

INEX 2005
Workshop
Pre-Proceedings

November 28-30, 2005
Schloss Dagstuhl
International Conference and Research
Center for Computer Science

http://inex.is.informatik.uni-duisburg.de/2005/

Norbert Fuhr
Mounia Lalmas
Saadia Malik
Gabriella Kazai

http://inex.is.informatik.uni-duisburg.de/2005/

Table of Contents

Organisers vi
Preface vii
Acknowledgement viii
Schloss Dagstuhl ix

Methodology

EPRUM metrics and INEX 2005 1
Benjamin Piwowarski

HiXEval: Highlighting XML Retrieval Evaluation 11

Jovan Pehcevski, James A. Thom

XCG Overlap at INEX 2004 25

Alan Woodley, Shlomo Geva

The Interpretation of CAS 40

Andrew Trotman, Mounia Lalmas

Multiple tracks

TIJAH Scratches INEX 2005 Vague Element Selection, Overlap,
Image Search, Relevance Feedback, and Users 54

Vojkan Mihajlović, Georgina Ramírez, Thijs Westerveld, Djoerd Hiemstra, Henk Ernst
Blok and Arjen P. de Vries

XFIRM at INEX 2005: ad-hoc, heterogeneous and relevance feedback
tracks - Preliminary work 72

Karen Sauvagnat, Lobna Hlaoua and Mohand Boughanem

Ad-hoc track

University of Amsterdam at INEX 2005: Adhoc Track 84
Börkur Sigurbjörnsson, Jaap Kamps, Maarten de Rijke

Searching XML Documents – Preliminary Work 95

Marcus Hassler, Abdelhamid Bouchachia

TRIX Experiments at INEX 2005 110

Paavo Arvola, Jaana Kekäläinen and Marko Junkkari

B3-SDR: Basic Building Blocks for Structured Document Retrieval 125

Roelof van Zwol

 i

Field-Weighted XML Retrieval Based on BM25 126

Wei Lu, Stephen Robertson, Andrew Macfarlane

XML retrieval based on direct contribution of query components 138

Gilles Hubert

Experimenting various user models for XML Retrieval 150

Yosi Mass, Matan Mandelbrod

The University of Kaiserslautern at INEX 2005 158

Philipp Dopichaj

Parameter Estimation for a Simple Hierarchical Generative Model
for XML Retrieval 169

Paul Ogilvie, Jamie Callan

Probabilistic Retrieval, Component Fusion and Blind Feedback
for XML Retrieval 182

Ray R. Larson

GPX - Gardens Point XML IR at INEX 2005 195

Shlomo Geva

An Implementation of High-Speed and High-Precision XML
Information Retrieval System on Relational Databases 199

Kei Fujimoto, Toshiyuki Shimizu, Kenji Hatano, Yu Suzuki, Toshiyuki
Amagasa, Hiroko Kinutani, Masatoshi Yoshikawa

The Dynamic Retrieval of XML Elements 200

Carolyn J. Crouch, Sudip Khanna, Poorva Potnis, Nagendra Doddapaneni

TopX & XXL at INEX 2005 201

Martin Theobald, Ralf Schenkel, Gerhard Weikum

When a few highly relevant answers are enough 215

Miro Lehtonen

RMIT University at INEX 2005 217

Jovan Pehcevski, James A. Thom, S. M. M. Tahaghoghi

SIRIUS: A Lightweight XML Indexing and Approximate Search
System at INEX 2005 234

Eugen Popovici, Gildas Ménier, Pierre-François Marteau

An Evaluation of Relevance Ranking Methods for XML Using Both
Document and Query Structures 249

Sihem Amer-Yahia, Kenji Hatano, Jayavel Shanmugasundaram, Divesh Srivastava

Machine Learning Ranking and INEX’05 251

Jean-Noël Vittaut, Patrick Gallinari

 ii

Relevance feedback track

Relevance Feedback for Structural Query Expansion 260
Ralf Schenkel and Martin Theobald

Natural language query track

NLPX at INEX 2005 274
Alan Woodley, Shlomo Geva

From natural language to NEXI, an interface for INEX 2005 queries 289

Xavier Tannier

Heterogeneous track

Processing Heterogeneous Collections in XML Information Retrieval 304
Diego Vinícius Castro Pereira, Klérisson Vinícius Ribeiro Paixão, Maria Izabel
Menezes Azevedo

Interactive track

The Interactive Track at INEX2005 313
Birger Larsen, Saadia Malik, Anastasios Tombros

University of Amsterdam at INEX 2005: Interactive Track 327

Jaap Kamps, Maarten de Rijke, Börkur Sigurbjörnsson

Kyungpook National University at INEX 2005: Interactive Track 333

Heesop Kim, Heejung Son

B3-SDR @ Interactive Track: User Interface Design Issues 335

Roelof van Zwol, Sandor Spruit, Jeroen Baas

Context matters? User behaviour and element retrieval 336

Ragnar Nordlie, Nils Pharo

Document mining track

XML documents clustering by structures with XCLS 337
Richi Nayak, Sumei Xu

A Flexible Structured-based Representation for XML Document Mining 349

Anne-Marie Vercoustre, Mounir Fegas, Saba Gul, Yves Lechevallier

Sequential Pattern Mining for Structure-based XML Document Classification 350

Calin Garboni, Florent Masseglia, Brigitte Trousse

 iii

Categorization and Clustering of XML documents using Structure and
Content Information 351

Ludovic Denoyer, Patrick Gallinari

Transforming XML trees for efficient classification and clustering 352

Laurent Candillier, Isabelle Tellier, Fabien Torre

Clustering XML Documents using Self-Organizing Maps for Structures 353

F. Trentini, M. Hagenbuchner, A. Sperduti, A.C. Tsoi, F. Scarselli, M. Gori

Multimedia track

INEX 2005 Multimedia Track 354
Roelof van Zwol, Gabriella Kazai, Mounia Lalmas

Integrating Text Retrieval and Image Retrieval in XML Document Searching 364

D. Tjondronegoro, J. Zhang, J. Gu, A. Wardhani, S. Geva

Combining Image and Structured Text Retrieval 365

D.N.F. Awang Iskandar, Jovan Pehcevski, James A. Thom, S. M. M. Tahaghoghi

Multimedia Extensions for B3-SDR based on Principle Component Analysis 373

Roelof van Zwol

APPENDIX

Ad-hoc track

INEX 2005 Guidelines for Topic Development 375

Bö rkur Sigurbjörnsson, Andrew Trotman, Shlomo Geva, Mounia Lalmas,
Birger Larsen, Saadia Malik

INEX 2005 Retrieval Task and Result Submission Specification 385

Mounia Lalmas

INEX 2005 Relevance Assessment Guide 391

Mounia Lalmas, Benjamin Piwowarski

INEX 2005 Evaluation Metrics 401

Gabriella Kazai, Mounia Lalmas

Heterogeneous track

INEX 2005 Heterogeneous Track Tasks and Result Submission Specification 407

Ray R. Larson

 iv

Multimedia track

INEX 2005 Multimedia Track - Working Document 411

Roelof van Zwol, Mounia Lalmas, Gabriella Kazai

Interactive track

INEX iTrack Daffodil 418
Logging guidelines 423
Introduction to the experiment 427
Instructions to searchers 432
Questionnaires 438
Guidelines for Post-experiment Interviews 445

Document mining track

Mining XML documents: Bridging the gap between Machine Learning and
Information Retrieval 447

Relevance feedback track

Relevance Feedback Task 457

Natural language query track

NLPX Task:Natural Language Processing for XML Information Retrieval 460

 v

Organisers

Project leaders
Norbert Fuhr (University of Duisburg-Essen)
Mounia Lalmas (Queen Mary University of London)

Contact persons
Saadia Malik (University of Duisburg-Essen)
Zoltan Szlavik (Queen Mary University of London)

Topic format specification
Börkur Sigurbjörnsson (University of Amsterdam)
Andrew Trotman (University of Otago)

Online relevance assessment tool
Benjamin Piwowarski (Universitad de Chile)

Metrics
Gabriella Kazai (Queen Mary University of London)
Arjen P. de Vries (CWI)
Paul Ogilvie (Carnegie Mellon University)
Benjamin Piwowarski (Universitad de Chile)

Relevance feedback task
Yosi Mass (IBM Research Lab)
Carolyn Crouch (University of Minnesota Duluth)

Natural language processing task
Shlomo Geva (Queensland University of Technology)
Alan Woodley (Queensland University of Technology)

Heterogeneous collection track
Ray Larson (University of California, Berkeley)

Interactive track
Birger Larsen (Royal School of Library and Information Science)
Anastasios Tombros (Queen Mary University of London)
Saadia Malik (University of Duisburg-Essen)

Document mining track
Ludovic Denoyer (Université Paris 6)
Anne-Marie Vercoustre (Inria-Rocquencourt)
Patrick Gallinari (Université Paris 6)

XML multimedia track
Roelof van Zwol (Utrecht University)
Gabriella Kazai (Queen Mary University of London)
Mounia Lalmas (Queen Mary University of London)

 vi

Preface

Welcome to the 4th workshop of the Initiative for the Evaluation of XML Retrieval (INEX)!

Now, in its fourth year, INEX is an established evaluation forum for XML information
retrieval (IR), with over 50 participating organisations worldwide. Its aim is to provide an
infrastructure, in the form of a large XML test collection and appropriate scoring methods, for
the evaluation of XML IR systems.

XML IR plays an increasingly important role in many information access systems (e.g. digital
libraries, web, intranet) where content is more and more a mixture of text, multimedia, and
metadata, formatted according to the adopted W3C standard for information repositories, the
so-called eXtensible Markup Language (XML). The ultimate goal of such systems is to
provide the right content to their end-users. However, while many of today’s information
access systems still treat documents as single large (text) blocks, XML offers the opportunity
to exploit the internal structure of documents in order to allow for more precise access, thus
providing more specific answers to user requests. Providing effective access to XML-based
content is therefore a key issue for the success of these systems.

2005 was an exciting year for INEX, and brought with it a lot of changes and new
aspects to the evaluation. In total seven research tracks were included in INEX 2005, which
studied different aspects of XML information access: Ad-hoc, Interactive, Multimedia,
Relevance Feedback, Heterogeneous, Document Mining and Natural Language (NLP). The
Multimedia and Document Mining tracks were new for the 2005 campaign; the other tracks
reached their second year. The interactive track expanded in the numbers of tasks offered and
in the number of participating groups; the track tries to answer some fundamental questions of
XML IR. The heterogeneous track expanded by studying new collections with different DTDs
and their effect on XML IR system effectiveness. The relevance feedback track investigated
approaches for queries that also include structural hints (rather than content-only queries in
2004). The NLP track included a new task in 2005 that allows new participants with NLP
expertise to join the INEX workshop without the need to develop a search engine, and thus
encouraging wider accessibility. The consolidation of the existing tracks, and the expansion to
new areas offered by the two new tracks, allows INEX to grow in reach.

INEX 2005 has also introduced a new relevance assessment procedure and new evaluation
metrics.

The aim of the INEX 2005 workshop is to bring together researchers in the field of XML IR
who participated in the INEX 2005 evaluation campaign. During the past year participating
organisations contributed to the building of a large-scale XML test collection by creating
topics, performing retrieval runs and providing relevance assessments. The workshop
concludes the results of this large-scale effort, summarises and addresses encountered issues
and devises a work plan for the future evaluation of XML retrieval systems.

 vii

Acknowledgements

INEX is funded by the DELOS Network of Excellence on Digital Libraries, to which we are
very thankful. We would also like to thank the IEEE Computer Society for providing us the
XML document collection.

We gratefully thank organisers of the various tracks for their great work in setting up the new
tracks, and carrying on and refining the existing tracks.

As always, special thanks go to the participating organisations and people for their
contributions and hard work throughout the year! Also, many thanks to everyone who has
contributed to the lively email discussions on the various mailing lists – resulting in a record
number of emails, and a reputation of the INEX community as one of the most vivacious.

We hope you have enjoyed the INEX 2005 campaign and have fruitful and stimulating
discussions at the workshop.

Norbert Fuhr, University of Duisburg-Essen
Mounia Lalmas, Queen Mary University of London

Saadia Malik, University of Duisburg-Essen
Gabriella Kazai, Queen Mary University of London

November 2005

 viii

Schloss Dagstuhl

Schloss Dagstuhl or Dagstuhl manor
house was built in 1760 by the then
reigning prince Count Anton von
Öttingen-Soetern-Hohenbaldern. After
the French Revolution and occupation
by the French in 1794, Dagstuhl was
temporarily in the possession of a
Lorraine ironworks.

In 1806 the manor house along with the
accompanying lands was purchased by
the French Baron Wilhelm de Lasalle
von Louisenthal.

In 1959 the House of Lasalle von
Louisenthal died out, at which time the
manor house was then taken over by an
order of Franciscan nuns, who set up an
old-age home there.

In 1989 the Saarland government
purchased the manor house for the
purpose of setting up the International
Conference and Research Center for
Computer Science.

The first seminar in Dagstuhl took place
in August of 1990. Every year
approximately 2,000 research scientists
from all over the world attend the 30-35
Dagstuhl Seminars and an equal number
of other events hosted at the center.

http://www.dagstuhl.de/

 ix

EPRUM metrics and INEX 2005
DRAFT

Benjamin Piwowarski

Centre for Web Research, Universidad de Chile
bpiwowar@dcc.uchile.cl

Abstract. Standard Information Retrieval (IR) metrics are not well suited for
new paradigms like XML or Web IR in which retrievable information units are
document elements or sets of related document. These units are neither prede-
fined nor independent, and the elements returned by IR systems may overlap and
contain near misses. Part of the problem stems from the classical hypothesis on
the user behaviour that do not take into account the structural or logical context
of document elements or the possibility of navigation between units. This paper
proposes a more realistic user model which encompasses a large variety of user
behaviours, makes explicit the hypothesis underlying the user on explicit formal
grounds. Based on this user model, we propose an extension of the probabilistic
precision-recall metric which allows coping with the different problems encoun-
tered with these new IR paradigms. In this paper, we present the EPRUM metric
used for evaluating the official submissions of INEX 2005. We also discuss the
implication of such a metric on several key problems of XML Information Re-
trieval: the notion of the ideal list, the problem of the overlap.

1 Introduction

This document describes the EPRUM metric in the context of XML Retrieval. EPRUM
is a metric that aims at providing a unique and comprehensive framework for the evalu-
ation of XML Retrieval systems1, by defining a precise user model and an extension of
the notion of precision at a given recall level. As Generalised Recall [3] and Precision-
Recall with User Modelling [4], EPRUM is based on a probabilistic model of the user
and of the relevance that are directly used while computing precision and recall. This
user model has parameters that can be tuned so that they mimic the “average” user
behaviour.

The EPRUM user and relevance model also has consequences (1) on the interpreta-
tion of the INEX scale and (2) on the definition of what is an ideal run and its relation
with the user model. With respect to the latter we define precisely what is user satis-
faction and what is its relationship with the INEX scale. With respect to the former,
diverging from our initial algorithm [3], we follow the one described in [1].

A note about relevance: we distinguish between the relevance of an element (the
element contains some relevant material) and the idealism of an element (the fact

1 but not limited to: the relevance model could be used in standard information retrieval and its
user model could be reused in passage retrieval, web retrieval, video retrieval, etc.

that the element is the unit the user wants to see, i.e. that it belongs to the ideal
recall base). In order to compute the ideal set, we used the algorithm described by G.
Kazai in [1].

2 The EPRUM metric

EPRUM is an extension of precision-recall. Precision is defined as the ratio of the
minimum number of ranks that a user has to consult in the list returned by an ideal
system and by the evaluated system, given that the user wants to see a given amount of
ideal units. At a given recall level l (0 < l ≤ 1), precision is defined formally as:

Precision(l) =

E




Achievement indicator
for a recall l ×

Minimum number of consulted list items
for achieving a recall l (over all lists)

Minimum number of consulted list items
for achieving a recall l (system list)




It is easy to see that this is just an alternative definition of the precision at a given
recall level. In classical IR, if a system retrieves A+B documents, where A is the num-
ber of relevant documents and B the number of not relevant documents, then an ideal
system would achieve the same recall with a list reduced to A documents. The above
definition would result in a precision A

A+B which is the exact definition of precision –
the ratio of the number of relevant documents to the number of retrieved documents.
The achievement indicator is used to set the precision to 0 if the recall level cannot be
achieved; this is also the classical definition of precision-recall.

The following example illustrates the definition of the EPRUM metric; let the list
returned by a system be the following:

a b c d e

where gray nodes are ideal units while white nodes are not ideal. The standard
definition of precision would assign a precision of respectively 1, 0.25 and 0 for recalls
of 1, 2 and 3 (or more). With the definition we chose, we get the same values (just forget
about the mathematical expectation for now!):

Recall 1 The minimum number of elements the user has to consult, over all possible
lists, is 1. The value is the same for the system list and the user was able to see one
element. Precision is 1.

Recall 2 The minimum number of elements the user has to consult, over all possible
lists, is 2. For the evaluated system, the user will have to consult the list until d -
that is, the minimum number of items that she has to consult is 4. Precision is 0.5.

Recall 3 In this case, the same process would give us a precision of 3/5 (because the
user has to consult the whole list), but has the recall cannot be attained by the user,
the achievement indicator is 0 and hence precision is also 0.

As shown in this example, this definition of precision-recall gives the same results as
the standard definition. The interest of this formulation is that we can define and use
more complex user and relevance models, and starting from the same definition, derive
a generalisation of precision-recall. It is possible to proof that, using the final formula
of EPRUM and settings its parameters so as to mimic the standard user behaviour in
“flat” IR, we get exactly the same result as trec_eval.

3 What is needed to compute EPRUM?

EPRUM can be computed given three different sets of parameters:

1. The probability that a user consults an element of the corpus. In standard IR, we
say that a user consults a document when she clicks on the link in the list returned
by the system. This probability reflects the fact that a user will have to click from
a result in the list returned by a the IR system and will eventually have look at the
element(s) that are associated with the list item. In the context of XML Retrieval,
we have to distinguish two cases: the Fetch&Browse task and the others. In the case
of the Focussed task, we suppose that a user will always consider an element after
having clicked on its surrogate in the list. In the case of the Fetch&Browse task, the
user model is more complex and is described latter.

2. The probability that a user browses from a considered element to any neighbour ele-
ment. That is, a user, when considering an element, will most probably look around
to its close context (i.e., in an XML documents this would be the previous siblings,
next siblings, ancestors, etc.). This behaviour is stochastic, that is defined by a prob-
ability, since we don’t expect all the users to behave the same. The probability of
browsing from a considered element x to an element y could be measured, in a user
experiment, by the proportion of users that would see y after having considered x.

3. The probability that a user finds a unit ideal. This probability is closely related to
the concept of quantisation but has a well defined meaning in EPRUM: In a user
experiment, its value would be the proportion of users that would find the given
unit ideal if they had exactly the same information need.

Unfortunately, we still don’t have enough user data to compute even an approximated
user model. Nevertheless it is possible to define simple yet realistic behaviours. In INEX
2005, we chose user models close to the ones implied by xCG (where only elements
overlapping with an ideal unit can be rewarded) and defined the following user models:

1. For the consideration,
Focussed In the focussed task, we made the hypothesis, like for standard IR, that a

user always considers elements pointed by list item. That is, if the third list item
is element-x then the user will consult the element-x (she will see the content
of this element). The probability of considering an element for the focussed
task is either 0 (the element in the not in the i first ranks) or 1 (the element is in
the first i list elements):

P
(
Ci,x′

)
=

{
1 if x′ is within the first i elements of the list
0 otherwise

Fetch&Browse Here, an item in the list is not anymore only one element but a set
of elements from the same document. We view this task as follows: The user
clicks on the document in the list. She is presented a document where system
selected elements are highlighted and ordered – imagine that there is button
that can focus the user window on each selected element in turn. The user then
begins to see the first ranked element, then the second, etc. for a given article.
We make the hypothesis that the probability that the user keeps on consulting
the list of elements depends on the amount of irrelevant material contained in
the previous consulted elements – this is somehow similar to the T2I (tolerance
to irrelevance) user model [2]. That is, the probability that the user keeps on
going after having consulted an element in the document directly depends on
the element overlap with the ideal elements. For an element ranked i within a
document group, the probability that the user considers it is defined as:

P
(
Ci,x j

)
= P

(
Ci,x j−1

)
×

(
k +(1− k)× size of intersection with ideal elements

size of the element

)

where P
(
Ci,x−1

)
= 1 by definition.

The coefficient k is the minimum probability for a user to consider the next
element in the list. For INEX 2005, we set k to 0.8. For example, if the three first
elements, say of size 10 characters, returned for an article have no intersection
with an ideal element, the probability that the user considers the second one is
0.8 + 0.2×0 = 0.8, that she considers the third one is 0.8× (0.8 + 0.2×0) =
0.64, etc. Note that a run that returns only elements within (or equal to) ideal
targets have their probability of considering an element always equal to 1. In
this case (and only in this case), the order among elements within the article
doesn’t change the performance of the system with respect to this instantiation
of EPRUM parameters.

2. For the browsing or navigational behaviour, we chose a simple user model – the
user, from a considered element, can go up or down. We call this behaviour “hi-
erarchic”: The proportion of users that navigate from an element to one of its de-
scendant, or from an element of its ancestor, is equal to the ratio of the sizes of the
elements:

P(x→ y) =





size of y
size of x if y is an ancestor of x
size of y
size of x if x is an ancestor of y
0 otherwise

For instance, 30 % of the users would go from a section of size 10 its enclosing
paragraph of size 3. Note that more realistic user models, like the T2I one, could be
used. We chose this simple model because submitted runs were optimised for the
inex_eval or the XCG metrics which have an implicit user definition which is close
to the hierarchic behaviour.

3. For the idealism of an element, we used the Exh quantisation

P(x is ideal) =





0 if "too small"
0 if exhaustivity is 0
0.5 if exhaustivity is 1
1 if exhaustivity is 2

Note that when an element has a probability 0 of being ideal, it does not mean that a
system returning this element will not be rewarded because a user can still browse
to the ideal element. Note also that no “too small” element can be an ideal unit.
We interpret the probability that an element is ideal as the percentage of users that
would be satisfied by the element.

4 Examples

Document 1 Document 2

b

e f

a

d

h

i

k

n

g j

m l

Fig. 1. The example database, composed of two documents and twelve elements. Two elements
are highly exhaustive (b and h, with a black background) for the query and one of them is fairly
exhaustive (k). The size of each element is 1 + the size of its children (in an imaginary unit: this
could be for instance the number of words divided by 100): the size of e (f, h, m, k or l) is 1, the
size of b is 3, the size of a is 5, etc. The probability of navigating from an element to the other
being the ratio of sizes, the probability to navigate from f to b is for instance 1

3 .

We present in this section the evaluation of four lists for the Focussed (and SVCAS,
VVCAS) and Fetch&Browse tasks. We used a small database where only two (or three)
elements are ideal, as illustrated in Fig. 1.

The precision can be rewritten, for a given recall value r (r is the number of ideal
units the user wants to see):

Precision(r) = E
[

Minimum number of consulted list items
for achieving a recall l (over all lists)

]}
(E1)

× E




Achievement indicator
for a recall l

Minimum number of consulted list items
for achieving a recall l (system list)








(E2)

It can be shown that:

(E1) = ∑
rank i

i
(
P(F∗i ≥ r)−P(F∗i−1 ≥ r)

)

(E2) = ∑
rank i

1
r

(P(Fi ≥ r)−P(Fi−1 ≥ r))

where Fi (resp. F∗i) is the number of ideal elements found by the user after she
consulted the i first ranks of the system returned list (resp. the ideal list). If we consider
the classical case, where an ideal element is or not retrieved at each rank, then P(Fi ≥ r)
is either 0 or 1. In this case, it is easy to see that the expected value E1 (resp. E2) is the
actual value (or inverse value) of the rank where the rth ideal element has been retrieved.

4.1 Focussed and VVCAS, SVCAS

We use the following lists:

A List b,h,k: This is the ideal list, composed of the ideal elements - with the most ideal
first.

B List k, h, b: This is the ideal list, but ordered by increasing order of relevance
C List f, h, k: The list A but with b (first element) replaced by one of its child
D List h, f, k: The list D, swapping the two first elements

We assume that the probability that the user has seen more than one ideal element
before beginning to consult the list is 0; that is, P(F0 ≥ r) = 0 for r > 0. We then
distinguish two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75 % of the users –
there is a justification that we don’t present here):
Recall 1 (level 1/2) (E1) is 1; (E2) is resp. 1, 1

2 , 1× (1
3 − 0)+ 1

2 × (1− 1
3) = 2

3 ,
and 1 for lists A, B, C and D. Precision is 1, 1

2 , 2
3 , and 1.

Recall 2 (level 1) (E1) is 2; (E2) is resp. 1
2 , 1

3 , 1
2 × (1

3 −0) = 1
6 , and 1

6 for lists A,
B, C and D. Precisions are 1, 2

3 , 1
3 and 1

3 .
2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):

Table 1. Evolution of the different probabilities, with respect to the different lists (A, B, C, D)
for the Focussed, VVCAS, and SVCAS tasks. The three columns below probability P(Si,x) cor-
respond respectively to the probability that element a, b, or c is seen by the user after rank i. The
probability P2 (resp. P1) is the probability that the user found at least ... ideal elements after rank
i, given that she only is satisfied with elements at least highly (resp. fairly) exhaustive.

List (b,h,k): A List (k,h,b): B
P(Si,x) P2(Fi ≥) P1(Fi ≥) P(Si,x) P2(Fi ≥) P2(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3
1 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0
2 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

List (f,h,k) C List (b,i,k): D
P(Si,x) P2(Fi ≥) P1(Fi ≥) P(Si,x) P2(Fi ≥) P1(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3
1 1

3 0 0 1
3 0 1

3 0 0 1 0 0 1 0 1 0 0
2 1

3 1 0 1 1
3 1 1

3 0 1 1
3 0 1 1

3 1 1
3 0

3 1
3 1 1 1 1

3 1 1 1
3 1 1

3 1 1 1
3 1 1 1

3

Recall 1 (level 1/3) (E1) is 1; (E2) is resp. 1, 1, 1×(1
3 −0)+ 1

2 ×(1− 1
3) = 2

3 , and
1 for lists A, B, C and D. Precision is 1, 1, 2

3 , and 1.
Recall 2 (level 2/3) (E1) is 2; (E2) is resp. 1

2 , 1
2 , 1

2 × (1
3 −0)+ 1

3 × (1− 1
3) = 7

18 ,
and 7

18 for lists A, B, C and D. Precisions are 1, 1, 7
9 and 7

9 .
Recall 3 (level 1) (E1) is 3; (E2) is resp. 1

3 , 1
3 , 1

3 × (1
3 −0) = 1

9 , and 1
9 for lists A,

B, C and D. Precisions are 1, 1, 1
3 and 1

3 .

There is a way to combine the two sets of precisions that we do not describe here but
give an example instead. If a user wants to see more than two third of the ideal elements
for list B, then for 75 % of the users this means a precision of 2

3 and for 25 % of them
this means 1: Hence the precision of ˙.75× 5

6 + .25× 1 = .875. For the same list, if a
user wants to see between 1

2 (excluded) and 2
3 (included) of the ideal elements, then for

75 % of the users that means seeing 2 ideal elements with a precision 2
3 , and for 25 %

of the users that means seeing 2 ideal elements with a precision 1. Hence, a precision
of .75× 2

3 + .25×1 = .75.
The evaluations order the runs in an order which is appropriate: A has the maximum

score and C is worse than D (D and C have their two first list item swapped, and D has
a fully ideal element as its top ranked element). B, containing only ideal elements, is
overall better than C and D.

4.2 Fetch & Browse

We use the following lists:

A List D2[h,k] D1[b]: this is the ideal list

Table 2. Precision-recall for the Focussed, VVCAS, and SVCAS tasks. The precision for the four
lists and four recall intervals are shown. The line “correspondence” show what are the number of
ideal elements the user wants to see if (1) she considers that only elements with an exhaustivity 2
are ideal (2) she considers that elements with an exhaustivity at least 1 are ideal.

recall level]0, 1
3]] 1

3 , 1
2]] 1

2 , 2
3]] 2

3 ,1]
correspondence 1,1 1,2 2,2 2,3

A 1 1 1 1
B 0.63 0.63 .75 0.88
C 0.67 0.69 0.44 0.33
D 1 0.94 0.44 0.33

B List D1[b] D2[h,k]: the ideal list in reverse order
C List D2[i,k] D1[b]: the first document returned contains a near miss (i); as i is fully

specific (contained in an ideal element), the probability that the user consults the
next element (k) is 1.

D List D2[g,k] D1[b]: in this list, the first element of the first returned document is an
element that overlaps partially with an ideal element; hence, the user will consider
the element k of D2 with a probability inferior to 1. Said otherwise, not all the user
will continue to consult the highlighted elements within D2. The actual probability
that the user consults the element k is 0.8+0.2× 1

2 = 0.9 as one half of g overlaps
with h: At the first rank the user sees h with a probability .5, and k with a probability
.9. Another thing to note, is that if h and k satisfy the user, then she sees at first rank
at least one ideal element with a probability 1

2 × .9+ 1
2 × .1+ 1

2 × .9 = 1.9
2 , the three

terms of the sum being the case where (1) the user sees h and k, (2) the user sees k
but not h, and (3) the user sees k but not h.

Note also that the only real difference between lists C and D is that the first element is
not fully specific (because the same proportion of users will browse to h from element
g than from element i).

Like in the previous Section, we distinguish two cases:

1. If the user is satisfied with an element of exhaustivity at least 2 (75 % of the users –
there is a justification that we don’t present here):
Recall 1 (level 1/2) (E1) is 1; (E2) is resp. 1, 1, 1×(1

2 −0)+ 1
2 ×(1− 1

2) = 3
4 , and

3
4 for lists A, B, C and D. Precision is 1, 1, 3

4 , and 3
4 .

Recall 2 (level 1) (E1) is 2; (E2) is resp. 1
2 , 1

2 , 1
2 × (1

2 −0) = 1
4 , and 1

4 for lists A,
B, C and D. Precisions are 1, 1, 1

2 and 1
2 .

2. If the user is satisfied with an element of exhaustivity at least 1 (25 % of the users):
Recall 1 (level 1/3) (E1) is 1; (E2) is resp. 1, 1, 1, and 1× (1.9

2 − 0)+ 1
2 × (1−

1.9
2) = 3.9

4 for lists A, B, C and D. Precision is 1, 1, 1, and 3.9
4 .

Recall 2 (level 2/3) (E1) is 1; (E2) is resp. 1, 1
2 , 1× (1

2 − 0)+ 1
2 × (1− 1

2) = 3
4 ,

and 1× (.9
2 −0)+ 1

2 × (1.9
2 − .9

2) = 2.8
4 for lists A, B, C and D. Precisions are 1,

1
2 , 3

4 and 2.8
4 .

Table 3. Evolution of the different probabilities, with respect to the different lists (A, B, C, D) for
the Fetch and Browse tasks. The three columns below probability P(Si,x) correspond respectively
to the probability that element a, b, or c is seen by the user after rank i. The probability P2 (resp.
P1) is the probability that the user found at least ... ideal elements after rank i, given that she only
is satisfied with elements at least highly (resp. fairly) exhaustive.

List D2[h,k] D1[b]: A List D1[b] D2[h,k]: B
P(Si,x) P2(Fi ≥) P1(Fi ≥) P(Si,x) P2(Fi ≥) P2(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

List D2[i,k] D1[b]: C List D2[g,k] D1[f]: D
P(Si,x) P2(Fi ≥) P1(Fi ≥) P(Si,x) P2(Fi ≥) P1(Fi ≥)

rank b h k 1 2 1 2 3 b h k 1 2 1 2 3
1 0 1

2 1 1
2 0 1 1

2 0 0 1
2 .9 1

2 0 1.9
2

.9
2 0

2 1 1
2 1 1 1

2 1 1 1
2 1 1

2 .9 1 1
2 1 1.9

2
.9
2

Recall 3 (level 1) (E1) is 2; (E2) is resp. 1
2 , 1

2 , 1
2 ×(1

2 −0) = 1
4 , and 1

2 ×(.9
2 −0) =

.9
4 for lists A, B, C and D. Precisions are 1, 1, 1

2 and .9
2 .

Using the same technique that in the previous section, we know combine the precisions
for these two sets of users.

Table 4. Precision-recall for the list A-D (Fetch&Browse). The precision for the four lists and
four recall intervals are shown. The line “correspondence” show what are the number of ideal
elements the user wants to see if (1) she considers that only elements with an exhaustivity 2 are
ideal (2) she considers that elements with an exhaustivity at least 1 are ideal.

recall level]0, 1
3]] 1

3 , 1
2]] 1

2 , 2
3]] 2

3 ,1]
correspondence 1,1 1,2 2,2 2,3

A 1 1 1 1
B 1 .88 .88 1
C .81 .75 .56 .50
D .81 .74 .55 .49

The evaluations are as expected; list A has the maximum score, followed by list
B (where the two documents were swapped). Then list C is superior to D, although
very close: the difference lies in that the user did not continue to explore the document
as the first element, for list D, was not fully specific.

5 Discussion

In this article, we presented the EPRUM metric and how it was used in INEX 2005
to evaluate participant submissions. EPRUM is a generalisation of precision-recall. For
instance, it reduces to standard recall-precision if browsing between elements is not
allowed and element relevance is binary.

Most metrics used to compare the performance of semi-structured document search
engines rely – sometimes implicitly – on a simplistic user behaviour: The user is sup-
posed to consult exclusively the elements of the list returned by the engine. This user
model is no more adapted to recent IR tasks like XML. In particular it does not allow
considering user ability to navigate between elements, using the list as entry points to
the information she seeks.

EvalJ

EPRUM is implemented in the EvalJ software, along with all the other metrics of INEX.
It can be downloaded from this URL:
http://evalj.sourceforge.net http://evalj.sourceforge.net

References

[1] G. Kazai and M. Lalmas. Notes on what to measure in inex. In A. Trotman, M. Lalmas, and
N. Fuhr, editors, Proceedings of the INEX 2005 Workshop on Element Retrieval Methodol-
ogy. University of Otago, Univerisity of Glasgow, Information Retrieval Festival, 2005.

[2] G. Kazai, M. Lalmas, and A. P. Vries. The overlap problem in content-oriented XML re-
trieval evaluation. In Proceedings of the 27th annual international conference on Research
and development in information retrieval, pages 72–79, Sheffield, UK, July 2004. ACM
Press.

[3] B. Piwowarski and P. Gallinari. Expected ratio of relevant units: A measure for structured
information retrieval. In N. Fuhr, M. Lalmas, and S. Malik, editors, INitiative for the Evalua-
tion of XML Retrieval (INEX). Proceedings of the Second INEX Workshop, Dagstuhl, France,
Dec. 2003.

[4] B. Piwowarski, P. Gallinari, and G. Dupret. An extension of precision-recall with user mod-
elling (PRUM): Application to XML retrieval. submitted for publication, 2005.

HiXEval: Highlighting XML Retrieval

Evaluation

Jovan Pehcevski and James A. Thom

School of CS and IT, RMIT University, Melbourne, Australia
{jovanp, jat}@cs.rmit.edu.au

Abstract. This paper describes our proposal for an alternative XML
retrieval evaluation that is solely based on the highlighted relevant text.

1 Introduction

How to properly evaluate the XML retrieval effectiveness is still an open research
problem. INEX, as in previous years, is used as arena to investigate the behaviour
of a variety of metrics. However, unlike in previous years, a new set of official
metrics is adopted in INEX 2005, which belong to the eXtended Cumulated Gain
(XCG) family of metrics [5, 6].

The following three metrics are the official INEX 2005 metrics used to mea-
sure the retrieval effectiveness of submitted runs:

1. nxCG – for a given rank r, nxCG[r] measures the relative gain a user has
accumulated up to that rank, compared to the gain they could have accu-
mulated if the system had produced the optimal ranking.

2. ep/gr (effort-precision/gain-recall) – measures the amount of relative effort
(as the number of visited ranks) a user is required to spend compared to
the effort they could have spent when inspecting an optimal ranking for a
cumulated gain level.

3. Q and R – modified normalised cumulated gain measures which employ bonus
gain functions that directly incorporate the rank position of the cumulated
gain level.

The three official INEX 2005 metrics are explained in detail by Kazai and
Lalmas [4].

In an effort to simplify the XML retrieval evaluation, we propose to solely
incorporate the knowledge of the highlighted information for a given INEX topic.
To obtain this knowledge, we use the statistics stored in the INEX 2005 relevance
judgements gathered during the highlighting assessment task at INEX 2005.

The highlighting task is as follows: first, for a returned article the assessor
is asked to highlight all its relevant content. Second, after the assessment tool
automatically identifies the elements that enclose the highlighted content, the
assessor is asked to judge the level of exhaustivity of these elements, and of all
their ancestors and descendants. Last, based on the highlighted text, the level of

<file collection="ieee" name="co/2000/r7108">

<element path="/article[1]" E="1" size="13556" rsize="5494"/>

<element path="/article[1]/bdy[1]" E="1" size="9797" rsize="4594"/>

<element path="/article[1]/bdy[1]/sec[1]" E="1" size="1301" rsize="409"/>

<element path="/article[1]/bdy[1]/sec[2]" E="1" size="2064" rsize="2064"/>

<element path="/article[1]/bdy[1]/sec[2]/st[1]" E="?" size="30" rsize="30"/>

<element path="/article[1]/bdy[1]/sec[4]/p[1]" E="1" size="731" rsize="731"/>

<element path="/article[1]/bm[1]/app[1]" E="1" size="2085" rsize="900"/>

<element path="/article[1]/bdy[1]/sec[6]/ip1[1]" E="1" size="706" rsize="177"/>

</file>

Fig. 1. A sample from the INEX 2005 CO topic 203 relevance judgements for the
relevant file co/2000/r7108. For each judged element, E shows the value for exhaustivity
(with possible values ?, 1 and 2), size denotes the element size (measured as total
number of contained words), while rsize shows the actual number of words highlighted
as relevant by the assessor.

specificity is computed automatically as a ratio of highlighted to fully contained
text.

Table 1 shows a sample of relevance judgements obtained for the INEX 2005
CO topic 203. For each judged element, E shows the exhaustivity value of the
element (with possible values ?, 1 and 2), size denotes the total number of words
contained by the element, while rsize shows the actual number of highlighted
words by the assessor.

One approach of measuring the relevance of an element is to combine values
obtained from the two INEX relevance dimensions. For example, if the observed
value for E is 1 and both values for size and rsize are the same, the element is
deemed as highly specific but only partially exhaustive. A quantisation function
is then used to combine these two values into a number that is subsequently used
to reflect the relevance of the element. However, the official INEX 2005 metrics
treat each element with an E value of ? as non-relevant, which means that these
‘too small’ elements do not bring any gain for the retrieval evaluation. We argue
that a system-oriented evaluation metric should also take these elements into
account, particularly because they do contain highlighted (and thus relevant)
information.

We contend that the purpose of the XML retrieval task is to find elements
that contain as much relevant information as possible, without also containing
a significant amount of non-relevant information. Therefore, to measure the ex-
tent to which an XML retrieval system returns relevant information, we follow
an approach that only takes into account the amount of highlighted text in a
retrieved element, without considering the E value of that element. We propose
HiXEval (pronounced hi–ex–eval) – an alternative evaluation metric for XML
retrieval that is based on the traditional definitions of precision and recall which

have been extended to include the knowledge obtained from the INEX 2005
highlighting assessment task.

In INEX 2004, the set-based overlap was used as an indicator of the level of
overlap between the returned elements [2]. In this paper we describe four overlap
indicators, of which three are derived from the set-based overlap. We believe that
by having more than one indicator of overlap, the nature of the overlap problem
can be understood better.

The remainder of this paper is organised as follows. In Section 2 we provide a
brief description of our hybrid XML retrieval approach that is used to generate
the INEX 2005 runs. Samples of these runs are used as preliminary examples in
this paper. In Section 3 we provide a formal definition of our alternative INEX
2005 evaluation metric, and provide some preliminary observations of what is
measured. In Section 4 we describe the four overlap indicators, which aid in
better understanding of the nature of the overlap problem. In Section 5, by
using the alternative INEX 2005 metric, we evaluate the retrieval effectiveness
of our official INEX 2005 runs for each retrieval strategy in the INEX 2005 CO+S

sub-task. We conclude in Section 6 by outlining possible avenues for future work.

2 Description of the hybrid XML retrieval approach

In this section we provide a very brief description of our hybrid XML retrieval
approach used to generate the INEX 2005 runs. For further details see our INEX
2005 ad hoc paper [8].

The system we use in INEX 2005 follows a hybrid XML retrieval approach,
combining information retrieval features from Zettair1 (a full-text search engine)
with XML-specific retrieval features from eXist2 (a native XML database). The
hybrid approach can be seen as a “fetch and browse” [1] XML retrieval approach,
since full articles estimated as likely to be relevant to a query are first retrieved
by Zettair (the fetch phase), and then the most specific elements within these
articles are extracted by eXist (the browse phase) [10].

Three similarity measures are currently implemented in Zettair, each based
on one of the following three information retrieval models: the vector-space
model, the probabilistic model, and the language model. For the fetch phase
of our hybrid system, we investigate which of the three information retrieval
models (PCosine, Okapi, or Dirichlet) yields best effectiveness for full article
retrieval.

To identify and rank the appropriate granularity of elements to return as
answers, we use a retrieval module that utilises the structural information in
the eXist list of extracted elements. Our retrieval module presents what we call
Coherent Retrieval Elements (CREs) as final answers. For the browse phase
of our hybrid system, we investigate which combining choice – among the two
ways for identifying CREs (nCRE and oCRE) and the two XML-specific heuristics

1 http://www.seg.rmit.edu.au/zettair/
2 http://exist-db.org/

Article nCRE answer element T-matches P-length F-frequency

co/2000/r7108 /article[1]/bdy[1]/sec[2] 3 3 9
co/2000/r7108 /article[1]/bdy[1] 3 2 31
co/2000/r7108 /article[1] 3 1 39
co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 2 4 2
co/2000/r7108 /article[1]/bm[1]/app[1] 2 3 8
co/2000/r7108 /article[1]/bdy[1]/sec[1] 2 3 5
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 1 4 2
Table 1. Ranked list of nCRE elements using the TPF heuristic combination for article
co/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

for ranking the CREs ((TPF and PTF2)) – yields best effectiveness for element
retrieval.

To identify the appropriate element granularity, two types of answer elements
are returned by our retrieval module: oCRE and nCRE. The oCRE answer elements
typically represent less specific elements, with the expectation that they would
provide better context for the contained text than that provided by more specific
elements. The nCRE answer elements, on the other hand, additionally include
most specific (leaf) elements as answers, with the expectation that these newly
included elements would also allow for more focused retrieval.

With the TPF ranking heuristic, first the CREs are sorted in a descending
order according to the number of distinct query terms a CRE contains (the more
distinct query terms it contains, the higher its rank). Next, if two CREs contain
the same number of distinct query terms, the one with the longer length of its
absolute path is ranked higher (which ensures that more specific elements are
preferred over less specific ones). Last, if the lengths of the two absolute paths
are also the same, the CRE with more frequent query term appearances is ranked
higher than the CRE where query terms appear less frequently. The final answer
list when the TPF ranking heuristic is used is shown in Table 1.

With PTF2, the CREs are first sorted in a descending order according to the
length of the absolute path of a CRE (where the longer CRE path results in a
higher rank, although the CREs containing exactly one query term are moved
at the end of the ranked list). Next, if the absolute path lengths of two CREs
are the same, the one that contains more distinct query terms is ranked higher.
Last, if it also happens that both numbers of distinct query terms are the same,
the CRE with more frequent query term appearances is ranked higher. The final
answer list when the PTF2 ranking heuristic is used is shown in Table 2.

3 HiXEval – an alternative metric for XML retrieval

evaluation

The HiXEval metric credits systems for retrieving elements that contain as much
highlighted (relevant) textual information as possible, without also containing a

Article nCRE answer element P-length T-matches F-frequency

co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 4 2 2
co/2000/r7108 /article[1]/bdy[1]/sec[2] 3 3 9
co/2000/r7108 /article[1]/bm[1]/app[1] 3 2 8
co/2000/r7108 /article[1]/bdy[1]/sec[1] 3 2 5
co/2000/r7108 /article[1]/bdy[1] 2 3 31
co/2000/r7108 /article[1] 1 3 39
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 4 1 2
Table 2. Ranked list of nCRE elements using the PTF2 heuristic combination for article
co/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

significant amount of non-relevant information. Therefore, to measure the extent
to which an XML retrieval system returns relevant information, we only take
into account the amount of highlighted text in a retrieved element, without
considering the exhaustivity value of that element. We propose to extend the
traditional definitions of precision and recall as follows.

Precision =
amount of relevant information retrieved

total amount of information retrieved

Recall =
amount of relevant information retrieved

total amount of relevant information

For each element e that belongs to a ranked list of elements returned by
the system for an INEX topic, we denote rsize(e) as the number of highlighted
(relevant) words in e, and size(e) as the total number of words contained by
e. Three distinct scenarios are possible for each element e that belongs to this
ranked list:

1. e is a not-yet-seen element (NS);
2. e has been fully seen previously (FS), and
3. e is an element-part (EP), which has been in part seen previously.

To measure the amount of retrieved relevant information from an element e

at a given rank r, a relevance value function prer(e) is defined as follows.

prer(e) =































rsize(e)
size(e) if e is NS

(1 − α) · rsize(e)
size(e) if e is FS

α ·

rsize(e)−
∑

e
′

rsize(e′)

size(e) + (1 − α) · rsize(e)
size(e) if e is EP

where e′ represents an already retrieved element, descendant of e, which appears
before r in the ranked list (if any).

The function prer(e) is used to ensure that, to achieve a precision gain at
rank r, the retrieved element e needs to contain as little non-relevant informa-

tion as possible. The parameter α is a weighting factor, and it represents the
importance of retrieving non-overlapping elements in the ranked list. Setting α
to 1 ensures that the system will only be credited for retrieving relevant infor-
mation that has not been previously retrieved by other overlapping elements.
On the other hand, setting α to 0 ensures that the system is always credited for
retrieving relevant information, regardless of whether the same information has
already been retrieved.

To measure the amount of relevant information retrieved from an element e

at a given rank r, a relevance value function recr(e) is defined as follows.

recr(e) =



























rsize(e) if e is NS

(1 − α) · rsize(e) if e is FS

α ·

(

rsize(e) −
∑

e′

rsize(e′)

)

+ (1 − α) · rsize(e) if e is EP

The function recr(e) is used to ensure that, to achieve a recall gain at rank r,
the retrieved element e needs to contain as much relevant information as possible.
The parameter α is used for the same purpose of indicating the importance of
retrieving non-overlapping elements as with the prer(e) function.

Let Trel be the total amount of relevant information for an INEX topic (if
α = 1, then this is the number of highlighted words across all documents; if
α = 0, then this is the number of highlighted words across all elements). Given
the above definitions of the two relevance value functions, we define precision
and recall at a given rank r as follows:

Precision@r =

r
∑

i=1

prei(e)

r

Recall@r =

r
∑

i=1

reci(e)

Trel

To combine both values for precision and recall into a single value for a given
rank r, we define the F-measure (the harmonic mean) as follows.

F@r =
2

1
Precision@r

+ 1
Recall@r

Precision@r Recall@r F@r
Run 1 3 5 7 1 3 5 7 1 3 5 7 iAP nAP

nCRE-TPF 1.00 0.44 0.26 0.19 0.38 1.00 1.00 1.00 0.55 0.61 0.42 0.32 0.73 0.69
nCRE-PTF2 0.25 0.56 0.44 0.31 0.03 0.57 1.00 1.00 0.06 0.57 0.61 0.48 0.54 0.47

Table 3. Evaluation results with using HiXEval for two INEX 2005 CO run samples.
Value 1 was used for α, which gives a value of 5494 for Trel. The best results for each
measure are shown in bold.

By comparing the F@r values obtained from different systems, it would be
possible to see which system yields the best trade-off between precision and recall
for a given rank. That is, in line with our previous argument, it would be possible
to see which system is more capable of retrieving as much relevant information

as possible, without also retrieving a significant amount of non-relevant – or even
redundant – information.

3.1 Preliminary experiments

To test the proposed metric, we evaluate results obtained from two samples
taken from two of our INEX 2005 runs: nCRE-TPF and nCRE-PTF2. The first
sample uses the TPF ranking heuristic to present the resulting elements (shown
in Table 1), while the second uses the PTF2 ranking heuristic (shown in Table 2).
We use the relevance judgements shown in Fig. 1 as a recall-base in this example.

Table 3 shows evaluation results with using HiXEval for the two run sam-
ples. The value for parameter α is set to 1, which means that overlap between
retrieved elements is considered. The value for Trel in this case is 5494, reflect-
ing the total number of highlighted words that need to be retrieved to find all
the relevant information. In addition to the measures explained previously, we
also report values for iAP and nAP, which represent the interpolated average
precision (calculated at 11 recall points) and non-interpolated average precision
(calculated at each natural recall point), respectively.

We observe that the run sample that retrieves more general elements early
in the ranking (TPF) produces better recall for all ranks, and it is also better
on average than the run sample that retrieves less general elements first (PTF2).
However, its precision quickly drops after a few elements are retrieved, since in
this case all the relevant information has already been retrieved previously, so
the system is not credited for retrieving the same information again. The sys-
tem using the PTF2 ranking heuristic, on the other hand, retrieves new relevant
information at each rank, resulting in increased precision and recall. As shown
in the table, the trade-off between precision (retrieving as little non-relevant
information as possible) and recall (retrieving as much relevant information as
possible) is correctly captured by the F-measure, which produces higher values
for the PTF2 run sample after five elements are returned.

Table 4 shows evaluation results when the value for parameter α is set to 0,
which means that overlap between retrieved elements is not considered. The

Precision@r Recall@r F@r
Run 1 3 5 7 1 3 5 7 1 3 5 7 iAP nAP

nCRE-TPF 1.00 0.62 0.51 0.55 0.14 0.84 0.92 0.99 0.25 0.72 0.66 0.71 0.66 0.63
nCRE-PTF2 0.25 0.56 0.49 0.55 0.01 0.22 0.57 0.99 0.02 0.31 0.53 0.71 0.52 0.49

Table 4. Evaluation results with using HiXEval for two INEX 2005 CO run samples.
Value 0 was used for α, which gives a value of 14399 for Trel. The best results for each
measure are shown in bold.

value for Trel in this case is 14399, reflecting the total number of (overlapping)
highlighted words contained within all the relevant elements for this topic. We
observe that the TPF run sample consistently produces better scores, irrespective
of which measure is used. Ignoring overlap between retrieved elements, therefore,
does not seem to properly reflect the actual performance of the two run samples.

4 Measuring Overlap

When measuring the retrieval performance of each submitted run, INEX also re-
ports the observed level of overlap between the returned elements. In INEX 2004,
the set-based overlap was used as an indicator of the level of overlap between
the returned elements [2]. As currently defined, for a set of retrieved elements it
measures the percentage of elements that either contain or are contained by at
least one other element in the set. However, Hiemstra and Mihajlovic [3] argue
that the set-based overlap appears to be a somewhat unstable measure, and that
a probabilistic overlap measure could be a better indicator of the observed level
of overlap. To support their argument for a probabilistic overlap measure, they
refer the following example: Consider the set of 1500 retrieved elements, of which
1499 are non-overlapping, and there is only one element that fully contains each
of the 1499 elements (we call this set as Set 1500). According to its current def-
inition, the set-based overlap would be 100%, which does not correctly capture
the nesting relationships among these elements.

We describe four different ways of measuring overlap [9], of which three are
derived from the set-based overlap. They are defined as follows.

1. Overall overlap (O-overlap), which is identical to the set-based overlap as
defined previously;

2. Ascendants overlap (A-overlap), which for a set of retrieved elements mea-
sures the percentage of elements that contain at least one other element in
the set;

3. Descendents overlap (D-overlap), which for a set of retrieved elements mea-
sures the percentage of elements that are contained by at least one other
element in the set; and

4. Probabilistic overlap (P-overlap), which for a set of retrieved elements mea-
sures the probability that two randomly chosen elements from the set overlap
with each other.

Overlap measure (%)
Set O-overlap A-overlap D-overlap P-overlap

(@5) (@5) (@5) (@5)

Set A 100.00 40.00 80.00 60.00
Set B 80.00 20.00 60.00 30.00

Set 1500 100.00 0.07 99.93 0.13

Table 5. Overlap values at five elements retrieved for three element sets, when four
different overlap measures apply.

Consider the two sets of retrieved elements shown in Tables 1 and 2, respec-
tively. The two sets, which we name Set A and Set B, are drawn from two INEX
2005 CO runs that use different ranking heuristics (TPF and PTF2). We apply
the four overlap indicators, as defined above, to measure the level of overlap in
the following three cases: Two cases when each of the two sets, Set A and Set

B, is considered individually, and a case when only Set 1500 is considered.

Table 5 shows the overlap values at five elements retrieved (@5) for each of
these three cases, when four different overlap measures apply. We observe that
the O-overlap measure constantly produces high overlap values, irrespective of
which set is used. On the other hand, both A-overlap and D-overlap can be seen
as useful, informative complements to O-overlap. Indeed, D-overlap provides
information about the proportion of elements that are contained by at least
one other element in the set, whereas A-overlap indicates how these contained
elements are distributed among the containing ancestors (which corresponds to
the number of nesting layers in the hierarchy). For example, the lower A-overlap
value for Set B (20% compared to 40% for Set A) indicates that the distribution
of overlapping elements for Set B is likely to be less hierarchical than that for
Set A (which is actually the case). This is particularly evident in the case of
Set 1500, where the observed A-overlap value is 0.07% – a very low value
that confirms the flat inner distribution of the 1499 elements in the only one
containing element.

Table 5 also shows that, although the P-overlap measure exhibits rather dif-
ferent behaviour than any of the other three measures, it still appears to correctly
capture the nature of overlap when both sets A and B are considered individu-
ally: Indeed, the probability of randomly choosing two overlapping elements is
lower for Set B than for Set A (30% compared to 60%). However, an inherent
property of P-overlap is that when a set of elements that belong to different
files is considered (which is usually the case with submitted runs), P-overlap
typically reports a low overlap value, since for such sets there are many possi-
ble combinations of randomly choosing two elements, but few of them actually
consider elements that belong to the same file (such that there is a possibility
for them to overlap). Nevertheless, the P-overlap measure still seems to be a
reliable overlap indicator in cases where the overlapping elements belong to the
same file. In the case of Set 1500, for example, the observed P-overlap value

is 0.13% – a value far lower than the one observed when using the O-overlap

measure.

The above examples clearly show that more than one overlap indicator needs
to be used if the nature of overlap is to be understood better. The three overlap
indicators, O-overlap, A-overlap, and D-overlap, have also been chosen to be
used as official INEX 2005 overlap indicators.

5 Experiments and results

In this section, we present evaluation results of our submitted INEX 2005 runs
obtained from HiXEval for each retrieval strategy in the CO+S sub-task. We
set the value of α to 1 and report a range of F-measure values, along with
the values for iMAP and nMAP, which represent the interpolated mean average
precision (calculated at 11 recall points) and non-interpolated mean average
precision (calculated at each natural recall point), respectively.

Three retrieval strategies are explored in the CO+S sub-task at INEX 2005:
Thorough, Focused, and FetchBrowse [7]. We use different variations of HiXEval
for each of these three strategies. For example, for the Focused strategy we use
a HiXEval variation which does not tolerate retrieving overlapping elements,
regardless of whether the retrieved element has been seen fully or in part. On the
other hand, for the FetchBrowse strategy we use a HiXEval variation which does
not tolerate retrieving elements that are not properly grouped by an article. In
both cases, such retrieved elements are regarded as non-relevant elements, which
is subsequently reflected in the evaluation scores. In the following we present the
performance results of our runs for each of the three strategies.

5.1 Thorough and Focused retrieval strategies

The evaluation results of our INEX 2005 CO+S runs for the Thorough strategy
are shown in the upper part of Table 6. At 500 or less elements returned, better
system performance is achieved with returning oCRE answer elements than with
returning the nCRE elements. Similar behaviour is observed for the Focused

retrieval strategy (shown in the lower part of Table 6). In fact, we observe 16%
relative iMAP performance improvement when oCRE elements are returned for
both retrieval strategies.

For the Thorough strategy at ten or less returned elements, the system per-
formance is higher when using the TPF ranking heuristic than when using PTF2,
although when retrieving more than ten elements we observe better performance
with the PTF2 ranking heuristic. The two mean average precision values also con-
firm that better overall performance is achieved with the PTF2 ranking heuristic.

The above findings show that, to gain best retrieval value for the Thorough

retrieval strategy under HiXEval, an XML retrieval system first needs to identify
all the contextual elements that may represent relevant answers, and then retrieve
the most specific among them.

F@r
Run 5 10 15 25 50 100 500 1000 1500 iMAP nMAP

Thorough

nCRE-PTF2 0.043 0.061 0.075 0.093 0.108 0.107 0.079 0.061 0.050 0.112 0.122
nCRE-S-PTF2 0.101 0.127 0.129 0.112 0.109 0.094 0.065 0.049 0.039 0.134 0.161

nCRE-TPF 0.066 0.071 0.072 0.068 0.068 0.066 0.038 0.027 0.021 0.087 0.082
nCRE-S-TPF 0.116 0.127 0.126 0.103 0.091 0.075 0.042 0.027 0.020 0.122 0.137

oCRE-PTF2 0.052 0.075 0.094 0.121 0.130 0.127 0.083 0.060 0.045 0.131 0.135
oCRE-S-PTF2 0.106 0.127 0.132 0.125 0.118 0.101 0.068 0.048 0.037 0.140 0.165

Focused

nCRE-PTF2-NO 0.043 0.065 0.090 0.108 0.131 0.143 0.102 0.079 0.057 0.132 0.179
nCRE-S-PTF2-NO 0.105 0.124 0.132 0.121 0.116 0.111 0.079 0.059 0.043 0.145 0.199

nCRE-TPF-NO 0.083 0.099 0.118 0.131 0.153 0.155 0.094 0.053 0.036 0.149 0.185
nCRE-S-TPF-NO 0.130 0.148 0.147 0.132 0.130 0.120 0.073 0.042 0.029 0.156 0.200

oCRE-PTF2-NO 0.064 0.095 0.128 0.154 0.164 0.150 0.099 0.064 0.045 0.152 0.198
oCRE-S-PTF2-NO 0.110 0.130 0.144 0.140 0.131 0.112 0.077 0.050 0.035 0.147 0.199

Table 6. Evaluation results of our INEX 2005 CO+S runs for the Thorough (upper part)
and Focused (lower part) retrieval strategies, when using the HiXEval metric. For each
retrieval strategy, the best results under each measure are shown in bold.

For the Focused retrieval strategy at 100 or less returned elements, we ob-
serve that the TPF ranking heuristic performs better than PTF2. In this case
better overall performance is also achieved with TPF. Thus, to gain best re-
trieval value for the Focused retrieval strategy under HiXEval, the system needs
to identify and retrieve non-overlapping, contextual, and less specific elements.
This is in contrast with our finding for the Focused retrieval strategy when the
nxCG evaluation metric is used, where the best system performance is achieved
by using nCRE answer elements with the PTF2 ranking heuristic [8].

We investigate the usefulness of using structural hints in the +S topics by
comparing the performances of the CO+S runs that ignore and strictly interpret
these hints, respectively. As shown in Table 6, each of the three +S runs performs
consistently better than its corresponding CO run at 15 or less elements returned,
irrespective of the retrieval strategy used. Interestingly, we also observe that
all the three +S runs produce higher mean average precision values than their
corresponding CO runs.

A useful feature of the HiXEval metric is that it allows a seamless compar-
ison between the performance of runs used in different retrieval strategies. For
example, by comparing each Focused run with its corresponding Thorough run,
it is possible to determine which retrieval strategy brings better gain in retriev-
ing relevant information. As shown in Table 6, each CO and +S run used in the
Focused retrieval strategy performs consistently better than its corresponding
run used in the Thorough strategy. The latter finding shows that the HiXEval

metric is capable of penalising systems that retrieve redundant relevant informa-

F@r
Run 5 10 15 25 50 100 500 1000 1500 iMAP nMAP

FetchBrowse-D

nCRE-Okapi-PTF2 0.153 0.141 0.137 0.127 0.104 0.069 0.020 0.010 0.007 0.128 0.101
nCRE-PCosine-PTF2 0.145 0.151 0.153 0.133 0.105 0.072 0.021 0.010 0.007 0.130 0.097
nCRE-Dirichlet-PTF2 0.136 0.137 0.134 0.127 0.100 0.068 0.020 0.010 0.007 0.117 0.099

FetchBrowse

nCRE-Okapi-PTF2 0.043 0.061 0.075 0.093 0.108 0.107 0.079 0.061 0.050 0.112 0.122
nCRE-S-Okapi-PTF2 0.101 0.127 0.129 0.112 0.109 0.094 0.065 0.049 0.039 0.134 0.161

nCRE-PCosine-PTF2 0.026 0.052 0.067 0.087 0.091 0.100 0.076 0.060 0.049 0.096 0.105
nCRE-S-PCosine-PTF2 0.094 0.110 0.109 0.110 0.098 0.098 0.062 0.048 0.040 0.124 0.137

nCRE-Dirichlet-PTF2 0.037 0.059 0.077 0.087 0.108 0.109 0.080 0.061 0.050 0.108 0.125
nCRE-S-Dirichlet-PTF2 0.077 0.117 0.125 0.116 0.107 0.093 0.062 0.048 0.040 0.130 0.154

Table 7. Evaluation results of our INEX 2005 CO+S runs for the FetchBrowse-D (upper
part) and FetchBrowse (lower part) retrieval strategies, when using the HiXEval metric.
For each retrieval strategy, the best results under each measure are shown in bold.

tion – a feature that has also been identified as useful by users in interactive XML
retrieval experiments [11]. With their current setup, none of the official INEX
2005 metrics are capable of comparing runs across different retrieval strategies.

5.2 FetchBrowse retrieval strategy

Table 7 shows evaluation results of our INEX 2005 CO+S runs for the FetchBrowse
retrieval strategy.

The upper part of Table 7 shows results when only full articles represent
units of retrieval. We observe that at five articles returned Okapi produces the
best performance, whereas PCosine is dominant when returning ten or more
articles. At 1000 and more returned articles, the system performance is identical
regardless of which of the three measures is used. Overall, PCosine seems to
perform best for full article retrieval, followed by Okapi and Dirichlet. This
is in contrast with our reported finding when inex eval is used with strict
quantisation function, where best overall system performance is achieved with
the Okapi similarity measure [8].

The lower part of Table 7 shows results for the FetchBrowse retrieval strategy
when elements are units of retrieval, where we investigate the extent to which
each of the three similarity measures influences the system performance. We
observe that Okapi yields best element retrieval at 50 or less elements returned,
while Dirichlet is dominant when more than 50 elements are returned. Overall,
Okapi seems to perform best for element retrieval, followed by Dirichlet and
PCosine.

When structural constraints in the +S topics are strictly followed, we observe
a constant increase in precision at 50 or less elements returned, irrespective of the

similarity measure used. As in the previous two retrieval strategies, all the three
+S runs produce higher mean average precision values than their corresponding
CO runs. This finding shows that using structural hints in the INEX +S topics is
also a useful feature for the FetchBrowse retrieval strategy as it is for the other
two strategies.

6 Discussion

The simple idea behind HiXEval could also be applied to the XCG family of
metrics. Indeed, for the Focused retrieval task the XCG metric first needs to build
the so-called ‘ideal recall-base’, which is subsequently used with the full recall-
base to evaluate the XML retrieval effectiveness [5]. Instead the currently used
methodology to select the ideal nodes, we propose an alternative methodology
where each relevant element may be assigned a relevance score that represents
the F-measure value obtained solely for that element. As an example, the score
of each element that belongs to the recall-base sample shown in Fig. 1 can be
determined by first separately calculating the values for precision and recall for
that element in isolation, and then by combining the two values into an F-
measure value. For instance, for the element /article[1]/bdy[1] we calculate
the following:

Precision[bdy] = 4594/9797 = 0.47 (the fraction of retrieved relevant in-

formation obtained solely from that element), Recall[bdy] = 4594/5494 = 0.84
(the fraction of relevant information retrieved obtained from the element), and
finally F[bdy] = 2 ∗ 0.47 ∗ 0.84/(0.47 + 0.84) = 0.60 (the harmonic mean). The
relevant elements could then be sorted in a descending order according to their
assigned harmonic mean values. Finally, to identify the ideal elements, a top-
down filtering approach could be applied to remove all the overlapping elements.

As a result of applying the above methodology, we identify the two ele-
ments, /article[1]/bdy[1] and /article[1]/bm[1]/app[1], as our ideal el-
ement nodes for our recall-base sample shown in Fig. 1.

In this paper we have only reported experiments with HiXEval using our
submitted INEX 2005 runs for the CO+S sub-task. We plan to extend this work
by generating performance numbers for our submitted CAS runs. Naturally, we
also aim to evaluate and report the performance of all the official INEX 2005
runs submissions.

Our preliminary results of using HiXEval with α = 0 suggest that the overlap
could be seen as a controlled variable when measuring the retrieval performance;
that is, it would be interesting to see the extent to which a change in the observed
level of overlap influences the observed system performance. We also plan to
pursue this investigation further as part of our future work.

References

1. Y. Chiaramella, P. Mulhem, and F. Fourel. A model for multimedia information
retrieval. Technical report, FERMI ESPRIT BRA 8134, University of Glasgow,
April 1996.

2. A. de Vries, G. Kazai, and M. Lalmas. Evaluation metrics 2004. In INEX 2004

Workshop Pre-Proceedings, Dagstuhl Castle, Germany, December 6-8, 2004, pages
249–250, 2004.

3. D. Hiemstra and V. Mihajlovic. The simplest evaluation measures for XML in-
formation retrieval that could possibly work. In Proceedings of the INEX 2005

Workshop on Element Retrieval Methodology, pages 6–13, Glasgow, UK, 2005.
4. G. Kazai and M. Lalmas. INEX 2005 evaluation metrics. 2005.

Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.
5. G. Kazai and M. Lalmas. Notes on what to measure in INEX. In Proceedings of the

INEX 2005 Workshop on Element Retrieval Methodology, pages 22–38, Glasgow,
UK, 2005.

6. G. Kazai, M. Lalmas, and A. P. de Vries. The overlap problem in content-
oriented XML retrieval evaluation. In Proceedings of the ACM-SIGIR Interna-

tional Conference on Research and Development in Information Retrieval, pages
72–79, Sheffield, UK, 2004.

7. M. Lalmas. INEX 2005 retrieval task and result submission specification. 2005.
Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.

8. J. Pehcevski, J. A. Thom, and S. M. M. Tahaghoghi. RMIT University at INEX
2005. In Pre-Proceedings of the Fourth INEX Workshop, Dagstuhl, Germany,

November 28–30, 2005, 2005.
9. J. Pehcevski, J. A. Thom, S. M. M. Tahaghoghi, and A.-M. Vercoustre. Relevance

for XML retrieval: The user perspective. (submitted for publication).
10. J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. Hybrid XML retrieval: Combining

information retrieval and a native XML database. Information Retrieval, 8(4):571–
600, 2005.

11. J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. Users and assessors in the context
of INEX: Are relevance dimensions relevant? In Proceedings of the INEX 2005

Workshop on Element Retrieval Methodology, pages 47–62, Glasgow, UK, 30 July
2005.

XCG Overlap at INEX 2004

Alan Woodley Shlomo Geva

School of Data Communications and Software Engineering

Queensland University of Technology

PO Box 2434, Brisbane 4001, Queensland
{ap.woodley@student.qut.edu.au,s.geva@qut.edu.au}

Abstract. Since 2002, the INitiative for the Evaluation of XML Retrieval (INEX) has set the

benchmark for rigorous evaluation of XML information retrieval (XML-IR) systems and ap-

proaches. INEX has based much of its evaluation methodology on that of earlier text retrieval

IR workshops, in particular TREC. However, INEX evaluation was modified for the specific

requirements of XML-IR since unlike traditional IR, which is concerned with document re-

trieval, XML-IR is concerned with the retrieval of the most suitable document component in

response to a query. It is much closer to passage retrieval, but is oriented towards XML docu-

ments with rich structural semantics. Under the current INEX metric, systems are evaluated

against a complete recall base, which includes many overlapping elements. The treatment of

overlapping elements has been the most contentious issue at INEX, with the accepted conjec-

ture been that the system rank of participants would dramatically change if the metric treated

overlap differently. In this paper, we show that contrary to popular belief the treatment of over-

lap does not dramatically affect system ranks. This has significant implications for the interpre-

tation of INEX performance comparisons.

1 Introduction

In XML-IR the unit of retrieval is not a document but an XML element within the

document tree. The objective of XML-IR is to identify the optimal unit of retrieval in

response to a user query. Therefore, it is necessary to evaluate all Candidate Units of

Retrieval (CUR) within a document. Overlap between CURs exists when an element is

deemed relevant, as well as one or more of its ancestors/descendents. For instance, a

section may be deemed relevant as well as several paragraphs within the section.

Usually only a few of these units (or even only one unit) may be deemed to be optimal

units of retrieval, but any of these units may be deemed to be a suitable unit of re-

trieval. The evaluation of a particular retrieval run (a list of ranked result elements in

response to a query) necessitates the creation of a recall base that contains all suitable

elements and consequently many overlapping elements.

A problem with evaluation arises when a system returns relevant overlapping ele-

ments. The traditional evaluation procedures reward the return of all relevant results

because overlap does not usually arise in document based collections (except in the

case of finding several copies of the same document). However, overlap exists in

XML-IR due to the inherent hierarchal nature of XML documents.

Since 2002, the INitiaive for the Evaluation of XML Retrieval (INEX) has been the

benchmark for evaluating the performance of XML-IR systems. The existing INEX

metric, INEX 2002, was based on the traditional evaluation models, and consequently

systems that return overlapping elements are rewarded for each returned element.

From the end-user perspective, overlap is not a desirable property since the same

information may be returned multiple times. Therefore, a number of systems that

participate in INEX attempt to pick only the optimal units of retrieval within a docu-

ment. This creates two classes of systems: some that are concerned with focused re-

trieval, and others that are concerned with thorough retrieval. When evaluated with

the INEX 2002 metric, which does not consider overlap, the focused systems are dis-

advantaged. Since 2002 there have been 5 different metrics proposed, each with 8

different quantisations. The objective of these new metrics was to devise a scheme that

will not reward systems that return overlapping results, or conversely, will not penal-

ize systems that return overlap-free results. Previous work has indicated that there is

little correlation between the rank of systems using the new metrics and the existing

INEX 2002 metric. However, it is unknown to the extent (if any) that the new metrics

penalise systems with overlapping results and reward systems that return overlap-free

results.

We have taken a different approach to investigating overlap. Instead of deriving a

new metric to handle overlap, we explicitly remove overlap from all INEX 2004 sub-

missions and then re-evaluate them using the XCG metric, thereby allowing us to

investigate the extent that the XCG metric penalises high-overlap systems. We also re-

evaluate the original INEX 2004 submissions with the XCG metric, and compare the

two systems ranks. These two system ranks are analogues to the focused and thorough

tasks at INEX 2005. This comparison allows us to determine if the better scoring

systems are retrieving more relevant results and therefore have a superior retrieval

strategy, or if they are being unfairly rewarded via overlap. While others have previ-

ously compared the effect of explicitly removing overlap from a single submission

[14], this is the first time that such a comprehensive analysis of INEX submissions has

been conducted. It is also the first time that non-overlapping systems will be compared

with other non-overlapping systems. Our results indicate that the XCG metric does

penalise against system with overlapping systems. Furthermore, while that removing

overlap from systems may change their rank, the difference is not as dramatic as first

thought.

