints may be only structural, or structural with content.
For instance in query

{/IA[about(.,x)]//B[about(.//C,y)]

B is the structural congtraint of a target element itself. A isastructural constraint of
a target dement’s ancestor, and C target element’s descendants. All of these struc-
tural constraints have also content constraints, namely x or y. So, to be selected to a
result list, an dement must fulfil these constraints. The processing of CAS queries
can be divided into four steps:

First step: Generate a tree according to the target e ement’s content con-
straint, and weight elements, which fulfil the target element’s structural
constraint.

116

Second step: Discard all the target e ements which do not fulfil the struc-
tural ancestor and descendant constraints. Due to the nature of hierarchical
data, ancestors are always about the sameissue as their descendants, i.e.
they share the descendants' keys. So the content constraints of descendant
elements are taken into account here as well.

Third step: Generate trees according to each ancestor element’s content
congtraint. Discard € ements, where the structural descendant and ancestor
content constraint are not fulfilled, i.e. corresponding € ements do not exist
in the sub tree.

Fourth step: Collect the indices of dements left in the third step having the
ancestor structural constraint, and discard all of the target elements, which
do not have such indices among ancestor elements.

To clarify this, processing of a CAS query can be demonstrated with a sufficiently
complex example.

The query:
/larticlefabout(.//abs, logic programming)]//bdy//sec[about(.//p, prolog)]
breaks down into following parts:

- an dement with structural constraint sec isthe target e ement with content
constraint prolog

- pisastructural descendant constraint of the target el ement with the same
content constraint as sec : prolog

- articleisastructural ancestor constraint of the target element with a con-
tent constraint logic programming

- absisasdtructura descendant constraint of article with the same content
constraint logic programming

- bdy isasdtructural ancestor constraint of the target e ement without any
content constraints

In the first step, shown in Figure 5, we form a tree of e ements with non-zero

welights according to the query prolog. In other words all the eements with zero
welights are discarded from an XML tree structure.

117

article
3=
by bm
<3 2= <33
sec sec SEC
<323= <325= =332=
st p p p
<3231 <3253 <328 4> 33272

Fig. 5. A tree presentation of a sample XML document having only elements with a weight
greater than 0 according to the query prolog.

In the second step (Figure 6), we exclude target element &3,3,2f because the struc-
tural ancestor constraint bdy is not fulfilled. Element &,2,3fis also to be excluded,
because the descendant constraint p is not fulfilled.

article
<3z
bdy bm
<3 2= <33
] SEC
™ <32 45> an
st R p p
“3231= 3253 <325 4= <3322=>

Fig. 6. A tree presentation of a sample XML document having only elements with a weight
greater than O according to the query prolog, where target elements not fulfilling the con-
straints are excluded.

In the third step we form a tree with non-zero weights according to the query
logic programming, as seenin Figure 7.

118

article

<3 \\

fin

<3 1= . . . -
abs
<3 1.1=

Fig. 7. A tree presentation of a sample XML document having only elements with a weight
greater than 0 according to the query logic programming.

In the treg, there is an abs e ement as a descendant of article, so both of the struc-
tural and content constraints are fulfilled. Hence, we take the index of the article:
a3 and see that the index belongs to a descendant of the remaining target € ement
83,2,5f So, this and only this dement is to be returned from this document.

3.2 Taking Vaguenessinto Account in CAS

In the current evaluations there are four different kinds of interpretations for struc-
tural constraints for processing NEXI, in our approach the structural constraints are
interpreted strictly. However for SYVCAS, VSCAS and VVCAS the query has been
modified. Our system handles vague interpretation such that the corresponding ee-
ment names have been ignored. In NEXI language this can be implemented by re-
placing the names with a star. Thus we have modified CAS queries as follows:

Theinitial CAS query (and SSCAS):
{IA[about(.,x)]//B[about(.,y)]

SVCAS
{*[about(.,x)]//B[about(.,y)]

VSCAS:
/IA[about(.,x)]//* [about(.,y)]

VVCAS would then logically correspond to:

119

{*[about(.,x)]//* [about(.,y)]

For simplification we have processed VVCAS like a CO query. In the present exam-
ple VVCAS corresponds to the query:
[[*[about(.,x y)]

3.3 Resultsof CAS Queries

In the content and structure queries, only elements which fulfil the constraints are
accepted to the results. The ranking of the elements has been done according to the
target element’ s textual content. Besides the target e ement, other content constraints
have been taken into account as a full match constraint without any weighting. This
full match content constraint within a structural constraint has been interpreted in
digunctive way. It means, that only one occurrence of any of the keysin a sub query
is sufficient enough to fulfil the condition. For instancein the query

JIA[about(.,x y Z)]//B[about(.//C,w)]

for B to be returned, it is sufficient that the A element includes only one of the keys
X, y or z. Naturally the B element should be about w, and also have a descendant C
about w. This approach among others mentioned in the Section 2 leadsto fairly good
results with the generalized quantization (see Figures 8 and 9). However, if in
SSCAS the number of highly relevant elements per topic is low and if there are only
a few of topics assessed, then the evidence especialy for the strict quantization is
narrow.

There was a dlight error in our submissions of results. Accidentally we sent runs
intended for SYCAS for VSCAS, and vice versa. Because of the near zero overlap,
in SVCAS this led to quite a rotten score. Surprisingly, despite the error, VSCAS
results proved to be quite satisfactory, as Figure 10 in Appendix shows. Especialy,
according to the top precision of our runs, the ranking was as high as 3 and 4" in
the generalized quantization and 3 and 8" in the strict quantization of the XCG
metrics.

120

EP/GR {overlap=off . generalised)

effort-precision

[} 8.1 8.2 e.3 8.4 8.5 8.6 a.7 6.8 a.9 1
gain-recall

Fig. 8. The ep/gr curves of runsin SSCAS task with generalized quantization

ncxG {overlap=off,generalised}

8.8

8.8

8.7

8.6

nxCG

8.5

8.4

a.3

8.2

a.1

L] 8.1 8.2 8.3 8.4 8.5 8.6 8.7 0.8 a.9 1
rank?

Fig. 9. The nXCG curves of runsin SSCAS task with generalized quantization

4 Conclusions

This paper presents our experiments and results at INEX 2005. The results for the
CO task show that Root contextualization is not generally better than Root + Tower,
except for the top precision. In general, our approach is in many runs quite recall
oriented, and we also do better in the generalized than strict quantization. Therefore,

121

improving top precision in all tasks and quantizations remains as one of our primary
goals.

This was the first time we participated in (strict) CAS task. The analyzing power
of structural indices enables a straightforward processing of CAS queries. In addi-
tion, resultsin INEX 2005 give a good baseline for future development. By the time
this paper has been written, the results of CO.FetchBrowse are considered as pre-
liminary, and our results are not yet included. That is because of a minor error in our
result lists. The final results of the CO.FetchBrowse will show how different contex-
tualizations within a document will affect the results.

122

References

1. Arvola, P., Junkkari, M., and Kekalainen, J.: Generalized Contextualization Method for
XML Information Retrieval, In Proceedings of ACM Fourteenth Conference on Information
and Knowledge Management (CIKM'2005), (2005) 20-27.

2. Junkkari, M.: PSE: An object-oriented representation for modeling and managing part-of
relationships. Journal of Intelligent Information Systems, 25(2), (2005) 131-157

overlap. In Advances in XML Information Retrieval: Third International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2004. LNCS 3493. Springer, Heidel-
berg, (2005) 127-139

4. Knuth, D.: Fundamental Algorithms: The Art of Computer Programming. Vol. 1, Addison
Wesley, (1968)

5. Niemi, T.: A Seven-Tuple Representation for Hierarchical Data Structures. Information
Systems, 8(3), (1983) 151-157

6. Robertson, S.E. and Walker, S.: Okapi/Keenbow at TREC-8, Proc. NIST Specia Publica-
tion 500-246: The Eighth Text Retrieval Conference Text (TREC), (1999) 151-162.

7. Sigurbjérnsson, B., Kamps J., and de Rijke, M.: An Element-Based Approach to XML
Retrieval. In INEX 2003 Workshop Proceedings (2003) 19-26

8. Tatarinov, I, Viglas, S., Beyer, K.S. Shanmugasundaram, J., Shekita, E.J., and Zhang C.:
Storing and Querying Ordered XML Using a Relational Database System. In Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data, (2002) 204-
215

123

Appendix

EP/GR {overlap=off,generalised} ncXG {overlap=off ,generalised}

0.6
0.39
8.5
0.3
0.4
5 0.25
k-
]
&
H
£ a2 g o3
I H
£
5
2
S 8.15
6.2
0.1
0.1
.05
0 . .
L] 0.2 0.4 0.6 0.8 1 0 0.1 LR X 0.4 8.5 0.6 0.7 o8 0.9
gain-recall ranky
EP/GR {overlap=off ,generalised) nexG (overlap=off,generalised)
0.4 8.7
0.39 8.6
8,3
0.5
§ 08.25
K]
4 0.4
] @
F_ 8,2 i
£ H
c 8.3
&
F 8.15
0.2
0.1
6,05 0.1
]]
[} 0.1 8.2 8.3 8.4 8.5 8.6 8.7 0.8 0.9 1] 6.2 0.d 8.6 6.8
gain-recall rankX

Fig. 10. The EP/GR and nXCG curves of the generalized quantization. First row: VVCAS,
Second row: VSCAS.

124

B3-SDR: Basic Building Blocks for Structured
Document Retrieval.

Roelof van Zwol

Utrecht University, Department of Computer Science, Center for Content and
Knowledge Engineering, Utrecht, the Netherlands
roelof@cs.uu.nl

Abstract. Structured document retrieval, or XML element retrieval as
it is referred to within INEX, the INitiative for the Evaluation of XML
retrieval, allows for the retrieval of XML elements containing highly spe-
cific relevant information. INEX provides an evaluation platform where
retrieval strategies for structured documents are evaluated. This is the
second year that Utrecht is participating in INEX, with a completely
revised system called B*-SDR. The B*-SDRsystem is a modular system
that uses basic building blocks (B3) to evaluate different strategies for
structured document retrieval. The kernel of the system is based on the
model introduced by [1]. Their heuristic model was simple, yet effective,
and provided several options for extensibility.

This article presents the various extensions that are defined on top of
the basic model for the different tasks within the INEX Ad-hoc track.
Due to the heuristic nature of the retrieval model, various configura-
tions are possible, depending on the retrieval tasks that is specified. The
underlying motivation is discussed for the different tasks, and evaluated.

References

1. Geva, S.: Gpx - gardens point xml information retrieval at inex 2004. In: Advances
in XML Information Retrieval, Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004. Volume 3493 of Lecture Notes in
Computer Science., Dagstuhl Castle, Germany, Springer (2005) 211-223

125

Field-Weighted XML Retrieval Based on BM 25

Wei Lu?, Stephen Robertson®, Andrew Macfarlane?

1 Center for Studies of Information Resources
School of Information Management
Wuhan University, China
sa713@soi.city.ac.uk
2 Microsoft Research
Cambridge, U.K.
ser@microsoft.com
3 Centre for Interactive Systems Research
Department of Information Science
City University London
andym@soi.city.ac.uk

Abdtract. Thisis the first year for the Centre for Interactive Systems Research
participation of INEX. Based on a newly developed XML indexing and retrieval
system on Okapi, we extend Robertsons field -weighted BM25F for document
retrieval to element level retrieval function BM25E. In this paper, we introduce
this new function and our experimental method in detail, and then show how we
tuned weights for our selected fields by using INEX 2004 topics and assess-
ments. Based on the tuned models we submitted our runs for CO.Thorough,
CO.FetchBrowse, the methods we propose show real promise. Existing prob-
lems and future work are also discussed.

1. Introduction

Being an important data exchange and information storage standard, XML is now
widely used, especially for scientific data repositories, Digital Libraries and on the
Web, which has brought about an explosion in the research of information retrieval for
XML. Many sophisticated systems |1, 2, 3, 4, 5] and retrieval models [6, 7, 8, 9, 10] for
XML documents have been proposed.

XML documents often contain sub-fields (elements), eg. INEX collections from |EEE
contain fields such astitle, abs, bdy, bm, st etc. Practitioners have found it beneficia
to exploit the documents internal structure to improve retrieval performance [11]. R e-
searchers have looked at various techniques in order to investigate this problem. Wil-
kinson [12] and Ogilvie et a [13] have proposed and tested different ways to weight
and combine the scores obtained on different fields of a document; Kraaij et al [14]
propose a flexible algorithm based on language models but have not implemented it;

126

and Myaeng et a [15] combine terms found in different document representations
using Bayesian inference networks. Robertson et al [11] give a more detailed review of
thisareain their paper.

In practice, many systems use a linear combination of the scores obtained from
scoring every field due to the complexity of the ranking algorithms deployed. Robert-
son et a [11] discuss the dangers of linear combination in detail and propose an alter-
native solution, the linear combination of term frequencies based on BM25 (BM25F
will ke used in the rest of the paper instead of “ fidd-weighted models based on
BM25”), to extend standard ranking functions to multiple weighted fields. Their e«
periment based on two existing collection Reuters vol. | collection and the 2002 TREC
Web-Track craw! of the .gov for document level retrieval shows that the method was
beneficial. Some related work using Okapi, BM25 or field combination in INEX 2004 are
documentedin [16, 17, 18, 19, 20].

In this paper, we extend this method further to element level XML retrieval based on
INEX 05 collections. In section 2, we discuss in detail the field-weighted models. Sec-
tion 3 further illustrates the experiment of this method on INEX 05 and Evaluation
results are reported in section 4. A conclusion and further work to be undertaken are
described at the end.

2. BM 25F model

In this section we describe BM 25F model in detail. We first introduce the models for
document level weighting in section 2.1. And then we further discuss the implementa-
tion of the model to XML element level retrieval.

2.1 BM 25F for document level weighting
BM25F isthe field-weighted version of BM25. It is derived from Robertson et al [11]

for document level retrieval. For ad-hoc retrieval, and ignoring any repetition of terms
in the query, BM 25 can be simplified to [11]:

— k, + Dtf. N - df +0.5
w, @0y = —— g N W
K (- b) +b—") +tf, df; +0.5
avdl

where C denotes the document collection, tf J- isthe term frequency of the jth termin

d , df; isthe document frequency of term j, dl is the document length, avdl is the av-
erage document length across the collection, and k1 and b are tuning parameters.
Then the document score is obtained by term weights of terms matching the query q:

w(d,q,c)=a w, (d,C) >, (2

127

Being a linear weighted combination of term frequency of in these fields, function
BM25F is shown asfollows:

— K1 +Dtf N - df. +0.5
o, @)=L g T g
K30 B)+b— e +1f

where tf'; denotes the weighted term frequency of the jth term in @ , dl'is the

weighted document length, avdl' is the weighted average document length across

the collection. K1 isthe weighted free parameter.
Suppose we have nF fieldsf=1, ..., nF. In a given document d, term t has fre-

quency tfd’t’f in field f. There are various ways of defining the length of fields or

documents, but the simplest way is to use the number of indexed terms (tokens). This
means that the length of the field in this document is

whereV isthe vocabulary, i.e. all indexed terms.
With no field weighting, the term frequency of t in the whole document is

[o]
thy, =a thas
f

and the document lengthis

Average document length is

1o,
avd =—aq d
\Y Na

With field weightsW, these are modified as follows:

tfox = é Wi tfy,
f

128

d' =3 w,dl, =3 § w,tf, , = Q tf a
f f t t

1 o .
avdl =—g d
Na
and
=k atf e —k avdl’
' atfunweighted ' anI

where atf is the average term frequency.

Function (3) is used for document weighting. However XML retrieval requires not
only document level but also element level retrieval. This means an algorithm for ele-
ment weighting is required. In section 2.2, we further discuss the field-weighted
weighting function for element level retrieval (BM25E) derived from function (3).

2.2 Proposaed model BM 25E for element weighting

From function (3), we can see that linear combination of weighted field frequencies
is used instead of original term frequency in specified document. We hypothesi ze that
this method could also be applied to element retrieval. Our basic view is that an ele-
ment is to be treated like a document, except that it may inherit information from other
elements in the document. Thus each element has (in addition to its own text, which is
treated as one field) extra fields consisting of text inherited from other elements. The
details of our ideaare asfollows:

Suppose we have nE elementse=1, ..., nE in given collection C. Term t has fre-
quency ffy;. in element e. el is the element length and avel is the average element
length. Then we simply extend BM 25 to element retrieval asfollows:

_ k. +Dtf . N-df. +05
w,(e,d,C) = s)dev' log ’ (4)
(- b)+b—=)+tf, i ¥03
avel ’
Accordingly, Function BM25E would be,
- LD e N-df +05
Wi (ed,0)=— g)
K1((1- b) +b——) +tf e e
avel

129

where tf 'e’j denotes the weighted term frequency of jth term t in e, €'is the

weighted element length, avel' is the weighted average element length across the

collection. K1 isthe wei ghted free parameter. Similar to those parametersin section 2.1,
given afield weights W to elements which contributes to a given elements Weig ht,

tfre = § wtf,,

fle

d =3 wed=3 qwtf, =4t
ft

fle fle t

1 .
avel = Vé d
and
=k Mygries _ | avel
' atf ' avel

unweighted

where M isthetotal number of element in collection C.

(5) implies that given an element e in collection C, if it exists some fields(element) f
contributing to the weight of the element, then a linear combination of field-weighted
term frequency of field are applied based on BM25F. Theoreticaly, f could be any
element in collection C. In fact, if al dements in a document d contribute to a given
element in this document, then we come back to BM25F (3). And if all W equal 1, then
we further come back to BM25 (1).

What we need to say is that this statement does not in any way define the imple-
mentation, but merely the principle of how elements are to be treated. Detail
implementation of our experiment is further discussed in section 3.

3 Experiment of BM25E on INEX 2005

In this section, INEX collection and its structure will be introduced. We will then
describe the assumptions we used for our experiments. Finally, our experiment envi-
ronment and procedures are introduced.

130

3.1 Data sets

There are 2 data sets have been used for our experiment: INEX 1.4 and INEX 1.7.
Both of these two collections are from IEEE Computer Society publications.

Inex 1.4: Thisdata set is INEX collection for 2004 which contains 12107 articles of
|EEE Computer Society publications from 1995 to 2002.

Inex 1.6: This data set is INEX collection for 2005 which contains 16819 articles of
|EEE Computer Society publications from 1995 to 2004.

More details of these collections can be found in table 1.

Table 1: figures of INEX collections

Data sets INEX 14 INEX 1.6
Size of Data(MB) 494 705

of elements 8,239,873 11,411,135
of attributes 2,204,688 4,669,699
of Articles 12,107 16,819
Avg. Path Level 8 8

3.2 Data structures

As stated in section 1, being academi ¢ collections, most of the articlesin it contain
elements tags which represent articles title, abstract, body text, section, section title,
paragraph, bibliography and appendix etc. These tagsin INEX collection are shown in
Table2:

Table 2: INEX important tags and its meaning

Content Name Tags

articletitle atl

article abstract abs

body text bdy

section sec, ssl, ss2, ss3

section title st

paragraph ilrj, ipd, ip2, ip3, ip4, ip5, itemnone, p, p1, p2, p3
bibliography bib

appendix bm

Asits discussed in [11], W needs to be tuned for each selected field which con-
tributes to the documents weight in BM25F. The same method should also be used
for BM25E. Although in theory, every context element would contribute to given ele-
ment e, in practice, there are more than about ten-million elements in each INEX collec-
tionsand it is very difficult to tune every elements W. The problem then lies in what
elements should be chosen for optimisation.

131

Robertson et a [11] chose title as the tuned field. In this experiment, consider the
data structures of INEX, we choose atl, abs and st as the tuned elements. We believe
that title and abstract in some extent reflect the content of an article, and section titlein
some extent tells us the section and its sub-elements’content. We believe these el e-
ments could contribute to the weight of relevant elements. This issue will be dis-
cussed in more detail in section 3.3.

3.3 Someassumptionsfor BM25E on INEX 2005

Due to the costs of implementation and some other factors such as time limitations,
we declare our assumptions for the experiments on the elements which should be in-

herited for other retrievable ones and the ways to compute avel' and K. They are
asfollows:

Assumption 1: elements in one document do not have effect on elementsin other
documents. Elements except atl, abs and st also don't have effect on other elements
which are not their ancestors in the same document.

Assumption 2: Elements atl and abs contributes to the weight of elements bdy, bm
and their child elements. Elements st contributes to the weight of the section it be-
longs to, and also of the sections child elements and article element. All st elements
have the same W without considering the level they belong to.

Assumption 3: Due to the complexity to compute parameters avel"' and K'1, webe-
lieve the values of the article level can be used instead of them for all elements.
Assumption 1 issimple and easy to understand. In Assumption 2, the question may lie
in that what role element st playsin the relevant sections other parent elements except
article element. And the question in Assumption 3 is that whether the simple replace-
ment of the parameters would affect much of the result. These issues will be tackled in
further research.

3.4 Experiment environment and procedures

Thisisthe first year that the CISR has taken part in INEX. We largely conduct our
work on Okapi in a Linux environment (using Red Hat 9). Being a traditional retrieval
experiment system, Okapi undertake all the processing which was required by INEX
experimentation. We have therefore done significant development work for both XML
indexing and element level XML retrieval in order to participating in INEX.

Our experimenta procedure is asfollows: firstly, we tune W for selected elements atl,
abs and st; secondly, we use Okapis Basic Search System (BSS) to get a doc ument
result set; and finally we use a newly designed XML element weighting and displaying
interface to get our final submissions required by INEX, among which, selected W
parameters are used to get optimized runs. We should also state that only article, abs,
bdy, bm and section and paragraph elements are considered as potential relevant ele-
ments for our fina runsin our experiment. This may lose some relevant elements, but

132

some small irrelevant elements are filtered at the same time. In the next section, we
report our evaluation result for INEX 05.

4. Evaluation

In order to examine the new data structures and algorithms build for our INEX e«
periments, we used INEX 04 ad-hoc topics and assessment to tune W for atl, abs and
st on document level by using the average precision score, (we did not evaluate using
the INEX methodology at the element level). Our method shows that tuning W for
these selected elements contributes to an improvement in retrieval performance on the
INEX 04 collection. Thetuning values for W are all integers. We first tuned W { atl, abs
st} from {1, 1, 1} to {10, 10, 10} using increments of 1. Result shows that the values
of{10, 3, 10} for W get the highest average precision score. The best tuning results
were obtained when the tuning values for atl and st are both 10 and tuning values for
abs are all between 3 to 6, we therefore investigated the tuning scope for atl and st.
We then tried to tune W {atl, abs st} from {1, 1, 1} to {50, 10, 50} in increments of 1.
The results shows that a higher value for atl yielded better results, the best scope for
st isfrom 12 to 25, while the best scope for abs was about the same for the first set of
tuning experiments conducted. We conducted some further tuning experiments with a
larger scope for atl and the ranges for abs and st set to between 1~10 and 10~30 re-
spectively. In these experiments we tuned atl from 1 to 300 using increments of 10 and
then used increments of 50 for atl, to a maximum value of 3000.. We believed that there
was no point in investigating larger values. The best average precision score was
recorded when the tuned value for atl is around 2400. Finally, we tuned atl from 2100
to 2700 in increments of 1 in order to obtain the best optimized results. Our experiment
shows when using the values of 2356, 4 and 22 for W in elements atl, abs and st re-
spectively we obtained the highest performance for article level retrieval on INEX 04
data. We are alittle surprised that the best tuned value for atl is so high. The implica-
tion is that the selected elements, particularly atl and st contributed much to the
document level XML retrieval in the INEX collection. See table 3 for some of our tuned
result for INEX 04.

Table 3: tuned results for INEX 04 on document level

W; {atl, abs, st} Sum of
(Avg precision for co all topics)
2356, 4, 22 0.143698
2416, 5, 22 0.143678
2668, 5, 25 0.143435
10,4,9 0.129819
1,11 0.124023

Due to the time and resource limitations, we only submited runs for CO.Thorough
and CO.FetchBrowse. Based on these tuning experiments and considering the differ-

133

ence between document level retrieval and element level retrieval, and also being con-
cerned that tuned W values for atl and st would be to high, we choose 3 sets of tuning
constants of valuesfor W { atl, abs, st}, namely {2356, 4, 22}, {1000, 4, 22} and {15, 4,
8} , for submitting CO.Thorough runs; and chose another 3 sets of tuning constants
of values for W { atl, abs, st}, namely {1000, 4, 22}, {300, 4, 18} and {98, 4, 13}, for
submitting CO.FetchBrowse runs.

Though we tuned W in document level, we are still pleased to see that our official
runs for CO.Thorough rank at the top of the total 39 official runs, especialy for “Met-
ric: nxCG(25), Quantization: strict, Overlap=off” , our 3 runs ranks 1st, 2nd and 22nd
respectively; for “ Metric: nxCG(50), Quantization: strict, Overlap=off” , our 3 runs ranks
1st, 2nd and 10th respectively; and for “Metric: ep-gr, Quantization:
strict,Overlap=off” , our 3 runs ranks 1st, 5th and 13th respectively. See Fig. 1, Fig. 2
and Fig. 3[21] for more information. We aso tried to use metric nxCG to compare our 3
official runsfor CO.Thorough with the non field-weighted runs whose W{ atl, abs, st }
is{0, 0, 0}. Result shows that non field-weighted one ranks at the last while the former
two runsrank at the top.

IMNEX 2005 Results’ Summary
metric: NG guantization: strict
ta=k: SO . Thomouugh

effort-preciion

] (o= 1
gain-recall

Fig. 1 Metric nxCG(25), Quantization: strict, Overl ap=off

IMNEX 2005 Results’ Sumimary
metric: NnxCSG quantization: strict
ta=k: SO . Thomugh

effort-precision

L] o5 1
gain-recall

Fig. 2 Metric nxCG(50), Quantization: strict, Overlap=off

134

IMNEX 2005 Results’ Summary
matric: gp-gr,quantization: strict
task: SO . Tharough

effort-precision

gain-r=call

Fig. 3 Metric ep-gr, Quantization: strict,Overlap=off

The experiment shows that the first two sets of tuning constants, W {1000, 4, 22}
and W {2356, 4, 22}, ranks better than the third groups W (15, 4, 8). The evidence is
that atl and st does contribute to retrieval performance and it al'so implies that combin-
ing field-weighted term frequencies of selected elementsis a beneficial method. Tuning
constant set W {1000, 4, 22} rank first for Metric “ nxCG(25 and 50), Quantization: strict,
Overlap=off" also suggests that it may be better if W is tuned on element level. This
behaviour may also be caused by the difference of the topics and data sets between
INEX 2004 and INEX 2005 etc. It isworth doing a further set of tuning eqeriments on
the INEX 2005 topics and data sets.

Results also show that our method performs better for models which consider only
fully specific and highly exhaustive components than those models which considering
varying levels of relevant components. The reason may be because the selection of
elements we chose to submit for our experiments. We intend to investigate this issue
further.

5 Conclusion

We extend document level field-weighted retrieval function BM25F to element level
retrieval function BM25E. We have applied this method to INEX 2005 CO XML re-
trieval and results show that our method is beneficial.

However there are still some limitationsin our element level retrieval function. Firstly,

valuesfor avel' and K1 are used at the article level, not element level. The creation
of apractical algorithm to generate values for tuning parameters at the element level is
a challenging task. Secondly, parameter tuning is undertaken at document level by
using average precision method, not on element level by using INEX official metrics. It
should be noted that the element st has the same weight at different levels, and further
experiments need to be undertaken to investigate this problem. Thirdly, we only sub-

135

mit runs for CO.Thorough and CO.FetchBrowse tasks, so more tasks need to be done
to test our method. And also our system for XML element retrieval needs to be up-
graded. We will investigate these problemsin further research.

Acknowledgements
Thanks to Chinese Scholarship Council (CSC) for funding the visitor of the first author
to City Univesity, London in order to conduct this research.

References

[1] A. Deutsch, M. Fernandez and D. Suciu. Storing semistructured data with STORED. In
Proc. SIGMOD, 1999.

[2] J. Harding, Q. Li, B. Moon. XISS/R: XML Indexing and Storage System Using RDBMS. In
Proceedings of the 29th VL DB Conference, 2003

[3] Software AG. Tamino XML database. http://www.softwareag.com/tamino/.

[4] XY ZFind. XML Database. http://www.xyzfind.com.

[5] HYREX. http://Is6-www.cs.uni-dortmund.de/ir/projectshyrex/.

[6] N. Fuhr and K. Grof3 johann. XIRQL: A Query Language for Information Retrieval in XML
Documents. In Research and Development in Information Retrieval, 2001.

[7] J. E. Wolff, H. Florke, and A. B. Cremers. Searching and Browsing Collections of Structural
Information. In Proc. IEEE Forum on Research and Technology Advances in Digital Librar-
ies, 2000.

[8] T. Schlieder and H. Meuss. Querying and Ranking XML Documents. Specia Topic Issue
Journal American Society for Informations Systems on XML and Information Retrieval,
2002.

[9] T. Schlieder. Similarity Search in XML Data using Cost-Based Query Transformations. In
Proc. 4th Intern. Workshop on the Web and Databases, 2001.

[10] A. Theobald and G. Weikum. The Index-Based XXL Search Engine for Querying XML
Data with Relevance Ranking. In Proc. 8th Internation Conf. on Extending Database Tech-
nology, 2002.

[11] S. Robertson, H. Zaragoza, M. Taylor. Simple BM25 Extension to Multiple Weighted
Fields. CIKM04, 2004.

[12] R. Wilkinson. Effective retrieval of structured documents. In Research and Development in
Information Retrieval, 1994.

[213] P. Ogilvie and J. Callan. Combining document representations for known item search. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2003), 2003.

[14] W. Kraaij, T. Westerveld, D. Hiemstra. The importance of prior probabilities for entry
page search. In Proceedings of the 25" Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2002.

136

[15] SMyaeng, D. Jang, M. Kim, Z. Zhoo. A flexible model for retrieval of SGML documents.
In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval,1998.

[16] L. A. Clarke, L. Tilker. MultiText Experiments for INEX 2004. In INEX 2004 Proceedings,
2004.

[17] J. Vittaut, B. Piwowarski, Patrick Gallinari. An algebra for Structured Queries in Bayesian
Networks. In INEX 2004 Workshop Proceedings, 2004.

[18] J. Kekéinen, M . Junkkari, P. Arvola. TRIX 2004 — struggling with the overlap. In INEX
2004 Workshop Proceedings, 2004.

[19] R. Larson. Cheshire |l at INEX 04: Fusion and Feedback for the Adhoc and Heterogen e
ous Tracks. In INEX 2004 Workshop Proceedings, 2004.

[20] P. Oqilvie, J. Callan. Hierarchical Language Models for XML Component Retrieval. In
INEX 2004 Workshop Proceedings, 2004.

[21] Evaluation results of CO.Thorough. http://inex.is.informatik.uni-
duisburg.de/2005/internal /results/CO. Thorough.html.

137

XML retrieval based on direct contribution of query
components

Gilles Hubert

IRIT/SIG-EVI, 118 route de Narbonne, 31062 Toulocsdex 9
hubert@rit.fr

Abstract. This paper describes the retrieval approach pexpbyg the SIG/EVI
group of the IRIT research centre at INEX'2005. TXL approach is based
on direct contribution of the components constitytan information need. This
paper focuses on the method evolutions since pus\participation to INEX. It
describes the experiments done for each subtagks@ne corresponding re-
sults.

1 Introduction

Due to the growing use of XML (eXtensible Markup Laage) to describe docu-
ments, a growing number of systems intend to pewgiolutions to retrieve relevant
components among XML documents. These systems aréyrsoslutions of either
database systems [3] or Information Retrieval @igtems. Among IR-based systems
two main categories of proposals can be distinguishystems based on a probabilis-
tic model [7][12] and systems based on the vegtacs model [2][5]. XML retrieval
needs to take into account both content and stalcispects.

In this context of various proposals, a framewankhsas INEX is useful. On one
hand, it offers testbeds and evaluation methodsat@av comparing different sys-
tems according to common criteria. On the othedh#rallows participants to try to
estimate a global efficiency of their system andlétermine the contexts adapted to
their system.