The rest of the paper is organised as follows: Section 2 provides an overview of

XML-IR and INEX. Section 3 details the nature of overlap within XML-IR including

metrics used to overcome the overlap ‘problem’. Section 4 describes our own solution

for dealing with overlap. Finally, Section 5 presents the results of our experiments.

2 INitiative for the Evaluation of XML Retrieval (INEX)

2.1 Task and Overview

The main task for traditional information retrieval systems is to present a list of ranked

documents in response to a user query. However, the separation of content and struc-

ture in XML documents allows XML-IR users to receive results more precise than the

document level. Therefore, the task of XML-IR systems is two-fold: first the ability to

locate elements that satisfy the user’s information need, and second the ability to

choose the most appropriately sized elements. In practice, this means that users of

XML-IR systems might retrieve a relevant section, sub-section or paragraph from a

relevant document, rather than the document itself. The user may explicitly request the

unit of retrieval (Content and Structure queries) or it may be completely up to the

retrieval engine to determine the appropriate unit (Content Only queries).

The INitiative for the Evaluation of XML Retrieval (INEX) provides the infra-

structure for the evaluation of XML-IR systems via a large XML test collection and

appropriate scoring mechanisms. INEX, like TREC, uses an evaluation process based

upon the Cranfield methodology [2]. Each year the following process is followed:

1. Participants contribute topics (end user queries) and a subset of topics is selected

for evaluation. INEX uses two types of topics to evaluate systems, Content Only

and Content and Structure.

2. The topics are distributed to participants who execute them on their search engines

and for each topic produce a ranked list of results. The top 1500 ranked results for

each topic are combined into a single submission file. Participates are allowed to

send between 1 and 3 submissions per task to INEX.

3. The top n (currently set to 100) results from each submission are pooled together,

disassociated from their originating submissions and duplicates are eliminated. This

is called the system pool.

4. The results in the system pool are individually judged by the original topic con-

tributors, who act as end users manually assessing the relevance of the results.

When judges find a document with a relevant result they must search the document

for other relevant results, thereby increasing the size of the pool.

5. Using the assessment set and a standard evaluation module, the participating search

engines are scored in terms of performance (recall/precision) using seven variations

of the INEX 2002 metric. The scores are aggregated to produce an official Aggre-

gate Mean Average Precision (AMAP), which is used to officially rank systems.

6. Results are returned to participants who then write and present papers at the work-

shop.

Historically, the method of system pooling and relevance assessments has not been

without criticism. The two main criticisms have been how the results are chosen for

assessments, and how to handle the subjective nature of relevance. In INEX, the as-

sessed results are chosen by a modified version of system pooling. Unfortunately,

pooling inherently misses some relevant results because all results ranked below the

pool depth are automatically regarded as irrelevant. However, Research by Zobel [25]

concluded that while a system pool will only find about 70% of the relevant results in

a collection the impact of system ranking was not significant. The second criticism is

that a result’s relevance is subjective to whoever is judging the result. Evidence has

shown inconsistent judgements made between several people and even by the same

person. However, research by Voorhees [24] concluded that although judges may

disagree, it does not significantly affect system ranking.

However, the hierarchical nature of XML documents raises several issues in re-

gards to XML-IR evaluation that are not found in the evaluation of traditional docu-

ment retrieval systems. In particular, both the notion of relevance and the metrics used

to evaluate the performance of systems are different. We will explore these differences

in the next section.

2.2 Relevance in XML-IR

Central to the evaluation of IR systems is the (fuzzy) concept of relevance. There is no

single and precise definition of relevance accepted by the IR community [5], even

though there has been several attempts to define one [4,16,20]. Such a definition is

beyond the scope of this paper. Therefore, we will use the same definition of rele-

vance as is used during the INEX evaluation phase, where a result is judged relevant if

it fulfils the information need of the user.

Key to this definition of relevance is end user relevance assessments. Like TREC,

INEX uses an evaluation process similar to the one used during the Cranefield ex-

periments. However, several changes were needed in order to adapt to the specific

needs of XML-IR system evaluation. Theses changes relate to how judges assess the

relevancy of individual results. Here we outline those changes and compare them with

traditional document retrieval.

1. First, relevance is judged over two dimensions: exhaustiveness and specificity.

Exhaustiveness measures how much a particular result fulfils the user’s information

need, that is, how thoroughly a particular result discusses the subject matter of the

query. In comparison specificity measures the focus of a particular result, that is,

how much relevant information in comparison with irrelevant information is con-

tained in the element. In document retrieval, relevance tends to be judged on a sin-

gle dimension.

2. Second, relevancy is not independent between ancestors and descendants.

Imagine we have a result with the logical XPath article/body/section/paragraph.

Logically each ancestor node contains all the information contained in each of its

descendant nodes. So if a judge assessed the left element (paragraph) as relevant,

then its parent node (section) contains at least the same information, then it must

also be relevant. This logic traverses up the XML tree to the root node (article).

INEX handles this constraint by enforcing that every relevant child node must have

a relevant parent node, and consequently, that every relevant parent must have at

least one relevant child. In contrast, in traditional IR relevancy of results (docu-

ments) is said to be independent.

3. Third, element relevance is non-binary. As one propagates up an XML tree, the

values for the two dimensions are bound to change. In general, ancestor nodes tend

to be more exhaustive than descendants since they contain a larger amount of in-

formation. Conversely, descendant nodes tend to be more specific than ancestors

since they contain less irrelevant information. Hence, in structured retrieval rele-

vance needs to be evaluated on a graded rather than binary scale. In INEX, each

dimension is judged as one of four values from zero to three where zero is judged

as irrelevant. Also, an element cannot have a zero score in one dimension and a

non-zero score in another. This produces nine possible levels of relevancy, plus a

single non-relevant level. In contrast, most document-level evaluation methods tend

to classify documents as either relevant or irrelevant.

2.3 The INEX Metrics

Once the results in the system pool are judged by the assessors. The assigned scores,

along with a set of metrics, are used to evaluate the performance of retrieval systems.

Most of the metrics used in XML-IR are based upon those already used in traditional

IR, albeit slightly modified to handle the nature of XM-IR. Since the inception of

INEX, several metrics have been either used or proposed, however, in this section we

will only describe the INEX 2002 metric (also called the inex_eval metric), since it

was the official metric used in INEX 2004. Discussion of other metrics will be saved

until later in the paper.

2.3.1 INEX 2002 Metric. The INEX 2002 metric has been used since the inception

of INEX. It is based upon Raghavan et al.’s [19] precall measure and calculates the

probability that a result viewed by a user is relevant (P(rel|retr)):

(1) P(rel|retr)(x) = x ·n

 x · n + esl x · n

where esl denotes the expected search length [2],that is, the expected number of ir-

relevant results retrieved until an arbitrary recall point of x is achieved, and n is the

total number of relevant results for a particular topic. A more detailed account of the

metric can be found in the proceedings of first INEX workshop [9].

To apply the INEX 2002 metric the two dimensions must be mapped to a single

relevance value by applying a quantisation function fquant(e,s) : ES [0,1]. INEX

currently employs a number of quantisation functions each representing a different

user preference. Some of the quantisations score results on a purely binary scale, such

as the strict metric, while others score results based on their degree of relevance such

as the generalised and specificity-orientated generalised metrics. A detailed descrip-

tion of all the quantisation can be found in [13] and [7].

The main criticism of the INEX 2002 metric is that it ignores overlap. The next

section describes overlap in more detail and outlines the reasons why some research-

ers perceive it as a problem.

3 The Problem with Overlap

3.1 Problem Description

Imagine the following results (all from the same document) are retrieved in response

to a user query:

1. /article[1]/sec[1]

2. /article[1]/sec[1]/p[1]

3. /article[1]/sec[2]

4. /article[1]/sec[1]/p[2]

5. /article[1]

6. /article[1]/sec[2]/p[1]

7. /article[1]/sec[2]/p[2]

This list is a good example of overlap, where a result has a descendant or ancestor

in the same list. Pehcecski et al. [17] identified two ways to measure overlap:

• set-based overlap, which for a set of results measures the percentage of re-

sults that have an ancestor in the set; and

• list-based overlap, which for a set of results measures the percentage of re-

sults for which there exists a higher ranked ancestor in the set.

Since the inception of INEX, overlap has been a controversial issue. Overlap has

been criticised both from a user-orientated standpoint since it lacks a faithful end-user

model, and from theoretical standpoint as it produces an over-populated recall base.

Here, we summarise the previous research on this topic, outline some of the criticisms

of overlap and present our responses.

3.1.1 Lack of Faithful End User Model. Due to the hierarchal nature of XML

documents, relevance between nodes in a single document tree (XPath) is not inde-

pendent. So, if a leaf is found relevant then so are all its ancestors, up to and including

the root node. However, the INEX 2002 metric assumes result independence; thereby,

rewarding each result solely by its quantised relevance value, regardless of if the re-

sults descendant or ancestor has already been rewarded. Hence, it is possible for the

information contained in single leaf node to be rewarded multiple times.

There is no argument that overlap boosted the retrieval scores of systems, since

most of the better performing systems at INEX have milked a lot of their results (for

instance: in 2004 9 out of the top 10 systems in the CO task had overlap of over

70%). However, overlap alone does not guarantee that a retrieval system will achieve

a high score, since it will only benefit systems that retrieve relevant results in the first

place. So, just as a system will be rewarded multiple times for a relevant leaf node it

will be penalised multiple times for retrieving irrelevant leaf nodes.

However, Trotman [22] argues that overlapping results are of no intrinsic value to

users since it may not provide the users any new relevant information. This is a view

supported by the experiments of INEX interactive track [15,21]. It is important to

consider the needs of end-users when rewarding systems since the entire INEX meth-

odology is based on the needs of end users. For example, INEX topics are based upon

the type of queries commonly produced by end users. Secondly, during assessment

judges are instructed to act as end users when evaluating the relevancy of results. To

combat this problem some have proposed applying a user-based model into the

evaluation of XML-IR systems.

However, a central problem with user-based XML-IR evaluation is that a proper

understanding of the requirements of XML-IR users has not yet been formulated. Part

of this problem has been a notable lack of research in XML-IR (and IR in general)

devoted to user-based rather than laboratory-based (or batch) analysis. We already

know that in document retrieval the results of user-based evaluation can differ greatly

to the results of system-based evaluation [11, 23]. Therefore, one can argue that fur-

ther research on the precise needs of XML-IR users should be conducted before a

user-based model can fully be incorporated to the evaluation of XML-IR systems.

3.1.2 Overpopulated Recall Base. Recall-precision curves (RP curves) are a

standard measure of IR system performance. RP curves record the precision (number

if relevant results / number of retrieved results) of a retrieval system at various points

of recall (for example: 10%, 20%,…,100%). For each recall point, a retrieval system’s

precision value is set to a normalised score between 0 and 1. In essence, the

performance of retrieval systems are plotted against the performance of a perfect

retrieval system (called the ideal recall base). In general, the ideal recall base should

have a precision value of 1 for all recall points, however, this is not a situation that

occurs within the INEX 2002 metric.

As identified by Kazai et al. [12] there are two reasons for this anomaly. The first is

due to graded rather than binary relevance; however, the second reason is that the

ideal recall base is ‘over populated’, meaning that a ‘perfect’ submission would have

to return all relevant results, including those with overlap. Kazai et al. argue that this

behaviour is contrary to the task of XML retrieval and has led to skewed INEX RP

curves, with participants precision plotted at much lower values than the participants

at other workshops (for example: TREC, CLEF).

We have already addressed the first of Kazai et al.’s criticisms, and while their sec-

ond criticism is correct, it also warrants discussion. The discussion centres on the

purpose of RP curves for comparing the performance of systems. It is important to

understand that the scores presented in RP curves should be interpreted as relative

rather than absolute values. We know that the values in RP curves can change depend-

ing on the topics, collection and judges used at the various stages of evaluation [24].

However, as long as the ranking of participants does not significantly change, then the

RP curves and the metrics that produced them are valid for system comparison. Like-

wise, while INEX RP curves may appear to be plotted at lower values than those using

other datasets, as long as it does not affect the relative performance of systems then it

is also a valid method for comparing system performance.

3.2 Previous Solutions

The present solution to deal with overlap in XML-IR has been the derivation of new

metrics. These metrics, unlike the INEX 2002 metric, are designed to handle overlap

in various ways, so that systems with low overlap are not disadvantaged. Here we

describe these metrics, emphasising how each one handles overlapping results.

 3.2.1 INEX 2003 Metric. The INEX 2003 metric (also called inex_ng) was the first

metric designed to handle overlap by including both component size and overlap in

the definitions of recall and precision [8]. The metric uses the total size of results as its

basic parameter, as opposed to other metrics that measure the recall or precision after

a certain number of results. Overlap is measured by considering the increment in text

size of previously seen results. The metric has been criticised, first, because it does not

address the problem of an overpopulated recall base, second, because it assumes that

relevant information is distributed uniformly within a component and third, because it

treats the two relevance dimensions in isolation, even though the task definition states

that both are needed to properly identify the most appropriate unit of retrieval [13].

3.2.2 XCG Metric. The cumulated gain for XML (XCG) metrics [8] are an extension

of the cumulative gain (CG) metrics proposed by Järvelin and Kekäläinen [10]. The

CG metrics were designed to evaluate traditional information retrieval systems using

multi-graded, rather than binary, relevance values. For each rank in a results list, the

CG metric calculates the sum of relevance up to and including that rank of a results

list. It also produces and ideal gain vector derived from the full non-overlapping recall

base and sorted decreasingly by relevance. The normalised cumulated gain (nCG)

measure is calculated by dividing the CG vector with the ideal gain vector. The XCG

metrics extend the CG metrics by applying an INEX quantisation function [7] to the

results lists and full recall base to derive the ideal gain vector. While the XCG

managed to separate the user-behaviour model from the metric, the proper relevance

value function is still open to debate and as are the interpretation of the curves after

the actual and ideal CG curves meet.

3.2.3 PRUM Metric. The Precision-Recall with User Modelling[18] extends Ragha-

van’s [19] probabilistic precision-recall metrics to include users’ browsing behaviour.

PRUM eliminates independence between components on the same XPath, by allowing

users to consult the context (ancestors, descendants, siblings) of returned results.

PRUM defines users’ behaviour stochastically, by deriving the probability that a user

has seen a particular element. For example: if it is known that a user has seen a parent

result with probability 1, then the probability that the user has seen the result’s first

child is 0.95. The PRUM metric assumes an ideal results set and is defined as the

probability that a user sees a newly relevant element when consulting the context of

the retrieved element, while knowing that the user wants to see a given amount of

relevant units.

3.2.4 T2I Metric. The idea of the Tolerance to Irrelevance (T2I) metric [6] is to pro-

vide the user with a set of entry points into a document that is close to relevant infor-

mation. Starting at the entry point, the user reads (the portion of) the document until

the predefined tolerance to irrelevance (number of words or sentences) has been

reached, at which point the user moves onto the next result. T2I rewards systems that

return more specific elements since their entry point is more likely to be closer to

relevant information than large elements. In fact, the entry point for some large ele-

ment could be so far away from the relevant information that the tolerance to irrele-

vance is exhausted before the relevant information is reached. The problem of the

overpopulated recall base is eliminated by extending the definition of relevance to

include previously seen relevant results as irrelevant. T2I variants of other existing

evaluation metrics can be found in [6].

4 Our Solution

The central criticism of the INEX 2002 metric is that it ignores overlap by assuming

independence between ancestor and descendant nodes. It has been conjectured that

some systems exploit this feature by returning several nodes along an XPath, and

hence being (unfairly?) rewarded multiple times for the same piece of information.

The fact that the majority of the high scoring systems in INEX 2004 also had high

overlap, while the poorer scoring system also had low overlap has been provided as

evidence to support this conjecture. However, the following question remains un-

solved: did these high overlap system score highly because of overlapped results, or

because they had a better underlying retrieval algorithm that found more relevant

results than the low scoring systems?

In some ways, INEX’s use of the INEX 2002 metric has made answering this ques-

tion difficult since systems it compares systems with high overlap to those with little

or no overlap. The INEX 2002 metric is overlap positive, in that it inherently rewards

systems that return relevant overlapping elements, thereby penalising non-overlap

systems. Recently, researchers have tried to derive metrics that handle rather than

ignore overlap. These new metrics are in effect, implicitly removing overlap from the

submissions. However, it is not fully known if these metrics are overlap neutral,

thereby not penalising nor rewarding overlap, or if they are overlap negative, in that

they penalise overlap. Our approach is different. We explicitly remove overlap from

the submissions before the evaluation phase. By explicitly removing overlap our ap-

proach is overlap neutral. We used two techniques to remove overlap:

• Highest Rank (HR): where a result is removed from the list if it has a higher

ranked ancestor or descendant; and

• Leaves Only (LO): where a result is removed from the list if it has a higher

or lower ranked descendant.

So assuming that the following results list (introduced earlier and from the same

document) was submitted:

1. /article[1]/sec[1]

2. /article[1]/sec[1]/p[1]

3. /article[1]/sec[2]

4. /article[1]/sec[1]/p[2]

5. /article[1]

6. /article[1]/sec[2]/p[1]

7. /article[1]/sec[2]/p[2]

Applying the Highest Rank technique would produce:

1. /article[1]/sec[1]

2. /article[1]/sec[2]

While applying the Leaves Only technique would produce:

1. /article[1]/sec[1]/p[1]

2. /article[1]/sec[1]/p[2]

3. /article[1]/sec[2]/p[1]

4. /article[1]/sec[2]/p[2]

We performed these two techniques on all the INEX 2004 submissions to produce

two new sets of submissions. While previous work has been performed on removing

overlap from single submissions [14], this is the first time that such an extensive in-

vestigation has been performed on a large amount of submissions. We evaluated the

modified submissions using the recall-XCG metric using the standard parameters for

focused retrieval (that is overlap = on). Then we ranked each of the modified submis-

sion sets by decreasing order of Mean Average Precision (MAP) to produce modified

submission ranks. We also evaluated the original submissions using the recall-XCG

metric using the standard parameters for thorough retrieval (that is overlap = off).

While previous research has investigated the effect of evaluating INEX submissions

using variations of the XCG metric[12], those submissions contained a mixture of

high-overlap and low-overlapping system. This is the first time that submissions with

zero overlap are compared with each other.

Our experiments allow us to explore two unanswered questions. First, what to what

extent does the XCG metric penalise systems with overlapping results, thereby deter-

mining if the XCG metric is overlap negative or overlap neutral. And second, is there

a strong correlation between the original and overlap removed submissions. If the two

system ranks did not correlate then the high ranks achieved by the high scor-

ing/overlap systems were likely due to unfairly rewarding overlapped results. Alterna-

tively, if the systems ranks correlated then the high ranks achieved by the high scor-

ing/overlap systems were likely due to them retrieving more relevant results. The next

section presents the results of our experiments.

5 Results

5.1 Single Submission

Here we present the result of removing overlap from a single submission. First, we

produced a CO and CAS submission from our current version of GPX that contained

overlapping elements (i.e. a 2005 thorough submission) using the 2004 topic set. Then

we applied both the overlap removal techniques introduced above to produce highest

rank and leaves only versions of the submission. These algorithms removed overlap-

ping elements from the submissions, thereby, decreasing their run length. Then we

evaluated the submission using the recallXCG metric and sog quantisation, and re-

corded the MAP. Figures 1 and 2 present the ep/gr plots for our three submissions,

while tables 1 presents their MAP.

Fig. 1. CO SOG ER/GP Plot

Fig. 2. VVCAS SOG ER/GP Plot

Table 1. MAP SOG for Thorough and Overlap Reduced Submissions

 CO VCAS

Thorough 0.02393 0.02865

HighestRank 0.05358 0.06560

LeavesOnly 0.04319 0.07026

As the figures and table show, under the recall-XCG metric the thorough submis-

sion performs worse than the modified overlap removed submissions. This verifies

that the XCG metrics are overlap negative, and justifies our use of the overlap re-

moval algorithm as a precursor to systems rank comparison.

5.2 All Submissions

Here, we present the results of executing the overlap removal algorithms on all the

INEX 2004 submissions. As before, we removed overlap from the submissions and

then evaluated them with recall-XCG metric and sog quantisation. We also evaluated

the original submissions with the overlap parameter set to off. We noticed however,

that since more results would be removed from the systems with high original overlap

then this technique could be biased towards the original low overlap systems. As a

countermeasure, we executed the experiment multiple times using submissions with

smaller result lengths. Figures 3 – 10 present the rank comparison between the overlap

removed and original submissions at run lengths 100 and 1500. Tables 2 and 3 pre-

sents the rank correlations (Spearman-Rho and Kendall-Tau) between the overlap

removed and original systems at various run lengths.

HighestRank - CO - 50

0

10

20

30

40

50

60

70

80

u
c
a
lif

\1
.x

m
l

q
u
ta

u
\1

.x
m

l
u
c
a
lif

\0
.x

m
l

q
u
ta

u
\0

.x
m

l
q
u
ta

u
\2

.x
m

l
u
b
e
rk

e
le

y
\0

.x
m

l
rm

it
\0

.x
m

l
u
tw

e
n
te

\4
.x

m
l

u
tw

e
n
te

\0
.x

m
l

u
b
e
rk

e
le

y
\2

.x
m

l
u
c
a
lif

\2
.x

m
l

u
tw

e
n
te

\3
.x

m
l

u
ta

m
p
e
re

\2
.x

m
l

n
ils

\3
.x

m
l

m
a
x
p
la

n
c
k
\0

.x
m

l
m

a
x
p
la

n
c
k
\2

.x
m

l
a
is

tn
a
ra

\1
.x

m
l

n
ils

\5
.x

m
l

u
b
e
rk

e
le

y
\1

.x
m

l
u
ta

m
p
e
re

\0
.x

m
l

m
a
x
p
la

n
c
k
\1

.x
m

l
u
ta

m
p
e
re

\1
.x

m
l

u
o
ta

g
o
\0

.x
m

l
ir
it
\2

.x
m

l
n
ils

\1
.x

m
l

u
k
y
u
n
g
\1

.x
m

l
d
b
d
k
\1

.x
m

l
d
b
d
k
\0

.x
m

l
lm

u
\3

.x
m

l
lm

u
\2

.x
m

l
m

in
e
s
\1

.x
m

l
u
m

o
n
te

s
\0

.x
m

l
u
m

o
n
te

s
\4

.x
m

l
u
tr

e
c
h
t\
3
.x

m
l

lip
6
\3

.x
m

l
rm

it
\1

.x
m

l
u
a
m

s
te

rd
a
m

\1
.x

m
l

u
a
m

s
te

rd
a
m

\2
.x

m
l

ir
it
\5

.x
m

l
u
a
m

s
te

rd
a
m

\0
.x

m
l

c
m

u
\1

.x
m

l
b
o
rd

o
n
i\
1
.x

m
l

u
h
e
ls

in
k
i\
1
.x

m
l

u
k
y
u
n
g
\2

.x
m

l
u
w

a
te

rl
o
o
\2

.x
m

l
d
b
d
k
\2

.x
m

l
u
rg

u
\1

.x
m

l
u
w

a
te

rl
o
o
\1

.x
m

l
u
rg

u
\0

.x
m

l
u
h
e
ls

in
k
i\
2
.x

m
l

lip
6
\1

.x
m

l
u
w

a
te

rl
o
o
\0

.x
m

l
lip

6
\2

.x
m

l
ib

m
h
a
if
a
\0

.x
m

l
ib

m
h
a
if
a
\4

.x
m

l
ib

m
h
a
if
a
\3

.x
m

l
b
o
rd

o
n
i\
0
.x

m
l

c
m

u
\2

.x
m

l
c
m

u
\0

.x
m

l
u
k
y
u
n
g
\0

.x
m

l
u
h
e
ls

in
k
i\
0
.x

m
l

u
m

in
n
e

so
ta

\0
.x

m
l

u
m

o
n
te

s
\3

.x
m

l
b
o
rd

o
n
i\
2
.x

m
l

u
w

o
llo

n
g
a
n
g
\0

.x
m

l
ir
it
\4

.x
m

l
u
tr

e
c
h
t\
1
.x

m
l

u
tr

e
c
h
t\
5
.x

m
l

rm
it
\2

.x
m

l

Fig. 3. HighestRank - CO - 50

HighestRank -CO - 1500

0

10

20

30

40

50

60

70

80

ib
m

h
a
if
a
\3

.x
m

l
ib

m
h
a
if
a
\0

.x
m

l
u

a
m

s
te

rd
a
m

\1
.x

m
l

c
m

u
\0

.x
m

l
c
m

u
\2

.x
m

l
ib

m
h
a
if
a
\4

.x
m

l
q
u
ta

u
\1

.x
m

l
q
u
ta

u
\0

.x
m

l
q
u
ta

u
\2

.x
m

l
u
w

a
te

rl
o
o
\0

.x
m

l
u

a
m

s
te

rd
a
m

\0
.x

m
l

c
m

u
\1

.x
m

l
u
w

a
te

rl
o
o
\1

.x
m

l
u
b
e

rk
e
le

y
\0

.x
m

l
u
b
e

rk
e
le

y
\2

.x
m

l
u
tw

e
n
te

\3
.x

m
l

ir
it
\4

.x
m

l
ir
it
\5

.x
m

l
u
tw

e
n
te

\4
.x

m
l

u
tw

e
n
te

\0
.x

m
l

lip
6
\2

.x
m

l
rm

it
\0

.x
m

l
u
b
e

rk
e
le

y
\1

.x
m

l
lip

6
\1

.x
m

l
u
c
a
lif

\1
.x

m
l

lip
6
\3

.x
m

l
ir
it
\2

.x
m

l
u
ta

m
p
e
re

\2
.x

m
l

u
c
a
lif

\0
.x

m
l

u
c
a
lif

\2
.x

m
l

a
is

tn
a
ra

\1
.x

m
l

m
a
x
p
la

n
c
k
\2

.x
m

l
m

a
x
p
la

n
c
k
\0

.x
m

l
n
ils

\3
.x

m
l

b
o
rd

o
n
i\
0
.x

m
l

b
o
rd

o
n
i\
2
.x

m
l

b
o
rd

o
n
i\
1
.x

m
l

n
ils

\5
.x

m
l

m
a
x
p
la

n
c
k
\1

.x
m

l
u
ta

m
p
e
re

\0
.x

m
l

u
ta

m
p
e
re

\1
.x

m
l

u
w

a
te

rl
o
o
\2

.x
m

l
u

a
m

s
te

rd
a
m

\2
.x

m
l

u
k
y
u
n
g
\1

.x
m

l
u
m

o
n
te

s
\0

.x
m

l
rm

it
\1

.x
m

l
u
h
e
ls

in
k
i\
0
.x

m
l

u
o
ta

g
o
\0

.x
m

l
rm

it
\2

.x
m

l
u
m

o
n
te

s
\4

.x
m

l
n
ils

\1
.x

m
l

m
in

e
s
\1

.x
m

l
u
rg

u
\0

.x
m

l
u
h
e
ls

in
k
i\
1
.x

m
l

u
rg

u
\1

.x
m

l
d
b
d
k
\0

.x
m

l
u
h
e
ls

in
k
i\
2
.x

m
l

lm
u
\2

.x
m

l
lm

u
\3

.x
m

l
d
b
d
k
\1

.x
m

l
u
tr

e
c
h
t\
5
.x

m
l

u
m

o
n
te

s
\3

.x
m

l
u
m

in
n
e
s
o
ta

\0
.x

m
l

u
k
y
u
n
g
\2

.x
m

l
d
b
d
k
\2

.x
m

l
u
k
y
u
n
g
\0

.x
m

l
u
tr

e
c
h
t\
3
.x

m
l

u
w

o
llo

n
g

a
n
g
\0

.x
m

l
u
tr

e
c
h
t\
1
.x

m
l

Fig. 4. HighestRank - CO - 1500

LeavesOnly - CO - 50

0

10

20

30

40

50

60

70

80

u
c
a
lif

\1
.x

m
l

q
u
ta

u
\1

.x
m

l
u
c
a
lif

\0
.x

m
l

q
u
ta

u
\0

.x
m

l
q
u
ta

u
\2

.x
m

l
u
b
e
rk

e
le

y
\0

.x
m

l
rm

it
\0

.x
m

l
u
tw

e
n
te

\4
.x

m
l

u
tw

e
n
te

\0
.x

m
l

u
b
e
rk

e
le

y
\2

.x
m

l
u
c
a
lif

\2
.x

m
l

u
tw

e
n
te

\3
.x

m
l

u
ta

m
p
e
re

\2
.x

m
l

n
ils

\3
.x

m
l

m
a
x
p
la

n
c
k
\0

.x
m

l
m

a
x
p
la

n
c
k
\2

.x
m

l
a
is

tn
a
ra

\1
.x

m
l

n
ils

\5
.x

m
l

u
b
e
rk

e
le

y
\1

.x
m

l
u
ta

m
p
e
re

\0
.x

m
l

m
a
x
p
la

n
c
k
\1

.x
m

l
u
ta

m
p
e
re

\1
.x

m
l

u
o
ta

g
o
\0

.x
m

l
ir
it
\2

.x
m

l
n
ils

\1
.x

m
l

u
k
y
u
n
g
\1

.x
m

l
d
b
d
k
\1

.x
m

l
d
b
d
k
\0

.x
m

l
lm

u
\3

.x
m

l
lm

u
\2

.x
m

l
m

in
e
s
\1

.x
m

l
u
m

o
n
te

s
\0

.x
m

l
u
m

o
n
te

s
\4

.x
m

l
u
tr

e
c
h
t\

3
.x

m
l

lip
6
\3

.x
m

l
rm

it
\1

.x
m

l
u
a
m

s
te

rd
a
m

\1
.x

m
l

u
a
m

s
te

rd
a
m

\2
.x

m
l

ir
it
\5

.x
m

l
u
a
m

s
te

rd
a
m

\0
.x

m
l

c
m

u
\1

.x
m

l
b
o
rd

o
n
i\
1
.x

m
l

u
h
e
ls

in
k
i\
1
.x

m
l

u
k
y
u
n
g
\2

.x
m

l
u
w

a
te

rl
o
o
\2

.x
m

l
d
b
d
k
\2

.x
m

l
u
rg

u
\1

.x
m

l
u
w

a
te

rl
o
o
\1

.x
m

l
u
rg

u
\0

.x
m

l
u
h
e
ls

in
k
i\
2
.x

m
l

lip
6
\1

.x
m

l
u
w

a
te

rl
o
o
\0

.x
m

l
lip

6
\2

.x
m

l
ib

m
h
a
if
a
\0

.x
m

l
ib

m
h
a
if
a
\4

.x
m

l
ib

m
h
a
if
a
\3

.x
m

l
b
o
rd

o
n
i\
0
.x

m
l

c
m

u
\2

.x
m

l
c
m

u
\0

.x
m

l
u
k
y
u
n
g
\0

.x
m

l
u
h
e
ls

in
k
i\
0
.x

m
l

u
m

in
n
e
s
o
ta

\0
.x

m
l

u
m

o
n
te

s
\3

.x
m

l
b
o
rd

o
n
i\
2
.x

m
l

u
w

o
llo

n
g
a
n
g
\0

.x
m

l
ir
it
\4

.x
m

l
u
tr

e
c
h
t\

1
.x

m
l

u
tr

e
c
h
t\

5
.x

m
l

rm
it
\2

.x
m

l

Fig. 5. LeavesOnly - CO - 50

LeavesOnly - CO - 1500

0

10

20

30

40

50

60

70

80

ib
m

h
a
if
a
\3

.x
m

l
ib

m
h
a
if
a
\0

.x
m

l
u
a
m

s
te

rd
a
m

\1
.x

m
l

c
m

u
\0

.x
m

l
c
m

u
\2

.x
m

l
ib

m
h
a
if
a
\4

.x
m

l
q
u
ta

u
\1

.x
m

l
q
u
ta

u
\0

.x
m

l
q
u
ta

u
\2

.x
m

l
u
w

a
te

rl
o
o
\0

.x
m

l
u
a
m

s
te

rd
a
m

\0
.x

m
l

c
m

u
\1

.x
m

l
u
w

a
te

rl
o
o
\1

.x
m

l
u
b
e
rk

e
le

y
\0

.x
m

l
u
b
e
rk

e
le

y
\2

.x
m

l
u
tw

e
n
te

\3
.x

m
l

ir
it
\4

.x
m

l
ir
it
\5

.x
m

l
u
tw

e
n
te

\4
.x

m
l

u
tw

e
n
te

\0
.x

m
l

lip
6
\2

.x
m

l
rm

it
\0

.x
m

l
u
b
e
rk

e
le

y
\1

.x
m

l
lip

6
\1

.x
m

l
u
c
a
lif

\1
.x

m
l

lip
6
\3

.x
m

l
ir
it
\2

.x
m

l
u
ta

m
p
e
re

\2
.x

m
l

u
c
a
lif

\0
.x

m
l

u
c
a
lif

\2
.x

m
l

a
is

tn
a
ra

\1
.x

m
l

m
a
x
p
la

n
c
k
\2

.x
m

l
m

a
x
p
la

n
c
k
\0

.x
m

l
n
ils

\3
.x

m
l

b
o
rd

o
n
i\
0
.x

m
l

b
o
rd

o
n
i\
2
.x

m
l

b
o
rd

o
n
i\
1
.x

m
l

n
ils

\5
.x

m
l

m
a
x
p
la

n
c
k
\1

.x
m

l
u
ta

m
p
e
re

\0
.x

m
l

u
ta

m
p
e
re

\1
.x

m
l

u
w

a
te

rl
o
o
\2

.x
m

l
u
a
m

s
te

rd
a
m

\2
.x

m
l

u
k
y
u
n
g
\1

.x
m

l
u
m

o
n
te

s
\0

.x
m

l
rm

it
\1

.x
m

l
u
h
e
ls

in
k
i\
0
.x

m
l

u
o
ta

g
o
\0

.x
m

l
rm

it
\2

.x
m

l
u
m

o
n
te

s
\4

.x
m

l
n
ils

\1
.x

m
l

m
in

e
s
\1

.x
m

l
u
rg

u
\0

.x
m

l
u
h
e
ls

in
k
i\
1
.x

m
l

u
rg

u
\1

.x
m

l
d
b
d
k
\0

.x
m

l
u
h
e
ls

in
k
i\
2
.x

m
l

lm
u
\2

.x
m

l
lm

u
\3

.x
m

l
d
b
d
k
\1

.x
m

l
u
tr

e
c
h
t\

5
.x

m
l

u
m

o
n
te

s
\3

.x
m

l
u
m

in
n
e
s
o
ta

\0
.x

m
l

u
k
y
u
n
g
\2

.x
m

l
d
b
d
k
\2

.x
m

l
u
k
y
u
n
g
\0

.x
m

l
u
tr

e
c
h
t\

3
.x

m
l

u
w

o
llo

n
g
a
n
g
\0

.x
m

l
u
tr

e
c
h
t\

1
.x

m
l

Fig. 6. LeavesOnly - CO - 1500

HighestRank - CAS- 50

0

10

20

30

40

50

60

q
u
ta

u
\3

.x
m

l
q
u
ta

u
\4

.x
m

l
q
u
ta

u
\5

.x
m

l
u
tw

e
n
te

\2
.x

m
l

u
tw

e
n
te

\1
.x

m
l

u
c
a
lif

\3
.x

m
l

u
c
a
lif

\5
.x

m
l

u
c
a
lif

\4
.x

m
l

u
b
e
rk

e
le

y
\4

.x
m

l
m

a
x
p
la

n
c
k
\3

.x
m

l
lm

u
\1

.x
m

l
rm

it
\4

.x
m

l
rm

it
\3

.x
m

l
u
b
e
rk

e
le

y
\3

.x
m

l
u
ta

m
p
e
re

\5
.x

m
l

u
m

in
n
e
s
o
ta

\1
.x

m
l

u
k
y
u
n
g
\3

.x
m

l
ir
it
\3

.x
m

l
rm

it
\5

.x
m

l
u
ta

m
p
e
re

\4
.x

m
l

lm
u
\0

.x
m

l
lm

u
\4

.x
m

l
ir
it
\0

.x
m

l
u
tw

e
n
te

\5
.x

m
l

ib
m

h
a
if
a
\1

.x
m

l
u
ta

m
p
e
re

\3
.x

m
l

ib
m

h
a
if
a
\2

.x
m

l
ib

m
h
a
if
a
\5

.x
m

l
ir
it
\1

.x
m

l
lip

6
\0

.x
m

l
lip

6
\4

.x
m

l
lip

6
\5

.x
m

l
n

ils
\4

.x
m

l
m

in
e
s
\0

.x
m

l
u
m

o
n
te

s
\2

.x
m

l
c
m

u
\4

.x
m

l
n

ils
\0

.x
m

l
c
m

u
\3

.x
m

l
c
m

u
\5

.x
m

l
n

ils
\2

.x
m

l
u
a
m

s
te

rd
a
m

\3
.x

m
l

u
a
m

s
te

rd
a
m

\4
.x

m
l

u
a
m

s
te

rd
a
m

\5
.x

m
l

u
m

o
n
te

s
\5

.x
m

l
u
tr

e
c
h
t\

0
.x

m
l

u
tr

e
c
h
t\

2
.x

m
l

u
tr

e
c
h
t\

4
.x

m
l

a
is

tn
a
ra

\0
.x

m
l

a
is

tn
a
ra

\2
.x

m
l

a
is

tn
a
ra

\3
.x

m
l

u
m

o
n
te

s
\1

.x
m

l

Fig. 7. HighestRank - CAS - 50

HighestRank - CAS -1500

0

10

20

30

40

50

60

q
u
ta

u
\4

.x
m

l
q
u
ta

u
\3

.x
m

l
u
a
m

s
te

rd
a
m

\3
.x

m
l

q
u
ta

u
\5

.x
m

l
c
m

u
\5

.x
m

l
ib

m
h
a
if
a
\1

.x
m

l
ib

m
h
a
if
a
\2

.x
m

l
ir
it
\3

.x
m

l
u
tw

e
n
te

\2
.x

m
l

u
c
a
lif

\3
.x

m
l

u
a
m

s
te

rd
a
m

\5
.x

m
l

u
c
a
lif

\5
.x

m
l

u
c
a
lif

\4
.x

m
l

ib
m

h
a
if
a
\5

.x
m

l
lip

6
\0

.x
m

l
rm

it
\3

.x
m

l
u
tw

e
n
te

\1
.x

m
l

lip
6
\5

.x
m

l
ir
it
\1

.x
m

l
u
ta

m
p
e
re

\5
.x

m
l

u
b
e
rk

e
le

y
\4

.x
m

l
lip

6
\4

.x
m

l
rm

it
\4

.x
m

l
u
a
m

s
te

rd
a
m

\4
.x

m
l

u
m

in
n
e
s
o
ta

\1
.x

m
l

ir
it
\0

.x
m

l
u
b
e
rk

e
le

y
\3

.x
m

l
lm

u
\1

.x
m

l
m

a
x
p
la

n
c
k
\3

.x
m

l
n
ils

\2
.x

m
l

u
ta

m
p
e
re

\3
.x

m
l

c
m

u
\3

.x
m

l
u
ta

m
p
e
re

\4
.x

m
l

c
m

u
\4

.x
m

l
n
ils

\4
.x

m
l

m
in

e
s
\0

.x
m

l
rm

it
\5

.x
m

l
lm

u
\0

.x
m

l
lm

u
\4

.x
m

l
u
k
y
u
n
g
\3

.x
m

l
u
tr

e
c
h
t\
4
.x

m
l

u
tr

e
c
h
t\
0
.x

m
l

u
tr

e
c
h
t\
2
.x

m
l

u
tw

e
n
te

\5
.x

m
l

u
m

o
n
te

s
\2

.x
m

l
u

m
o
n
te

s
\5

.x
m

l
a
is

tn
a
ra

\2
.x

m
l

a
is

tn
a
ra

\3
.x

m
l

n
ils

\0
.x

m
l

u
m

o
n
te

s
\1

.x
m

l
a
is

tn
a
ra

\0
.x

m
l

Fig. 8. HighestRank - CO - 1500

LeavesOnly - CAS - 50

0

10

20

30

40

50

60

q
u
ta

u
\3

.x
m

l
q
u
ta

u
\4

.x
m

l
q
u
ta

u
\5

.x
m

l
u
tw

e
n
te

\2
.x

m
l

u
tw

e
n
te

\1
.x

m
l

u
c
a
lif

\3
.x

m
l

u
c
a
lif

\5
.x

m
l

u
c
a
lif

\4
.x

m
l

u
b
e

rk
e
le

y
\4

.x
m

l
m

a
x
p
la

n
c
k
\3

.x
m

l
lm

u
\1

.x
m

l
rm

it
\4

.x
m

l
rm

it
\3

.x
m

l
u
b
e

rk
e
le

y
\3

.x
m

l
u
ta

m
p
e
re

\5
.x

m
l

u
m

in
n
e
s
o
ta

\1
.x

m
l

u
k
y
u
n
g
\3

.x
m

l
ir
it
\3

.x
m

l
rm

it
\5

.x
m

l
u
ta

m
p
e
re

\4
.x

m
l

lm
u
\0

.x
m

l
lm

u
\4

.x
m

l
ir
it
\0

.x
m

l
u
tw

e
n
te

\5
.x

m
l

ib
m

h
a
if
a
\1

.x
m

l
u
ta

m
p
e
re

\3
.x

m
l

ib
m

h
a
if
a
\2

.x
m

l
ib

m
h
a
if
a
\5

.x
m

l
ir
it
\1

.x
m

l
lip

6
\0

.x
m

l
lip

6
\4

.x
m

l
lip

6
\5

.x
m

l
n
ils

\4
.x

m
l

m
in

e
s
\0

.x
m

l
u
m

o
n
te

s
\2

.x
m

l
c
m

u
\4

.x
m

l
n
ils

\0
.x

m
l

c
m

u
\3

.x
m

l
c
m

u
\5

.x
m

l
n
ils

\2
.x

m
l

u
a
m

s
te

rd
a
m

\3
.x

m
l

u
a
m

s
te

rd
a
m

\4
.x

m
l

u
a
m

s
te

rd
a
m

\5
.x

m
l

u
m

o
n
te

s
\5

.x
m

l
u
tr

e
c
h
t\
0
.x

m
l

u
tr

e
c
h
t\
2
.x

m
l

u
tr

e
c
h
t\
4
.x

m
l

a
is

tn
a
ra

\0
.x

m
l

a
is

tn
a
ra

\2
.x

m
l

a
is

tn
a
ra

\3
.x

m
l

u
m

o
n
te

s
\1

.x
m

l

Fig. 9. LeavesOnly - CAS - 50

LeavesOnly - CAS -1500

0

10

20

30

40

50

60

q
u
ta

u
\4

.x
m

l
q
u
ta

u
\3

.x
m

l
u

a
m

s
te

rd
a
m

\3
.x

m
l

q
u
ta

u
\5

.x
m

l
c
m

u
\5

.x
m

l
ib

m
h
a
if
a
\1

.x
m

l
ib

m
h
a
if
a
\2

.x
m

l
ir
it
\3

.x
m

l
u
tw

e
n
te

\2
.x

m
l

u
c
a
lif

\3
.x

m
l

u
a
m

s
te

rd
a
m

\5
.x

m
l

u
c
a
lif

\5
.x

m
l

u
c
a
lif

\4
.x

m
l

ib
m

h
a
if
a
\5

.x
m

l
lip

6
\0

.x
m

l
rm

it
\3

.x
m

l
u
tw

e
n
te

\1
.x

m
l

lip
6
\5

.x
m

l
ir
it
\1

.x
m

l
u
ta

m
p
e
re

\5
.x

m
l

u
b
e

rk
e
le

y
\4

.x
m

l
lip

6
\4

.x
m

l
rm

it
\4

.x
m

l
u

a
m

s
te

rd
a
m

\4
.x

m
l

u
m

in
n
e
s
o
ta

\1
.x

m
l

ir
it
\0

.x
m

l
u
b
e

rk
e
le

y
\3

.x
m

l
lm

u
\1

.x
m

l
m

a
x
p
la

n
c
k
\3

.x
m

l
n
ils

\2
.x

m
l

u
ta

m
p
e
re

\3
.x

m
l

c
m

u
\3

.x
m

l
u
ta

m
p
e
re

\4
.x

m
l

c
m

u
\4

.x
m

l
n
ils

\4
.x

m
l

m
in

e
s
\0

.x
m

l
rm

it
\5

.x
m

l
lm

u
\0

.x
m

l
lm

u
\4

.x
m

l
u
k
y
u
n
g
\3

.x
m

l
u
tr

e
c
h
t\
4
.x

m
l

u
tr

e
c
h
t\
0
.x

m
l

u
tr

e
c
h
t\
2
.x

m
l

u
tw

e
n
te

\5
.x

m
l

u
m

o
n
te

s
\2

.x
m

l
u
m

o
n
te

s
\5

.x
m

l
a
is

tn
a
ra

\2
.x

m
l

a
is

tn
a
ra

\3
.x

m
l

n
ils

\0
.x

m
l

u
m

o
n
te

s
\1

.x
m

l
a
is

tn
a
ra

\0
.x

m
l

Fig. 10. LeavesOnly - CAS - 1500

Table 2. Correlation Scores HighestRank/Original

 50 100 150 300 500 1000 1500

CO (Kendall) 0.6863 0.6300 0.5499 0.7502 0.7485 0.7076 0.5012

CO (Spearman) 0.8210 0.8852 0.5843 0.8789 0.8638 0.8087 0.4761

CAS(Kendall) 0.7506 0.9624 0.6690 0.6580 0.7600 0.7020 0.5153

CAS(Spearman) 0.8766 1.0000 0.7302 0.7460 0.8545 0.7945 0.4686

Table 3. Correlation Scores LeavesOnly/Original

 50 100 150 300 500 1000 1500

CO (Kendall) 0.6658 0.7017 0.5302 0.7221 0.7221 0.7101 0.5277

CO (Spearman) 0.7762 0.9416 0.5265 0.8366 0.8270 0.7891 0.5085

CAS(Kendall) 0.7490 0.8133 0.6737 0.6675 0.7678 0.7145 0.5373

CAS(Spearman) 0.8690 0.9231 0.7271 0.7738 0.8657 0.8129 0.5085

As the figures and tables show there is little correlation between the overlap re-

moved and original submission when run lengths of 1500 are considered. However,

the curvature of the plots indicate a strong correlation between the MAP of the origi-

nal and modified submissions at a lower result length. The correlation is not perfect,

and some systems were disadvantaged by metrics that ignore overlap, however not as

many systems were disadvantaged as originally thought. Furthermore, the correlation

is strong enough to suggest that systems score well because they find more relevant

results than low-scoring systems regardless of if the metric considers overlap.

6 Conclusion

The aim of this paper was to investigate the role of overlap in XML information re-

trieval. We dispute the existing conjecture that the high overlap/scoring systems in

INEX 2004 performed strongly under metrics that reward well only because they were

been reward multiple times for the same information. Rather, we show that the high

overlap/scoring systems perform strong regardless of how overlap is handled.

References

1. Clarke, C. L. A., Tilker, P., L. (2005) : MultiText Experiments for INEX 2004, in Advances in XML

Information Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Re-

trieval, INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers.

2. Cleverdon, C. and Keen, E. (1966): Aslib Cranfield Research Project: Factors determining the per-

formance of indexing systems (Vol. 1: Design, Vol. 2: Results), Cranfield, England.

3. Cooper, W. S. (1968): Expected search length; a single measure of retrieval effectiveness based on the

weak ordering action of retrieval systems. American Documentation 19(1):30-41.

4. Cooper, W. S. (1971): A definition of relevance for information retrieval. Information Storage and

Retrieval 7:19-37.

5. Crestani, F., Lalmas, M., Van Rijsbergen, R. J., and Campbell, T. (1998): Is this document relevant?

Probably: A survey of probabilistic models in information Retrieval. ACM Computing Surveys, 30(4).

6. de Vries, A. P., Kazai, G., Lalmas, M. (2004) : Tolerance to irrelevance : A user-effort orientated

evaluation of retrieval systems without predefined retrieval unit. In Recherche d’Informations Assistee

par Ordinateur (RIAO 2004), Avignon, France.

7. de Vries, A. P., Kazai, G., Lalmas, M. (2005) : Evaluation Metrics 2004, in Advances in XML Infor-

mation Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Retrieval,

INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers.

8. Gövert, N., Kazai, G., Fuhr, N., Lalmas, M. (2003): Evaluating the effectiveness of content-orientated

XML Retrieval. Technical Report Computer Science 6, Technischer bericht, University of Drotmund.

9. Gövert N. and Kazai G (2003): Overview of the initiative for the evaluation of XML retrieval (INEX)

2002. In Proceedings of the First Workshop of the INitiative for the Evaluation of XML Retrieval

(INEX), Dagstuhl, Germany, 1-15.

10. Järvelin, K., and Kekäläinen, J (2002): Cumulated gain-based evaluation of IR techniques. ACM

Transactions on Information System, 20(4):551-556.

11. Hersh, W., Turpin, A., Price S., Chan, B., Kramer, D., Sacherek, L.Olson, D. (2000): Do batch and

user evaluation give the same results? In Proceedings of The 23rd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, Athens, Greece, 23:17-23, ACM.

12. Kazai, G., Lalmas, M., de Vries, A. (2004): The overlap problem in content-orientated XML retrieval

evaluation. In Proceedings of The 27th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Sheffield, England, 27:72-79, ACM.

13. Kazai, G. (2004): Report of the INEX 2003 metrics working group. In Proceedings of the 2nd Work-

shop of the INitiative for the Evaluation of XML Retrieval (INEX), Dagstuhl, Germany, 184-190,

ERCIM Publications.

14. Kekäläinen, J., Junkkari, M., Arvola, P., and Alto, T. (2005): Trix 2004 – strugling with overlap. In

Advances in XML Information Retrieval: Third International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Se-

lected Papers, 127-139, Berlin: Springer (LNCS ; 3493).

15. Kim, H. and Son, H. (2004): Interactive searching behavior with structured XML documents. In

Advances in XML Information Retrieval: Third International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Se-

lected Papers, 424-436, Berlin: Springer (LNCS ; 3493).

16. Mizzaro, S. (1996): Relevance: The whole (hi)story,. Techical Report UDMI/12/96/RR (Dec.), Dipar-

timento di Matematica e Informatica, Universita’ di Udine, Italy.

17. Pehcevski, J., Thom, J. Vercoustre,A-M (2005): User and Assessors in the Context of INEX: Are

Relevance Dimensions Relevant? In Proceedings of INEX 2005 Workshop on Element Retrieval

Methodology, Glasgow, Scotland, 42-57.

18. Piwowarski, B., and Gallinari, P. (2005): Precision recall with user modeling: application to XML

retrieval. Submitted for publication.

19. Raghavan, V., Bollman, B. Jung G. (1989): A critical investigation of recall and precision. ACM

Transaction on Information Systems, 7(3):205-229.

20. Seracevic, T. (1970): The concept of “relevance” in information science: A historical review. In Intro-

duction to Information Science. Chapter 14. SERACEVIC T. (ed), RR Bower Company, New York.

21. Tombros, A., Larsen, B., Malik, S. (2004): The interactive track at INEX 2004. In Advances in XML

Information Retrieval: Third International Workshop of the Initiative for the Evaluation of XML Re-

trieval, INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers, 410-423, Ber-

lin: Springer (LNCS ; 3493).

22. Trotman, A. (2005): Wanted: Element Retrieval Users. In Proceedings of INEX 2005 Workshop on

Element Retrieval Methodology, Glasgow, Scotland, 58-64.

23. Turpin, A. and Hersh, W. (2001): Why batch and user evaluation give the same results? In Proceed-

ings of The 24th Annual International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, Athens, Greece, 24:225-231, ACM.

24. Voorhees, E. M. (1998): Variations in relevance judgments and the measurement of retrieval effec-

tiveness. Proceedings of The 21st Annual International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, Melbourne, Australia, 21:315-323, ACM Press.

25. Zobel, J. (1998): How reliable are the results of large scale information retrieval experiments, Proceed-

ings of The 21st Annual International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, Melbourne, Australia, ACM Press.

The Interpretation of CAS

Andrew Trotman1 and Mounia Lalmas2

1 Department of Computer Science, University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz,

2 Department of Computer Science Queen Mary University of London, London, UK
mounia@dcs.qmul.ac.uk,

Abstract. There has been much debate over how to interpret the struc-
ture in queries that contain structural hints. At INEX 2003 and 2004,
there were two interpretations: SCAS in which the user specified target
element was interpreted strictly, and VCAS in which it was interpreted
vaguely. But how many ways are there that the query could be inter-
preted? In the investigation at INEX 2005 (discussed herein) four differ-
ent interpretations were proposed, and compared on the same queries.
Those interpretations (SSCAS, SVCAS, VSCAS, and VVCAS) are the
four interpretations possible by interpreting the target elements, and the
support elements, either strictly or vaguely. An analysis of the submitted
runs shows that those that share an interpretation of the target element
correlate - that is, the previous decision to divide CAS into the SCAS
and VCAS (as done at INEX 2003 and 2004) was sound. The analysis
is supported by the fact that the best performing VSCAS run was sub-
mitted to the VVCAS task and the best performing SVCAS run was
submitted to the SSCAS task.

1 Introduction

Does including a structural hint in a query make a precision difference and if so
how should we interpret it? At INEX 2005 the ad hoc track has been investigating
this question. Two experiments were conducted, the CO+S experiment, and the
CAS experiment.

In the CO+S experiment the participants were asked to submit topics with
content only (CO) queries containing just search terms, and optionally an addi-
tional structured (+S) query specified in the NEXI [10] query language. Given
these two different interpretations of the same information need it is possible
to compare the precision of queries containing structural hints to those that do
not for the same information need. The details of the CO+S experiment are
discussed elsewhere.

In a separate experiment participants were asked to submit topics containing
queries that contain content and structure (CAS) constraints specified in NEXI
[10]. These topics were used to determine how the structural hints, necessarily in
a CAS topic, should be interpreted by a search engine. The two extreme views
are the database view that all structural constraints must be upheld, and the

information retrieval view that satisfying the information need is more important
than following the query.

This contribution discusses the mechanics of the CAS experiment from the
topic submission process, the document collection, through to the evaluation
methods. The different tasks are compared using Pearson’s product moment
correlation coefficient showing that there were essentially only two tasks, those
that in previous years have gone by the name VCAS and SCAS. Further analysis
shows that of the tasks SSCAS is the easiest and VVCAS the hardest.

2 CAS Queries

Laboratory experiments in information retrieval following the Cranfield method-
ology (described by Voorhees [12]) require a document collection, a series of
queries (known as topics), and a series of judgments (decisions as to which doc-
uments are relevant to which topics). In element retrieval this same process is
followed - except with respect to a document element rather than a whole doc-
ument.

Content and structure queries differ from content only queries in so far as
they contain structural hints. Two types of structural hints are present, those
that specify where to look (support elements) and those that specify what to
return to the user (target elements). In INEX topic 258

//article[about(.,intellectual property)]//sec[about(., copyright law)]

the search engine is being asked to identify documents about intellectual prop-
erty and from those extract sections about copyright law. The target element
is //article//sec (extract //article//sec elements), and the support elements are
//article for one clause (with support from //article about intellectual property)
and //article//sec for the other (and support from //article//sec about copy-
right law). Full details of the syntax of CAS queries is given by Trotman and
Sigurbjörnsson [10]. The applicability of this language to XML evaluation in the
context of INEX is also discussed by Trotman and Sigurbjörnsson [11].

2.1 Query Complexity

The simplest CAS queries contain only a single structural constraint. Topic 270,

//article//sec[about(., introduction information retrieval)]

asks for //article//sec elements about “introduction information retrieval”. A
more complex query can be decomposed into a series of single constraint queries
(or child queries). Topic 258,

//article[about(.,intellectual property)]//sec[about(., copyright law)]

could be written as a series of single constraint queries, each of which must be
satisfied. In this case it is decomposed into topic 259,

//article[about(.,intellectual property)]

and topic 281,

//article//sec[about(., copyright law)]

if both hold true of a document then the (parent) query is true of that document
- and the target element constraints can be considered. The same decomposition
property holds true for all multiple constraint CAS topics (so long as the target
element is preserved) - it is inherent in the distributive nature of the query
language.

Having separate parent and children topics it is possible to look at different
interpretations of the same topic. As a topic is judged according to the narrative
the judgments are by definition vague. Strict conformance of these judgments to
the target element can be generated using a simple filter. This is the approach
taken at INEX 2003 and 2004 for the so-called SCAS and VCAS tasks. But what
about the sub-clauses of these topics? Should they be interpreted strictly or
vaguely? With the judgments for the child topics, vague and strict conformance
to these can also be determined. With the combination of child and parent
judgments it is possible to look at many different interpretations of the same
topic.

2.2 Topic format

INEX captures not only the query, but also the information need of the user.
These are stored together in XML. Methods not dissimilar to this have been
used at TREC [2] and INEX [1] for many years. As an example, INEX topic 258

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="258" query_type="CAS" ct_no="72">

<InitialTopicStatement>

I have to give a computer science lesson on intellectual property

and I’m looking for information or examples on copyright law to

illustrate it. As I’m looking for something which is specific, I

don’t think I can find a whole article about it. I’m consequently

looking for section elements.

</InitialTopicStatement>

<castitle>

//article[about(.,intellectual property)]//sec[about(., copyright law)]

</castitle>

<description>

Return sections about copyright law (information or examples) in an

article about intellectual property.

</description>

<narrative>

I have to give a computer science lesson on intellectual property,

and I’m looking for information or examples on copyright law to

illustrate it. More precisely, I’d like to have information about

authors rights and how to protect your creation. As I’m looking for

something which is specific, I don’t think I can find a whole

article about it. I’m consequently looking for section elements.

Information or examples can concern copyright on software,

multimedia or operating systems. Copyright on literary work can help

but only for examples. Information concerning domain names and

trademarks is not relevant.

</narrative>

</inex_topic>

contains several parts all discussing the same information need:

• <InitialTopicStatement> a description of why the user has chosen to use
a search engine, and what it is that the user hopes to achieve.

• <castitle> the CAS query specified in the NEXI language [10].
• <description> a natural language expression of the information need using

the same terms as are found in the <castitle>. This element is used by the
natural language track at INEX [13].

• <narrative> a description of the information need and what makes a result
relevant. When judgments are made they are made against this description so
it is important that it precisely describes the difference between relevant and
irrelevant results. For experiments that additionally take into account the
context of a query (such as the interactive track [8]), the purpose for which
the information is needed (the work-task) is also given in the narrative.

Both the parent query and the child queries are stored in this way - but
an additional element, the <parent> element, is present in child topics. This
element stores the castitle of the child’s parent. This method of linking children
to parents was chosen over using identifiers as it was considered less likely to be
prone to human input error.

2.3 Query Interpretation

A contentious point about CAS queries is how to interpret them. The database
(strict) view is that the structural hints are constraints which must be followed
exactly in order for a returned element to satisfy the query. The information
retrieval (vague) view is that the structural hints are hints and can be ignored
so long as a returned element is relevant in the mind of the user (it satisfies the
information need).

A single clause query might be interpreted strictly, or vaguely - that is the
constraint might be followed or can be ignored. If, for example, a user asks
for an article abstract about “information retrieval”, then perhaps an article
introduction might just as well satisfy the need - or perhaps not.

With multiple clause queries, there are many possible interpretations. In
the CAS experiment at INEX 2005, the strict and vague interpretations are
applied to both the target element, and the support elements. This gives four

interpretations written XYCAS where X is the target element and Y is the
support element, and either X or Y can be S for strict or V for vague. Those
interpretations are:

• VVCAS: The target element constraint is vague and the support element
constraints are vague. This is the information retrieval view of the topic.

• SVCAS: The target element constraint is strict, but the support element
constraints are vague.

• VSCAS: The target element constraint is vague, but the support element
constraints are followed strictly.

• SSCAS: Both the target element constraint and the support element con-
straint are followed strictly. This is the database view.

3 Document Collection

The document collection used in the experiments was the INEX IEEE document
collection version 1.8. This collection contains 16,819 documents taken from
IEEE transactions and magazines published between 1995 and 2004. The total
size of the source XML is 705MB. This is the latest version of the INEX collection
at publication date.

4 Data Acquisition

This section discusses the acquisition of the queries from the participants and
the verification that they are representative of previous years. It also discusses
the acquisition of the judgments and the construction of the different judgment
sets.

4.1 Query Acquisition

The document collection was distributed to the participating organizations. They
were then each asked to submit one CAS topic along with any associated single
clause child-topics (should they exist). These topics then went through a se-
lection process in which queries were parsed for syntactic correctness, semantic
correctness, consistency, and validated against their child topics. A total of 17
queries passed this selection process.

The breakdown of CAS topic complexity (excluding child-topics) for each of
INEX 2003, 2004, and 2005 is given in Table 1. From visual inspection it can
be seen that the breakdown in 2005 is representative of previous years, most
queries contain two clauses with approximately the same number of three and
one clause topics. In 2005 there were no topics with more than 3 clauses.

Table 1. A Breakdown of the complexity of INEX 2005 CAS topics shows that they
are representative of previous years

Clauses 1 2 3 4+

2003 7 12 6 5
2004 4 22 4 4
2005 3 12 2 0

Table 2. The 17 topics and the topic numbers of their children

Parent Children Parent Children Parent Children
244 245, 246 258 259, 281 270
247 248, 249, 276 260 275 274, 273
250 251, 252 261 262, 263 280 277, 278, 279
253 254, 255 264 282, 283 284 266, 285
256 272, 271 265 267, 268 288 242, 243
257 269 286, 287

4.2 Child Topics

Each topic and child topic was given a unique identifier (stored in the topic id
attribute of the inex topic tag). Table 2 shows which topics are parent topics
and which topics are their children. Topic 258, for example, has topics 259 and
281 as children whereas topic 260 is a single clause query and has no children.

It may appear at the onset that these child topics can be used as part of the
evaluation giving a total of 47 topics. This, however, is not the case. The guide-
lines for topic development [7] identifies that for evaluation purposes queries must
be diverse, independent, and representative. Using both the parent and the chil-
dren topics for computing performance violates the independence requirement -
and weights evaluation in favor of longer topics (which have more children).

Using just the child topics, and discarding the parents, violates the require-
ment that topics are representative. In Table 1, the breakdown of topics from
previous years is shown. Most topics have two clauses, whereas child topics (by
definition) have only one. The children, without their parents, are not represen-
tative.

4.3 Judgment Acquisition

The topics and child-topics were distributed to the participants. Each partici-
pating group was invited to submit up to two runs for each CAS task. At least
one was required for VVCAS. A run consisted of at most 1,500 ranked results
for each parent and child topic. There were no restrictions on which part of the
topic was used to generate the query - participants were permitted to use the
narrative, or description, or castitle if they so chose.

These results were then pooled in a similar manner to that used at TREC
(and shown to be robust there by Zobel [15]). The details of the INEX pooling
method are give by Piwowarski and Lalmas [6] and a discussion of the robustness
is provided by Woodley and Geva [14].

The pool identifies which documents and elements the search engines consid-
ered relevant to the query. Using a graphical interface (the 2005 version of X-Rai
[5, 6]) to the document collection, the original author of the query (where possi-
ble) was asked to identify which elements of which documents in the judgment
pool were, in fact, relevant to the information need. Assessors first highlighted
relevant passages from the text, and then they assigned relevance values to all
elements in this region on a three points scale: highly exhaustive, partly ex-
haustive, or too small. This assessment was performed for the parent topics in
isolation of the child topics - and not necessarily by the same assessor.

As a topic may contain many different interpretations of the information
need (for example the description and the castitle) all judgments were made
with reference to the description contained in the topic narrative.

4.4 CAS Relevance Assessments

Table 3. Topics assessed by more than one assessor, and which pool was assigned to
which assessment set

Topic
Pool

Set-a Set-b
(official) (other)

261 350 362
244 354 358
250 356 369
258 289 360

In a separate experiment the consistency of the judgments is being measured
across multiple assessors. This is done by asking two or more judges to assess
the same topic, without knowledge of the other’s decisions. Of the CAS topics,
those listed in Table 3 were multiple-judged.

The consequence of this multiple assessment process is that there is no single
set of relevance assessments. Inline with INEX 2004, the assessments are divided
into two groups: set-a, and set-b (see Pehcevski et al. [4] and Trotman [9] for a
discussion of the 2004 results of this experiment). The INEX 2005 assignment
was made based on proportion of completion at the date the first relevance as-
sessments were released. Those judgments that, from visual inspection, appeared
most complete were assigned to set-a, while the other was assigned to set-b. In
this way set-a, the set used to generate the official results, was most complete
and therefore most reliable.

Internal to X-Rai (the online assessment tool), each assessment of each topic
by each judge is given an internal identifier - the pool id. Table 3 also shows
which pool ids were assigned to which judgment set.

4.5 CAS Relevance Sets

From set-a, four sets of judgments were generated, one for each of the four CAS
interpretations - each derived from the same initial set of judgments.

• VVCAS: The assessments as done by the assessors (against the narrative).
• SVCAS: Those VVCAS judgments that strictly satisfy the target element

constraint. This set of judgments was computed by taking the VVCAS judg-
ments and removing all judgments that did not satisfy the target element
constraint. This was done by a simple matching process in all except topic
260 in which the target element is specified as //bdy//*. In this case all
descendants of //bdy (excluding //bdy) are target elements.

• VSCAS: A relevant element is not required to satisfy the target constraint,
however the document must satisfy all other constraints specified in the
query. In all except two cases, this constraint is that for a judgment of the
parent topic to be relevant, it must come from a document that also has
SVCAS judgments for all its children. In one exception (topic 247), this
conjunction is replaced with a disjunction. In the other exception (topic
250) there are (presently) no judgments as the assessment task has not been
completed.

• SSCAS: Those VSCAS judgments that satisfy the target element con-
straint. These are computed from the VSCAS judgments in the same way
that SVCAS judgments are computed from VVCAS judgments - strict con-
formance to the target element.

The guidelines for topic development [7] identify groups of tags that are
equivalent. For example, for historic paper publishing reasons the sec, ss1, ss2
and ss3 tags are all used to identify sections of documents in the collection. The
strict conformance to a given structural constraint occurs with reference to the
equivalence list - //article//bdy//ss1 strictly conforms to //article//sec.

5 Measurement

The official metric used to report the performance of a system at INEX 2005 is
MAep, the mean average nxCG rank at 1500 elements. This measure is described
by Kazai and Lalmas [3]. The results (produced using xcgeval) for the INEX 2005
CAS task are available from INEX. There were 99 runs submitted to the CAS
tasks, of which 25 were SSCAS, 23 SVCAS, 23 VSCAS, and 28 VVCAS1.

Of the 17 topics used for evaluation (the parent topics of Table 2) judgments
currently exist for only 10 topics - at the time of writing the assessment task
1 Submissons version 1 and judgments version 7 are used throughout

had not been completed for the other 7 topics. Of those 10 topics, only 7 have
any elements that strictly conform to their child topic structural constraint. The
comparison of systems herein is based only on these topics.

Table 4. Number of relevant elements for each topic using generalised quantization

Topic SSCAS SVCAS VSCAS VVCAS

253 0 23 0 156
256 492 724 1431 2101
257 96 96 711 711
260 5159 5159 5264 5264
261 0 59 0 4437
264 6 40 155 1272
265 0 40 0 211
270 35 35 850 850
275 111 183 12870 16965
284 2 111 326 14265

Table 5. Number of relevant elements for each topic using strict quantization

Topic SSCAS SVCAS VSCAS VVCAS

253 0 0 0 11
256 139 162 198 228
257 0 0 0 0
260 66 66 66 66
261 0 0 0 2
264 0 0 12 44
265 0 0 0 1
270 1 1 2 2
275 18 22 330 424
284 0 5 4 196

In Table 4 and Table 5 the number of relevant element for each topic of
each task is shown. The judgments for strict quantization are highly sparse -
for the SSCAS task, there are only 4 topics with highly specific and highly
exhaustive judgments. It does not seem reasonable to draw any conclusions from
only 4 topics so the remainder of this analysis applies to only the generalized
quantization of results.

By correlating the results of one task with those of another (say, VVCAS
with SSCAS), it is possible to see how well a system designed to target one

interpretation performs when evaluated using a different interpretation. This is
the case when a search engine is designed to answer in one way, but the user
expects results in another. Taking all the CAS runs (including the “unofficial”
runs) the IBM Haifa Research Lab run VVCAS no phrase no tags submitted
to the VVCAS task performs best using the VVCAS judgments (with a MAep
score of 0.1314), but if the user need included a strict interpretation of the topic
(it was evaluated using the SSCAS judgments) then it is at position 50 with a
score of 0.0681.

By comparing the performance of runs submitted to each task it is possible
to determine if one task is inherently easier, or harder, than the others. With a
harder task there is more room for improvement - further investigation into this
task might result in improvements all-round.

5.1 Do the Judgment Sets Correlate?

Table 6. Pearson’s product moment correlation coefficient between each CAS task

SSCAS SVCAS VSCAS VVCAS

SSCAS 1.0000 0.8934 0.4033 0.3803
SVCAS 0.8934 1.0000 0.3409 0.3768
VSCAS 0.4033 0.3409 1.0000 0.9611
VVCAS 0.3803 0.3768 0.9611 1.0000

Table 6 shows the Pearson’s product moment correlation coefficient computed
for all runs when scored at each task. Scores close to 1 show a positive correlation,
those close to -1 a negative correlation and those at 0 show no correlation.

It is clear from the table that VVCAS and VSCAS are strongly correlated.
A search strategy that performs well at one task performs well at the other.
SSCAS and SVCAS, both with a strict interpretation of the target element are
less strongly correlated. There is little correlation between a strict interpretation
of the target element and a vague interpretation of the target element (SVCAS
and VSCAS, for example).

Figure 1 shows this correlation for the vague target element tasks. There is
a cluster of best-scoring runs at the top-right of the graph. They are runs that
have performed well at both VVCAS and VSCAS. These four runs are those
from IBM Haifa Research Lab. Although different runs perform best on the
VVCAS and VSCAS task, both “best” runs were submitted to the VVCAS task
- providing further evidence of the correlation of the two tasks.

Figure 2 shows the same for the strict target element tasks. The cluster is
not seen. The best performing run measuring on the SVCAS task was submitted
to the SSCAS task (again IBM Haifa Research Lab). These same runs were
only bettered by the four from the University of Tampere when measured for

the SSCAS task. Although Tampere produced runs that performed well at the
SSCAS task and not at the SVCAS task, IBM Haifa Research Lab produced runs
that performed well at both tasks. Again further evidence of the correlation of
the two tasks.

Figure 3 shows the performance of SSCAS against VVCAS. It is clear from
this figure that those runs that perform well at one task do not perform well at
the other. It appears, from visual inspection, that they are average performers
at each other’s tasks.

Performance of Vague Target Tasks

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600

VSCAS (MAep)

V
V

C
A

S
(M

A
ep

)

Fig. 1. Plot of performance of all submitted runs using VVCAS and VSCAS shows a
strong correlation of one to the other

5.2 Tasks Complexity

For each task the mean performance (MAep) of the best 21 runs submitted to
that task was additionally computed. This number was chosen because different
numbers of runs were submitted to each task, and for all tasks there were at
least 21 runs with a non-zero score. The mean and best performances are shown
in Table 7 where it can be seen that as far as the runs are concerned, SSCAS
is easier than SVCAS, which is easier then VVCAS, and the hardest is VSCAS.
The SSCAS task may be easiest because the required structural constraints are
specified explicitly in the query and the search engine can use this as a filter to
remove known non-relevant elements from the result list.

Performance of Strict Target Tasks

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
SSCAS (MAep)

SV
C

A
S

(M
A

ep
)

Fig. 2. Plot of performance of all submitted runs using SVCAS and SSCAS shows a
strong correlation of one to the other

Performance Across Different Targets

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500
SSCAS (MAep)

V
V

C
A

S
(M

A
ep

)

Fig. 3. Plot of performance of all submitted runs using VVCAS and SSCAS shows
little correlation of one to the other

Table 7. Mean performance of top 21 runs from each task

SSCAS SVCAS VSCAS VVCAS

Mean 0.1285 0.0832 0.0628 0.0690
Std Dev 0.0510 0.0484 0.0439 0.0310

Best 0.2343 0.1922 0.1508 0.1314
Worst 0.0381 0.0292 0.0039 0.0208

6 Conclusions

The Pearson’s correlation shows that there are only two different interpretations
of the query, those with a strict interpretation of the target element and those
with a vague interpretation of the target element (the database and the infor-
mation retrieval views). It is possible to ignore the interpretation of the child
elements and concentrate on only the target elements. In previous years, INEX
has made a distinction between strict and vague conformance to the target ele-
ment, but has disregarded conformance to child constraints (the so-called SCAS
and VCAS tasks). This finding suggests the experiments of previous years did,
indeed, make the correct distinction. Checking child constraints does not appear
worthwhile from an evaluation perspective.

The vague task has proven more difficult than the strict task. Strict confor-
mance to the target element can be computed as a filter of a vague run - from
those vague elements, remove all that do not conform to the target element con-
straint. The vague interpretation of CAS is a better place to concentrate research
effort.

If the CAS task continues in future years, a single set of topics, without
the child topics is all that is necessary for evaluation and participants should
concentrate on the vague interpretation of topics.

References

1. Fuhr, N., Gövert, N., Kazai, G., and Lalmas, M. (2002). INEX: Initiative for the
evaluation of XML retrieval. In Proceedings of the ACM SIGIR 2000 Workshop on
XML and Information Retrieval.

2. Harman, D. (1993). Overview of the first TREC conference. In Proceedings of the
16th ACM SIGIR Conference on Information Retrieval, (pp. 36-47).

3. Kazai, G., and Lalmas, M. (2005). INEX 2005 evaluation metrics. In Proceedings
of INEX 2006.

4. Pehcevski, J., Thom, J. A., and Vercoustre, A.-M. (2005). Users and assessors in the
context of INEX: Are relevance dimensions relevant? In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 47-62).

5. Piwowarski, B., and Lalmas, M. (2004). Interface pour l’évaluation de systèmes de
recherche sur des documents XML. In Proceedings of the Premiere COnference en
Recherche d’Information et Applications (CORIA’04).

6. Piwowarski, B., and Lalmas, M. (2004). Providing consistent and exhaustive rele-
vance assessments for XML retrieval evaluation. In Proceedings of the 13th ACM
conference on Information and knowledge management, (pp. 361-370).

7. Sigurbjörnsson, B., Trotman, A., Geva, S., Lalmas, M., Larsen, B., and Malik, S.
(2005). INEX 2005 guidelines for topic development. In Proceedings of INEX 2005.

8. Tombros, A., Larsen, B., and Malik, S. (2004). The interactive track at INEX 2004.
In Proceedings of INEX 2004, (pp. 410-423).

9. Trotman, A. (2005). Wanted: Element retrieval users. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 63-69).

10. Trotman, A., and Sigurbjörnsson, B. (2004). Narrowed Extended XPath I (NEXI).
In Proceedings of INEX 2004, (pp. 16-40).

11. Trotman, A., and Sigurbjörnsson, B. (2004). NEXI, now and next. In Proceedings
of INEX 2004, (pp. 41-53).

12. Voorhees, E. M. (2001). The philosophy of information retrieval evaluation. In
Proceedings of the The Second Workshop of the Cross-Language Evaluation Forum
on Evaluation of Cross-Language Information Retrieval Systems, (pp. 355-370).

13. Woodley, A., and Geva, S. (2004). NLPX at INEX 2004. In Proceedings of INEX
2004, (pp. 382-394).

14. Woodley, A., and Geva, S. (2005). Fine tuning INEX. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, Second Edition, (pp. 70-79).

15. Zobel, J. (1998). How reliable are the results of large-scale information retrieval
experiments? In Proceedings of the 21st ACM SIGIR Conference on Information
Retrieval, (pp. 307-314).

TIJAH Scratches INEX 2005

Vague Element Selection, Overlap, Image

Search, Relevance Feedback, and Users

Vojkan Mihajlović1, Georgina Ramı́rez2, Thijs Westerveld2, Djoerd Hiemstra1,
Henk Ernst Blok1, and Arjen P. de Vries2

1 University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

{v.mihajlovic, d.hiemstra, h.e.blok}@utwente.nl
2 Centre for Mathematics and Computer Science,

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{georgina, thijs, arjen}@cwi.nl

Abstract. Retrieving information from heterogeneous data sources in
a flexible manner and within single (database) framework is still a chal-
lenge for many data retrieval systems. In this paper we present the ex-
tension of our prototype database system TIJAH developed for struc-
tured retrieval. The extension is aimed at modeling vague selection of
XML elements and image retrieval. All three levels (conceptual, logical,
and physical) of the TIJAH system are enhanced to support these new
concepts. Additionally, we analyze different ways of removing overlap,
explain how structural information can be used for relevance feedback,
and investigate what real users want from structured documents.

1 Introduction

In this paper we discuss our participation at INEX 2005 with TIJAH, a three-
level database system for structured information retrieval. The TIJAH [12–14] is
developed as a transparent XML-IR database system consisting of conceptual,
logical, and physical levels. TIJAH can handle queries with the strict selection of
XML elements, specified in the NEXI query language [20] and to reason about
textual information. This year we extended it in two directions: towards handling
vague specification of XML elements in the query (similar to [5]), and towards
supporting retrieval from heterogeneous domains (images and videos), following
the guidelines from multimedia retrieval database systems [3]. Moreover, we
analyze the performance of different approaches to remove overlap, continue with
the relevance feedback experiments [17] using the TIJAH system, and study real
users’ information needs when searching structured documents.

The first point that we want to address in this paper is handling imprecise
specification of elements in the XML search. Similarly as user gives only a num-
ber of terms as hints for searching within a document, XML elements specified
within the query need not be considered as a strict requirement but as a hint for

structural search. Therefore, when formulating a query the user can state that
the search (support) element or answer (target) element should be treated as a
hint or as a constraint in the retrieval process. To support this vague search we
introduced vague element search as a concept in our TIJAH system.

On the other hand, to cope with the heterogeneous data sources (images and
videos) the TIJAH system is extended with new features on each level that can
express image search. The image search is handled in the same framework as the
text search at the conceptual level where additional syntactical specification is
added to the NEXI query language, and at logical level where new operators are
introduced in the Score Region Algebra (SRA) [13]. However, due to different
nature of the domain data, images are stored and handled in a different manner
than textual XML data at the physical level.

We also present our approaches for removing overlap and relevance feedback.
To remove overlap, we define an utility function that intends to capture the
amount of useful information each element contains. We use this function to
decide which is the most appropriate retrieval unit for each of the parent-children
relationships. Our relevance feedback approach uses the structural characteristics
of the relevant elements to update the priors in a language modeling framework.

Finally, our participation in the interactive track aims at studying and clas-
sifying different types of user needs when searching structured documents.

1.1 Overview

The following section explains the extensions introduced in the TIJAH system
to model vague XML element specification. Section 3 details our approach for
image retrieval. The relevance feedback and overlap approaches are discussed
in Section 4 and 5 respectively while the intended user studies are explained in
Section 6. We wrap-up the paper with the results from the numerous experiments
performed for each track and its sub-tasks in Section 7 and with conclusions and
future directions in Section 8.

2 Vague Node Selection

This section details the motivation and the implementation of vague selection of
nodes in our three-level database framework. We explain the extensions on each
level aimed for vague search on elements.

2.1 Vague element node selection in NEXI

Instead of extending our conceptual parser for rewriting content-and-structure
(CAS) queries into SVCAS, VSCAS, and VVCAS (SSCAS is equal to CAS in
our case), where prefix ‘S’ or ‘V’ stands for vague specification of target and sup-
port elements, we decided to extend the NEXI grammar with one extra symbol
‘∼’. The ‘tilde’ symbol is used in front of the element name in the query specifi-
cation, denoting that the element name does not have to be strictly matched in

the query evaluation. We support this decision by arguing that the user should
be responsible for stating his confidence in the knowledge of the hierarchical
organization of the data he is querying, or whether he is certain or not what is
the element name in which he wants to search for information.

The vague element selection can be treated similarly as a query expansion on
terms in traditional IR. For example, if a user searches for the term ‘conclusion’,
he might also be satisfied with terms ‘decision’, ‘determination’, ‘termination’,
or ‘ending’ in the answer. In structured documents, if a user asks for ‘car’ el-
ements, he would probably not mind getting ‘auto’ or ‘vehicle’ elements as an
answer. Furthermore, he might also agree with the answers: ‘van’, ‘sports-car’,
or ‘convertible’.

While the list of possible synonyms, hypernyms, and hyponyms for terms can
be considered as relatively static over time (e.g., WordNet [15]) and the degree
of similarity can be pre-specified, in the case of element name expansion the
problem is more complex and dynamic. Besides the terms that have the same or
similar meaning, like the ones given above, it can happen that element names
follow different naming pattern. Thus, elements might have complex element
names such as: ‘sport car’, ’sport-car’, ‘vehicles list’, etc.. Abbreviations could
also be used, such as for section elements in INEX IEEE collection: ‘sec’, ‘ss1’,
‘ss2’, ‘ss3’. Additionally, if a user asks for elements denoting one concept it might
not be wrong if the answer is an element from a similar concept. Plenty of such
examples can be identified in INEX; e.g., if a user asks for sections, he might be
satisfied with paragraphs (see the extensive list of equivalence classes in [11]),
abstracts, or even short articles (summaries). Furthermore, the list of element
names can be larger in semantically richer and heterogeneous XML collection
and it can evolve over time with the introduction of new XML collections.

The problem of element name matching is studied in the research area of
schema matching and numerous techniques exist that try to resolve this problem
(see [4, 16] for survey). However, we decided to simplify the vague element name
search task and use the results from INEX 2004 assessments to find the expanded
element names. We define the list of expanded element names based on the list of
element names assessed as highly exhaustive elements in INEX 2004 assessments
process. The lists are given in Table 1 and we term these lists element name
expansion lists3.

2.2 Introducing complex selection operator for vague node selection

The vague node selection at the conceptual level (NEXI) is translated into com-
plex vague node selection operator at the logical level. However, the vague node
selection operator in score region algebra has more expressive power than the
simple NEXI extension on the conceptual level. It allows much finer specification
of search and answer elements than a simple vague ‘∼’ node name specification.
The vague node selection operator in SRA is defined as a union of all XML

3 Other elements in INEX IEEE collection are not included in Table 1 as they were
not present as target elements in the 2004 topic set.

Table 1. Element name expansion list based on INEX 2004 assessments.

Element name Expanded element names

abs abs, fm, kwd, vt, p, sec, article, bdy, ref

article article, bdy, sec, abs, fm, bm, bib, bibl, bb, p, ref

atl atl, st, fgc

bb bb, bm, bibl, bib, atl, art

bdy bdy, article, sec, abs, p, ref

bib bib, bm, bb, atl, art

fig fig, sec, st, p, fgc, st, atl

fm fm, sec, abs, kwd, vt, p, article, bdy, ref

kwd kwd, abs, fm, st, fgc, atl

p p, vt, abs, sec, fm, article, bdy, st

sec sec, abs, fm, vt, p, article, bdy, bm, app

st st, atl, fgc

tig tig, bb

vt vt, p, sec, bm, fig

element regions that match the names of the ‘expanded name regions’ within
the element name expansion list. By default all ‘expanded regions’ are down-
weighted by a predefined factor. The definition of the operator is as follows:

σ
expansion(class)
n=name,t=node (R1) := {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ t = node

∧ (n, p) ∈ expansion(class, name)} (1)

Here expansion(class) is a set that contains all the expansions for all the region
names in one expansion class, where expansion list for each region name is
denoted as expansion(class, name) (with cardinality n):

expansion(class, name) := {(ex n1, ex w1), (ex n2, ex w2), ..., (ex nn, ex wn)}

Here ex ni is a expanded element name and ex wi is a real number in the range

[0, 1] denoting the down-weight factor. The operator σ
expansion(class)
n=name,t=node (R1) assigns

name (ex n) and score (ex w) values to the region name (n) and score (p) based
on the name and score values in the expansion list expansion(class, name).

The simple selection operator in basic score region algebra operator set (see
[14]) can be considered as a complex selection operator where expansion(class)
set is empty. Note that the complex selection operator can also be expressed
using the basic SRA selection operator and scaling operator as follows:

σ
expansion(class)
n=name,t=node (R) :=

⊔

p

(ex ni, ex wi) ∈ expansion(class, name)

(σn=ex ni,t=node(R) ~ ex wi)

(2)

We defined two expansion classes for our INEX 2005 participation: (1) based
on the equivalence classes defined for INEX IEEE collection [11], termed eq class,

and (2) based on a fusion of equivalence classes and our INEX 2004 expansion el-
ement name lists given in Table 1 such that every expanded element name in this
table that has the equivalent name in the eq class name part is also expanded
with the eq class equivalent names for name, termed uni class. Therefore, the

eq class selection on section elements can be expressed as σ
expansion(eq class)
n=‘sec′,t=node (R),

and vague node selection ∼sec can be transformed into the next SRA opera-

tion σ
expansion(uni class)
n=‘sec′,t=node (R). In such a way we can transparently define the set

of expanded nodes and their respective weights and use them for vague node
selection in a vague element name selection retrieval scenarios.

2.3 The implementation of vague selection operator

On the physical level, since we are working with the known INEX IEEE data
collection, and as we used static INEX equivalence element name list and expan-
sion element name list based on INEX 2004 assessments, we decided to replicate
the two lists and store them as tables at the physical level, i.e., in MonetDB [1].
Thus, we have two tables with (entity name, expansion name, expansion weight)
for uni class and (entity name, equivalent name)4 for eq class sets. The com-
plex selection operator is then implemented as an additional MIL (MonetDB
Interpreter Language) function, based on the definition given in the previous
section, that uses the information from these tables.

For example, the vague name selection operator on region table R and the
‘expansion regions’ table S for the uni class element names, in relational algebra
could be defined as:

πr.s,r.e,r.n,r.t,s.weight(σs.n=name(S) 1s.n=r.n (σr.t=node(R)))

2.4 Retrieval models

We based the instantiation of retrieval models on the best models used for flat-
file information retrieval, as well as XML retrieval: language models [7], Okapi
(INQUERY) model [2, 18], and Garden Point XML (GPX) [6]. Based on experi-
mental results in [13] we instantiated the following functions for assigning score
values to regions in SRA. For the relevance score computation on regions we
used: Equation 3 for language models, Equation 4 for Okapi, and Equation 5 for
GPX.

f
LM
= (r1, R2) = p1 · (λ

∑

r2∈R2|r2≺r1
p2

size(r1)
+ (1 − λ)

|R2|

size(Root)
) (3)

f
Okapi
= (r1, R2) = p1 · ln

|{r ∈ C|n = n1}| − |{r ∈ C|n = n1 ∧ ∃r2 ∈ R2 ∧ r2 ≺ r1}| + 0.5

|{r ∈ C|n = n1 ∧ ∃r2 ∈ R2 ∧ r2 ≺ r1}| + 0.5

·
(k1 + 1) ·

∑

r2∈R2|r2≺r1
p2

k1((1 − b) + b
size(r1)

avg size(n1)
) +

∑

r2∈R2|r2≺r1
p2

(4)

4 In the preliminary experiments we did not store weights for equivalent region names
as we assumed that their default weight is 1.0.

f
GPX
= (r1, R2) = p1 ·

∑

r2∈R2|r2≺r1
p2

|R2|
(5)

For upwards score propagation we used either weighted sum (Equation 6) or sum
(Equation 7), while for downwards score propagation we employed Equation 8.

fI(r1, R2) = p1 ·

∑

r2∈R2|r2≺r1
p2 · size(r2)

size(r1)
(6)

fI(r1, R2) = p1 ·
∑

r2∈R2|r1≺r2

p2 (7)

fJ(r1, R2) = p1 ·
∑

r2∈R2|r2≺r1

p2 (8)

Abstract operators ⊗ and ⊕ are implemented both as simple sum, or as product
and sum, except in the case of GPX model where the instantiation is given in
Equation 9.

p1 ⊗ p2 = p1 · p2 =







p1 + p2 if p1 = 0 ∨ p2 = 0

A · (p1 + p2) otherwise
(9)

3 Image similarity search

To enable search on multimedia collection (provided by Lonely Planet) we also
introduced extensions to the TIJAH system defined along three levels of our
prototype DB.

3.1 Extending the NEXI syntax for image search

To include the image search in TIJAH we extended the TIJAH system with
the about image. The NEXI syntax is extended with an extra token ‘src:’ that
defines the location of the source image with which the destination image should
be matched. Therefore, in the multimedia query 1:

//destination[about(.//images//image, buddha src:/images/BN417 16.jpg)]

//*[(about(., asia) or about(., asian))

and (about(., buddha) or about(., buddhist))]

the first about contains a request for image similarity search. The destination
image that need to be matched is located under the local images directory with
the name of BN417 16.jpg. In the preprocessing step, the ‘src:’ part of the
about is transformed into about image and its relative path given in the NEXI
‘src:’ specification is resolved into the path to the location where the data for
image matching is stored. The image about command is then forwarded to the
logical level.

3.2 Image search in SRA

None of the SRA operators defined at the logical level could handle such about image
statement. Therefore, to express image search in SRA we extended the SRA op-
erator set with the additional operators σi and =

i
p. The σi operator has similar

definition as basic score region algebra operator σn=name,t=type, except that the
score p is now computed by a call to an external function (f i). The function f i

uses information extracted from the reference figure and the figure that should
be selected and it computes the score of an image region based on similarity
between the reference image and the selected image:

σ
i≈sample
n=name,t=attr(R1) := {r|r1 ∈ R1 ∧ ∃r2 ∈ C ∧ r2 ≺ r1 ∧ t2 = attr val ∧

(s, e, n, t) := (s1, e1, n1, t1) ∧ t = attr ∧ n = name ∧ p = f
i(n2, sample)} (10)

Here sample is the location of the reference image data specified with the ‘src:’
statement in the NEXI query, resolved in the preprocessing step, C is a set of
all regions in the database, attr it the attribute node, and attr val is value of
the attribute attr.

The operator =
i
p is defined in the same way as =p operator (for the exact

definition see [13]), except that it allows computing score of a region containing
images with the usage of different scoring formula than for terms given in Equa-
tions 3 to 5. Therefore, the about image in the multimedia query 1 is transformed
into the next SRA expression:

σn=‘image′,t=node(C) =
i
p σ

i≈‘BN417 16.jpg’
n=file name,t=attr(C)

3.3 Implementation of image search

At indexing time, we estimated a generative probabilistic model of each of the
images in the collection (see below); the model parameters are stored in separate
tables in the database. In addition, we constructed a table that links the image
identifiers to the corresponding nodes in the collection tree. The image selection
operator is implemented as a new MIL function that computes the Gaussian
mixture model similarity score between each collection image model and the
example image.

3.4 Retrieval model

Similarity between example images and collection images is estimated using
Gaussian mixture models (GMM). To this end, each of the images in the col-
lections (ω(ni)) is modeled as mixtures of Gaussians with a fixed number of
components K:

P (x|ω(ni)) =

NK
∑

k=1

P (Ki,k) G(x, µi,k, Σi,k), (11)

where NK is the number of components in the mixture model, Ki,k is component
k of class model ω(ni) and G(x, µ, Σ) is the Gaussian density with mean vector
µ and covariance matrix Σ:

G(x, µ, Σ) =
1

√

(2π)d|Σ|
e
− 1

2
(x−µ)T Σ−1(x−µ)

, (12)

where d is the dimensionality of the feature space and (x − µ)T is the matrix
transpose of (x − µ).

These Gaussian mixture models are used to represent the images. The score
of an image given an example image from a query, is determined by the likelihood
that the corresponding model generates the feature vectors (X = {x1, x2, . . . , xn})
representing the example image. Like in the LM case for text, we interpolate with
a background model based on collection statistics:

f
i(ni, sample) =

∏

x∈Xsample

[λ · P (x|ω(ni)) + (1 − λ) · P (x|ω(ni))] (13)

The feature space of the vectors x is based on the DCT coefficients obtained
from 8x8 pixel blocks. For details of the feature vectors and the GMMs, see [21,
22].

On the other hand the scores in the operation R1 =
i
p R2 are computed as a

multiplication of score values of regions from the left operand and score values
of the contained regions from the right operand, since each image element in the
Lonely Planet collection containd only one image.

4 Relevance feedback

The main idea of any relevance feedback strategy is to use the knowledge of
relevant items to retrieve more relevant items. So far, research has concentrated
on using content-related information from the known relevant elements. However,
for XML retrieval the structural characteristics of the relevant elements might
also play an important role. Following the lines of what we started last year [14],
we investigate the potential of the structural information for this type of task and
analyze if retrieving structurally similar elements improves retrieval effectiveness.

4.1 Structural information in relevant elements

We study two different aspects of the structure of documents that can help the
retrieval system to discriminate between relevant and non relevant elements.
Namely, the containing journal of an element and the element type. Table 2
shows the number of different journals and element types judged relevant per
topic. If we compare these numbers to the total number of different journals
(24) and different element types (187) contained in the new collection, we can
see that the knowledge of which journals and element types are relevant for each

Table 2. Number of different journals and element types judged relevant per topic.
Statistics taken from relevance assessments 2005 version 2. Average over 28 CO topics.
All degrees of relevance are taken into account.

Type info. Avg. Median Max Min

Journals 7.9 8 16 2
Elements 34.4 34.5 73 9

of the topics is a very important piece of information that can help retrieval
systems to perform a better search.

One way to use the knowledge of which structural characteristics are relevant
for a certain topic is to increase the a priori belief in relevance of the elements
that have the same structural characteristics. In this way, we use the informa-
tion of which relevant journals and element types are found in the top 20, to
calculate priors and increase the a priori belief in relevance of the elements that
are contained in that journal or that are from that specific element type.

4.2 Updating priors in a language modeling framework

For our baseline experiments, we used statistical language models (see Sec-
tion 2.4). Using Bayes’ rule and assuming independence between query terms,
the probability of an element E given a query Q can be estimated as the product
of the probability of generating the query terms qi from the element’s language
model and the prior probability of the element:

P (E|Q) ∝
∏

qi∈Q

P (qi|E)P (E) (14)

Typically, little prior knowledge about the probability of an element is avail-
able and either uniform priors are used, or P (E) is taken to be related to the
element’s length (i.e.,long elements are assumed to be more likely to contain
relevant information) (cf. [9]). However, once we have some information about
relevant elements, for example from a user’s relevance judgments, we can use
this information to update the priors. From the judgments, we can discover the
characteristics of relevant elements and update the priors in such a way that
elements with similar characteristics are favored5. Note that this does not re-
quire updating of the content models, i.e., the elements’ language models do not
change.

Therefore, once we get information about the structural characteristics of
the relevant elements for a given topic, we define the priors for the journals and
element types and use them to retrieve structurally similar elements. However,
since in the top 20 we may not have seen all relevant journals or element types,
there is the risk of assigning a prior equal to zero to element types or journals
that do actually contain relevant information. To avoid this effect of relying too

5 Strictly speaking P (E) can no longer be called a prior, since it depends on the topic
at hand.

much on what is seen in the top 20, we interpolate P (x(E)|rel) with the general
probability of seeing elements from x(E). Thus the prior becomes:

Px(E) =
αP (x(E)|rel) + (1 − α)P (x(E))

P (x(E))
, (15)

where x(E) identifies the journal (element type) to which E belongs, P (x(E)|rel)
is estimated as the fraction of relevant items belonging to the journal (element
type) and P (x(E)) is the fraction of elements in the collection that belongs to
that journal (element type).

5 On overlap

To identify the appropriate element to return is not an easy problem. A com-
mon approach to remove overlap from result lists is to select the highest scored
element from each of the paths. In our opinion, this approach has two main
drawbacks. On the one hand, it does not consider the length of the elements.
If a high scored element is rather small, all the other elements from that path
(maybe only slightly lower scored) will be removed without considering if they
would be more appropriate (size wise) retrieval units. On the other hand, this
approach does not consider relationships between elements in the tree. If, for
example, all the paragraphs within a section are high scored but only some are
the highest elements of their path, only these ones will be returned. We argue
that, in this scenario, it might be more appropriate to return the section that
contains all the paragraphs than only some of the paragraphs on their own.

We believe that the appropriate retrieval unit will be determined by the total
amount of useful information that unit contains. If a very high scored element is
very short, the amount of useful information that carries is also small. Whereas
if a not so high scored element is longer, the amount of useful information that
the user will read is larger. Thus, the decision of which elements to return will be
related not only to their retrieval model score but also to their size. In the same
way, whether to return several siblings or their parent will be decided according
to the amount of irrelevant information the user will have to read if the parent is
returned. If the reminding text of the parent element contains somehow relevant
information (even if not highly relevant), the parent should be returned and not
the children.

To implement this idea, we define an utility function, related to the elements
size and score, and calculate its value for each of the nodes in the tree. The nodes
with a higher utility value than the sum of their children’s ones are returned. In
the case that the children need to be returned, only the ones with the utility value
higher than a threshold are returned. Details on the different utility functions
used and the results will be reported in the final version of this paper.

6 Users and information needs

The overall motivation of the interactive track at INEX is twofold. First, to
investigate the behavior of users when interacting with components of XML
documents, and second to investigate and develop approaches for XML retrieval
which are effective in user-based environments [19]. A very important aspect of
the track is the collaborative effort done in order to gather as much data on
users’ behavior as possible. For that, common user experiments are carried out
by all participants and evidence is collected. These experiments not only record
users’ behavior but also question the users about several aspects of the search
process such as interface and system issues, tasks, granularity of the answers,
and users’ satisfaction.

One of the new issues introduced in this year experiments is that users are
asked to describe and perform the search based on their own information need.
Our main interest is to analyze and classify different types of users’ information
needs and to understand what are their expectations regarding XML retrieval
systems. Since the collected data has not yet been made available to all the
participants, we will report our analysis in the final version of the paper.

7 Experiments

Among numerous tracks and scenarios specified for INEX 2005, we participated
in the following: all CO and CAS ad-hoc track sub-tasks, multimedia track,
interactive track, and relevance feedback track. Below, after introducing the
metrics reported in the paper, we will explain in detail our approaches for each
of these (sub)tasks. The runs given in bold are the official ones, but run on the
updated (correct) volume files in INEX document collection.

7.1 Metrics

The official INEX metrics for 2005 ad-hoc and relevance feedback track are
based on extended Cumulative Gain (xCG) metrics [10]. The official metrics
are: normalized xCG (nxCG), effort-precision/gain-recall (ep/gr), and extended
Q and R6. The evaluation can be done either with the generalized or with the
strict quantization. In this paper we report the evaluation results obtained with
nxCG at various recall points: 10, 25, and 50 and mean average ep/gr. For
multimedia track we report mean average precision (MAP) values.

Note that for any document cut-off value, say 10, it can be shown that, if
strict quantization is used (or any other binary quantization), and overlap is not
taken into account, and the total number of relevant elements is bigger than 10,
then nXCG at 10 and precision at 10 give exactly the same results. However,
if the number of relevant elements is smaller than 10 for some topics, then this
might have a big impact on the measured performance.

6 http://inex.is.informatik.uni-duisburg.de/2005/inex-2005-metricsv4.pdf

For instance, IBM Haifa’s run “SSCAS no phrase no plus” and Max Planck
Institute’s (MPI) run “MPII TopX SSCAS” have the same average precision at
10 over 4 topics with relevant elements: 0.225 for both runs (over topic 256, 260,
270 and 275). That is, on average 22.5% of the elements inspected in the top
10 is highly exhaustive and specific. However, for one of these 4 SSCAS topics
(topic 270), only 1 relevant document is known. Because of this, the nXCG at 10
over the 4 topics is twice as high for MPI (0.450), which found the document in
its top 10, as it is for IBM (0.225), which did not find it in its top 10. Apparently,
a 100% gain in nXCG does not have to say much about the actual percentage
of relevant items seen by the user. Precision at x is less sensitive to the total
number of known relevant elements than XCG at x, and therefore defining the
ideal recall base as needed for XCG is not really an issue for precision [8].

7.2 Ad-hoc track: CO queries

Thorough The aim of the Thorough retrieval strategy is to find all highly
exhaustive and specific elements. Thus, to find all relevant information regardless
of overlapping results. This year we submitted only two runs with the aim of
using them as baseline runs for the other tasks and sub-tasks. Description and
results for these two runs are given in Table 3.

Table 3. Results for CO.Thorough experiments with strict (S) and generalized (G)
quantization.

Run id Description nXCG[10] nXCG[25] nXCG[50] ep/gr

LMs 04 lpS LMs, λ = 0.4, lp 0.0880 0.0897 0.0996 0.0024
CO LMs trm 085S LMs, λ = 0.85, lp 0.0923 0.0855 0.0859 0.0022

LMs 04 lpG LMs, λ = 0.4, lp 0.2388 0.2540 0.2303 0.0849
CO LMs trm 085G LMs, λ = 0.85, lp 0.2161 0.1856 0.1839 0.0610

Although under the strict quantization there are not big differences between
the two runs, under the generalized, one of the runs (λ = 0.4) outperforms
the other considerably. We used this run as baseline for the rest of the CO
experiments.

Focussed The aim of the Focussed retrieval strategy is to find the most exhaus-
tive and specific element in a path. Once the element is identified and returned,
none of the remaining elements in the path should be returned. In other words,
the result list should not contain any overlapping elements.

The goal of our experiments for this task is twofold. We investigate if there
are big differences in effectiveness between different approaches to remove over-
lap, and we evaluate the effectiveness of our own approach for different utility
functions (see Section 5). As mention before, we do not have yet the results
for our approach but they will reported in the final version of this paper. To
investigate differences in performance between approaches, we implemented two

already known ways of removing overlap: namely, the naive and the common
approach. The naive approach filters out from the result list everything except
one specific type of element (assuming that there is not overlap between elements
of the same type). The common approach is implemented as follows: first, we
select the highest scored element from the result list and remove its ancestors
and descendants, then we take the second highest scored element and remove its
ancestors and descendants, and then we continue recursively until all elements
from the result list have been either selected or removed. The results from these
implementations are shown in Table 4.

Table 4. Results for CO.Focussed experiments with strict (S) and generalized (G)
quantization.

Approach nXCG[10] nXCG[25] nXCG[50] ep/gr

Baseline, with overlapS 0.0817 0.0713 0.0777 0.0510

Naive: select articlesS 0.0080 0.0080 0.0120 0.0043

Naive: select sectionsS 0.0320 0.0434 0.0421 0.0142

Naive: select paragraphsS 0.1257 0.1600 0.1703 0.0676

CommonS 0.1097 0.0971 0.1134 0.0531

Baseline, with overlapG 0.1441 0.1340 0.1260 0.0467

Naive: select articlesG 0.1557 0.1217 0.1031 0.0452

Naive: select sectionsG 0.1852 0.1801 0.1560 0.0664

Naive: select paragraphsG 0.2372 0.2262 0.2172 0.0834

CommonG 0.2296 0.1940 0.1986 0.0796

The approach that performs better is the one that retrieves only paragraphs.
In general, for the naive approach, and as expected for a Focussed retrieval task,
the longer the element, the lower the performance. It is however more surprising
that, for the strict case, it is more desirable to return overlapping elements
(baseline) than to return e.g. only the sections. In our opinion, for a focussed
retrieval task the overlapping elements are not desired and therefore, should be
stronger penalized. The common approach performs well although, due to the
drawbacks mentioned before, some relevant information is removed.

Fetch and Browse The aim of the Fetch and Browse retrieval strategy is to
first identify relevant articles (fetching phase), and then to identify the most
exhaustive and specific elements within the fetched articles (browsing phase).

To achieve this task, several decisions need to be taken: e.g., how to rank
the articles, how to rank the elements within an article, how many from these
elements should be shown to the user (do we want to show more articles and
few elements within them or many elements inside fewer articles?), do we want
to return overlapping elements?

For this year experiments, we decided to rank the articles by its own score
(the one given by the retrieval model) and to remove overlap inside the articles.
We experimented with the number of elements to return within an article and

the way to remove overlap. We only submitted two official runs and as we can
not evaluate additional ones, the results of these experiments will be reported
in the final version of the paper.

7.3 Ad-hoc track: CAS queries

Since we decided to extend the NEXI syntax with the vague selection we had
to manually rewrite the queries for each CAS scenario except the SSCAS. For
example, the (SS)CAS query 225:

//article[about(.//fm//atl, "digital libraries")]

//sec[about(.,"information retrieval")]

is rewritten into three variants:

– SVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//sec[about(.,"information retrieval")]

– VSCAS: //article[about(.//fm//atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

– VVCAS: //article[about(.//∼fm//∼atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

We decided not to consider the ‘article’ element as a vague element in case it is
not the target element or it is not the element in which the about search should
be performed, as in these cases the ‘article’ element just serves as a focusing
element for deeper search in the XML tree.

We also aimed at comparing vague node selection with two query rewriting
techniques that we used previous years for INEX [12, 14]. These rewriting tech-
niques treat structural constrains as strict but mix the terms in different about
clauses. In the first rewriting approach (rw I), all terms that are in different
about clauses in the same predicate expression, and are not at the top level (i.e.,
not in about(., term) expression), are added to an extra top-level about close
in the same predicate expression. The second approach (rw II), is an extension
of the first one, where not only the terms from non top-level abouts are added
to the new about, but also all the terms from the other predicate7, if there exists
any, are added to the top-level about in each predicate.

The results for different scenarios and the comparison of the approaches are
given in the Table 5. For the official submissions we used the uniform down-
weighting factor (either w = 0.55 or w = 0.65) based on the outcome of our
experiments on INEX 2004 test collection. We report only the results with gen-
eralized quantization as only four out of seven assessed topics have highly ex-
haustive and highly specific elements for SSCAS sub-task.

Based on the experimental results given in Table 5 we can conclude that the
rewriting techniques in general improve relevance score at early nxCG (except

7 Note that the NEXI syntax allows only two predicates with the about clauses to be
specified in one query.

Table 5. Results for various CAS experiments with generalized quantization.

Sub-task Description nXCG[10] nXCG[25] nXCG[50] ep/gr

SSCAS

LMs, λ = 0.5 0.218 0.3141 0.4139 0.1191
Okapi, k1 = 1.5, b = 0.75 0.1671 0.2132 0.3846 0.1001
LMs, λ = 0.5, rw I 0.2194 0.3991 0.4516 0.1248
LMs, λ = 0.5, rw II 0.3129 0.424 0.466 0.1428

SVCAS

LMs, λ = 0.5 0.2138 0.2665 0.3082 0.1167
LMs, λ = 0.5, w = 0.55 0.2203 0.2622 0.2868 0.1173
LMs, λ = 0.5, rw I 0.1956 0.2774 0.3248 0.1187
LMs, λ = 0.5, w = 0.55, rw II 0.2951 0.2989 0.3241 0.1315

VSCAS

LMs, λ = 0.5 0.2697 0.2754 0.257 0.0595
LMs, λ = 0.5, w = 0.55 0.2 0.2263 0.2304 0.0925
LMs, λ = 0.5, w = 0.55, rw I 0.1995 0.25 0.2464 0.0814
LMs, λ = 0.5, rw II 0.298 0. 2908 0.2559 0.0648

VVCAS

LMs, λ = 0.5 0.2677 0.2815 0.2659 0.0509
LMs, λ = 0.5, w = 0.55 0.2364 0.254 0.2425 0.0741
LMs, λ = 0.5, w = 0.65 0.2295 0.2644 0.2322 0.0737
LMs, λ = 0.5, w = 0.55, rw I 0.2246 0.2679 0.2467 0.0699
LMs, λ = 0.5, w = 0.55, rw II 0.2823 0.2931 0.2554 0.1001

for rewrite I for nxCG[10]) for all sub-tasks, no matter if they are used in com-
bination with the vague selection or not. Furthermore, the rewrite II technique
in combination with the vague element selection seams to give the best scores.
However, for ep/gr the rw I gives lower scores, while the rw II gives higher scores
only in combination with the vague element selection. The vague element selec-
tion itself tends to improve the ep/gr but not the nxCG scores. Due to a small
set of assessed topics we take this outcomes as a hypothesis.

7.4 Ad-hoc track: COS queries

Since COS queries have the same form as CAS queries we applied the same
manual rewriting to COS queries. Thus, we made four different scenarios for
COS queries, that we denote SSCOS, VSCOS, SVCOS, and VVCOS, and due
to the limited number of submissions we submitted only SSCOS, VSCOS, and
VVCOS as official runs. In our experiments we planned to test the degree of
improvements in the effectiveness using the strict or vague structural constrains.
The outcome for COS.Thorough can be seen in Table 6. We can see that with
more vagueness we the results are better, for both metrics. However, for the
COS.Thorough, as opposed to CAS subtasks, rw I seams to be more adequate
than rw II in combination with the vague element selection. The analysis of the
Fetch and Browse and Focussed scenarios will be given in the final paper.

7.5 Multimedia track: image queries

An important goal of our multimedia extension was to showcase and test the
flexibility and extendibility of the SRA approach. In addition, we tested if us-

Table 6. Results for COS.Thorough experiments with strict (S) and generalized (G)
quantization.

Sub-task Description nXCG[10] nXCG[25] nXCG[50] ep/gr

SSCOSS LMs, λ = 0.4 0.0529 0.0536 0.0571 0.0014

SVCOSS LMs, λ = 0.4, w = 0.55 0.0529 0.0489 0.0559 0.0014

VSCOSS LMs, λ = 0.4, w = 0.55 0.0882 0.0736 0.0724 0.0020

VVCOSS LMs, λ = 0.4, w = 0.55 0.0882 0.0736 0.0895 0.0021

VVCOSS LMs, λ = 0.4, w = 0.55, rw I 0.0882 0.0883 0.0918 0.0021

VVCOSS LMs, λ = 0.4, w = 0.55, rw II 0.0882 0.0859 0.0859 0.0020

SSCOSG LMs, λ = 0.5 0.2677 0.222 0.176 0.0304

SVCOSG LMs, λ = 0.4, w = 0.55 0.2734 0.2265 0.1963 0.0351

VSCOSG LMs, λ = 0.5, w = 0.4 0.2625 0.2426 0.2104 0.0443

VVCOSG LMs, λ = 0.5, w = 0.4 0.2659 0.2551 0.2367 0.0677

VVCOSG LMs, λ = 0.5, w = 0.4, rw I 0.2943 0.27 0.2454 0.0706

VVCOSG LMs, λ = 0.5, w = 0.4, rw II 0.2686 0.2441 0.2179 0.0664

ing visual similarity can contribute to better multimedia retrieval results. To
this end, we compared the multimedia queries discussed in Section 3 to similar
queries with all image similarity clauses (src:) removed. The results of these two
approaches using three different models for text search is given in Table 7. Lan-
guage models and GPX clearly perform better than Okapi, but we did not find
any improvement using visual similarity, in fact the best run uses only textual
language models and is significantly better than its multimedia counterpart.

Table 7. Results for MM track.

LM MAP Okapi MAP GPX MAP

text only 0.2751 text only 0.2110 text only 0.2567
multimedia 0.2600 multimedia 0.2133 multimedia 0.2627

7.6 Relevance feedback track

To analyze the effects of using structural information in the relevance feedback
process as described in Section 4, we designed two main experiments. The first
one varies the values for α in Equation 15 to analyze the effects of assigning
different importance to the structural information found in the top 20. The
values used are: 0.75, 0.5 and 0.25. This experiment is done on top of one of our
runs for the CO.Thorough task that uses language models and a linear length
prior.

The second experiment aims to identify which of the two types of structural
information provides better improvement to the overall effectiveness of the IR
system. Therefore, we fix the value of α in Equation 15 to 0.5 and analyze the gain
obtained when using journal priors, element priors, and both priors at the same
time. This experiment is done on top of one of our runs for the COS.Thorough
task that uses the VVCAS approach explained in Section 2.

There is a common run in both experiments that is intended to show the
differences in gain when using the journal priors (α = 0.5) on top of a CO
baseline and when using them on a COS baseline. Our goal is to see if the fact
that the second baseline already uses structural information diminishes the effect
of the priors.

In the time of writing this paper, there are not official results available. Thus,
we will report them in the final version of the paper.

8 Conclusions and Future Work

Throughout the paper we show that the TIJAH database system is flexible
enough to incorporate new advanced search techniques, such as vague element
selection and relevance feedback, and search on heterogeneous data sources, such
as a combination of images and text.

We plan to continue the experimental evaluation of different scenarios for
search in structured documents: (1) the approaches for handling overlap and for
supporting user searching behavior (fetch and browse), (2) the vague element
search with non-uniform down-weighting (based on assessment results) and its
combination with rewriting techniques, (3) the usage of structural relevance
feedback, and (4) image search for improving retrieval results.

9 Acknowledgments

We would like to thank Roberto Cornacchia at CWI, Amsterdam, for providing
the visual similarity code and for pre-processing the Lonely Planet images.

Many thanks to the Netherlands Organisation for Scientific Research (NWO)
for funding the research described in this paper (grant number 612.061.210).

References

1. P. Boncz. Monet: a Next Generation Database Kernel for Query Intensive Appli-
cations. PhD thesis, CWI, 2002.

2. J. P. Callan, W. B. Croft, and S. M. Harding. The INQUERY Retrieval System.
In Proceedings of the 3rd DEXA Conference, 1992.

3. A.P. de Vries. Content and Multimedia Database Management Systems. PhD
thesis, University of Twente, Twente, The Netherlands, 1999.

4. A. Doan and A.Y. Halevy. Semantic Integration Research in the Database Com-
munity. AI Magazine, 26:83–94, 2005.

5. N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on Informa-
tion Retrieval Concepts. ACM Transactions on Information Systems, 22(2):313–
356, 2004.

6. S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004. In
N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Third Workshop of
the INitiative for the Evaluation of XML retrieval (INEX), volume 3493 of Lecture
Notes in Computer Science, pages 276–291, 2005.

7. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, Twente, The Netherlands, 2001.

8. D. Hiemstra and V. Mihajlovic. The simplest evaluation measures for xml informa-
tion retrieval that could possibly work. In Proceedings of the INEX 2005 Workshop
on Element Retrieval Methodology, 2005.

9. Jaap Kamps, Maarten de Rijke, and Börkur Sigurbjörnsson. Length Normalization
in XML Retrieval. In SIGIR ’04: Proceedings of the 27th Annual International
Conference on Research and Development in Information Retrieval, pages 80–87,
2004.

10. G. Kazai, M. Lalmas, and A.P. de Vries. The Overlap Problem in Content-oriented
XML Retrieval Evaluation. In Proceedings of the 27th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2004.

11. G. Kazai, M. Lalmas, and S. Malik. INEX’03 Guidelines for Topic Developments.
In Proceedings of the Second Initiative on the Evaluation of XML Retrieval (INEX
2003), ERCIM Workshop Proceedings, 2004.

12. J. List, V. Mihajlović, A. de Vries, G. Ramirez, and D. Hiemstra. The TIJAH XML-
IR System at INEX 2003. In Proceedings of the 2nd Initiative on the Evaluation
of XML Retrieval (INEX 2003), ERCIM Workshop Proceedings, 2004.

13. V. Mihajlović, H.E. Blok, D. Hiemstra, and P.M.G. Apers. Score Region Algebra:
Building a Transparend XML-IR Database. In Proceedings of the ACM CIKM
Conference, 2005.

14. V. Mihajlović, G. Ramı́rez, A.P. de Vries, D. Hiemstra, and H.E. Blok. TIJAH at
INEX 2004: Modeling Phrases and Relevance Feedback. In N. Fuhr, M. Lalmas,
and S. Malik, editors, Proceedings of the Third Workshop of the INitiative for the
Evaluation of XML retrieval (INEX), volume 3493 of Lecture Notes in Computer
Science, pages 276–291, 2005.

15. G.A. Miller, C. Fellbaum, R. Tengi, S. Wolff, P. Wakefield, H. Langone, and
B. Haskell. WordNet: A Lexical Database for the English Language.

16. E. Rahm and P.A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. The VLDB Journal - The International Journal on Very Large
Databases, 10:334–350, 2001.

17. G. Ramı́rez, T. Westerveld, and A.P. de Vries. Structural Features in Content
Oriented XML Retrieval. In Proceedings of the ACM CIKM Conference, 2005.

18. S. E. Robertson and S. Walker. Some Simple Effective Approximations to the
2-Poisson Model for Probabilistic Weighted Retrieval. In Proceedings of the 17th
ACM SIGIR Conference, 1994.

19. A. Tombros, B. Larsen, and S. Malik. The Interactive Track at INEX 2004. In
N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Third Workshop of
the INitiative for the Evaluation of XML retrieval (INEX), volume 3493 of Lecture
Notes in Computer Science, pages 410–423, 2005.

20. A. Trotman and R. A. O’Keefe. The Simplest Query Language That Could Possibly
Work. In N. Fuhr, M. Lalmas, and S. Malik, editors, Proceedings of the Second
Workshop of the INitiative for the Evaluation of XML retrieval (INEX), ERCIM
Publications, 2004.

21. T. Westerveld. Using generative probabilistic models for multimedia retrieval. Ph.d.
thesis, University of Twente, Enschede, The Netherlands, November 2004.

22. Thijs Westerveld and Arjen P. de Vries. Generative probabilistic models for mul-
timedia retieval: query generation versus document generation. IEE Proceedings -
Vision, Image and Signal Processing, 152(6):852–858, 2005.

XFIRM at INEX 2005: ad-hoc, heterogeneous

and relevance feedback tracks.

Preliminary work

Karen Sauvagnat, Lobna Hlaoua, and Mohand Boughanem

IRIT-SIG,
118 route de Narbonne, F-31 062 Toulouse Cedex 4, France

Abstract. This paper describes experimentations carried out with the
XFIRM system in the INEX 2005 framework. The XFIRM system uses a
relevance propagation method to answer CO and CAS queries. Runs were
submitted to the ad-hoc, heterogeneous and relevance feedback tracks.

1 Introduction

The approach we used for our participation at INEX 2005 is based on the
XFIRM system, and uses a relevance propagation method. The XFIRM sys-
tem was adapted for submitting runs to the ad-hoc track (for CO, CO+S, and
CAS tasks), the heterogeneous track and the relevance feedback track.

2 Experimental setup

2.1 XFIRM data model

The XFIRM system is based on a relevance propagation method. We use a
generic data model that allows the implementation of many IR models and the
processing of heterogeneous collection. We consider that a structured document
sdi is a tree, composed of leaf nodes lnij and attributes aij and simple nodes
nij (all nodes that are not leaf nodes or attributes).
Structured document: sdi = ({nij} , {lnij} , {aij})
In order to easily browse the document tree and to quickly find ancestors-
descendants relationships, the model uses a representation of nodes and at-
tributes based on the Xpath Accelerator approach [2].
All leaf nodes are indexed, because even the smallest leaf nodes can be relevant
or can give information on the relevance of their ancestors. Intuitively, title or
subtitle nodes are not informative, but if a query term occurs in those nodes,
such information can be useful for evaluating the relevance of the ancestor node.
Such an approach has other advantages: the index process can be done automat-
ically, without any human intervention and the system will be so able to handle
heterogeneous collections automatically; and secondly, even the most specific
query concerning the document structure will be processed, since all the docu-
ment structure is stored.

During query processing, relevance values are assigned to leaf nodes and rele-
vance score of inner nodes are then computed dynamically, thanks to a propaga-
tion of leaf nodes score through the document tree. An ordered list of subtrees
is then returned to the user.

2.2 Evaluation of leaf nodes scores

Whatever the considered type of queries, a first step in query processing is to
evaluate the relevance value of leaf nodes ln according to the query. Let q =
t1, . . . , tn be this query. Relevance values are computed thanks to a similarity
function RSVm(q, ln), where m is an IR model.

RSVm(q, ln) =

n
∑

i=1

wq
i ∗ wln

i (1)

Where wq
i and wi ln are respectively the weights of term i in query q and leaf

node ln.
According to previous experiments [5], we choose to use the following term
weighting scheme, which aims at reflecting the importance of terms in leaf nodes,
but also in whole documents:

wq
i = tf q

i wln
i = tf ln

i ∗ idfi ∗ iefi (2)

Where tf q
i and tf ln

i are respectively the frequency of term i in query q and leaf
node ln, idfi = log(|D|/(|di|+ 1)) + 1, with |D| the total number of documents
in the collection, and |di| the number of documents containing i, and iefi is the
inverse element frequency of term i, i.e. log(|N |/|nfi|+1)+1, where |nfi| is the
number of leaf nodes containing i and |N | is the total number of leaf nodes in
the collection.
Inner nodes relevance values are evaluated thanks to one or more propagation
functions, which depend on the searching task. Such propagation functions are
described in the following sections.

3 CO task

3.1 Inner nodes relevance values evaluation

In our model, each node in the document tree is assigned a relevance value
which is function of the relevance values of the leaf nodes it contains. Terms
that occur close to the root of a given subtree seem to be more significant for
the root element that ones on deeper levels of the subtrees. It seems therefore
that the larger the distance of a node from its ancestor is, the less it contributes
to the relevance of its ancestor. This affirmation is modelled in our propagation
formula by the use of the dist(n, lnk) parameter. dist(n, lnk) is the distance
between node n and leaf node lnk in the document tree, i.e. the number of arcs
that are necessary to join n and lnk.
It is also intuitive that the more a node contains relevant leaf nodes, the more it
is relevant. We then introduce in the propagation function the |Lr

n| parameter,

which is the number of leaf nodes being descendant of n and having a non-zero
relevance value (according to equation 1).
A relevance propagation function using these parameters has been tested in the
INEX 2004 framework. In the 2005 evaluation campaign, we propose to add two
parameters:

– We propose to increase small nodes importance during propagation. Indeed,
we think that authors of documents use small nodes to highlight impor-
tant informations. These nodes can therefore give precious indications on
the relevance of their ancestors. In our propagation function, this intuition
corresponds to the β(lnk) parameter.

– We introduce the ρ parameter, inspired from work presented in [3], which
allows the introduction of document relevance in inner nodes relevance eval-
uation. The idea behind context is: an element in a relevant document should
be better ranked than an identical element in a non-relevant document.

The relevance value rn of a node n is therefore computed according the following
formula:

rn = ρ ∗ |Lr
n|.

∑

lnk∈Ln

αdist(n,lnk)−1 ∗ β(lnk) ∗RSV (q, lnk)

+(1− ρ) ∗ |Lr|.
∑

lnk∈L

αdist(root,lnk)−1 ∗ β(lnk) ∗RSV (q, lnk)

= ρ ∗ |Lr
n|.

∑

lnk∈Ln

αdist(n,lnk)−1 ∗ β(lnk) ∗RSV (q, lnk)

+(1− ρ) ∗ rroot (3)

where lnk are leaf nodes being descendant of n, Ln is the set of leaf nodes being
descendant of n, and

β(lnk) =







lk/∆l if dist(n, lnk) = 1 and lk < ∆l
log(∆l/lk) if dist(n, lnk) > 1 and lk < ∆l
1 else

(4)

with lk the length of node lnk and ∆l the average length of leaf nodes in the
collection.

3.2 Runs

CO.Thorough strategy. For the CO.Thorough task, all nodes having a non-zero
relevance value are returned by the XFIRM system. We experimented using
various values of ρ ∈ [0..1].

CO.Focussed strategy. In order to reduce/remove nodes overlap, we use two
different algorithms:

1. For each relevant path, we keep the most relevant node in the path (around
20% of nodes overlap still remains)

2. For each relevant path, we keep the most relevant node in the path. The
results set is then parsed again, to eliminate any possible overlap among
ideal components.

CO.FetchAndBrowse strategy. In this task, elements are first ranked by the
relevance of the document they belong to, and then by their own relevance. We
use the following algorithm:

1. relevance values are computed for each document in the collection;
2. relevance values are computed for each node of the collection;
3. documents are ranked by decreasing order of relevance;
4. for each document, elements they contain are ranked by decreasing order of

relevance and are returned to users.

Documents relevance are computed with the Mercure system [1].

3.3 Results

All results described in this paper use the inex1.8 version of the collection, which
is the official 2005 collection. However, due to a misunderstanding, our official
submissions were obtained with the inex1.6 version of the collection. For infor-
mation, official submissions are mentioned in italic characters and are followed
by the ’*’ symbol.

CO.THOROUGH strategy. Tables 1 and 2 show the results obtained with dif-
ferent values of ρ.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

ρ = 1 0,1684 0,168 0,1772 0,0562 0,1100 0,2231
ρ = 0.9 * 0,15 * 0,156 * 0,174 * 0,043 * 0,085 * 0,188 *

ρ = 0.9 0,1712 0,1696 0,1786 0,0577 0,1089 0,2179
ρ = 0.8 0,1634 0,1845 0,1859 0,0569 0,1057 0,2138
ρ = 0.7 0,1727 0,2006 0,1883 0,0569 0,1044 0,2110
ρ = 0.6 0,1713 0,2058 0,1928 0,0565 0,1031 0,2078
ρ = 0.5 0,1762 0,2036 0,1894 0,0561 0,1019 0,2051
ρ = 0.4 0,1802 0,2075 0,1897 0,0557 0,1009 0,2040
ρ = 0.3 0,1931 0,2116 0,188 0,0555 0,1001 0,2020
ρ = 0.2 0,2049 0,2126 0,1857 0,0553 0,0996 0,2010
ρ = 0.1 0,2083 0,2144 0,1868 0,0548 0,0986 0,2011
ρ = 0 0,2384 0,2126 0,1862 0,0542 0,0976 0,1981

Table 1. CO.Thorough strategy. Quantisation: Generalised

Best results are obtained with small values of ρ, especially for the strict
quantisation function. This seems to show that root relevance (i.e. document
relevance) has a high impact on elements relevance.

CO.FOCUSSED strategy. Tables 3 and 4 show the results obtained with differ-
ent values of ρ.

Algorithm 2 (results without any nodes overlap) allows to obtain better re-
sults than algorithm 1 for all metrics. As opposed to results obtained for the
CO.Thorough strategy, document relevance seems to have no impact on element
relevance (best results were obtained with ρ = 1).

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

ρ = 1 0,012 0,0299 0,0464 0,0009 0,0012 0,0208
ρ = 0.9 * 0,011 * 0,025 * 0,047 * 0,001 * 0,001 * 0,021 *

ρ = 0.9 0,012 0,0258 0,0462 0,0012 0,0015 0,0216
ρ = 0.8 0,008 0,0329 0,0475 0,0014 0,0016 0,0213
ρ = 0.7 0,008 0,0425 0,0514 0,0015 0,0017 0,0216
ρ = 0.6 0,008 0,0505 0,0522 0,0016 0,0018 0,0218
ρ = 0.5 0,012 0,0569 0,0546 0,0017 0,0019 0,0209
ρ = 0.4 0,016 0,0585 0,0555 0,0017 0,0019 0,0206
ρ = 0.3 0,024 0,0617 0,0555 0,0017 0,0020 0,0199
ρ = 0.2 0,036 0,0633 0,0555 0,0018 0,0020 0,0199
ρ = 0.1 0,044 0,0633 0,0563 0,0019 0,0021 0,0199
ρ = 0 0,0684 0,0636 0,0579 0,0019 0,0021 0,0194

Table 2. CO.Thorough strategy. Quantisation: Strict

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

ρ = 1 0,1202 0,1214 0,1279 0,0393 0,0798 0,1543
ρ = 0.9 0,112 0,1073 0,0941 0,0260 0,0609 0,1249

Algorithm 1 ρ = 0.8 0,1146 0,106 0,093 0,0256 0,06042 0,1208
...
ρ = 0.1 0,1042 0,094 0,0852 0,0231 0,0577 0,1177
ρ = 0 0,0951 0,0901 0,078 0,0235 0,0607 0,1172

ρ = 1 * 0,119 * 0,122 * 0,119 * 0,030 * 0,060 * 0,132 *

ρ = 1 0,1364 0,1445 0,1453 0,0396 0,0748 0,1579
ρ = 0.9* 0.104 * 0.104 * 0.089 * 0.022 * 0.052 * 0.106 *

ρ = 0.9 0,1299 0,1171 0,1021 0,0276 0,0624 0,1271
Algorithm 2 ρ = 0.8 0,1235 0,1144 0,0988 0,0271 0,0622 0,1258

...
ρ = 0.1 0,1131 0,1033 0,092 0,0256 0,0613 0,1197
ρ = 0 0,0951 0,0901 0,078 0,0235 0,0607 0,1172
Table 3. CO.Focussed strategy. Quantisation: Generalised

CO.FETCHBROWSE strategy. Results obtained with the CO.FetchBrowse
strategy are described in table 5. Results are good, since we were ranked in
the top 5 for both quantisation functions. More over results are significantly
better for the MAP metric than those obtained for the CO.Thorough strategy
(see tables 1and 2).

4 CAS task

4.1 Inner nodes relevance value evaluation

The evaluation of a CAS query is carried out as follows:

1. INEX (NEXI) queries are translated into XFIRM queries
2. XFIRM queries are decomposed into sub-queries SQ and elementary sub-

queries ESQ, which are of the form: ESQ = tg[q], where tg is a tag name,
i.e. a structure constraint, and q = t1, ..., tn is a content constraint composed
of simple keywords terms.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

ρ = 1 0,012 0,016 0,0336 0,0024 0,0034 0,0051
ρ = 0.9 0,014 0,0156 0,0188 0,0030 0,0038 0,0015

Algorithm 1 ρ = 0.8 0,014 0,0156 0,0196 0,0031 0,0039 0,0011
...
ρ = 0.1 0,004 0,0056 0,0128 0,0011 0,0016 0,0008
ρ = 0 0 0,004 0,012 0,0009 0,0015 0

ρ = 1 * 0,011 * 0,006 * 0,025 * 0,002 * 0,003 * 0,004 *

ρ = 1 0,016 0,0112 0,0296 0,0034 0,0046 0,0066
ρ = 0.9* 0.014 * 0.020 * 0.028 * 0.004 * 0.004 * 0.002 *

ρ = 0.9 0,014 0,0172 0,0204 0,0031 0,0039 0,0018
Algorithm 2 ρ = 0.8 0,014 0,0172 0,0236 0,0031 0,0039 0,0011

...
ρ = 0.1 0,004 0,0072 0,0176 0,0013 0,0019 0,0011
ρ = 0 0 0,004 0,012 0,0009 0,0015 0

Table 4. CO.Focussed strategy. Quantisation: Strict

Generalised Strict

ρ = 1 0,1167 0,0063
ρ = 0.9 * 0,108 * 0,006 *

ρ = 0.9 0,1229 0,0068
... ...

ρ = 0.1 0,1183 0,0065
ρ = 0 0,0731 0,0042

Table 5. CO.FetchBrowse strategy. ep/gr - MAP-Element metric

3. Relevance values are then evaluated between leaf nodes and the content
conditions of elementary sub-queries

4. Relevance values are propagated in the document tree to answer to the
structure conditions of elementary sub-queries

5. Sub-queries are processed thanks to the results of elementary sub-queries

6. Original queries are evaluated thanks to upwards and downwards propaga-
tion of the relevance weights

Step 3 is processed thanks to formula 1. In step 4, the relevance value rn of
a node n to an elementary subquery ESQ = tg[q] is computed according the
following formula:

rn =

{
∑

lnk∈Ln
αdist(n,lnk)−1 ∗RSV (q, lnk) if n ∈ construct(tg)

0 else
(5)

where the construct(tg) function allows the creation of set composed of nodes
having tg as tag name, and RSV (q, lnk) is evaluated during step 2 with equation
1. The construct(tg) function uses a Dictionnary Index, which provides for a
given tag tg the tags that are considered as equivalent. For example, a title node
can be considered as equivalent to a sub-title node. This index is built manually.
More details about CAS queries processing are can be found in [5].

4.2 Runs

In order to answer the different searching tasks, we used different Dictionnary
indexes:

– The DICT index is composed of equivalencies given in the INEX guidelines.
For example, ss1, ss2 and ss3 nodes are considered as equivalent to sec nodes.

– The ExtendedDICT is composed of very extended equivalencies. For exam-
ple, sec, ss1, ss2 and ss3 nodes are equivalent to both p and bdy nodes.

SSCAS strategy. We use the DICT index and results are filtered in order to
answer strictly to constraints on the target element and support elements.

VVCAS strategy. We use the EXtendedDICT index, and no filter is applied on
results.

SVCAS strategy. We use the DICT index. No filter is applied on results: they
match the structure constraint on the target element in a strict way (since the
DICT index is used), and their relevance score is eventually increased by the
relevance score of results of subqueries on support elements.

VSCAS strategy. We use the DICT index on support elements and the Ex-
tendedDICT on target elements.

4.3 Results

Results for all strategies are showed in tables 6, 7, 8 and 9. Results are good,
since we are in the top 10 for almost all metrics.

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

Generalised DICT * 0,329 * 0,397 * 0,374 * 0,105 * 0,157 * 0,258 *

DICT 0.2861 0.2722 0.338 0.109 0.178 0.246

Strict DICT * 0,325 * 0,31 * 0,32 * 0,016 * 0,02 * 0,121 *

DICT 0.35 0.329 0.338 0.0166 0.021 0.1169
Table 6. SSCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

Generalised ExtendedDICT * 0,29 * 0,258 * 0,246 * 0,061 * 0,101 * 0,206 *

ExtendedDICT 0.3047 0.2727 0.2487 0.0687 0.115 0.219

Strict ExtendedDICT * 0,067 * 0,076 * 0,136 * 0,005 * 0,006 * 0,044 *

ExtendedDICT 0.0885 0.0756 0.1244 0.0054 0.0059 0.0468
Table 7. VVCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

Generalised DICT * 0,303 * 0,272 * 0,276 * 0,105 * 0,181 * 0,301 *

DICT 0.2645 0.2758 0.2916 0.1378 0.2318 0.330

Strict DICT * 0,42 * 0,408 * 0,416 * 0,017 * 0,02 * 0,1 *

DICT 0.44 0.4571 0.4662 0.017 0.022 0.11
Table 8. SVCAS strategy

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

Generalised DICT+ExtendedDICT * 0,194 * 0,21 * 0,207 * 0,07 * 0,119 * 0,218 *

DICT+ExtendedDICT 0.237 0.2346 0.2292 0.047 0.069 0.159

Strict DICT+ExtendedDICT * 0 0,007 * 0,023 * 0,007 * 0,008 * 0,07 *

DICT+ExtendedDICT 0.1667 0.15 0.15 0.006 0.007 0.05
Table 9. SVCAS strategy

5 CO+S task

5.1 Inner nodes relevance value evaluation

In the CO+S task, queries are processed as in the CAS task. Nodes relevance
values are evaluated using equation 5.

5.2 Runs

+S.THOROUGH strategy and +S.FOCUSSED strategy. We either use the
DICT or ExtendedDICT dictionnary index, since the aim of the task is to in-
vestigate the usefulness of the structural hints.

+S.FETCHBROWSE strategy We follow the same algorithm as the one used
for the CO.FETCHBROWSE strategy.

5.3 Results and comparison to the CO task

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

DICT * 0,172 * 0,147 * 0,123 * 0,016 * 0,03 * 0,089 *

DICT 0,1759 0,162 0,1422 0,0192 0,0369 0,1022
ExtendedDICT* 0,169 * 0,191 * 0,187 * 0,045 * 0,088 * 0,001 *

ExtendedDICT 0,1787 0,2037 0,206 0,0569 0,1086 0,2166
Table 10. COS.Thorough strategy. Quantisation: Generalised

+S.THOROUGH strategy. Results are not as good as those obtained without
structural hints (see table 1 and 2 for comparison).

+S.FOCUSSED strategy As opposed to results obtained for the +S.THOROUGH
strategy, results here are better than those obtained without using structural
hints (see tables 3 and 4 for comparison).

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

DICT * 0,024 * 0,037 * 0,047 * 0 * 0 * 0,008 *

DICT 0,0242 0,0321 0,0362 0,0003 0,0004 0,0062
ExtendedDICT* 0,027 * 0,042 * 0,056 * 0,001 * 0,001 * 0,019 *

ExtendedDICT 0,0308 0,0434 0,0532 0,0012 0,0014 0,0210
Table 11. COS.Thorough strategy. Quantisation: Strict

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

DICT 0,1567 0,1362 0,121 0,0458 0,1046 0,1783
ExtendedDICT* 0,144 * 0,128 * 0,127 * 0,031 * 0,069 * 0,143 *

ExtendedDICT 0.1586 0.1497 0.1428 0.0410 0.0855 0.1674
Table 12. COS.Focussed strategy. Quantisation: Generalised

nxCG[10] nxCG[25] nxCG[50] ep/gr - MAP Q R

DICT 0,0231 0,0308 0,0345 0,0096 0,01183 0,0166
ExtendedDICT* 0,009 * 0,009 * 0,025 * 0,002 * 0,004 * 0,004 *

ExtendedDICT 0.0154 0.0163 0.0571 0.0032 0.0046 0.0086
Table 13. COS.Focussed strategy. Quantisation: Strict

Generalised Strict

DICT * 0,111 * 0,015 *

DICT 0.0155 0,0008
ExtendedDICT * 0.0747 * 0,005 *

ExtendedDICT 0,072 0.0058

Table 14. +S.FetchBrowse strategy. ep/gr - MAP-Element metric

+S.FETCHBROWSE strategy. As for the +S.THOROUGH strategy, results
obtained without using structural hints are better than those obtained for the
+S.FETCHBRWOSE strategy (see table 5 for comparison).

6 Heterogeneous track

In progress.

7 Relevance feedback track

For the RF track, we used the three different algorithms described below.

7.1 Structure-oriented Relevance Feedback

Our goal in what we call structure-oriented RF is to enrich the initial CO query
by adding structural constraints. Results of CO queries are components of dif-
ferent granularities. Even if a user does not ask for a particular component type,
he’s often interested in a few types of components (like for example references

or sections).
Our approach consists in extracting from the set of judged elements the structure
that could contain the information needed by the user. The idea in structure-
oriented RF is therefore to find for each query the appropriate generic structure,

which is the generic structure shared by the greatest amount of relevant ele-
ments.
This structure will be added to the initial query in order to improve the infor-
mation retrieval effectiveness.

Our algorithm consists in carrying out the intersection of each structure of
the elements judged as relevant with the rest of relevant elements structures. As
a result, we obtain a set of Common Structures, called SC.
Let Er be the set of relevant elements and ei be an element ∈ Er. ei is character-
ized by a path pi and a relevance score wi computed by the relevance evaluation
process. A simple path spi composed of tag names can be derived from pi. For
example, the simple path corresponding to the path /article[1]/bdy[1]/sec[3] is:
/article/bdy/sec.
For each element ei ∈ Er, and for each ej ∈ Er −{ei}, we apply the SCA func-
tion, which allows to retrieve (and to weight) the simple path of the smallest
common ancestor of ni and nj . This simple path is then added to the set of
common structures SC. The SCA fuction is computed for each pair elements of
Er. More precisely, we use the following algorithm for SCA:

SCA(ei, ej)
begin
If spi.last = spj .last, then wi ← wi + wj

if ∃ep(spp, wp), with spp ∈ SC/spp.last = spi.last then wp ← wp + wi

else SC ← spi

If spi.last 6= spj .last, then spj ← tail(spj)
wj ← wj/2
SCA(ei, ej)

end

with sp.last is the last tag of the path sp and tail(sp) is a function allowing
to contract the path sp, i.e. to remove the last tag of the path. For example,
tail(/article/bdy/section) = /article/bdy.
In order to express the new (CAS) query, we then extract the top ranked struc-
ture in the SC set. This structure will be either used as it is in the new query
(complex form) or simplified in a simple tag form. Original query terms are then
added to the structural constraint.
For example, let /article/bdy/sec be the top ranked structure of the SC set
and ”information retrieval”’ be the original CO query. The new CAS query
will either be ”/article/bdy/sec(about(.,information retrieval)” (complex form)
or ”sec(about(.,”information retrieval”)” (simple form).

7.2 Content-Oriented Relevance Feedback

Our Content-Oriented Relevance Feedback approach is based on the Rocchio’
algorithm [4]. Our aim is to extract the most expressive terms from relevant
elements. The content-oriented RF processes as follows :

– Let’s consider the set of relevant elements (Er) : Er = er
1, e

r
2, ..., e

r
k, ...er

m ,
– A relevant element er

k is composed of a set of leaf nodes(lnj) : er
k = lnk

1 , ..., ln
k
j , .lnk

n

– A leaf node lnk
j is a sequence of terms: lnj = {tij}.

For each term is assigned a score according to the following formula:

score(tij , ln
k
j) =

tf j
i

size(lnj)
(6)

Where tf j
i is the frequency of term ti in leaf node lnk

j and size(lnj) is the number
of terms in lnj .
We then compute the score of terms for each relevant element. For each term,
we sum its scores in different leaf nodes.

score(ti, e
r
k) =

∑

lnj∈er
k

score(ti, lnj) (7)

As a result, we obtain a set of expressive words for each element judged as
relevant. Best terms are selected according to the scores in the set of relevant
elements Er:

score(ti) =
∑

er
k
∈Er

score(ti, e
r
k) (8)

The new query is finally composed of terms ranked in the top k according to
formula 8, that are added to the original query terms.

7.3 Content-and-Structure-Oriented Relevance Feedback

In this approach, we propose to combine the structure-oriented Relevance Feed-
back method and the content-oriented Relevance Feedback described above. The
new query (CAS) is composed of the most appropriate generic stucture (complex
or simple form) and of terms ranked in the top k according to formula 8, that
are added to the original query terms.

7.4 Runs

CO.Thorough task. For this task, we used two approaches. The first uses the
Structure-oriented Relevance Feedback method (described in section 7.1). The
final CAS is composed of the most appropriate generic structure (specifying the
most appropriate generic path: complex form) and of the original query terms.
We considered relevant elements having an exhaustivity value E ≥ 1.
The second approach we used is the Content-and-Structure-Oriented Relevance
Feedback. We added to the original query the terms ranked in the top 15 and
the most appropriate generic structure (specifying the most appropriate generic
tag: simple form).

COS.Thorough and VVCAS task. We applied in the same way two approaches
for the COS.Thorough and VVCAS queries.
The first uses the Content-oriented Relevance Feedback method (described in
the section 7.2). We added to the original query the terms ranked in the top 15.
We considered relevant elements having an exhaustivity value E ≥ 1.
The second uses the Content-and-Structure-Oriented Relevance Feedback method.
We added to the original CAS query (thanks to the boolean operator ’OR’) the
most appropriate generic structure (specifying the most appropriate tag: simple
form) containing the 15 top ranked terms. We considered two cases for the rele-
vant elements: E ≥ 1 and E =2.

References

1. M. Boughanem, T. Dkaki, J. Mothe, and C. Soule-Dupuy. Mercure at TREC-7. In
Proceedings of TREC-7, 1998.

2. T. Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM

SIGMOD International Conference on Management of Data, Madison, Wisconsin,

USA. In M. J. Franklin, B. Moon, and A. Ailamaki, editors, ACM Press, 2002.
3. Y. Mass and M. Mandelbrod. Component ranking and automatic query refinement

for XML retrieval. In Proceedings of INEX 2004, Springer, pages 73–84, march
2005.

4. J. Rocchio. Relevance feedback in information retrieval. Prentice Hall Inc., Engle-
wood Cliffs, NJ, 1971.

5. K. Sauvagnat, M. Boughanem, and C. Chrisment. Using relevance propagation
for processing content-and-structure queries. Information Systems, special issue on

SPIRE 04, 2006.

University of Amsterdam at INEX 2005: Adhoc
Track

Börkur Sigurbjörnsson1, Jaap Kamps1,2, and Maarten de Rijke1

1 Informatics Institute, Faculty of Science, University of Amsterdam
2 Archives and Information Science, Faculty of Humanities, University of Amsterdam

Abstract. In this paper we describe the University of Amsterdam’s
participation in the INEX 2005 adhoc track. Our main research questions
for this round of INEX were to investigate selective indexing strategies
and different methods for using structural constraints in queries. As a side
question, we did experiment with the automatic creation of structured
queries.