Among the systems that participated to INEX previgear and that obtained glob-
ally good results there are approaches based owettter space model [8] or close
principles [4][6], probabilistic methods [1][13][)[@1] and database systems [9]. [8]
presents an approach based on the vector space usatg multiple indexes, using a
document ranking method with document pivot noreaaion and including a possi-
ble automatic query refinement. [4] proposes anr@gh using inverted lists for
terms stored in a database and based on diffecering formulas for leaf elements
and branch elements. Our method [6] is based @ttdiontribution of query compo-
nents. The main principles of the method are retafiehis paper. This method ob-
tained better results for CAS (Content and Str@jtuopics. [1] experimented a
method based on the Okapi BM25 measure only orCthgContent Only) topics.
[11] uses a multinomial language model with smowtand associated to documents
indexes at different levels (article, element).][pBoposes a hierarchical language

138

model to represent XML documents as trees and wdenedel is estimated for each
XML component using linear interpolation of the campnt content, its children’s
models and its parent model. The approach proposg8] represents hierarchies of
documents as bayesian networks and computes neglyrscores from network root
to leaves. [9] describes an extended version oTthA&H system that follows a three-
level database architecture and that has beend®=ddn handle phrase modelling and
to support structural relevance feedback.

In this paper, we present an IR method using plasiclose to approaches based on
the vector space model. However, this approachased on direct contribution of
each component of the query and particularly onptlesence of each term constitut-
ing the query. The paper focuses on the method #entudone since the previous
participation to INEX last year.

In the remainder of this paper a short presentaifaiine main ideas on which relies
the retrieval method is done in Section 2. Sec8opresents how contributions of
gquery components are mapped into scoring princidestion 4 details the submitted
runs and the obtained results. Finally, an analysthe experiments and an introduc-
tion of future works that ensue from it are givarSiection 5.

2 Participation objectives

Participating to INEX this year has multiple objees:

- a first interest was to evaluate the benefit of letons brought to the
method since last participation. Evolutions int@xwen the definition of the
function computing the score of an XML element am&l $core propagation
principle through the hierarchical structure ofaczaiment,

- in addition, different new subtasks correspondimditferent retrieval strate-
gies that could interest a user have been defméNEX 2005. The experi-
ments carried out in this context can help us terdene the strategies for
which our method seems to be a possible response,

- finally, it was interesting to estimate the infl@enof changes introduced in
the INEX 2005 framework regarding metrics and thseasment process.

3 Method principles

The IR method described in this paper is based owiptes close to approaches
based on the vector space model. Document and geprgsentations are compara-
ble to vectors. However, the correspondence betwieemments and query is not
estimated using a “classical” similarity measuree Thethod presented is based on
direct contribution of each query term appearin@inXML element. The contribu-
tion can be modulated according to other componefitise query such as structural
constraints. A principle of score propagation caetgs the method with regard to the
hierarchical structure of XML documents.

139

3.1 Representation of INEX elements

From the document point of view, documents are esgmted as sets of n-tuples
(xpath, term, occ) where xpath is the locationh® hode containing the term from
the root of an XML document and occ is the numbevagfurrences of the term is the
textual content of the node. For each XML componeohcepts are extracted auto-
matically. Concept extraction involves notably steprd removal and optionally
other processes such as stemming using for exathpléPorter’'s algorithm. For
INEX 2005 experiments all XML tags have been takéo atcount.

From the topic point of view, according to the INE2R05 requirements, we used
only the title part for CO topics and castitle part CO+S and CAS topics. However
our method can use the other parts constitutinga@® CAS topics. For both topic
types, stop words are removed and optionally taramsbe stemmed. Topics are rep-
resented as pairs (target contraint, set of coielitations). A content indication is a
triplet (term, preference, location constraint). gedr constraints and location con-
straints can be restrictive xpaths for CAS and CQ@si8cs or generic paths (i.e.
matching all elements) notably for CO topics.

3.2 Scoring function

The scoring function is defined as a combinationhoée values. The scoring func-
tion can be globally defined as follows:

Score(T, E) =(Z f(t,E) Eg(t,T)j p(T, E)

otar
where
T is the topic
tis a term representing the topic T
E is an XML element

f (t, E) This factor measures the importance of the term t in
the XML element E.

g(t, E) This factor measures the importance of the term t in
the topic representation T.

p(T,E) This factor measures the global presence of the topi
T in the XML element E.

On one hand, the function is defined as an addifocontributions of the concepts
constituting a query. This principle allows givirglavance to elements dealing about
either only one concept or several concepts. Théiaddends to promote elements
containing several concepts. However, dependinghendifferent chosen functions

140

an element dealing strongly about one concept eaavialuated higher than an ele-
ment dealing lightly about many concepts.

On the other hand, the function estimates globtléy relevancy of an element ac-
cording to a query.

The function f that measures the importance ofra taran XML element is based on
the number of occurrences of the term in the eléroemn the relative presence of
the term regarding all the occurrences of quemnseappearing in the element. This
function can be defined as follows:

F(t,E) = Occ(t,E)
Occ(T,E)
where
tis a term representing the topic T
E is an XML element
ad(0,1)
Occf(t, E) Number of occurrences of the term t in the elenkent

Occ(T,E) Total number of occurrences of all the query tenms i
the element E

The function g that measures the importance of m fara topic representation is
based on the frequency of the term in the topic. fféguency can be moderated by
the number of XML elements containing the term. Tinecfion can also use the rank
of the term according to the number of elementdainimg this term and regarding
the numbers of elements containing the other gtezngs.

This function is defined as follows:

Oce(t,T) JndRnk(t)’
Sze(T) NbElts(t)

9(t,T) =

where

Occ(t,T) Number of occurrences of the term t in the elerient

Size(T) Size of the topic T i.e. total of occurrencésll the
terms representing T.

NbElts(t) Number of elements containing the term t
IndRnk(t) Rank of the term t according to the numifeelements
containing each term of the topic.

This function increases the contributions of termppearing in few XML elements
through the factor NbElts(t) and IndRnk(t).

141

The function p that measures the global presence topic in an XML element is
based on the number of terms describing the tapicthat appear in the XML ele-
ment.

This function is defined as follows:

NbT (T, E)

p(T, E) - ¢ NbT (T)

where
T is the topic
E is an XML element
¢isarealp =0.0

NbT(T,E) Number of terms describing the topic T and tha
appear in the XML element E.

NbT(T) Number of terms describing the topic T.

When¢ is set to 1.0 the function p has no effect onfihal score. The value af
determines the influence of the function g on thalfscore. The influence increases
with the value of¢. Using a function power intends to clearly distiiglp the ele-
ments containing a lot of terms describing theda@mid the elements containing few
terms of the topic.

Additional notions complete the scoring functiohe tnotion of coverage and prefix
coefficients. The coverage is a threshold corresipgnit the percentage minimum of
topic terms that have to appear in an elementlactsi. It aims at ensure that only
documents in which the topic is represented enomigjhbe selected for this topic.

Prefix coefficients intend to increase or redugenteontributions according to sign
‘+’ and ‘- associated to terms in the query. Thastions and their integration in the
scoring function are detailed in [6].

3.3 Score propagation according to XML structure

The hierarchical structure of XML has to be takem iatcount. The hypothesis on
which is based our method is that an element aontaia component selected as
relevant is also relevant. Our approach takesantmunt this hypothesis propagating
the score of an element to the elements it compddes score propagated to the
composed elements is decreased applying a redtaitgy. The propagation princi-

ple is the following:

OE, ancestor of E and d(E,,E)la<1

d(E., E)
d(E,,E) +d(Eg, E)

Score(E,, T) = Score(E,, T)+ (1-2CA EE J) CBcore(E, T)

142

where
A is a constant coefficient rea.0 and E is an XML element

d(E,E) is the distance between &nd E in the xpath associated to E
(e.g. in the xpath /article/bdy/s/ss1/p the distabetween p and bdy
is equal to 3 i.e. d(bdy,p)=3)

d(Er,E) is the distance between the rogtad E in the xpath associ-
atedto E

This process tends to consider a composed elensntdievant than the element it is
composed of. However, an element composed of denedeaant elements can obtain
a score greater than one of its components. Thédicieaf A allows to vary the score
contribution of an element in its ancestors. Whef.0 the score of an element is
totally propagated towards its ancestors.

The following figure illustrates the score propagatprinciple:
article 0.54+052=13
A A
4 ! Score propagation

bd'g,-f 0 554 +0. 8:*2 =48 Coeff_propag x score_desc

/\-;\rl\
b Score computed according

sec[1] 4 seclZ] 2 == i content

3.4 Structural constraints

Two types of structural constraints can be usecefime to INEX CAS topics:
- constraints on content that is to say xpath of el@mwhich are expected to
contain searched concepts (e.g. about(.//p,'+XMhbféefmation retrieval"),
- constraints on the granularity of elements expectsd result (e.g
[farticle]....]).

Structural constraints on content are taken intmawt adding a coefficient varying
the contribution given by a query term. If the XMlement does not verify the con-
straint associated to the term, the contributiaeigiby the term is reduced. The coef-
ficient intervenes in the function f that measutesimportance of a term in an XML
element (cf section 3.2) as follows:

Occ(t,E)

FLE)=4 Occ(T,E)*

where

143

if E does not verify the structural constraint defiron t then 0.(3<1.0
else f=1.0

This principle constitutes a first solution. Howevenly XML elements with textual

content that verify the constraints on content affected and by propagation the
elements containing them. This could be a limitatiorfully respond to CAS tasks
with strict verification of content constraints abty the task SSCAS. This principle
should be extended to take into account XML elemueiitisout textual content and
that verify the constraints on content but composedomponents containing query
terms and not verifying the associated constraints.

In addition, structural constraints on the grantyasf elements expected as result are
handled adding a coefficient varying the globalreamomputed for an XML element
according to content. If the XML element does natifyethe constraint on result
granularity associated to the query, the score cbedpis reduced. The coefficient
intervenes in the scoring function as follows:

Score(T,E) = VEEZ f (t,E) Eg(t,T)j [p(T,E)

Otar
where

if E does not verify the structural constraint defl on Tthen 00<1.0

elsey=1.0

This solution allows attaching variable importangestructural constraints on result
granularity. Wheny=0.0 the structural constraints on result are triaken into
account.

4 Experiments

At least one run based on our XML retrieval methas submitted to INEX 2005 for
each subtask. For the subtasks, CO.Thorough, COB®wse, COS.Focussed two
runs were submitted.

Our experiments aim at evaluating the efficiencyhef evolution given to the scoring
function, the adaptation of the method regardirey different tasks (Thorough, Fo-
cussed, Fetch and Browse, SSCAS, VVCAS, ...), the mewics and the evolution
of assessment process.

144

4.1 Experiment setup

One run for all the subtasks except the subtasksdsed uses the following scoring
function:

_ cc(t,T) |ndRnk(t)? G
Score(T, E) (%:TOCC('[,E)E% D dNbEItS(t)]moo

The runs based on this function are named using ftlewing principle:
VV2005T<subtask_name> e.g. V2005TCO.Thorough.

Additional runs for the subtasks CO.Thorough, CQlBtowse and
COS.Focussed use a scoring function with a fundtitiat measures the importance
of a term in an XML element slightly different i.e.:

NbT (T,E)

3 Occ(t, E) Epcc(t,T) dnank(t)zjmoo‘ NDT(T)

Score(T,E) = .
&Occ(T,E) Sze(T) NbEIts(t)

The runs based on this function are named using ftlewing principle:

V2005Tf<subtask_name> e.g. V200BJO.Thorough.

For all submitted runs the parameters of the sgariethod were the same. The coef-
ficient used to propagate a component score throluglinierarchical structure of the
XML document was fixed to 0.1. The coverage threshad fixed to 35% (i.e. more
than a third of terms describing the topic mustesppn the text to keep the XML
component). The coefficients applied to take intcoaoit the signs ‘+’ and ‘-* were
fixed to respectively +5.0 or -5.0 to increase educe 5 times the contribution of
wanted respectively unwanted terms.

The values of the parameters are those which gavéedht results during a training
phase done with INEX 2003 and INEX 2004 CO topidagithe INEX 2004 official
metrics.

4.1.1 Subtasks Focussed

The runs submitted for the subtasks Focussed usmgdanctions without function
p effect $=1.0) i.e. without factor measuring the global pres of the topic in the
XML element, as follows:

Score(T,E) = Y f(t,E) (L, T)

Wiy

No propagation of score is done to have resultaittoverlapping as requested for
the subtask Focussed.

145

4.1.2 Subtasks CO+Sand CAS
For all the subtasks CO+S and CAS the castitle gfadpic definition has been used
to define queries.

The coefficient taking into account structural coaisits on content was fixed to 0.5

(i.e. the contribution of a query term is dividegdwhen the element does not verify
the structural constraint associated to the teom)afl the subtasks. Since the actual
solution implemented in our method cannot fullyeakto account the structural

constraints, we decided to handle them as vaguefeveXSCAS subtasks.
The coefficient taking into account structural cosisits on result granularity was
fixed to:

— 0.5 (i.e. the scores of elements not verifying tractural predicates are di-

vided by 2) when expecting vague verification af tonstraints i.e. VVCAS

and VSCAS,

0.0 (i.e. the scores of elements not verifying dtractural predicates are re-
set to zero) when expecting strict verificationtloé constraints i.e. SSCAS
and SVCAS,
The value 0.5 of the two coefficients was fixed tdbily.

4.2 Results

Results of the runs for CO subtasks are detaileébdriollowing tables:

Run V2005TCO.Focussed V2005TCO.Thorough V2005TfCO.Thorough
Quantision strict generalized strict generalized strict generalized
precision | rank | prec. rank | prec. | rank | prec. | rank | prec. | rank | prec. | rank
nxCG@10 | 0.1266 | 5/44 | 0.1848 | 19/44]0.0231 | 23/55 | 0.1927 | 18/55 | 0.0192 | 24/55 | 0.1855 | 21/55
2 | nxCG@25 | 0.0997 | 8/44| 0.1735 | 17/44 [0.0606 | 15/55 | 0.206 | 15/55 | 0.0409 | 19/55 | 0.1785 | 23/55
= | mcG@s0 | 01176 | 944 | 0.1566 | 21/44 | 0.1298 | 355 | 0.1893 | 18155 | 0.1222 | 4/55 | 0.1761 | 21/55
ep/gr (MAP) | 0.0332 | 10/44 | 0.0504 | 24/44]0.0009 | 35/55 | 0.0509 | 29/55 | 0.0006 | 41/55 | 0.0475 | 32/55
Run V2005TCOS.Focussed V2005TfCOS.Focussed V2005TCOS.Thorough
Quantision strict generalized strict generalized strict generalized
precision | rank | prec. | rank | prec. | rank | prec. | rank | prec. | rank | prec. | rank
nxCG@10 | 0.0632 | 7/27| 0.1279 | 19/27 | 0.0282 | 16/27 | 0.054 | 26/27]| 0.0269 | 19/33 | 0.2178 | 9/33
2 [xCG@25 | 0.1045 | 3/27 | 0.1333 | 13/27 | 0.0251 | 20/27 | 0.0585 | 23/27 | 0.0576 | 12/33 | 0.186 | 12/33
= | ncG@50 | 0.0924 |5027 | 0.1334 | 1027 | 0.0821 | 12127 | 0.0754 | 20127 | 0.0874 | 5/33| 0.164 | 13/33
ep/gr (MAP) | 0.0233 | 6/27 | 0.0525 | 14/27 | 0.0086 | 16/27 | 0.0353 | 19/27 | 0.0007 | 20/33 | 0.0482 | 13/33

146

Run V2005TCO.FetchBrowse V2005TfCO.FetchBrowse V2005TCOS.FetchBrowse

Quantision strict generalized strict generalized strict generalized

Metric

MAP | rank | MAP | rank | MAP | rank | MAP | rank | MAP | rank | MAP | rank

ep/gr {element}
ep/gr {article} | 0.0195 | 24/31 | 0.1399 | 24/31 | 0.0152 | 25/31 | 0.1309 | 25/31 | 0.0188 | 12/19 | 0.1304 | 11/19

0.004 | 8/31| 0.071 | 5/31| 0.003 | 8/31| 0.069 | 6/31| 0.003 | 6/19| 0.071 | 4/19

Our method seems to be more efficient for the slkstd&ocussed than for the sub-
tasks Thorough notably for strict quantisation. RREG metric and strict quantisa-

tion, the results are particularly good for rankingto 100.