1 Introduction

In this paper we describe the University of Amsterdam’s participation in the
INEX 2005 adhoc track. In previous years we have made our runs based on an
index of all overlapping XML elements. Our main objective this year was to
experiment with different methods of creating a more selective index. The aim
is to create a more efficient retrieval system without sacrificing much of retrieval
effectiveness. In our experiments with structured queries in the previous years we
have found that structural constraints lead to improvements in initial precision.
This year we wanted to explore whether different types of structural constraints
contribute differently to this gain.

For the CO.Focussed task we experiment with different non-overlapping runs.
First of all, we retrieve from our full overlapping element index and perform
result list based overlap removal as a post processing step. Second, we retrieve
from a non-overlapping element index. In our case, we used an index of all
<sec> elements. Last, and perhaps least, we retrieve from an article index. For
the CO.Thorough task we experiment with two pruning methods. One based on
previous relevance assessments and the other based on the length of the XML
elements. We compare the selective indexes to our full overlapping element index.
For the CO.FetchBrowse task we use our CO.Focussed runs as a basis and simply
group results for each article.

For the different CO+S tasks we experiment with different extents to use the
structural constraints. First of all, we only use the target constraint. Second we
use only the field constraints. Third we use both target and field constraints. For
the CO queries which do not have a structural version, we introduce structured
constraints using pseudo relevance feedback. For efficiency reasons, our system
is restricted to handle a limited set of structural constraints. The appropriate
set of structural constraints is chosen by studying content-and-structure queries
of previous years..

This paper is further organized as follows. In Section 2 we introduce our
indexing schemes. We describe our CO and CO+S runs in Sections 3 and 4
respectively. Section 5 gives a summary of our results. Finally we provide some
discussion and conclusions in Section 6.

2 Indexing

For effective and efficient XML retrieval indexing plays an important role. Any
element can, in theory, be retrieved. It has been shown, however, that not all
elements are equally likely to be appreciated as satisfactory answers to an infor-
mation need [2]. In particular, retrieval of the very many, very small elements
is not likely to be rewarded by users. Furthermore, users (and hence metrics)
may be willing to partially reward near misses. This prompts us to investigate
whether we can reduce our indexing size, both in terms of retrievable units and
storage size. We believe that this gives us more efficient retrieval without loosing
any, or at least little, of retrieval effectiveness.

Element Indexes For retrieving elements we build four indexes.

– Element index We build the “traditional” overlapping element index in the
same way as we’ve done in the previous years (see further [4, 5]).

– Length based index : It has been shown that very short elements are not likely
to be regarded as relevant. We analyze the average length of elements bearing
different tag-names. We then index only element types having an average
length above a certain threshold. For INEX 2005 we set the threshold to be
25 terms. The term count was applied before stop-words were removed.

– Qrel based index : It has been shown that elements with certain tag-names
are more likely than others to be regarded as relevant. We analyze the assess-
ments and look at which elements are assessed more frequently than other.
We index only elements that have appeared relatively frequently in previ-
ously assessment sets (i.e., they should constitute at least 2% of the total
assessments). We index article, bdy, sec, ss1, ss2, p, ip1, and fig.

– Section index : Retrieval of non-overlapping elements is a hot topic in XML
retrieval. We want to investigate how simple you can make your non-overlap-
ping retrieval. We build an index based on non-overlapping passages, where
the passage boundaries are determined by the structure. The simplest solu-
tion is to index only sections (<sec>). We believe that this simple strategy
is effective, despite (due to) the fact that the sections do not provide a full
coverage of the collection.

Article Indexes For retrieving articles we build two indexes.

– Article index : the “normal” article index
– Query fields: An article index containing both content and a selection of

fields. The fields are chosen based on structure of previous structured queries.
The fields chosen for INEX 2005 were: abs, fm//au, fm//atl, kwd, st,

Table 1. Properties of the the different indexes. Unit stands for the number of retriev-
able units. Storage stands for the size occupied in physical storage. Query time stands
for the time needed to retrieve 1000 retrieval units from the index for each of the INEX
2005 topics. All retrieval times are relative to the maximum retrieval time. (This table
will be completed in the proceedings version of this paper.)

Index Units Storage Query time

Element index 10,629,617 1.9G 1.0
Length based 1,502,277 1.3G t.b.a.
Qrel based 1,581,031 1.1G t.b.a.
Sections 96,600 223M t.b.a.

Articles 16,819 204M t.b.a.
Query fields 16,819 275M t.b.a.

bb//au, bb//atl, and ip1. The fields were chosen from a set of fields that
were used in the INEX 2003 and INEX 2004 content-and-structure queries.

For all indexes, stop-words were removed, but no morphological normaliza-
tion such as stemming was applied. Table 1 shows some statistics of the different
indexes.

3 Content-Only Runs

For all our runs we use multinomial language model [1]. We use the same mixture
model implementation as we used in INEX 2004 [5]. We assume query terms to
be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk. We estimate the element
language model by taking a linear interpolation of three language models:

P (ti|e) = λe · Pmle(ti|e) + λd · Pmle(ti|d) + (1 − λe − λd) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e; Pmle(·|d) is a language model
for document d; and Pmle(·) is a language model of the collection. The parameters
λe and λd are interpolation factors (smoothing parameters). Finally, we assign a
prior probability to an element e relative to its length in the following manner:

P (e) =
|e|∑
e |e|

, (3)

where |e| is the size of an element e.

3.1 CO.Focused

In our focused task we experiment with two different ways of choosing focused
elements to retrieve. First, based on the hierarchical segmentation of the collec-
tion. Second, based on a linear segmentation of the collection. We also wanted to
compare these two approaches with a non-focused baseline, namely a document
retrieval system. We submitted three runs:

– Article run (UAmsCOFocArticle) A baseline run created using our article
index. We used a λ = 0.15 and a normal length prior.

– Element run (UAmsCOFocElements) A run created using a mixture model
of the overlapping element index and the article index. We set λe = 0.4 and
λd = 0.4. No length prior was used for this run. Overlap was removed in
a list-based fashion, i.e. we traversed the list from the most relevant to the
least relevant and threw out elements overlapping with an element appearing
previously in the list.

– Section run (UAmsCOFocSections) A run created using a mixture model of
the section index and the article index. We set λe = 0.05 and λd = 0.1. A
normal length prior was used.

3.2 CO.Thorough

The main research question is to see if we can get away with indexing only
a relatively small number of elements. In our runs we compare three element
indexes. The “normal” element index, the qrel-based element selection and the
length-based element selection. We submitted three runs:

– Full element run (UAmsCOTElementIndex) A run using a mixture model
of the full element index and the article index. We set λe = 0.05, λd = 0.1,
and used a normal length prior.

– Qrel-based run (UAmsCOTQrelbasedIndex) A run using a mixture model
of the qrel-based element index and the article index. We set λe = 0.05,
λd = 0.1, and used a normal length prior.

– Length-based run (UAmsCOTLengthbasedIndex) A run using a mixture
model of the length-based element index and the article index. We set
λe = 0.05, λd = 0.1, and used a normal length prior.

3.3 CO.FetchBrowse

For the fetch and browse we mirror the focused task submissions, but cluster the
results so that elements within the same article appear together.

– Article run (UAmsCOFBArticle) This run is exactly the same as the article
run we submitted for the focused task.

– Element run (UAmsCOFBElements) We took the focused element run and
reordered the results in such a way that elements from the same document
are clustered together. The document clusters are ordered by the highest
scoring element within each document. We returned a maximum of 10 most
relevant elements from each article.

– Section run (UAmsCOFBSections) We took the focused section run and
reordered the result set in such a way that the elements from the same
document are clustered together. The document clusters are ordered by the
highest scoring section within each document.

4 Content-Only with Structure Runs

For the CO+S task we experiment with three ways of using structural con-
straints.

Target-only For queries that have a CAS title we only return elements which
satisfy the target constraint of the CAS title. For queries that ask for sections, we
accept the equivalent tags as listed in the topic development guidelines. NB! We
use the terms in the title field of the queries because we want a direct comparison
to CO runs. Retrieval is performed using a mixture model using the overlapping
element index and the normal document index.

Fields-only Here we use the document index with query fields. We process
the queries in three different ways, depending on their format. First, for the the
<castitle> queries with field constraints that match our fielded article index,
we rewrite the query such that it fits our index. For example, the query:

//article[about(.//abs, ipv6)]//sec[about(., ipv6 deployment) or
about(., ipv6 support)]

becomes

abs:ipv6 ipv6 deployment ipv6 support.

For the queries that only partly match our indexing scheme, we do additional
processing, i.e.

//*[about(.//au, moldovan) and about(., semantic networks)]

becomes

fm//au:moldovan bb//au:moldovan semantic networks

since our index makes distinction between article authors and referenced authors.
Second, for <castitle> queries that do not have fields that fit our index, we use
the simply extract the query terms. I.e.

//article[about (.//bdy, synthesizers) and about (.//bdy, music)]

becomes

synthesizers music.

Third, for queries that do not have a <castitle>, we add structured query fields
using pseudo relevance feedback on the fielded article index [3]. We look at the
top 20 feedback terms and we add up to n fielded terms where n is the length
of the original query. For example,

computer assisted composing music notes midi

becomes

bb//atl:music bb//atl:musical st:music ip1:musical ip1:music
fm//au:university computer assisted composing music notes midi

We use those queries to create an article run using the fielded article index. Now
we do the following:

– We take an existing run and for each element in that run, we replace it’s score
with the score of it’s article (using the fielded index and fielded queries).

– We do a combSUM of the original element run and the “article score” element
run.

Target and Fields Constraints Here we process both the target and fields
constraints in the same ways as discussed above.

4.1 Runs

The ways of processing structural constraints discussed above, are applied to
each of the structured retrieval tasks.

+S.Focused

– Strict on target (UAmsCOpSFocStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set λe = 0.4
and λd = 0.4. No length prior was used for this run. Target restriction was
implemented for queries that had one. Overlap was removed in a list-based
fashion

– Using constraints (UAmsCOpSFocConstr) We apply the fields-only approach,
described above, on the focused CO element run (UAmsCOFocElements).

– Using constraints and strict on target (UAmsCOpSFocConstrStrTarg) We
apply the fields-only approach on the strict on target run (UAmsCOpSFoc-
StrictTarget).

+S.Thorough

– Strict on target (UAmsCOpSTStrictTarget) A run created using a mixture
model of the overlapping element index and the article index. We set λe =
0.05 and λd = 0.1. We apply a normal length prior. Target constraints are
respected for queries that have one.

– Using constraints (UAmsCOpSTConstr) We apply the fields-only approach,
described above, on the thorough CO element run (UAmsCOTElementIn-
dex).

– Using constraints and strict on target (UAmsCOpSTConstrStrTarg) We ap-
ply the fields-only approach on the strict on target run (UAmsCOpSTStrict-
Target).

+S.FetchBrowse

– Strict on target (UAmsCOpSFBStrictTarget) We reorder the focused strict
on target run (UAmsCOpSFocStrictTarget) such that results from the same
article are clustered together. Only the 10 most relevant elements are con-
sidered for each article.

– Using constraints (UAmsCOpSFBConstr) We reorder the focused run using
constraints (UAmsCOpSFocConstr) such that results from the same article
are clustered together. Only the 10 most relevant elements are considered
for each article.

– Using constraints (UAmsCOpSFBConstrStrTarg) We reorder the focused
run using constraints and strict targets (UAmsCOpSFocConstrStrTarg) such
that results from the same article are clustered together. Only the 10 most
relevant elements are considered for each article.

5 Results

In this section we will present and discuss our preliminary results. The results for
the Focussed and Thorough tasks are based on results from the INEX (lip6) web-
site as they appeared on November 6th, 2005. The results for the FetchBrowse
were taken from the website in November 10th, 2005.

5.1 The Focussed Task

Table 2 shows the results for both the CO.Focussed and CO+S.Focussed runs.

CO.Focussed The aim of the CO.Focussed submission was to compare 3 non-
overlapping retrieval strategies: element retrieval, section retrieval and article
retrieval. As we see in Table 2 the element based retrieval outperforms the other
two for almost all metrics. There are, however, some notable exceptions. Inter-
estingly, the article run outperforms the other two when we look at extremely
early precision of the generalized nxCG metric. For the generalized extended Q
and R metric the section run gives the best performance, followed by the article
run. This suggests that the element retrieval approach is a good approach when
considering the full recall base. However, for early precision, section retrieval
(and to some extent article retrieval) is a better alternative.

Table 2. Results for the CO.Focussed and COS.Focussed runs using various metrics

(a) nxCG (overlap=on, generalized)

Run MAnxCG @1 @2 @3 @4 @5 @10 @50 @100

Elements .269 .195 .191 .221 .204 .209 .200 .165 .181
Sections .204 .213 .209 .190 .194 .178 .176 .158 .153
Articles .098 .248 .250 .205 .191 .184 .170 .102 .089

StrTarg .225 .236 .230 .246 .236 .230 .224 .168 .168
Constr .300 .161 .215 .224 .232 .215 .203 .170 .190
ConStrTar .237 .289 .272 .257 .250 .231 .224 .182 .175

(b) EP/GR (overlap=on, generalized) and Extended Q and R (generalized)

EP/GR Ext. Q and R
Run iMAep MAep Q R

Elements .056 .071 .115 .159
Sections .030 .064 .145 .215
Articles .020 .048 .133 .195

StrTarg .049 .072 .135 .202
Constr .059 .074 .123 .166
ConStrTar .057 .078 .144 .208

CO+S.Focussed The aim of the CO+S.Focussed submission was to compare dif-
ferent extents to which the structural constraints can be used. For the averaged
metrics the run using only the fields-only approach (Constr) outperforms both
the other runs using structured queries, as well as outperforming the runs using
no structure at all. For the early precision metrics, the runs using strict-target in-
terpretation (StrTarg and ConStrTarg) outperform the fields-only approach. The
run using both field-constraints and target-constraints generally outperforms the
run using target-constraints only. It seem thus that the field-constraints are gen-
erally useful for improving retrieval effectiveness, while the target constraints
are particularly useful for achieving high early precision.

5.2 The Thorough Task

Table 3 shows the results for the CO.Thorough and CO+S.Thorough runs.

CO.Thorough The aim of the CO.Thorough submission was to experiment with
two selective indexing approaches compared to a full element retrieval approach.
Table 3 shows that for the averaged metrics, the selective indexing approaches
to not have substantially worse performance than the full element retrieval ap-
proach. Furthermore, for the early precision metrics, the selective indexing ap-
proaches outperform the full element retrieval approach.

CO+S.Thorough The aims and the results for the CO+S.Thorough task are the
same as for the CO+S.Focussed task. Field-constraints are useful over-all, but
target constraints improve initial precision.

Table 3. Results for the CO.Thorough and CO+S.Thorough runs using various metrics

(a) nxCG (overlap=off, generalized)

Run MAnxCG @1 @2 @3 @4 @5 @10 @50 @100

Element .309 .239 .191 .256 .265 .275 .265 .230 .218
Qrel .301 .266 .227 .293 .287 .289 .275 .245 .231
Length .302 .281 .247 .281 .272 .276 .264 .240 .218

StrTarg .192 .322 .260 .263 .245 .246 .225 .186 .168
Constr .334 .242 .244 .249 .250 .254 .261 .234 .246
ConStrTar .206 .311 .264 .246 .242 .235 .216 .198 .180

(b) EP/GR (overlap=off, generalized) and Extended Q and R (generalized)

EP/GR Extended Q and R
Run iMAep MAep Q R

Element .072 .085 .162 .269
Qrel .074 .089 .168 .275
Length .070 .085 .166 .272

StrTarg .046 .053 .098 .193
Constr .078 .089 .166 .270
ConStrTar .049 .056 .101 .193

Table 4. Results for the CO.FetchBrowse and CO+S.FetchBrowse runs using various
metrics

(a) ERPRUM (ideal: GK-SOG, quant: Exh, behaviour: Hierarchic)

Run Average @1 @5 @10 @20 @100

Elements .091 .089 .039 .025 .016 .005
Sections .114 .123 .056 .031 .019 .005
Articles .027 .072 .033 .021 .012 .003

StrTarg .107 .098 .039 .026 .016 .005
Constr .064 .106 .047 .029 .019 .006
ConStrTar .070 .116 .044 .027 .017 .005

5.3 The Fetch-and-Browse Task

FetchBrowse Table 4 shows the results for our FetchBrowse submissions. At
the time of writing, none of the FetchBrowse tasks have been evaluated with
an official INEX metrics which handled overlap. Since we submitted only non-
overlapping runs for this task, we report the EPRUM metric which takes over-
lap into consideration. Our section retrieval run outperforms the full element
retrieval run both w.r.t. average precision and initial precision. It is interesting
to note that for the Focussed task, the element run outperformed the section run
for the averaged metric. Note, however, that there are several crucial differences
between the results for the two tasks. First of all, the task is of course different.
Second, the tasks are evaluated with different metrics. Third, for articles where
more than 10 results were found, results 11 and above were removed from the
FetchBrowse runs.

Table 5. Results for the CO.FetchBrowse-D and CO+S.FetchBrowse-D runs using
various metrics

(a) inex eval

generalized
Run MAP @1 @5 @10 @20 @100

Element .186 .261 .207 .183 .154 .064
Sections .264 .359 .289 .216 .163 .064
Article .282 .424 .285 .260 .202 .069

StrTarg .186 .293 .189 .171 .128 .057
Constr .242 .315 .239 .216 .175 .068
ConStrTar .250 .326 .265 .225 .178 .066

FetchBrowse-D Table 5 shows the document-run evaluation of our FetchBrowse
submissions. The results seem to indicate that element retrieval is not an effective
strategy for improving document retrieval. These results will be analyzed further
in the proceedings version of this paper.

6 Conclusions

In INEX 2005 we set out to investigate several research questions.

– Does retrieval using the XML tree hierarchy improve significantly over using
a simpler linear segmentation of the documents?

– How do different types of structural constraints contribute to improved re-
trieval effectiveness?

– Can we prune our overlapping element index to gain efficiency without loos-
ing effectiveness?

– Can we create structured queries automatically using pseudo relevance feed-
back?

Our results show that retrieving from the full hierarchy of element outper-
forms retrieval from a linear segmentation. The segmentation based retrieval is
however competitive when we look at initial precision. Article retrieval is inter-
estingly effective at P@1 and P@2 for the CO.Focused task.

We showed that fielded constraints are helpful for improving average retrieval
performance. Interpreting target constraints in a strict manner does hurt average
performance. The target constraints do however improve retrieval when we look
at early precision.

For the thorough task we experimented with two different pruning of the full
overlapping element index. Neither of the pruning strategies lead to a consid-
erably lower average performance. Both pruning strategies did however lead to
improved initial precision. The length based pruning lead to greater improvement
than the qrel based pruning.

For the FetchBrowse task the linear segmentation performed considerably
better than the hierarchical segmentation. This result is different from the Fo-

cussed task. It is however not clear whether this difference lies in different task
performed or in the different metric used to evaluate the two tasks.

For the document ranking part of the FetchBrowse task, ranking documents
based on their own retrieval score outperformed the document retrieval based
on the highest scoring element/section.

At this point we have not evaluated the effect of automatically creating struc-
tured queries through pseudo relevance feedback. This analysis remains as future
work and will be carried out before publication of the proceedings version of this
paper.

Future work includes looking at different granularities for the linear segmen-
tation. Instead of looking at section level, we could look at using subsections,
when available. Also we should include elements such as front-matter so that the
linear segmentation has a full coverage of the collection.

Our processing of the CO+S queries is a bit ad-hoc. Future research should
include a cleaner way of processing and retrieving using structural queries.

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project numbers 017.001.190, 220-80-001, 264-70-050, 612-
13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.006, and 640.001.501.

References

1. D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, Uni-
versity of Twente, 2001.

2. J. Kamps, M. de Rijke, and B. Sigurbjörnsson. The importance of length normal-
ization for XML retrieval. Information Retrieval, 8:631–654, 2005.

3. J. Ponte. Language models for relevance feedback. In W. Croft, editor, Advances in
Information Retrieval, chapter 3, pages 73–96. Kluwer Academic Publishers, Boston,
2000.

4. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approch to XML
Retrieval. In INEX 2003 Workshop Proceedings, pages 19–26, 2004.

5. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Mixture models, overlap, and struc-
tural hints in XML element retreival. In Advances in XML Information Retrieval,
LNCS 3493, pages 196–210, 2005.

Searching XML Documents – Preliminary Work

Marcus Hassler and Abdelhamid Bouchachia

Dept. of Informatics, Alps-Adria University Klagenfurt, Austria
marcus.hassler@uni-klu.ac.at, hamid@isys.uni-klu.ac.at

Abstract. Structured document retrieval aims at exploiting the struc-
ture together with the content of documents to improve retrieval results.
Several aspects of traditional information retrieval applied on flat doc-
uments have to be reconsidered. These include in particular, document
representation, storage, indexing, retrieval, and ranking. This paper out-
lines the architecture of our system and the adaptation of the standard
vector space model to achieve focussed retrieval.

1 Introduction and Motivation

Traditionally, content-based retrieval systems rely either on the Boolean model or
the vector space model (VSM) [1–3] to represent the flat structure of documents
as a bag of words. Extensions of these models have been proposed, e.g., the
fuzzy Boolean model and knowledge-aware models. However, all of these indexing
models do ignore the organization of text and the structure of documents until
recently with the advent of “queriable digital libraries”.

XML documents have a standard structure defined by a DTD or XML
schema. While this structure provides documents with hierarchical levels of
granularity, and hence more precision can be achieved by means of focussed
retrieval, it does, however, imply more requirements on the representation and
retrieval mechanisms. With the new generation of retrieval systems, the two
aspects, the structure and the content, have to be taken into account. To mini-
mally achieve that in presence of nested structure like chapter-section-subsection-
paragraph, the traditional information retrieval techniques, e.g., the VSM, have
to be adapted to fit the context of structure-aware retrieval. To design such
systems, four basic aspects are of high importance:

(a) Representation: Textual content of the hierarchically structured documents
is generally restricted to the leave nodes. Hence, representation mechanisms
of the inner nodes content have to be defined.

(b) Retrieval granularity: A basic question is whether the indexing/retrieval unit
must be known ahead of time or is completely dynamically decided by the
user or eventually by the system itself.

(c) Ranking: Related to the first two aspects, a strategy for ranking the retrieved
results has to be decided.

(d) Result presentation: The way results are presented is a key issue [4–6] and has
to be considered early in the design of the system. Once ranked, the results

are displayed showing their context of appearance. Further functionality
enabling browsing is required.

Taking these aspects into account, we developed a retrieval system. It is fully
implemented in Java and consists of three modular subsystems: indexing, re-
trieval and RMI (Remote Method Invocation) communication server as depicted
in Fig. 1.

R
M

I
s
e
rv

e
r

Index Thread

DataMapper
 DataStorer
 DataIndexer

index(doc)

Content Storage

Relational

DataBase

NLP Analysis

Term Weighting

based on

Retrieval Unit

Retrieval

Result

computation

query(q)

Result

presentation

Result

refinement

Result selection

Query Thread

no

INDEXING

RETRIEVAL

R
M

I
IN

T
E

R
F

A
C

E

result(rs)

user

Query Result

caching

Query expansion

& extension

Result

cache lookup

yes

Relevance

Feedback

Result

cache

Fig. 1: Architecture of the system

The RMI server takes incoming requests for indexing and querying the system
and initiates a new thread for each call. The basic motivation behind this is to
achieve some degree of parallelism. The maximum number of parallel threads de-
pends on the performance of the hardware. From the software architecture point
of view, both index and query subsystem, use a pipelined pattern of processing
units (Fig. 1). Dashed components describe planned extensions. For portability
and tuning purposes, all subsystems are independently configurable via con-
fig files. During indexing, documents are transformed into our XML schema
(DataMapper), stored in the database (DataStorer), and indexed for retrieval
(DataIndexer). As soon as a query is sent to the system it is analyzed by a query
thread. Documents in the database are matched against the query and relevant
elements1 are ranked in decreasing order.

1 we use element and node interchangeable

book

editor
 title
 body

name
 surname
 abstract
 chapter
 chapter

TXT
 TXT

TXT

TXT

TXT

...

title
 author
 section
 section
...
TXT

title
 TXT

TXT
 TXT

TXT

Fig. 2: Example XML document

In this paper, we will discuss the aspects (a)–(d), but with more focus is
more on the representation and the indexing/retrieval problem. First, in Sec. 2,
a generic schema for document representation is presented, onto which the XML
documents are mapped. Section 3 describes the underlying database model used
for storing the content and the corresponding representation. The most inter-
esting issues namely indexing and retrieval are discussed in Sec. 4 and Sec. 5
respectively. Section 6 concludes the paper.

2 Document Structure

The hierarchical structure for the content of documents is usually described by
means of a set of tags (e.g. chapter, section, subsection, etc.), as shown in Fig. 22.
In order to represent a collection of documents having different structure, we
apply an XSLT transformation to derive a common document format (schema).
This step eliminates structural ambiguities and resolves semantic relativism [7].

As illustrated in Fig. 3a, we introduce a general document format (defined
through XML schema) that consists of only three main elements: DOC (docu-
ment), SEC (section) and FRA (fragment). The DOC element defines the root of
the document. SEC is the basic structural element of a document. By recursively
defining SEC (e.g., section) as either containing raw content FRAs (e.g., para-
graphs) and/or made up of other SECs (e.g., subsections), the depth of nested
structures is unlimited. To define smallest retrievable units for indexing and
retrieval, we rely on fragments (FRAs). They stand for the leaf nodes in our
document schema (see Fig. 3a).

A node in an XML document is viewed as a tuple (metadata,content), where
metadata refers to descriptive information of the node itself, while content refers
to the segments content, properly said (see Fig. 3b). Generally, the first type of
nodes requires database-supported matching during retrieval, while the second
type is subject to partial matching (VSM).
2 This example will be used throughout this paper

Fra
9
 10

Doc
1
 36

Sec
2
 5

Fra
3
 4

Fra
6
 7

Sec
8
 25

Sec
11
 18
 Sec
19
 24

Fra
12
 13

Fra
14
 15

Fra
16
 17

Fra
20
 21

Fra
22
 23

Sec
26
 31
 Sec
32
 35

Fra
27
 28

Fra
29
 30

Fra
33
 34

(a) Transformed example

Sec
8
 25

Sec
11
 18
 Sec
19
 24

metadata
 content

title

author

Fra
9
 10

(b) Metadata and Content
blocks

Fig. 3: XML document representation

2.1 Metadata

In addition to the content block, the metadata block of a node contains informa-
tion describing that node. Examples of metadata are author, year and keywords
for a DOC or the title for a SEC element. The fragment metadata block is used to
describe its actual content by means of content type, language, and possibly
title (figures, tables).

To allow a semantic interpretation of the content of an element, a type hi-
erarchy is proposed by Gövert [8]. An extension of the proposed type hierarchy
for metadata is depicted in Fig. 4. There, types are derivated from a common
base element. The first level in the hierarchy (bold) corresponds to database
supported data types. Further types in subsequent levels in the hierarchy have
one of the basic database types as supertype (e.g., PersonName is a String). In
addition, data types predicates for comparison are defined. This allows to process
section titles, phone numbers, and author names for instance.

Base

Blob
Date
String
Number

PersonName
 Title
 Location

English
 German

ISBN

Number

Phone

Number

...

Fig. 4: Hierarchical metadata types

2.2 Content

Generally, the content block of DOCs and SECs are defined as ordered lists of
further (sub)SECs and FRAs. The content block of FRAs is defined as bytecode or
empty. For indexing and retrieval purposes, content is interpreted based on its
type (metadata). Defining a fragment’s content as text block (paragraph) only
might be too restrictive. Therefore, a fragment in our sense refers to paragraphs,
enumerations, lists, figures, tables, formulas, images, sounds, videos, definitions,
theorems, etc. On the other hand, a fragment (FRA) defines the smallest retriev-
able unit of a document. It can be understood as building block (elementary
content container). However, the granular unit is application specific and can be
set at wish to fit sentences as well as the whole text of a chapter.

From the structuring point of view, additional markup within a FRA’s content
might be needed. Our schema supports mathematical environments (using MATH)
and two types of links (using LINK), internal and external links. Internal links
are links within the same document, e.g., citations, figure/table references within
the text and the table of contents. External links refer to external resources,
including reference entries in the references section, references to email/internet
addresses and file references.

While the content block in DOCs and SECs is mandatory, in FRAs it is not.
This allows to include external content by its metadata only. An external source
attribute within the metadata block can be used to refer to the content some-
where else (e.g., a picture file). In contrast to SEC elements, which define their
own context based on their path, e.g., /DOC/SEC/SEC, fragments define a sep-
arate context. From the indexing and retrieval point of view, a fragment in a
section lies within the same context as a fragment in a chapter or subsubsection.
This difference is important in the context of a dynamic term space, discussed
in Sec. 5.3.

3 Storage

For efficiency purposes, we use a relational database to store the XML docu-
ments. The goal is to accelerate the access to various structural neighbors of each
node in the document (descendants, ancestors, and siblings). Being a tree, an
XML document can easily and unambiguously traversed. Therefore, each node is
represented by its document ID and preorder/postorder. We depart from the idea
of preorder and postorder introduced in [9, 10], supporting non-recursive ances-
tor/descendant detection and access. Table 1 shows an excerpt of the structural
information of a document representation. Likewise, we designed another for the
corresponding content.

A structural entry is described by the tuple (docID, pre, post, parentID,
tagID, pathID). The root element has pre = 1 and parentID = 0 (no parent)
per definition. The attribute tagID is included for fast name lookup and access.
For the sake of performance, we added the elements path (XPath without po-
sitional information) pathID to circumvent recursive path generations by using
the parentID relation.

Table 1: Structural entries

docID pre post parentID tag path

d1 1 36 0 Doc /Doc

d1 2 5 1 Sec /Doc/Sec

d1 3 4 2 Fra /Doc/Sec/Fra

d1 6 7 1 Fra /Doc/Fra

d1 8 25 1 Sec /Doc/Sec

d1 9 10 8 Fra /Doc/Sec/Fra

d1 11 18 8 Fra /Doc/Sec/Sec

d1 12 13 11 Fra /Doc/Sec/Sec/Fra

d1 14 15 11 Fra /Doc/Sec/Sec/Fra

The content of nodes (in particular leaf nodes) is stored in a separate table,
as suggested in [11]. However, the content of inner nodes can always be recovered
from their descendants as will be discussed in Sec. 4. Note that some content
entries do not have a corresponding representation entry (e.g. figures, tables).

To improve retrieval performance, metadata handling is completely shifted to
the database. This is achieved by grouping all metadata according to its element.
Instead of having multiple structural and content entries, a single row (docID,
pre, meta1, . . . , metan) is used to store all metadata together. Metadata of
nodes (DOC, SEC, FRA) are stored in separated but very similar tables as shown
in Tab. 2 for the case of sections. The reason of supporting only a single set
of SEC metadata is that all SEC elements (chapters, sections, subsections, etc.)
are assumed to have quite homogenous metadata (e.g., title). Although this
may lead to some ’NULL’ values (unavailable metadata for some elements) in
the database, the whole set can be accessed by a single select statement. This
simplifies and speeds up querying of metadata considerably.

Table 2: Metadata entries for SEC)

docID pre title author ...

d1 2 Introduction R. Smith

d1 8 XMl Retrieval J. Alf

d1 11 Granularity NULL

A global view is depicted in Fig. 5. Both, metadata and content entries,
are optional. Additional types of representations (e.g. semantic concepts, figure
representations, etc.) can easily be integrated.

-ID : int

-Server : String

-DataID : String

-Filename : String

Documents

-RequestTime : Date

-TransferTime : Date

-Status : String

Transfers

-Preorder : int

-Postorder : int

Structure

Metadata

Content

-inex_id : String

-inex_doi : String

-proc_title : String

-price : String

-issn : String

-copyright : String

-proc_month : String

-proc_year : String

-pages : String

-author : String

-title : String

documentMeta

-Title : String

sectionMeta

-Type : String

-Language : String

-Title : String

fragmentMeta

-Frequency : int

VSM

-Data : String

TXT

1

0..1

belongs

1
1..*
 downloaded

-ID : int

-Term : String

Terms

*

*

consists of

-ID : int

-Path : String

-Depth : int

-Count : int

Path

*

1

has

-ID : int

-Tag : String

-Count : int

Tag

1

*

has

fragmentStruct
 sectionStruct

1

0..1

describes

1

0..1

describes

0..1

1

describes

1

1..*

consists of

<<uses>>

1

1..*

-situated in

1..*

-belongs to

1..*

-s
ta

te
d

1
..*

Count : int

localIDF

-termID : int

-pathID : int

-count : int

combinedIDF

Fig. 5: Conceptual database schema

4 Indexing

To represent texts as a vector of terms and their term frequencies, our natural
language processing (NLP) involves several subtasks containing tokenization,
tagging, term extraction, stemming, filtering and term frequency calculation.
Our implementation is based on abstract components. Taking advantage of the
the modularity aspect, different implementations of the same component can
be instantiated and selected during runtime. Hence, our system can easily be
adapted to process documents in other languages. Our prototype also involves
ready made-components like the tagger, and the stemmer.

During the indexing process, only the content of leaf nodes need to be parsed.
Their representation, a term frequency vector, is stored in the database (VSM
table). Consequent updates of the localIDF, combinedIDF table, and Terms
table are immediately done. These update operations are also carried out during
re-indexing or removal of documents.

The index of inner nodes is obtained by simply merging the index of its
descendants. This is done by summing up their term frequencies. This operation
is equivalent to process the concatenated contents of the descendant nodes. It
is also possible to store the result of the merge operation so that no index
computation is required later during the retrieval process. This reduces search
time, but increases the size of the database. It is important to stress that the
weight vectors are computed during retrieval using the available term frequency
vectors.

We define the context of a node as the set of all elements having the same
path (all chapters, all sections, etc.). In order to dynamically characterize both,
the granularity during indexing and retrieval, we applied a propagation of term

statistics (e.g. tf), in contrast to the weight propagation methodology [12]. In
addition, the inverse document frequency (idf) for each node is calculated dy-
namically based on the node’s context. Term weights are computed based on
the term frequencies and the idf in this context. This allows to perform focussed
retrieval on any level in the document tree. To achieve that in a given context,
tf of all nodes lying at this level will require tfs of their descendants. Using term
statistic propagation, the descendants’ tf are simply summed up. We avoid re-
cursive data accesses by exploiting preorder and postorder of document elements
(only one SQL select statement).

As to term weighing, we use different idfj,cs of the same term j in different
contexts c. This strategy weighs the same term with the same term frequency
differently depending on c (e.g. chapter vs. subsection). Clearly our approach
puts more attention on the actual context during retrieval. If the unit of retrieval
is defined explicitly, elements in this context are focussed and compared only
among them. Representations of elements in other contexts do not influence the
result.

To implement this idea, we use two tables (see Fig. 5): a table localIDF stores
tuples of the form (docID, pathID, termID, nj), where nj refers to the number
of elements containing term termID in the path pathID within a document
docID. Consider the example given in Tab. 3, the first Tab. 3a indicates that
the term “car” occurs twice in /DOC/SEC nodes of document d1. To calculate
the idfj,c of a term j in a context c, we have to define Nc and nj . Nc is the
number of nodes with pathID = c. Nc can simply be derived via the table
holding the structural entries (see Tab. 1). nj is given by counting the rows
containing pathID = c and termID = j. In the above example, this results
in an inverse document frequency for the term “car” in the node /DOC/SEC
of idfcar,/DOC/SEC = log 3

2 . This definition of idfj,c leads to different idfs in
different contexts.

Table 3: idf calculation

(a) Table localIDF (b) Table combinedIDF

docID path term nj

d1 /DOC/SEC car 2
d1 /DOC/SEC/SEC mouse 1

d2 /DOC/SEC car 1
d2 /DOC/SEC/SEC dog 1
d2 /DOC/SEC/SEC mouse 3

d3 /DOC/SEC water 1
d3 /DOC/SEC/SEC dog 2
d3 /DOC/SEC/SEC dog 2

path term n

/DOC/SEC car 3
/DOC/SEC water 1

/DOC/SEC/SEC mouse 4
/DOC/SEC/SEC dog 3
/DOC/SEC/SEC frog 1

Since Tab. 3a is quite large, we introduced a summarized shortcut-table
combinedIDF Tab. 3b with the overall goal to reduce the time access to idf
values. Same paths associated with the same terms are precalculated (e.g. term
“car”). For the sake of dynamic document environments (adding, removing and
re-indexing), we still need the information provided by Tab. 3a to adjust the n
values correctly. In addition, all Nc values, the numbers of elements with the
same path, are stored in the Path table (see Fig. 5).

Given a particular context (e.g. /DOC/SEC), our indexing strategy allows on-
the-fly computation of the representations associated with these nodes (con-
sidered as documents). Hence, our indexing method stores only term frequency
vectors in the database; weight computation is totally executed on the fly during
the retrieval process. The advantages of this methodology are:

– It behaves exactly like the traditional models at the document level.
– There is no need for empirical parameters as augmentation weights.
– Elements of smaller granularity do not automatically have sparser feature

vectors (leading to smaller similarity), hence they define their own context.
– Documents can dynamically be added, removed, and re-indexed, without

impacting the weights of other representations.

5 Retrieval

This section explains the retrieval process. In particular, it describes how and
which information is required by the system to answer a user query appropriately.
This includes formulation of the query, setting of specific parameters, matching,
filtering, and presentation of the result.

5.1 Query formulation

The actual query input is done via an input interface which allows to enter differ-
ent types of queries: KWD (keyword) and NLQ (natural language query, free text),
which are translated into INEX queries. The INEX query supports NEXI-like in-
puts. Hence, we distinguish between metadata and content, we adapted our query
parser to support both kinds of information. Similar to the about(path,terms)
syntax, we added a construct: meta(path,condition). This allows us, for ex-
ample, to efficiently deal with queries like: “return all documents written by
Einstein” using the command //DOC[meta(.,author like ’%Einstein%’)].

In order to avoid long and confusing single-line queries, we use chains of INEX
queries. In our opinion, this concept is also closer to the natural way of ques-
tioning, by successively refining the list of results. Each subquery result works
as a strict filter, allowing only elements of the same or smaller granularity to be
retrieved. This improves the performance without skipping searched elements.
Furthermore, we use these chains for reweighing elements regarding to a user-
defined generality factor (gf), described below. In addition to the INEX-query
chains, several query parameters can be specified by the user (see Fig. 6):

– Maximum results (maxRes): Defines the maximum number of returned
results ranging from 1 to MAXINT .

– Minimum similarity (minSim): Defines the minimum similarity of re-
turned results ranging from 0 to 1, truncating the list of results below a
given similarity threshold.

– Content importance (ci): Defines the importance of the content similarity
to calculate the retrieval status value (rsv). This parameter ranges from 0
(only meta similarity) to 1 (only content similarity). The final similarity is
computed as rsv = simCont ∗ ci + simMeta ∗ (1− ci).

– Generality factor (gf): This parameter (∈ [0, 1]) influences the retrieval
granularity. The higher the parameter, the more importance of first sub-
queries, computed as simnew = simold ∗ gf + simnew ∗ (1− gf).

– Result type (rt): Defines which kind of results we wish to obtain: thorough
or focussed (see Sec. 5.6).

Fig. 6: Query Interface

5.2 Search and Retrieval paths

The search path specifies which elements are to be investigated and matched
against the current query. In contrast, the retrieval path specifies which ele-
ments are to be returned to the user. Generally these two path are equal, e.g.
//SEC[about(.,wine)]. This means that the retrieval path is always the same
or more general as the search path. So first relevant documents, then relevant
sections within those documents, and at a last stage relevant fragments within
those sections are identified. Difficulties arise when relevant ancestor elements
contain smaller elements that are further specified. For instance, a query that
retrieves sections containing paragraphs about a certain topic is not easy given
the recursive structure that a section can have.

Our parser for NEXI-like queries implements the following strategy: if the
searched element satisfies the retrieval path, only the element itself is returned.
Otherwise, the closest parent satisfying the retrieval path condition is returned.
In all cases, at most one element is retrieved. So a query like //SEC[about(
./FRA,global warming)] retrieves all SEC elements at any level (retrieval paths)
containing FRA paragraphs about “global warming”. A more complex example is
//(DOC|SEC)[about(./SEC,anything)]. Here only sections containing sections
about “anything” are to be retrieved, not the sections themselves that are about
“anything”.

5.3 Dynamic term space

In the context of structured documents, the idea of representing elements at
different structural levels within the same term space has to be reconsidered.
Assume a number of document sections S = {s1 . . . sn} containing a set of unique
terms Ts and a set of chapters C = {c1 . . . cm} containing a set of unique terms
Tc. Note the implicit relation between term space Ts and term space Tc: Ts ⊆
Tc. Let q be a query containing terms Tq addressing sections S and chapters
C. To calculate the similarity sim(si, q) between a section and a query, both
feature vectors have to be within the same term space. The same thing holds for
comparing chapters and the query sim(ci, q).

Neglecting the context, sections and chapters are represented in the same
(global) term space. As a consequence, the feature vectors of low level nodes
become sparser and their similarities compared to nodes of higher levels drop.
To overcome this problem, we adopted the concept of a “dynamic term space”.
In contrast to the global term space, and following the concept of context, nodes
in the same context generate a term space. Using a static term space improves
performance, but unfortunately decreases the similarity of low-level nodes com-
pared with higher ones. Reducing zero weighted elements in the feature vectors
leads to higher precision during the match of low-level nodes. The number of
different indexing representations (different contexts) is expected to be quite
limited. For instance, the mapped INEX collection does not exceed six struc-
tural levels (/DOC/SEC/SEC/SEC/SEC/FRA). During retrieval the term space for
each context is constructed once, so retrieval performance drops insignificantly.

5.4 Result computation

INEX queries are stated using keywords in the about(path,kwd1 kwd2 ...kwdn)
syntax. This syntax allows to express several different semantics of keywords that
have to be considered:

– information retrieval techniques
– +information +retrieval techniques
– information retrieval -techniques
– "information retrieval" techniques
– +"information retrieval" techniques

’+’ (MUST) and ’-’ (CANNOT) indicate whether a term has to be or should
not be present in an element. Based on this, a fast preselection is systematically
done on candidate elements. Hence, index terms are stemmed, also these terms
have to be for comparison.

More complex is the treatment of quoted keywords. Are the keywords books
and "books" equivalent? This depends on whether "books" should occur as it
is (noun in plural form), or should it be stemmed and treated so.

It is obvious that quoted expressions are particulary difficult to process. Con-
sider "red cars". The term red is an adjective, it is not included in the index.
Furthermore, it is possible that in another context (e.g. “Red Cross”), it is (part
of) a proper noun and, therefore, exists in the index. In our approach, we treat
quoted keywords in two steps: First, we treat them as unquoted, calculating the
similarity as given. Then, we apply a string matching strategy on the original
text associated with the element to sort the results.

Combinations of MUST/CANNOT and quoted expressions are treated as
if all terms within quotes are separately marked as MUST/CANNOT and an
initial result set is computed. This result is reduced to those node containing
exactly the quoted expression.

Note that the computed result consists of tuples of the form (docID, preorder,
postorder, simMeta, simCont). docID (document ID), preorder and postorder
come directly from the database. simMeta and simCont are the calculated meta
similarity and content similarity.

5.5 Ranking and result presentation

Ranking is the task by which retrieved elements are decreasingly ordered by their
relevance. Therefore, we use a combination of metadata and content similarity
to compute a retrieval status value rsv (see Sec. 5.1). The ranking process itself
is impacted strongly by the desired granularity. Note that this granularity is
either pre-specified or stated explicitly in the user query. For example, if the user
specifies the document level (context), say section, the system should return only
relevant sections. The similarity can be calculated using two strategies: First,
it can be that of the document’s (root node) generated recursively from the
descendants. Second, it can be the maximum similarity of any of the document
nodes. In our experiments, we applied the latter strategy.

Fig. 7: Result Set

After all desired elements are matched against the user query, the combined
similarity values metaSim and contSim are used for ranking. The results are
presented to the user as a sorted list in decreasing order (see Fig. 7). The user
is then able to select a particular result, enabling a display of whole document
in an explorer-like view (see Fig. 8). The document structure is presented as an
expandable tree, where the selected element is expanded and focused. Having
similarity values available on the screen, the document can be efficiently browsed.
Different colors are used to reflect the degree of similarity of the matched ele-
ments.

5.6 Result filtering

In INEX 2004, two kinds of retrieval strategies, thorough and focussed, were
defined. Thorough retrieval returns all relevant elements of a document. Hence,
all ancestors of a relevant element are relevant to a certain degree. This may lead
to multiple result elements along the same path (e.g., a section and its contained
paragraphs).

Focussed retrieval, on the other hand, aims at returning only the most rel-
evant element along a path. Basically, it relies on two principles [13]: (a) if an
element is relevant to a certain degree, so must be its parent; (b) only one node
along a path of relevant elements is returned. Overlapping elements in the result
set are discarded. This strategy is implemented as post filtering process to re-

Fig. 8: Result Browser

fine the result set. We rely on preorder and postorder to do this efficiently. This
strategy reduces the number of returned elements drastically.

5.7 Query Refinement

In most cases a final search result is achieved through iterative refinement of the
query. The number of results is reduced step by step by adding new information
to the query. To enable such a feature, we allow the user to include a list of
preliminary results together with a query. If such a result is set within a query
it acts as a strict filter during query computation.

6 Conclusion

The paper described the basic tasks of an XML retrieval system. Details on
the methodology are provided. An initial experimental evaluation is already, but
only partly, conducted showing promising results. However, a thorough empirical
work is still needed along with some additional features of the system.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
ACM Press, New York, Essex, England (1999)

2. Salton, G., Lesk, M.E.: Computer evaluation of indexing and text processing.
Journal of the ACM 15 (1968) 8–36

3. Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice Hall Inc., Englewood Cliffs, NJ (1971)

4. Grosjohann, K., Fuhr, N., Effing, D., Kriewel, S.: A user interface for XML docu-
ment retrieval. In: 32. GI-Jahrestagung. Springer (2002)

5. Grosjohann, K., Fuhr, N., Effing, D., Kriewel, S.: Query formulation and result
visualization for XML retrieval. In: Proceedings ACM SIGIR 2002 Workshop on
XML and Information Retrieval, ACM (2002)

6. Fuhr, N., Grosjohann, K., Kriewel, S. In: A Query Language and User Interface
for XML Information Retrieval. Volume 2818 of LNCS. Springer (2003) 59–75

7. Fuhr, N., Grosjohann, K.: XIRQL: A query language for information retrieval in
XML documents. [14] 172–180

8. Gövert, N.: Bilingual information retrieval with HyREX and Internet translation
services. In: Cross-Language Information Retrieval and Evaluation. Volume 2069
of LNCS. (2001) 237–244

9. Grust, T.: Accelerating XPath location steps. In: Proc. of the 2002 ACM SIGMOD,
ACM Press (2002) 109–120

10. Hiemstra, D.: A database approach to content-based xml retrieval. [15] 111–118
11. Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping

schemes for storing XML data in a relational database. Technical report (1999)
12. Abolhassani, M., Fuhr, N.: Applying the divergence from randomness approach for

content-only search in XML documents. In: 26th European Conf. on Information
Retrieval Research (ECIR), Springer Verlag (2004)

13. Kazai, G., Lalmas, M., Rölleke, T.: Focussed structured document retrieval. In:
Proceedings of the 9 Retrieval (SPIRE 2002), Springer (2002) 241–247

14. Proc. of the 24th ACM SIGIR. In: Proc. of the 24th ACM SIGIR, ACM Press
(2001)

15. INitiative for the Evaluation of XML Retrieval (INEX, Workshop). In: INitiative
for the Evaluation of XML Retrieval (INEX, Workshop), ERCIM (2003)

TRIX Experiments at INEX 2005

Paavo Arvola1, Jaana Kekäläinen1, and Marko Junkkari2

1 Deparment of Information Studies, Kanslerinrinne 1,
33014 University of Tampere, Finland
{jaana.kekalainen, paavo.arvola}@uta.fi

2 Department of Computer Sciences, Kanslerinrinne 1,
33014 University of Tampere, Finland

junken@cs.uta.fi

Abstract. This paper presents results of our runs at INEX 2005, where the fol-
lowing tasks were involved: CO.Focussed, CO.FetchBrowse, CO.Thorough
and all of the CAS tasks. Our retrieval system utilizes the natural tree struc-
ture of XML and is based on structural indices. While creating result lists, two
different overlapping models have been applied according to task. The weights
of the ancestors of an element have been taken into account in re-weighting in
order to get more evidence about relevance. This paper shows also how CAS
queries can be processed by utilizing structural indices.

1 Introduction to TRIX

The present study comprises of retrieval experiments conducted within the INEX
2005 framework addressing the following research questions: ranking of elements of
‘best size’ for CO queries, query expansion, and handling of structural conditions in
CAS queries. In INEX 2005 we submitted runs for the following tasks: CO.focussed,
CO.thorough, CO.FetchBrowse, and all of the CAS tasks.

Next we introduce the TRIX (Tampere information retrieval and indexing of
XML) approach for indexing, weighting and re-weighting. Then, Sections 2 and 3
deal with the CO queries and CAS queries, respectively. Finally conclusions are
given in Section 4.

1.1 Structural Indices and Basic Weighting Schema

In TRIX the management of structural aspects is based on the structural indices
[2,4,5,8]. The idea of structural indices in the context of XML is that the topmost
(root) element is indexed by 〈1〉 and its children by 〈1,1〉, 〈1,2〉, 〈1,3〉 etc. Further,
the children of the element with the index 〈1,1〉 are labeled by 〈1,1,1〉, 〈1,1,2〉,
〈1,1,3〉 etc. This kind of indexing enables analyzing of the relationships among ele-
ments in a straightforward way. For example, the ancestors of the element labeled by
〈1,3,4,2〉 are associated with the indices 〈1,3,4〉, 〈1,3〉 and 〈1〉. In turn, any descen-

mailto:junken@cs.uta.fi

)(
)-(1

),(
Nlog
m
Nlog

f
fbbvkf

kfkw

k

c









⋅









⋅+⋅+

=

ξ
ξ

ξ

dant related to the index 〈1,3〉 is labeled by 〈1,3,ξ〉 where ξ is a non-empty part of the
index. In the present approach the XML documents in the collection are labeled by
positive integers 1, 2, 3, etc. From the perspective of indexing this means that the
documents are identified by indices 〈1〉, 〈2〉, 〈3〉, etc., respectively. The length of an
index ξ is denoted by len(ξ). For example len(〈1,2,2,3〉) is 4. Cutting operation δi(ξ)
selects the subindex of the index ξ consisting of its i first integers. For example if ξ =
〈a,b,c〉 then δ 2(ξ) = 〈a,b〉. In terms of the cutting operation the root index at hand is
denoted by δ1(ξ) whereas the index of the parent element can be denoted by δlen(ξ)-

1(ξ).
The retrieval system, TRIX, is developed further from the version used in the

2004 ad hoc track [3] and its basic weighting scheme for a key k is slightly simpli-
fied from the previous year:

(1)

where
• kfξ is the number of times k occurs in the ξ element,
• N is the total number of content elements in the collection,
• m is the number of content elements containing k in the collection,
• ξfc is the number of all descendant content elements of the ξ element
• ξfk is the number of descendant content elements of the ξ element containing k,
• v and b are constants for tuning the weighting.

The constants v and b allow us to affect the ‘length normalization’ (cfξ / fξ)
component and tune the typical element size in the result set. In our runs for INEX
2005 b is used for tuning, while v is set to 2. Small values of b (0-0.1) yield more
large elements, whereas big values (0.8-1) yield more small elements.

The weighting formula above yields weights scaled into the interval [0,1]. The
weighting of phrases and the operations for + and - prefixes have the same property.
They are introduced in detail in [3]. A query term is a key or phrase with a possible
prefix + or -. A CO query q is a sequence of query terms k1, …, kn. In relevance
scoring for ranking the weights of the query terms are combined by taking the aver-
age of the weights:

(2)

After this basic calculation elements’ weights can be re-weighted. Next we consider
the used re-weighting method, called contextualization.

1.2 Contextualization

In our runs we use a method called contextualization to rank elements in more effi-
cient way in XML retrieval [1, see also 7]. Re-weighting is based on the idea of us-
ing the ancestors of an element as a context. In terms of a contextualization schema
the context levels can be taken into account in different ways. Here we applied four
different contextualization schemata.

1) Root (denotation: cr1.5(q, ξ))
2) Parent (denotation: cp(q, ξ))
3) Tower (denotation: ct(q, ξ))
4) Root + Tower (denotation: crt(q, ξ))

A contextualized weight is calculated using weighted average of the basic weights
of target element and its ancestor(s), if exists. Root contextualization means that the
contextualized weight of an element is a combination of the weight of an element
and its root. In our runs the root is weighted by the value 1.5. This is calculated as
follows:

cr1.5(q, ξ) =
5.2

))(,(*5.1),(1 ξδξ qwqw + (3)

Parent contextualization for an element is an average of the weights of the ele-
ment and its parent.

cp(q, ξ) =
2

))(,(),(1)(ξδξ ξ −+ lenqwqw (4)

n

kw
qw

n

i
i∑

== 1
),(

),(
ξ

ξ

Tower contextualization is an average of the weights of an element and all its ances-
tors.

ct(q, ξ) =
)(

))(,(
)(

1

ξ

ξδ
ξ

len

qw
len

i
i∑

=

(5)

So called Root + Tower contextualizaton means the plain tower contextualization
with root multiplied by two. This can be seen as a combination of parent and root
contextualizations.

crt(q, ξ) =
1)(

))(,())(,(
)(

1
1

+

+ ∑
=

ξ

ξδξδ
ξ

len

qwqw
len

i
i

(6)

In Figure 1 the effects of the present contextualization schemata are illustrated. In
it, XML tree with elements assigned initial weights (w) and contextualized weights:
Root (wr), Parent (wp) and Root + Tower (wrt) is given. For instance, element with
index 〈1,1,2〉 has an basic weight of 0.2. Parent contextualization means an average
weight of 〈1,1,2〉 and 〈1,1〉. Root is the average of 〈1,1,2〉 and 〈1〉 and Root + Tower
the weighted average of weights of 〈1〉 , 〈1,1〉 and 〈1,1,2〉, where the weight of 〈1〉
has been calculated twice.

Fig. 1. A tree presentation of an XML document illustrating different contextualization sche-
mata.

In [1] we have discovered that a root element carries the best evidence related to the
topics and assessments of INEX 2004. However, contextualizing the root only has an
effect on the order of elements in the result list, and it does not change the order of
elements within a document. Generally, if we contextualize the weights of elements
x and y with the weight of their ancestor z, the order of x and y will not change in
the result list. Further, the mutual order of x, y and z will not change if no re-
weighting (i.e. contextualization) method is applied to element z. The root element
possesses no context in our approach. Hence in the CO.FetchBrowse task, where
documents have to be ordered first, the Root contextualization will not have an effect
on the rankings of other elements. However, within a document there are still several
other context levels, and by utilizing those levels, it is possible to re-rank elements
within a document. This finding has been utilized in the CO.FetchBrowse task.

1.3 Overlapping Models

In Figure 2 two overlapping models, which our system supports, are illustrated. First,
an element to be returned is marked with a letter P. On the left there is a situation
where all overlapping elements are excluded from the result list, even if their weight
would be sufficient, but smaller than P. That means the overlapping percentage is 0.
On the right side all elements can be accepted, regardless of their structural position
in the document.

Fig. 2. Two overlapping models

We have used the former model in the CO.Focussed and CO.FetchBrowse tasks
and the latter model in the CO.Thorough and all of the CAS tasks.

2 CO Runs

In the CO runs we have used Root+Tower contextualization (Tampere_..._tower),
and Root contextualization (Tampere_..._root). In addition we have applied a query

expansion method from Robertson [6], taking 5 or 10 expansion words from 7 top
documents from the first result set (Corresponding runs: Tampere_exp5_b09_root,
Tampere_exp10_b01_root). Figure 3 shows the slight improvement of the expanded
run compared with a similar run without any expansion. Topic-specific anlysis will
take place in the near future.

Because of the prevention of overlapping elements, promoting large elements may
not be wise in the focussed task. That is because if a large element is returned, then
every descendant is excluded from the results. However, in thorough task promoting
large elements is not that risky. Hence, we used small b values for the thorough and
large values for the focussed runs. Favoring small elements might have caused an-
other kind of problem, though. In the relevance assessments many of the paragraph
sized elements are marked as too small. That leads to a situation, where a whole
relevant branch is paralyzed, when a too small leaf element is returned.

In the topic 229 there is a spelling error "latent semantic anlysis", which in our
system would lead to a poor score. To minimize the error rate and also to improve
recall, we have opened the phrases in all of the queries. For instance, query "latent
semantic anlysis" would become "latent semantic anlysis" latent semantic anlysis.
These features and also the effect of the contextualization improve recall and scores
in generalized quantization, although the top precision suffers slightly (see figures 3
and 4).

Fig. 3. The nXCG curves of runs in CO.Focussed task with generalized quantization

Fig. 4. The nXCG curves of runs in CO.Thorough task with generalized quantization

3 CAS Runs

3.1 Processing CAS Queries

In the CAS queries an element may have constraints concerning itself, its ancestors
or descendants. These constraints may be only structural, or structural with content.
For instance in query

//A[about(.,x)]//B[about(.//C,y)]

B is the structural constraint of a target element itself. A is a structural constraint of
a target element’s ancestor, and C target element’s descendants. All of these struc-
tural constraints have also content constraints, namely x or y. So, to be selected to a
result list, an element must fulfil these constraints. The processing of CAS queries
can be divided into four steps:

• First step: Generate a tree according to the target element’s content con-
straint, and weight elements, which fulfil the target element’s structural
constraint.

• Second step: Discard all the target elements which do not fulfil the struc-
tural ancestor and descendant constraints. Due to the nature of hierarchical
data, ancestors are always about the same issue as their descendants, i.e.
they share the descendants’ keys. So the content constraints of descendant
elements are taken into account here as well.

• Third step: Generate trees according to each ancestor element’s content
constraint. Discard elements, where the structural descendant and ancestor
content constraint are not fulfilled, i.e. corresponding elements do not exist
in the sub tree.

• Fourth step: Collect the indices of elements left in the third step having the
ancestor structural constraint, and discard all of the target elements, which
do not have such indices among ancestor elements.

To clarify this, processing of a CAS query can be demonstrated with a sufficiently
complex example.

The query:

//article[about(.//abs, logic programming)]//bdy//sec[about(.//p, prolog)]

breaks down into following parts:

- an element with structural constraint sec is the target element with content
constraint prolog

- p is a structural descendant constraint of the target element with the same
content constraint as sec : prolog

- article is a structural ancestor constraint of the target element with a con-
tent constraint logic programming

- abs is a structural descendant constraint of article with the same content
constraint logic programming

- bdy is a structural ancestor constraint of the target element without any
content constraints

In the first step, shown in Figure 5, we form a tree of elements with non-zero
weights according to the query prolog. In other words all the elements with zero
weights are discarded from an XML tree structure.

Fig. 5. A tree presentation of a sample XML document having only elements with a weight
greater than 0 according to the query prolog.

In the second step (Figure 6), we exclude target element 〈3,3,2〉, because the struc-
tural ancestor constraint bdy is not fulfilled. Element 〈3,2,3〉 is also to be excluded,
because the descendant constraint p is not fulfilled.

Fig. 6. A tree presentation of a sample XML document having only elements with a weight
greater than 0 according to the query prolog, where target elements not fulfilling the con-
straints are excluded.

 In the third step we form a tree with non-zero weights according to the query
logic programming, as seen in Figure 7.

Fig. 7. A tree presentation of a sample XML document having only elements with a weight
greater than 0 according to the query logic programming.

In the tree, there is an abs element as a descendant of article, so both of the struc-
tural and content constraints are fulfilled. Hence, we take the index of the article:
〈3〉, and see that the index belongs to a descendant of the remaining target element
〈3,2,5〉. So, this and only this element is to be returned from this document.

3.2 Taking Vagueness into Account in CAS

In the current evaluations there are four different kinds of interpretations for struc-
tural constraints for processing NEXI, in our approach the structural constraints are
interpreted strictly. However for SVCAS, VSCAS and VVCAS the query has been
modified. Our system handles vague interpretation such that the corresponding ele-
ment names have been ignored. In NEXI language this can be implemented by re-
placing the names with a star. Thus we have modified CAS queries as follows:

The initial CAS query (and SSCAS):
//A[about(.,x)]//B[about(.,y)]

SVCAS:
//*[about(.,x)]//B[about(.,y)]

VSCAS:
//A[about(.,x)]//*[about(.,y)]

VVCAS would then logically correspond to:

//*[about(.,x)]//*[about(.,y)]

For simplification we have processed VVCAS like a CO query. In the present exam-
ple VVCAS corresponds to the query:

//*[about(.,x y)]

3.3 Results of CAS Queries

In the content and structure queries, only elements which fulfil the constraints are
accepted to the results. The ranking of the elements has been done according to the
target element’s textual content. Besides the target element, other content constraints
have been taken into account as a full match constraint without any weighting. This
full match content constraint within a structural constraint has been interpreted in
disjunctive way. It means, that only one occurrence of any of the keys in a sub query
is sufficient enough to fulfil the condition. For instance in the query

//A[about(.,x y z)]//B[about(.//C,w)]

for B to be returned, it is sufficient that the A element includes only one of the keys
x, y or z. Naturally the B element should be about w, and also have a descendant C
about w. This approach among others mentioned in the Section 2 leads to fairly good
results with the generalized quantization (see Figures 8 and 9). However, if in
SSCAS the number of highly relevant elements per topic is low and if there are only
a few of topics assessed, then the evidence especially for the strict quantization is
narrow.

 There was a slight error in our submissions of results. Accidentally we sent runs
intended for SVCAS for VSCAS, and vice versa. Because of the near zero overlap,
in SVCAS this led to quite a rotten score. Surprisingly, despite the error, VSCAS
results proved to be quite satisfactory, as Figure 10 in Appendix shows. Especially,
according to the top precision of our runs, the ranking was as high as 3rd and 4th in
the generalized quantization and 3rd and 8th in the strict quantization of the XCG
metrics.

Fig. 8. The ep/gr curves of runs in SSCAS task with generalized quantization

Fig. 9. The nXCG curves of runs in SSCAS task with generalized quantization

4 Conclusions

This paper presents our experiments and results at INEX 2005. The results for the
CO task show that Root contextualization is not generally better than Root + Tower,
except for the top precision. In general, our approach is in many runs quite recall
oriented, and we also do better in the generalized than strict quantization. Therefore,

improving top precision in all tasks and quantizations remains as one of our primary
goals.

This was the first time we participated in (strict) CAS task. The analyzing power
of structural indices enables a straightforward processing of CAS queries. In addi-
tion, results in INEX 2005 give a good baseline for future development. By the time
this paper has been written, the results of CO.FetchBrowse are considered as pre-
liminary, and our results are not yet included. That is because of a minor error in our
result lists. The final results of the CO.FetchBrowse will show how different contex-
tualizations within a document will affect the results.

References

1. Arvola, P., Junkkari, M., and Kekäläinen, J.: Generalized Contextualization Method for
XML Information Retrieval, In Proceedings of ACM Fourteenth Conference on Information
and Knowledge Management (CIKM'2005), (2005) 20-27.

2. Junkkari, M.: PSE: An object-oriented representation for modeling and managing part-of
relationships. Journal of Intelligent Information Systems, 25(2), (2005) 131-157

3. Kekäläinen, J., Junkkari, M., Arvola, P., and Aalto, T.: TRIX 2004: Struggling with the
overlap. In Advances in XML Information Retrieval: Third International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2004. LNCS 3493. Springer, Heidel-
berg, (2005) 127-139

4. Knuth, D.: Fundamental Algorithms: The Art of Computer Programming. Vol. 1, Addison
Wesley, (1968)

5. Niemi, T.: A Seven-Tuple Representation for Hierarchical Data Structures. Information
Systems, 8(3), (1983) 151-157

6. Robertson, S.E. and Walker, S.: Okapi/Keenbow at TREC-8, Proc. NIST Special Publica-
tion 500-246: The Eighth Text Retrieval Conference Text (TREC), (1999) 151-162.

7. Sigurbjörnsson, B., Kamps J., and de Rijke, M.: An Element-Based Approach to XML
Retrieval. In INEX 2003 Workshop Proceedings (2003) 19-26

8. Tatarinov, I., Viglas, S., Beyer, K.S. Shanmugasundaram, J., Shekita, E.J., and Zhang C.:
Storing and Querying Ordered XML Using a Relational Database System. In Proceedings
of the 2002 ACM SIGMOD International Conference on Management of Data, (2002) 204-
215

Appendix

Fig. 10. The EP/GR and nXCG curves of the generalized quantization. First row: VVCAS,
Second row: VSCAS.

B3-SDR: Basic Building Blocks for Structured
Document Retrieval.

Roelof van Zwol

Utrecht University, Department of Computer Science, Center for Content and
Knowledge Engineering, Utrecht, the Netherlands

roelof@cs.uu.nl

Abstract. Structured document retrieval, or XML element retrieval as
it is referred to within INEX, the INitiative for the Evaluation of XML
retrieval, allows for the retrieval of XML elements containing highly spe-
cific relevant information. INEX provides an evaluation platform where
retrieval strategies for structured documents are evaluated. This is the
second year that Utrecht is participating in INEX, with a completely
revised system called B3-SDR. The B3-SDRsystem is a modular system
that uses basic building blocks (B3) to evaluate different strategies for
structured document retrieval. The kernel of the system is based on the
model introduced by [1]. Their heuristic model was simple, yet effective,
and provided several options for extensibility.
This article presents the various extensions that are defined on top of
the basic model for the different tasks within the INEX Ad-hoc track.
Due to the heuristic nature of the retrieval model, various configura-
tions are possible, depending on the retrieval tasks that is specified. The
underlying motivation is discussed for the different tasks, and evaluated.

References

1. Geva, S.: Gpx - gardens point xml information retrieval at inex 2004. In: Advances
in XML Information Retrieval, Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004. Volume 3493 of Lecture Notes in
Computer Science., Dagstuhl Castle, Germany, Springer (2005) 211–223

Field-Weighted XML Retrieval Based on BM25

Wei Lu1, Stephen Robertson2, Andrew Macfarlane3

1 Center for Studies of Information Resources
School of Information Management

Wuhan University, China
sa713@soi.city.ac.uk
2 Microsoft Research

Cambridge, U.K.
ser@microsoft.com

3 Centre for Interactive Systems Research
Department of Information Science

City University London
andym@soi.city.ac.uk

Abstract. This is the first year for the Centre for Interactive Systems Research
participation of INEX. Based on a newly developed XML indexing and retrieval
system on Okapi, we extend Robertson’s field -weighted BM25F for document
retrieval to element level retrieval function BM25E. In this paper, we introduce
this new function and our experimental method in detail, and then show how we
tuned weights for our selected fields by using INEX 2004 topics and assess-
ments. Based on the tuned models we submitted our runs for CO.Thorough,
CO.FetchBrowse, the methods we propose show real promise. Existing prob-
lems and future work are also discussed.

1. Introduction

Being an important data exchange and information storage standard, XML is now
widely used, especially for scientific data repositories, Digital Libraries and on the
Web, which has brought about an explosion in the research of information retrieval for
XML. Many sophisticated systems [1, 2, 3, 4, 5] and retrieval models [6, 7, 8, 9, 10] for
XML documents have been proposed.

XML documents often contain sub-fields (elements), eg. INEX collections from IEEE
contain fields such as title, abs, bdy, bm, st etc. Practitioners have found it beneficial
to exploit the document’s internal structure to improve retrieval performance [11]. R e-
searchers have looked at various techniques in order to investigate this problem. Wil-
kinson [12] and Ogilvie et al [13] have proposed and tested different ways to weight
and combine the scores obtained on different fields of a document; Kraaij et al [14]
propose a flexible algorithm based on language models but have not implemented it;

and Myaeng et al [15] combine terms found in different document representations
using Bayesian inference networks. Robertson et al [11] give a more detailed review of
this area in their paper.

In practice, many systems use a linear combination of the scores obtained from
scoring every field due to the complexity of the ranking algorithms deployed. Robert-
son et al [11] discuss the dangers of linear combination in detail and propose an alter-
native solution, the linear combination of term frequencies based on BM25 (BM25F
will be used in the rest of the paper instead of “field-weighted models based on
BM25”), to extend standard ranking functions to multiple weighted fields. Their ex-
periment based on two existing collection Reuters vol. I collection and the 2002 TREC
Web-Track crawl of the .gov for document level retrieval shows that the method was
beneficial. Some related work using Okapi, BM25 or field combination in INEX 2004 are
documented in [16, 17, 18, 19, 20].

In this paper, we extend this method further to element level XML retrieval based on
INEX 05 collections. In section 2, we discuss in detail the field-weighted models. Sec-
tion 3 further illustrates the experiment of this method on INEX 05 and Evaluation
results are reported in section 4. A conclusion and further work to be undertaken are
described at the end.

2. BM25F model

In this section we describe BM25F model in detail. We first introduce the models for
document level weighting in section 2.1. And then we further discuss the implementa-
tion of the model to XML element level retrieval.

2.1 BM25F for document level weighting

BM25F is the field-weighted version of BM25. It is derived from Robertson et al [11]
for document level retrieval. For ad-hoc retrieval, and ignoring any repetition of terms
in the query, BM25 can be simplified to [11]:

where C denotes the document collection, jtf is the term frequency of the jth term in

d , df j is the document frequency of term j, dl is the document length, avdl is the av-
erage document length across the collection, and k1 and b are tuning parameters.
Then the document score is obtained by term weights of terms matching the query q:

)1(
5.0

5.0
log

))1((

)1(
),(

1

1

+

+−

++−

+
=

j

j

j

j
j df

dfN

tf
avdl
dlbbk

tfk
Cdw

∑ ⋅=
j

jj qCdwcqdW)2(),(),,(

 Being a linear weighted combination of term frequency of in these fields, function
BM25F is shown as follows:

where jtf ' denotes the weighted term frequency of the jth term in d , 'dl is the

weighted document length, 'avdl is the weighted average document length across
the collection. 1

'k is the weighted free parameter.
Suppose we have nF fields f = 1, . . . , nF. In a given document d, term t has fre-

quency ftdtf ,, in field f. There are various ways of defining the length of fields or

documents, but the simplest way is to use the number of indexed terms (tokens). This
means that the length of the field in this document is

where V is the vocabulary, i.e. all indexed terms.

With no field weighting, the term frequency of t in the whole document is

and the document length is

Average document length is

With field weights Wf,, these are modified as follows:

∑
∈

=
vt

ftdf tfdl ,,

∑=
f

ftdtd tftf ,,,

∑∑ ∑∑ ===
f t t

tdftd
f

f tftfdldl ,,,

∑= dl
N

avdl
1

∑=
f

ftdftd tfwtf ,,,
'

(3)
5.0

5.0
log

)1((

)1(
),(

'
'

'

1
'

'
1
'

−

+−

++−

+
=

j

j

j

j
j df

dfN

tf
avdl
dl

bbk

tfk
Cdwf

and

where atf is the average term frequency.

Function (3) is used for document weighting. However XML retrieval requires not
only document level but also element level retrieval. This means an algorithm for ele-
ment weighting is required. In section 2.2, we further discuss the field-weighted
weighting function for element level retrieval (BM25E) derived from function (3).