For the Thorough subtasks the results are on avéettgr for generalised quantisa-
tion than for strict quantisation. However, resytt®gress for strict quantisation

while they remain stable for generalised quantisati

For the Fetch and Browse subtasks partial reshtis/s better results at the element
level than at the article level.

For CAS topics, results of the runs for CO subtaates detailled in the following
tables:

Run V2005TSSCAS V2005TSVCAS
Quantisation strict generalized strict generalized
precision | rank | precision | rank | precision | rank | precision | rank
nxCG@10 | 0.1250 | 11/25| 0.3643 | 4/25| 0.1800 | 4/23| 0.324 |2/23

2| nxCG@25 | 0.1500 |13/25| 04816 | 1/25]| 0.24 7/23 | 0.3357 | 3/23
= | mcGeso | 0.4078 | 2125 05192 | 1/25| 0.4422 | 323 0.3799 | 1/23
ep/gr (MAP) | 0.0156 | 18/25| 0.1265 | 13/25| 0.0127 | 14/23| 0.1301 | 3/23
Run V2005TVSCAS V2005TVVCAS

Quantisation strict generalized strict generalized
precision | rank | precision | rank | precision | rank | precision | rank
nxCG@10 0.0333 | 17/24 | 0.2427 | 9/24] 0.1000 | 12/28 0.248 | 14/28

2 [nxCG@25 | 0.0600 | 12/24 | 0.2435 | 9/24 | 0.1267 |11/28 | 0.2544 | 9/28
= | xcG@50 | 0.0567 | 324 | 02436 [9/24 | 0.1162 [10/28 | 02373 | 98
ep/gr (MAP) | 0.0090 |10/24| 0.0929 |5/24| 0.0031 |14/28 | 0.0824 | 7/28

The results for CAS subtasks are globally good @algily for generalized quantisa-
tion. Considering that CAS runs are based on theesscoring function than Thor-
ough runs for CO topics and considering that resofitThorough runs are better for
generalised quantisation, it is not surprising &veéhthe same behaviour for CAS

runs.

147

5 DISCUSSION AND FUTURE WORKS

A first analysis of the experiments performed ameldbtained results, shows that:

— the chosen functions and parameters for the scongthod seem to be glob-
ally adapted to the actual INEX framework. Howeubg results obtained
for the subtasks Thorough show that our method leaadérlap not well
enough to fully respond to this kind of search.utufe work will consist in
evolving the method to integrate overlap handlimgoading to different
strategies.

— the solutions used to extend our method to hantdietsral constraints seem
to be adequate. However, structural constraintsastent are not fully han-
dled by our method actually. To complete the mettothandle structural
constraints completely is another next step.

— other experiments have to be done to determinanithod configurations
adapted to each subtask. Furthermore, analyseshaustrried out to deter-
mine queries processed well by our method and tleasing to weaker re-
sults. This would enable to evolve the method teebetspond to this last
type of queries.

Acknowledgments

The research presented in this paper results faotly work undertaken within the
framework of the project QUEST: Query reformulatiam $tructured document re-
trieval, PAI Alliance N°05768UJ. However, this pigaltion only reflects the author’s
view.

References

1.

2.

Clarke C. L. A., Tilker P. L., MultiText Experimenfor INEX 2004, Advances in XML
Information Retrieval, LNCS 3493™nternational Workshop INEX, 2004, p. 85 — 87.
Crouch C. J., Apte S., Bapat H., An Approach ta@tred Retrieval Based on the Ex-
tended Vector Model, Proceedings of tH& INEX Workshop, Dagstuhl, Germany, 2003,
p. 89-93.

Fuhr N., Grof3johann K., XIRQL: An XML query larage based on information retrieval
concepts. ACM Transactions on Information Systen®I§), vol. 22, Issue 2, 2004, p.
313-356.

Geva S., GPX — Gardens Point XML Information Retl at INEX 2004, Advances in
XML Information Retrieval, LNCS 3493, BInternational Workshop INEX, 2004, p. 211 —
223.

Grabs T., H.-J. Schek H.-J., Generating Vecfmac8s On-the-fly for Flexible XML Re-
trieval, XML and Information Retrieval Workshop -@R’2002, Tampere, 2002.

148

10.

11.

12.

13.

Hubert G., A voting method for XML retrieval, #ances in XML Information Retrieval,
LNCS 3493, ¥ International Workshop INEX, 2004, p. 183-195.

Larson R. R., Cheshire Il at INEX'03: Component @igdorithm Fusion for XML Re-
trieval, Proceedings of thdANEX Workshop, Dagstuhl, Germany, 2003, p. 38-45.
Mass Y., Mandelbrod M., Component Ranking and Aatiic Query Refinement for XML
Retrieval, Advances in XML Information Retrieval, LNG&93, & International Work-
shop INEX, 2004, p. 73 — 84.

Mihajlovi¢ V., Ramirez G., de Vries A. P., Hiemstra D., BlokE, TIJAH at INEX 2004
Modeling Phrases and Relevance Feedback, Advancedvin Information Retrieval,
LNCS 3493, ¥ International Workshop INEX, 2004, p. 276 — 291.

Ogilvie P., Callan J., Hierarchical Language ®ledor XML Component Retrieval, Ad-
vances in XML Information Retrieval, LNCS 3493 3nternational Workshop INEX,
2004, p. 224 — 237.

Sigurbjérnsson B., Kamps J., de Rijke M., Migtilodels, Overlap, and Structural Hints
in XML Element Retrieval, Advances in XML InformaticRetrieval, LNCS 3493,SIn-
ternational Workshop INEX, 2004, p. 196-210.

Trotman, A., O'Keefe, R. A.: Identifying and RamtkRelevant Document Elements, Pro-
ceedings of the™ INEX Workshop, Dagstuhl, Germany, 2003, 149-154.

Vittaut J.-N., Piwowarski B., Gallinari P., An Igkbra for Structured Queries
in Bayesian Networks, Lecture Advances in XML Infation Retrieval, LNCS 34933
International Workshop INEX, 2004, p. 100 — 112.

149

Experimenting various user models for XML Retrieval

Yosi Mass, Matan Mandelbrod

IBM Research Lab
Haifa 31905, Israel
{yosimass, matan}@il.ibm.com

Abstract. While in previous INEX workshops the ad-hoc task was divided
roughly to CO (Content Only) task and CAS (Content and Structure) task, the
focus this year was to further refine those tasks so as to experiment with differ-
ent user behaviors. This paper summarizes the algorithms and approaches used
by the IBM Haifa Research Lab for the various CO and CAS sub tasks.

1 Introduction

The challenge in XML retrieval is to return the most relevant components that sat-
isfy the query concepts. While in previous INEX workshops XML retrieval was di-
vided roughly to CO (Content Only) task and CAS (Content and Structure) task, the
focus this year was to further refine those tasks so as to measure different user behav-
iors.

This resulted in three CO sub tasks — CO.Thorough which aims at returning all
relevant components, CO.Focussed which aims at returning a single element along any
path and the CO.FetchBrowse which is targeted toward browsing model where the full
document is browsed first and then its components. To test the importance of structure
in queries, each CO query was reformulated with structural hints resulting in CO+S
(Content Only plus Structure) topics. Similar to CO, three CO+S sub tasks were de-
fined namely — CO+S.Thorough, CO+S.Focussed and CO+S.FetchBrowse. Finally
the CAS task was divided to four sub tasks checking combinations of Strict vs Vague-
ness in Target elements and in the other query structure elements.

To accommodate those ten sub tasks (3 CO, 3 CO+S & 4 CAS) we applied our
component ranking algorithm (see Fig 1) as defined in [5, 6]. The idea is to build
different indices for the most informative component types where each index contains
elements of the same type. The indices we used this year where for article, abs, bdy,
sec, ssl, ss2 and for p and ip1.

We outline below the component ranking algorithm while full details can be found
in [6]. Given a query Q, we run the query in parallel on each index (step 1) and then
apply an Automatic Query Refinement (AQR) phase (step 2) on each result set. The
AQR algorithm we used is a Lexical Affinity (LA) Refinement algorithm which is
fully described in [2, 6]. Then in step 3, scores of elements in each result set are nor-
malized to same range so that scores from the different indices can be compared. In
step 4 we apply a document pivot scaling where scores of elements from each index

150

are scaled by the score of their parent article. Finally all the results sets are merged
into a single result set of all element types.

For each index i
1. Compute the result set R; of running Q on index i
2. Apply AQR algorithm on R;
3. Normalize scores in R; to [0,1] by normalizing to score(Q,Q)
4. Scale each score by its containing article score from R,

Merge all R's to a single result set R composed of all components sorted
by their score

Fig. 1. Component ranking algorithm

In this paper we report how we applied this algorithm in the various CO, CO+S and
CAS tasks. The rest of the paper is organized as follows: In section 2 we describe our
approach and results for the CO runs. In section 3 we describe the CO+S runs and
their results and we discuss our findings on the importance of structure in XML que-
ries. Then in section 4 we describe our CAS approach and report results. We conclude
in sec 5 with summary and some conclusions.

2 CO runs

We submitted 3 runs for each CO sub task experimenting combinations of using
phrases vs ignoring phrases (i.e. treating their words as simple words) and using ‘“+’ vs
ignoring ‘+’ on words. In general the submission that ignored phrases and ignored ‘+’
outperformed other runs. We detail below our approach for each CO sub task.

2.1 CO.Thorough

This is the traditional CO task as was used in previous INEX workshops. We used
the base component algorithm as depicted in Fig 1. Our runs were ranked 1% in the
ep/gr generalized metric and quite high in the various nxCG metrics.
2.2 CO.Focussed

A valid CO.Focussed run as defined in [4] should have only one element along any
path namely no overlapping elements are allowed. To satisfy this requirement we first

perform a regular CO.Thorough run and then filter out the overlaps. The filtering is
done in two stages.

151

In the first stage we try to identify 'clusters' of highly ranked results in the XML
tree and pick the most relevant element from each cluster. At the end of this stage
there still can be left some overlapping elements so we perform a second filtering
stage that picks the highly scored element along each path.

The first stage is performed as follows: We take the result set of the CO.Thorough
run and group all elements by their containing article. For each such group we con-
struct a tree with nodes that correspond to the result components and edges that repre-
sent the parent-child relationship of the components from the original XML article.
We keep for each lﬂ)de its assigned run score and the total number of its descendant in
the original article.

To tolerate variations in result scores we compare the scores of two nodes (Ny, Ny)
as follows: We compute diff(N;, N,) = |score(N;)—score(N,)| / score(N;) and define
the following relations between the nodes —

e N=N, if diff(N;, N;) < ScoreTreshold

e Otherwise (if diff(N;, N;) > ScoreTreshold) then
o Nj>N,ifscore(N;) > score(N,)
o Ny <N,ifscore(N;) <score(N,)

In our runs we used ScoreThreshold = 0.4. The algorithm processes the result tree
bottom up and at each level diagnoses the correlation between the currently examined
node (N;) and its descendents. An example such intermediate tree after score compari-
son is depicted in Fig 2 where color represents relations to the root N; node such that
black > gray > white.

N,

N>

Fig. 2. result tree

The algorithm distinguishes between three main cases-
1. There is some descendant node N, with N, > N,. (See fig 2). This means that
N, is clearly higher than N; so we remove N, from the result tree.

2. There is some direct child node N, such that most of the “good” nodes (de-
scendant nodes that are > N;) are concentrated under it (see Fig 3 below).
This can be measured by defining |Good(N)| as the number of descendant

! This number is extracted as part of the indexing procedure, and is stored in the index.

152

nodes > N; and checking if |Good(N,)//|Good(N,)[>ConcentratedThreshold
for some configured ConcentratedThreshold. This means that most of the
good results are concentrated under N, so we remove N; from the result tree.
In our runs we used ConcentratedThreshold = 0.4.

N;

N,

Fig. 3. concentrated child

3. There are enough good results which are evenly distributed below N; as de-
picted in Fig 4 below. This can be measured by checking if
|Good(Ny)|/|Descndnt(Ny)>DescendantTreshhold where |Descndnt (N;)| is
number of all descendants of N; as kept in the index. In our runs we used
DescendantTreshhold = 0.25. This means that a relative significant part of N
is relevant and is not concentrated under a single child so we remove all the
descendants from the result tree and keep only N.

N;

Fig. 4. evenly distributed results

In all other cases (e.g. if there are too few good results under N1) no decision is
taken so at the end of this stage there still can be left some overlapping elements.

In the second filtering stage we scan again the reminded result tree from bottom up
and at each Node N compare score(N) to the score of all its descendants. If score(N)
is bigger we take N and remove all its descendants. Otherwise we remove N from the
result set.

Note that the second stage could be performed even without the first stage and re-
turn a valid Focussed run. We submitted one run with both stages and second run with

153

only the second stage. As expected the run with both stages performed better and for
example in the ep/gr, generalized metric it was ranked 1st with MAP 0.968 while our
second run got MAP 0.0909.

2.3 Fetch & Browse

In this task we first run a regular CO.Thorough run. We then pick the article ele-
ments by their score and for each article we group its returned elements ranked by
their assigned score. We use <rank> instead of <rsv> to order the elements in that
submission. Our runs were ranked among the top 10 but not at the top so we still need
to investigate this task.

3 CO+S runs

The aim of the CO+S task was to investigate the usefulness of structural hints. For
all three sub tasks (CO+S.Thorough, CO+S.Focussed & CO+S.FetchBrowse) we used
similar algorithms as in the CO runs applying a VCAS approach on the topic’s <casti-
tle>.

The results of most participants show that in general the CO runs performed better
than the CO+S runs. Specifically for our submissions the structural hints improved
results for the Thorough runs but not for the Focussed runs.

For the Thorough runs our CO+S performed better than the CO in all metrics. For
example for the ep/gr, generalised metric our CO+S run got MAP 0.0925 while our
CO run got MAP 0.0896. It should be noted that both were ranked 1* in their corre-
sponding metric.

For the Focussed runs our CO performed better than the CO+S in all metrics. For
example for the ep/gr, generalised metric our CO.Focussed run got MAP 0.0968 while
our CO+S.Focuissed run got MAP 0.0809. Again both were ranked 1% in their corre-
sponding metric.

For the Fetch & Browse runs there was a slight improvement in the CO+S runs.

Maybe the conclusion is that structural hints help only when used as a real filter
while having only structure as hints does not help.

4 CAS runs

Similar to previous years the CAS topics were expressed by an XPath[7] expres-
sion extended with the about vague predicate. XPath defines the last element in the
path as a target element while all other query elements can be referenced as support
elements. While in previous years the CAS task was sub classified to Vague (VCAS)
and Strics (SCAS) sub tasks, an attempt was made this year to separate the vagueness

154

of the target element from the vagueness of the support elements. As a result a combi-
nation of four sub tasks were defined :
e VVCAS - Both target and support are vague

e SSCAS - Both target and support are strict
e SVCAS — Target is strict and support is vague
e VSCAS — Target is vague and support is strict.

We think this separation is artificial so we run our traditional SCAS and VCAS
runs using the following mapping from the four INEX tasks to our tasks —

INEX task Our submission
VVCAS VCAS
SSCAS SCAS
SVCAS SCAS
VSCAS VCAS

Similar to previous years the difference between SCAS and VCAS was in the syno-
nyms. In VCAS runs we use all the considered elements (except the article and the
abs) as synonyms to each other namely {bdy, sec, ssl, ss2, p, ipl, bdy}. In SCAS runs
we use two synonym groups: {bdy, sec, ssl, ss2} and {p, ipl}.

For each of CAS tasks we submitted two runs. In both runs we treat phrases as sim-
ple words and we ignore plus on content. The difference between the two runs was in
the plus on the structure.

For example topic 244 —

//article[about (.//fm, "query optimization")]//sec[about (., "join query optimiza-
tion")]

Is translated to XML Fragments[1, 3] as
<article>
+<fm>query optimization</fm>
+<sec>join query optimization</sec>
</article>

A ‘+’ on a tag means that the tree below the tag is mandatory. So in the above ex-
ample a result (<sec>) is returned only if it’s containing article has both the <fm>
constraint and the <sec> constraint. The default semantics in XML fragments is ‘or’
so removing the ‘+’ as in

<article>
<fm>query optimization</fm>
<sec>join query optimization</sec>
</article>

155

will return <sec> even if the containing article does not have the <fm> constraint.
Having the <fm> constraint will only increase the score of the containing article and
as a result using our document pivot (step 4 in Fig 1) will increase score of the <sec>
itself.