2.2 Proposed model BM25E for element weighting

From function (3), we can see that linear combination of weighted field frequencies
is used instead of original term frequency in specified document. We hypothesize that
this method could also be applied to element retrieval. Our basic view is that an ele-
ment is to be treated like a document, except that it may inherit information from other
elements in the document. Thus each element has (in addition to its own text, which is
treated as one field) extra fields consisting of text inherited from other elements. The
details of our idea are as follows:

Suppose we have nE elements e = 1, . . . , nE in given collection C. Term t has fre-
quency tfd,t,e in element e. el is the element length and avel is the average element
length. Then we simply extend BM25 to element retrieval as follows:

Accordingly, Function BM25E would be,

∑∑ ∑∑ ===
t

td
f t

ftdff
f

f tftfwldwdl ,
'

,,
'

∑= '' 1
dl

N
avdl

avdl
avdlk

atf
atf

kk
unweighted

weighted
'

111
' ==

)4(
5.0

5.0
log

))1((

)1(
),,(

,1

,1

+

+−

++−

+
=

j

j

je

je
j df

dfN

tf
avel
elbbk

tfk
Cdew

)5(
5.0

5.0
log

))1((

)1(
),,(

,
'

'

'

1
'

,
'

1
'

+

+−

++−

+
=

j

j

je

je
j df

dfN

tf
avel
elbbk

tfk
Cdewf

where jetf ,' denotes the weighted term frequency of jth term t in e, 'el is the

weighted element length, 'avel is the weighted average element length across the
collection. 1

'k is the weighted free parameter. Similar to those parameters in section 2.1,
given a field weights Wf to elements which contributes to a given element’s Weig ht,

and

where M is the total number of element in collection C.

(5) implies that given an element e in collection C, if it exists some fields(element) f
contributing to the weight of the element, then a linear combination of field-weighted
term frequency of field are applied based on BM25F. Theoretically, f could be any
element in collection C. In fact, if all elements in a document d contribute to a given
element in this document, then we come back to BM25F (3). And if all Wf equal 1, then
we further come back to BM25 (1).

What we need to say is that this statement does not in any way define the imple-
mentation, but merely the principle of how elements are to be treated. Detail
implementation of our experiment is further discussed in section 3.

3 Experiment of BM25E on INEX 2005

 In this section, INEX collection and its structure will be introduced. We will then
describe the assumptions we used for our experiments. Finally, our experiment envi-
ronment and procedures are introduced.

∑
∈

=
ef

tfftf tfwtf ,,
'

∑∑∑∑ ===
∈∈ tf

tf
ef t

tff
ef

f tftfwelwel
,

,
'

,
'

∑= '' 1
el

M
avel

avel
avelk

atf
atf

kk
unweighted

weighted
'

111
' ==

3.1 Data sets

There are 2 data sets have been used for our experiment: INEX 1.4 and INEX 1.7.
Both of these two collections are from IEEE Computer Society publications.

Inex 1.4: This data set is INEX collection for 2004 which contains 12107 articles of
IEEE Computer Society publications from 1995 to 2002.

Inex 1.6: This data set is INEX collection for 2005 which contains 16819 articles of
IEEE Computer Society publications from 1995 to 2004.

More details of these collections can be found in table 1.

Table 1: figures of INEX collections

Data sets INEX 1.4 INEX 1.6
Size of Data(MB) 494 705
of elements 8,239,873 11,411,135
of attributes 2,204,688 4,669,699
of Articles 12,107 16,819
Avg. Path Level 8 8

3.2 Data structures

As stated in section 1, being academic collections, most of the articles in it contain
elements tags which represent article’s title, abstract, body text, section, section title,
paragraph, bibliography and appendix etc. These tags in INEX collection are shown in
Table 2:

Table 2: INEX important tags and its meaning

Content Name Tags
article title atl
article abstract abs
body text bdy
section sec, ss1, ss2, ss3
section title st
paragraph ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1, p2, p3
bibliography bib
appendix bm

As it’s discussed in [11], Wf, needs to be tuned for each selected field which con-
tributes to the document’s weight in BM25F. The same method should also be used
for BM25E. Although in theory, every context element would contribute to given ele-
ment e, in practice, there are more than about ten-million elements in each INEX collec-
tions and it is very difficult to tune every element’s Wf. The problem then lies in what
elements should be chosen for optimisation.

Robertson et al [11] chose title as the tuned field. In this experiment, consider the
data structures of INEX, we choose atl, abs and st as the tuned elements. We believe
that title and abstract in some extent reflect the content of an article, and section title in
some extent tells us the section and its sub-elements’ content. We believe these el e-
ments could contribute to the weight of relevant elements. This issue will be dis-
cussed in more detail in section 3.3.

3.3 Some assumptions for BM25E on INEX 2005

Due to the costs of implementation and some other factors such as time limitations,
we declare our assumptions for the experiments on the elements which should be in-
herited for other retrievable ones and the ways to compute 'avel and 1

'k . They are
as follows:

Assumption 1: elements in one document do not have effect on elements in other
documents. Elements except atl, abs and st also don't have effect on other elements
which are not their ancestors in the same document.

Assumption 2: Elements atl and abs contributes to the weight of elements bdy, bm
and their child elements. Elements st contributes to the weight of the section it be-
longs to, and also of the section’s child elements and article element. All st elements
have the same Wf without considering the level they belong to.

Assumption 3: Due to the complexity to compute parameters 'avel and 1
'k , we be-

lieve the values of the article level can be used instead of them for all elements.
Assumption 1 is simple and easy to understand. In Assumption 2, the question may lie
in that what role element st plays in the relevant section’s other parent elements except
article element. And the question in Assumption 3 is that whether the simple replace-
ment of the parameters would affect much of the result. These issues will be tackled in
further research.

3.4 Experiment environment and procedures

This is the first year that the CISR has taken part in INEX. We largely conduct our
work on Okapi in a Linux environment (using Red Hat 9). Being a traditional retrieval
experiment system, Okapi undertake all the processing which was required by INEX
experimentation. We have therefore done significant development work for both XML
indexing and element level XML retrieval in order to participating in INEX.

Our experimental procedure is as follows: firstly, we tune Wf for selected elements atl,
abs and st; secondly, we use Okapi’s Basic Search System (BSS) to get a doc ument
result set; and finally we use a newly designed XML element weighting and displaying
interface to get our final submissions required by INEX, among which, selected Wf
parameters are used to get optimized runs. We should also state that only article, abs ,
bdy, bm and section and paragraph elements are considered as potential relevant ele-
ments for our final runs in our experiment. This may lose some relevant elements, but

some small irrelevant elements are filtered at the same time. In the next section, we
report our evaluation result for INEX 05.

4. Evaluation

In order to examine the new data structures and algorithms build for our INEX ex-
periments, we used INEX 04 ad-hoc topics and assessment to tune Wf for atl, abs and
st on document level by using the average precision score, (we did not evaluate using
the INEX methodology at the element level). Our method shows that tuning Wf for
these selected elements contributes to an improvement in retrieval performance on the
INEX 04 collection. The tuning values for Wf are all integers. We first tuned Wf {atl, abs
st} from {1, 1, 1} to {10, 10, 10} using increments of 1. Result shows that the values
of{10, 3, 10} for Wf get the highest average precision score. The best tuning results
were obtained when the tuning values for atl and st are both 10 and tuning values for
abs are all between 3 to 6, we therefore investigated the tuning scope for atl and st.
We then tried to tune Wf {atl, abs st} from {1, 1, 1} to {50, 10, 50} in increments of 1.
The results shows that a higher value for atl yielded better results, the best scope for
st is from 12 to 25, while the best scope for abs was about the same for the first set of
tuning experiments conducted. We conducted some further tuning experiments with a
larger scope for atl and the ranges for abs and st set to between 1~10 and 10~30 re-
spectively. In these experiments we tuned atl from 1 to 300 using increments of 10 and
then used increments of 50 for atl, to a maximum value of 3000.. We believed that there
was no point in investigating larger values. The best average precision score was
recorded when the tuned value for atl is around 2400. Finally, we tuned atl from 2100
to 2700 in increments of 1 in order to obtain the best optimized results. Our experiment
shows when using the values of 2356, 4 and 22 for Wf in elements atl, abs and st re-
spectively we obtained the highest performance for article level retrieval on INEX 04
data. We are a little surprised that the best tuned value for atl is so high. The implica-
tion is that the selected elements, particularly atl and st contributed much to the
document level XML retrieval in the INEX collection. See table 3 for some of our tuned
result for INEX 04.

Table 3: tuned results for INEX 04 on document level

Wf {atl, abs, st} Sum of
(Avg precision for co all topics)

2356, 4, 22 0.143698
2416, 5, 22 0.143678
2668, 5, 25 0.143435
10, 4, 9 0.129819
1, 1, 1 0.124023

Due to the time and resource limitations, we only submited runs for CO.Thorough

and CO.FetchBrowse. Based on these tuning experiments and considering the differ-

ence between document level retrieval and element level retrieval, and also being con-
cerned that tuned Wf values for atl and st would be to high, we choose 3 sets of tuning
constants of values for Wf {atl, abs, st}, namely {2356, 4, 22}, {1000, 4, 22} and {15, 4,
8} , for submitting CO.Thorough runs; and chose another 3 sets of tuning constants
of values for Wf {atl, abs, st}, namely {1000, 4, 22}, {300, 4, 18} and {98, 4, 13}, for
submitting CO.FetchBrowse runs.

Though we tuned Wf in document level, we are still pleased to see that our official
runs for CO.Thorough rank at the top of the total 39 official runs, especially for “Met-
ric: nxCG(25), Quantization: strict, Overlap=off”, our 3 runs ranks 1st, 2nd and 22nd
respectively; for “Metric: nxCG(50), Quantization: strict, Overlap=off”, our 3 runs ranks
1st, 2nd and 10th respectively; and for “Metric: ep-gr, Quantization:
strict,Overlap=off”, our 3 runs ranks 1st, 5th and 13th respectively. See Fig. 1, Fig. 2
and Fig. 3 [21] for more information. We also tried to use metric nxCG to compare our 3
official runs for CO.Thorough with the non field-weighted runs whose Wf{ atl, abs, st }
is {0, 0, 0}. Result shows that non field-weighted one ranks at the last while the former
two runs rank at the top.

Fig. 1 Metric nxCG(25), Quantization: strict, Overlap=off

Fig. 2 Metric nxCG(50), Quantization: strict, Overlap=off

Fig. 3 Metric ep-gr, Quantization: strict,Overlap=off

The experiment shows that the first two sets of tuning constants, Wf {1000, 4, 22}

and Wf {2356, 4, 22}, ranks better than the third groups Wf (15, 4, 8). The evidence is
that atl and st does contribute to retrieval performance and it also implies that combin-
ing field-weighted term frequencies of selected elements is a beneficial method. Tuning
constant set Wf {1000, 4, 22} rank first for Metric “nxCG(25 and 50), Quantization: strict,
Overlap=off” also suggests that it may be better if Wf is tuned on element level. This
behaviour may also be caused by the difference of the topics and data sets between
INEX 2004 and INEX 2005 etc. It is worth doing a further set of tuning experiments on
the INEX 2005 topics and data sets.

Results also show that our method performs better for models which consider only
fully specific and highly exhaustive components than those models which considering
varying levels of relevant components. The reason may be because the selection of
elements we chose to submit for our experiments. We intend to investigate this issue
further.

5 Conclusion

We extend document level field-weighted retrieval function BM25F to element level
retrieval function BM25E. We have applied this method to INEX 2005 CO XML re-
trieval and results show that our method is beneficial.

However there are still some limitations in our element level retrieval function. Firstly,
values for 'avel and 1

'k are used at the article level, not element level. The creation
of a practical algorithm to generate values for tuning parameters at the element level is
a challenging task. Secondly, parameter tuning is undertaken at document level by
using average precision method, not on element level by using INEX official metrics. It
should be noted that the element st has the same weight at different levels, and further
experiments need to be undertaken to investigate this problem. Thirdly, we only sub-

mit runs for CO.Thorough and CO.FetchBrowse tasks, so more tasks need to be done
to test our method. And also our system for XML element retrieval needs to be up-
graded. We will investigate these problems in further research.

Acknowledgements
Thanks to Chinese Scholarship Council (CSC) for funding the visitor of the first author
to City Univesity, London in order to conduct this research.

References

[1] A. Deutsch, M. Fernandez and D. Suciu. Storing semistructured data with STORED. In
Proc. SIGMOD, 1999.

[2] J. Harding, Q. Li, B. Moon. XISS/R: XML Indexing and Storage System Using RDBMS. In
Proceedings of the 29th VLDB Conference, 2003

[3] Software AG. Tamino XML database. http://www.softwareag.com/tamino/.
[4] XYZFind. XML Database. http://www.xyzfind.com.
[5] HYREX. http://ls6-www.cs.uni-dortmund.de/ir/projects/hyrex/.
[6] N. Fuhr and K. Großjohann. XIRQL: A Query Language for Information Retrieval in XML

Documents. In Research and Development in Information Retrieval, 2001.
[7] J. E. Wolff, H. Florke, and A. B. Cremers. Searching and Browsing Collections of Structural

Information. In Proc. IEEE Forum on Research and Technology Advances in Digital Librar-
ies, 2000.

[8] T. Schlieder and H. Meuss. Querying and Ranking XML Documents. Special Topic Issue
Journal American Society for Informations Systems on XML and Information Retrieval,
2002.

[9] T. Schlieder. Similarity Search in XML Data using Cost-Based Query Transformations. In
Proc. 4th Intern. Workshop on the Web and Databases, 2001.

[10] A. Theobald and G. Weikum. The Index-Based XXL Search Engine for Querying XML
Data with Relevance Ranking. In Proc. 8th Internation Conf. on Extending Database Tech-
nology, 2002.

[11] S. Robertson, H. Zaragoza, M. Taylor. Simple BM25 Extension to Multiple Weighted
Fields. CIKM’04, 2004.

[12] R. Wilkinson. Effective retrieval of structured documents. In Research and Development in
Information Retrieval, 1994.

[13] P. Ogilvie and J. Callan. Combining document representations for known item search. In
Proceedings of the 26th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 2003), 2003.

[14] W. Kraaij, T. Westerveld, D. Hiemstra. The importance of prior probabilities for entry
page search. In Proceedings of the 25th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2002.

[15] S.Myaeng, D. Jang, M. Kim, Z. Zhoo. A flexible model for retrieval of SGML documents.
In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval,1998.

[16] L. A. Clarke, L. Tilker. MultiText Experiments for INEX 2004. In INEX 2004 Proceedings,
2004.

[17] J. Vittaut, B. Piwowarski, Patrick Gallinari. An algebra for Structured Queries in Bayesian
Networks. In INEX 2004 Workshop Proceedings, 2004.

[18] J. Kekäläinen, M . Junkkari, P. Arvola. TRIX 2004 – struggling with the overlap. In INEX
2004 Workshop Proceedings, 2004.

[19] R. Larson. Cheshire II at INEX ’04: Fusion and Feedback for the Adhoc and Heterogen e-
ous Tracks. In INEX 2004 Workshop Proceedings, 2004.

[20] P. Ogilvie, J. Callan. Hierarchical Language Models for XML Component Retrieval. In
INEX 2004 Workshop Proceedings, 2004.

[21] Evaluation results of CO.Thorough. http://inex.is.informatik.uni-
duisburg.de/2005/internal/results/CO.Thorough.html.

XML retrieval based on direct contribution of query
components

Gilles Hubert

IRIT/SIG-EVI, 118 route de Narbonne, 31062 Toulouse cedex 9
hubert@irit.fr

Abstract. This paper describes the retrieval approach proposed by the SIG/EVI
group of the IRIT research centre at INEX’2005. This XML approach is based
on direct contribution of the components constituting an information need. This
paper focuses on the method evolutions since previous participation to INEX. It
describes the experiments done for each subtasks and some corresponding re-
sults.

1 Introduction

Due to the growing use of XML (eXtensible Markup Language) to describe docu-
ments, a growing number of systems intend to provide solutions to retrieve relevant
components among XML documents. These systems are mostly evolutions of either
database systems [3] or Information Retrieval (IR) systems. Among IR-based systems
two main categories of proposals can be distinguished: systems based on a probabilis-
tic model [7][12] and systems based on the vector space model [2][5]. XML retrieval
needs to take into account both content and structural aspects.
In this context of various proposals, a framework such as INEX is useful. On one
hand, it offers testbeds and evaluation methods that allow comparing different sys-
tems according to common criteria. On the other hand, it allows participants to try to
estimate a global efficiency of their system and to determine the contexts adapted to
their system.
Among the systems that participated to INEX previous year and that obtained glob-
ally good results there are approaches based on the vector space model [8] or close
principles [4][6], probabilistic methods [1][13][10][11] and database systems [9]. [8]
presents an approach based on the vector space model using multiple indexes, using a
document ranking method with document pivot normalization and including a possi-
ble automatic query refinement. [4] proposes an approach using inverted lists for
terms stored in a database and based on different scoring formulas for leaf elements
and branch elements. Our method [6] is based on direct contribution of query compo-
nents. The main principles of the method are recalled in this paper. This method ob-
tained better results for CAS (Content and Structure) topics. [1] experimented a
method based on the Okapi BM25 measure only on the CO (Content Only) topics.
[11] uses a multinomial language model with smoothing and associated to documents
indexes at different levels (article, element). [10] proposes a hierarchical language

model to represent XML documents as trees and where a model is estimated for each
XML component using linear interpolation of the component content, its children’s
models and its parent model. The approach proposed in [13] represents hierarchies of
documents as bayesian networks and computes recursively scores from network root
to leaves. [9] describes an extended version of the TIJAH system that follows a three-
level database architecture and that has been extended to handle phrase modelling and
to support structural relevance feedback.
In this paper, we present an IR method using principles close to approaches based on
the vector space model. However, this approach is based on direct contribution of
each component of the query and particularly on the presence of each term constitut-
ing the query. The paper focuses on the method evolutions done since the previous
participation to INEX last year.
In the remainder of this paper a short presentation of the main ideas on which relies
the retrieval method is done in Section 2. Section 3 presents how contributions of
query components are mapped into scoring principles. Section 4 details the submitted
runs and the obtained results. Finally, an analysis of the experiments and an introduc-
tion of future works that ensue from it are given in Section 5.

2 Participation objectives

Participating to INEX this year has multiple objectives:
- a first interest was to evaluate the benefit of evolutions brought to the

method since last participation. Evolutions intervene in the definition of the
function computing the score of an XML element and the score propagation
principle through the hierarchical structure of a document,

- in addition, different new subtasks corresponding to different retrieval strate-
gies that could interest a user have been defined in INEX 2005. The experi-
ments carried out in this context can help us to determine the strategies for
which our method seems to be a possible response,

- finally, it was interesting to estimate the influence of changes introduced in
the INEX 2005 framework regarding metrics and the assessment process.

3 Method principles

The IR method described in this paper is based on principles close to approaches
based on the vector space model. Document and query representations are compara-
ble to vectors. However, the correspondence between documents and query is not
estimated using a “classical” similarity measure. The method presented is based on
direct contribution of each query term appearing in an XML element. The contribu-
tion can be modulated according to other components of the query such as structural
constraints. A principle of score propagation completes the method with regard to the
hierarchical structure of XML documents.

3.1 Representation of INEX elements

From the document point of view, documents are represented as sets of n-tuples
(xpath, term, occ) where xpath is the location of the node containing the term from
the root of an XML document and occ is the number of occurrences of the term is the
textual content of the node. For each XML component, concepts are extracted auto-
matically. Concept extraction involves notably stop word removal and optionally
other processes such as stemming using for example the Porter’s algorithm. For
INEX 2005 experiments all XML tags have been taken into account.
From the topic point of view, according to the INEX 2005 requirements, we used
only the title part for CO topics and castitle part for CO+S and CAS topics. However
our method can use the other parts constituting CO and CAS topics. For both topic
types, stop words are removed and optionally terms can be stemmed. Topics are rep-
resented as pairs (target contraint, set of content indications). A content indication is a
triplet (term, preference, location constraint). Target constraints and location con-
straints can be restrictive xpaths for CAS and CO+S topics or generic paths (i.e.
matching all elements) notably for CO topics.

3.2 Scoring function

The scoring function is defined as a combination of three values. The scoring func-
tion can be globally defined as follows:

),(),(),(),(ETpTtgEtfETScore
Tt

⋅






 ⋅= ∑
∈∀

where

T is the topic

t is a term representing the topic T

E is an XML element

),(Etf This factor measures the importance of the term t in
the XML element E.

),(Etg This factor measures the importance of the term t in
the topic representation T.

),(ETp This factor measures the global presence of the topic
T in the XML element E.

On one hand, the function is defined as an addition of contributions of the concepts
constituting a query. This principle allows giving relevance to elements dealing about
either only one concept or several concepts. The addition tends to promote elements
containing several concepts. However, depending on the different chosen functions

an element dealing strongly about one concept can be evaluated higher than an ele-
ment dealing lightly about many concepts.
On the other hand, the function estimates globally the relevancy of an element ac-
cording to a query.

The function f that measures the importance of a term in an XML element is based on
the number of occurrences of the term in the element or on the relative presence of
the term regarding all the occurrences of query terms appearing in the element. This
function can be defined as follows:

α),(

),(
),(

ETOcc

EtOcc
Etf =

 where

t is a term representing the topic T

E is an XML element

α∈(0,1)

),(EtOcc Number of occurrences of the term t in the element E.

),(ETOcc Total number of occurrences of all the query terms in
the element E

The function g that measures the importance of a term in a topic representation is
based on the frequency of the term in the topic. The frequency can be moderated by
the number of XML elements containing the term. The function can also use the rank
of the term according to the number of elements containing this term and regarding
the numbers of elements containing the other query terms.
This function is defined as follows:

)(

)(

)(

),(
),(

2

tNbElts

tIndRnk

TSize

TtOcc
Ttg ⋅=

 where

),(TtOcc Number of occurrences of the term t in the element E.

Size(T) Size of the topic T i.e. total of occurrences of all the
terms representing T.

NbElts(t) Number of elements containing the term t

IndRnk(t) Rank of the term t according to the number of elements
containing each term of the topic.

This function increases the contributions of terms appearing in few XML elements
through the factor NbElts(t) and IndRnk(t).

The function p that measures the global presence of a topic in an XML element is
based on the number of terms describing the topic and that appear in the XML ele-
ment.
This function is defined as follows:

)
)(

),(
(

),(TNbT

ETNbT

ETp ϕ=

 where

T is the topic

E is an XML element

ϕ is a real, ϕ ≥ 0.0

NbT(T,E) Number of terms describing the topic T and that
appear in the XML element E.

NbT(T) Number of terms describing the topic T.

When ϕ is set to 1.0 the function p has no effect on the final score. The value of ϕ
determines the influence of the function g on the final score. The influence increases
with the value of ϕ. Using a function power intends to clearly distinguish the ele-
ments containing a lot of terms describing the topic and the elements containing few
terms of the topic.

Additional notions complete the scoring function: the notion of coverage and prefix
coefficients. The coverage is a threshold corresponding to the percentage minimum of
topic terms that have to appear in an element to select it. It aims at ensure that only
documents in which the topic is represented enough will be selected for this topic.
Prefix coefficients intend to increase or reduce term contributions according to sign
‘+’ and ‘-‘ associated to terms in the query. These notions and their integration in the
scoring function are detailed in [6].

3.3 Score propagation according to XML structure

The hierarchical structure of XML has to be taken into account. The hypothesis on
which is based our method is that an element containing a component selected as
relevant is also relevant. Our approach takes into account this hypothesis propagating
the score of an element to the elements it composes. The score propagated to the
composed elements is decreased applying a reducing factor. The propagation princi-
ple is the following:

),()
),(),(

),(
21(),(),(

1),(
2

TEScore
EEdEEd

EEd
TEScoreTEScore

EEdandEofancestorE

Ra

a
aa

aa

⋅








+
⋅⋅−+=

<⋅∀

λ

α

 where

λ is a constant coefficient real ≥0.0 and E is an XML element

d(Ea,E) is the distance between Ea and E in the xpath associated to E
(e.g. in the xpath /article/bdy/s/ss1/p the distance between p and bdy
is equal to 3 i.e. d(bdy,p)=3)

d(ER,E) is the distance between the root ER and E in the xpath associ-
ated to E

This process tends to consider a composed element less relevant than the element it is
composed of. However, an element composed of several relevant elements can obtain
a score greater than one of its components. The coefficient λ allows to vary the score
contribution of an element in its ancestors. When λ=0.0 the score of an element is
totally propagated towards its ancestors.

The following figure illustrates the score propagation principle:

3.4 Structural constraints

Two types of structural constraints can be used to define to INEX CAS topics:
- constraints on content that is to say xpath of elements which are expected to

contain searched concepts (e.g. about(.//p,'+XML +"information retrieval"),
- constraints on the granularity of elements expected as result (e.g

//article[….]).

Structural constraints on content are taken into account adding a coefficient varying
the contribution given by a query term. If the XML element does not verify the con-
straint associated to the term, the contribution given by the term is reduced. The coef-
ficient intervenes in the function f that measures the importance of a term in an XML
element (cf section 3.2) as follows:

αβ
),(

),(
),(

ETOcc

EtOcc
Etf ⋅=

where

if E does not verify the structural constraint defined on t then 0.0<β<1.0

 else β=1.0

This principle constitutes a first solution. However, only XML elements with textual
content that verify the constraints on content are affected and by propagation the
elements containing them. This could be a limitation to fully respond to CAS tasks
with strict verification of content constraints notably the task SSCAS. This principle
should be extended to take into account XML elements without textual content and
that verify the constraints on content but composed of components containing query
terms and not verifying the associated constraints.

In addition, structural constraints on the granularity of elements expected as result are
handled adding a coefficient varying the global score computed for an XML element
according to content. If the XML element does not verify the constraint on result
granularity associated to the query, the score computed is reduced. The coefficient
intervenes in the scoring function as follows:

),(),(),(),(ETpTtgEtfETScore
Tt

⋅






 ⋅⋅= ∑
∈∀

γ

where

 if E does not verify the structural constraint defined on T then 0.0≤γ<1.0

 else γ=1.0

This solution allows attaching variable importance to structural constraints on result
granularity. When γ=0.0 the structural constraints on result are strictly taken into
account.

4 Experiments

At least one run based on our XML retrieval method was submitted to INEX 2005 for
each subtask. For the subtasks, CO.Thorough, CO.FetchBrowse, COS.Focussed two
runs were submitted.
Our experiments aim at evaluating the efficiency of the evolution given to the scoring
function, the adaptation of the method regarding the different tasks (Thorough, Fo-
cussed, Fetch and Browse, SSCAS, VVCAS, …), the new metrics and the evolution
of assessment process.

4.1 Experiment setup

One run for all the subtasks except the subtasks Focussed uses the following scoring
function:

)
)(

),(
(2

400
)(

)(

)(

),(
),(),(TNbT

ETNbT

Tt tNbElts

tIndRnk

TSize

TtOcc
EtOccETScore ⋅








⋅⋅= ∑

∈∀

The runs based on this function are named using the following principle:
V2005T<subtask_name> e.g. V2005TCO.Thorough.

Additional runs for the subtasks CO.Thorough, CO.FetchBrowse and

COS.Focussed use a scoring function with a function f that measures the importance
of a term in an XML element slightly different i.e.:

)
)(

),(
(2

400
)(

)(

)(

),(

),(

),(
),(TNbT

ETNbT

Tt tNbElts

tIndRnk

TSize

TtOcc

ETOcc

EtOcc
ETScore ⋅








⋅⋅= ∑

∈∀

The runs based on this function are named using the following principle:
V2005Tf<subtask_name> e.g. V2005TfCO.Thorough.

For all submitted runs the parameters of the scoring method were the same. The coef-
ficient used to propagate a component score through the hierarchical structure of the
XML document was fixed to 0.1. The coverage threshold was fixed to 35% (i.e. more
than a third of terms describing the topic must appear in the text to keep the XML
component). The coefficients applied to take into account the signs ‘+’ and ‘-‘ were
fixed to respectively +5.0 or -5.0 to increase or reduce 5 times the contribution of
wanted respectively unwanted terms.

The values of the parameters are those which gave the best results during a training
phase done with INEX 2003 and INEX 2004 CO topics using the INEX 2004 official
metrics.

4.1.1 Subtasks Focussed
The runs submitted for the subtasks Focussed use scoring functions without function
p effect (ϕ=1.0) i.e. without factor measuring the global presence of the topic in the
XML element, as follows:

),(),(),(TtgEtfETScore
Tt

⋅= ∑
∈∀

No propagation of score is done to have result without overlapping as requested for
the subtask Focussed.

4.1.2 Subtasks CO+S and CAS
For all the subtasks CO+S and CAS the castitle part of topic definition has been used
to define queries.

The coefficient taking into account structural constraints on content was fixed to 0.5
(i.e. the contribution of a query term is divided by 2 when the element does not verify
the structural constraint associated to the term) for all the subtasks. Since the actual
solution implemented in our method cannot fully take into account the structural
constraints, we decided to handle them as vague even for XSCAS subtasks.
The coefficient taking into account structural constraints on result granularity was
fixed to:

− 0.5 (i.e. the scores of elements not verifying the structural predicates are di-
vided by 2) when expecting vague verification of the constraints i.e. VVCAS
and VSCAS,

− 0.0 (i.e. the scores of elements not verifying the structural predicates are re-
set to zero) when expecting strict verification of the constraints i.e. SSCAS
and SVCAS,

The value 0.5 of the two coefficients was fixed arbitrarily.

4.2 Results

Results of the runs for CO subtasks are detailed in the following tables:

 Run V2005TCO.Focussed V2005TCO.Thorough V2005TfCO.Thorough

 Quantision strict generalized strict generalized strict generalized

 precision rank prec. rank prec. rank prec. rank prec. rank prec. rank

nxCG@10 0.1266 5/44 0.1848 19/44 0.0231 23/55 0.1927 18/55 0.0192 24/55 0.1855 21/55

nxCG@25 0.0997 8/44 0.1735 17/44 0.0606 15/55 0.206 15/55 0.0409 19/55 0.1785 23/55

nxCG@50 0.1176 9/44 0.1566 21/44 0.1298 3/55 0.1893 18/55 0.1222 4/55 0.1761 21/55 M
et

ric

ep/gr (MAP) 0.0332 10/44 0.0504 24/44 0.0009 35/55 0.0509 29/55 0.0006 41/55 0.0475 32/55

 Run V2005TCOS.Focussed V2005TfCOS.Focussed V2005TCOS.Thorough

 Quantision strict generalized strict generalized strict generalized

 precision rank prec. rank prec. rank prec. rank prec. rank prec. rank

nxCG@10 0.0632 7/27 0.1279 19/27 0.0282 16/27 0.054 26/27 0.0269 19/33 0.2178 9/33

nxCG@25 0.1045 3/27 0.1333 13/27 0.0251 20/27 0.0585 23/27 0.0576 12/33 0.186 12/33

nxCG@50 0.0924 5/27 0.1334 10/27 0.0621 12/27 0.0754 20/27 0.0874 5/33 0.164 13/33 M
et

ric

ep/gr (MAP) 0.0233 6/27 0.0525 14/27 0.0086 16/27 0.0353 19/27 0.0007 20/33 0.0482 13/33

 Run V2005TCO.FetchBrowse V2005TfCO.FetchBrowse V2005TCOS.FetchBrowse

 Quantision strict generalized strict generalized strict generalized

 MAP rank MAP rank MAP rank MAP rank MAP rank MAP rank

ep/gr {element} 0.004 8/31 0.071 5/31 0.003 8/31 0.069 6/31 0.003 6/19 0.071 4/19

M
et

ric

ep/gr {article} 0.0195 24/31 0.1399 24/31 0.0152 25/31 0.1309 25/31 0.0188 12/19 0.1304 11/19

Our method seems to be more efficient for the subtasks Focussed than for the sub-
tasks Thorough notably for strict quantisation. For nxCG metric and strict quantisa-
tion, the results are particularly good for ranking up to 100.
For the Thorough subtasks the results are on average better for generalised quantisa-
tion than for strict quantisation. However, results progress for strict quantisation
while they remain stable for generalised quantisation.
For the Fetch and Browse subtasks partial results shows better results at the element
level than at the article level.

For CAS topics, results of the runs for CO subtasks are detailled in the following
tables:

 Run V2005TSSCAS V2005TSVCAS

 Quantisation strict generalized strict generalized

 precision rank precision rank precision rank precision rank

nxCG@10 0.1250 11/25 0.3643 4/25 0.1800 4/23 0.324 2/23

nxCG@25 0.1500 13/25 0.4816 1/25 0.24 7/23 0.3357 3/23

nxCG@50 0.4078 2/25 0.5192 1/25 0.4422 3/23 0.3799 1/23 M
et

ric

ep/gr (MAP) 0.0156 18/25 0.1265 13/25 0.0127 14/23 0.1301 3/23

 Run V2005TVSCAS V2005TVVCAS

 Quantisation strict generalized strict generalized

 precision rank precision rank precision rank precision rank

nxCG@10 0.0333 17/24 0.2427 9/24 0.1000 12/28 0.248 14/28

nxCG@25 0.0600 12/24 0.2435 9/24 0.1267 11/28 0.2544 9/28

nxCG@50 0.0567 3/24 0.2436 9/24 0.1162 10/28 0.2373 9/28 M
et

ric

ep/gr (MAP) 0.0090 10/24 0.0929 5/24 0.0031 14/28 0.0824 7/28

The results for CAS subtasks are globally good particularly for generalized quantisa-
tion. Considering that CAS runs are based on the same scoring function than Thor-
ough runs for CO topics and considering that results of Thorough runs are better for
generalised quantisation, it is not surprising to have the same behaviour for CAS
runs.

5 DISCUSSION AND FUTURE WORKS

A first analysis of the experiments performed and the obtained results, shows that:

− the chosen functions and parameters for the scoring method seem to be glob-
ally adapted to the actual INEX framework. However, the results obtained
for the subtasks Thorough show that our method handle overlap not well
enough to fully respond to this kind of search. A future work will consist in
evolving the method to integrate overlap handling according to different
strategies.

− the solutions used to extend our method to handle structural constraints seem
to be adequate. However, structural constraints on content are not fully han-
dled by our method actually. To complete the method to handle structural
constraints completely is another next step.

− other experiments have to be done to determine the method configurations
adapted to each subtask. Furthermore, analyses must be carried out to deter-
mine queries processed well by our method and those leading to weaker re-
sults. This would enable to evolve the method to better respond to this last
type of queries.

Acknowledgments

The research presented in this paper results partly from work undertaken within the
framework of the project QUEST: Query reformulation for structured document re-
trieval, PAI Alliance N°05768UJ. However, this publication only reflects the author’s
view.

References

1. Clarke C. L. A., Tilker P. L., MultiText Experiments for INEX 2004, Advances in XML
Information Retrieval, LNCS 3493, 3rd International Workshop INEX, 2004, p. 85 – 87.

2. Crouch C. J., Apte S., Bapat H., An Approach to Structured Retrieval Based on the Ex-
tended Vector Model, Proceedings of the 2nd INEX Workshop, Dagstuhl, Germany, 2003,
p. 89-93.

3. Fuhr N., Großjohann K., XIRQL: An XML query language based on information retrieval
concepts. ACM Transactions on Information Systems (TOIS), vol. 22, Issue 2, 2004, p.
313-356.

4. Geva S., GPX – Gardens Point XML Information Retrieval at INEX 2004, Advances in
XML Information Retrieval, LNCS 3493, 3rd International Workshop INEX, 2004, p. 211 –
223.

5. Grabs T., H.-J. Schek H.-J., Generating Vector Spaces On-the-fly for Flexible XML Re-
trieval, XML and Information Retrieval Workshop - SIGIR’2002, Tampere, 2002.

6. Hubert G., A voting method for XML retrieval, Advances in XML Information Retrieval,
LNCS 3493, 3rd International Workshop INEX, 2004, p. 183-195.

7. Larson R. R., Cheshire II at INEX’03: Component and Algorithm Fusion for XML Re-
trieval, Proceedings of the 2nd INEX Workshop, Dagstuhl, Germany, 2003, p. 38-45.

8. Mass Y., Mandelbrod M., Component Ranking and Automatic Query Refinement for XML
Retrieval, Advances in XML Information Retrieval, LNCS 3493, 3rd International Work-
shop INEX, 2004, p. 73 – 84.

9. Mihajlović V., Ramírez G., de Vries A. P., Hiemstra D., Blok H. E., TIJAH at INEX 2004
Modeling Phrases and Relevance Feedback, Advances in XML Information Retrieval,
LNCS 3493, 3rd International Workshop INEX, 2004, p. 276 – 291.

10. Ogilvie P., Callan J., Hierarchical Language Models for XML Component Retrieval, Ad-
vances in XML Information Retrieval, LNCS 3493, 3rd International Workshop INEX,
2004, p. 224 – 237.

11. Sigurbjörnsson B., Kamps J., de Rijke M., Mixture Models, Overlap, and Structural Hints
in XML Element Retrieval, Advances in XML Information Retrieval, LNCS 3493, 3rd In-
ternational Workshop INEX, 2004, p. 196-210.

12. Trotman, A., O'Keefe, R. A.: Identifying and Ranking Relevant Document Elements, Pro-
ceedings of the 2nd INEX Workshop, Dagstuhl, Germany, 2003, 149-154.

13. Vittaut J.-N., Piwowarski B., Gallinari P., An Algebra for Structured Queries
in Bayesian Networks, Lecture Advances in XML Information Retrieval, LNCS 3493, 3rd
International Workshop INEX, 2004, p. 100 – 112.

Experimenting various user models for XML Retrieval

Yosi Mass, Matan Mandelbrod

IBM Research Lab
Haifa 31905, Israel

{yosimass, matan}@il.ibm.com

Abstract. While in previous INEX workshops the ad-hoc task was divided
roughly to CO (Content Only) task and CAS (Content and Structure) task, the
focus this year was to further refine those tasks so as to experiment with differ-
ent user behaviors. This paper summarizes the algorithms and approaches used
by the IBM Haifa Research Lab for the various CO and CAS sub tasks.

1 Introduction

The challenge in XML retrieval is to return the most relevant components that sat-
isfy the query concepts. While in previous INEX workshops XML retrieval was di-
vided roughly to CO (Content Only) task and CAS (Content and Structure) task, the
focus this year was to further refine those tasks so as to measure different user behav-
iors.

This resulted in three CO sub tasks – CO.Thorough which aims at returning all
relevant components, CO.Focussed which aims at returning a single element along any
path and the CO.FetchBrowse which is targeted toward browsing model where the full
document is browsed first and then its components. To test the importance of structure
in queries, each CO query was reformulated with structural hints resulting in CO+S
(Content Only plus Structure) topics. Similar to CO, three CO+S sub tasks were de-
fined namely – CO+S.Thorough, CO+S.Focussed and CO+S.FetchBrowse. Finally
the CAS task was divided to four sub tasks checking combinations of Strict vs Vague-
ness in Target elements and in the other query structure elements.

To accommodate those ten sub tasks (3 CO, 3 CO+S & 4 CAS) we applied our
component ranking algorithm (see Fig 1) as defined in [5, 6]. The idea is to build
different indices for the most informative component types where each index contains
elements of the same type. The indices we used this year where for article, abs, bdy,
sec, ss1, ss2 and for p and ip1.

We outline below the component ranking algorithm while full details can be found
in [6]. Given a query Q, we run the query in parallel on each index (step 1) and then
apply an Automatic Query Refinement (AQR) phase (step 2) on each result set. The
AQR algorithm we used is a Lexical Affinity (LA) Refinement algorithm which is
fully described in [2, 6]. Then in step 3, scores of elements in each result set are nor-
malized to same range so that scores from the different indices can be compared. In
step 4 we apply a document pivot scaling where scores of elements from each index

are scaled by the score of their parent article. Finally all the results sets are merged
into a single result set of all element types.

Fig. 1. Component ranking algorithm

In this paper we report how we applied this algorithm in the various CO, CO+S and

CAS tasks. The rest of the paper is organized as follows: In section 2 we describe our
approach and results for the CO runs. In section 3 we describe the CO+S runs and
their results and we discuss our findings on the importance of structure in XML que-
ries. Then in section 4 we describe our CAS approach and report results. We conclude
in sec 5 with summary and some conclusions.

2 CO runs

We submitted 3 runs for each CO sub task experimenting combinations of using
phrases vs ignoring phrases (i.e. treating their words as simple words) and using ‘+’ vs
ignoring ‘+’ on words. In general the submission that ignored phrases and ignored ‘+’
outperformed other runs. We detail below our approach for each CO sub task.

2.1 CO.Thorough

This is the traditional CO task as was used in previous INEX workshops. We used
the base component algorithm as depicted in Fig 1. Our runs were ranked 1st in the
ep/gr generalized metric and quite high in the various nxCG metrics.

2.2 CO.Focussed

A valid CO.Focussed run as defined in [4] should have only one element along any
path namely no overlapping elements are allowed. To satisfy this requirement we first
perform a regular CO.Thorough run and then filter out the overlaps. The filtering is
done in two stages.

For each index i
1. Compute the result set Ri of running Q on index i
2. Apply AQR algorithm on Ri
3. Normalize scores in Ri to [0,1] by normalizing to score(Q,Q)
4. Scale each score by its containing article score from R0

Merge all Ri's to a single result set R composed of all components sorted
by their score

In the first stage we try to identify 'clusters' of highly ranked results in the XML
tree and pick the most relevant element from each cluster. At the end of this stage
there still can be left some overlapping elements so we perform a second filtering
stage that picks the highly scored element along each path.

The first stage is performed as follows: We take the result set of the CO.Thorough

run and group all elements by their containing article. For each such group we con-
struct a tree with nodes that correspond to the result components and edges that repre-
sent the parent-child relationship of the components from the original XML article.
We keep for each node its assigned run score and the total number of its descendant in
the original article.1

To tolerate variations in result scores we compare the scores of two nodes (N1, N2)
as follows: We compute diff(N1, N2) = |score(N1)–score(N2)| / score(N1) and define
the following relations between the nodes –

• N1=N2 if diff(N1, N2) ≤ ScoreTreshold
• Otherwise (if diff(N1, N2) > ScoreTreshold) then

o N1 > N2 if score(N1) > score(N2)
o N1 < N2 if score(N1) < score(N2)

In our runs we used ScoreThreshold = 0.4. The algorithm processes the result tree

bottom up and at each level diagnoses the correlation between the currently examined
node (N1) and its descendents. An example such intermediate tree after score compari-
son is depicted in Fig 2 where color represents relations to the root N1 node such that
black > gray > white.

Fig. 2. result tree

The algorithm distinguishes between three main cases-

1. There is some descendant node N2 with N2 > N1. (See fig 2). This means that
N2 is clearly higher than N1 so we remove N1 from the result tree.

2. There is some direct child node N2 such that most of the “good” nodes (de-
scendant nodes that are ≥ N1) are concentrated under it (see Fig 3 below).
This can be measured by defining |Good(N)| as the number of descendant

1 This number is extracted as part of the indexing procedure, and is stored in the index.

N2

N1

N2

nodes ≥ N1 and checking if |Good(N2)|/|Good(N1)|>ConcentratedThreshold
for some configured ConcentratedThreshold. This means that most of the
good results are concentrated under N2 so we remove N1 from the result tree.
In our runs we used ConcentratedThreshold = 0.4.

Fig. 3. concentrated child

3. There are enough good results which are evenly distributed below N1 as de-

picted in Fig 4 below. This can be measured by checking if
|Good(N1)|/|Descndnt(N1)|>DescendantTreshhold where |Descndnt (N1)| is
number of all descendants of N1 as kept in the index. In our runs we used
DescendantTreshhold = 0.25. This means that a relative significant part of N1
is relevant and is not concentrated under a single child so we remove all the
descendants from the result tree and keep only N1.

Fig. 4. evenly distributed results

In all other cases (e.g. if there are too few good results under N1) no decision is

taken so at the end of this stage there still can be left some overlapping elements.
In the second filtering stage we scan again the reminded result tree from bottom up

and at each Node N compare score(N) to the score of all its descendants. If score(N)
is bigger we take N and remove all its descendants. Otherwise we remove N from the
result set.

Note that the second stage could be performed even without the first stage and re-
turn a valid Focussed run. We submitted one run with both stages and second run with

N1

N1

only the second stage. As expected the run with both stages performed better and for
example in the ep/gr, generalized metric it was ranked 1st with MAP 0.968 while our
second run got MAP 0.0909.

2.3 Fetch & Browse

In this task we first run a regular CO.Thorough run. We then pick the article ele-
ments by their score and for each article we group its returned elements ranked by
their assigned score. We use <rank> instead of <rsv> to order the elements in that
submission. Our runs were ranked among the top 10 but not at the top so we still need
to investigate this task.

3 CO+S runs

The aim of the CO+S task was to investigate the usefulness of structural hints. For
all three sub tasks (CO+S.Thorough, CO+S.Focussed & CO+S.FetchBrowse) we used
similar algorithms as in the CO runs applying a VCAS approach on the topic’s <casti-
tle>.

The results of most participants show that in general the CO runs performed better
than the CO+S runs. Specifically for our submissions the structural hints improved
results for the Thorough runs but not for the Focussed runs.

For the Thorough runs our CO+S performed better than the CO in all metrics. For
example for the ep/gr, generalised metric our CO+S run got MAP 0.0925 while our
CO run got MAP 0.0896. It should be noted that both were ranked 1st in their corre-
sponding metric.

For the Focussed runs our CO performed better than the CO+S in all metrics. For
example for the ep/gr, generalised metric our CO.Focussed run got MAP 0.0968 while
our CO+S.Focuissed run got MAP 0.0809. Again both were ranked 1st in their corre-
sponding metric.

For the Fetch & Browse runs there was a slight improvement in the CO+S runs.

Maybe the conclusion is that structural hints help only when used as a real filter

while having only structure as hints does not help.

4 CAS runs

Similar to previous years the CAS topics were expressed by an XPath[7] expres-
sion extended with the about vague predicate. XPath defines the last element in the
path as a target element while all other query elements can be referenced as support
elements. While in previous years the CAS task was sub classified to Vague (VCAS)
and Strics (SCAS) sub tasks, an attempt was made this year to separate the vagueness

of the target element from the vagueness of the support elements. As a result a combi-
nation of four sub tasks were defined :

• VVCAS – Both target and support are vague
• SSCAS - Both target and support are strict
• SVCAS – Target is strict and support is vague
• VSCAS – Target is vague and support is strict.

We think this separation is artificial so we run our traditional SCAS and VCAS
runs using the following mapping from the four INEX tasks to our tasks –

INEX task Our submission
VVCAS VCAS

SSCAS SCAS

SVCAS SCAS

VSCAS VCAS

Similar to previous years the difference between SCAS and VCAS was in the syno-

nyms. In VCAS runs we use all the considered elements (except the article and the
abs) as synonyms to each other namely {bdy, sec, ss1, ss2, p, ip1, bdy}. In SCAS runs
we use two synonym groups: {bdy, sec, ss1, ss2} and {p, ip1}.

For each of CAS tasks we submitted two runs. In both runs we treat phrases as sim-
ple words and we ignore plus on content. The difference between the two runs was in
the plus on the structure.

For example topic 244 –
//article[about (.//fm, "query optimization")]//sec[about (., "join query optimiza-

tion")]
Is translated to XML Fragments[1, 3] as

<article>
 +<fm>query optimization</fm>
 +<sec>join query optimization</sec>
</article>

A ‘+’ on a tag means that the tree below the tag is mandatory. So in the above ex-

ample a result (<sec>) is returned only if it’s containing article has both the <fm>
constraint and the <sec> constraint. The default semantics in XML fragments is ‘or’
so removing the ‘+’ as in

<article>
 <fm>query optimization</fm>
 <sec>join query optimization</sec>
</article>

will return <sec> even if the containing article does not have the <fm> constraint.
Having the <fm> constraint will only increase the score of the containing article and
as a result using our document pivot (step 4 in Fig 1) will increase score of the <sec>
itself.

This means that for CAS runs we have two levels of vagueness. The first is in the
synonym definition and the second is through the ‘+’ on structure. For each of the
VCAS and SCAS runs we submitted one run with ‘+’ on the structure and a second
run without ‘+’ on structures.

In the sequel we show our performance on the four CAS tasks and it can be clearly
seen that having the ‘+’ on structure performs better on the SCAS runs while remov-
ing the ‘+’ from structure performs better on the VCAS runs.

4.1 VVCAS results

Both our runs (with and without ‘+’ on structure) were ranked top in the nxCG and
the ep/gr in the generalized metric. Still the run which ignored the plus on structure
preformed clearly better. This makes sense since it allows more vagueness in the
structure.

4.2 SSCAS results

Both our runs were at the top ten and there was no clear preference to the one with
the plus on structure or to the other one.

4.3 VSCAS results

Both our runs won top results (1st and 2nd) on both nxCG and ep/gr metrics but
with no clear distinctions which of the two is better.

4.4 SVCAS results

Again both runs won top results in most of the metrics where in most cases the run
which treat structure strictly was better in most cases. This makes sense for SCAS
since it assumes more strictness in the structure.

5 Discussion and summary

We described our approach and algorithms for the various CO, CO+S and CAS
tasks. Our main findings are that our component ranking algorithms performed quite
well and our runs in all 10 tasks were ranked at top places mostly in the ep/gr general-
ized metric. We found out that ignoring phrases and ‘+’ gives best results. Regarding
structural hints for CO runs we found out that they helped in the Thorough task but
disturbed in the Focussed task. Maybe the conclusion is that structure helps only when
it is strict (namely as a real filter) while having only structural hints does not help. For
CAS runs we found out that the separation of strict/vagueness in target element vs rest
of the elements was artificial. Another conclusion is that XML Fragments [1,3] en-
ables another level of strict/vagueness through the ‘+’ on structure.

6 Acknowledgment

We would like to thank the INEX organizers for the assessment tool and for the
evalJ tool they have supplied.

References

1 Broder A.Z., Maarek Y., Mandelbrod M. and Y. Mass (2004): “Using XML to Query
XML – From Theory to Practice”. In Proceedings of RIAO'04, Avignon France, Apr
, 2004.

2 Carmel D., Farchi E., Petruschka Y., Soffer A.: Automatic Query Refinement using
Lexical Affinities with Maximal Information Gain. In Proceedings of the 25th An-
nual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 2002.

3 Carmel D., Maarek Y., Mandelbrod M., Mass Y., Soffer A.: Searching XML Docu-
ments via XML Fragments, In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Toronto,
Canada, Aug. 2003

4 M. Lalmas, INEX 2005 Retrieval Task and Result Submission Specification,
http://inex.is.informatik.uni-
duisburg.de/2005/internal/pdf/INEX05_Tasks_v2.pdf, June, 2005

5 Y. Mass, M. Mandelbrod, Retrieving the most relevant XML Component,
Proceedings of the Second Workshop of the Initiative for The Evaluation of
XML Retrieval (INEX), 15-17 December 2003, Schloss Dagstuhl, Germany,
pg 53-58

6 Y. Mass, M. Mandelbrod, Component Ranking and Automatic Query Re-
finement for XML Retrieval, INEX 2004, Lecture Notes in Computer Sci-
ence, Springer-Verlag GmbH Volume 3493 / 2005, pg 73-84

7 XPath – XML Path Language (XPath) 2.0, http://www.w3.org/TR/xpath20/

http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/INEX05_Tasks_v2.pdf
http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/INEX05_Tasks_v2.pdf
http://www.w3.org/TR/xpath20/

The University of Kaiserslautern
at INEX 2005

Philipp Dopichaj

dopichaj@informatik.uni-kl.de

University of Kaiserslautern
Gottlieb-Daimler-Str.
67663 Kaiserslautern

Germany

Abstract. In this paper, we present the two retrieval strategies used
by the University of Kaiserslautern at INEX 2005. One strategy uses
background knowledge to make better use of inline elements, and the
other one attempts to exploit typical structural patterns in the retrieval
results.

1 Introduction

The Initiative for the Evaluation of XML Retrieval (INEX)1 provides a testbed
for comparing the effectiveness of competing content-based XML retrieval sys-
tems. The University of Kaiserlautern actively participated in the INEX work-
shop for the first time in 2005. We wanted to evaluate the effects of two orthog-
onal retrieval approaches, element relationship and context patterns.

We first present a brief description of our baseline retrieval system in Section 2
and then proceed to explain our improvements to this basis in Section 3. Finally,
we discuss the performance of our baseline and enhanced results as evaluated in
the INEX workshop.

2 Baseline Search Engine

The basic structure of our retrieval system is very simple [2]: We use the Apache
Lucene information retrieval engine2 as the basis and add XML retrieval func-
tionality on top of that. Instead of only storing only the complete articles from
the document collection in the index, we store each element’s textual contents
as a (Lucene) document, enriched with some metadata (most notably, the en-
closing XML document and the XPath within that document); see Fig. 1 for an
example.

Obviously, directly searching this index using Lucene would lead to bad
results—overlap isn’t taken into account at all, and many elements on their
1 see http://inex.is.informatik.uni-duisburg.de/
2 see http://lucene.apache.org

http://inex.is.informatik.uni-duisburg.de/
http://lucene.apache.org

<sec>Hello, world! How <i>are</i> you?</sec>

(a) Input document.

XPath Indexed contents

/sec[1] Hello, world! How are you?
/sec[1]/b[1] world!
/sec[1]/i[1] are

(b) Indexed documents.

Fig. 1. Source document and correspondig indexed documents as seen by
Lucene.

own are useless—, so we need to post-process the Lucene results. We regard the
results from different input documents as independent, so we can post-process
the results from each document separately (even concurrently); Fig. 2 shows an
overview of the retrieval process.

Operation Output

1. Process query and send it to Lucene Raw retrieval results (fragments)
2. Rearrange retrieval results One result tree per document
3. Post-process the result trees One result tree per document
4. Merge the results Flat list of results

Fig. 2. The search process in our basic search engine. The enhancements from
Section 3 are applied in step 3.

2.1 Query Processing

The queries in the INEX topics are formulated in NEXI, an XML query lan-
guage derived from XPath with additional information retrieval functions [4].
For content-only (CO) queries, we support the full syntax of NEXI with the
following modifications:

– We discard query terms with the “-” qualifier, instead of enforcing they do
not occur.

– Query terms prefixed with “+” are assigned a higher weight, instead of en-
forcing they do occur.

– The modifiers “and” and “or” are ignored.

For content-and-structure (CAS) queries, only the last tag name in paths is
used for searching (for example, given //article//fm//atl, we search all atl
elements, not only those contained in //article//fm. Because of this, we only
participated in the VVCAS task, where structural constraints for both the target
and support elements are interpreted as vague.

2.2 Length-Based Score Correction

As we have seen above, our search engine stores all elements in the index, even
inline elements consisting of only a few words (we shall see in Section 3 why
we need to store these elements). Of course, these elements are of little use to
the searcher, but they might get very high scores—for example, an element that
exactly matches the user’s query will get a perfect score in the vector space
model.

In order to avoid this situation, we multiply each element’s score by a factor
that solely depends on the length of the element’s textual contents. In addition
to reducing the score of very short elements (shorter than about 10–20 lines
of text), we also reduce the scores of extremely long elements (longer than a
typical article). We do this because returning very long elements is typically not
useful in XML retrieval, where it is the aim to return the shortest fragments still
answering the user’s query.

3 Enhancements to the Baseline Search Engine

The search engine we described in the previous section provides the basis for
the implementation of our new approaches. On top of it, we implemented two
different enhancements that are executed as a post-processing step; they are
mostly orthogonal, so they can be applied in any combination.

3.1 Element Relationship

Many XML schemas for document authoring specify tags for semantic markup.
DocBook, for example, has a filename tag that is used to specify that the
contained text designates a file name. This markup is useful, in particular for
(CAS) queries, because it enables the searcher to more exactly specify what he
wants to retrieve. When we examined real-world documents, we realized that
this markup is often not used correctly (possibly because of lazyness on part
of the authors, possibly because no tag exactly matching the author’s intention
exists). We had the idea to create a graph for allowing near misses of the markup
specified in structural queries, the element relationship graph (ERG) [1,2].

The ERG contains as leaves the tag names from the document schema and
places them in a semi-hierarchical graph that captures semantic relations be-
tween the tag names. Each category is assigned a coherence value in the range
zero to one that denotes to what degree the contained tag names are similar;
this information is used for similarity calculation, see below for an example.

The approach is not well suited to visual markup that only denotes how the
marked-up text should look, instead of what the semantics are. Unfortunately,
the collection of IEEE magazine articles that is used for INEX uses only visual
markup for the body of the text (the bibliography is more structured, but it is
rarely the target of queries); we tried to construct an ERG for this data anyway
to see how well element relationship can cope with situations it wasn’t designed
for.

We based our ERG on the information available in xmlarticle.dtd. In addi-
tion to the purely syntactic information used by the XML parser, the DTD also
contains consistently formatted comments that indicate a two-level hierarchical
structure, as we can see in Fig. 3. We wrote a small script to convert this DTD
to an ERG, assigning a coherence of 0.5 to all second-level headings and of 0.2
to the first-level headings.

<!-- ============ -->

<!-- FRONT MATTER -->

<!-- ============ -->

<!ELEMENT fm (hdr?, (edinfo|au|tig|pubfm|abs|edintro|kwd|fig|figw)*)>

<!-- ++++++ -->

<!-- HEADER -->

<!-- ++++++ -->

<!ELEMENT hdr (fig?, hdr1, hdr2)>

<!ELEMENT hdr1 (#PCDATA|crt|obi|pdt|pp|ti)*>

<!ELEMENT hdr2 (#PCDATA|crt|obi|pdt|pp|ti)*>

Fig. 3. Excerpt from xmlarticle.dtd. We can see that the comments indicate
the semantic structure of the elements: Front Matter is a first-level heading, and
Header is a second-level heading.

The last tag name from the path in the NEXI query is taken as the category
to search in. If a retrieval result is embedded in an element with that tag name,
its score is taken as is, otherwise we go up in the ERG and try to match any
tag name from the same category, reducing the score by multiplying it with the
corresponding coherence. For example, if we search in hdr, but a match is in a
hdr1 element, we halve the original score because we needed to generalize to a
second-level category.

For more details about applying element relationship, see our previous work
on this topic [1,2].

3.2 Context Patterns

Exploiting element relationships is only feasible if the schema(s) of the document
collection are fixed and one is willing and able to create an element relationship
graph. If this is not the case, one needs schema-independent methods to improve
retrieval results. Fortunately, although tag names may differ, there are several
telltale signs what the role of a given element in a text is—without even looking
at the tag name.

We can achieve this by looking at result contexts of the retrieved nodes. For
each non-leaf node, the result context consists of this node and its children, and
the following data is stored for each node:

– The retrieval score of the node,
– the length of the node (in tokens/words), and
– the position of the node in the parent node.

This information can be visualized in two dimensions, one for the lengths
and positions of the text fragments and the other for the score. Fig. 4 shows an
example XML fragment and how it can be visualized. The horizontal position of
the left-hand side of each rectangle denotes the starting position in the text of
the parent element, and its width corresponds to the length of the text it contains
(this implies that the parent element occupies the width of the diagram). The
parent element (in the Fig. 1, the root element /sec[1]) is the reference for the
scale of the horizontal axis.

<sec>

Hello, world!

How <i>are</i> you?

</sec>

position
0 1 2 3 4 5

sc
or

e

0

0.2

0.4

0.6

0.8

1

/s
ec

[1
]

//b
[1

]

//i
[1

]

Fig. 4. XML text and corresponding context diagram. The horizontal axis de-
notes the positions and lengths of the text fragments, and the vertical axis shows
the RSV (in this case random numbers).

When we examined context graphs of some trial retrieval results, we real-
ized that we could often determine what elements were section titles or inline
elements, without referring to the original XML documents. Based on this ob-
servation, we defined a set of context patterns for formalizing the recognition of
certain structures. Such a pattern looks like, “if the first child in the context is
short and the parent is long, the first child is a title” (see Fig. 5 for an example);

obviously, this is too vague for Boolean logic, but fuzzy logic is perfectly suitable
for this task.

position
0 50 100 150 200 250 300

sc
or

e

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 5. Example context graph for the title pattern. The short peak at the left
is the section title.

Fuzzy logic enables us to assign degrees of membership for the features,
instead of Boolean values [3]. For example, a fragment containing only one word
is definitely short, and a fragment containing 5000 words is definitely not short,
but what about one containing 20 words? With fuzzy logic, we do not need to
make a firm decision, but we can say that this fragment is short to a degree of
(for example) 50%. Similarly, the Boolean operators like and, or, and not can
be expressed in terms of these degrees.

Obviously, the patterns alone are not of much help, we need to take actions
for modifying the relevant scores. For a match in a title, an appropriate action
is to increase the parent’s score (because a match in the title indicates that
the corresponding section is highly relevant) and decrease the first child’s score
(because the title itself contains too little information to be of any use).

We defined and examined several patterns; apart from the title pattern
mentioned above, the inline pattern proved to be the most worthwhile. It is
based on the assumption that single words or short phrases directly contained in
any markup denote some form of emphasis (in the IEEE collection, very short
marked-up elements are typically embedded in b or i elements, denoting bold
and italics). If the author of the text decided to apply such emphasizing markup
to phrases, this is often an indication that the surrounding element is especially
relevant for queries mentioning the phrases. Because of this, if many of an ele-
ment’s children are very short and have high scores, we increase the element’s
score. Fig. 6 shows an example of an occurance of this pattern.

position
0 20 40 60 80 100 120

sc
or

e

0

0.5

1

1.5

2

2.5

3

3.5

4

//p
[4

]

//i
t[1

]

//i
t[2

]

//i
t[3

]

Fig. 6. An example for the inline pattern.

4 Evaluation

One important aspect of INEX is the comparison of XML search engines. In this
section, we shall describe what runs we submitted, examine the official results
and present some post-INEX improvements of our methods.

4.1 Submitted Runs

We only participated in several sub-tasks of the ad-hoc task. For each of the CO
and CO+S tasks, both focused and thorough, we submitted three runs:

1. Basic, which applied both element relationship and length-based score cor-
rection to the Lucene results (this was our baseline).

2. Pattern, which applied element relationship, length-based score correction
and context patterns.

3. Pattern-NoERG, which applied length-based score correction and context
patterns.

For the runs based on element relationship, we searched for the query terms
in the category Emphasis, which contains inline elements for printing in bold
or italics. As we shall later see, the selection of runs turned out to be a bad
choice, since element relationship actually downgraded the retrieval quality of
our systems for the content-only (CO) tasks. Because of this, we have no baseline
for our best-performing run in the official results.

Our system does not support any type of strict CAS queries, as the element-
relationship approach was designed with vague structural matching in mind,
so we did not submit any runs to the VSCAS and SSCAS sub-tasks. For the

VVCAS sub-task, where only two runs per organization were permitted, we
included only the last two of the runs mentioned above, pattern-based retrieval
with resprectively without using element relationship.

For the focused sub-tasks, we used our thorough results and applied some
post processing to each result tree: We repeatedly added the result with the
highest RSV to the retrieval result and removed all results that overlapped this
one.

4.2 Official Results

This year’s INEX workshop offered a plethora of retrieval tasks and evaluation
metrics because there are different views on what constitutes a good retrieval
result; because of this, it is difficult to make clear statements. Nevertheless, the
following points are fairly clear (see Figures 7 and 8):

– Our system is more competitive with generalized quantization; with strict
quantization, our ranks drop significantly.

– For the top-ranked results up to roughly the 30th place, we fare better com-
pared to the competition than for the lower-ranked results.

– Only for the top-ranked results, the pattern-based approach is better than
the corresponding baseline; as we later found out, this is due to undesirable
interactions of several context patterns (see the next section).

– Employing element relationships did not lead to noticeable improvements for
VVCAS, and actually degraded retrieval quality for the CO runs; although
the schemas of the IEEE document collection that is used for INEX is not
well-suited to our approach, we has expected a better outcome and will need
to investigate further what the cause is.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=on,generalised)

(a) quantization: generalized

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=on,strict)

(b) quantization: strict

Fig. 7. Official INEX 2005 results for CO.Focussed, metric nxCG.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=off,generalised)

(a) quantization: generalized

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=off,strict)

(b) quantization: strict

Fig. 8. Official INEX 2005 results for VVCAS, metric nxCG.

In the best case, for the CO tasks (both thorough and focused) and general-
ized quantization, our pattern-based approach managed to outperform the other
submissions by a small margin up to roughly the 30th result rank.

4.3 Post-INEX Evaluation

The counterintuitive results for our pattern-based runs—better than the baseline
at low cut-off points, significantly worse at higher cut-off points—prompted us to
perform further analysis. The original implementation that was used for the runs
submitted to INEX evaluated several patterns without properly isolating them,
so we re-implemented that short after the deadline has passed. An evaluation
of this new implementation based on the INEX assessents reveals that this does
indeed appear to be the cause for the bad quality at higher cut-off values (see
Fig. 9).

We also evaluated the effect of the patterns we had used for the INEX sub-
missions and found that only two of them have any noticeable effect on retrieval
quality, the title pattern and the inline pattern described in Section 3.2.

Another interesting observation is that applying the two patterns in com-
bination leads to worse results than applying the title pattern alone for the
top-ranked documents (it does improve results for the lower ranks), as we can
see in Fig. 10.

5 Conclusions

As we have seen, the runs applying element relationships failed badly for the
CO tasks and did not produce a consistent improvement even for the VVCAS
and CO+S runs; this can in part be explained by the mismatch of the type of

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.2 0.4 0.6 0.8 1

no
rm

al
is

ed
 C

um
ul

at
ed

 G
ai

n

Rank as %

Metric: nRnxCG Overlap: on Quantisation: gen

baseline
title pattern

Fig. 9. Post-INEX evaluation of baseline versus only the title pattern (without
element relationship, task CO.Focussed).

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 0.2 0.4 0.6 0.8 1

no
rm

al
is

ed
 C

um
ul

at
ed

 G
ai

n

Rank as %

Metric: nRnxCG Overlap: on Quantisation: gen

pattern-based
title pattern

Fig. 10. Post-INEX evaluation of inline and title versus only the title pattern
(without element relationship, task CO.Focussed).

markup expected by this method and the markup supplied by the document
collection.

Context patterns showed more promising results, but we still need to inves-
tigate why the quality of our retrieval results declines more rapidly than those
of the other participants.

References

1. Philipp Dopichaj. Element relationship: Exploiting inline markup for better XML
retrieval. In Gottfried Vossen, Frank Leymann, Peter C. Lockemann, and Wolffried
Stucky, editors, Datenbanksysteme in Business, Technologie und Web, 11. Fachta-
gung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), Karl-
sruhe, 2.-4. März 2005, volume 65 of LNI, pages 285–294. GI, 2005.

2. Benedikt Eger. Entwurf und Implementierung einer XML-Volltext-Suchmaschine.
Master’s thesis, University of Kaiserslautern, 2005.

3. Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics,
chapter 13. Springer, 2nd edition, 2004.

4. Andrew Trotman and Börkur Sigurbjörnsson. Narrow extended XPath I (NEXI). In
Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltán Szlávik, editors, Advances
in XML Information Retrieval: Third International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, December
6-8, 2004. Springer, 2005.

Parameter Estimation for a Simple Hierarchical
Generative Model for XML Retrieval

Paul Ogilvie and Jamie Callan

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

pto@lti.cs.cmu.edu, callan@lti.cs.cmu.edu

Abstract. This paper explores the possibility of using a modified Ex-
pectation-Maximization algorithm to estimate parameters for a simple
hierarchical generative model for XML retrieval. The generative model
for an XML component is estimated by linearly interpolating statistical
language models estimated from the text of the component itself, the
parent component, the document component, and its children. We mod-
ify EM to allow the incorporation of negative examples, then attempt
to maximize the likelihood of the relevant components while minimizing
the likelihood of non-relevant components found in training data. This
provides an effective algorithm to estimate the parameters in the linear
combination mentioned above. Some experiments are presented on the
CO.Thorough task that support these claims.

1 Introduction

In previous work [1][2][3], we proposed using hierarchical language models for
ranking XML document components for retrieval. However, we left the problem
of estimating parameters as future work. In this work, we present a parameter
estimate method for a simplified version of the hierarchical language models.

Similar to the language models we estimated in the past, we construct a
language model for each component in the document. What is different from
previous work is that we do not recursively smooth the language models. Instead,
we linearly interpolate the parent’s unsmoothed language model, each child’s
unsmoothed language model, the document’s unsmoothed language model, and
the collection language model. This simplification allows us to formulate the
parameter estimation problem simply so that we can apply the Generalized
Expectation Maximization algorithm.

However, we observed that this approach places the most weight on the doc-
ument language model, which results in very poor retrieval performance. We
modify the likelihood we wish to maximize by including negative examples.
These negative examples are non-relevant components that come from docu-
ments that contain relevant components. To include these negative examples in
the likelihood we raise one minus the probability of the unsmoothed language
model generating the query term to a very large power so that it is on a similar

scale to that of the language models for relevant components. While this is an
ad-hoc method for including the negative examples, we have found it to work
well in practice.

The next section describes the model in detail, and Section 3 presents the
Generalized Expectation Maximization (GEM) algorithm for the model. Sec-
tion 4 presents our adaptation of the GEM algorithm to include negative ex-
amples. We present experimental methodology and describe our system in Sec-
tion 5. Section 6 contains our experiments with using the GEM algorithm on
CO.Thorough task, and conclusions and discussion is contained in Section 7.

2 Model

We rank components by estimating the probability that the a language model
estimated for the component generated the query. We use simple unigram lan-
guage models, which are multinomial probability distributions over words in the
vocabulary. That is, a language model µ specifies P (w |µ). Document compo-
nents (or elements) are then ordered by P (Q |µe) =

∏|Q|
i=1 P (qi |µe) where µe is

the language model estimated for a particular element e.
In order to estimate the language model µe, we note that we would like to

incorporate evidence from the document, its parent, and its children. With that
in mind, we estimate µe as a linear combination of several language models:

P (w |µe) = λP P
(
w

∣∣θP (e)

)
+λDP

(
w

∣∣θd(e)

)
+λCP (w |θC)
+λO

|s(e)|
|s(e)|+

∑
j′∈c(i)

αt(j′)|j
′|
P

(
w

∣∣λs(e)

)
+λO

∑
j∈c(e)

αt(j′)|j|

|s(e)|+
∑

j′∈c(i)
αt(j′)|j

′|
P (w |λj)

(1)

where θx refers to a language model estimated for x, P (x) refers to the parent
of x, d (x) refers to the document containing x, s (x) refers to the component x
(self), c (x) returns a list containing the children of x, t (x) refers to the type of the
element x, and C refers to the entire collection. We choose to set the λ parameters
in the interpolation to be constant across all elements in the collection to reduce
the number of parameters we must estimate. The α parameters allow us to
provide additional weight to the children of components, where the weight is
dependent on the type of the child component. Note that we also multiply alpha
by the length of the component, which results in an assumption that the extra
value of a child component is dependent on both the type and length of the
child.

In this work, we will take θx to be the Maximum Likelihood Estimate from
the text contained in x, which is given by:

P (w |θx) =
count of w in text of x

length in words of text of x
(2)

Note that this is different than our previous work. In our previous work, we ex-
cluded the text of the child’s components when performing hierarchical smooth-
ing. In this model we include that text. This allows a more clear and consistent
parameter estimation scheme. The αt parameters represent the additional value
of a word in components of type t. Additionally, we do not recursively smooth
the components. This is a limiting factor in current work that simplifies the
parameter estimation process.

Unfortunately, due to a bug in our system we did not rank components by
P (Q |µe). In our official submissions, we ranked by

P
(
Q

∣∣∣θ′P (e)

)λP

× P
(
Q

∣∣∣θ′d(e)

)λD

×P
(
Q

∣∣∣θ′s(e))λO
|s(i)|

|s(i)|+
∑

j′∈c(i)
α

t(j′)|j
′|

×
∏

j∈c(e) P
(
Q

∣∣θ′j)λO

∑
j∈c(e)

α
t(j′)

|j|

|s(e)|+
∑

j′∈c(i)
α

t(j′)|j
′|

(3)

where
P (w |θ′x) = (1− λC)P (w |θx) + λCP (w |θC) (4)

This model does allow relative weighting of the different structural components
of messages in the thread. However, it does not have the intended effect of
combining evidence at the word level; it only combines query level evidence.
This model corresponds to the linear weighted combination of log probabilities,
which we investigated in [4]. We will refer to ranking by P (Q |θe) as the mixture
method and Equation 3 as the post query combination approach.