This means that for CAS runs we have two levels of vagueness. The first is in the
synonym definition and the second is through the ‘+’ on structure. For each of the
VCAS and SCAS runs we submitted one run with ‘+’ on the structure and a second
run without ‘+’ on structures.

In the sequel we show our performance on the four CAS tasks and it can be clearly
seen that having the ‘+’ on structure performs better on the SCAS runs while remov-
ing the ‘+’ from structure performs better on the VCAS runs.

4.1 VVCAS results

Both our runs (with and without ‘+’ on structure) were ranked top in the nxCG and
the ep/gr in the generalized metric. Still the run which ignored the plus on structure
preformed clearly better. This makes sense since it allows more vagueness in the
structure.

4.2 SSCAS results

Both our runs were at the top ten and there was no clear preference to the one with
the plus on structure or to the other one.

4.3 VSCAS results

Both our runs won top results (1** and 2") on both nxCG and ep/gr metrics but
with no clear distinctions which of the two is better.

4.4 SVCAS results

Again both runs won top results in most of the metrics where in most cases the run
which treat structure strictly was better in most cases. This makes sense for SCAS
since it assumes more strictness in the structure.

156

5 Discussion and summary

We described our approach and algorithms for the various CO, CO+S and CAS
tasks. Our main findings are that our component ranking algorithms performed quite
well and our runs in all 10 tasks were ranked at top places mostly in the ep/gr general-
ized metric. We found out that ignoring phrases and ‘+’ gives best results. Regarding
structural hints for CO runs we found out that they helped in the Thorough task but
disturbed in the Focussed task. Maybe the conclusion is that structure helps only when
it is strict (namely as a real filter) while having only structural hints does not help. For
CAS runs we found out that the separation of strict/vagueness in target element vs rest
of the elements was artificial. Another conclusion is that XML Fragments [1,3] en-
ables another level of strict/vagueness through the ‘+’ on structure.

6 Acknowledgment

We would like to thank the INEX organizers for the assessment tool and for the
evalJ tool they have supplied.

References

1 Broder A.Z., Maarek Y., Mandelbrod M. and Y. Mass (2004): “Using XML to Query
XML — From Theory to Practice”. In Proceedings of RIAO'04, Avignon France, Apr
,2004.

2 Carmel D., Farchi E., Petruschka Y., Soffer A.: Automatic Query Refinement using
Lexical Affinities with Maximal Information Gain. In Proceedings of the 25th An-
nual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 2002.

3 Carmel D., Maarek Y., Mandelbrod M., Mass Y., Soffer A.: Searching XML Docu-
ments via XML Fragments, In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Toronto,
Canada, Aug. 2003

4 M. Lalmas, INEX 2005 Retrieval Task and Result Submission Specification,

ttp://inex.is.informatik.uni

uisburg.de/2005/internal/pdf/INEX05 Tasks v2.pdf)|June, 2005

5 Y. Mass, M. Mandelbrod, Retrieving the most relevant XML Component,
Proceedings of the Second Workshop of the Initiative for The Evaluation of
XML Retrieval (INEX), 15-17 December 2003, Schloss Dagstuhl, Germany,
pg 53-58

6 Y. Mass, M. Mandelbrod, Component Ranking and Automatic Query Re-
finement for XML Retrieval, INEX 2004, Lecture Notes in Computer Sci-
ence, Springer-Verlag GmbH Volume 3493 /2005, pg 73-84

7 XPath — XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/|

157

http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/INEX05_Tasks_v2.pdf
http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/INEX05_Tasks_v2.pdf
http://www.w3.org/TR/xpath20/

The University of Kaiserslautern
at INEX 2005

Philipp Dopichayj

dopichaj@informatik.uni-kl.de
University of Kaiserslautern
Gottlieb-Daimler-Str.
67663 Kaiserslautern
Germany

Abstract. In this paper, we present the two retrieval strategies used
by the University of Kaiserslautern at INEX 2005. One strategy uses
background knowledge to make better use of inline elements, and the
other one attempts to exploit typical structural patterns in the retrieval
results.

1 Introduction

The Initiative for the Evaluation of XML Retrieval (INEX)H provides a testbed
for comparing the effectiveness of competing content-based XML retrieval sys-
tems. The University of Kaiserlautern actively participated in the INEX work-
shop for the first time in 2005. We wanted to evaluate the effects of two orthog-
onal retrieval approaches, element relationship and context patterns.

We first present a brief description of our baseline retrieval system in Section[2]
and then proceed to explain our improvements to this basis in Section 3} Finally,
we discuss the performance of our baseline and enhanced results as evaluated in
the INEX workshop.

2 Baseline Search Engine

The basic structure of our retrieval system is very simple [2]: We use the Apache
Lucene information retrieval engintﬂ as the basis and add XML retrieval func-
tionality on top of that. Instead of only storing only the complete articles from
the document collection in the index, we store each element’s textual contents
as a (Lucene) document, enriched with some metadata (most notably, the en-
closing XML document and the XPath within that document); see Fig. [1| for an
example.

Obviously, directly searching this index using Lucene would lead to bad
results—overlap isn’t taken into account at all, and many elements on their

! see http://inex.is.informatik.uni-duisburg.de/
% see http://lucene.apache.org

158

http://inex.is.informatik.uni-duisburg.de/
http://lucene.apache.org

<sec>Hello, world! How <i>are</i> you?</sec>
(a) Input document.

XPath Indexed contents

/sec[1] Hello, world! How are you?
/sec[1]/b[1] world!
/sec[1]/i[l] are

(b) Indexed documents.

Fig.1. Source document and correspondig indexed documents as seen by
Lucene.

own are useless—, so we need to post-process the Lucene results. We regard the
results from different input documents as independent, so we can post-process
the results from each document separately (even concurrently); Fig. 2| shows an
overview of the retrieval process.

Operation Output
1. Process query and send it to Lucene Raw retrieval results (fragments)
2. Rearrange retrieval results One result tree per document
3. Post-process the result trees One result tree per document
4. Merge the results Flat list of results

Fig. 2. The search process in our basic search engine. The enhancements from
Section [3| are applied in step 3.

2.1 Query Processing

The queries in the INEX topics are formulated in NEXI, an XML query lan-
guage derived from XPath with additional information retrieval functions [4].
For content-only (CO) queries, we support the full syntax of NEXI with the
following modifications:

w_»

— We discard query terms with the qualifier, instead of enforcing they do
not occur.

— Query terms prefixed with “+” are assigned a higher weight, instead of en-
forcing they do occur.

— The modifiers “and” and “or” are ignored.

For content-and-structure (CAS) queries, only the last tag name in paths is
used for searching (for example, given //article//fm//atl, we search all atl
elements, not only those contained in //article//fm. Because of this, we only
participated in the VVCAS task, where structural constraints for both the target
and support elements are interpreted as vague.

159

2.2 Length-Based Score Correction

As we have seen above, our search engine stores all elements in the index, even
inline elements consisting of only a few words (we shall see in Section [3| why
we need to store these elements). Of course, these elements are of little use to
the searcher, but they might get very high scores—for example, an element that
exactly matches the user’s query will get a perfect score in the vector space
model.

In order to avoid this situation, we multiply each element’s score by a factor
that solely depends on the length of the element’s textual contents. In addition
to reducing the score of very short elements (shorter than about 10-20 lines
of text), we also reduce the scores of extremely long elements (longer than a
typical article). We do this because returning very long elements is typically not
useful in XML retrieval, where it is the aim to return the shortest fragments still
answering the user’s query.

3 Enhancements to the Baseline Search Engine

The search engine we described in the previous section provides the basis for
the implementation of our new approaches. On top of it, we implemented two
different enhancements that are executed as a post-processing step; they are
mostly orthogonal, so they can be applied in any combination.

3.1 Element Relationship

Many XML schemas for document authoring specify tags for semantic markup.
DocBook, for example, has a filename tag that is used to specify that the
contained text designates a file name. This markup is useful, in particular for
(CAS) queries, because it enables the searcher to more exactly specify what he
wants to retrieve. When we examined real-world documents, we realized that
this markup is often not used correctly (possibly because of lazyness on part
of the authors, possibly because no tag exactly matching the author’s intention
exists). We had the idea to create a graph for allowing near misses of the markup
specified in structural queries, the element relationship graph (ERG) [112].

The ERG contains as leaves the tag names from the document schema and
places them in a semi-hierarchical graph that captures semantic relations be-
tween the tag names. Each category is assigned a coherence value in the range
zero to one that denotes to what degree the contained tag names are similar;
this information is used for similarity calculation, see below for an example.

The approach is not well suited to visual markup that only denotes how the
marked-up text should look, instead of what the semantics are. Unfortunately,
the collection of IEEE magazine articles that is used for INEX uses only visual
markup for the body of the text (the bibliography is more structured, but it is
rarely the target of queries); we tried to construct an ERG for this data anyway
to see how well element relationship can cope with situations it wasn’t designed
for.

160

We based our ERG on the information available in xmlarticle.dtd. In addi-
tion to the purely syntactic information used by the XML parser, the DTD also
contains consistently formatted comments that indicate a two-level hierarchical
structure, as we can see in Fig. |3l We wrote a small script to convert this DTD
to an ERG, assigning a coherence of 0.5 to all second-level headings and of 0.2
to the first-level headings.

<l—— ============ -->
<!-- FRONT MATTER -->
<l—-— ============ -->

<!ELEMENT fm (hdr?, (edinfolaul|tig|pubfm|abs|edintrolkwd|fig|figw)*)>

<l== ++44++ ——>
<!-- HEADER -->
<l== ++++++ —=>

<!ELEMENT hdr (fig?, hdrl, hdr2)>

<!ELEMENT hdrl (#PCDATA|crt|obilpdt|pp|ti)*>
<!ELEMENT hdr2 (#PCDATA|crt|obi|pdt|pplti)*>

Fig. 3. Excerpt from xmlarticle.dtd. We can see that the comments indicate
the semantic structure of the elements: Front Matter is a first-level heading, and
Header is a second-level heading.

The last tag name from the path in the NEXI query is taken as the category
to search in. If a retrieval result is embedded in an element with that tag name,
its score is taken as is, otherwise we go up in the ERG and try to match any
tag name from the same category, reducing the score by multiplying it with the
corresponding coherence. For example, if we search in hdr, but a match is in a
hdr1 element, we halve the original score because we needed to generalize to a
second-level category.

For more details about applying element relationship, see our previous work
on this topic [112].

3.2 Context Patterns

Exploiting element relationships is only feasible if the schema(s) of the document
collection are fixed and one is willing and able to create an element relationship
graph. If this is not the case, one needs schema-independent methods to improve
retrieval results. Fortunately, although tag names may differ, there are several
telltale signs what the role of a given element in a text is—without even looking
at the tag name.

161

We can achieve this by looking at result contexts of the retrieved nodes. For
each non-leaf node, the result context consists of this node and its children, and
the following data is stored for each node:

— The retrieval score of the node,
— the length of the node (in tokens/words), and
— the position of the node in the parent node.

This information can be visualized in two dimensions, one for the lengths
and positions of the text fragments and the other for the score. Fig. [f] shows an
example XML fragment and how it can be visualized. The horizontal position of
the left-hand side of each rectangle denotes the starting position in the text of
the parent element, and its width corresponds to the length of the text it contains
(this implies that the parent element occupies the width of the diagram). The
parent element (in the Fig. 1, the root element /sec[1]) is the reference for the
scale of the horizontal axis.

=
_ =
1 ~ E
O
08 &
~
<sec> 06 J E
Hello, world! g ' S
<i> </i> ? Q
How <i>are</i> you ® 04
</sec>
0.2
0

0o 1 2 3 4 5
position

Fig. 4. XML text and corresponding context diagram. The horizontal axis de-
notes the positions and lengths of the text fragments, and the vertical axis shows
the RSV (in this case random numbers).

When we examined context graphs of some trial retrieval results, we real-
ized that we could often determine what elements were section titles or inline
elements, without referring to the original XML documents. Based on this ob-
servation, we defined a set of context patterns for formalizing the recognition of
certain structures. Such a pattern looks like, “if the first child in the context is
short and the parent is long, the first child is a title” (see Fig. for an example);

162

obviously, this is too vague for Boolean logic, but fuzzy logic is perfectly suitable
for this task.

35

2.5

score
N
|

15

0.5

0 T T T T T T
0 50 100 150 200 250 300

position

Fig. 5. Example context graph for the title pattern. The short peak at the left
is the section title.

Fuzzy logic enables us to assign degrees of membership for the features,
instead of Boolean values [3]. For example, a fragment containing only one word
is definitely short, and a fragment containing 5000 words is definitely not short,
but what about one containing 20 words? With fuzzy logic, we do not need to
make a firm decision, but we can say that this fragment is short to a degree of
(for example) 50 %. Similarly, the Boolean operators like and, or, and not can
be expressed in terms of these degrees.

Obviously, the patterns alone are not of much help, we need to take actions
for modifying the relevant scores. For a match in a title, an appropriate action
is to increase the parent’s score (because a match in the title indicates that
the corresponding section is highly relevant) and decrease the first child’s score
(because the title itself contains too little information to be of any use).

We defined and examined several patterns; apart from the title pattern
mentioned above, the inline pattern proved to be the most worthwhile. It is
based on the assumption that single words or short phrases directly contained in
any markup denote some form of emphasis (in the IEEE collection, very short
marked-up elements are typically embedded in b or i elements, denoting bold
and italics). If the author of the text decided to apply such emphasizing markup
to phrases, this is often an indication that the surrounding element is especially
relevant for queries mentioning the phrases. Because of this, if many of an ele-
ment’s children are very short and have high scores, we increase the element’s
score. Fig. [shows an example of an occurance of this pattern.

163

]
Mit[1]
It[2]

35 - 2
3 £
o 25 7 |
1.5 — =
1 4
0.5
0 | — T
0 20 40 60 80 100 120

position
Fig. 6. An example for the inline pattern.

4 Evaluation

One important aspect of INEX is the comparison of XML search engines. In this
section, we shall describe what runs we submitted, examine the official results
and present some post-INEX improvements of our methods.

4.1 Submitted Runs

We only participated in several sub-tasks of the ad-hoc task. For each of the CO
and CO+S tasks, both focused and thorough, we submitted three runs:

1. Basic, which applied both element relationship and length-based score cor-
rection to the Lucene results (this was our baseline).

2. Pattern, which applied element relationship, length-based score correction
and context patterns.

3. Pattern-NoERG, which applied length-based score correction and context

patterns.

For the runs based on element relationship, we searched for the query terms
in the category Emphasis, which contains inline elements for printing in bold
or italics. As we shall later see, the selection of runs turned out to be a bad
choice, since element relationship actually downgraded the retrieval quality of
our systems for the content-only (CO) tasks. Because of this, we have no baseline
for our best-performing run in the official results.

Our system does not support any type of strict CAS queries, as the element-
relationship approach was designed with vague structural matching in mind,
so we did not submit any runs to the VSCAS and SSCAS sub-tasks. For the

164

VVCAS sub-task, where only two runs per organization were permitted, we
included only the last two of the runs mentioned above, pattern-based retrieval
with resprectively without using element relationship.

For the focused sub-tasks, we used our thorough results and applied some
post processing to each result tree: We repeatedly added the result with the
highest RSV to the retrieval result and removed all results that overlapped this
one.

4.2 Official Results

This year’s INEX workshop offered a plethora of retrieval tasks and evaluation
metrics because there are different views on what constitutes a good retrieval
result; because of this, it is difficult to make clear statements. Nevertheless, the
following points are fairly clear (see Figures [7| and :

— Our system is more competitive with generalized quantization; with strict
quantization, our ranks drop significantly.

— For the top-ranked results up to roughly the 30th place, we fare better com-
pared to the competition than for the lower-ranked results.

— Only for the top-ranked results, the pattern-based approach is better than
the corresponding baseline; as we later found out, this is due to undesirable
interactions of several context patterns (see the next section).

— Employing element relationships did not lead to noticeable improvements for
VVCAS, and actually degraded retrieval quality for the CO runs; although
the schemas of the IEEE document collection that is used for INEX is not
well-suited to our approach, we has expected a better outcome and will need
to investigate further what the cause is.

NCXG (overlap=on generalised) NCXG (overlap=on,strict)

nxCG
nxCG

i L L L L L L . L L i i L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
rank% rank%

(a) quantization: generalized (b) quantization: strict

Fig. 7. Official INEX 2005 results for CO.Focussed, metric nxCG.

165

neXG (overlap=off,generalised) NcXG (overlap=off strict)
06 T T T T T T T T T 07

nxCG
nxCG

L L L L L L L L
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
rank% rank%

(a) quantization: generalized (b) quantization: strict

Fig. 8. Official INEX 2005 results for VVCAS, metric nxCG.

In the best case, for the CO tasks (both thorough and focused) and general-
ized quantization, our pattern-based approach managed to outperform the other
submissions by a small margin up to roughly the 30th result rank.

4.3 Post-INEX Evaluation

The counterintuitive results for our pattern-based runs—better than the baseline
at low cut-off points, significantly worse at higher cut-off points—prompted us to
perform further analysis. The original implementation that was used for the runs
submitted to INEX evaluated several patterns without properly isolating them,
so we re-implemented that short after the deadline has passed. An evaluation
of this new implementation based on the INEX assessents reveals that this does
indeed appear to be the cause for the bad quality at higher cut-off values (see
Fig. [9).

We also evaluated the effect of the patterns we had used for the INEX sub-
missions and found that only two of them have any noticeable effect on retrieval
quality, the title pattern and the inline pattern described in Section [3.2

Another interesting observation is that applying the two patterns in com-
bination leads to worse results than applying the title pattern alone for the
top-ranked documents (it does improve results for the lower ranks), as we can

see in Fig. [I0]

5 Conclusions

As we have seen, the runs applying element relationships failed badly for the
CO tasks and did not produce a consistent improvement even for the VVCAS
and CO+S runs; this can in part be explained by the mismatch of the type of

166

Metric: NnRnxCG Overlap: on Quantisation: gen

0.34 —

0.32 -

0.3 =

0.28 F
0.26

0.24 \

0.22 \ .
0.2

normalised Cumulated Gain

0.18

baseline
0.16 - title pattern

0 0.2 0.4 0.6 0.8 1
Rank as %

Fig. 9. Post-INEX evaluation of baseline versus only the title pattern (without
element relationship, task CO.Focussed).

Metric: NnRnxCG Overlap: on Quantisation: gen

0.34

0.32

0.3 A

0.28 K
0.26 i
0.24 ; /
onlt /S

0.2

normalised Cumulated Gain

0.18

pattern-based ——
0.16 title pe}ttern

0 0.2 0.4 0.6 0.8 1
Rank as %

Fig. 10. Post-INEX evaluation of inline and title versus only the title pattern
(without element relationship, task CO.Focussed).

167

markup expected by this method and the markup supplied by the document
collection.

Context patterns showed more promising results, but we still need to inves-
tigate why the quality of our retrieval results declines more rapidly than those
of the other participants.

References

1. Philipp Dopichaj. Element relationship: Exploiting inline markup for better XML
retrieval. In Gottfried Vossen, Frank Leymann, Peter C. Lockemann, and Wolffried
Stucky, editors, Datenbanksysteme in Business, Technologie und Web, 11. Fachta-
gung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), Karl-
sruhe, 2.-4. Marz 2005, volume 65 of LNI, pages 285-294. GI, 2005.

2. Benedikt Eger. Entwurf und Implementierung einer XML-Volltext-Suchmaschine.
Master’s thesis, University of Kaiserslautern, 2005.

3. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics,
chapter 13. Springer, 2nd edition, 2004.

4. Andrew Trotman and Boérkur Sigurbjérnsson. Narrow extended XPath I (NEXI). In
Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltdn Szlavik, editors, Advances
in XML Information Retrieval: Third International Workshop of the Initiative for
the Fvaluation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, December
6-8, 2004. Springer, 2005.

168

Parameter Estimation for a Simple Hierarchical
Generative Model for XML Retrieval

Paul Ogilvie and Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University
pto@lti.cs.cmu.edu, callan@lti.cs.cmu.edu

Abstract. This paper explores the possibility of using a modified Ex-
pectation-Maximization algorithm to estimate parameters for a simple
hierarchical generative model for XML retrieval. The generative model
for an XML component is estimated by linearly interpolating statistical
language models estimated from the text of the component itself, the
parent component, the document component, and its children. We mod-
ify EM to allow the incorporation of negative examples, then attempt
to maximize the likelihood of the relevant components while minimizing
the likelihood of non-relevant components found in training data. This
provides an effective algorithm to estimate the parameters in the linear
combination mentioned above. Some experiments are presented on the
CO.Thorough task that support these claims.

1 Introduction

In previous work [1][2][3], we proposed using hierarchical language models for
ranking XML document components for retrieval. However, we left the problem
of estimating parameters as future work. In this work, we present a parameter
estimate method for a simplified version of the hierarchical language models.

Similar to the language models we estimated in the past, we construct a
language model for each component in the document. What is different from
previous work is that we do not recursively smooth the language models. Instead,
we linearly interpolate the parent’s unsmoothed language model, each child’s
unsmoothed language model, the document’s unsmoothed language model, and
the collection language model. This simplification allows us to formulate the
parameter estimation problem simply so that we can apply the Generalized
Expectation Maximization algorithm.

However, we observed that this approach places the most weight on the doc-
ument language model, which results in very poor retrieval performance. We
modify the likelihood we wish to maximize by including negative examples.
These negative examples are non-relevant components that come from docu-
ments that contain relevant components. To include these negative examples in
the likelihood we raise one minus the probability of the unsmoothed language
model generating the query term to a very large power so that it is on a similar

169

scale to that of the language models for relevant components. While this is an
ad-hoc method for including the negative examples, we have found it to work
well in practice.

The next section describes the model in detail, and Section 3 presents the
Generalized Expectation Maximization (GEM) algorithm for the model. Sec-
tion 4 presents our adaptation of the GEM algorithm to include negative ex-
amples. We present experimental methodology and describe our system in Sec-
tion 5. Section 6 contains our experiments with using the GEM algorithm on
CO.Thorough task, and conclusions and discussion is contained in Section 7.

2 Model

We rank components by estimating the probability that the a language model
estimated for the component generated the query. We use simple unigram lan-
guage models, which are multinomial probability distributions over words in the
vocabulary. That is, a language model p specifies P (w |p). Document compo-
nents (or elements) are then ordered by P (Q |ue) = ngll P (q; |pe) where p, is
the language model estimated for a particular element e.

In order to estimate the language model u., we note that we would like to
incorporate evidence from the document, its parent, and its children. With that
in mind, we estimate p. as a linear combination of several language models:

P(wlpe) =ApP (w|0p))
+)\DP (’LU led(e))

—H\cP(w\Gcl)(| "
+Xo ‘S(e)|+2g"ec(i) at(j,)|j/|?|3 (w |/\.s(€))

NF
20 X jec(e)) P(w|A;)

SO ey @161

where 0, refers to a language model estimated for z, P (x) refers to the parent
of x, d () refers to the document containing x, s (x) refers to the component x
(self), ¢ (z) returns a list containing the children of z, ¢ (x) refers to the type of the
element x, and C refers to the entire collection. We choose to set the A parameters
in the interpolation to be constant across all elements in the collection to reduce
the number of parameters we must estimate. The « parameters allow us to
provide additional weight to the children of components, where the weight is
dependent on the type of the child component. Note that we also multiply alpha
by the length of the component, which results in an assumption that the extra
value of a child component is dependent on both the type and length of the
child.

In this work, we will take 6, to be the Maximum Likelihood Estimate from
the text contained in x, which is given by:

count of w in text of x

P(wl0,) = (2)

length in words of text of x

170

Note that this is different than our previous work. In our previous work, we ex-
cluded the text of the child’s components when performing hierarchical smooth-
ing. In this model we include that text. This allows a more clear and consistent
parameter estimation scheme. The «; parameters represent the additional value
of a word in components of type t. Additionally, we do not recursively smooth
the components. This is a limiting factor in current work that simplifies the
parameter estimation process.

Unfortunately, due to a bug in our system we did not rank components by
P (Q |tte). In our official submissions, we ranked by

933(6))>\p P (Q ;(8))@

[s(9)]

A
,) REETIES DN T (3)

s(e)
at(]-/) 131
o) .
2160(6) IS(C)HZ;/@(@') (i) 5]

P(Q
xP(Q

A
x Hjec(e) P (Q ’9;)

where
P(wldy) = (1= Ac)P(w|0:) + AcP (w|0c) (4)

This model does allow relative weighting of the different structural components
of messages in the thread. However, it does not have the intended effect of
combining evidence at the word level; it only combines query level evidence.
This model corresponds to the linear weighted combination of log probabilities,
which we investigated in [4]. We will refer to ranking by P (Q |0,) as the mixture
method and Equation 3 as the post query combination approach.

Rather than discuss our official submissions in Section 6, we will present ex-
periments using the corrected P (Q |6,). We also apply a linear length prior [5] to
our rankings. That is, we multiply P (Q |0,) by length (e) to obtain the retrieval
status values used in our rankings.

3 Parameter Estimation Using EM

This section describes how we estimate parameters for ranking results by P (Q |6,).
Suppose there are M language models in the collection, which we will denote

91,92,...,0]\4.

Suppose that we are given some queries and rankable components that are rele-
vant to these queries. We will treat words in these queries as observations from
the relevant components:

x = (z1,22,...,ZN),
where we denote the relevant components as

M1y 2, - -5 N -

171

Note that there may be repeated query terms and components in these lists; this
is not an issue in the estimation process.

Let us now assume that the p components are linear interpolations of the
components, giving:

M
Palu) =Y AP (el6). (5)
j=1
This results in a model where we do not know the A = (\11,..., Aya) parame-

ters.

We would like to maximize the probability of P (x|u). In order to reduce
the number of parameters we must estimate in this model, we will assume that
each p; is estimated from using a small number of components we will call
the family of i. In relation to the model presented before, the family of i
will be child components, the collection component, the parent component, the
document component and the component itself:

famdy (Z) = (017 odocument(i)v Gparent(i)v oself(i)) UkEChildTen(i) (ek)

or using the first letter as an abbreviation for the document, parent, self and
children functions:

family (i) = (61, 0a(i), Op(i)s Os(i)) Ureety (Ok) - (6)

where 6, is the special collection model used for smoothing. Given the family
of component i, we can rewrite Equation 5 as

P(zlui)= Y AP (z]0;), (7)

JEF()

greatly reducing the number of parameters we must estimate. Note that we also
place the constraints

Aij =0, Y N =1 (8)
JEF()

upon the A parameters.

However, there are still many cases where we must estimate \ parameters for
texts and we have no training data, as the x vector is very small in comparison
to the total number of rankable texts in the corpus. We must make further
assumptions to reduce the parameter space. Given our understanding of the
XML retrieval domain, we will assume constant parameters across all models
for the combination with the collection, document and parent components. For
the children components, we will assume that the weight placed should be a
simple function of the ¢ = type of the child component and its length. Under

172

these assumptions:

Ao ifj=1,
Ap if j=d3),
i =14 Ao El if j = s (i), 9)
@Y € 1)
1) |51 o .
Ao o if jec(i),
|s@ﬂ+§:ﬂd06541)uq
0 otherwise.
where the type function returns a value in (1,2,...,7"). This now greatly re-

duces the number of parameters we must estimate to 7'+ 4. In addition to the
constraints in Equation 8, we place this additional constraint:

Ae+Ap+Ap+Xro=1 (10)

Note that we reparameterized oy, as e®* as this will ensure that oy, is positive.
Given Equation 9, we can rewrite Equation 7 using the parameters we must
estimate:

P(x |,u1) = AcP (ZE |91) + ApP (ac |9d(i)) + ApP ((E |9p(i)>

lé] '
‘i|+z_7’€c(i) N P (l‘ ‘95(2)) +

+Xo

@ g ,
ZjEC(i) ‘7"+Ze o eﬁt(j”j‘P (.’I/' |9j)
j€c(i

We would like to maximize the likelihood of the observed data, which is

N N M
L(AX) = P(x|p) =] P@iluw) =] D NP (xil6;) (12)
i=1

i=1j=1

Unfortunately, the summation within the product makes it difficult to differen-
tiate, so we must use an alternative approach to maximizing the likelihood. We
choose to use the Expectation-Maximization method to optimizing the likeli-
hood.

Suppose we were given additional information Y = (y1, ..., yn) which specify
that the 0, distribution generated the x; query term. Given knowledge of y, the

likelihood becomes N

=1

173

and the log-likelihood of the data is then

N

i=1

The problem is now that we do not know the values of). However, we may
treat it as a random vector and apply Expectation-Maximization.

Suppose we have a guess at the A parameters we shall call A9. Using A9 we
can compute P (:vl | u?) Applying Bayes rule, we calculate

Aoy P (i 16y,) Aby P (i 16y,) Aoy P (i |0y,)
Pl d) = "p 6wy =58 S o NP TR
Ti Zj:l Asz(le]) JE family(i) "\ij Li |0

(15)
and
P(y|Xx,A9) HP yi |z, A9 (16)
where y = (y1,¥2, - . -, yn) 1s independently drawn value of the random vector.
We may now estimate the expectation of A given A9:
Q(A,A%) =32 ey log (L(A]|X,y)) P(y|X, A7)
(17)

=M SN log (NP (2 1600)) P (U2, 49)

At this point we observe that to maximize this equation, we must take the partial
derivative of @ (A, A9) with respect to each of the A parameters.

To maximize A\¢, we must introduce the Lagrange multiplier ¢ with the
constraint that Ac + Ap + Ap + Ao = 1 and solve the following equation:

el Do MO log AP (2:100) P (zi, A%) +d (Ao +Ap +Ap + Ao —1)| =0

YiLilog (Ac) Py =1lzi, 49) + dAc
af =0
C
+some constants with respect to A\¢

YN Ply=1]z,49)+¢=0

(18)
Similarly, to maximize Ap, Ap, and Ao, we use
5 i Py =d (i) |#:,49) + 6 =0
XL Py=p@) |z, 49) + =0 (19)

N .
S5 et Lje(syuey P W =Jlwi A7)+ ¢ =0

174

By summing these equations we get ¢ = —N. We can then obtain the following
update rules:

A =% DL Py =1]ei, A7)

Ap = & Sica P (y = d (i) i, A1)

N . _ (20)
AP = & T Py =p () ai, A1)
[t _ 1 N . _
Ao =¥ 2ic1 Zje(s(i))Uc(i) Py=j |33%A[t 1])
Let us continue to the (3, parameters. Let
ik = X jreciy =k ']
bir = Is (D) + 25 eciy iy Priin ']
(21)
fiw =Py =s@)]2, A7) + X icc)eyee £ (W = Jl2i, A9)
hik = 2 jectiy 1iy= £ (y = 7 li, A7)
Then we can rewrite the above as
tog (729L_) Py = 5 (i) 2, 49)
ePr |4 .
, | Ziicc =k | F Lijec =108 (5ot) Py =, 49)
Bl =0
] Pt |4 Py —ile. A9
T+ Zjec(i),t(j#k 0g (m) (y = Jlai,)_
L +some constants with respect to G]
(22)

We first take the chain rule, resulting in the multiplier 8, then take the partial
derivative of the summation with respect to G

bt fran L (v = 5 (1) |z, 47)
by .
B D ijec(i) t(i)=k 2 jecli) b=k WP (y =gz, A9)| =9

+ 2 i)tk getra P (Y =Jlwi, A7)

bikhi
Z —aik fir + :gkk

O bir + ePrag,

—0 (24)
i:j€c(i),t(j)=k

175

Since we cannot solve directly solve this equation for G, we will use a linear
approximation around the point 3:

0 oD
PR AR

Since we set %Q (A, A9) =

82
(A A gy (= B0) 5 QA AT) gy (29

o)
BﬁkQ(A A9)ﬁk =87

6’6 ~ ﬁk (26)
0,32 7 Q (4,)ﬂkzﬁ,‘j
where ,
a g azkfzk + “c m
QA Ay =€ S (27)
=Py) By ..
OB T ijec(i),t(i)=k bik + €k ag,
and 5
a5, @ (A A%) g _go +
82 A A ﬁg b? h‘k
aﬂQQ()ﬁkzﬁg =€k aZ, fix— Z;glg (28)

By P
€%k D isjec(i))=k %\
bir+e kaik

Thus, we will have the following update rule for our §; parameter estimates:

a5 Q (A, 49) e=plt 1
BBQQ (A, Ag) w=plt= Y

gl — glt=1 _ (29)

4 Incorporating Negative Examples

While the above presentation of EM to learn parameters attempts to maximize
the likelihood of training examples, doing so using only relevant components
results in very poor parameter estimation. This is a direct result of the fact that
optimizing the likelihood of relevant components may also increase the likelihood
of components that are not relevant. In our own experiments, using only relevant
components during training will result in most of the weight being placed in Ap.
We feel this may be a side effect of the bias-variance problem in estimation. The
document language model has more bias than the language models estimated
from the components, but the variance is lower as the sample sizes are larger for
documents than for components. When combining the language models during
smoothing, the document language models tend to have a higher likelihood of
generating the query terms due to this lower variance.