Rather than discuss our official submissions in Section 6, we will present ex-
periments using the corrected P (Q |θe). We also apply a linear length prior [5] to
our rankings. That is, we multiply P (Q |θe) by length (e) to obtain the retrieval
status values used in our rankings.

3 Parameter Estimation Using EM

This section describes how we estimate parameters for ranking results by P (Q |θe).
Suppose there are M language models in the collection, which we will denote

θ1, θ2, . . . , θM .

Suppose that we are given some queries and rankable components that are rele-
vant to these queries. We will treat words in these queries as observations from
the relevant components:

x = (x1, x2, . . . , xN) ,

where we denote the relevant components as

µ1, µ2, . . . , µN .

Note that there may be repeated query terms and components in these lists; this
is not an issue in the estimation process.

Let us now assume that the µ components are linear interpolations of the
components, giving:

P (x |µi) =
M∑

j=1

λijP (x |θj) . (5)

This results in a model where we do not know the Λ = (λ11, . . . , λNM) parame-
ters.

We would like to maximize the probability of P (x |µ). In order to reduce
the number of parameters we must estimate in this model, we will assume that
each µi is estimated from using a small number of components we will call
the family of i. In relation to the model presented before, the family of i
will be child components, the collection component, the parent component, the
document component and the component itself:

family (i) =
(
θ1, θdocument(i), θparent(i), θself(i)

)
∪k∈children(i) (θk)

or using the first letter as an abbreviation for the document, parent, self and
children functions:

family (i) =
(
θ1, θd(i), θp(i), θs(i)

)
∪k∈c(i) (θk) . (6)

where θ1 is the special collection model used for smoothing. Given the family
of component i, we can rewrite Equation 5 as

P (x |µi) =
∑

j∈f(i)

λijP (x |θj) , (7)

greatly reducing the number of parameters we must estimate. Note that we also
place the constraints

λij ≥ 0,
∑

j∈f(i)

λij = 1 (8)

upon the Λ parameters.
However, there are still many cases where we must estimate λ parameters for

texts and we have no training data, as the x vector is very small in comparison
to the total number of rankable texts in the corpus. We must make further
assumptions to reduce the parameter space. Given our understanding of the
XML retrieval domain, we will assume constant parameters across all models
for the combination with the collection, document and parent components. For
the children components, we will assume that the weight placed should be a
simple function of the t = type of the child component and its length. Under

these assumptions:

λij =



λC if j = 1,

λD if j = d (i) ,

λP if j = p (i) ,

λO
|j|

|s(i)|+
∑

j′c(i)
e

β
t(j′) |j′|

if j = s (i) ,

λO
e

βt(j) |j|

|s(i)|+
∑

j′c(i)
e

β
t(j′) |j′|

if j ∈ c (i) ,

0 otherwise.

(9)

where the type function returns a value in (1, 2, . . . , T). This now greatly re-
duces the number of parameters we must estimate to T + 4. In addition to the
constraints in Equation 8, we place this additional constraint:

λC + λD + λP + λO = 1 (10)

Note that we reparameterized αk as eβk as this will ensure that αk is positive.
Given Equation 9, we can rewrite Equation 7 using the parameters we must
estimate:

P (x |µi) = λCP (x |θ1) + λDP
(
x

∣∣θd(i)

)
+ λP P

(
x

∣∣θp(i)

)

+λO


|i|

|i|+
∑

j∈c(i)
e

βt(j) |j|
P

(
x

∣∣θs(i)

)
+

∑
j∈c(i)

e
βt(j) |j|

|i|+
∑

j∈c(i)
e

βt(j) |j|
P (x |θj)


(11)

We would like to maximize the likelihood of the observed data, which is

L (Λ |X) = P (x |µ) =
N∏

i=1

P (xi |µi) =
N∏

i=1

M∑
j=1

λijP (xi |θj) (12)

Unfortunately, the summation within the product makes it difficult to differen-
tiate, so we must use an alternative approach to maximizing the likelihood. We
choose to use the Expectation-Maximization method to optimizing the likeli-
hood.

Suppose we were given additional information Y = (y1, . . . , yN) which specify
that the θyi distribution generated the xi query term. Given knowledge of y, the
likelihood becomes

L (Λ |X ,Y) =
N∏

i=1

λiyi
P (xi |θyi

) (13)

and the log-likelihood of the data is then

logL (Λ |X ,Y) =
N∑

i=1

log (λiyiP (xi |θyi)) (14)

The problem is now that we do not know the values of Y. However, we may
treat it as a random vector and apply Expectation-Maximization.

Suppose we have a guess at the Λ parameters we shall call Λg. Using Λg we
can compute P

(
xi

∣∣µg
j

)
. Applying Bayes rule, we calculate

P (yi |xi, Λ
g) =

λg
iyi

P (xi |θyi
)

P (xi |Λg)
=

λg
iyi

P (xi |θyi
)∑M

j=1 λg
ijP (xi |θj)

=
λg

iyi
P (xi |θyi

)∑
j∈family(i) λg

ijP (xi |θj)
(15)

and

P (y |X , Λg) =
N∏

i=1

P (yi |xi, Λ
g) (16)

where y = (y1, y2, . . . , yN) is independently drawn value of the random vector.
We may now estimate the expectation of Λ given Λg:

Q (Λ, Λg) =
∑

y∈Υ log (L (Λ |X ,y))P (y |X , Λg)

=
∑M

l=1

∑N
i=1 log (λilP (xi |θl))P (l |xi, Λ

g)
(17)

At this point we observe that to maximize this equation, we must take the partial
derivative of Q (Λ, Λg) with respect to each of the Λ parameters.

To maximize λC , we must introduce the Lagrange multiplier φ with the
constraint that λC + λD + λP + λO = 1 and solve the following equation:

∂
∂λC

[∑M
l=1

∑N
i=1 log (λilP (xi |θl))P (l |xi, Λ

g) + φ (λC + λD + λP + λO − 1)
]

= 0

∂
∂λC

∑N
i=1 log (λC) P (y = 1 |xi, Λ

g) + φλC

+some constants with respect to λC

 = 0

1
λC

∑N
i=1 P (y = 1 |xi, Λ

g) + φ = 0
(18)

Similarly, to maximize λD, λP , and λO, we use

1
λD

∑N
i=1 P (y = d (i) |xi, Λ

g) + φ = 0

1
λP

∑N
i=1 P (y = p (i) |xi, Λ

g) + φ = 0

1
λO

∑N
i=1

∑
j∈(s(i))∪c(i) P (y = j |xi, Λ

g) + φ = 0

(19)

By summing these equations we get φ = −N . We can then obtain the following
update rules:

λ
[t]
C = 1

N

∑N
i=1 P

(
y = 1

∣∣xi, Λ
[t−1]

)
λ

[t]
D = 1

N

∑N
i=1 P

(
y = d (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
P = 1

N

∑N
i=1 P

(
y = p (i)

∣∣xi, Λ
[t−1]

)
λ

[t]
O = 1

N

∑N
i=1

∑
j∈(s(i))∪c(i) P

(
y = j

∣∣xi, Λ
[t−1]

)
(20)

Let us continue to the βk parameters. Let

aik =
∑

j′∈c(i),t(j′)=k |j′|

bik = |s (i)|+
∑

j′∈c(i),t(j′) 6=k βt(j′) |j′|

fik = P (y = s (i) |xi, Λ
g) +

∑
j∈c(i),t(j) 6=k P (y = j |xi, Λ

g)

hik =
∑

j∈c(i),t(j)=k P (y = j |xi, Λ
g)

(21)

Then we can rewrite the above as

∂
∂βk



∑
i:j∈c(i),t(j)=k



log
(

|s(i)|
bik+eβk aik

)
P (y = s (i) |xi, Λ

g)

+
∑

j∈c(i),t(j)=k log
(

eβk |j|
bik+eβk aik

)
P (y = j |xi, Λ

g)

+
∑

j∈c(i),t(j) 6=k log
(

e
βt(j) |j|

bik+eβk aik

)
P (y = j |xi, Λ

g)


+some constants with respect to βk


= 0

(22)
We first take the chain rule, resulting in the multiplier βk, then take the partial
derivative of the summation with respect to βk

eβk
∑

i:j∈c(i),t(j)=k


−aik

bik+βkaik
P (y = s (i) |xi, Λ

g)

+
∑

j∈c(i),t(j)=k
bik

eβk(bik+eβk aik)P (y = j |xi, Λ
g)

+
∑

j∈c(i),t(j) 6=k
−aik

bik+eβk aik
P (y = j |xi, Λ

g)

 = 0

(23)

βk

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

eβk

bik + eβkaik
= 0 (24)

Since we cannot solve directly solve this equation for βk, we will use a linear
approximation around the point βg

k :

∂

∂βk
Q (Λ, Λg) ≈ ∂

∂βk
Q (Λ, Λg)βk=βg

k
+ (βk − βg

k)
∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

(25)

Since we set ∂
∂βk

Q (Λ, Λg) = 0,

βk ≈ βg
k −

∂
∂βk

Q (Λ, Λg)βk=βg
k

∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

(26)

where
∂

∂βk
Q (Λ, Λg)βk=βg

k
= eβg

k

∑
i:j∈c(i),t(j)=k

−aikfik + bikhik

e
β

g
k

bik + eβg
k aik

(27)

and

∂2

∂β2
k

Q (Λ, Λg)βk=βg
k

= eβg
k


∂

∂βk
Q (Λ, Λg)βk=βg

k
+

eβg
k

∑
i:j∈c(i),t(j)=k

a2
ikfik−

b2
ik

hik

e
β

g 2
k(

bik+e
β

g
k aik

)2

 (28)

Thus, we will have the following update rule for our βk parameter estimates:

β
[t]
k = β

[t−1]
k −

∂
∂βk

Q (Λ, Λg)
βk=β

[t−1]
k

∂2

∂β2
k

Q (Λ, Λg)
βk=β

[t−1]
k

(29)

4 Incorporating Negative Examples

While the above presentation of EM to learn parameters attempts to maximize
the likelihood of training examples, doing so using only relevant components
results in very poor parameter estimation. This is a direct result of the fact that
optimizing the likelihood of relevant components may also increase the likelihood
of components that are not relevant. In our own experiments, using only relevant
components during training will result in most of the weight being placed in λD.
We feel this may be a side effect of the bias-variance problem in estimation. The
document language model has more bias than the language models estimated
from the components, but the variance is lower as the sample sizes are larger for
documents than for components. When combining the language models during
smoothing, the document language models tend to have a higher likelihood of
generating the query terms due to this lower variance.

In order to combat these effects, we also include negative examples in our
training data. However, we do not wish to optimize the likelihood of the negative
examples. We would prefer to maximize the likelihood that the language models

estimated for the non-relevant components do not generate the query terms. To
model this one might include for each non-relevant component and query term
an example where we use (1− P (x |θj)) in place of P (x |θj). Note that this is
not quite the same as what we one might wish to optimize, as:

1− P (Q |µi) 6=
|Q|∏
l=1

(1− P (ql |µi)) (30)

However, this is a useful and effective approximation that requires only the
above substitution for negative examples. A complication in learning using the
inclusion of negative examples given above is that P (x |µi) tends to be very
small in relation to 1− P (x |µi). That means that when when maximizing the
log likelihood, a small improvement of a positive example may outweigh a large
degradation in performance in a negative example.

To accommodate for that effect, we weight the negative probabilities by rais-
ing them to a large power. For a negative example, we replace

P (x |θj) (31)

with
(1− P (x |θj))νδ (32)

where ν is a user chosen parameter that specifies how much emphasis the negative
examples have relative to the positive examples and δ is chosen so that the
average probability of a term given the relevant examples is equal to the average
probability of a term given the non-relevant examples when ν = 1:

δ =
log

(
1

|positive|
∑

positive P (xi |µi)
)

log
(

1
|negative|

∑
negative P (xi |µi)

) (33)

This approach for the incorporation of non-relevant components is ad-hoc but
effective, as we will see in the next section.

5 Experimental Methodology

We use a locally modified version of the Indri search engine of the Lemur
toolkit [6] that supports the hierarchical shrinkage. The hierarchical shrinkage
support will be made available in a December release. Release of the parameter
estimation code is scheduled for a later release as the estimation methods are
still in flux. We indexed the INEX collection using the InQuery stopword list
and the Krovetz stemmer. To process queries we removed all quotes from the
query (thus ignoring phrasal constraints) and all terms with a minus in front.

We will focus on the CO.Thorough task and present results using the strict
and generalized quantizations for nxCG[10], nxCG[25], nxCG[50], and MAP of
ep/gr to facilitate comparison to the official results presented at INEX.

6 Experiments

In this section we present experiments on the CO.Thorough task. We will disre-
gard our official submissions as they were run with the desired model and they
were not run on the entire corpus. We had some problems with using the sys-
tem that prevented us from indexing the entire corpus which have since been
resolved.

We trained our parameters using the INEX 1.8 corpus and CO topics 162-
201 using one non-relevant document component as a negative example for each
relevant component as a positive example. Components were considered relevant
if and only if they were highly exhaustive and highly specific. The non-relevant
examples were taken from the same documents as the relevant examples. Ten
iterations were used for the EM algorithm. αk values were updated only for cases
where there were at least ten examples for type k in the update rule.

Table 1 shows the a sample of the parameters the EM algorithm learned on
the training topics. As ν increases, the weight on the collection language model
(λC) decreases while the weight in the parent (λP) slightly increases and λO,
the weight on the component and its children, noticeably increases.

With regards to the α parameters, the type specific length proportional
weights on children, a few parameters start with relatively low values and in-
crease rapidly as ν increases. Table 1 shows a few examples of this behavior.
However, most parameters that are learned are very close to zero across all
values of ν.

There seems to be some undesirable variation in the parameters, as we can
see with the α value for the p type. This may be a side effect of the algorithm
being trained on relatively few examples for some types, but this should not
be the case for the p tag. However, as it only really matters what the value is
relative to the other tags at the same level, perhaps this variance is not an issue.

Table 1. Some parameters learned from training data. As ν increases, λC decreases
and λO increases. Some α parameters seem fairly stable, such as that of the footnote
type. Others increase greatly with larger ν while some seem somewhat erratic (e.g. p).

λ α
ν (C)ol (D)oc (P)ar O-self st p sub footnote ss1

1.0 0.475 0.222 0.035 0.268 0.38 0.23 0.00 0.28 0.50
2.0 0.385 0.212 0.037 0.365 1.07 0.00 0.22 2.49 0.37
3.0 0.342 0.210 0.040 0.408 22.75 9.77 7.77 2.22 1.75
4.0 0.321 0.210 0.041 0.428 189.28 0.00 9.42 1.83 6.01
5.0 0.309 0.213 0.043 0.435 48623.30 0.61 146.46 1.65 13289.10

Table 2 shows the effects of using the learned parameters for the CO task
on the training topics 162-201. Note that we use the new INEX-2.2 corpus, so
these results are not directly comparable to previous results on these topics. As
there are many documents that in the INEX-2.2 corpus that were not available

for assessment for the topics, one should regard the evaluation numbers as a
suboptimal estimate of performance. Nevertheless, we are mostly interested in
the relative performance of the parameters learned for different values of ν, and
the values in Table 2 should be adequate for that purpose.

In Table 2 we see that setting ν = 1 yields the most consistently good results
for both quantizations. There also seems to be some variation in the columns that
does not follow a nice curve. This is an undesirable property which could be a
result of variance in the learning algorithm, a sign of instability in the evaluation
metrics, or a symptom of too few topics to get a reliable point estimate given
the topic variance of the system.

Table 2. Results of varying the negative weight ν on the CO task using training topics
162-201. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0704 0.0880 0.1307 0.0034 0.2946 0.2950 0.2944 0.0852
1.5 0.0593 0.0906 0.1266 0.0032 0.2938 0.2803 0.2710 0.0753
2.0 0.0593 0.0766 0.1237 0.0032 0.2899 0.2878 0.2816 0.0791
2.5 0.0704 0.0832 0.1226 0.0032 0.2922 0.2760 0.2637 0.0716
3.0 0.0704 0.0876 0.1210 0.0031 0.2911 0.2671 0.2536 0.0667
3.5 0.0704 0.0837 0.1218 0.0031 0.2920 0.2649 0.2490 0.0640
4.0 0.0593 0.0820 0.1197 0.0028 0.2903 0.2695 0.2447 0.0612
4.5 0.0741 0.0835 0.1219 0.0026 0.2857 0.2554 0.2383 0.0561
5.0 0.0630 0.0732 0.1087 0.0025 0.2791 0.2464 0.2256 0.0520

Table 3 shows the performance of the learned parameters on this year’s
CO.Thorough task. Performance for the generalized quantization peaks at ν = 2
and around ν = 4 for the strict quantization. This is quite a bit different from
our observations on the training data. We would like to investigate this behavior
in more detail. This could simply be the result of a training topic set that is
too small or not representative enough. An alternative cause for difference is the
change in the assessment methodology this year, which could result in assessors
behaving giving different scores.

If we had submitted the system optimized to the training data (ν = 1), then
our results would have been in the top 10 official submissions for the strict quan-
tization nxCG@50 metric and the generalized quantization MAP ep/gr metric.
Supposing we had worked out our kinks in training (whether they be a result
of the algorithm or the assessments) and we had selected the runs with ν = 2, 4
for evaluation, then we would have had a run performing in the top 10 official
submissions for the strict quantization nxCG@10,50 and MAP ep/gr metrics
and for the generalized quantization nxCG@25,50 and MAP ep/gr metrics.

Table 3. Results of varying the negative weight ν on the CO.Thorough task using test
topics 202-241. Values in bold font indicate the largest value for a measure.

Strict Generalized
nxCG MAP nxCG MAP

ν 10 25 50 ep/gr 10 25 50 ep/gr

1.0 0.0200 0.0639 0.1051 0.0021 0.2225 0.2298 0.2286 0.0854
1.5 0.0440 0.0623 0.0911 0.0022 0.2207 0.2218 0.2197 0.0801
2.0 0.0440 0.0639 0.1006 0.0022 0.2464 0.2421 0.2340 0.0882
2.5 0.0440 0.0655 0.1127 0.0026 0.2200 0.2215 0.2224 0.0813
3.0 0.0440 0.0712 0.1184 0.0027 0.2164 0.2221 0.2167 0.0771
3.5 0.0400 0.0744 0.1192 0.0022 0.2131 0.2189 0.2149 0.0717
4.0 0.0691 0.0747 0.1225 0.0028 0.2445 0.2248 0.2172 0.0751
4.5 0.0651 0.0715 0.1131 0.0029 0.2301 0.2144 0.2126 0.0701
5.0 0.0651 0.0731 0.1116 0.0029 0.2326 0.2183 0.2089 0.0682

7 Conclusions

We have derived a Generalized Expectation Maximization algorithm to learn the
parameters of a simple hierarchical language modeling system for the ranking
and retrieval of XML components. We showed a way to effectively incorporate
non-relevant components during training.

We investigated the interaction of the relative weight on the negative training
examples ν and retrieval effectiveness on the CO.Thorough task. Experimental
evidence suggests that the optimal ν parameter may depend on the quantization
function used in evaluation. However, we have not done a full investigation of
the choice of positive and negative examples during training. In training, we
relied only on components that were highly exhaustive and highly specific. This
assumption is essentially the assumption of the strict quantization function.
We have not done experiments where we use components deemed relevant by
the generalized quantization function. While we leave this to future work, we
recognize this may change the optimal choice of ν for optimizing performance
for measures using the generalized quantization function.

Our incorporation of negative examples is ad-hoc. As future work, we plan
to simulate replication of negative examples rather than directly modifying the
probabilities of the language models we are combining. This is a minor change to
the algorithm and will not change the maximum likelihood derivation presented
in Section 3, but it will be more technically sound than the current incorporation
of negative evidence presented in Section 4. We would also like to consider the
possibility of performing the negative evidence at the query level, rather than
negating probabilities at the level of query terms.

For these experiments, we worked with a simplified hierarchical model. Our
previous work [1][2][3] presented a hierarchical model where components were
smoothed recursively up and down the tree for a document. We would like to
adapt the training algorithm to model recursive smoothing and learn parameters
with that optimize the likelihood under that condition.

Up to this point we have discussed only flat text queries. We would like
to adapt this approach to work with structured queries to learn approaches to
weight components of the query. For example, we may learn that satisfaction
of a phrasal constraint should receive higher weight than a constraint on the
document structure.

8 Acknowledgments

This research was sponsored by National Science Foundation (NSF) grant no.
CCR-0122581. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies,
either expressed or implicit, of the NSF or the US government.

References

1. Ogilvie, P., Callan, J.: Language models and structured document retrieval. In:
Proceedings of the First Workshop of the INitiative for the Evaluation of XML
Retrieval (INEX). (2003)

2. Ogilvie, P., Callan, J.P.: Using language models for flat text queries in xml retrieval.
In: Proc. of the Second Annual Workshop of the Initiative for the Evaluation of XML
retrieval (INEX), Dagstuhl, Germany (2003)

3. Ogilvie, P., Callan, J.: Hierarchical language models for xml component retrieval.
In: Advances in XML Information Retrieval: Third International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2004, Springer-Verlag (2005)
224–237

4. Ogilvie, P., Callan, J.P.: Combining document representations for known-item
search. In: Proc. of the 26th annual int. ACM SIGIR conf. on Research and devel-
opment in informaion retrieval (SIGIR-03), New York, ACM Press (2003) 143–150

5. Kamps, J., de Rijke, M., Sigurbjörnsson, B.: Length normalization in xml retrieval.
In: Proceedings of the Twenty-Seventh Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. (2004) 80–87

6. http://lemurproject.org/: (The Lemur Toolkit for Language Modeling and Infor-
mation Retrieval)

Probabilistic Retrieval, Component Fusion and

Blind Feedback for XML Retrieval

Ray R. Larson

School of Information Management and Systems
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@sims.berkeley.edu

Abstract. This paper describes the retrieval approaches used by UC
Berkeley in our official submissions for the various Adhoc tasks. As in
previous INEX evaluations, the main technique we are testing is the fu-
sion of multiple probabilistic searches against different XML components
using different probabilistic retrieval algorithms. In addition this year we
began to use a different fusion/combination method from previous years.
This year we also continued to use re-estimated Logistic Regression (LR)
parameters for different components of the IEEE document collection,
estimated using relevance judgements from the INEX 2003 evaluation.
All of our runs were fully automatic with no manual editing or inter-
active submission of queries, and all used only the title element of the
INEX topics.

1 Introduction

When analyzing the results of the 2004 INEX evaluation we discovered a number
of interesting approaches to XML retrieval that we had not previously explored.
In particular we were struck by the work of Mass and Mandelbrod[14] adjusting
the weights of component-level search results using the weights of document-
level matching for the same documents. This seemed to have a natural affinity
for the fusion approaches that we had already tried[12]. We ran a large number
of experiments using the INEX 2004 relevance data and various combinations
of components and weights for our version of the “pivot” value. In addition, we
participated this year in CLEF and the GeoCLEF evaluations, where we were
able to analyze the differences in performance between our fusion approaches
and the alternative version of the Berkeley Logistic regression algorithm that
has been used there for a number of years (See [3]) The best performing of
those approaches (according to the incomplete analysis using the new evaluation
methods for INEX that we were able to do in the short period between the end of
CLEF and the submission date for INEX) were used in this year’s various INEX
adhoc tasks with no modification. This is the first time that we have used blind
feedback and the “TREC2” version of Logistic regression in addition to using
the re-estimated parameters for the “TREC3” model based on the relevance
judgements from INEX 2003. In addition, element and collection fusion are going

to be used for the heterogeneous track (which are not being submitted until after
this paper is submitted).

In this paper we will first discuss the algorithms and fusion operators used in
our official INEX 2005 adhoc runs. Then we will look at how these algorithms and
operators were used in the various submissions for the adhoc and heterogeneous
tracks, and finally we will examine the results and discuss possible problems in
implementation, and directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This year we did not use the Okapi BM-25 algorithm in our official INEX adhoc
runs. Instead we used a new approach to combining and weighting the elements
using only Logistic regression-based algorithms for retrieval.

In the remainder of this section we will describe the Logistic Regression algo-
rithms that were used for the evaluation as well as the blind relevance feedback
method used in combination with the TREC2 algorithm. In addition we will
discuss the methods used to combine the results of searches of different XML
components in the collections. The algorithms and combination methods are im-
plemented as part of the Cheshire II XML/SGML search engine [11, 12, 9] which
also supports a number of other algorithms for distributed search and operators
for merging result lists from ranked or Boolean sub-queries.

2.1 TREC3 Logistic Regression Algorithm

The basic form and variables of the Logistic Regression (LR) algorithm used was
originally developed by Cooper, et al. [6]. It provided good full-text retrieval
performance in the TREC ad hoc task and in TREC interactive tasks [8] and
for distributed IR [9]. As originally formulated, the LR model of probabilistic IR
attempts to estimate the probability of relevance for each document based on
a set of statistics about a document collection and a set of queries in combina-
tion with a set of weighting coefficients for those statistics. The statistics to be
used and the values of the coefficients are obtained from regression analysis of
a sample of a collection (or similar test collection) for some set of queries where
relevance and non-relevance has been determined. More formally, given a partic-
ular query and a particular document in a collection P (R | Q, D) is calculated
and the documents or components are presented to the user ranked in order
of decreasing values of that probability. To avoid invalid probability values, the
usual calculation of P (R | Q, D) uses the “log odds” of relevance given a set of
S statistics, si, derived from the query and database, such that:

log O(R | Q, D) = b0 +

S
∑

i=1

bisi (1)

where b0 is the intercept term and the bi are the coefficients obtained from the
regression analysis of the sample collection and relevance judgements. The final

ranking is determined by the conversion of the log odds form to probabilities:

P (R | Q, D) =
elog O(R|Q,D)

1 + elog O(R|Q,D)
(2)

Based on the structure of XML documents as a tree of XML elements, we define
a “document component” as an XML subtree that may include zero or more
subordinate XML elements or subtrees with text as the leaf nodes of the tree.
For example, in the XML Document Type Definition (DTD) for the INEX test
collection defines an article (marked by XML tag <article>) that contains front
matter (<fm>), a body (<bdy>) and optional back matter (<bm>). The front
matter (<fm>), in turn, can contain a header <hdr> and may include editor
information (<edinfo>), author information (<au>), a title group (<tig>), ab-
stract (<abs>) and other elements. A title group can contain elements including
article title (<atl>) the page range for the article (<pn>), and these in turn
may contain other elements, down to the level of individual formatted words
or characters. Thus, a component might be defined using any of these tagged
elements. However, not all possible components are likely to be useful in content-
oriented retrieval (e.g., tags indicating that a word in the title should be in italic
type, or the page number range) therefore we defined the retrievable components
selectively, including document sections and paragraphs from the article body,
and bibliography entries from the back matter (see Table 3).

Naturally, a full XML document may also be considered a “document com-
ponent”. As discussed below, the indexing and retrieval methods used in this
research take into account a selected set of document components for generat-
ing the statistics used in the search process and for extraction of the parts of a
document to be returned in response to a query. Because we are dealing with
not only full documents, but also document components (such as sections and
paragraphs or similar structures) derived from the documents, we will use C

to represent document components in place of D. Therefore, the full equation
describing the LR algorithm used in these experiments is:

log O(R | Q, C) =

b0 +



b1 ·





1

|Qc|

|Qc|
∑

j=1

log qtfj









+
(

b2 ·
√

|Q|
)

+



b3 ·





1

|Qc|

|Qc|
∑

j=1

log tfj







 (3)

+
(

b4 ·
√

cl
)

+



b5 ·





1

|Qc|

|Qc|
∑

j=1

log
N − ntj

ntj









+ (b6 · log |Qd|)

Where:

Q is a query containing terms T ,

|Q| is the total number of terms in Q,

|Qc| is the number of terms in Q that also occur in the document component,

tfj is the frequency of the jth term in a specific document component,

qtfj is the frequency of the jth term in Q,

ntj
is the number of components (of a given type) containing the jth term,

cl is the document component length measured in bytes.

N is the number of components of a given type in the collection.

bi are the coefficients obtained though the regression analysis.

This equation, used in estimating the probability of relevance in this research, is
essentially the same as that used in [5]. The bi coefficients in the original version
of this algorithm were estimated using relevance judgements and statistics from
the TREC/TIPSTER test collection. In INEX 2005 we did not use the original
or “Base” version, but instead used a version where the coeffients for each of the
major document components were estimated separately and combined through
component fusion. The coefficients for the Base version were b0 = −3.70, b1 =
1.269, b2 = −0.310, b3 = 0.679, b4 = −0.0674, b5 = 0.223 and b6 = 2.01. The
re-estimated coefficients were derived from the Logistic regression analysis using
the INEX 2003 relevance assessments. In fact, separate formulae were derived for
each of the major components of the INEX XML document structure, providing
a different formula for each major component of the collection. These formulae
were used in all the TREC3 LR runs submitted for the INEX 2005 adhoc tasks,
The components and coefficients for each of bi in formula 4 are shown in table 1

Index b0 b1 b2 b3 b4 b5 b6

Base -3.70 1.269 -0.310 0.679 -0.0674 0.223 2.01

topic -7.758 5.670 -3.427 1.787 -0.030 1.952 5.880

topicshort -6.364 2.739 -1.443 1.228 -0.020 1.280 3.837

abstract -5.892 2.318 -1.364 0.860 -0.013 1.052 3.600

alltitles -5.243 2.319 -1.361 1.415 -0.037 1.180 3.696

sec words -6.392 2.125 -1.648 1.106 -0.075 1.174 3.632

para words -8.632 1.258 -1.654 1.485 -0.084 1.143 4.004
Table 1. Re-Estimated Coefficients for The TREC3 Logistic Regression Model

2.2 TREC2 Logistic Regression Algorithm

We also implemented a version of the LR algorithm that has been used very suc-
cessfully in Cross-Language IR by Berkeley researchers for a number of years[3].

This algorithm, originally developed by Cooper et al. [4] for TREC2 is:

log O(R|C, Q) = log
p(R|C, Q)

1− p(R|C, Q)
= log

p(R|C, Q)

p(R|C, Q)

= c0 + c1 ∗
1

√

|Qc| + 1

|Qc|
∑

i=1

qtfi

ql + 35

+ c2 ∗
1

√

|Qc| + 1

|Qc|
∑

i=1

log
tfi

cl + 80

− c3 ∗
1

√

|Qc| + 1

|Qc|
∑

i=1

log
ctfi

Nt

+ c4 ∗ |Qc|

where C denotes a document component and Q a query, R is a relevance variable,

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, which is 1.0 - p(R|C, Q)

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,

tfi is the within-document frequency of the ith matching term,

ctfi is the occurrence frequency in a collection of the ith matching term,

ql is query length (i.e., number of terms in a query like |Q| for non-feedback
situations),

cl is component length (i.e., number of terms in a component), and

Nt is collection length (i.e., number of terms in a test collection).

ck are the k coefficients obtained though the regression analysis.

If stopwords are removed from indexing, then ql, cl, and Nt are the query
length, document length, and collection length, respectively, after removing stop-
words. If the query terms are re-weighted (in feedback, for example), then qtfi is
no longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the “optimized” relative frequency without
first taking the log over the matching terms.

The coefficients were determined by fitting the logistic regression model spec-
ified in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.3 Blind Relevance feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[17] and TREC-8 (Voorhees and Harman
1999)[18].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] present a
technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[7] provides a survey of relevance feedback techniques that have been used.

Lacking comparable data from previous years, we adopted some rather ar-
bitrary parameters for these options for INEX 2005. We used top 10 ranked
components for the initial search of each component type, and enhanced and
reweighted the query terms using term relevance weights derived from well-
known Robertson and Sparck Jones[15] relevance weights, as described by Chen
and Gey[3]. The top 10 terms that occurred in the (presumed) relevant top 10
documents, that were not already in the query were added for the feedback
search.

2.4 Result Combination Operators

As we have reported previously, the Cheshire II system used in this evaluation
provides a number of operators to combine the intermediate results of a search
from different components or indexes. With these operators we have available
an entire spectrum of combination methods ranging from strict Boolean opera-
tions to fuzzy Boolean and normalized score combinations for probabilistic and
Boolean results. These operators are the means available for performing fusion
operations between the results for different retrieval algorithms and the search
results from different different components of a document. We will only describe

one of these operators here, because it was the only type used in the evaluation
reported in this paper.

The MERGE CMBZ operator is based on the “CombMNZ” fusion algorithm
developed by Shaw and Fox [16] and used by Lee [13]. In our version we take the
normalized scores, but then further enhance scores for components appearing in
both lists (doubling them) and penalize normalized scores appearing low in a
single result list, while using the unmodified normalized score for higher ranking
items in a single list.

A new addition for this year was a merge/reweighting operator based on
the “Pivot” method described by Mass and Mandelbrod[14]. In our case the
new probability of relevance for a component is a weighted combination of the
initial estimate probability of relevance for the component and the probability
of relevance for the entire article for the same query terms. Formally this is:

P (R | Q, Cnew) = (X ∗ P (R | Q, Ccomp)) + ((1 − X) ∗ P (R | Q, Cart)) (4)

Where X is a pivot value between 0 and 1, and P (R | Q, Cnew), P (R |
Q, Ccomp) and P (R | Q, Cart) are the new weight, the original component weight,
and article weight for a given query. Although we found that a pivot value of
0.54 was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.5 for all of our 2005 adhoc runs, given the uncertainties of how
this approach would fare with the new metrics and tasks.

3 INEX 2005 Adhoc Approach

Our approach for the INEX 2005 adhoc tasks was a bit different from the meth-
ods used in previous INEX 2003 and INEX 2004 This section will describe the
indexing process and indexes used, and also discuss the scripts used for search
processing. The basic database was the expanded IEEE collection. We will sum-
marize the indexing process and the indexes used in the adhoc tasks for reference
in the discussion.

3.1 Indexing the INEX 2005 Database

All indexing in the Cheshire II system is controlled by an XML/SGML Config-
uration file which describes the database to be created. This configuration file
is subsequently used in search processing to control the mapping of search com-
mand index names (or Z39.50 numeric attributes representing particular types
of bibliographic data) to the physical index files used and also to associated
component indexes with particular components and documents. This configura-
tion file also includes the index-specific definitions for the Logistic Regression
coefficients (when not defined, these default to the “Base” coefficients shown in
Table 1).

Table 2 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were

Name Description Contents Vector?

docno Digital Object ID //doi No

pauthor Author Names //fm/au/snm No
//fm/au/fnm

title Article Title //fm/tig/atl No

topic Content Words //fm/tig/atl Yes
//abs
//bdy
//bibl/bb/atl
//app

topicshort Content Words 2 //fm/tig/atl Yes
//abs
//kwd
//st

date Date of Publication //hdr2/yr No

journal Journal Title //hdr1/ti No

kwd Article Keywords //kwd No

abstract Article Abstract //abs Yes

author seq Author Seq. //fm/au No
@sequence

bib author Bib Author Forename //bb/au/fnm No
fnm

bib author Bib Author Surname //bb/au/snm No
snm

fig Figure Contents //fig No

ack Acknowledgements //ack No

alltitles All Title Elements //atl, //st Yes

affil Author Affiliations //fm/aff No

fno IEEE Article ID //fno No
Table 2. Cheshire Article-Level Indexes for INEX

extracted. These indexes (with the addition of the are the same as those used
last year. The abstract, alltitles, keywords, title, topic and topicshort indexes
support proximity indexes (i.e., term location), supporting phrase searching.

As noted above the Cheshire system permits parts of the document subtree
to be treated as separate documents with their own separate indexes. Tables 3
& 4 describe the XML components created for INEX and the component-level
indexes that were created for them.

Table 3 shows the components and the path used to define them. The COMP SECTION
component consists of each identified section (<sec> ... </sec>) in all of the
documents, permitting each individual section of a article to be retrieved sep-
arately. Similarly, each of the COMP BIB, COMP PARAS, and COMP FIG
components, respectively, treat each bibliographic reference (<bb> ... </bb>),
paragraph (with all of the alternative paragraph elements shown in Table 3),
and figure (<fig> ... </fig>) as individual documents that can be retrieved
separately from the entire document.

Name Description Contents

COMP SECTION Sections //sec

COMP BIB Bib Entries //bib/bibl/bb

COMP PARAS Paragraphs //ilrj|//ip1|//ip2|
//ip3|//ip4|//ip5|
//item-none|//p|
//p1|//p2|//p3|
//tmath|//tf

COMP FIG Figures //fig

COMP VITAE Vitae //vt
Table 3. Cheshire Components for INEX

Component
or Index Name Description Contents Vector?

COMP SECTION

sec title Section Title //sec/st Yes

sec words Section Words //sec Yes

COMP BIB

bib author Bib. Author //au No

bib title Bib. Title //atl Yes

bib date Bib. Date //pdt/yr No

COMP PARAS

para words Paragraph Words *† Yes

COMP FIG

fig caption Figure Caption //fgc No

COMP VITAE

vitae words Words from Vitae //vt No
Table 4. Cheshire Component Indexes for INEX †Includes all subelements of para-
graph elements.

Table 4 describes the XML component indexes created for the components de-
scribed in Table 3. These indexes make individual sections (COMP SECTION)
of the INEX documents retrievable by their titles, or by any terms occurring
in the section. These are also proximity indexes, so phrase searching is sup-
ported within the indexes. Bibliographic references in the articles (COMP BIB)
are made accessible by the author names, titles, and publication date of the
individual bibliographic entry, with proximity searching supported for bibliog-
raphy titles. Individual paragraphs (COMP PARAS) are searchable by any of
the terms in the paragraph, also with proximity searching. Individual figures
(COMP FIG) are indexed by their captions, and vitae (COMP VITAE) are in-
dexed by keywords within the text, with proximity support.

Almost all of these indexes and components were used during Berkeley’s
search evaluation runs of the 2005 INEX topics. The official submitted runs and
scripts used in INEX are described in the next section.

3.2 INEX ’04 Official Adhoc Runs

Berkeley submitted a total of 20 retrieval runs for the INEX 2005 adhoc tasks,
these included 3 for each of the CO and CO+S Focussed and Thorough tasks,
two each for CO and COS FetchBrowse tasks and one run each for the VVCAS,
VSCAS, SVCAS and SSCAS tasks. This section briefly describes the individual
runs and general approach taken in creating the queries submitted against the
INEX database and the scripts used to prepare the search results for submission.
The paragraphs below briefly describe Berkeley’s INEX 2005 runs.

3.3 CO and CO+S Runs

Essentially the same basic component retrieval runs were used with different
post-retrieval processing for the Thorough, Focussed, and FetchBrowse tasks.
Our primary focus was on the Thorough task, since that was most similiar to
our most effective runs from previous INEX evaluations. The three runs for each
of the CO and CO+S Thorough and Focussed tasks were:

LRPIV: Runs containing this term used the TREC3 algorithm as described
above for all retrieval ranking. The basic results were the combination of
searches on each of the component types described in Table 3 using the
TREC3 algorithm with component scores scaled using document level scores
using the Pivot method described above with a pivot value of 0.5.

T2: Runs containing this term used the TREC2 algorithm in place of the
TREC3 algorithm, but were otherwise the same.

T2FB: Runs containing this term used the TREC2 algorithm with Blind Feed-
back as described above, but otherwise were the same as “T2” runs.

The primary task that we focussed on was the CO.Thorough task. For this
task some automatic expansion of items in the XPath to the root of the docu-
ment was used. The same data was used for the COS.Thorough task, but post-
processing restricted results to (approximately) those matching the structural
constraints of the “castitle”.

For the CO and COS Focussed tasks, post-processing kept only the highest
ranking non-overlapping elements from the unexpanded version of results. As
the very poor results for the Focussed runs show, this trimming of the results
was overly harsh, and eliminated many of the relevant items in the initial set. (In
fact, the results for the focussed tasks were so bad that we plan, time permitting,
to do a complete analysis of where the post-retrieval processing caused them to
fail, and to do test runs using the corrected post-processing for comparison).

The summary average MAnxCG@10 results for the runs described above are
shown in Table 5.

Given the large number of runs (and problems getting evalj to successfully
complete and produce gnuplot data), we are not including figures showing nxCG
plots for the runs, but plan to do so for the final version of the paper.

Unlike our attempt at INEX 2004 to use a simple form of “blind feedback”
that used only the kwd element of the documents, use of the TREC2 algorithm

Run Name Task MAnxCG@10 MAnxCG@10
Q=gen Q=strict

CO PIV50 LRPIV FOC CO.Focussed 0.0581 0.0077

CO PIV50 T2 FOC CO.Focussed 0.0924 0.0213

CO T2FB PIV50 NOV CO.Focussed 0.0885 0.0255

CO PIV50 LRPIV FOC COS COS.Focussed 0.0612 0.0077

CO PIV50 T2 FOC COS COS.Focussed 0.0881 0.0213

COS T2FB PIV50 NOV COS.Focussed 0.0884 0.0318

CO PIV50 LRPIV EXP THR CO.Thorough 0.2242 0.0225

CO PIV50 T2 EXP THR CO.Thorough 0.2432 0.0375

CO T2FB PIV50 THR CO.Thorough 0.2907 0.0602

CO PIV50 LRPIV COSTHR COS.Thorough 0.2228 0.0399

CO PIV50 T2 COSTHR COS.Thorough 0.2393 0.0491

COS T2FB PIV50 ALL EXP COS.Thorough 0.2652 0.0551

LRPIV SSCAS SSCAS 0.2409 0.1362

LRPIV SVCAS SVCAS 0.2409 0.1362

LRPIV VSCAS VSCAS 0.1733 0.0927

LRPIV VVCAS VVCAS 0.1733 0.0927

CO PIV50 LRPIV FETCHBROWSE CO.FetchBrowse 0* 0*

CO PIV50 T2 FETCHBROWSE CO.FetchBrowse 0* 0*

CO PIV50 LRPIV FETCHBROWSE COS COS.FetchBrowse 0* 0*

CO PIV50 T2 FETCHBROWSE COS COS.FetchBrowse 0* 0*

Table 5. Berkeley Adhoc Runs, Tasks, and Results

and Blind Feedback with terms selected by relevance values, showed a consistent
improvement over the TREC2 algorithm alone, or the TREC3 algorithm alone.
This was the case for Berkeley runs in CLEF and it was pleasing to see that
it was equally applicable in INEX. We hope to do further analysis to attempt
to determine the optimal number of records to use in feedback and the optimal
number of additional terms to include in the reformulated query).

3.4 CAS Runs

Our approach to the 4 CAS tasks was to run them almost identically to the
method used in INEX 2004, with a few additional constraints on the structural
matching criteria. Only a single run for each of CAS tasks was submitted, and
all of the runs used just the TREC3 ranking algorithm. (Given the effectiveness
shown by the T2FB for the CO tasks, we now wish that we had submitted runs
using that combination for consideration as well). Overall, the Berkeley CAS
runs performed about average among the other submissions, with the SVCAS
and VSCAS runs faring best among our CAS submissions.

3.5 FetchBrowse Runs

All of our FetchBrowse runs were rejected due to a sorting problem that incor-
rectly interleaved a few entries from separate documents in one topic.

4 Conclusions and Future Directions

Considerable further analysis needs to be done to digest the vast number of
variables, metrics and tasks introduced in this year’s INEX and to make sense of
their implications for future adaptations of our system. Overall, however, we have
been pleased to discover that the TREC2 with Blind Feedback method seems to
work consistently better for INEX tasks than the TREC3 algorithm alone. We
hope to further examine these results and to conduct further experiments to see
whether combinations (fusion) of these algorithms will be more or less effective
than the base algorithms alone. We also plan to do a more detailed analysis of
the post-processing steps used this year to discover if some of the poorer results
were simply the result of post-processing errors.

References

1. A. Chen. Multilingual information retrieval using english and chinese queries. In
C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, editors, Evaluation of Cross-
Language Information Retrieval Systems: Second Workshop of the Cross-Language
Evaluation Forum, CLEF-2001, Darmstadt, Germany, September 2001, pages 44–
58. Springer Computer Scinece Series LNCS 2406, 2002.

2. A. Chen. Cross-Language Retrieval Experiments at CLEF 2002, pages 28–48.
Springer (LNCS #2785), 2003.

3. A. Chen and F. C. Gey. Multilingual information retrieval using machine trans-
lation, relevance feedback and decompounding. Information Retrieval, 7:149–182,
2004.

4. W. S. Cooper, A. Chen, and F. C. Gey. Full Text Retrieval based on Probabilis-
tic Equations with Coefficients fitted by Logistic Regression. In Text REtrieval
Conference (TREC-2), pages 57–66, 1994.

5. W. S. Cooper, F. C. Gey, and A. Chen. Full text retrieval based on a probabilistic
equation with coefficients fitted by logistic regression. In D. K. Harman, editor,
The Second Text Retrieval Conference (TREC-2) (NIST Special Publication 500-
215), pages 57–66, Gaithersburg, MD, 1994. National Institute of Standards and
Technology.

6. W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic retrieval based on
staged logistic regression. In 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Copenhagen, Denmark,
June 21-24, pages 198–210, New York, 1992. ACM.

7. D. Harman. Relevance feedback and other query modification techniques. In
W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures &
Algorithms, pages 241–263. Prentice Hall, 1992.

8. R. R. Larson. TREC interactive with cheshire II. Information Processing and
Management, 37:485–505, 2001.

9. R. R. Larson. A logistic regression approach to distributed IR. In SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, August 11-15, 2002, Tampere, Finland,
pages 399–400. ACM, 2002.

10. R. R. Larson. Cheshire II at INEX: Using a hybrid logistic regression and bool-
ean model for XML retrieval. In Proceedings of the First Annual Workshop of

the Initiative for the Evaluation of XML retrieval (INEX), pages 18–25. DELOS
workshop series, 2003.

11. R. R. Larson. Cheshire ii at inex ’04: Fusion and feedback for the adhoc and het-
erogeneous tracks. In Advances in XML Information Retrieval: Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX2004, pages
322–336. Springer (LNCS #3493), 2005.

12. R. R. Larson. A fusion approach to XML structured document retrieval. Informa-
tion Retrieval, 8:601–629, 2005.

13. J. H. Lee. Analyses of multiple evidence combination. In SIGIR ’97: Proceedings
of the 20th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, July 27-31, 1997, Philadelphia, pages 267–276.
ACM, 1997.

14. Y. Mass and M. Mandelbrod. Component ranking and automatic query refinement
for xml retrieval. In Advances in XML Information Retrieval: Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX2004, pages
73–84. Springer (LNCS #3493), 2005.

15. S. E. Robertson and K. S. Jones. Relevance weighting of search terms. Journal of
the American Society for Information Science, pages 129–146, May–June 1976.

16. J. A. Shaw and E. A. Fox. Combination of multiple searches. In Proceedings of
the 2nd Text REtrieval Conference (TREC-2), National Institute of Standards and
Technology Special Publication 500-215, pages 243–252, 1994.

17. E. Voorhees and D. Harman, editors. The Seventh Text Retrieval Conference
(TREC-7). NIST, 1998.

18. E. Voorhees and D. Harman, editors. The Eighth Text Retrieval Conference
(TREC-8). NIST, 1999.

GPX - Gardens Point XML IR at INEX 2005
Shlomo Geva

Centre for Information Technology Innovation
Faculty of Information Technology

Queensland University of Technology
Queensland 4001 Australia

s.geva@qut.edu.au

Abstract The INEX 2005 evaluation consisted of numerous tasks that required

different approaches. In this paper we described the approach that we adopted to
satisfy the requirements of all the tasks, CAS and CO, in Thorough, Focused, and
Fetch Browse mode, using the same underlying system. The retrieval approach is
based on the construction of a collection sub-tree, consisting of all nodes that contain
one or more of the search terms. Nodes are then assigned a score using a TF_IDF
variant, and finally results are ranked. We present results that demonstrate that the
approach is versatile and produces relatively good performance across all INEX
2005 tasks.

Keywords XML Information Retrieval, XML Search Engine, Inverted Files,

XML-IR, Focused retrieval.

1. XML File Inversion

In our scheme each term posting in the collection consists of three path elements: the
file name, the absolute XPath context, and the ordinal position within the XPath
context. The entire collection is inverted and the indexing structure supporting
access to the terms inverted lists is stored in a MS Access database. Details of the
GPX database structure can be found in the 2004 proceedings (“GPX - Gardens Point
XML Information Retrieval at INEX 2004”. The most significant difference in the
indexing structure from 2004 was that in 2005 we did not index stop words. Stop
words were defined as words that occurred more than 150,000 times in the collection.

2. Processing NEXI queries

Processing of complex NEXI expressions is based on parsing of the expression and
the incremental construction of a result-tree. The result-tree consists of all the
elements in the collection that contains at least one of the keyword in the query (or a
synonym or any other term deemed relevant). Each node in the result tree contains
the necessary information to allow the computation of a score, using a TF-IDF variant

(described in section 3). After the result-tree is constructed, a traversal of the result-
tree generates the score for each node, from the leaves to the root node. These results
are then organized as a list and sorted by score, with the top N results returned
(N=1500 for the ad-hoc track).

When a NEXI expression contains multiple filters the system constructs a result-tree
for each of the filters. After the score of each node in all trees is determined, the
scores of support elements (i.e. elements that satisfy a support filter in the NEXI
expression) are used to boost the score of result elements. In this manner, elements
with support tend to be ranked higher than elements without support, everything else
being equal. More specific details can be found in the paper describing our
submission to the ad hoc track, in these proceedings.

3. Ranking Scheme

Elements are ranked according to a relevance score. In our scheme leaf and branch
elements need to be treated differently. Data usually occurs at leaf elements, and
thus, our inverted list mostly stores information about leaf elements. A leaf element is
considered candidate for retrieval if it contains at least one query term. A branch node
is candidate for retrieval if it contains a relevant child element. Once an element
(either leaf or branch) is deemed to be a candidate for retrieval its relevance score is
calculated. A heuristically derived formula (Equation 1) is used to calculate the
relevance score of leaf elements. The same equation is used for both return and
support elements. The score is determined from query terms contained in the element.
It penalizes elements with frequently occurring query terms (frequent in the
collection), and it rewards elements with more unique query terms within a result
element.

Equation 1: Calculation of a Leaf Element’s Relevance Judgment Score

∑−
n

=i i

in

f
tK=L

1

1

(1)

Here n is the number of unique query terms contained within the leaf element, N is

a small integer (we used K=5). The term Kn-1 scales up the score of elements having
multiple distinct query terms. The system is not sensitive to the value of K – we
experimented with K=5 to 25 with little difference in results. The sum is over all
terms where ti is the frequency of the ith query term in the leaf element and fi is the
frequency of the ith query term in the collection. This sum rewards the repeat
occurrence of query terms, but uncommon terms contribute more than common terms.

Once the relevance scores of leaf elements have been calculated, they can be used
to calculate the relevance judgment score of branch elements. A naïve solution would
be to just sum the relevance judgment score of each branch relevant children.

However, this would ultimately result in root (i.e. article) elements accumulating at
the top of the ranked list, a scenario that offers no advantage over document-level
retrieval. Therefore, the relevance score of children elements should be somehow
decreased while being propagated up the XML tree. A heuristically derived formula
(Equation 2) is used to calculate the scores of intermediate branch elements.

Equation 2: Calculation of a Branch Element’s Relevance Judgment Score

∑
n

=i
iLD(n)=R

1

(2)

Where:

 n = the number of children elements
 D(n) = 0.49 if n = 1
 0.99 Otherwise
 Li = the ith return child element

The value of the decay factor D depends on the number of relevant children that the
branch has. If the branch has one relevant child then the decay constant is 0.49. A
branch with only one relevant child will be ranked lower than its child. If the branch
has multiple relevant children the decay factor is 0.99. A branch with many relevant
children will be ranked higher than its descendants. Thus, a section with a single
relevant paragraph would be judged less relevant than the paragraph itself, but a
section with several relevant paragraphs will be ranked higher than any of the
paragraphs.

Having computed scores for all result and support elements, the scores of support
elements are added to the scores of the corresponding result elements that they
support. For instance, consider the query:

//A[about(.//B,C)]//X[about(.//Y,Z)]

The score of a support element //A//B will be added to all result elements //A//X//Y
where the element A is the ancestor of both X and Y.

Finally, the results consist of an entire recall tree for the query where each node is
individually scored. The results are sorted by score and the top N results returned.

4. Treatment of CAS variants

The INEX ad-hoc track aimed to answer some questions with respect to the utility of
the various filters of a NEXI expression. Four different sub-tasks were defined:
VVCAS, VSCAS, SVCAS, SSCAS. The GPX search engine starts with construction
of a collection sub-tree using inverted lists of term posting. The SVCAS, VSCAS, and

SSCAS variants require strict structural interpretation of a result filter, the support
filter/s, or both, respectively. The VVCAS variant requires loose structural
interpretation of all filters. To enforce structural constraints filtering of result or
support elements is performed when the term posting lists are processed. Following
this initial filtering all variants are processed identically. All CAS variants at
INEX2005 were processed as Thorough runs meaning that all relevant elements were
returned, ignoring overlap. This is supported naturally because the collection sub-tree
that the search engine constructs contains the entire recall base – as identified by the
system. Results are extracted, sorted, and the top N results returned.

4. Treatment of CO variants

The CO and COS tasks were designed to study queries having structural constraints,
in comparison with and the same queries without such constraints. The CO and COS
queries were used to generate result for three different user models – Thorough,
Focused, and Fetch Browse. The Thorough retrieval requires the complete recall base
(or N top ranked results). The Focused retrieval requires the return of elements of just
the right granularity, and without overlap. The Fetch Browse retrieval requires the
return of ranked documents and the ranked complete recall base within those
documents (supporting document browsing in document rank order with identified
relevant components).

The CO and COS queries only differ in the complexity of the NEXI expression, where
a CO query can be expressed as a search over the entire article element. Therefore
our system did not treat CO topic any differently to COS topics.

Thorough retrieval was performed as for the CAS tasks. Focused retrieval and Fetch
Browse retrieval also started with the construction of the collection sub-tree, as done
for Thorough retrieval. The Fetch Browse retrieval then proceeded to sort the result
by file node score and then by element score within, as required for this task. For
Fetch Browse retrieval the system extracted from each path – from article to leaf – the
highest ranking node. In this manner the resulting set of candidate results contained
no overlap. The results were then sorted by element score.

5. Results

An Implementation of High-Speed and

High-Precision XML Information Retrieval
System on Relational Databases

Kei Fujimoto1, Toshiyuki Shimizu1, Kenji Hatano2, Yu Suzuki3, Toshiyuki
Amagasa4, Hiroko Kinutani5, and Masatoshi Yoshikawa1

1 Graduate School of Information Science, Nagoya University,
Furocho, Chikusa, Nagoya, Aichi, Japan

{fujimoto, shimizu}@dl.itc.nagoya-u.ac.jp, yosikawa@is.nagoya-u.ac.jp
2 Graduate School of Information Science, Nara Institute of Science and Technology,

8916-5 Takayama, Ikoma 630-0192, Nara, Japan
hatano@is.naist.jp

3 College of Information Science and Technology, Ritsumeikan University,
1-1-1, Noji-Higashi, Kusatsu 525-8577, Shiga, Japan

suzuki@ics.ritsumei.ac.jp
4 Graduate School of Systems and Information Engineering, University of Tsukuba,

1-1-1 Tennodai, Tsukuba 305-8573, Japan
amagasa@cs.tsukuba.ac.jp

5 Information Media and Education Square, Ochanomizu University,
2-1-1, Ohtsuka, Bunkyo 112-8610, Tokyo, Japan

kinutani@edu.cc.ocha.ac.jp

Abstract. We are developing an XML infromation retrieval system by
using XRel, an XML database system on relational databases. In XRel,
XML documents are stored into four relational tables that have fixed
relational schemas. Relational schemas are independent of the logical
structure of XML documents. Therefore, changes in logical structure do
not affect relational schemas. Each node in XML documents is repre-
sented by labels that express the positions in XML tree and paths from
the root to the node.
In addition, XRel has token table to enable us to retrieve XML fragments
based on their content vectors. Token table has tokens, XML fragment
ID that the token belongs to, and the weights of the tokens as attributes.
The weights of the tokens are calculated by taking element or path in-
formation into consideration. Acceleration of XML documents retrieval
is achived by filtering out irrelevant tokens that do not affect the final
top-k result.
We have developed Kikori, an application system of XML information
retrieval. One of the main features of Kikori is that it enables us to
retrieve XML fragments such as chapter, section and paragraph of arti-
cles in INEX document set. In Kikori, search results are displayed in a
manner reflecting document structures and relevance.

The Dynamic Retrieval of XML Elements

Carolyn J. Crouch, Sudip Khanna, Poorva Potnis, Nagendra Doddapaneni

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Extended Abstract

Our goal when we began our work with INEX in 2002 was to assess the utility of Salton’s vector space
model in its extended form for XML retrieval. Familiarity with Smart and faith in its capabilities led us to
believe that this approach was promising if particular problems such as flexible retrieval (i.e., retrieval of
elements at the desired degree of granularity) and ranking issues could be resolved. During the past year,
our research has centered on an approach for the dynamic retrieval of elements which we believe provides a
viable solution to both these problems.

For those interested in the background and evolution of our system, discussions are available in terms of
earlier workshop papers [1-3]. This paper focuses on our method of flexible retrieval, which is performed
dynamically at retrieval time. It returns a rank-ordered list of elements to the user. An overview of results
with respect to INEX 2005 tasks is presented, comparing dynamic element retrieval with retrieval against
all all-element index of the collection as well as results produced by other INEX participants. We note in
particular the exceptional results produced when our method is applied to the INEX Fetch-and-Browse
task.

Our method of flexible retrieval is based on a single indexing of the collection at the paragraph level.
(Collection statistics as required for Lnu-ltu term weighting are also used, but these are available from an
examination of the collection as a whole and once calculated can be applied to any collection with similar
characteristics.) It uses an extension of the basic vector space model proposed by Fox to represent the
various components of the structured document. This extension allows the incorporation of objective
identifiers such as author name and date of publication with content identifiers in the representation of the
document. Similarity between extended vectors is calculated as a linear continuation of the similarities of
the corresponding subvectors.

Flexible retrieval in this system takes place after an initial retrieval. Given a query and a paragraph
indexing of the collection, we retrieve a rank-ordered list of paragraphs. Paragraphs that correlate highly
with the query are used to identify documents of interest to the query (i.e., those containing potentially
relevant elements). Once such a document is identified, a bottom-up representation of the document tree is
generated. Lnu term weights are generated for the element vectors at each level in the tree. The element
vectors are correlated with the ltu-weighted query vector used for the initial retrieval and a rank-ordered list
of elements is produced.

Before formulating our 2005 experiments, we first experimented with 2004 data (where relevance
judgments were available) by using both extended vector and body-only retrieval and comparing the results
to those produced by corresponding retrievals against an all-element indexing of the collection. Subvector
weighting was also examined. Experiments on the 2004 INEX data set indicated that extended vector
retrieval substantially outperformed body-only retrieval, so our 2005 results are based on extended vector
retrieval using the same subvector weights. Although we participated in a number of the 2005 tasks, our
interest centers on CO processing (with respect to both the Thorough and Focused tasks) and Fetch-and-
Browse. Another interest is how flexible retrieval performs with respect to what may reasonably be
considered an upper bound on performance, i.e., retrieval against the all element index. 2005 results show
that flexible retrieval competes successfully in this respect.

In INEX 2005 we are using, for the first time, a system which retrieves elements dynamically in an
effective manner and returns a rank-ordered list of elements to the user. Experimental results demonstrate
the successful utilization of this approach for structured retrieval.

TopX & XXL at INEX 2005

Martin Theobald, Ralf Schenkel, and Gerhard Weikum

Max-Planck Institute für Informatik, Saarbrücken, Germany
{mtb,schenkel,weikum}@mpi-inf.mpg.de

Abstract. We participated with two different and independent search
engines in this year’s INEX round: The XXL Search Engine and the TopX
engine. As this is the first participation for TopX, this paper focuses on
the design principles, scoring, query evaluation and results of TopX. We
shortly discuss the results with XXL afterwards.

1 TopX – System overview

Our query processing methods are based on precomputed index lists that are
sorted in descending order of appropriately defined scores for individual tag-
term content conditions, and our algorithmic rationale for top-k queries follows
that of the family of threshold algorithms (TA) [2, 4, 5]. In order to find the top-k
matches for multidimensional queries (e.g., with multiple content and structure
conditions), scoring, and ranking them, TopX scans all relevant index lists in
an interleaved manner. In each scan step, when the engine sees the score for a
data item in one list, it combines this score with scores for the same data item
previously seen in other index lists into a global score using a monotonic aggre-
gation function such as weighted summation. We perform in-memory structural
joins for content-and-structure (CAS) queries using pre-/postorder labels be-
tween whole element blocks for each query condition grouped by their document
ids.

1.1 Top-k Query Processing for Semistructured Data

The query processor decomposes the query into content conditions, each of which
refers to exactly one tag-term pair, and into additional elementary tag conditions
(e.g., for navigation of branching path queries), plus the path conditions that
constrain the way how the matches for the tag-term pairs and elementary tag
conditions have to be connected. For NEXI we concentrate on content conditions
that refer to the child-or-descendant axis, i.e., the full-text contents of elements.
This way, each term is connected to its last preceding tag in the location path,
in order to merge each tag-term pair into a single query condition with a cor-
responding list in the precomputed inverted index. Note that sequential reads
are performed for these content-related tag-term-pairs, only, whereas additional
structural query conditions for element paths or branching path queries are per-
formed through a few judiciously scheduled random lookups on a separate, more
compact element table.

The rationale for these distinctions is that random accesses are often one or
two orders of magnitude more expensive than sorted accesses. Note that one in-
dex list (e.g., for a single term) on a large data collection may be very long, in the
order of megabytes (i.e., multiple disk tracks), and the total index size may easily
exceed a terabyte so that only the “hottest” fragments (i.e., prefixes of frequently
needed lists) can be kept in memory. Sorted access benefits from sequential disk
I/O with asynchronous prefetching and high locality in the processor’s cache
hierarchy; so it has much lower amortized costs than random access. Threshold
algorithms with eager random accesses look up the scores for a data item in all
query-relevant index lists, when they first see the data item in one list. Thus,
they can immediately compute the global score of the item, and need to keep
only the current top-k items with their scores in memory. Algorithms with a
focus on sorted access do not eagerly look up all candidates’ global scores and
therefore need to maintain a candidate pool in memory, where each candidate
is a partially evaluated data item d that has been seen in at least one list and
may qualify for the final top-k result based on the following information (we
denote the score of data item d in the i-th index list by s(ti, d), and we assume
for simplicity that the score aggregation is summation):

– the set E(d) of evaluated lists where d has already been seen,
– the worstscore(d) :=

∑
i∈E(d) s(ti, d) based on the known scores s(ti, d), and

– the bestscore(d) := worstscore(d)+
∑

i/∈E(d) highi that d could possibly still
achieve based on worstscore(d) and the upper bounds highi for the scores
in the yet unvisited parts of the index lists.

The algorithm terminates when the worstscore(d) of the rank-k in the current
top-k result, coined min-k, is at least as high as the highest bestscore(d) among
all remaining candidates.

1.2 Periodic Queue Maintenance and Early Candidate Pruning

All intermediate candidates that are of potential relevance for the final top-
k results are collected in a hash structure (the cache) in main memory; this
data structure has the full information about elements, worstscores, bestscores,
etc. In addition, two priority queues merely containing pointers to these cache
entries are maintained in memory and periodically updated. The top-k queue
uses worstscores as priorities to organize the current top-k documents, and the
candidate queue uses bestscores as priorities to maintain the stopping condition
for threshold termination.

Results from [11] show that only a small fraction of the top candidates ac-
tually has to be kept in the candidate queue to provide a proper threshold for
algorithm termination. Since TopX typically stops before having scanned all the
relevant index lists completely, much less candidates than the ones that occur in
the inverted lists for a query have to be kept in the cache. Both queues contain
disjoint subsets of items currently in the cache. If an item’s bestscore(d) drops
below the current min-k threshold, it is dropped from the candidate queue as

well as from the cache. The queue is implemented using a Fibonacci heap, with
efficient amortized lookups and maintenance.

Optionally, TopX also support various tunable probabilistic extensions to
schedule random accesses for testing both content-related and structural query
conditions as well as a probabilistic form of candidate pruning, thus yielding
approximate top-k results with great run time gains compared to the conser-
vative top-k baseline and probabilistic guarantees for the result quality [11].
However, for the current INEX experiments these probabilistic extensions were
not employed, because here the focus is clearly on retrieval robustness rather
than cutting edge performance.

2 Data & Scoring Model

2.1 Full-Content Indexing

We consider a simplified XML data model, where idref/XLink/XPointer links
are disregarded. Thus every document forms a tree of nodes, each with a tag
and a related content. We treat attributes nodes as children of the corresponding
element node. The content of a node is either a text string or it is empty; typically
(but not necessarily) non-leaf nodes have empty content. With each node, we
can additionally associate its full-content which is defined as the concatenation
of the contents of all the node’s descendants. Optionally, we may apply standard
IR techniques such as stemming and stop word removal to those text contents.

Fig. 1. Redundant full-text contents for elements.

This way, we conceptually treat each element as an eligible retrieval unit
(i.e., in the classic IR notion of a document) with its expanded full-content text
nodes as content, with no benchmark-specific tuning or preselection of commonly
retrieved tags or the use of predefined retrieval units being necessary. In the
following we focus on the child-or-descendant axis (i.e., the full-content case) as
the much more important case for XML IR with vague search, thus following
the NEXI specification; the case for the child-axis follows analogously. Figure
1 shows the full-content term frequency (ftf) of the term xml for a fictitious

article element having a value of 3. So the whole article element is definitely
relevant for a query containing the term xml, however it might be less compact
than a more specific section or paragraph which should be taken into account in
the scoring model.

2.2 Content Scores

TopX provides the option to evaluate queries either in conjunctive mode or in
“andish” mode. In the first case, all terms and structural conditions must be met
by a result candidate, but still different matches yield different scores. In the
second case, a node matches a content condition of the form //"t1 t2 . . ." if its
content contains at least one occurrence of at least one of the terms t1, t2, etc.
It matches the full-content condition .//t1 t2 ..." if its full-content contains
at least one occurrence of at least one of the search terms. In the first case, the
significance (e.g., derived from frequencies and element-specific corpus statistics)
of a matched term influences the score and the final ranking, but – similarly to
boolean XPath – documents (or subtrees) that do not contain a specified term
at all or that do not strictly match all structural query conditions are dismissed.

For content scores we make use of element-specific statistics that view the
content or full-content of each element node n with tag A as a bag of words:

1) the term frequency, tf(t, n), of term t in node n, which is the number of
occurrences of t in the content of n;

2) the full-content term frequency, ftf(t, n), of term t in node n, which is the
number of occurrences of t in the full-content of n;

3) the tag frequency, NA, of tag A, which is the number of nodes with tag A in
the entire corpus;

4) the element frequency, efA(t), of term t with regard to tag A, which is the
number of nodes with tag A that contain t in their full-contents in the entire
corpus.

Now consider a content condition of the form A//"t1 . . . tm", where A is a
tag name and t1 through tm are terms that should occur in the full-contents of
a subtree. Our scoring of node n with regard to condition A//"t1 ...tm" uses
formulas of the following type:

score(n, A//”t1 . . . tm”) :=

∑m

i=1
relevancei · specificityi

compactness(n)
,

where relevancei reflects ftf values, specificityi is derived from NA and efA(ti)
values, and compactness(n) considers the subtree or element size for length nor-
malization. Note that specificity is made XML-specific by considering combined
tag-term frequency statistics rather than global term statistics only. It serves
to assign different weights to the individual tag-term pairs which is a common
technique from probabilistic IR.

Tag N Avg(dl) k1 b
article 16,808 2,903 10.5 0.75

sec 96,481 413 10.5 0.75
p 1,022,679 32 10.5 0.75

fig 109,230 13 10.5 0.75

Table 1. Element-specific parameteri-
zation of the extended BM25 model.

An important lesson from text IR
is that the influence of the term fre-
quency and element frequency val-
ues should be sublinearly dampened
to avoid a bias for short elements
with a high term frequency of a few
rare terms. Likewise, the instantiation
of compactness in the above formula
should also use a dampened form of element size. Highly skewed score distribu-
tions would be beneficial for candidate pruning (and fast algorithm termination),
but typically at a high expense in retrieval quality. To address these considera-
tions, we have adopted the popular and empirically usually much superior Okapi
BM25 scoring model (originating in probabilistic IR for text documents [6]) to
our XML setting, leading to the following scoring function:

score(n, A//”t1 . . . tm”) :=
m∑

i=1

(k1 + 1) · ftf(ti, n)

K + ftf(ti, n)
· log

(
NA − efA(ti) + 0.5

efA(ti) + 0.5

)
with

K = k1

(
(1 − b) + b

length(n)

avg{length(n′) | n′ with tag A}

)
.

The BM25 formula provides a dampened influence of the ftf and ef parts, as
well as a compactness normalization that takes the average compactness of each
element type into account. A simple hill-climbing-style parameter optimization
using the 2004 INEX collection and relevance assessments yields a maximum in
the MAP value for k1 being set to 10.5, whereas the b parameter is confirmed to
perform best at the default value of 0.75 provided in the literature. With regard
to individual (element-specific) retrieval robustness, the above formula would
also allow for a more elaborated parameter optimization for individual element
types which was not considered for the current setup.

2.3 Structural Scores

For efficient testing of structural conditions we transitively expand all structural
query dependencies. For example, in the query //A//B//C[.// "t"] an element
with tag C (and content term "t") has to be a descendant of both A and B
elements. Branching path expressions can be expressed analogously. This way,
the query forms a directed acyclic graph (DAG) with tag-term conditions as
leafs, elementary tag conditions as interconnecting nodes between elements of
a CAS query, and all transitively expanded descendant relations as edges. This
transitive expansion of structural constraints is a key for efficient path validation
and allows an incremental testing of path satisfiability. If C in the above example
is not a valid descendant of A, we may safely prune the candidate document from
the priority queue, if its bestscore(d) falls below the current min-k threshold
without ever looking up the B condition.

In non-conjunctive (aka. “andish”) retrieval, a result document (or subtree)
should still satisfy most structural constraints, but we may tolerate that some tag
names or path conditions are not matched. This is useful when queries are posed
without much information about the possible and typical tags and paths or for
vague content and structure (VCAS) search, where the structural constraints
merely provide a hint on how the actual text contents should be connected.
Our scoring model essentially counts the number of structural conditions (or
connected tags) that are still to be satisfied by a result candidate d and assigns
a small and constant score mass c for every condition that is matched. This
structural score mass is combined with the content scores and aggregated with
each candidate’s [worstscore(d), bestscore(d)] interval. In our setup we have
set c = 1, whereas content scores were normalized to [0, 1], i.e., we emphasize
the structural query conditions. Note that it is still important to identify non-
satisfiable structural conditions as early and efficiently as possible, because this
can reduce the bestscore(d) of a result candidate and make it eligible for pruning.

The overall score of a document or subtree for a content-and-structure (CAS)
query is the sum of its content and structural scores. For content-only (CO)
queries, i.e., mere keyword queries, the document score is the sum, over all
terms, of the maximum per-term element scores within the same target element.
If TopX is configured to return entire documents as query results (e.g., for the
CO/S-Fetch&Browse task), the score of a document is the maximal score of any
subgraph matching a target element in the document; if otherwise the result
granularity is set to elements, we may obtain multiple results according to the
differently scored target elements in a document. The internal TopX query pro-
cessor completely abstracts from the original query syntax (NEXI or XPath)
and uses a full-fletched graph traversal to evaluate arbitrary query DAGs. Fur-
thermore, the top-k-style nature of the engine does not require candidates to
be fully evaluated at all query conditions, but merely relies on [worstscore(d),
bestscore(d)] bounds to determine the current top-k results and the min-k thresh-
old for algorithm termination.