In order to combat these effects, we also include negative examples in our
training data. However, we do not wish to optimize the likelihood of the negative
examples. We would prefer to maximize the likelihood that the language models

176

estimated for the non-relevant components do not generate the query terms. To
model this one might include for each non-relevant component and query term
an example where we use (1 — P (x|6;)) in place of P (x|6;). Note that this is
not quite the same as what we one might wish to optimize, as:

QI
1-P@Q|uw) # [0 = Plalm)) (30)
=1

However, this is a useful and effective approximation that requires only the
above substitution for negative examples. A complication in learning using the
inclusion of negative examples given above is that P (z|u;) tends to be very
small in relation to 1 — P (x|u;). That means that when when maximizing the
log likelihood, a small improvement of a positive example may outweigh a large
degradation in performance in a negative example.

To accommodate for that effect, we weight the negative probabilities by rais-
ing them to a large power. For a negative example, we replace

P(x]0;) (31)

with

(1= P(]6;)" (32)
where v is a user chosen parameter that specifies how much emphasis the negative
examples have relative to the positive examples and § is chosen so that the

average probability of a term given the relevant examples is equal to the average
probability of a term given the non-relevant examples when v = 1:

log (|posi1tz"ue\ Zpositive P (ZEZ |lu’i))

1Og (|neg;tive\ Znegative P (mi |M’L))

5= (33)

This approach for the incorporation of non-relevant components is ad-hoc but
effective, as we will see in the next section.

5 Experimental Methodology

We use a locally modified version of the Indri search engine of the Lemur
toolkit [6] that supports the hierarchical shrinkage. The hierarchical shrinkage
support will be made available in a December release. Release of the parameter
estimation code is scheduled for a later release as the estimation methods are
still in flux. We indexed the INEX collection using the InQuery stopword list
and the Krovetz stemmer. To process queries we removed all quotes from the
query (thus ignoring phrasal constraints) and all terms with a minus in front.

We will focus on the CO.Thorough task and present results using the strict
and generalized quantizations for nxCG[10], nxCG[25], nxCGI[50], and MAP of
ep/gr to facilitate comparison to the official results presented at INEX.

177

6 Experiments

In this section we present experiments on the CO.Thorough task. We will disre-
gard our official submissions as they were run with the desired model and they
were not run on the entire corpus. We had some problems with using the sys-
tem that prevented us from indexing the entire corpus which have since been
resolved.

We trained our parameters using the INEX 1.8 corpus and CO topics 162-
201 using one non-relevant document component as a negative example for each
relevant component as a positive example. Components were considered relevant
if and only if they were highly exhaustive and highly specific. The non-relevant
examples were taken from the same documents as the relevant examples. Ten
iterations were used for the EM algorithm. «ay, values were updated only for cases
where there were at least ten examples for type k in the update rule.

Table 1 shows the a sample of the parameters the EM algorithm learned on
the training topics. As v increases, the weight on the collection language model
(A¢) decreases while the weight in the parent (Ap) slightly increases and Ao,
the weight on the component and its children, noticeably increases.

With regards to the o parameters, the type specific length proportional
weights on children, a few parameters start with relatively low values and in-
crease rapidly as v increases. Table 1 shows a few examples of this behavior.
However, most parameters that are learned are very close to zero across all
values of v.

There seems to be some undesirable variation in the parameters, as we can
see with the a value for the p type. This may be a side effect of the algorithm
being trained on relatively few examples for some types, but this should not
be the case for the p tag. However, as it only really matters what the value is
relative to the other tags at the same level, perhaps this variance is not an issue.

Table 1. Some parameters learned from training data. As v increases, Ac decreases
and Ao increases. Some « parameters seem fairly stable, such as that of the footnote
type. Others increase greatly with larger v while some seem somewhat erratic (e.g. p).

A o
v (C)ol (D)oc (P)ar O-self st p sub footnote ssl
1.0 10475 0.222 0.035 0.268 0.38 0.23 0.00 0.28 0.50
2.0]0.385 0.212 0.037 0.365 1.07 0.00 0.22 2.49 0.37
3.010.342 0.210 0.040 0.408 2275 9.77 7.7 2.22 1.75
4.0 10.321 0.210 0.041 0.428 189.28 0.00 9.42 1.83 6.01
5.0 0.309 0.213 0.043 0.435 | 48623.30 0.61 146.46 1.65 13289.10

Table 2 shows the effects of using the learned parameters for the CO task
on the training topics 162-201. Note that we use the new INEX-2.2 corpus, so
these results are not directly comparable to previous results on these topics. As
there are many documents that in the INEX-2.2 corpus that were not available

178

for assessment for the topics, one should regard the evaluation numbers as a
suboptimal estimate of performance. Nevertheless, we are mostly interested in
the relative performance of the parameters learned for different values of v, and
the values in Table 2 should be adequate for that purpose.

In Table 2 we see that setting v = 1 yields the most consistently good results
for both quantizations. There also seems to be some variation in the columns that
does not follow a nice curve. This is an undesirable property which could be a
result of variance in the learning algorithm, a sign of instability in the evaluation
metrics, or a symptom of too few topics to get a reliable point estimate given
the topic variance of the system.

Table 2. Results of varying the negative weight » on the CO task using training topics
162-201. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP
v 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0704 0.0880 0.1307 | 0.0034 || 0.2946 0.2950 0.2944 | 0.0852
1.5 || 0.0593 0.0906 0.1266 | 0.0032 || 0.2938 0.2803 0.2710 | 0.0753
2.0 || 0.0593 0.0766 0.1237 | 0.0032 | 0.2899 0.2878 0.2816 | 0.0791
2.5 || 0.0704 0.0832 0.1226 | 0.0032 | 0.2922 0.2760 0.2637 | 0.0716
3.0 || 0.0704 0.0876 0.1210 | 0.0031 0.2911 0.2671 0.2536 | 0.0667
3.5 || 0.0704 0.0837 0.1218 | 0.0031 0.2920 0.2649 0.2490 | 0.0640
4.0 || 0.0593 0.0820 0.1197 | 0.0028 | 0.2903 0.2695 0.2447 | 0.0612
4.5 || 0.0741 0.0835 0.1219 | 0.0026 || 0.2857 0.2554 0.2383 | 0.0561
5.0 || 0.0630 0.0732 0.1087 | 0.0025 | 0.2791 0.2464 0.2256 | 0.0520

Table 3 shows the performance of the learned parameters on this year’s
CO.Thorough task. Performance for the generalized quantization peaks at v = 2
and around v = 4 for the strict quantization. This is quite a bit different from
our observations on the training data. We would like to investigate this behavior
in more detail. This could simply be the result of a training topic set that is
too small or not representative enough. An alternative cause for difference is the
change in the assessment methodology this year, which could result in assessors
behaving giving different scores.

If we had submitted the system optimized to the training data (v = 1), then
our results would have been in the top 10 official submissions for the strict quan-
tization nxCG@50 metric and the generalized quantization MAP ep/gr metric.
Supposing we had worked out our kinks in training (whether they be a result
of the algorithm or the assessments) and we had selected the runs with v = 2,4
for evaluation, then we would have had a run performing in the top 10 official
submissions for the strict quantization nxCG@10,50 and MAP ep/gr metrics
and for the generalized quantization nxCG@25,50 and MAP ep/gr metrics.

179

Table 3. Results of varying the negative weight v on the CO.Thorough task using test
topics 202-241. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP
v 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0200 0.0639 0.1051 | 0.0021 0.2225 0.2298 0.2286 | 0.0854
1.5 || 0.0440 0.0623 0.0911 | 0.0022 0.2207 0.2218 0.2197 | 0.0801
2.0 || 0.0440 0.0639 0.1006 | 0.0022 | 0.2464 0.2421 0.2340 | 0.0882
2.5 || 0.0440 0.0655 0.1127 | 0.0026 0.2200 0.2215 0.2224 | 0.0813
3.0 || 0.0440 0.0712 0.1184 | 0.0027 | 0.2164 0.2221 0.2167 | 0.0771
3.5 || 0.0400 0.0744 0.1192 | 0.0022 0.2131 0.2189 0.2149 | 0.0717
4.0 || 0.0691 0.0747 0.1225 | 0.0028 0.2445 0.2248 0.2172 | 0.0751
4.5 || 0.0651 0.0715 0.1131 | 0.0029 || 0.2301 0.2144 0.2126 | 0.0701
5.0 || 0.0651 0.0731 0.1116 | 0.0029 || 0.2326 0.2183 0.2089 | 0.0682

7 Conclusions

We have derived a Generalized Expectation Maximization algorithm to learn the
parameters of a simple hierarchical language modeling system for the ranking
and retrieval of XML components. We showed a way to effectively incorporate
non-relevant components during training.

We investigated the interaction of the relative weight on the negative training
examples v and retrieval effectiveness on the CO.Thorough task. Experimental
evidence suggests that the optimal v parameter may depend on the quantization
function used in evaluation. However, we have not done a full investigation of
the choice of positive and negative examples during training. In training, we
relied only on components that were highly exhaustive and highly specific. This
assumption is essentially the assumption of the strict quantization function.
We have not done experiments where we use components deemed relevant by
the generalized quantization function. While we leave this to future work, we
recognize this may change the optimal choice of v for optimizing performance
for measures using the generalized quantization function.

Our incorporation of negative examples is ad-hoc. As future work, we plan
to simulate replication of negative examples rather than directly modifying the
probabilities of the language models we are combining. This is a minor change to
the algorithm and will not change the maximum likelihood derivation presented
in Section 3, but it will be more technically sound than the current incorporation
of negative evidence presented in Section 4. We would also like to consider the
possibility of performing the negative evidence at the query level, rather than
negating probabilities at the level of query terms.

For these experiments, we worked with a simplified hierarchical model. Our
previous work [1][2][3] presented a hierarchical model where components were
smoothed recursively up and down the tree for a document. We would like to
adapt the training algorithm to model recursive smoothing and learn parameters
with that optimize the likelihood under that condition.

180

Up to this point we have discussed only flat text queries. We would like
to adapt this approach to work with structured queries to learn approaches to
weight components of the query. For example, we may learn that satisfaction
of a phrasal constraint should receive higher weight than a constraint on the
document structure.

8 Acknowledgments

This research was sponsored by National Science Foundation (NSF) grant no.
CCR-0122581. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies,
either expressed or implicit, of the NSF or the US government.

References

1. Ogilvie, P., Callan, J.: Language models and structured document retrieval. In:
Proceedings of the First Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX). (2003)

2. Ogilvie, P., Callan, J.P.: Using language models for flat text queries in xml retrieval.
In: Proc. of the Second Annual Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), Dagstuhl, Germany (2003)

3. Ogilvie, P., Callan, J.: Hierarchical language models for xml component retrieval.
In: Advances in XML Information Retrieval: Third International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2004, Springer-Verlag (2005)
224-237

4. Ogilvie, P., Callan, J.P.: Combining document representations for known-item
search. In: Proc. of the 26th annual int. ACM SIGIR conf. on Research and devel-
opment in informaion retrieval (SIGIR-03), New York, ACM Press (2003) 143-150

5. Kamps, J., de Rijke, M., Sigurbjoérnsson, B.: Length normalization in xml retrieval.
In: Proceedings of the Twenty-Seventh Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. (2004) 80-87

6. http://lemurproject.org/: (The Lemur Toolkit for Language Modeling and Infor-
mation Retrieval)

181

Probabilistic Retrieval, Component Fusion and
Blind Feedback for XML Retrieval

Ray R. Larson

School of Information Management and Systems
University of California, Berkeley
Berkeley, California, USA, 94720-4600

ray@sims.berkeley.edu

Abstract. This paper describes the retrieval approaches used by UC
Berkeley in our official submissions for the various Adhoc tasks. As in
previous INEX evaluations, the main technique we are testing is the fu-
sion of multiple probabilistic searches against different XML components
using different probabilistic retrieval algorithms. In addition this year we
began to use a different fusion/combination method from previous years.
This year we also continued to use re-estimated Logistic Regression (LR)
parameters for different components of the IEEE document collection,
estimated using relevance judgements from the INEX 2003 evaluation.
All of our runs were fully automatic with no manual editing or inter-
active submission of queries, and all used only the title element of the
INEX topics.

1 Introduction

When analyzing the results of the 2004 INEX evaluation we discovered a number
of interesting approaches to XML retrieval that we had not previously explored.
In particular we were struck by the work of Mass and Mandelbrod[14] adjusting
the weights of component-level search results using the weights of document-
level matching for the same documents. This seemed to have a natural affinity
for the fusion approaches that we had already tried[12]. We ran a large number
of experiments using the INEX 2004 relevance data and various combinations
of components and weights for our version of the “pivot” value. In addition, we
participated this year in CLEF and the GeoCLEF evaluations, where we were
able to analyze the differences in performance between our fusion approaches
and the alternative version of the Berkeley Logistic regression algorithm that
has been used there for a number of years (See [3]) The best performing of
those approaches (according to the incomplete analysis using the new evaluation
methods for INEX that we were able to do in the short period between the end of
CLEF and the submission date for INEX) were used in this year’s various INEX
adhoc tasks with no modification. This is the first time that we have used blind
feedback and the “TREC2” version of Logistic regression in addition to using
the re-estimated parameters for the “TREC3” model based on the relevance
judgements from INEX 2003. In addition, element and collection fusion are going

182

to be used for the heterogeneous track (which are not being submitted until after
this paper is submitted).

In this paper we will first discuss the algorithms and fusion operators used in
our official INEX 2005 adhoc runs. Then we will look at how these algorithms and
operators were used in the various submissions for the adhoc and heterogeneous
tracks, and finally we will examine the results and discuss possible problems in
implementation, and directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This year we did not use the Okapi BM-25 algorithm in our official INEX adhoc
runs. Instead we used a new approach to combining and weighting the elements
using only Logistic regression-based algorithms for retrieval.

In the remainder of this section we will describe the Logistic Regression algo-
rithms that were used for the evaluation as well as the blind relevance feedback
method used in combination with the TREC2 algorithm. In addition we will
discuss the methods used to combine the results of searches of different XML
components in the collections. The algorithms and combination methods are im-
plemented as part of the Cheshire IT XML /SGML search engine [11, 12, 9] which
also supports a number of other algorithms for distributed search and operators
for merging result lists from ranked or Boolean sub-queries.