3 Database Schema & Indexing

3.1 Schema

Inverted index lists are stored as database tables; Figure 2 shows the corre-
sponding schema definitions with some example data for three tag-term pairs.
The current implementation uses Oracle 10g as a backbone, mainly for easy
maintenance of the required index structures, whereas the actual query process-
ing takes place outside the database exclusively in the TopX query engine, such
that the DBMS itself remains easily exchangeable. Nodes in XML documents are
identified by the combination of document id (did) and preorder (pre). Navi-
gation along all XPath axes is supported by both the pre and post attributes
using the XPath accelerator technique of [3]. Additionally, the level information
may stored to support the child-axis as well, but may be omitted for the NEXI-
style child-or-descendant constraints. The actual index lists are processed by the

top-k algorithm using two B+-tree indexes that are created on this base table:
one index for sorted access support in descending order of the (maxscore, did)
attributes for each tag-term pair and another index for random access support
using (did, tag, term) as key.

3.2 Inverted Block-Index

The base table contains the actual node contents indexed as one row per tag-term
pair per document, together with their local scores (referring either to the simple
content or the full-content scores) and their pre- and postorder numbers. For each
tag-term pair, we also provide the maximum score among all the rows grouped
by tag, term, and document id to extend the previous notion of single-line sorted
accesses to a notion of sorted block-scans. TopX scans each list corresponding to
the key (tag, term) in descending order of (maxscore, did, score). Each sequential
block scan prefetches all tag-term pairs for the same document id in one shot
and keeps them in memory for further processing which we refer to as sorted
block-scans. Random accesses to content-related scores for a given document,
tag, and term are performed through small range scans on the respective B+

tree index using the triplet (did, tag, term) as key. Note that grouping tag-
term pairs by their document ids keeps the range of the pre-/postorder-based
in-memory structural joins small and efficient. All scores in the database tables
are precomputed when the index tables are built.

Fig. 2. Inverted block-index with precomputed full-content scores over tag-term pairs.

For search conditions of the form A[.//"t1 t2"] using the child-or-descendants
axis, we refer to the full-contents scores, based on ftf(t1, A) and ftf(t2, A) values
of entire document subtrees; these are read off the precomputed base tables in a
single efficient sequential disk fetch for each document until the min-k threshold
condition is reached and the algorithm terminates. We fully precompute and ma-
terialize this inverted block index to efficiently support the child-or-descendant
axis. With this specialized setup, parsing and indexing times for the INEX collec-
tion are about 80 minutes on an average server machine including the modified
BM25 scoring model and the materialization of the inverted block-index view.

We propagate, for every term t that occurs in a node n with tag A, its local
tf value “upwards” to all ancestors of n and compute the ftf values of these
nodes for t. Obviously, this may create a redundancy factor that can be as high
as the length of the path from n to the root. The redundant full-content indexing
introduces a factor of redundancy for the textual contents that approximately

corresponds to the average nesting depth of text nodes of documents in the
corpus; it is our intention to trade off a moderate increase in inexpensive disk
space (factor of 4-5 for INEX) for faster query response times. Note that by
using tag-term pairs for the inverted index lookups, we immediately benefit
from more selective, combined tag-term features and shorter index lists for the
actual textual contents, whereas the hypothetical combinatorial bound of #tags·
#terms rows is by far not reached.

3.3 Navigational Index

To efficiently process more complex queries, where not all content-related query
conditions can be directly connected to a single preceding tag, we need an ad-
ditional element-only directory to test the structural matches for tag sequences
or branching path queries.

Fig. 3. Naviga-
tional index for
branching path
queries.

Lookups to this additional, more compact and non-
redundant navigational index yield the basis for the struc-
tural scores that a candidate may achieve for each matched
tag-only condition in addition to the BM25-based con-
tent scores. As an illustration of the query processing,
consider the example twig query //A[.//B[.//"b"] and
.//C[.//"c"]]. A candidate that contains valid matches
for the two extracted tag-term pairs B:b and C:c fetched
through a series of block-scans on the inverted lists for B:b
and C:c, may only obtain an additional static score mass
c, if there is a common A ancestor that satisfies both the
content-related conditions based on their already known
pre-/postorder labels. Since all structural conditions are defined to yield this
static score mass c, the navigational index is exclusively accessed through ran-
dom lookups by an additional B+ tree on this table. [10] provides different ap-
proaches to judiciously schedule these random accesses for the most promising
candidates according to their already known content-related scores.

3.4 Random Access Scheduling

The rationale of TopX is to postpone expensive random accesses as much as
possible and perform them only for the best top-k candidates. However, it can be
beneficial to test path conditions earlier, namely, in order to eliminate candidates
that might not satisfy the structural query conditions but have high worstscores
from their textual contents. Moreover, in the query model where a violated path
condition leads to a score penalty, positively testing a path condition increases
the worstscore(d) of a candidate, thus potentially improving the min-k threshold
and leading to increased pruning subsequently. In TopX we consider random
accesses at specific points only, namely, whenever the priority queue is rebuilt.
At this point, we consider each candidate and decide whether we should make
random accesses to test unresolved path conditions, or look up missing scores for

content conditions. For this scheduling decision, we have developed two different
strategies.

The first strategy, coined MinProbe, aims at a minimum number of random
accesses by probing structural conditions for the most promising candidates,
only. Since we do not perform any sorted scans for elementary tag conditions, we
treat structural conditions as expensive predicates in the sense of [1]. We schedule
random accesses only for those candidates d whose worstscore(d)+oj ·c > min-k,
where oj is the number of untested structural query conditions for d and c is a
static score mass that d earns with every satisfied structural condition.

This way, we schedule a whole batch of random lookups, if d has a sufficiently
high worstscore(d) to get promoted to the top-k when the structural conditions
can be satisfied as well. If otherwise bestscore(d) already drops below the current
min-k threshold after a random lookup, we may safely prune the candidate from
the queue. More sophisticated approaches may employ an analytic cost model,
coined the BenProbe strategy in [10], in order to determine whether it is cost
beneficial to explicitly lookup a candidate’s remaining score in the structural
and content-related query conditions.

4 Expensive Text Predicates

The use of auxiliary query hints in the form of expensive text predicates such as
phrases (“”), mandatory terms (+), and negation (-) can significantly improve the
retrieval results of an IR system. The challenge for a top-k based query processor
lies in the efficient implementation of these additional query constraints and their
adaptation into the sorted vs. random access scheduling paradigm.

4.1 Negation

The semantics of negations in a non-conjunctive, i.e. “andish”, query processor is
not quite trivial. To cite the authors of the NEXI specification, “a user would be
surprised if she encountered the negated term among the retrieval results”. This
leaves some space for interpretation and most commonly leads to the conclusion
that the negated term should not occur in any of the top-ranked results; yet
we do not want to eliminate all elements containing one of the negated terms
completely, if they also contain good matches to other content-related query
conditions, and we would run into the danger of loosing substantial amount of
recall. Therefore the scoring of negated terms is defined to be independent of the
term’s actual content score. Similarly to the structural query constraints intro-
duced in the previous section, an element merely accumulates some additional
static score mass if it does not match the negated term. This quickly leads us
back to the notion of expensive predicates and the minimal probing approach. A
random lookup onto this element’s tag-term offsets is scheduled, if the document
gets promoted into the top-k results after a successful negation test, i.e., if it does
not contain the negated term among its full-content text nodes and obtains the
static score for the unmatched negation. In the current setup, this static score

mass was set to the same value c = 1 that was provided for structural query
constraints.

4.2 Mandatory Terms

In contrast to term negations, the scores for mandatory query terms should still
reflect the relevance of the term for a given element, i.e., our precomputed BM25-
based content scores. Yet a too strict boolean interpretation of the +-operator
would make us run into the danger of loosing recall at the lower ranks. We
therefore introduce boosting factors and a slightly modified score aggregation
of the form score(n, A//”t1 . . . tm”) =

∑m
i=1 βi + s(ti, A), where s(ti, A) is the

original content score, and βi is set to 1 if the term is marked as mandatory (+)
and 0 otherwise. Note that these βi are constants at query evaluation time, and
since the modified scores are taken into account for both the worstscore(d) and
bestscore(d) bounds of all candidates, the boosting factors “naturally” enforce
deeper sequential scans on the inverted index lists for the mandatory query con-
ditions, typically until the final top-ranked results are discovered in those lists.
Still weak matches for the remaining non-boosted query conditions may be com-
pensated by a result candidate through high-scored matches in the mandatory
query conditions.

4.3 Phrases & Phrase Negations

For phrase matching we store all term offsets in an auxiliary database table to-
gether with the pre-/postorder labels of each term’s occurrence in a document.
Again, phrases are interpreted as expensive predicates and tested by random
accesses to the offset table using the minimal probing approach already de-
scribed for the MinProbe scheduling. The only difference now is to determine
whether a candidate element may aggregate the content-related score mass for
the phrase-related conditions into it’s overall worstscore(d) that is then used to
determine its position in the top-k results. In order to keep these score aggrega-
tions monotonous in the precomputed content scores, phrase lookups are treated
as binary filters, only. Similarly to the single-term negations, phrase negations
are defined to yield a static score mass c for each candidate element that does not
contain the negated phrase. Single-term occurrences of the negated phrase terms
are allowed, though, and do not contribute to the final element score unless they
are also contained in the remaining query.

5 Experimental Results for TopX

5.1 CO-Thorough

For the CO-Thorough task, TopX ranks at position 22 for the nxCG@10 metric
using a strict quantization with a value of 0.0379 and only at rank 37 of 55
submitted runs for MAP with a value of just 0.0008. As for all runs, we used the

modified BM25 scoring model described above and also expensive text predicates
to leverage phrases, negations, and mandatory terms. The very modest rank in
the sensitive CO task attests that there is still some space for optimizations in
our scoring model left for CO queries, when there is no explicit target element
specified by the query (“//*”). Yet there was neither any restriction given on the
result overlaps or granularities nor on the expected specificity or exhaustiveness
of special element types such as sections or paragraphs, such that the engine was
allowed to return any type of element (also list items or even whole articles) ac-
cording to their aggregated content scores. An additional simple postprocessing
step based on the element granularities and overlap removal would already be
expected to achieve great performance gains here. However, for the old preci-
sion/recall metrics using INEX-eval with a strict quantization (INEX ’04), the
TopX run ranks at a significantly better position of rank 3 with an average pre-
cision of 0.058 (MAP), which actually corresponds to the particular metric and
setup for which we had been tuning the system.

 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1

nX
C

G

rank%

INEX 2005: Results’ Summary
metric: nxCG,quantization: strict

task: CO.Thorough

Fig. 4. nxCG results for the TopX CO-Thorough run

5.2 COS-Fetch&Browse

The situation improves for the COS-Fetch&Browse task where the TopX run
ranks at position 4 out of 19 with a value of 0.0601 in the ep-gr metric with strict
quantization. TopX was configured to first rank the result documents according
to their highest-ranked target element and then return all target elements within
the same result document with the same score according to a strict interpretation
of the target element given by the query which exactly matches our full-content
scoring model. Here the strict – XPath-like – interpretation of the query target
element in combination with our full-content scoring model that treats each
target element itself as a mini-document shows its benefits and naturally avoids

overlap, since we return exactly the element type that is specified in the query
and therefore seem to match the result granularity expected by a human user
better.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict

task: COS.FetchBrowse

Fig. 5. ep-gr results for the TopX COS-Fetch&Browse run

5.3 SSCAS

Finally, the SSCAS task perfectly matches our strict interpretation of the target
element with the precomputed full-content scores and no overlap allowed. The
two submitted TopX runs rank at position 1 and 2 out of 25 submitted runs
for the strict nxCG@10 metric with a value of 0.45 for both runs and still rank
at position 1 and 6 for MAP with values of 0.0322 and 0.0272, respectively. Al-
though this strict evaluation might be less challenging from an IR point-of-view,
this task offers most opportunities to improve the efficiency of a structure-aware
retrieval system, because the strict notion of all structural query components like
target and support elements drastically reduces the amount of result candidates
per document and, hence, across the corpus. Clever precomputation of the main
query building blocks, namely tag-term pairs with their full-content scores, and
index structures for efficient sorted and random access on whole element blocks
grouped by document ids allows for decent run times of a true graph-based query
engine that lies in the order of efficient text IR systems. Here TopX can greatly
accelerate query run times and achieve interactive response times at a remark-
able result quality. Similar experiments provided in [10] yield average response
times for typical INEX (CO and CAS) queries in between 0.1 and 0.7 seconds for
the top 10-20 and still an average run time of about 20 seconds for the top 1,500
results as demanded by INEX (which is of course not exactly nice to handle for
a top-k engine).

 0

 0.2

 0.4

 0.6

 0 0.5 1

nX
C

G

rank%

INEX 2005: Results’ Summary
metric: nxCG,quantization: strict

task: SSCAS

 0

 0.07

 0.14

 0.21

 0.28

 0.35

 0 0.5 1

ef
fo

rt
-p

re
ci

si
on

gain-recall

INEX 2005: Results’ Summary
metric: ep-gr,quantization: strict

task: SSCAS

Fig. 6. TopX SSCAS runs

6 Experiments with XXL

The XXL Search Engine [7–9] was among the first XML search engines that
supported content-and-structure queries with an IR-like scoring for content con-
ditions. Focussing on aspects of semantic similarity conditions for tags and con-
tents using ontologies, it applies an out-of-the-box text retrieval engine, namely
Oracle’s text engine, to evaluate content subqueries. Details of its architecture
can be found in [8].

6.1 CO-Thorough

The CO.Thorough run basically represents the performance of the underlying
text search engine. XXL automatically converted CO topics into corresponding
Oracle text queries, using conjunctive combination of terms, enabling phrases,
and applying some other simple heuristics that gave reasonable results with
INEX 2003 and 2004. Surprisingly, this year’s performance was not really con-
vincing, with a rank 39 of 55 with inex_eval and the strict quantization (MAP
0.016), with similar results for the other metrics.

6.2 SSCAS

The results for the SSCAS run, where XXL has a higher influence on the outcome
than with keyword-only topics, were much better. XXL is almost consistently
among the top 10 for nxcg with the generalized quantization, with a peak rank
of 2 for nxCG@25, and only slightly worse for strict quantization. For inex_eval,
we achieved rank 11 with a MAP of 0.075. XXL has been especially built for
this kind of strict structural match. The results are even better when taking the
poor performance of the content-only run into account.

6.3 SVCAS and VVCAS

For the SSCAS run, XXL was configured to return a result only if it had a
corresponding match (i.e., an element) for each subcondition of the query. For
the SVCAS run, we relaxed this requirement and allowed results as soon as
they had a match for the target subcondition, i.e., the subcondition whose re-
sult is returned as result of the query. This simple, ’andish’-like evaluation did
surprisingly well, with top-10 ranks in several metrics.

For the VVCAS run, we additionally changed the tag of the target subcon-
dition to the wildcard ’*’, accepting any element as result as long as it matches
the associated content condition. However, this kind of relaxation turned out to
be too coarse, so the results were quite poor with all metrics.

References

1. K.-C. Chang and S.-W. Hwang. Minimal probing: supporting expensive predicates
for top-k queries. In SIGMOD 2002, pages 346–357, 2002.

2. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci., 66(4):614–656, 2003.

3. T. Grust. Accelerating XPath location steps. In SIGMOD 2002, pages 109–120,
2002.

4. U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for
image databases. In VLDB 2000, pages 419–428, 2000.

5. S. Nepal and M. V. Ramakrishna. Query processing issues in image (multimedia)
databases. In ICDE 1999, pages 22–29, 1999.

6. S. E. Robertson and S. Walker. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In SIGIR, pages 232–241, 1994.

7. R. Schenkel, A. Theobald, and G. Weikum. XXL @ INEX 2003. In INEX 2003
Workshop Proceedings, pages 59–68, 2004.

8. R. Schenkel, A. Theobald, and G. Weikum. Semantic similarity search on
semistructured data with the XXL search engine. Information Retrieval, 8(4):521–
545, December 2005.

9. A. Theobald and G. Weikum. Adding Relevance to XML. In WebDB 2000, pages
105–124, 2000.

10. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine
for TopX search. In VLDB 2005, pages 625–636, 2005.

11. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with proba-
bilistic guarantees. In VLDB 2004, pages 648–659, 2004.

When a few highly relevant answers are enough

Miro Lehtonen1

Department of Computer Science
P.O.Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

Miro.Lehtonen@cs.Helsinki.FI

Abstract. Our XML retrieval system EXTIRP was slightly modified
from the 2004 version for the INEX 2005 project. For the first time, the
system is now completely independent of the document type of the XML
documents in the collection, which justifies the use of the term “het-
erogeneous” when describing our methodology. Nevertheless, the 2005
version of EXTIRP is still an incomplete system that does not include
query expansion or dynamic determination of the answer size. The latter
is seen as a serious limitation because of the XCG-based metrics which
favour systems that can adjust the size of the answer according to its
relevance to the query. We put our main focus on the CO.Focussed task
of the adhoc track although runs were submitted for other tasks, as well.
Perhaps because of the incompleteness of our system, the initial results
bring out the characteristics of our system better than in earlier years.
Even when partially stripped, EXTIRP is capable of ranking the most
obvious highly relevant answers at the top ranks better than many other
systems. The relatively high precision at the top ranks is achieved at the
cost of losing the sight of the marginally relevant content, which shows
in some exceptionally steep curves, and the rankings among other sys-
tems that sink from the top ranks at low recall levels towards the bottom
ranks at higher levels of recall. Another fact supporting our observation
is that regardless of the metric, our runs are ranked higher with the strict
quantisation than with any other quantisation function.

1 Introduction

The XML retrieval system at the University of Helsinki — EXTIRP — is com-
pletely independent of the XML document types as of 2005. In practice, the
information coded in element names is ignored, which in turn lets us keep the
doors open for collections of heterogeneous XML documents. The choice of ig-
noring the names of document structures also implies that our system specialises
in the Content-Only type queries where only the content of the result elements
has any significance.

2 Background

Before building two indices — one for words, one for phrases — EXTIRP divides
the document collection into disjoint fragments. The root elements of the indexed
fragments are chosen with an algorithm for full-text fragment detection which will
be presented later in this paper in more detail. The disjoint fragments are then
naturally treated as traditional documents which are independent of each other.
The pros include that the traditional methods for information retrieval apply,
so we use the vector space model with a weighting scheme based on the tfidf.
The biggest of the cons is that the size of the indexed fragments is static, and
if bigger or smaller answers are more appropriate for some query, the fragments
have to be either divided further or combined into bigger fragments. Because
of the previous challenges with fragment combination, we have left it for future
research, and for now, the size of the answers that EXTIRP returns is determined
when the fragments are chosen for indexing instead of dynamically adjusting the
size according how relevant the fragment is to a query.

3 Detection of full-text fragments

4 Results

5 Conclusion

RMIT University at INEX 2005

Jovan Pehcevski, James A. Thom, and S. M. M. Tahaghoghi

School of CS and IT, RMIT University, Melbourne, Australia
{jovanp, jat, saied}@cs.rmit.edu.au

Abstract. Different scenarios of XML retrieval are analysed in INEX
2005, which reflect the different query interpretations and system be-
haviours that may be observed in the XML retrieval task. In this paper
we report on the participation of the RMIT group in the INEX 2005
ad hoc track, where we design runs that investigate these XML retrieval
scenarios. Our runs follow a hybrid XML retrieval approach that com-
bines three information retrieval models with two ways of identifying
the appropriate element granularity and two XML-specific heuristics to
rank the final answers. We observe different behaviours when applying
our hybrid approach to the different retrieval scenarios, suggesting that
the optimal retrieval parameters are highly dependent on the nature of
the XML retrieval task. Importantly, we show that using structural hints
in content only topics is a useful feature which leads to a more precise
search, irrespective of the XML retrieval scenario used.

1 Introduction

Most of the research activities in INEX 2005 focus on providing a detailed analy-
sis of wide variety of aspects surrounding the XML retrieval task. There are seven
tracks at INEX 2005, each exploring different applications of XML retrieval. Our
group is actively involved in four of these tracks (ad hoc, interactive, multime-
dia [2], and heterogeneous), and we also contribute with additional activities
related to the INEX evaluation methodology [9]. In this paper, we concentrate
on the ad hoc track.

Two types of topics (queries) are explored in the ad hoc track: Content Only
+ Structure (CO+S) and Content And Structure (CAS). A CO+S topic is a request
that typically ignores the document structure by only specifying plain query
terms. However, there may be cases where adding structural hints to the query
could result in a more precise search. Some INEX 2005 CO+S topics therefore
express the same information need by either ignoring or including the structural
hints (we call these +S topics). Figure 1 shows a snippet of the INEX 2005
+S topic 203 that was proposed by our group, where two topic fields – title

and castitle – are used to represent the two possibilities. On the other hand,
a CAS topic is a request that contains references to the document structure and
explicitly specifies the type of the returned answer elements (the target element)
and the structural constraints on the contained elements of the search context
(the support elements).

<inex_topic topic_id="203" query_type="CO+S" ct_no="5">

<title> code signing verification </title>

<castitle> //sec[about(., code signing verification)] </castitle>

<description> Find documents or document components, most probably sections,

that describe the approach of code signing and verification. </description>

<narrative> I am working in a company that authenticates a wide range of web

database applications from different software vendors. [...] </narrative>

</inex_topic>

Fig. 1. A snippet of the INEX 2005 CO+S topic 203.

In accordance to the above topic types, three sub-tasks have been estab-
lished within the INEX 2005 ad hoc track, and different retrieval strategies are
explored in each sub-task. These are the CO, the +S, and the CAS sub-task (we
denote the first two as CO+S), reflecting the three types of topics used. Three
retrieval strategies are explored in the CO+S sub-task: Focused, Thorough, and
FetchBrowse, which reflect different aspects of the XML retrieval task. On the
other hand, four retrieval strategies are explored in the CAS sub-task: VV, VS, SV,
and SS, which correspond to the way the structural constraints in the target and
the support elements are interpreted [8].

The system we use in the INEX 2005 ad hoc track follows a hybrid XML
retrieval approach, combining information retrieval features from Zettair1 (a full-
text search engine) with XML-specific retrieval features from eXist2 (a native
XML database). The hybrid approach can be seen as a “fetch and browse” [1]
XML retrieval approach, since full articles estimated as likely to be relevant to a
query are first retrieved by Zettair (the fetch phase), and then the most specific
elements within these articles are extracted by eXist (the browse phase) [10].

To calculate the similarity score of an article to a query (represented by
terms that appear in the title part of an INEX topic), a similarity measure
– typically based on a theoretical model of information retrieval – is used by
Zettair. Three similarity measures are currently implemented, each based on one
of the following three information retrieval models: the vector-space model, the
probabilistic model, and the language model. For the fetch phase of our hybrid
system, we investigate which information retrieval model yields best effectiveness
for full article retrieval.

To identify and rank the appropriate granularity of elements to return as
answers, we use a retrieval module that utilises the structural information in
the eXist list of extracted elements. Our retrieval module presents what we call
Coherent Retrieval Elements (CREs) as final answers. For the browse phase of
our hybrid system, we investigate which combining choice – among the two ways

1 http://www.seg.rmit.edu.au/zettair/
2 http://exist-db.org/

for identifying CREs and the two XML-specific heuristics for ranking the CREs
– yields best effectiveness for element retrieval.

The remainder of this paper is organised as follows. In Section 2 we provide
an explanation of the hybrid XML retrieval approach used by our INEX ad hoc
runs; in particular, we describe the three information retrieval models used by
Zettair to rank the whole documents, and the various XML-specific algorithms
used by our hybrid system to identify the appropriate level of element granularity
and to rank the final answers. A detailed description of the runs we use for the
CO+S and the CAS sub-tasks is provided in Section 3. In Section 4, we present
results of our runs for each retrieval strategy in the two ad hoc sub-tasks, by
evaluating their retrieval effectiveness with using the official INEX 2005 metrics.
We conclude in Section 5 with a brief discussion of our findings.

2 Hybrid XML Retrieval

In this section, we present a brief description of the three information retrieval
models implemented in Zettair, the two algorithms for identifying the CREs,
and the two heuristics for ranking the CREs, all of which are used by our hybrid
system.

2.1 Information Retrieval Models

Many similarity measures for document retrieval have been proposed, and almost
all follow one of the three major information retrieval models: the vector-space

model, the probabilistic model and the language model. In this section, we de-
scribe the three similarity measures that are currently used in Zettair, which
respectively implement each of these three retrieval models.

Term statistics for ranked retrieval The similarity of a document to a query,
denoted as Sq,d, indicates how closely the content of the document matches that
of the query. To calculate the query-document similarity, statistical information
about the distribution of the query terms – within both the document and the
collection as a whole – is often necessary. These term statistics are then subse-
quently utilised by the similarity measure. Following the notation and definitions
of Zobel and Moffat [13], we define the basic term statistics as:

– q, a query;
– t, a query term;
– d, a document;
– ND, the number of all the documents in the collection;
– For each term t:

• fd,t, the frequency of t in the document d;
• NDt

, the number of documents containing the term t (irrespective of the
term frequency in each document); and

• fq,t, the frequency of t in query q.

– For each document d:

• fd = |d|, the document length approximation (sum of all the term fre-
quencies in d).

– For the query q:

• fq = |q|, the query length.

We also denote the following sets:

– D, the set of all the documents in the collection;
– Dt, the set of documents containing term t;
– T , the set of distinct terms in the collection;
– Td, the set of distinct terms in the document d;
– Tq , the set of distinct terms in the query, and Tq,d = Tq ∩ Td.

Vector-space model In the vector-space model, both the document and the
query are representations of n-dimensional vectors, where n is the number of
distinct terms observed in the document collection. The best-known technique
for computing similarity under the vector-space model is the cosine measure,
where the similarity between a document and the query is computed as the
cosine of the angle between their vectors.

Zettair uses pivoted cosine document length normalisation [11] to compute
the query-document similarity under the vector-space model (we call it PCosine).
The formulation is described as follows.

Sq,d =
1

WD × Wq

×
∑

t∈Tq,d

(1 + loge fd,t) × loge

(

1 +
ND

NDt

)

where WD =
(

(1.0 − s) + s × Wd

WAL

)

represents the pivoted document length

normalisation, and Wq =

√

∑

t∈Tq

[

loge

(

1 + ND
NDt

)]2

is the query length rep-

resentation. The parameter s represents the slope (we use the value of 0.25),
whereas Wd and WAL represent the document length (usually taken as fd) and
the average document length (over all documents in D), respectively.

Probabilistic model Probabilistic models of information retrieval are based
on the principle that documents should be ranked according to the decreasing
probability of their relevance to the user information need. Zettair uses the Okapi
BM25 probabilistic model developed by Sparck Jones, Walker, and Robertson [4],
which has proved highly successful in a wide range of experiments (we call it
Okapi). The formulation is described as follows.

Sq,d =
∑

t∈Tq,d

wt ×
(k1 + 1) fd,t

K + fd,t

×
(k3 + 1) fq,t

k3 + fq,t

Article Matching element

co/2000/r7108 /article[1]/bdy[1]/sec[1]/ip1[1]
co/2000/r7108 /article[1]/bdy[1]/sec[1]/p[1]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/st[1]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[2]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[3]
co/2000/r7108 /article[1]/bdy[1]/sec[2]/p[4]
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1]
co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[2]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[3]
co/2000/r7108 /article[1]/bm[1]/app[1]/p[4]

Table 1. eXist list of matching elements for INEX 2005 CO topic 203 and article
co/2000/r7108. The elements in the list are generated by using an eXist OR query.

where wt = loge

(

ND−NDt
+0.5

NDt
+0.5

)

is a representation of inverse document fre-

quency, K = k1 ×
[

(1 − b) + b·Wd

WAL

]

, and k1, b and k3 are constants, in the range

1.2 to 1.5 (we use 1.2), 0.6 to 0.75 (we use 0.75), and 1000 (effectively infi-
nite), respectively. Wd and WAL represent the document length and the average
document length.

Language model Language models are probability distributions that aim to
capture the statistical regularities of natural language use. In information re-
trieval, language modelling involves estimating the likelihood that both the doc-
ument and the query could have been generated by the same language model.
Zettair uses a query likelihood approach with Dirichlet smoothing [12] (we call
it Dirichlet). The formulation is described as follows.

Sq,d = fq × log λd +
∑

t∈Tq,d

log

(

ND × fd,t

µ × NDt

+ 1

)

where µ is a smoothing parameter (we use the value of 1000), and λd = µ/ (µ + fd).

2.2 Identifying the appropriate element granularity

For each INEX topic (CO, +S, or CAS), a topic translation module is first used
to automatically translate the underlying information need into a Zettair query.
Terms that appear in the title part of the topic (with all structural query
constraints completely removed) are used to formulate the Zettair query. A list
of (up to) 500 article elements – presented in a descending order according to
their estimated likelihood of relevance – is then returned as a resulting answer
list for the INEX topic3.

3 We retrieve (up to) 500 rather than 1500 articles because roughly that number of
articles is used to generate the pool of retrieved articles for relevance judgements.

bdy[1]

sec[1]

ip1[1] p[1] p[3] p[4]st[1] p[2]

sec[6]

ip1[1]p[1]

Matching elements

nCRE elements

bm[1]

article[1]

p[2] p[3] p[4]

app[1]

oCRE elements

sec[4]sec[2]

Fig. 2. Identifying appropriate element granularity: Matching, oCRE, and nCRE elements
for INEX 2005 topic 203 and article co/2000/r7108.

To retrieve elements rather than full articles, a second topic translation mod-
ule is used to formulate the eXist query. Depending on the topic type, either
terms only, or both terms and structural query constraints from the INEX topic
are used to formulate the eXist query. We use the OR eXist query operator to
generate the element answer list for a given topic. The answer list contains (up
to) 1500 matching elements, which are taken from articles that appear highest

in the ranked list of articles previously returned by Zettair.

Consider the eXist answer list example shown in Table 1. The list shows
matching elements for the INEX 2005 CO topic 203 after the OR eXist query
operator is used (which means that each matching element in the list contains one

or more query terms). The matching elements in the eXist answer list represent
most specific (leaf) elements, and eXist correctly presents these elements in
document order.

To effectively utilise the information contained in the resulting list of match-
ing elements, we use a retrieval module capable of identifying the appropriate
granularity of elements to return as answers. We call these answer elements as
Coherent Retrieval Elements (CREs) [10]. To identify the CREs, our module
first sequentially processes the list of matching elements, starting from the first
element down to the last. For each pair of matching elements, their most specific

ancestor is chosen to represent an answer element (a CRE). We denote these
answer elements as oCRE elements.

The rationale behind choosing only oCRE elements as answers stems from
the expectation that these elements are likely to provide better context for the
contained textual information than that provided by each of their descendent
leaf elements. However, different topics typically express information needs that
are quite diverse in nature, resulting in relevant answers that often represent
very specific elements [3, 10]. Therefore, the problem of only presenting the oCRE
elements as answers is that in most cases the matching (and thus very specific)

elements are not included in the final answer list. To cater for this, our retrieval
module supports a second, alternative algorithm for identifying the CREs. The
difference from the original oCRE algorithm is that, after sequentially processing
all the pairs of matching elements, those matching elements whose immediate

parents are not identified as CREs are also included in the final list of answers.
The rationale behind this choice is that we expect these newly included matching
elements to allow for more focused retrieval. We denote these answer elements
as nCRE elements.

When the eXist list of matching elements contains only one element, both
the oCRE and nCRE algorithms produce the same result: the matching element.
In this case there is no supporting evidence for the ancestors of the matching
element to be identified as CREs.

Figure 2 shows a tree representation of the eXist list of matching elements
previously shown in Table 1. The matching elements appear within the triangle
boxes, the oCRE elements appear within the solid square boxes, while the nCRE

elements appear within dashed square boxes. The figure also shows elements
that are neither matching elements nor CREs.

Once the CREs are identified, we still need to find a way to rank and present
them according to their estimated likelihood of relevance. Next, we describe a
range of heuristics used by our retrieval module to rank the resulting list of
CREs.

2.3 Ranking the answer elements

To determine the ranks of CREs in the final answer list, our module uses a
combination of the following XML-specific heuristics:

1. The number of distinct query terms that appear in a CRE — more distinct
query term appearances (T) or less distinct query term appearances (t);

2. The length of the absolute path of the CRE, taken from the root element —
longer path (P) or shorter path (p); and

3. The frequency of all the query terms in a CRE — more frequent (F) or less
frequent (f).

There are eight distinct heuristic combinations (such as TPF or TpF) that
can be explored in order to determine the final rank of a CRE, provided the
ordering of the heuristics is preserved as above. However, we also expect that
a reordering of the above heuristics could influence different CRE rankings. We
therefore analyse all possible CRE heuristic combinations (16 in total, since we
take the third heuristic as complementary to the other two and therefore always
apply at the end). Preliminary experiments using the INEX 2004 test collection
showed that two heuristic combinations – TPF and PTF – perform better than the
others in a case where more specific elements are target of retrieval (the nCRE

algorithm was used by the retrieval module to identify the CREs).
The two heuristic combinations can be interpreted as follows. With TPF,

first the CREs are sorted in a descending order according to the number of

Article nCRE answer element T-matches P-length F-frequency

co/2000/r7108 /article[1]/bdy[1]/sec[2] 3 3 9
co/2000/r7108 /article[1]/bdy[1] 3 2 31
co/2000/r7108 /article[1] 3 1 39
co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 2 4 2
co/2000/r7108 /article[1]/bm[1]/app[1] 2 3 8
co/2000/r7108 /article[1]/bdy[1]/sec[1] 2 3 5
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 1 4 2
Table 2. Ranked list of nCRE elements using the TPF heuristic combination for article
co/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

distinct query terms a CRE contains (the more distinct query terms it contains,
the higher its rank). Next, if two CREs contain the same number of distinct
query terms, the one with the longer length of its absolute path is ranked higher
(which ensures that more specific elements are preferred over less specific ones).
Last, if the lengths of the two absolute paths are the same, the CRE with more
frequent query term appearances is ranked higher than the CRE where query
terms appear less frequently. For example, after applying the TPF heuristic on
the nCRE answer elements shown in Figure 2, we produce the final ranked list of
CREs as shown in Table 2.

The table shows that when TPF heuristic is used, less specific and more general
CREs tend to be preferred over more specific and less general CREs. However,
we expect other heuristic combinations to be more suitable for different XML
retrieval tasks. For example, to produce more specific and less general CREs
early in the ranking, we could easily switch the heuristic combination and use
PTF instead. With PTF, the CREs are first sorted in a descending order according
to the length of the absolute path of a CRE (where the longer CRE path results
in a higher rank). Next, if the lengths of the two absolute paths are the same, the
CRE that contains more number of distinct query terms is ranked higher. Last,
if it also happens that the two CREs contain same number of distinct query
terms, the CRE with more frequent query term appearances is ranked higher.

Preliminary experiments using the INEX 2004 test collection have shown that
the system performance quickly degrades when using the PTF ranking heuristic,
merely because a large number of highly ranked elements typically contain only
one query term. We therefore use a modification of this heuristic in our retrieval
module, which ensures that all the CREs that contain exactly one query term
are moved at the end of the ranked list (where ties are broken by the F heuristic).
We denote this modified heuristic combination as PTF2.

The final ranked list of answers when the PTF2 heuristic combination is used
on the nCRE answer elements is shown in Table 3.

Article nCRE answer element P-length T-matches F-frequency

co/2000/r7108 /article[1]/bdy[1]/sec[6]/ip1[1] 4 2 2
co/2000/r7108 /article[1]/bdy[1]/sec[2] 3 3 9
co/2000/r7108 /article[1]/bm[1]/app[1] 3 2 8
co/2000/r7108 /article[1]/bdy[1]/sec[1] 3 2 5
co/2000/r7108 /article[1]/bdy[1] 2 3 31
co/2000/r7108 /article[1] 1 3 39
co/2000/r7108 /article[1]/bdy[1]/sec[4]/p[1] 4 1 2
Table 3. Ranked list of nCRE elements using the PTF2 heuristic combination for article
co/2000/r7108. The query used is “code signing verification”, which represents the
title part of the INEX 2005 topic 203.

3 Runs description

The following sections provide a detailed description of our runs for each retrieval
strategy in both (CO+S and CAS) sub-tasks.

3.1 CO+S sub-task

We submitted six runs for each of the Thorough, Focused, and FetchBrowse

retrieval strategies, resulting in 18 runs in total for the CO+S sub-task. All the
runs in Thorough and Focused strategies use the Okapi BM25 similarity measure
in Zettair to generate the initial list of ranked articles. Next, we provide a detailed
explanation of our runs for each of the three CO+S retrieval strategies.

Thorough retrieval strategy

– nCRE-PTF2 and nCRE-S-PTF2 – using the hybrid system with nCRE answer
elements and the PTF2 ranking heuristic in the retrieval module. For each
+S topic, the structural query constraints are either completely removed
(nCRE-PTF2) or strictly followed (nCRE-S-PTF2).

– oCRE-PTF2 and oCRE-S-PTF2 – same as with the two previous runs, except
that oCRE answer elements are used by the hybrid system.

– nCRE-TPF and nCRE-S-TPF – using the hybrid system with nCRE answer ele-
ments and the TPF ranking heuristic in the retrieval module. The structural
query constraints in each +S topic are either completely removed (nCRE-TPF)
or strictly followed (nCRE-S-TPF).

Our goals with the Thorough retrieval strategy are threefold. First, we aim to
explore which choice of identifying answer elements (oCRE or nCRE) yields best
performance for the hybrid system. Second, for a particular choice of answer
elements, we also aim to investigate the impact of the two ranking heuristics
(PTF2 and TPF) on the system performance. Last, for a particular choice of
answer elements and ranking heuristic, we aim to investigate the usefulness of
retaining the structural constraints in the +S topics.

Focused retrieval strategy

– nCRE-PTF2-NO and nCRE-S-PTF2-NO – using the hybrid system with nCRE

answer elements and the PTF2 ranking heuristic, with overlap among the an-
swer elements completely removed (using the top-down filtering approach).
As in the Thorough strategy, the structural query constraints in each +S

topic are either completely removed (nCRE-PTF2-NO) or strictly followed
(nCRE-S-PTF2-NO).

– oCRE-PTF2-NO and oCRE-S-PTF2-NO – same as with the two previous non-
overlapping runs, except that oCRE answer elements are used by the hybrid
system.

– nCRE-TPF-NO and nCRE-S-TPF-NO – using the hybrid system with nCRE an-
swer elements and the TPF ranking heuristic in the retrieval module, with
overlap among the answer elements completely removed. The structural
query constraints in each +S topic are either completely removed (nCRE-TPF-NO)
or strictly followed (nCRE-S-TPF-NO).

By using the six non-overlapping runs above, we want to check whether the
relative difference in the runs behaviour observed with the Thorough strategy
would also be observed with the Focused strategy. That way, it may be possible
to determine whether the system performance is also dependent on the nature
of the retrieval task.

FetchBrowse retrieval strategy

– nCRE-Okapi-PTF2 and nCRE-S-Okapi-PTF2 – using the hybrid system with
nCRE answer elements and the PTF2 ranking heuristic in the retrieval module.
For each +S topic, the structural query constraints are either completely
removed (nCRE-PTF2) or strictly followed (nCRE-S-PTF2). Okapi BM25 is
used in Zettair to generate the initial list of ranked articles.

– nCRE-PCosine-PTF2 and nCRE-S-PCosine-PTF2 – using the hybrid system
with nCRE answer elements and the PTF2 ranking heuristic in the retrieval
module. For each +S topic, the structural query constraints are either com-
pletely removed (nCRE-PTF2) or strictly followed (nCRE-S-PTF2). Pivoted
cosine document length normalisation is used in Zettair to generate the ini-
tial list of ranked articles.

– nCRE-Dirichlet-PTF2 and nCRE-S-Dirichlet-PTF2 – using the hybrid sys-
tem with nCRE answer elements and the PTF2 ranking heuristic in the re-
trieval module. For each +S topic, the structural query constraints are either
completely removed (nCRE-PTF2) or strictly followed (nCRE-S-PTF2). Dirich-
let language modelling representation is used in Zettair to generate the initial
list of ranked articles.

Our goals with the FetchBrowse retrieval strategy are threefold. First, we aim
to explore which of the three implemented information retrieval models yields
best system performance for full article retrieval. Second, we aim to investigate
the extent to which each of the three information retrieval models influences the

system performance for element retrieval. Last, for a particular information re-
trieval model, we also check the usefulness of retaining the structural constraints
in the +S topics.

3.2 CAS sub-task

We submitted two runs for each of the VV, SV, VS, and SS retrieval strategies,
resulting in eight runs in total for the CAS sub-task. All the runs use the Okapi
BM25 similarity measure in Zettair to generate the initial list of ranked articles.
By evaluating each of these CAS runs against each of the four retrieval strategies,
we aim to determine whether the way structural constraints are interpreted – in
support elements, in the target element, or in both – has an effect on the overall
system performance. Further, our goal with separately using each of the four CAS
retrieval strategies is to investigate which of the two ranking heuristics (PTF2 or
TPF) yields better retrieval effectiveness. The runs in each retrieval strategy are
explained as follows.

VV retrieval strategy

– nCRE-VV-PTF2 – using the hybrid system where structural constraints in
support elements and the target element of each CAS topic are interpreted as
vague, leaving plain query terms only. The hybrid system uses nCRE answer
elements and the PTF2 ranking heuristic in the retrieval module.

– nCRE-VV-TPF – same as with the previous run, except that TPF ranking
heuristic is used in the retrieval module.

VS retrieval strategy

– nCRE-VS-PTF2 – using the hybrid system where structural constraints in sup-
port elements of each CAS topic are strictly followed, while the constraints
in the target element are interpreted as vague (allowing any element granu-
larity). The hybrid system uses nCRE answer elements and the PTF2 ranking
heuristic in the retrieval module.

– nCRE-VS-TPF – same as with the previous run, except that TPF ranking
heuristic is used in the retrieval module.

SV retrieval strategy

– SV-PTF2 – using the hybrid system where structural constraints in the tar-
get element of each CAS topic are strictly followed, while the constraints in
support elements are interpreted as vague. The element answer granularity
is already determined by the target element, so the retrieval module only
uses the PTF2 heuristic combination to rank the final answers.

– SV-TPF – same as with the previous run, except that TPF ranking heuristic
is used in the retrieval module.

SS retrieval strategy

– SS-PTF2 – using the hybrid system where structural constraints in support
elements and the target element of each CAS topic are strictly followed. The
retrieval module uses the PTF2 heuristic combination to rank the final an-
swers.

– SS-TPF – same as with the previous run, except that TPF ranking heuristic
is used in the retrieval module.

4 Experiments and results

In this section, we present results of our runs when their performance is evaluated
for each retrieval strategy in both the CO+S and CAS sub-tasks. To evaluate the
retrieval performance, a new set of metrics is adopted in INEX 2005, which
belong to the eXtended Cumulated Gain (XCG) family of metrics [6, 7]. We
use the strict quantisation function with the following three official INEX 2005
metrics [5] to measure the retrieval effectiveness of our runs:

1. nxCG – for a given rank r, nxCG[r] measures the relative gain a user has
accumulated up to that rank, compared to the gain they could have accu-
mulated if the system had produced the optimal ranking. We report values
for MAnxCG[r], calculated as the average of nxCG[i] values for i = 1 to r.

2. ep/gr (effort-precision/gain-recall) – measures the amount of relative effort
(as the number of visited ranks) a user is required to spend compared to
the effort they could have spent when inspecting an optimal ranking for a
particular cumulated gain level. We report values for MAep and iMAep, which
represent values for mean average effort-precision calculated at natural or
standard gain-recall points, respectively.

3. Q and R – modified normalised cumulated gain measures which employ bonus
gain functions that directly incorporate the rank position of the cumulated
gain level. We report values for both the Q and R measures.

4.1 CO+S sub-task

Three retrieval strategies are explored in the CO+S sub-task: Thorough, Focused,
and FetchBrowse. In the following we present the performance results of our runs
for each of these strategies.

Thorough retrieval strategy The evaluation results of our INEX 2005 CO+S

runs for this strategy are shown in the upper part of Table 4. Several observations
can be drawn from these results.

First, using the nCRE algorithm for identifying answer elements in our hybrid
system yields better overall performance than when the oCRE algorithm is used.
This finding validates our choice of retaining some specific matching elements
as answers. However, the higher oCRE value observed with the iMAep measure of

MAnxCG[r] ep/gr
Run 1 3 5 10 100 500 1500 MAep iMAep Q R

Thorough

nCRE-PTF2 0.039 0.043 0.040 0.032 0.048 0.100 0.188 0.001 0.007 0.001 0.015
nCRE-S-PTF2 0.039 0.053 0.049 0.040 0.048 0.085 0.159 0.001 0.007 0.001 0.012

nCRE-TPF 0.039 0.039 0.037 0.034 0.048 0.100 0.189 0.001 0.008 0.001 0.015
nCRE-S-TPF 0.039 0.049 0.047 0.041 0.050 0.085 0.159 0.001 0.007 0.001 0.012

oCRE-PTF2 0.000 0.011 0.010 0.015 0.050 0.088 0.166 0.001 0.009 0.001 0.012
oCRE-S-PTF2 0.000 0.021 0.020 0.018 0.047 0.084 0.147 0.001 0.008 0.001 0.010

Focused

nCRE-PTF2-NO 0.039 0.043 0.041 0.043 0.052 0.140 0.236 0.012 0.011 0.016 0.024
nCRE-S-PTF2-NO 0.039 0.053 0.051 0.048 0.060 0.107 0.171 0.014 0.012 0.018 0.021

nCRE-TPF-NO 0.039 0.039 0.036 0.038 0.057 0.092 0.148 0.011 0.009 0.013 0.016
nCRE-S-TPF-NO 0.039 0.049 0.045 0.042 0.062 0.086 0.121 0.012 0.011 0.015 0.016

oCRE-PTF2-NO 0.000 0.011 0.018 0.023 0.054 0.114 0.159 0.011 0.010 0.015 0.016
oCRE-S-PTF2-NO 0.000 0.021 0.023 0.023 0.057 0.098 0.144 0.013 0.010 0.017 0.016

Table 4. Evaluation results of our INEX 2005 CO+S runs for the Thorough (upper part)
and Focused (lower part) retrieval strategies. Strict quantisation function is used with
each INEX metric to generate the above numbers. For each retrieval strategy, the best
results obtained from each of the INEX 2005 evaluation measures are shown in bold.

the ep/gr metric suggests that less number of visited ranks may be required for
achieving a particular level of cumulated gain when the oCRE algorithm is used.

Second, the relative gain a user has accumulated after any of the first ten ele-
ments are retrieved by the hybrid system is higher when using the PTF2 ranking
heuristic than when using TPF, although when retrieving ten and more elements
the gain seems to be higher when using the TPF ranking heuristic.

Last, using structural hints from the +S topics also increases the system
performance when up to ten elements per topic are returned. As shown in the
table, at any of the first ten elements returned, each of the three +S runs performs
consistently better than its corresponding CO run.

Focused retrieval strategy The lower part of Table 4 shows evaluation re-
sults of our INEX 2005 CO+S runs for the Focused retrieval strategy. In this
case, using the nCRE algorithm for identifying answer elements yields a consis-
tent performance improvement than when using the oCRE algorithm. Also, when
retrieving any number of elements (except 100), the PTF2 ranking heuristic in
our hybrid system produces higher cumulated user gain than the TPF ranking
heuristic.

For each of the three non-overlapping runs, using structural hints from the +S
topics increases the system performance when up to ten elements per topic are
returned. However, unlike for the Thorough retrieval strategy, in the Focused

retrieval strategy values for both the ep/gr and Q measures also show that less

inex eval (strict) inex eval (SOG)
Run 5 10 100 1500 iMAP 5 10 100 1500 iMAP

FetchBrowse-D

nCRE-Okapi-PTF2 0.160 0.120 0.028 0.017 0.291 0.152 0.107 0.028 0.009 0.152
nCRE-S-Okapi-PTF2 0.200 0.120 0.026 0.005 0.298 0.137 0.090 0.024 0.005 0.133

nCRE-PCosine-PTF2 0.120 0.120 0.022 0.017 0.280 0.131 0.119 0.025 0.009 0.131
nCRE-S-PCosine-PTF2 0.160 0.120 0.022 0.004 0.290 0.120 0.106 0.023 0.005 0.117

nCRE-Dirichlet-PTF2 0.120 0.080 0.026 0.017 0.278 0.155 0.107 0.028 0.010 0.157
nCRE-S-Dirichlet-PTF2 0.160 0.080 0.026 0.005 0.284 0.136 0.088 0.024 0.005 0.155

FetchBrowse

nCRE-Okapi-PTF2 0.052 0.044 0.033 0.008 0.018 0.155 0.152 0.107 0.028 0.028
nCRE-S-Okapi-PTF2 0.074 0.052 0.024 0.005 0.015 0.210 0.173 0.077 0.020 0.023

nCRE-PCosine-PTF2 0.052 0.052 0.030 0.007 0.017 0.112 0.126 0.088 0.027 0.021
nCRE-S-PCosine-PTF2 0.059 0.056 0.026 0.005 0.013 0.183 0.156 0.071 0.020 0.019

nCRE-Dirichlet-PTF2 0.067 0.048 0.033 0.008 0.017 0.181 0.161 0.108 0.028 0.028
nCRE-S-Dirichlet-PTF2 0.074 0.052 0.023 0.005 0.012 0.198 0.168 0.073 0.019 0.022

Table 5. Evaluation results of our INEX 2005 CO+S runs for the FetchBrowse-D (upper
part) and FetchBrowse (lower part) retrieval strategies. Strict and SOG quantisation
functions are used with the inex eval metric to generate the above numbers. Values
for iMAP represent interpolated mean average precision values calculated at standard
recall points. For each retrieval strategy, the best results obtained from each of the two
quantisation functions are shown in bold.

number of visited ranks are required for achieving a particular level of cumulated
gain. This finding suggests that the nature of the retrieval task (such as Thorough
or Focused) influences how structural constraints in the INEX +S topics should
be interpreted. More precisely, using structural hints from the INEX +S topics
seems to be more useful for Focused than for the Thorough retrieval strategy.

FetchBrowse retrieval strategy Table 5 shows evaluation results of our INEX
2005 CO+S runs for the FetchBrowse retrieval strategy. We use strict and SOG
quantisation functions with inex eval [6] to generate the above numbers.

The upper part of Table 5 shows results when only full articles represent
units of retrieval. We observe that when highly relevant articles are target of re-
trieval (by using strict quantisation function), best overall system performance
is achieved when using the Okapi similarity measure. Of the other two imple-
mented measures, PCosine seems to work better than Dirichlet with ten or
less articles returned. We also observe an increase in both the average precision
(iMAP) and the precision at five articles returned when the structural constraints
in the +S topics are strictly followed, irrespective of which similarity measure is
used.

When more specific articles are target of retrieval (by using SOG), best over-
all system performance is achieved when using the Dirichlet similarity measure,

MAnxCG[r] ep/gr
Run 1 3 5 10 100 500 1500 MAep iMAep Q R

VV

nCRE-VV-PTF2 0.000 0.012 0.017 0.016 0.040 0.090 0.127 0.001 0.007 0.002 0.026
nCRE-VV-TPF 0.000 0.000 0.013 0.039 0.047 0.091 0.128 0.002 0.007 0.002 0.026

VS

nCRE-VS-PTF2 0.167 0.120 0.102 0.073 0.052 0.101 0.126 0.001 0.003 0.001 0.015
nCRE-VS-TPF 0.167 0.120 0.109 0.087 0.054 0.101 0.126 0.001 0.003 0.001 0.015

SV

SV-PTF2 0.000 0.078 0.101 0.115 0.181 0.349 0.433 0.013 0.046 0.015 0.074
SV-TPF 0.000 0.078 0.117 0.142 0.188 0.352 0.435 0.013 0.047 0.015 0.074

SS

SS-PTF2 0.000 0.125 0.165 0.167 0.312 0.355 0.388 0.011 0.036 0.012 0.068
SS-TPF 0.000 0.125 0.185 0.201 0.320 0.356 0.389 0.012 0.036 0.013 0.068

Table 6. Evaluation results of our INEX 2005 CAS runs for the VV, VS, SV, and SS

retrieval strategies. Strict quantisation function is used with each INEX metric to
generate the above numbers. For each retrieval strategy, the best results obtained from
each of the INEX 2005 evaluation measures are shown in bold.

although with ten articles returned PCosine seems to work best. Interestingly,
in this case there is no increase in system performance when the structural con-
straints in the +S topics are strictly followed.

The lower part of Table 5 shows results for the FetchBrowse retrieval strategy
when elements are units of retrieval, where we investigate the extent to which
each of the three similarity measures influences the system performance. We
observe that for element retrieval the system performance is almost identical to
the one observed in full article retrieval, except that, when structural constraints
in the +S topics are strictly followed, there is a constant increase in precision
with five and ten elements returned, irrespective of the similarity measure and

the quantisation function used. This finding shows that using structural hints in
the INEX +S topics is also a useful feature in the FetchBrowse retrieval strategy.

4.2 CAS sub-task

Four retrieval strategies are explored in the CAS sub-task: VV, VS, SV, and SS.
Table 6 presents the performance results of our CAS runs for each of these strate-
gies.

In the VV retrieval strategy all the the structural constraints in support ele-
ments and the target element are completely removed, leaving plain query terms
only. From Table 6 we observe that, similarly as with the observed behaviour
for the Thorough retrieval strategy of the CO+S task, the relative gain a user has
accumulated after less than ten elements retrieved is higher when using the PTF2

ranking heuristic than when using TPF, although when retrieving ten and more
elements the cumulated gain is higher when using the TPF ranking heuristic.

Table 6 also shows that the observed system performance is almost identical
for any of the VS, SV, or SS retrieval strategies. Overall, the TPF ranking heuristic
in our hybrid system produces equal and, in many cases, better performance than
the PTF2 heuristic. This is especially evident for the latter two strategies, which
allow for the target element to be strictly matched.

5 Conclusions

In this paper we have reported on our participation in the INEX 2005 ad-hoc
track. We have tested three information retrieval models with two ways of identi-
fying the appropriate element granularity and two XML-specific ranking heuris-
tics in both the CO+S and CAS sub-tasks, mainly to investigate different aspects
of XML retrieval.

For the CO sub-task, we have shown that using the nCRE elements as a choice
for answer elements yields better overall performance for our hybrid system than
when the oCRE answer elements are used. Also, the obtained cumulated gain
for users is higher when using the PTF2 ranking heuristic than when using TPF,
although for the Thorough retrieval strategy in cases where ten or more elements
are retrieved, the gain seems to be higher when using the TPF ranking heuristic.
Using structural hints in the +S topics increases the system performance when
up to ten elements per topic are returned, although we observed that this is
also dependent on the retrieval strategy. The Focused retrieval strategy seems
to benefit more from the structural hints than the other two retrieval strategies.

For the CAS sub-task we observed that, regardless of the way the constraints
in a CAS topic are interpreted, the TPF ranking heuristic in our hybrid system
produces at least equal and in many cases better performance than the PTF2

ranking heuristic, which is particularly true for strategies that allow for the
target element to be strictly matched. Only for the VV retrieval strategy where
structural constraints in the CAS topics are completely removed is the PTF2

ranking heuristic better than TPF, and that is true only in cases where less than
ten elements per topic are returned.

However, for the CAS sub-task we also plan to carry out additional exper-
iments where each of the CAS runs will be evaluated against each of the four
retrieval strategies (VV, VS, SV, and SS). Our goal is to determine whether the
way structural constraints are interpreted – in support elements, in the target
element, or in both – has the same effect on the overall system performance
under different CAS retrieval strategies.

References

1. Y. Chiaramella, P. Mulhem, and F. Fourel. A model for multimedia information
retrieval. Technical report, FERMI ESPRIT BRA 8134, University of Glasgow,
April 1996.

2. D.N.F. Awang Iskandar, J. Pehcevski, J. A. Thom, and S. M. M. Tahaghoghi.
Combining image and structured text retrieval. In Pre-Proceedings of the Fourth

INEX Workshop, Dagstuhl, Germany, November 28–30, 2005, 2005.
3. K. Hatano, H. Kinutan, M. Watanabe, Y. Mori, M. Yoshikawa, and S. Uemura.

Keyword-based XML fragment retrieval: Experimental evaluation based on INEX
2003 relevance assessments. In Proceedings of the Second International Workshop

of the INitiative of the Evaluation of XML Retrieval, INEX 2003, Dagstuhl Castle,

Germany, December 15–17, 2003, pages 81–88, 2004.
4. K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information

retrieval: Development and comparative experiments. Parts 1 and 2. Information

Processing and Management, 36(6):779–840, 2000.
5. G. Kazai and M. Lalmas. INEX 2005 evaluation metrics. 2005.

Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.
6. G. Kazai and M. Lalmas. Notes on what to measure in INEX. In Proceedings of the

INEX 2005 Workshop on Element Retrieval Methodology, pages 22–38, Glasgow,
UK, 2005.

7. G. Kazai, M. Lalmas, and A. P. de Vries. The overlap problem in content-
oriented XML retrieval evaluation. In Proceedings of the ACM-SIGIR Interna-

tional Conference on Research and Development in Information Retrieval, pages
72–79, Sheffield, UK, 2004.

8. M. Lalmas. INEX 2005 retrieval task and result submission specification. 2005.
Available at URL: http://inex.is.informatik.uni-duisburg.de/2005/.

9. J. Pehcevski and J. A. Thom. HiXEval: Highlighting XML retrieval evaluation.
In Pre-Proceedings of the Fourth INEX Workshop, Dagstuhl, Germany, November

28–30, 2005, 2005.
10. J. Pehcevski, J. A. Thom, and A.-M. Vercoustre. Hybrid XML retrieval: Combining

information retrieval and a native XML database. Information Retrieval, 8(4):571–
600, 2005.

11. A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In
Proceedings of the ACM-SIGIR International Conference on Research and Devel-

opment in Information Retrieval, pages 21–29, Zurich, Switzerland, 1996.
12. C. Zhai and J. Lafferty. A study of smoothing methods for language models applied

to information retrieval. ACM Transactions on Information Systems, 22(2):179–
214, 2004.

13. J. Zobel and A. Moffat. Exploring the similarity space. ACM SIGIR Forum,
32(1):18–34, 1998.

SIRIUS: A Lightweight XML Indexing and

Approximate Search System at INEX 2005

Eugen Popovici, Gildas Ménier, Pierre-François Marteau

VALORIA Laboratory, University of South-Brittany
BP 573, 56017 Vannes Cedex, France

{Eugen.Popovici, Gildas.Menier Pierre-Francois.Marteau}@univ-ubs.fr

Abstract. This paper reports on SIRIUS, a lightweight indexing and search

engine [6] for XML documents. The retrieval approach implemented is

document oriented. It involves an approximate matching scheme of the

structure and textual content. Instead of managing the matching of whole DOM

trees, SIRIUS splits the documents object model in a set of paths. This set is

indexed using optimized data structures. In this view, the request is a path-like

expression with conditions on the attribute values. In this paper, we present the

main functionalities and characteristics of this XML IR system and second we

relate on our experience on adapting and using it for the INEX 2005 ad-hoc

retrieval task. Finally, we present and analyze the SIRIUS retrieval performance

obtained during the INEX 2005 evaluation campaign and show that despite the

lightweight characteristics of SIRIUS we obtained quite good precision at low

recall values.

1 Introduction

The widespread use of XML in digital libraries, product catalogues, scientific data

repositories and across the Web prompted the development of appropriate searching

and browsing methods for XML documents. Approximate matching in XML provides

the possibility of querying the information acquired by a system having an incomplete

or imprecise knowledge about both the structure and the content of the XML

documents [14], [15]. In this context, we propose and experiment with a lightweight

model for indexing and querying XML documents. We develop a simple querying

algebra implemented using fast approximate searching mechanisms for structure and

textual content retrieval. In order to evaluate the expected benefits and drawbacks of

this new kind of search functionality we propose algorithms and data structures whose

principles are detailed hereinafter.

We propose specific data structures dedicated to the indexing and retrieval of

information elements embedded within heterogeneous XML data bases. The indexing

scheme is well suited to the characterization of various contextual searches, expressed

either at a structural level or at an information content level. Search mechanisms are

based on context tree matching algorithms that involve a modified Levenshtein

editing distance [12] and information fusion heuristics. The implementation that is

finally described highlights the mixing of structured information presented as

field/value instances and free text elements. Our approach is evaluated experimentally

at the INEX 2005 workshop. The results are encouraging and give rise to a number of

future enhancements.

The paper is organized as follows. In Section 2 we present the main functionalities

and characteristics of the SIRIUS XML IR system. In Section 3 we relate on our

experience on adapting and using the system in the INEX 2005 ad-hoc retrieval task.

In Section 4 we present the evaluation of the SIRIUS retrieval while participating at

INEX 2005 campaign on the VVCAS task. Finally, in Section 5 we summarize our

conclusions and propose some futures work perspectives.

2 SIRIUS XML IR System

SIRIUS [6] is a lightweight indexing and search engine for XML documents

developed at the VALORIA laboratory of the University of South-Brittany [6][7].

The retrieval approach implemented in SIRIUS is document oriented. It involves an

approximate matching scheme of the structure and textual content. Instead of

managing the matching of whole DOM trees, SIRIUS splits the documents object

model in a set of paths. This set is indexed using optimized data structures. In this

view, the request is a path-like expression with conditions on the attribute values. For

instance /document(> date "1994")/chapter(= number 3)/John is a request aiming to

extract the documents (written after 94) with the word John in the chapter number 3.

We designed a matching process that takes into account mismatched errors both on

the attributes and on the xml elements. The matching process uses a weighted editing

distance on XML paths: this provides an approximate matching scheme able to

manage jointly the request on textual content and on document structure. The search

scheme is extended with a set of Boolean and IR retrieval operators, and features a set

of thesaurus rewriting rules. Recently the system was extended with a specialized set

of operators for extracting, indexing and searching heterogeneous sequential and time

series data embedded in heterogeneous XML documents [8].

2.1 Indexing Scheme

An XML document is composed of a set of elements with a possible nested structure.

Each XML element may be composed of a set of possible nested XML elements,

textual pieces of information (TEXT or CDATA), unordered <attribute, value> pairs,

or a mixture of such items. XML documents are generally represented as rooted,

ordered, and labeled trees in which each node corresponds to an element and each

edge represent a parent-child relationship.

XML Context. According to the tree structure, every node n inherits a path p(n)

composed with the nodes that link the root to the node n. This path is an ordered

sequence of XML elements potentially associated to unordered <attribute, value>

pairs A(ni), that determines the XML context in which the node is occurring. A tree

node n, containing textual/mixed information can be decomposed into textual sub-

elements. Each string s (or word, lemma, …) of a textual sub-element is also linked to

p(n). This XML context characterizes the occurrence of s within the document and

can be represented as follows:

p(n)=<n0 , A(n0)> <n1 , A(n1)> …<n , A(nn)> (1)

Index Model. The indexing process involves the creation of an enriched inverted list

designed for the management of these XML contexts. For this model, the entries of

the inverted lists are of two kinds: textual sub-element s of a tree node, and node n of

the XML tree.

For a sub-element s of a node n, three pieces of information are attached:

− a link to the URI of the document to retrieve the original document,

− an index specifying the location of the sub-element within the document,

− a link toward its XML context p(n).

For a node n of the DOM tree, only the link to the URI of the document and a link to

its XML context p(n) are required.

2.2 Searching Scheme

Most of the time, for large heterogeneous databases, one cannot assume that the user

knows all of the structures – even in the very optimistic case, when all of the

structural properties are known. Some straightforward approaches (such as the XPath

search scheme [16]) may not be efficient in these cases. As the user cannot be aware

of the complete XML structure of the data base due to its heterogeneity, efficient

searching should involved exact and approximate search mechanisms.

The main structure used in XML is a tree: It seems acceptable to express a search

in term of tree-like requests and approximate matching. The matching tree process

involves mainly elastic matching or editing distance [10], [11]. For [10], the

complexity of matching two trees T1 and T2 is at least O(|T1|.|T2|) where |Ti| is the

number of nodes in Ti. The complexity is much higher for common subtree search

[11]. This complexity is far too high to let these approaches perform well for large

heterogeneous database with documents with a high number of elements (as nodes).

We proposed [6], it seems at the same time than the IBM team at Haïfa, to focus on

path matching rather than on tree matching – in a similar manner than the XML

fragment approach [15]. The request should be expressed as a set of path p(r) that is

matched with the set of sub-path p(n) in the document tree. This breaks the

algorithmic complexity and seems to better correspond to the end-user needs: most of

the data searches involve a node and its inherited sequence of elements rather than a

full tree of elements. This ‘low-level’ matching only manage subpath similarity

search with conditions on the element and attributes matching. This process is used to

design a more higher-level request language: a full request is a tree of low-level

matching goals (as leafs) with set operators as nodes. These operators are used to

merge leaf results. The whole tree is evaluated to provide a set of ranked answers. The

operators are classical set operators (intersection, union, difference) or dedicated

fuzzy merging processors.

Approximate Path Search. Let R be a low-level request, expressed as a path goal p
R
,

with conditions or constraints to be fulfilled on the attributes and attributes values.

We investigate the similarity between a pR (coding a path with constraints) and a tree

T
D
 of an indexed document D as follow:

),(),(D

i

R

L
i

DR ppMinTp δδ = (2)

where δL is a dedicated editing distance (see [12]) and { pi
D

} is the set of path in D,

starting at the root and leading to the last element of the pR
 request – terminal(r).

The complexity is O(l(p
R
).deep(T

D
).| { pi

D
} |) with |{ pi

D
}| the size of the set { pi

D
}

(i.e. the number of different path), l(p) the length of the path p and deep(T) the

deepest level of T. This complexity remains acceptable for this application as 99% of

the XML documents have fewer than 8 levels and their average depth is 4 [14].

Path Similarity Computation δ(p
R
, T

D
). Let pR be the path for the structural request

R and {pi
D
} the set of root/../terminal(r) paths of the tree associated to an index

document D.

We designed an editing pseudo-distance [15] using a customised cost matrix to

compute the match between a path pi
D
 and the request path p

R
. This scheme, also

known as modified Levenshtein distance, computes a minimal sequence of

elementary transformation to get from pi
D
 to p

R
. The elementary transformations are:

− Substitution: a node n in pi
D
 is replaced by a node n’ for a cost Csubst(n, n’). Since

a node n not only stands for an XML element, but also for attributes or attributes

relations, we compute Csubst(n, n’) as follows:

where attCond stands for a condition (stated in the request) that should apply to

the attributes.

− Deletion: a node n in pi
D is deleted for a cost Cdel(n)= ζ,

− Insertion: a node n is inserted in pi
D
 for a cost Cins(n)= ζ.

For a sequence Seq(pi
D
, p

R
) of elementary operations, the global cost GC(Seq(pi

D
, p

R
))

is computed as the sum of the costs of elementary operations. The Wagner&Fisher

algorithm [15] computes the best Seq(pi
D
, p

R
) (i.e. minimizes GC() cost) with a

complexity of O(length(pi
D
) * length(p

R
)) as stated earlier. Let

δL(p
R
 , pi

D
,) = Mink GC(Seqk(p

R
, pi

D
)) . (3)

1.n.element <> n’.element : Csubst(n, n’) = •

 (full substitution)

2.n.element == n’.element :

 if n’.attCond(n.attributes) is true

 C
subst

(n, n’) = 0 (no substitution)

 else

 C
subst

(n, n’) = ½ ζ (attributes

substitution)

The similarity between p
R
 and pi

D
 is computed as follows:

δ(p
R

, pi
D
) = 1/(1+ δL (p

R
, pi

D
)) . (4)

Given p
R
 and pi

D
, the value for δ(p

R
 , pi

D
) → 0 when the number of mismatching

nodes and attribute conditions between p
R
 and pi

D
 increases. For a perfect match

δ(p
R
 , pi

D
) = 1 all the elements and the conditions on attributes from the request p

R

match correspondent XML elements in pi
D

.

2.3 Query Language

Complex requests are built using the low-level request p
R

described above and

merging operators (boolean or specialized operators). Mainly a complex request is a

tree of pR requests as leafs. Each node supports an operator performing the merging of

the descendant results. Currently, the following merging operators are implemented in

the system for the low-levels management:

− or, and : n-booleans or n-set. (or p
R
 p

R’
) provides the set merging the set of

solution from pR and from p
R’

. (and pR
 p

R’) provides only the answers belonging to

both answer sets.

− without: this operator can be used to remove solutions from a set. For instance,

(without p
R
 p

R’
) delivers the set of solutions for p

R
 minus the solutions given by

p
R’

.

− seq is mainly an extension of the p
R
 request : it merges some of the inverted list to

provides a simple sequence management. For instance, (seq warning * error)

express the search of a sequence of texts items – it also applies to structure.

− in, same : express a contextual relation (same = the pR have the same path, in =

inside elements with the specified path),

− +, same+ : should be related to the or operator. The or operator is a simple set

merging operator, whereas ‘+’ and ‘same+’ are dedicated operators that take into

account the number of element answered. We used a dedicated TFIDF-like

function for this purpose (TFIDF stands for Term Frequency / Inverse Document

Frequency, see [18]).

− in+ : add structural matching information to the set of solutions. It performs a

weighted linear aggregation between the conditions on structure and the set of

solutions.

Let argi be a complex request, or a simple (low level) p
R request. The similarity

computation δ(argroot

, T

D
) for a complex request argroot and a tree T of document D

is performed recursively starting at the leafs:

)),(arg()),arg,...,arg((1

D

i
i

D

n TMaxTor δδ =

)),(arg()),arg,...,arg((1

D

i
i

D

n TMinTand δδ =

{ }),(arg),(arg,0)),arg,arg((2121

DDD TTMaxTwithout δδδ −=

=)),arg,...,arg((1

D

n Tseqδ 1 if arg1,arg2, …, argn occurs in sequence and

belong to the same context/leaf, else 0.

)),arg/(()),arg,...,arg((1

D

i
i

D

n TctxMinTctxin δδ =

where ctx is an XML context (a path) and ctx/argi the path made in concatenating ctx

and argi.

),(arg)1(),arg/()),arg,...,arg((1

D

i

D

i

D

n TTctxTctxin δββδδ −+=+

where ctx and ctx/argi as above, and β in [0..1] used to emphasise the importance of

the structural matching,.

)),arg/(()),arg,...,arg((1

D

i

D

ctx

D

n TctxMaxTsame
D

δδ =

with ctx
D
 a path of T

D
.

)),(arg()),arg,...,arg((1 ∑⋅=+
i

D

ii

D

n TT δλτδ

where λi is a weighting factor specifying the discriminating power of argi:

 λi = 1 – log((1+ND(argi)) / (1+ND)), where ND(argi) is the number of documents in

which argi is occuring, ND the total number of documents in the collection, and τ a

normalization constant τ= 1 / Σk (λk) .

The same+ operator is computed in a similar way:









⋅=+ ∑
i

D

i

D

i
ctx

D

n TctxMaxTsame
D

),arg/(()),arg,...,arg((1 δλτδ

3 INEX 2005 Experience

The retrieval task we are addressing at INEX 2005 is defined as the ad-hoc retrieval

of XML elements. This involves the searching of a static set of documents using a

new set of topics [1]. We will further present several characteristics of the test

collection and of the CAS topics used in INEX 2005 ad-hoc task. Next we will

present how we tuned the SIRIUS retrieval approach for the VVCAS task.

3.1 INEX ad-hoc collection

The INEX 2005 document collection contains over 16,800 articles from 24 IEEE

Computer Society journals, covering the period of 1995-2004 and totalling about 750

megabytes in size in its canonical form. The collection contains 141 different tag-

names1 composing 7948 unique XML contexts by ignoring the attributes and the

attributes values. The maximum length of an index path is 20, while the average

1 We calculate the statistics from the viewpoint of the retrieval system. That is, we use the

XML tag equivalence classes (section 3.5). Also, the XML contexts associated to empty

elements or containing only stop words do not count in our statistics.

length (calculated over the unique indexed contexts) is 8. The distribution of elements

is heavily skewed towards short elements, such as italics [5].