2.1 TRECS3 Logistic Regression Algorithm

The basic form and variables of the Logistic Regression (LR) algorithm used was
originally developed by Cooper, et al. [6]. It provided good full-text retrieval
performance in the TREC ad hoc task and in TREC interactive tasks [8] and
for distributed IR [9]. As originally formulated, the LR model of probabilistic IR
attempts to estimate the probability of relevance for each document based on
a set of statistics about a document collection and a set of queries in combina-
tion with a set of weighting coefficients for those statistics. The statistics to be
used and the values of the coeflicients are obtained from regression analysis of
a sample of a collection (or similar test collection) for some set of queries where
relevance and non-relevance has been determined. More formally, given a partic-
ular query and a particular document in a collection P(R | @, D) is calculated
and the documents or components are presented to the user ranked in order
of decreasing values of that probability. To avoid invalid probability values, the
usual calculation of P(R | Q, D) uses the “log odds” of relevance given a set of
S statistics, s;, derived from the query and database, such that:

S

log O(R | Q,D) =bo+ Y _bis; (1)
i=1

where by is the intercept term and the b; are the coefficients obtained from the
regression analysis of the sample collection and relevance judgements. The final

183

ranking is determined by the conversion of the log odds form to probabilities:

elog O(R|Q,D)
PR]Q.D) =1 oman (2)
Based on the structure of XML documents as a tree of XML elements, we define
a “document component” as an XML subtree that may include zero or more
subordinate XML elements or subtrees with text as the leaf nodes of the tree.
For example, in the XML Document Type Definition (DTD) for the INEX test
collection defines an article (marked by XML tag <article>) that contains front
matter (<fm>), a body (<bdy>) and optional back matter (<bm>). The front
matter (<fm>), in turn, can contain a header <hdr> and may include editor
information (<edinfo>), author information (<au>), a title group (<tig>), ab-
stract (<abs>) and other elements. A title group can contain elements including
article title (<atl>) the page range for the article (<pn>), and these in turn
may contain other elements, down to the level of individual formatted words
or characters. Thus, a component might be defined using any of these tagged
elements. However, not all possible components are likely to be useful in content-
oriented retrieval (e.g., tags indicating that a word in the title should be in italic
type, or the page number range) therefore we defined the retrievable components
selectively, including document sections and paragraphs from the article body,
and bibliography entries from the back matter (see Table 3).

Naturally, a full XML document may also be considered a “document com-
ponent”. As discussed below, the indexing and retrieval methods used in this
research take into account a selected set of document components for generat-
ing the statistics used in the search process and for extraction of the parts of a
document to be returned in response to a query. Because we are dealing with
not only full documents, but also document components (such as sections and
paragraphs or similar structures) derived from the documents, we will use C'
to represent document components in place of D. Therefore, the full equation
describing the LR algorithm used in these experiments is:

logO(R | Q,C) =
L le]
bo+ [b1 leogqtfj
(& J:1

184

+ (b - log [Qal)
Where:

@ is a query containing terms 7T,

|Q| is the total number of terms in @,

|Q¢| is the number of terms in @ that also occur in the document component,
tf; is the frequency of the jth term in a specific document component,

qtf; is the frequency of the jth term in Q,

n¢,; is the number of components (of a given type) containing the jth term,

cl is the document component length measured in bytes.

N is the number of components of a given type in the collection.

b; are the coefficients obtained though the regression analysis.

This equation, used in estimating the probability of relevance in this research, is
essentially the same as that used in [5]. The b; coefficients in the original version
of this algorithm were estimated using relevance judgements and statistics from
the TREC/TIPSTER test collection. In INEX 2005 we did not use the original
or “Base” version, but instead used a version where the coeffients for each of the
major document components were estimated separately and combined through
component fusion. The coefficients for the Base version were by = —3.70, by =
1.269, by = —0.310, bs = 0.679, by = —0.0674, bs = 0.223 and bg = 2.01. The
re-estimated coefficients were derived from the Logistic regression analysis using
the INEX 2003 relevance assessments. In fact, separate formulae were derived for
each of the major components of the INEX XML document structure, providing
a different formula for each major component of the collection. These formulae
were used in all the TREC3 LR runs submitted for the INEX 2005 adhoc tasks,
The components and coefficients for each of b; in formula 4 are shown in table 1

[Index | bo [bi | ba [bs | bs [b5 | bs]
Base -3.7011.269|-0.310{0.679|-0.0674|0.223| 2.01
topic -7.758(5.670(-3.427(1.787| -0.030 {1.952|5.880

topicshort |-6.364(2.739|-1.443|1.228| -0.020 {1.2803.837
abstract |-5.892|2.318|-1.364|0.860| -0.013 |1.052|3.600
alltitles -5.243|2.319|-1.361{1.415| -0.037 |1.180(3.696
sec_words |-6.392(2.125|-1.648|1.106| -0.075 |{1.174(3.632
para_words|-8.632(1.258|-1.654(1.485| -0.084 {1.143]4.004
Table 1. Re-Estimated Coefficients for The TREC3 Logistic Regression Model

2.2 TREC2 Logistic Regression Algorithm

We also implemented a version of the LR algorithm that has been used very suc-
cessfully in Cross-Language IR by Berkeley researchers for a number of years|3].

185

This algorithm, originally developed by Cooper et al. [4] for TREC2 is:

log O(R|C, Q) = log f(f(g’g)Q) = log zg:gj g;
Q.
=co+ g * \/@—H ; q;lif%5
Q.| .
+ % ﬁ ; log tfso
— 3% milog C]t\]{i
+ cq * |Qc|

where C' denotes a document component and @ a query, R is a relevance variable,

p(R|C, Q) is the probability that document component C' is relevant to query
Q,

p(R|C, Q) the probability that document component C'is not relevant to query
Q, which is 1.0 - p(R|C, Q)

|Qc| is the number of matching terms between a document component and a
query,

qtf; is the within-query frequency of the ith matching term,

tf; is the within-document frequency of the ith matching term,

ctf; is the occurrence frequency in a collection of the ¢th matching term,

gl is query length (i.e., number of terms in a query like |@| for non-feedback
situations),

cl is component length (i.e., number of terms in a component), and

N; is collection length (i.e., number of terms in a test collection).

¢, are the k coefficients obtained though the regression analysis.

If stopwords are removed from indexing, then ¢l, ¢, and N; are the query
length, document length, and collection length, respectively, after removing stop-
words. If the query terms are re-weighted (in feedback, for example), then gt f; is
no longer the original term frequency, but the new weight, and ¢l is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the “optimized” relative frequency without
first taking the log over the matching terms.

The coefficients were determined by fitting the logistic regression model spec-
ified in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ¢, used for our official runs are the same as those described
by Chen[l]. These were: ¢cg = —3.51, ¢; = 37.4, co = 0.330, ¢3 = 0.1937 and
cq = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

186

2.3 Blind Relevance feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[17] and TREC-8 (Voorhees and Harman
1999)[18].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen|[2] present a
technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[7] provides a survey of relevance feedback techniques that have been used.

Lacking comparable data from previous years, we adopted some rather ar-
bitrary parameters for these options for INEX 2005. We used top 10 ranked
components for the initial search of each component type, and enhanced and
reweighted the query terms using term relevance weights derived from well-
known Robertson and Sparck Jones[15] relevance weights, as described by Chen
and Gey[3]. The top 10 terms that occurred in the (presumed) relevant top 10
documents, that were not already in the query were added for the feedback
search.

2.4 Result Combination Operators

As we have reported previously, the Cheshire II system used in this evaluation
provides a number of operators to combine the intermediate results of a search
from different components or indexes. With these operators we have available
an entire spectrum of combination methods ranging from strict Boolean opera-
tions to fuzzy Boolean and normalized score combinations for probabilistic and
Boolean results. These operators are the means available for performing fusion
operations between the results for different retrieval algorithms and the search
results from different different components of a document. We will only describe

187

one of these operators here, because it was the only type used in the evaluation
reported in this paper.

The MERGE_CMBZ operator is based on the “CombMNZ” fusion algorithm
developed by Shaw and Fox [16] and used by Lee [13]. In our version we take the
normalized scores, but then further enhance scores for components appearing in
both lists (doubling them) and penalize normalized scores appearing low in a
single result list, while using the unmodified normalized score for higher ranking
items in a single list.

A new addition for this year was a merge/reweighting operator based on
the “Pivot” method described by Mass and Mandelbrod[14]. In our case the
new probability of relevance for a component is a weighted combination of the
initial estimate probability of relevance for the component and the probability
of relevance for the entire article for the same query terms. Formally this is:

P(R|Q,Crew) = (X P(R[Q, Ceomp)) + (1 = X) * P(R [Q, Cart)) (4)

Where X is a pivot value between 0 and 1, and P(R | Q,Chrew), P(R |
@, Ceomp) and P(R | @, Core) are the new weight, the original component weight,
and article weight for a given query. Although we found that a pivot value of
0.54 was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.5 for all of our 2005 adhoc runs, given the uncertainties of how
this approach would fare with the new metrics and tasks.

3 INEX 2005 Adhoc Approach

Our approach for the INEX 2005 adhoc tasks was a bit different from the meth-
ods used in previous INEX 2003 and INEX 2004 This section will describe the
indexing process and indexes used, and also discuss the scripts used for search
processing. The basic database was the expanded IEEE collection. We will sum-
marize the indexing process and the indexes used in the adhoc tasks for reference
in the discussion.

3.1 Indexing the INEX 2005 Database

All indexing in the Cheshire II system is controlled by an XML/SGML Config-
uration file which describes the database to be created. This configuration file
is subsequently used in search processing to control the mapping of search com-
mand index names (or Z39.50 numeric attributes representing particular types
of bibliographic data) to the physical index files used and also to associated
component indexes with particular components and documents. This configura-
tion file also includes the index-specific definitions for the Logistic Regression
coefficients (when not defined, these default to the “Base” coefficients shown in
Table 1).

Table 2 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were

188

|Name |Description |Contents |Vect0r?|

docno Digital Object ID //doi No
pauthor |Author Names //fm/au/snm|No
//fm/au/fmm
title Article Title //fm/tig/atl |No
topic Content Words //fm/tig/atl |Yes
//abs
//bdy
//bibl/bb/at]
//app
topicshort |Content Words 2 //fm/tig/atl |Yes
//abs
//kwd
/st
date Date of Publication |//hdr2/yr No
journal |Journal Title //hdrl/ti No
kwd Article Keywords //kwd No
abstract |Article Abstract //abs Yes
author_seq|Author Seq. //fm/au No
@sequence
bib_author|Bib Author Forename|//bb/au/fnm |No
_fnm
bib_author|Bib Author Surname |//bb/au/snm|No
_snm
fig Figure Contents //fig No
ack Acknowledgements |//ack No
alltitles |All Title Elements |//atl, //st [Yes
affil Author Affiliations |//fm/aff No
fno IEEE Article ID //fno No

Table 2. Cheshire Article-Level Indexes for INEX

extracted. These indexes (with the addition of the are the same as those used
last year. The abstract, alltitles, keywords, title, topic and topicshort indexes
support proximity indexes (i.e., term location), supporting phrase searching.

As noted above the Cheshire system permits parts of the document subtree
to be treated as separate documents with their own separate indexes. Tables 3
& 4 describe the XML components created for INEX and the component-level
indexes that were created for them.

Table 3 shows the components and the path used to define them. The COMP_SECTION
component consists of each identified section (<sec> ... </sec>) in all of the
documents, permitting each individual section of a article to be retrieved sep-
arately. Similarly, each of the COMP_BIB, COMP_PARAS, and COMP FIG
components, respectively, treat each bibliographic reference (<bb> ... </bb>),
paragraph (with all of the alternative paragraph elements shown in Table 3),
and figure (<fig> ... </fig>) as individual documents that can be retrieved
separately from the entire document.

189

|Name |Description|Contents |

COMP_SECTION |Sections |//sec

COMP BIB Bib Entries|//bib/bibl/bb

COMP_PARAS |Paragraphs|//ilrj|//ipl|//ip2|
/i3 fipd] fips|
//item-none|//p|
1011/ 521/ /53
//tmath|//tf

COMP_FIG Figures //fig

COMP_VITAE _ [Vitae 77wt

Table 3. Cheshire Components for INEX

Component

or Index Name Description Contents|Vector?
COMP_SECTION

sec_title Section Title //sec/st |Yes
sec_words Section Words ~ |//sec Yes
COMP_BIB

bib_author Bib. Author //au No
bib_title Bib. Title //atl Yes
bib_date Bib. Date //pdt/yr|No
COMP_PARAS

para_words Paragraph Words |*f Yes
COMP _FIG

fig_caption Figure Caption |//fgc No
COMP_VITAE

vitae_words Words from Vitae|//vt No

Table 4. Cheshire Component Indexes for INEX fIncludes all subelements of para-
graph elements.

Table 4 describes the XML component indexes created for the components de-
scribed in Table 3. These indexes make individual sections (COMP_SECTION)
of the INEX documents retrievable by their titles, or by any terms occurring
in the section. These are also proximity indexes, so phrase searching is sup-
ported within the indexes. Bibliographic references in the articles (COMP _BIB)
are made accessible by the author names, titles, and publication date of the
individual bibliographic entry, with proximity searching supported for bibliog-
raphy titles. Individual paragraphs (COMP_PARAS) are searchable by any of
the terms in the paragraph, also with proximity searching. Individual figures
(COMP_FIG) are indexed by their captions, and vitae (COMP_VITAE) are in-
dexed by keywords within the text, with proximity support.

Almost all of these indexes and components were used during Berkeley’s
search evaluation runs of the 2005 INEX topics. The official submitted runs and
scripts used in INEX are described in the next section.

190

3.2 INEX ’04 Official Adhoc Runs

Berkeley submitted a total of 20 retrieval runs for the INEX 2005 adhoc tasks,
these included 3 for each of the CO and CO+S Focussed and Thorough tasks,
two each for CO and COS FetchBrowse tasks and one run each for the VVCAS,
VSCAS, SVCAS and SSCAS tasks. This section briefly describes the individual
runs and general approach taken in creating the queries submitted against the
INEX database and the scripts used to prepare the search results for submission.
The paragraphs below briefly describe Berkeley’s INEX 2005 runs.

3.3 CO and CO+S Runs

Essentially the same basic component retrieval runs were used with different
post-retrieval processing for the Thorough, Focussed, and FetchBrowse tasks.
Our primary focus was on the Thorough task, since that was most similiar to
our most effective runs from previous INEX evaluations. The three runs for each
of the CO and CO+S Thorough and Focussed tasks were:

LRPIV: Runs containing this term used the TREC3 algorithm as described
above for all retrieval ranking. The basic results were the combination of
searches on each of the component types described in Table 3 using the
TREC3 algorithm with component scores scaled using document level scores
using the Pivot method described above with a pivot value of 0.5.

T2: Runs containing this term used the TREC2 algorithm in place of the
TREC3 algorithm, but were otherwise the same.

T2FB: Runs containing this term used the TREC2 algorithm with Blind Feed-
back as described above, but otherwise were the same as “T2” runs.

The primary task that we focussed on was the CO.Thorough task. For this
task some automatic expansion of items in the XPath to the root of the docu-
ment was used. The same data was used for the COS.Thorough task, but post-
processing restricted results to (approximately) those matching the structural
constraints of the “castitle”.

For the CO and COS Focussed tasks, post-processing kept only the highest
ranking non-overlapping elements from the unexpanded version of results. As
the very poor results for the Focussed runs show, this trimming of the results
was overly harsh, and eliminated many of the relevant items in the initial set. (In
fact, the results for the focussed tasks were so bad that we plan, time permitting,
to do a complete analysis of where the post-retrieval processing caused them to
fail, and to do test runs using the corrected post-processing for comparison).

The summary average MAnxCG@10 results for the runs described above are
shown in Table 5.

Given the large number of runs (and problems getting evalj to successfully
complete and produce gnuplot data), we are not including figures showing nxCG
plots for the runs, but plan to do so for the final version of the paper.

Unlike our attempt at INEX 2004 to use a simple form of “blind feedback”
that used only the kwd element of the documents, use of the TREC2 algorithm

191

Run Name Task MAnxCG@10|MAnxCG@Q10
Q=gen Q=strict

CO_PIV50_LRPIV_FOC CO.Focussed 0.0581 0.0077
CO_PIV50_T2_FOC CO.Focussed 0.0924 0.0213
CO_T2FB_PIV50_.NOV CO.Focussed 0.0885 0.0255
CO_PIV50_LRPIV_FOC_COS |COS.Focussed 0.0612 0.0077
CO_PIV50_T2_.FOC_COS COS.Focussed 0.0881 0.0213
COS_T2FB_PIV50_.NOV COS.Focussed 0.0884 0.0318
CO_PIV50_LRPIV_EXP_THR |CO.Thorough 0.2242 0.0225
CO_PIV50_T2_EXP_THR CO.Thorough 0.2432 0.0375
CO_T2FB_PIV50