3.2 INEX 2005 CAS Topics

CAS queries are topic statements that contain explicit references to the XML

structure, and explicitly specify the contexts of the user’s interest (e.g. target

elements) and/or the context of certain search concepts (e.g. containment conditions).

A CAS topic has several parts expressing the same information need: <narrative>,

<description>, <title>, <castitle> and <parent> [4]. An example of the <castitle>

part of a CAS topic expresses in NEXI language [3] in shown in Fig. 1.

Fig. 1. CAS topic 280.

This year, a total of 47 CAS topics were selected of which 30 are subordinate topics

of the form //A[B]2, 6 are independent/standalone topics of the form //A[B] and 11 are

complex topics of the form //A[B]//C[D]3 constructed using the subordinate topics.

We make here some observations on the selected set of topics that are used for

retrieval in the INEX 2005 CAS task.

First, no constraint on attributes or attributes values is made. This may be

explained by the fact that the collection is considered to have no attribute or attribute

value with practical interest for a real end user – see “A Note on Attributes” in [3].

Second, even if the collection contains paths with an average length ranging

between 6 and 8 elements; a reduced number of elements (2, maximum 3) are

employed by the users to express paths for the structural constraints.

Third, 21 of the total of 47 CAS topics, 9 of the 17 complex and standalone CAS

topics, and 7 of the 10 assessed topics used phrase searching.

3.3 Translating INEX 2005 CAS topics to SIRIUS Query Language

We use automatic transformation of the INEX 2005 CAS topics expressed in NEXI

[3] to SIRIUS [6] recursive query language.

We have two types of CAS queries: simple queries of the form //A[B] and complex

queries of the form //A[B]//C[D].

For the simple type queries, the translation process is straight forward by using the

SIRIUS operators: and, or, in+, same+ and seq (Fig. 2).

//article[about(.//bb, Baeza-Yates) (in+ [/article/bb/] (same+ (seq Baeza Yates)))

Fig. 2. Translating CAS topic 277 to SIRIUS query language.

2 //A[B] = returns A tags about B [4].
3 //A[B]//C[D] = returns C descendants of A where A is about B and C is about D [4].

//article[about(.//bb, Baeza-Yates) and

 about(.//sec , string matching)]//sec[about(., approximate algorithm)]

For translating complex queries of the form //A[B]//C[D], we introduce a new filter

operator in the SIRIUS query language (Fig. 3).

Fig. 3. CAS topic 280 (Fig. 1) translated to SIRIUS query language.

The filter operator receives as arguments two sets arg1, arg2 of weighted matching

results (ri, wi). It retains from the second set all the descendants (rj, w’j) of the results

occurring in the first set. For this operator, the new weight w’j associated with a

selected result is calculated as the arithmetic average of the initial weight wj of the

corresponding result in the second set and the maximum weight ArgMaxi(wi) found in

all it’s ancestors and their descendants from the first set of results. This operator

implies solving element containment relationships that were not supported by the

SIRIUS index model. However, for all the 11 complex CAS topics, the ancestor //A

specified in the structural path is the article element. Therefore, only document D

level containment conditions are checked in the current implementation of the

operator.

3.4 Indexing the INEX 2005 Ad-Hoc Collection

The collection is pre-processed by removing the volume.xml files and transforming all

the XML files in their canonical form4. At indexing time, the most frequent words are

eliminated using a stop list. The terms are stemmed using the Porter algorithm [17].

We index only ALPHANUMERIC words as defined in [3] (like iso-8601). We did not

index numbers, the attributes, the attributes values, and empty XML elements. This

allowed important performance gains both in indexing and querying time as well as

disk space savings. The index model (section 2) enhanced with a node labelling

scheme based on pre-ordered containment intervals was implemented using BTrees

structures from Berkeley DB5 library. The index size has about twice and a half the

initial database size. The indexing time on a PIV 2.4GH processor with 1.5GB of

RAM for the inex-1.6 ad-hoc collection in canonical form (~750MB) was about

50min with one more hour post-processing phase for disk optimizations.

3.5 Structure Approximate Match for INEX

Structural Equivalence Classes. We create structural equivalence classes for the

tags defined as interchangeable in a request: Paragraphs, Sections, Lists, and

Headings in conformance with [4]:

4 Canonical XML Processor {http://www.elcel.com/products/xmlcanon.html}
5 http://www.sleepycat.com/

 (filter (and (in+ [/article/bb/] (same+ (seq Baeza Yates)))

 (in+ [/article/sec/] (same+ string matching))

)

 (in+ [/article/sec/] (same+ approximate algorithm))

)

Weighting Scheme for Modelling Ancestor-Descendant Relationships. NEXI

language [3] specifies a path through the XML tree as a sequence of nodes.

Furthermore, the only relationship allowed between nodes in a path is the descendant

relation. Therefore the XML path expressed in the request is interpreted as a

subsequence of an indexed path, where a subsequence need not consist of contiguous

nodes.

This is not suited for the weighting scheme allowing (slight) mismatch errors

between the structural query and the indexed XML paths implemented in SIRIUS [6].

The ancestor-descendant relationship is penalized by the SIRIUS weighting scheme

relative to a parent-child relationship. Therefore we relax the weights of the path

editing distance in order to allow node deletions in the indexed paths without any

penalty Cdel(n)=0. To illustrate this mechanism we show in Fig. 4 the distances

between the path requested in topic 277 (Fig. 2) searching works citing Baeza-Yates

and several indexed path retrieved by SIRIUS using the new weighting scheme..

δ (/article/bm/bib/bibl/bb/au/snm, //article//bb) = 0

δ (/article/bm/app/bib/bibl/bb/au/snm, //article//bb) = 0

δ (/article/fm/au/snm, //article//bb) = 1

Fig. 4. Example of distances between the indexed path pi
D and the request path pR.

In the first two cases the request path p
R
 is a subsequence of the retrieved paths pi

D

and therefore the editing distance is 0 independently of the length of the two index

paths. In the last case, where Baeza-Yates is the author of the article, the editing

distance is 1 highlighting the mismatch of the requested bb node from the indexed

path.

The weighting scheme models an end user having precise but incomplete

information about the xml tags of the indexed collection and about their ancestor-

descendant relationships. It takes into account the number of matched XML nodes

from the request and their order of occurrence. It heavily penalized any mismatch

relatively to the information provided by the user but it is forgiving with

mismatches/extra information extracted from the indexed paths.

3.6 SIRIUS VVCAS Runs.

CAS queries are topic statements that contain two kinds of structural constraints:

where to look (support elements), and what elements to return (target elements).

When implementing a VVCAS strategy, the structural constraints in both the target

elements and the support elements are interpreted as vague [1]. We submitted 2

official and 4 additional runs within the CAS ad-hoc task using the VVCAS strategy

and automatic query translation (Table 1).

Table 1. Sirius VVCAS runs (1,2 official runs, 3, 4, 5, 6 additional runs).

ID Run

1. VVCAS_contentWeight08_structureWeight02

2. VVCAS_contentWeight05_structureWeight05

3. VVCAS_contentWeight05_structureWeight05_unofficial

4. VVCAS_contentWeight10_structureWeight00_ unofficial

5. VVCAS_contentWeight05_structureWeight05_SAMEPLUS_unofficial

6. VVCAS_contentWeight10_structureWeight00_SAMEPLUS_unofficial

In the official 1, 2 and additional 3, 4 runs we use the same retrieval approach,

namely, strict sequence search, modified editing distance on XML paths for matching

the structural constraints, weighted linear aggregation for content and structure

matching scores. Additional run 3 corrects a bug found in one limit cases of our

official runs. The difference observed on the evaluation curves between the official

run 2 and the additional run 3 is minimal (see Fig. 5, Fig. 6, Tables 2 and 3). For

additional runs 5 and 6 we use an approximate matching operator instead of a strict

sequence search.

Strict Sequence Matching Runs: we used a strict seq operator – where strict stands

for words appearing in sequence in the textual content (ignoring the stop list words)

of the same XML node. Therefore searching for the sequence “Ricardo Baeza-Yates”,

in our implementation will point to the ‘name’ element of the first example (Fig. 2),

but will completely ignore the sequence from the second one.

<reviewer>

 <name>Ricardo Baeza-Yates</name>

 …

</reviewer>

<au sequence="additional">

 <fnm>Ricardo</fnm>

 <snm>Baeza-Yates</snm>

 …

</au>

Fig. 5. Ex. of sequence allowed in the same XML element and ignored in adjacent elements.

Flexible Matching Runs: the additional runs 4 and 6 implements a flexible sequence

search based on the same+ operator. These runs rank as best results the XML

elements that contain all the researched terms without taking into account their order

of occurrence. XML elements that contain part of the research terms are also retrieved

and ranked based on the number of different researched terms contained, according to

the weighting (IDF) of each occurring term.

4 SIRIUS Retrieval Performance Evaluation

XML IR systems relevance in XML retrieval tasks is evaluated along two

dimensions: exhaustivity and specificity. An element is exhaustive if the topic of

request is exhaustively discussed within that element, whereas an element is specific

if the element is highly focussed on the topic [1].

4.1 INEX 2005 Evaluation Results

We report here the system-oriented and user-oriented official INEX 2005 evaluation

measures: the effort-precision/gain-recall (ep/gr) metric (Fig. 6, Table 3), Extended Q

and R Metric (Table 2.), respectively the normalized extended cumulated gain (nxCG)

metric (Fig. 7) for all the submitted VVCAS runs. Details of the evaluation metrics

can be found in [2].

 a) b)

Fig. 6. SIRIUS effort-precision/gain-recall (ep/gr) curves: a) EP/GR(overlap=off, ,

quant.=generalized), b) EP/GR (overlap=off, quant.=strict)

Effort-precision (EP) at a given gain-recall (GR) value measure the relative effort

(number of visited ranks) that the user is required to spend when scanning a system's

output compared to the effort an ideal ranking would take in order to reach a given

level of cumulated gain. [2].

Table 2. Extended Q and R metrics.

The Q-and-R-measures are modified normalised cumulated gain measures which

employ a bonus gain function that directly incorporates the rank position in the

measured gain [2].

Q(overlap=off) R(overlap=off) Run

ID Strict Gen Strict Gen

1. 0.009 0.025 0.039 0.084

2. 0.009 0.025 0.039 0.084

3. 0.009 0.026 0.040 0.085

4. 0.008 0.023 0.040 0.083

5. 0.014 0.045 0.063 0.125

6. 0.013 0.042 0.063 0.113

Table 3. Effort-precision measures at different levels of gain-recall.

EP v.s. GR (Overlap=off, Quant=strict) Run

ID 0.01/15 0.02/30 0.1/150 0.2/300 MAep iMAep

3. 0.3302 0.291 0.1123 0.1051 0.0086 0.0338

4. 0.3165 0.285 0.0971 0.092 0.0082 0.0314

5. 0.2114 0.1786 0.1298 0.1165 0.0125 0.0523

6. 0.2011 0.1673 0.125 0.1148 0.0122 0.0491

 EP v.s. GR (Overlap=off, Quant=gen)

 0.01/15 0.02/30 0.1/150 0.2/300 MAep iMAep

3. 0.3483 0.2813 0.1549 0.0253 0.0218 0.03

4. 0.275 0.228 0.1346 0.0245 0.0191 0.0253

5. 0.2474 0.217 0.1598 0.0925 0.0351 0.0465

6. 0.2306 0.213 0.145 0.093 0.0326 0.0428

For a given rank i, the value of nxCG[i] reflects the relative gain the user accumulated

up to that rank, compared to the gain he/she could have attained if the system would

have produced the optimum best ranking [2].

 a) b)

Fig. 7. The user-oriented measure of normalized extended cumulated gain (nxCG): a)

nxCG(overlap=off, quant.=generalized), b) nxCG(overlap=off, quant.=strict)

4.2 Analysis of SIRIUS Retrieval Performance

Using the structural information. The objective of our study was to determine to

what extent the structural hints should be taken into account when implementing a

VVCAS strategy. For the two official runs (1, 2) we assigned different weights to

merge the content and structure relevance scores, i.e.(0.8, 0.2) and (0.5, 0.5): The

coefficients used were not discriminate enough to impose a different ranking of the

final results. Therefore, we conducted tests completely discarding the structural

information from the CAS topics, i.e. using (1.0, 0.0) coefficients (runs 4, 6).

The runs with (0.5, 0.5) weight for content and structure (run 3, 5) outperform in

average the ones based only on content matching (run 4, 6)(see Fig. 6, Fig. 7 and

Table 3).This is true for all of the INEX 2005 evaluation measures (official and

additional) and this independently of the quantization function used. This indicates

(usual disclaimers apply) that the structural hints, and jointly, the modified editing

distance on the XML paths increases the system retrieval performances (the gain

varies from 2% up to 7% on EP measure at a fixed GR value)

Sequence Search Strategy. SIRIUS official VVCAS runs have a high

effort/precision for low values of gain/recall (Fig. 6, Table 3). This behaviour is due

to the fact that the runs implements strict constraints for phrase searching and the

topic set was rich (7 among the 10 assessed topics used sequence search) in this kind

of hints. The restrictive interpretation of the seq operator improved the system

precision for the first ranked results (10% to 12%). The SIRIUS VVCAS official runs

were ranked several times in the first top ten runs for the first 10-25 retrieved results.

This fact is important because these are the most probably to be browsed by an end

user. In the same time, this behaviour has penalized the system overall quality

performance. One explanation could be that the system stops to return elements when

running out of good answers – i.e. we implement a strict sequence search. This has

important implications, as the system is not increasing its information gain until

reaching the limit of 1500 returned answers by returning imprecise/less perfect results

(Fig. 7 – see the lower curves). This hypothesis is also supported by the system

behaviour relatively to the strict and generalized quantization functions. Our runs

were better ranked by all the official evaluation measures when a strict quantization

function was used (Fig. 6b, Fig. 7b). This indicates that the retrieved results are both

fully specific and highly exhaustive.

We submitted and evaluated two additional runs (5, 6) allowing a flexible

sequential search as described in section 3.6. The superior curve of the additional run

5 based on the same+ operator in figures (Fig. 6, Fig. 7) shows an important

improvement. We loose a small amount in the system precision for the first ranked

results, but we obtain an obviously improved overall effort-precision/gain-recall curve

(Fig. 7b). Table 3 shows a gain that varies from 0.5% up to 1.8% on the MAep and

iMAep measures). We could further improve these results by defining a new operator

combining same+ ranking with seq ranking strategies.

4.3 Limits of Our Approach

Returning small XML elements. XML elements containing a very limited amount

of text (less than 3-6 characters) either possibly highly relevant as atl, tig (article

titles), st (section titles) or meaningless to an end user as it (italicized text) or sub

(subscript), are frequent in the INEX ad-hoc collection [5].

Fig. 8. Mixed XML element content with italicized text (i.e. one of the SIRIUS ‘relevant‘

answer for topic 244)

<p align="left" ind="none">

The <it>query optimizer</it>, the query engine's central component, determines the

best service execution plan based on QoWS, service ratings, and matching degrees.

</p>

Elements of such small size are unlikely to satisfy the information need of a topic.

Indeed, in the INEX 2002 and 2003 longer elements were preferred by the assessors

[5]. This is not beneficial to our approach as we consider the XML element as the

basic and implicitly valid unit of retrieval, regardless of its size. With this assumption,

we return the <it>query optimizer</it> element (Fig. 8) as a relevant answer for topic

244.

Returning overlapping elements: The highly mixed nature of the INEX ad-hoc

collection may lead to cases where nested/overlapping XML elements could be

returned as valid results by our approach. For instance, the p (paragraph) and the it

(italicized text) elements of the excerpt from Fig. 8 will be retrieved by a request

aiming to extract relevant elements for the “query” term. Our official runs (1, 2) have

a set-overlap6 ranging between 0.002 – 0.004 for the first 20 retrieved results and

0.014-0.015 at 1500 results.

5 Conclusions

We evaluated the retrieval performances of a lightweight XML indexing and

approximate search scheme currently implemented in the SIRIUS XML IR system

[6], [7], [8]. At INEX 2005, SIRIUS retrieves relevant XML elements by approximate

matching both the content and the structure of the XML documents. A modified

weighted editing distance on XML paths is used to approximately match the

documents structure while strict and fuzzy searching based on the IDF of the

researched terms are used for content matching.

Our experiments show that taking into account the structural constraints improves

the retrieval performances of the system and jointly shows the effectiveness of the

proposed weighted editing distance on XML paths for this task. They also show that

the approximate search inside XML elements implemented using our same+ operator

improve greatly the overall performance of the ranking, compared to a strict sequence

search (seq operator), except for low recall values. The complementarities of the two

operators call for the design of a new matching operator based on their combination to

further improve the retrieval performance of our system.

While designing our lightweight indexing and XML approximate search system we

have put forward the performance and the implementation simplicity. SIRIUS

structural match is well adapted for managing mismatches in writing constraints on

XML paths involving complex conditions on attributes and attributes values [6].

Unfortunately, this was not experimented in INEX 2005 campaign. SIRIUS was

designed to retrieve relevant XML documents by highlighting and maintaining the

relevant fragments in the document order (approach explored by the INEX

CO.FetchBrowse task). For this year, at the VVCAS task we evaluated only a subset

of its functionalities and proved its ability of retrieving relevant XML elements. Still,

we obtained average and good quality results in the range of the 25 first ranked

6 Set overlap measures the percentage of elements that either contain or are contained by at

least one or other element in the set.

answers, which is quite encouraging since first ranked elements are the ones end users

will most probably browse.

Future research work will include: the semantic enrichment of the requests (at xml

tag and query term levels) in order to improve the overall recall of the system, index

models better suited for the approximate search scheme, and new matching operators.

Acknowledgements

This work was partially supported by the ACIMD – ReMIX French grant

(Reconfigurable Memory for Indexing Huge Amount of Data).

References

1. Lalmas M., INEX 2005 Retrieval Task and Result Submission Specification, June 20, 2005.

2. Kazai G., Lalmas M., INEX 2005 Evaluation Metrics, November 2005, INEX 2005.

3. Trotman A., & Sigurbjörnsson B. (2004). Narrowed Extended XPath I (NEXI) In

Proceedings of the INEX 2004 Workshop, (pp. 16-40).

4. Sigurbjörnsson B., Trotman A., Geva S.,Lalmas M., Larsen B., Malik S., INEX 2005

Guidelines for Topic Development, INEX 2005.

5. Kamps J., de Rijke M., and Sigurbjörnsson B., The Importance of Length Normalization for

XML Retrieval, Information Retrieval. Volume: 8. Issue: 4. Pages: 631-654. 2005.

6. Ménier G., Marteau P.F., Information retrieval in heterogeneous XML knowledge bases,

The 9th International Conference on Information Processing and Magement of Uncertainty

in Knowledge-Based Systems, 1-5 July 2002, Annecy, France.

7. Ménier G., Marteau P.F., PARTAGE: Software prototype for dynamic management of

documents and data, ICSSEA, 29 Nov.- 1 Dec. 2005, Paris.

8. Popovici E., Marteau P.F., Ménier G., "Information Retrieval of Sequential Data in

Heterogeneous XML Databases", AMR 2005, 28-29 July 2005, Glasgow.

9. Tai, K.C, “The tree to tree correction problem”, J.ACM, 26(3):422-433, (1979)

10. Wang T.L.J, Shapiro B., Shasha D., Zhang K., Currey K.M., “An algorithm for finding the

largest approximately common substructures of two trees”, In J. IEEE Pattern Analysis and

Machine Intelligence, vol.20, N°8, August (1998)

11. Levenshtein A., “Binary Codes Capable of Correcting Deletions, Insertions and Reversals”,

Sov.Phy. Dohl. Vol.10, P.707-710, (1966)

12. Wagner R., Fisher M., “The String-to-String Correction Problem”, Journal of the

Association for Computing Machinery, Vol.12, No.1, p.168-173, (1974)

13. Mignet L.,Barbosa D.,Veltri P., The XML Web: A First Study (2003),WWW2003, May 20-

24, Budapest, Hungary

14. Carmel D., Maarek Y. S., Mandelbrod M., Mass Y. and Soffer A., Searching XML

documents via XML fragments, SIGIR 2003, Toronto, Canada pp. 151-158.

15. Fuhr N., Groβjohann K., XIRQL: An XML query language based on information retrieval

concepts, (TOIS), v.22 n.2, p.313-356, April 2004

16. Clark J., DeRose S., XML Path Language (XPath) Version 1.0, W3C Recommendation 16

November 1999, http://www.w3.org/TR/xpath.html, (1999)

17. Porter, M.F., 1980, An algorithm for suffix stripping, Program, 14(3):130-137

18. Salton G. and Buckeley C., Term-weighting approaches in automatic text retrieval,

Information Processing and Management, 24, 513-523, 1988.

An Evaluation of Relevance Ranking Methods for XML
Using Both Document and Query Structures

Sihem Amer-Yahia
�
, Kenji Hatano

�
, Jayavel Shanmugasundaram

�
, and Divesh

Srivastava
�

�
AT&T Labs–Research, Florham Park, NJ 07932, USA
(sihem,divesh)@research.att.com�

Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
hatano@is.naist.jp�

Cornell University, Ithaca, NY 14853, USA
jai@cs.cornell.edu

Abstract. XML queries, in particular, NEXI queries, combine conditions on
both content and structure and return document fragments satisfying query con-
ditions. Thus, several ranking methods have been proposed to extend the well-
established content-based scoring in the vector space model in order to account
for input document structure to score answers to XML queries. Such methods
use document structure to propagate answer scores along the XML hierarchy [6],
to apply length normalization between query paths and data paths [3], to com-
pute term weights based on element tags [5] or, to account for overlapping ele-
ments [4]. In this paper, we show that accounting for query conditions on structure
in addition to conditions on content and combining them with data-based scoring
improves the relevance of answers to XML queries. Our ideas are implemented in
the STRUX system that is used as a platform for experimenting with XML scoring
on top of GALATEX, an open-source implementation of XQuery Full-Text [1, 8],
an upcoming W3C standard for extending XPath/XQuery with full-text search
primitives.
The score of an answer in STRUX combines a data score (���
	
�) and a query score
(����	�
). ���
	�� is inspired from [7] and ���
	�
 is inspired from the path scoring
method proposed in [2]. In order to compute ���
	 � (resp., ���
	
), path scoring as-
sumes independence between paths in the data (resp., in the query), and combines
the scores of individual paths. For example, given the query:�����������������
�������
��� ������
�"!$#&%���'
�
�
������(
��'
�)���
��'*��+������,��-����
�/.0��132

, the score of
an answer

�
is defined as:�������
�"!3��15476�8:9�;<!=��> � !3�
%:��1@?A��+
> � !3��%:��1B?5��>
 !=��1B?C��+
>
 !=��1D1D������'
(���E0!3��1 where:F

is the set of keyword terms:: intelligent, transport and systems.��> � !3�
%:��1 is the number of occurrences of term
�

in
�
;��>
 !=�
1 is the number of occurrences of term

�
in the query;����'
(���E0!3��1

is the total number of words in
�

and,��+�> � and
��+
>
 are defined as follows:��+�> � !3�
%D��1G4IHKJL����(�M

(number of answers satisfying s’s data
path/number of such answers containing t).

Elements sharing the same data path in input documents have the same value for��+�> � for a given term.��+�>
 !=�
1N4IH5JO����(M
(number of answers satisfying the query

path
!P����������������������������1

/number of such answers containing t).

All query answers share the same
��+
>
 !=�
1 .

In summary, our technical contributions are:
– We define the score of an answer to a NEXI query as a combination of ���
	
�

(as in [7]) and ����	
 (as in [2]), two scoring methods that account for paths in
input document and for query conditions on structure to rank query answers.

– We implement our scoring method in STRUX and run extensive experiments
on INEX 2005 datasets and queries, that show that combining ���
	
� and ���
	�

to compute the score of answers to INEX queries yields more effective re-
sults than just using ���
	 � or ����	
 by itself.

Our scoring methods are a basis for considering query relaxation on structure
which accounts for XML heterogeneity and enables to return answers that do not
match exactly query conditions on structure, suitably ranked by their relevance
to the input query. In this case,

��+
>
 !=��1 would need to be adapted to each query
answer based on the relaxed query satisfied by the answer. We plan to explore
this direction in the future.

References

1. S. Amer-Yahia, C. Botev, J. Shanmugasundaram. TeXQuery: A Full-Text Search Extension
to XQuery. WWW 2004.

2. S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, D. Toman. Content and Structure
Scoring for XML. VLDB 2005.

3. D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, A. Soffer. Searching XML Documents
via XML Fragments. SIGIR 2003.

4. C. L. A. Clarke. Controlling Overlap in Content-Oriented XML Retrieval. SIGIR 2005.
5. S. Cohen, J. Mamou. Y. Kanza, Y. Sagiv. XSEarch: A Semantic Search Engine for XML.

VLDB 2003.
6. N. Fuhr, K. Grossjohann. XIRQL: An Extension of XQL for Information Retrieval. SIGIR

Workshop on XML and Information Retrieval 2000.
7. T. Grabs, H. Schek ETH Zürich at INEX: Flexible Information Retrieval from XML with

PowerDB-XML. INEX Workshop 2002.
8. The World Wide Web Consortium. XQuery 1.0 and XPath 2.0 Full-Text. Working draft.

http://www.w3.org/TR/xquery-full-text/

Machine Learning Ranking and INEX’05

Jean-Noël Vittaut and Patrick Gallinari

Laboratoire d’Informatique de Paris 6
8, rue du Capitaine Scott, F-75015 Paris, France

{vittaut, gallinari}@poleia.lip6.fr

Abstract. We present a Machine Learning based ranking model which
can automatically learn its parameters using a training set of annotated
examples composed of queries and relevance judgments on a subset of the
document elements. Our model improves the performance of a baseline
Information Retrieval system by optimizing a ranking loss criterion and
combining scores computed from doxels and from their local structural
context. We analyze the performance of our algorithm on CO-Focussed
and CO-Thourough tasks and compare it to the baseline model which is
an adaptation of Okapi to Structured Information Retrieval.

1 Introduction

Different studies and developments have been recently carried out on ranking al-
gorithms in the machine learning community. In the field of textual documents,
they have been successfully used to combine features or preferences relations
in tasks such as meta search [1] [2] [3], passage classification, automatic sum-
marization [4] and recently for the combination of different sources of evidence
in Information Retrieval (IR) [5]. One of the challenges of this paradigm is to
reduce the complexity of the algorithms which is in the general case quadratic
in the number of samples. This is why most real data applications of ranking are
based on two-classes problems. Nevertheless, under some conditions, fast rates
of convergence are achieved with this class of methods [6].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the doxel itself
and on its structural context. Ranking algorithms will learn to combine these
different features in an optimal way according to a specific loss function using
a set of examples. It is hoped that ranking algorithms may help to improve the
performance of existing techniques.

The paper is organized as follows, in section 2 we present the ranking model,
in section 3 we show how we adapted it to CO-Focussed and CO-Thorough tasks.
In section 4 we comment the results reached by our model and compare it to a
baseline Okapi method adapted for SIR.

2 Ranking model

We present in this section a general model of ranking which can be adapted to
IR or SIR. The idea of the ranking algorithms proposed in the machine learning

community is to learn a total order on a set X , which allows to compare any
element pair in this set. Given this total order, we are able to order any subset
of X in a ranking list. For instance in IR, X can be the set of couples (document,
query), and the total order is the natural order on the document scores.

As for any machine learning technique, one needs a training set of labeled
examples in order to learn how to rank. This training set will consist in ordered
pairs of examples. This will provide a partial order on the elements of X . The
ranking algorithm will use this information to learn a total order on the elements
of X and after that will allow to rank new elements. For plain IR, the partial
ordering may be provided by human assessments on different documents for a
given query.

2.1 Notations

Let X be a set of elements with a partial order ≺ defined on it. This means that
some of the element pairs in X may be compared according to the ≺ relation.
For Structured Information retrieval X will be the set of couples (doxel, query)
for all doxels and queries in the document collection. This set is partially ordered
according to the existing relevance judgments for each query.

2.2 Ranking

Let f be a function from X to the set of real numbers. We can associate a total
order to f such that:

x ≺ x′ ⇔ f(x) < f(x′) . (1)
Clearly, learning the f function is the same as learning the total order.
An element of X will be represented by a real vector of features:

x = (x1, x2, ..., xd).

In our case, the features will be local scores computed on different contextual
elements of a doxel. In the following, f will be a linear combination of x’s features:

fω(x) =
d∑

j=1

ωjxj (2)

where ω = (ω1, ω2, ..., ωd) are the parameters of the combination to be learned.

Ranking loss. fω is said to respect x ≺ x′ if fω(x) < fω(x′). In this case,
couple (x, x′) is said to be well ordered by fω. The ranking loss [3] measures how
much fω respects ≺.

By definition, the ranking loss measures the number of mis-ordered couples
in X 2:

R(X , ω) =
∑

(x,x′)∈X 2

x≺x′

χ(x, x′) (3)

where χ(x, x′) = 1 if fω(x) > fω(x′) and 0 otherwise.
Ranking aims at learning ω for minimizing (3).

Exponential loss. In practice, this expression is not very useful since χ is not
differentiable, ranking algorithms use to optimize another loss criterion called
the exponential loss:

Re(X , ω) =
∑

(x,x′)∈X 2

x≺x′

efω(x)−fω(x′). (4)

If is straightforward that R(X , ω) ≤ Re(X , ω). (4) is differentiable and con-
vex, and then can be minimized using standard optimization techniques. Mini-
mizing (4) will allow to minimize R(X , ω).

We can compute a gradient descent. The components of the gradient of Re

are:
∂Re

∂ωk
(X , ω) =

∑
(x,x′)∈X 2

x≺x′

(xk − x′k)efω(x)−fω(x′). (5)

With no more hypothesis, the computation of (5) is in O(|X |2).

3 Application to CO tasks

3.1 Definitions

Let denote D is the set of doxels for all the documents in the collection and Q
the set of CO queries. X = Q×D is the set of elements we want to order.

We suppose that there exists a partial order ≺ on X = Q×D, this partial or-
der will reflect for some queries, the evidence we have about preferences between
doxels provided via manual assessments. Note that these relevance assessments
are only needed for a few queries and doxels in the collection. We consider here
the task which consists in producing a ranked list of doxels which answer the
query q ∈ Q. For that, we will train the ranking model to learn a total strict
order on X .

3.2 Vector Representation

Each element x ∈ X is represented by a vector (x1, x2, ..., xd) were xi represents
some feature which could be useful to order elements of X . Let denote L the
set of doxel types, which are defined according to the DTD of the document
collection: article, abstract, sections, paragraphs, lists...

We used the following combination:

fw(x) = ωl
1 + ωl

2Okapi(x) + ωl
3Okapi(parent(x)) + ωl

4Okapi(document(x))

where l is the node type of x and Okapi is the SIR adapted Okapi model [7]
described in [8]. This adaptation consists in using doxels rather than documents
for computing the term frequencies, and using as normalization factor for each
doxel, the mean size of the doxels with the same node type.

This combination take into account the information provided by the context
of the doxel and the structural information given by the node type of the doxel.

This combination leads to the following vector representation:

x =
(
(xl1

1 , xl1
2 , xl1

3 , xl1
4), (xl2

1 , xl2
2 , xl2

3 , xl2
4), ..., (xl|L|

1 , x
l|L|
2 , x

l|L|
3 , x

l|L|
4)

)
where |L| is the number of different doxel types in the collection.

In the above expression all vector components of the form (xli
1 , xli

2 , xli
3 , xli

4)
are equal to (0, 0, 0, 0) except for one where li is the doxel type of x which is
equal to (1, Okapi(x), Okapi(parent(x)), Okapi(document(x))).

3.3 Reduction of complexity

In this section, we use some properties of SIR in order to decrease the complexity
of the computation of (4) and (5).

Queries. Comparing elements from different queries has no sense. We can define
a partition X =

⋃
q∈Q

Xq, where

Xq = {x = (d, q′) ∈ X/q′ = q}

and we can rewrite (4):

Re(X , ω) =
∑
q∈Q


∑

(x,x′)∈Xq×Xq

x≺x′

efω(x)e−fω(x′)

 . (6)

Assessments. For each subset Xq, the preferences among doxels are expressed
according to a several discrete dimensions. We have:

- an information of exhaustivity, which measures how much a doxel answers
the totality of an information need (0 not exhaustive, ..., 3 fully exhaustive)

- an information of specificity, which measures how much a doxel answers only
the information need (0 not specific, ..., 3 means fully specific)

There is no preference between doxels sharing the same value of exhaustivity
and specificity.

An assessment is a couple (exhaustivity, specificity). Let denote A the set of
assessments and A(x) the assessment of element x. We can define a partition
Xq =

⋃
a∈A

X a
q , where

X a
q = {x ∈ Xq/A(x) = a}.

We can rewrite (6):

Re(X , ω) =
∑
q∈Q

∑
a∈A


 ∑

x∈Xa
q

efω(x)


 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

e−fω(x)


 . (7)

where X b
q ≺ X a

q means that the assessments of the elements of X a
q are better

than those of X b
q . An possible order between assessments is represented in figure

1.
The complexity for computing this expression is O(|Q|.|X |) whereas it is

O(|X |2) for (4).

E3S3

E3S2

E2S3

E3S1

E2S2

E1S3

E2S1

E1S2

E1S1 E0S0

Fig. 1. Graph representing the order between elements for a given query, according to
the two dimensional discrete scale of INEX. Doxels labeled E3S3 must be the highest
ranked, and doxels labeled E0S0 the lowest ranked.

3.4 Gradient descent

Since (7) is convex, we can use a gradient descent technique to minimize it. The
components of the gradient has the following form:

∂Re

∂ωk
(X , ω) =

∑
q∈Q

∑
a∈A


 ∑

x∈Xa
q

xkefω(x)


 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

e−fω(x)



+

 ∑
x∈Xa

q

efω(x)


 ∑

b∈A
X b

q≺X
a
q

∑
x∈X b

q

−xke−fω(x)




. (8)

The complexity for computing the gradient is the same (O(|Q|.|X |)) as that
of (7).

4 Experiments

4.1 Learning base

We used the series of topics and assessments from the INEX 2003 and 2004
collections as a learning base. We will comment the results on 2005 collection.

4.2 Filtering

In CO-Focussed task, overlapping doxels were not allowed. In order to suppress
all overlapping elements from the lists computed by the ranking algorithm, we
used a strategy which consists in removing all elements which are overlapping
with an element ranked higher in the list.

As for Okapi model, we used the same strategy exept that biggest doxels
like articles or bdy’s were not allowed in the final ranking list to reach better
performance.

4.3 Results

We comment the results obtained with the ncXG official metric with generalized
quantization which is more related to the ranking loss criterion and the different
levels of assessment we have used in our model.

CO-Focussed. We have plotted in figure 2 the evaluation of the lists produced
by the ranking algorithm and by the modified Okapi when overlap is not au-
thorized. We can see that the ranking algorithm performs better than Okapi. In
some parts of the plot, the difference between the two models is not large: this
is due to the post filtering of the lists. The ranked lists had not been optimized
for non overlapping doxels since there is no notion of overlap in the exponential
loss.

The table 1 shows that the ranking model is always significantly better than
its baseline Okapi model, and that is quite good to retrieve the most informative
doxels in the begining of the list.

Table 1. Rank of Okapi and ranking models among all participant submissions using
MAncXG metric for CO-Focussed task

@1 @2 @3 @4 @5 @10 @15 @25 @50 @100 @500 @1000 @1500

Okapi 21 20 19 19 18 18 19 19 19 18 20 20 20
Ranking 1 1 1 1 2 7 11 13 15 14 10 14 13

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=on,generalised) focused 2005

Ranking
Okapi

Fig. 2. Performance of ranking and Okapi models for CO-Focussed task evaluated with
the cumulated gain based metric ncXG.

CO-Thorough. Figure 3 show the evaluation of the lists produced by the
ranking algorithm and modified Okapi when overlap is authorized. We can see
that the ranking algorithm performs clearly better than Okapi and the difference
in performance is superior than in the Focussed task.

The table 2 shows that the ranking model is always significantly better than
its baseline Okapi model, and that is quite good to retrieve the most informative
doxels in the begining of the list. This can be explained by the expression of
the ranking loss which penalize more a irrelevant doxel when it is located in the
begining of the list.

Table 2. Rank of Okapi and ranking models among all participant submissions using
MAncXG metric for CO-Thorough task

@1 @2 @3 @4 @5 @10 @15 @25 @50 @100 @500 @1000 @1500

Okapi 26 22 26 26 26 31 34 37 38 38 35 32 32
Ranking 1 1 1 2 2 3 3 4 11 12 5 5 6

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

nx
C

G

rank%

ncXG (overlap=off,generalised) thorough 2005

Ranking
Okapi

Fig. 3. Performance of ranking and Okapi models for CO-Thorough task evaluated
with the cumulated gain based metric ncXG.

5 Conclusion

We have described a new model for CO tasks which relies on a combination of
scores from the Okapi model and takes into account the document structure.
This score combination is learned from a training set by a ranking algorithm.

For both tasks, the ranking algorithm has been able to increase by a sig-
nificant amount the performance of the baseline Okapi. Ranking methods thus
appear as a promising direction for improving SIR search engine performance.
It remains to perform tests with additional features (for example the scores of
additional IR systems).

References

1. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In Jordan, M.I.,
Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems.
Volume 10., The MIT Press (1998)

2. Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple
ranked retrieval systems. In: Research and Development in Information Retrieval.
(1994) 173–181

3. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. In Shavlik, J.W., ed.: Proceedings of ICML-98, 15th
International Conference on Machine Learning, Madison, US, Morgan Kaufmann
Publishers, San Francisco, US (1998) 170–178

4. Amini, M.R., Usunier, N., Gallinari, P.: Automatic text summarization based on
word-clusters and ranking algorithms. In: ECIR. (2005) 142–156

5. Craswell, N., Robertson, S., Zaragoza, H., Taylor, M.: Relevance weighting for query
independent evidence. In: SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, New
York, NY, USA, ACM Press (2005) 416–423

6. Auer, P., Meir, R., eds.: Learning Theory, 18th Annual Conference on Learning
Theory, COLT 2005, Bertinoro, Italy, June 27-30, 2005, Proceedings. In Auer, P.,
Meir, R., eds.: COLT. Volume 3559 of Lecture Notes in Computer Science., Springer
(2005)

7. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
TREC. In: Text REtrieval Conference. (1992) 21–30

8. Vittaut, J.N., Piwowarski, B., Gallinari, P.: An algebra for structured queries in
bayesian networks. In: Advances in XML Information Retrieval, Third Interna-
tional Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004,
Dagstuhl Castle, Germany, December 6-8, 2004. Volume 3493 of Lecture Notes in
Computer Science., Springer (2005)

Relevance Feedback for Structural Query
Expansion

Ralf Schenkel and Martin Theobald

Max-Planck-Institut für Informatik, Saarbrücken, Germany
{schenkel,mtb}@mpi-inf.mpg.de

Abstract. Keyword-based queries are an important means to retrieve
information from XML collections with unknown or complex schemas.
Relevance Feedback integrates relevance information provided by a user
to enhance retrieval quality. For keyword-based XML queries, feedback
engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is
inspired by text-based IR completely ignores the semistructured nature
of XML. This paper makes the important step from pure content-based
to structural feedback. It presents two independent approaches that in-
clude structural dimensions in a feedback-driven query evaluation: The
first approach reranks the result list of a keyword-based search engine,
using structural features derived from results with known relevance. The
second approach expands a keyword query into a full-fledged content-
and-structure query with weighted conditions.

1 Introduction

1.1 Motivation

XML has seen increasing importance recently to represent large amounts of
semistructured or textual information in digital libraries, intranets, or the Web,
so information retrieval on XML data is growing more and more important. XML
search engines employ the ranked retrieval paradigm for producing relevance-
ordered result lists rather than merely using XPath or XQuery for Boolean re-
trieval. An important subset of XML search engines uses keyword-based queries
[2, 7, 26], which is especially important for collections of documents with un-
known or highly heterogeneous schemas. However, simple keyword queries can-
not exploit the often rich annotations available in XML, so the results of an
initial query are often not very satisfying.

Relevance Feedback is an important way to enhance retrieval quality by
integrating relevance information provided by a user. In XML retrieval, existing
feedback engines usually generate an expanded keyword query from the content
of elements marked as relevant or nonrelevant. This approach that is inspired by
text-based IR completely ignores the semistructured nature of XML.

This paper makes the important step from content-based to structural feed-
back. We present two independent approaches to exploit the structure of XML
with relevance feedback:

1. Using the feedback approach by Rocchio [18], we create new content and
structural features that are used to rerank the results of a keyword-based
engine, enabling structural feedback for engines that support only keyword-
based queries.

2. We extend the feedback approach by Robertson and Sparck-Jones [17] to
expand a keyword-based query into a possibly complex content-and-structure
query that specifies new constraints on the structure of results, in addition
to “standard” content-based query expansion. The resulting expanded query
has weighted structural and content constraints and can be fed into a full-
fledged XML search engine like our own TopX [22] Search Engine.

1.2 Related Work

Relevance feedback has already been considered for document retrieval for a
long time, starting with Rocchio’s query expansion algorithm [18]. Ruthven and
Lalmas [19] give an extensive overview about relevance feedback for unstructured
data, including the assessment of relevance feedback algorithms.

Relevance feedback in XML IR is not yet that popular. Of the few papers that
have considered it, most concentrate on query expansion based on the content
of elements with known relevance [4, 12, 21, 25]. Some of these focus on blind
(”pseudo”) feedback, others on feedback provided by users. Pan et al. [14] apply
user feedback to recompute similarities in the ontology used for query evaluation.

Even fewer papers have considered structural query expansion [8, 9, 13]. Mi-
hajlovic̀ et al. [13] proposed deriving the relevance of an element from its tag
name, but could not show any significant gain in retrieval effectiveness. Addi-
tionally, they considered hand-tuned structural features specific for the INEX
benchmark (e.g., the name of the journal to which an element’s document be-
longs), but again without a significant positive effect. In a follow-up to this work,
Ramı́rez et al. [15] could show significant improvements with journal names. In
contrast, our general approach for exploiting feedback can be applied with the
INEX data, but does not rely on any INEX-specific things.

Hlaoua and Boughanem [8] consider common prefixes of relevant element’s
paths as additional query constraints, but don’t provide any experimental eval-
uation of their approach.

Gonçalvez et al. [5] use relevance feedback to construct a restricted class of
structured queries (namely field-term pairs) on structured bibliographic data,
using a Bayesian network for query evaluation. While they did not consider
XML, their overall approach is somewhat similar to our reranking framework
presented in Section 3.

The work of Hsu et al. [9] is closest to our approach. They use blind feedback
to expand a keyword-based query with structural constraints derived from a
neighborhood of elements that contain the keywords in the original query. Our
approach considers the whole document instead of only a fragment, can generate
constraints with negative weight, and integrates also content-based constraints.

2 Formal Model and Notation

2.1 Data Model

We consider a fixed corpus of D XML documents with their elements. For such
an element e, t(e) denotes its tag name and d(e) the document to which it
belongs.

The content c(e) of an element e is the set of all terms (after stopword removal
and optional stemming) in the textual content of the element itself and all its
descendants. For each term t and element e, we maintain a weight we(t). This can
be a binary weight (we(t) = 1 if the term occurs in e’s content and 0 otherwise),
a tf-idf style [11] or a BM25-based [1, 24] weight that captures the importance
of t in e’s content. The content c(d) of a document d is defined as the content
c(r) of its root element r.

We maintain a number of statistics about the occurrence of terms in docu-
ments and elements: The document frequency dft of a term t is the number of
documents in which the term appears in the content. Analogously, the element
frequency eft of a term t is the number of elements in which the term appears
in the content.

2.2 Queries and Relevance of Results

We use an extended version of INEX’s query language NEXI [23]. NEXI basically
corresponds to XPath restricted to the descendants-or-self and self axis
and extended by an IR-style about predicate to specify conditions that relevant
elements should fulfil. The wildcard symbol ’*’ matches any tag and can be
used to formulate keyword queries in NEXI. We extend NEXI with additional
weights for each content constraint. A typical extended NEXI query looks like
the following:
//article[about(.,"0.8*XML")//*[about(.//p,"0.4*IR -0.2*index")]

The result granularity of such a query are elements. We currently assume
that the relevance of an element with respect to a query is measured with the
strict quantization, i.e., an element is either relevant or nonrelevant.

2.3 Feedback Model

We consider a keyword query q = {q1, . . . , qp} with a set E = {e1, . . . , el} of
results with known relevance. i.e., elements for which a user has assigned an
exhaustivness value e(e) and a specificity value s(e). Using the strict quantiza-
tion, we say that an element e is relevant for the query if both e(e) and s(e)
are maximal, yielding a set E+ = {e+

1 , . . . , e+
R} of relevant elements and a set

E− = {e−1 , . . . , e−N} of nonrelevant elements.
Note that even though we consider only binary relevance, it is possible to

extend the mechanism presented here to approaches where relevance is measured
with a probability-like number between 0 and 1, for example by representing E+

and E− as probabilistic sets.

3 Reranking Results of Keyword-only Runs

Our first approach aims at identifying documents that contain relevant elements
and paths of relevant elements, in addition to standard content-based query
expansion. We first compute the results for a keyword query with an existing
keyword-based engine and ask a user for relevance feedback. Based on the user
input, we compute certain classes of features from elements with relevance feed-
back and select those that best discriminate relevant from nonrelevant results.
Using these features, we compute additional scores for element-feature-matches
for all remaining elements and rerank them by their combined score. This ap-
proach allows to evaluate certain classes of structural constraints with engines
that support only keyword-based queries.

For space restrictions we can only informally present our approach here; a
more detailed and formal description can be found in [20].

3.1 Features Used for Reranking

We derive the following classes of candidates for query expansion from an element
with known relevance:

– all terms of the element’s content together with their score (C features),
– features derived from the path of the element (P features), and
– tag-term pairs within the element’s document (D features).

The system can be extended with additional classes of features.

Content Features. Content-based feedback is widely used in standard IR and
has also made its way into XML retrieval [12, 21]. It expands the original query
with new, weighted keywords that are derived from the content of elements
with known relevance. As an example, consider the keyword query "multimedia
information" retrieval (this is topic 178 from the INEX topic collection).
From the feedback of a user, we may derive that elements that contain the terms
’brightness’, ’annotation’, or ’rgb’ are likely to be relevant, whereas elements with
’hypermedia’ or ’authoring’ are often irrelevant.

Document Features. Unlike standard text retrieval where the unit of retrieval
are whole documents, XML retrieval focuses on retrieving parts of documents,
namely elements. Information in other parts of a document with a relevant el-
ement can help to characterize documents in which relevant elements occur. A
natural kind of such information is the content of other elements in such docu-
ments.

As an example, consider again INEX topic 178 ("multimedia information"
retrieval). We may derive from user feedback that documents with the terms
’pattern, analysis, machine, intelligence’ in the journal title (i.e., those from
the ’IEEE Transactions on Pattern Analysis and Machine Learing’) are likely

to contain relevant elements. The same may hold for documents that cite pa-
pers by Gorkani and Huang (who are co-authors of the central paper about the
QBIC system), whereas documents that cite papers with the term ’interface’ in
their title probably don’t contain relevant elements (as they probably deal with
interface issues in multimedia applications).

Other possible structural features include twigs, occurence of elements with
certain names in a document, or combination of path fragments with terms.
Further exploration of this diversity is subject to future work.

Path Features. Elements with certain tag names are more likely to be relevant
than elements with other tag names. As an example, a keyword query may
return entries from the index of a book or journal with high scores as they
often contain exactly the requested keywords, but such elements are usually
not relevant. Additionally, queries may prefer either large elements (such as
whole articles) or small elements (such as single paragraphs), but rarely both.
However, experiments show that tag names alone do not bear enough information
to enhance retrieval quality, but the whole path of a result element plays an
important role. As an example, the relevance of a paragraph may depend on
whether it is in the body of an article (with a path like /article/bdy/sec/p
from the root element), in the description of the vitae of the authors (with a
path like /article/bm/vt/p), or in the copyright statement of the journal (with
a path like /article/fm/cr/p).

As element tag names are too limited, but complete paths may be too strict,
we consider the following six classes of path fragments, with complete paths and
tag names being special cases:

– P1: prefixes of paths, e.g., article/#,/article/fm/#
– P2: infixes of paths, e.g., #/fm/#
– P3: subpaths of length 2, e.g., #/sec/p/#
– P4: paths with wildcards, e.g, #/bm/#/p/#
– P5: suffixes of paths, e.g., #/fig, #/article
– P6: full paths, e.g, /article/bdy/sec

Mihajlovic̀ et al. [13] used a variant of P5, namely tag names of result elements,
but did not see any improvement. In fact, only a combination of fragments from
several classes leads to enhancements in result quality. Experiments in [20] show
that the best results are yielded with a combination of P1, P3 and P4, whereas
using P5 or P6 alone actually reduced the quality of results below the baseline
without feedback.

3.2 Feature Weights and Selection

We compute the weight for all features using the standard Rocchio weight [18].
We tried several variations, including binary and weighted Rocchio weights, and
have yet to explore the whole space of solutions.

Among the (usually many) possible features, we choose the nc content fea-
tures and ns document features with highest absolute weights. If there are too
many with the same weight, we use the mutual information of the feature’s score
distribution among the elements with known relevance and the relevance distri-
bution as a tie breaker. If there are no positive examples and mutual information
is zero for all features, we use the feature’s document frequency (the number of
documents in which this feature occurs) for tie breaking then, preferring features
that occur infrequently.

3.3 Reranking Results

The most promising approach for evaluating an expanded query is to evaluate
as much of the expanded query with the existing search engine, evaluate the
remaining part of the query separately, and combine the partial scores of each
element. The result of the expanded query is then a ranked list of elements,
sorted by combined score. Besides reusing the existing engine, this approach has
the additional advantage that we can use different similarity measures for the
different constraint dimensions and are not fixed to a single one (as with the
extended vector space). On top of that, we can easily integrate new constraint
dimensions.

For each element that occurs in the baseline run, we compute an additional
score for each feature class. The score for each feature class is computed in a
separate vector space where each dimension corresponds to a feature that occurs
in at least one element. The score of the element for this class is then computed
as the cosine of the vector with the selected features for this dimension and
the element’s feature vector. Each of the scores is normalized to the interval
[−1.0, 1.0]. The overall score of the element is then the sum of its score from the
baseline run and its additional scores.

This scoring model can easily integrate new dimensions for feedback beyond
content, path and document features, even if they use a completely different
model (like a probabilistic model). It only requires that the relevance of an
element to a new feedback dimension can be measured with a score between -1
and 1. It is simple to map typical score functions to this interval by normalization
and transformation. As an example, the transformation rule for a probability p,
0 ≤ p ≤ 1, is 2 · p− 1.

4 Generating Structural Queries from Feedback

Keyword-based queries are the best way to pose queries without knowledge of
the underlying schema of the data, but they cannot exploit the structure of
documents. As an example, consider the keyword query (query 230 from the
INEX benchmark [10]) +brain research +"differential geometry", asking
for applications of differential geometry in brain research. In relevant results,
”brain research” is usually the topic of the whole article, while ”differential
geometry” is typically the topic of a section. A query with constraints on both

content and structure would probably yield a lot more relevant results, but it
is impossible to formulate a query like the following without knowledge of the
underlying schema:
//article[about(.,brain research)]//sec[about(.,differential geometry)]

We studied the content-and-structure queries from INEX to find patterns
that are regularily used in such queries to describe relevant elements, in addition
to content conditions on the result element. A canonical example for such a query
is the following:
//article[about(.,"RDF") and about(//bib,"W3C")]//sec[about(.,"query")

and about(//par,"performance")]

that is a content-and-structure version of the simpler keyword query ”RDF
W3C query performane”. In contrast to the keyword query, the structured query
specifies a tag (or, more generally, a set of tags) that relevant elements should
have (”I am interested in sections about ’query’”). Additionally, this query con-
tains constraints on the content of descendants of relevant elements (”sections
with a paragraph about ’performance’”), the content of ancestors (”sections in
articles about ’RDF’”), and the content of descendants of ancestors (”sections
in articles that cite a paper from the ’W3C’”).

As such a content-and-structure query specifies much more precisely the con-
ditions that relevant elements must satisfy, we can expect that a search engine
will return more relevant results for a content-and-structure query than for the
keyword query, provided that the content-and-structure query correctly captures
the same information need as the keyword query. Our feedback framework aims
at generating a content-and-structure query from a keyword query, exploiting
relevance feedback provided by a user for some results of the keyword query.

4.1 Candidates for Query Expansion

Following the discussion in the beginning of this section, we derive the following
classes of candidates for query expansion from an element with known relevance:

– all terms of the element’s content together with their score (C candidates),
– all tag-term pairs of descendants of the element in its document, together

with their score (D candidates),
– all tag-term pairs of ancestors of the element in its document, together with

their score (A candidates), and
– all tag-term pairs of descendants of ancestors of the element in its document,

together with their score and the ancestor’s tag (AD candidates).

The system can be extended with additional classes of candidates like tags, twigs,
or paths, which is subject to future work.

The candidate set of an element is the set of all possible candidates for
this element. We extend the notion of frequencies from terms to candidates as
follows: the element frequency of a candidate is the number of elements where
the candidate appears in the candidate set, and its document frequency its the
number of documents with at least one element with the candidate in their
candidate set.

4.2 Candidate Weights and Selection

To weight the different candidates, we apply an extension of the well-known
Robertson-Sparck-Jones weight [17] to element-level retrieval in XML, applying
it for elements instead of documents:

wRSJ(c) = log
rc + 0.5

R − rc + 0.5
+ log

E − efc −R + rc + 0.5
efc − rc + 0.5

Here, for a candidate c, rc denotes the number of relevant elements which
contain the candidate c in their candidate set, R denotes the number of rele-
vant elements, E the number of elements in the collection, and efc the element
frequency of the candidate.

The set of all possible expansion candidates is usually very large and contains
many unimportant and misleading expansions, so we have to select the best b
of them for generating the expanded query. This problem already exists for
content-based expansion of keyword queries, and several possible weights have
been proposed in the literature that go beyond naively ordering terms by their
weight. We use the so-called Robertson Selection Values (RSV) proposed by
Robertson [16]. For a candidate c, its RSV has the form RSV (c) = wRSJ(c) ·
(p− q), where p = rc/R is the estimated probability of the candidate occurring
in a relevant element’s candidate set and q is the probability that it occurs
in a nonrelevant element’s set. We ignore candidates that occur only within
the documents of elements with known relevance as they have no potential to
generate more relevant results outside these documents. We order the union of
the remaining candidates by their RSV and choose the top b of them, where b
is a configuration parameter of the system. To be able to generate a valid NEXI
query in the next step, we have to limit the A and AD candidates chosen to
contain the same ancestor tag.

4.3 Generating an Expanded Query

Using the top-b candidates, we generate a content-and-structure query from the
original keyword query. This expansion is actually straight-forward, and the
generated query has the following general structure:
//ancestor-tag[A+AD constraints]//*[keywords+C+D constraints]
As an example, if the original query was ’XML’ and we selected the A candidate
(anc,article,’IR’), the AD candidate (article,bib,’index’) and the D candidate
(desc,p,’index’), the expanded query would be
//article[about(.,’IR’) and about(//bib,’index’)]//*[about(.,’XML’)
and about(//p,’index’)]

Each of the expansions is weighted, where the weight is the candidate’s RSJ
weight adjusted by a factor that depends on the candidate’s class. C and D
candidates help finding new relevant results, so they should get a high weight;
we allow for C and D conditions at most the weight of all original keywords (to
make sure that the new constraints don’t dominate the query’s results). As an
example, for a query with four keywords and six C and D expansions, the factor

for each expansion is 4
6 . On the other hand, A and AD conditions are satisfied

by most – if not all – elements of a document, so they generate a huge amount
of new result elements, most of which will be nonrelevant. Their weight should
therefore be smaller than the weight of C and D conditions. We choose a fraction
β of the accumulated weight of existing keyword conditions, with β = 0.2 in our
experiments.

5 Architecture and Implementation

We have implemented the reranking approach from Section 3 and the query
expansion approach from Section 4 within an automated system that can import
queries and results from INEX and automatically generate feedback for the top-k
results, using the existing INEX assessments.

Our Java-based implementation requires that important information about
elements is precomputed: unique identifiers for the element (eid) and its docu-
ment (did), its pre and post order to facilitate the evaluation of structural query
conditions like the XPath axes [6] or any other similar information, its tag, and
its terms (after stemming and stopword removal), together with their score. This
information is stored in a database table with schema (did,eid,term,tag,pre,
post,score) that contains one tuple for each distinct term of an element. Our
current prototype reuses the TagTermFeatures table of TopX (see [22] that al-
ready provides this information. On the database side, we provide indexes on
(eid,did) to efficiently find d(e) for an element e and on (did) to efficiently
collect all elements of a document. Inverse element and document frequencies of
the different candidate classes are precomputed (e.g., while initially parsing the
collection) and stored in database tables, too.

6 Evaluation of Feedback Runs

The evaluation of feedback runs for XML IR is a problem that has not yet been
solved in a satisfying way. People have agreed that simply comparing the results
of a run with feedback to the baseline run (which we call plain later) is unfair as
the new run has information about relevant elements and hence is biased. The
INEX Relevance Feedback track has used two different measures so far:

– In 2004, a variant of the residual collection technique was used. Here, all XML
elements with known relevance must be removed from the collection before
evaluation of the results with feedback takes place. This means not only each
element used or observed in the RF process but also all descendants of that
element must be removed from the collection (i.e., the residual collection,
against which the feedback query is evaluated, must contain no descendant
of that element). All ancestors of that element are retained in the residual
collection.

– In 2005, the rank of results with know relevance is frozen, thus assessing
only the effect of reranking the results with unknown relevance. We label

this approach freezeTop as usually the top-k results are used for feedback
and hence frozen.

Using the residual collection approach opens up a variety of different evalu-
ation techniques:

– resColl-result: only the elements for which feedback is given are removed
from the collection,

– resColl-desc: the elements for which feedback is given and all their descen-
dants are removed from the collection (this is the technique used in this
year’s RF track),

– resColl-anc: the elements for which feedback is given and all their ancestors
are removed from the collection, and

– resColl-doc: for each element for which feedback is given, the whole document
is removed from the collection.

We evaluate our approaches with all six evaluation techniques in the following
section and try to find out if there are any anomalies.

7 Experimental Results

7.1 Settings

For all experiments we used our TopX engine that fully supports the evaluation
of weighted content-and-structure queries. The baseline for all experiments is a
run generated with our current TopX engine for the 2005 CO topics, with 1500
results for each topic1. Table 1 shows the macro-averaged precision for this run
for the top-k ranked elements per topic, for different k; this corresponds to the
average fraction of relevant results among the elements used for top-k feedback.

k 10 15 20

prec@k 0.0593 0.0519 0.0500

Table 1. Precision at k for the baseline run

Note that the average precision is much lower than in previous experiments
with the INEX 2003 and 2004 CO topics where TopX yielded an average precision
of 0.231 at the top-5 and still 0.174 at the top-20 results. We can effectively use
only 10 of the 40 2005 CO topics (those with assessments and with at least
1 We did not use the official run as baseline because the engine has evolved a lot since

the time that run was produced. The main reason for the relatively low MAP value
of this run compared to our official run is the result of topic 228 where the new run
ranks the only result in rank 2 instead of 1, yielding a MAP difference for this topic
of about 0.7.

one relevant result among the top-20 results) for the experiments, which makes
the significance of the experiments at least questionable and at the same time
explains the relatively low improvements shown in the following subsections.
Table 2 gives some more information on this issue: it shows the number of topics
in the baseline run that have a certain number of relevant results among the top
k, for varying k. Again it is evident that most topics do not have any relevant
results at all. As an additional problem, there are some topics with only a few
relevant results, which makes possible that slight changes in the order of results
cause huge differences in the resulting MAP values. We decided therefore to
present only our results with top-20 feedback in the following as the other results
would not be significant anyway.

k/r 0 1 2 3 4 5 6

5 23 1 3 0 0 0 -

10 19 5 0 2 0 1 0

15 18 5 0 2 1 0 1

20 17 4 1 3 0 0 2

Table 2. Number of topics in the baseline run with r relevant results among the top
k results

For each run, we measured the MAP using inex eval with the strict quanti-
zation and the latest set of assessments. We plan to evaluate our results with
other metrics in the future.

7.2 Results for Reranking Queries

Table 3 shows the MAP values of our experiments with different combinations of
features to rerank the initial results, providing relevance feedback for a different
number of top elements of the baseline run and selecting the best 5 features of
each dimension, for the different evaluation techniques.

The results are surprisingly different from our earlier results in [20]: the
absolute improvemens are quite small, and the best results are achieved with
either only P, only D, or both candidates. We attribute this to the fact that
there are at most 10 topics with relevant results in the top-k; the remaining topics
provide only negative feedback which seems to be not helpful here. Additionally,
it is evident that the different evaluation methods don’t agree at all about which
combination gives the best results. Other than that, it is interesting that some
runs (like the D run which looks like the absolutely best choice with the freezeTop
evaluation) do great with some evaluation techniques, but perform worse than
the baseline with others. This is an anomaly that should be investigated further.

evaluation baseline C P C+P D C+D D+P C+D+P

plain 0.0367 0.0465 0.1008 0.0534 0.0911 0.0492 0.1120 0.0563

resColl-result 0.0262 0.0343 0.0581 0.0216 0.0412 0.0312 0.0579 0.0228

resColl-anc 0.0267 0.0340 0.0581 0.0198 0.0400 0.0297 0.0589 0.0219

resColl-desc 0.0330 0.0180 0.0489 0.0142 0.0284 0.0132 0.0498 0.0151

resColl-doc 0.0309 0.0140 0.0480 0.0114 0.0249 0.0097 0.0468 0.0126

freezeTop 0.0367 0.0367 0.0371 0.0353 0.0373 0.0369 0.0362 0.0358

Table 3. MAP values for top-20 feedback runs with different configurations and dif-
ferent evaluation methods, for the reranking approach

7.3 Results for Queries with Structural Constraints

Table 4 shows a comparison of MAP values with the different evaluation tech-
niques of our experiments with different combinations of candidate classes for
query expansion, providing relevance feedback for the top 20 elements of the
baseline run and selecting the best 10 candidates for expansion.

The results are less impressive than we had expected after earlier experiments
with the 2003 and 2004 CO topics. The best of our techniques (which consistently
is the combination of all candidate classes for all five evaluation techniques, not
counting the plain run) yields a performance gain of about 5%–20%, whereas
we could show up to 100% in the other experiments (with resColl-desc). We
think that there are mainly two reasons for this difference: The 2005 topics are
inherently more difficult than the older topics (which is also reflected in the much
lower MAP scores for the best runs this year), and there are only 10 topics where
our approaches have a chance to enhance the quality (because Robertson-Sparck-
Jones weights are not useful without relevant results) with top-20 feedback and
even fewer for the other runs. Absolute values are slightly higher than the values
achieved with the reranking approach, so choosing the best candidates out of a
pool of expansion candidates instead of picking a fixed number from each class
seems to perform better.

evaluation baseline C D C+D A AD A+AD A+C+D+AD

plain 0.0367 0.0419 0.0707 0.0406 0.0646 0.0663 0.0654 0.0513

resColl-result 0.0262 0.0294 0.0300 0.0295 0.0309 0.0306 0.0294 0.0324

resColl-anc 0.0267 0.0350 0.0356 0.0305 0.0298 0.0294 0.0296 0.0366

resColl-desc 0.0330 0.0353 0.0355 0.0355 0.0363 0.353 0.0346 0.0365

resColl-doc 0.0309 0.0317 0.0313 0.0314 0.0321 0.0310 0.0315 0.0325

freezeTop 0.0367 0.0378 0.0374 0.0375 0.0384 0.0378 0.0380 0.0387

Table 4. MAP values for top-20 feedback runs with different configurations and dif-
ferent evaluation methods, for the query expansion approach

References

1. G. Amati, C. Carpineto, and G. Romano. Merging XML indices. In INEX Work-
shop 2004, pages 77–81, 2004.

2. A. Balmin et al. A system for keyword proximity search on XML databases. In
VLDB 2003, pages 1069–1072, 2003.

3. H. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and G. Weikum, editors. Intelligent
Search on XML Data, volume 2818 of LNCS. Springer, Sept. 2003.

4. C. J. Crouch, A. Mahajan, and A. Bellamkonda. Flexible XML retrieval based on
the extended vector model. In INEX 2004 Workshop, pages 149–153, 2004.

5. M. A. Gonçalves, E. A. Fox, A. Krowne, P. Calado, A. H. F. Laender, A. S.
da Silva, and B. Ribeiro-Neto. The effectiveness of automatically structured queries
in digital libraries. In 4th ACM/IEEE-CS joint conference on Digital libraries
(JCDL04), pages 98–107, 2004.

6. T. Grust. Accelerating XPath location steps. In SIGMOD 2002, pages 109–120,
2002.

7. L. Guo et al. XRANK: ranked keyword search over XML documents. In SIGMOD
2003, pages 16–27, 2003.

8. L. Hlaoua and M. Boughanem. Towards context and structural relevance feed-
back in XML retrieval. In Workshop on Open Source Web Information Retrieval
(OSWIR), 2005. http://www.emse.fr/OSWIR05/.

9. W. Hsu, M. L. Lee, and X. Wu. Path-augmented keyword search for XML docu-
ments. In ICTAI 2004, pages 526–530, 2004.

10. G. Kazai et al. The INEX evaluation initiative. In Blanken et al. [3], pages 279–293.
11. S. Liu, Q. Zou, and W. Chu. Configurable indexing and ranking for XML infor-

mation retrieval. In SIGIR 2004, pages 88–95, 2004.
12. Y. Mass and M. Mandelbrod. Relevance feedback for XML retrieval. In INEX

2004 Workshop, pages 154–157, 2004.
13. V. Mihajlovic̀ et al. TIJAH at INEX 2004 modeling phrases and relevance feedback.

In INEX 2004 Workshop, pages 141–148, 2004.
14. H. Pan, A. Theobald, and R. Schenkel. Query refinement by relevance feedback in

an XML retrieval system. In ER 2004, pages 854–855, 2004.
15. G. Ramı́rez, T. Westerveld, and A. P. de Vries. Structural features in content

oriented XML retrieval. In CIKM 2005, 2005.
16. S. Robertson. On term selection for query expansion. Journal of Documentation,

46:359–364, Dec. 1990.
17. S. Robertson and K. Sparck-Jones. Relevance weighting of search terms. Journal

of the American Society of Information Science, 27:129–146, May–June 1976.
18. J. Rocchio Jr. Relevance feedback in information retrieval. In G. Salton, editor,

The SMART Retrieval System: Experiments in Automatic Document Processing,
chapter 14, pages 313–323. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1971.

19. I. Ruthven and M. Lalmas. A survey on the use of relevance feedback for informa-
tion access systems. Knowledge Engineering Review, 18(1), 2003.

20. R. Schenkel and M. Theobald. Feedback-driven structural query expansion for
ranked retrieval of XML data. In 10th International Conference on Extending
Database Technologies (EDBT 2006), Munich, Germany, Mar. 2006.

21. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. The University of Amsterdam at
INEX 2004. In INEX 2004 Workshop, pages 104–109, 2004.

22. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine
for TopX search. In VLDB 2005, pages 625–636, 2005.

23. A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). available
at http://www.cs.otago.ac.nz/postgrads/andrew/2004-4.pdf, 2004.

24. J.-N. Vittaut, B. Piwowarski, and P. Gallinari. An algebra for structured queries
in bayesian networks. In INEX Workshop 2004, pages 58–64, 2004.

25. R. Weber. Using relevance feedback in XML retrieval. In Blanken et al. [3], pages
133–143.

26. Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest LCAs in
XML databases. In SIGMOD 2005, pages 537–538, 2005.

NLPX at INEX 2005

Alan Woodley, Shlomo Geva

School of Software Engineering and Data Communications, Faculty of Information

Technology, Queensland University of Technology

GPO Box 2434, Brisbane, Queensland, Australia
{ap.woodley@student.qut.edu, s.geva@qut.edu.au}

Abstract. XML information retrieval (XML-IR) systems aim to provide users

with highly exhaustive and highly specific results. To interact with XML-IR

systems, users must express both their content and structural requirement, in the

form of a structured query. Traditionally, these structured queries have been

formatted using formal languages such as XPath or NEXI. Unfortunately, for-

mal query languages are very complex and too difficult to be used by experi-

enced, let alone casual users; and are also too closely bound to the underlying

physical structure of the collection. Hence, recent research has investigated the

idea of specifying users’ content and structural needs via natural language que-

ries (NLQs). The NLP track was established at INEX 2004 to promote research

into this area, and QUT participated with the system NLPX. Here, we discuss

changes we’ve made to the system since last year, as well as our participation in

INEX 2005.

1 Introduction

Information retrieval (IR) systems respond to user queries with a ranked list of rele-

vant results. Traditionally, these results have been whole documents but since XML

documents separate content and structure, XML-IR systems are able to return highly

specific information to users, lower than the document level. However, to take advan-

tage of this capability XML-IR users require an interface that is powerful enough to

express their content and structural requirements, yet user-friendly enough that they

can express their requirements intuitively.

Historically, XML-IR systems have used two types of interfaces, keyword-based

and formal query language-based. Keyword-based systems are user-friendly, but lack

the sophistication to properly express users’ content and structural needs. In compari-

son, formal query language-based interfaces are able to express users’ content and

structural needs, but are too difficult to use, especially for casual users [7,9] and are

bound to the physical structure of the document. Recently, investigation has begun

into a third option for interfacing with XML-IR systems via a natural language inter-

face that will allow users to fully express their content and structural needs in an intui-

tive and easy to use manner.

We have previously presented NLPX [10,11] an XML-IR system with a natural

language interface. NLPX accepts natural language queries (NLQs) and translates

them into NEXI queries. NEXI is an XPath-like formal query language that is used as

a frontend to many existing XML-IR systems. NLPX participated in the natural lan-

guage processing track of the 2004 INitiative for the Evaluation of XML Retrieval

Workshop (INEX). INEX’s NLP uses the same Content Only (CO) and Content and

Structure (CAS) topics as its Ad-hoc track, however, as input systems use the topics’

Description rather than Title element.

Since last year’s participation we have made several improvements to NLPX. Here

we discuses three major improvements: inclusion of more special connotations, intro-

duction of shallow parsing and inclusion of more templates. We also describe our

participation in the INEX 2005 NLP track and present our results.

2 Motivation

We have already outlined the motivations for an XML-IR natural language interface in

our previous work [10,11]; however, for completeness we include them here. The

motivations stem from the problems with formal XML-IR query languages and are

two fold: first, formal query languages are difficult to use, and second, they are too

tightly bound to the physical structure of documents.

First, formal query languages are too difficult for many users to correctly express

their information need. Two very good examples of this have occurred at the 2003 and

2004 INEX Workshops. In 2003 INEX used the XPath [3] formal language to specify

structured queries; however, 63% of the proposed queries had major semantic or syn-

tactic errors. Furthermore, the erroneous queries were difficult to fix, requiring 12

rounds of corrections. In response to this problem, O’Keefe and Trotman [7] designed

a simplified version of XPath called NEXI, which was used in INEX 2004. When

NEXI was used, the error rate dropped to 12%, with the number of topic revision

halved [9].While these figures are limited to two formal languages, O’Keefe and Trot-

man investigated other structured query languages such as HyTime, DSSSL, CSS and

XIRQL and concluded that all of them are very complicated and difficult to use.

Therefore, if experts in the field of structured information retrieval are unable to cor-

rectly use complex query languages, one cannot expect an inexperienced user to do so.

In fact, recent research by van Zwol et. al [13] confirmed the difficulty that casual

users have in formulating NEXI queries. However, we feel that users would be able to

intuitively express their information need in a natural language.

Secondly, formal query languages are too tightly bound to the physical structure of

documents; hence, users require an intimate knowledge of documents’ composition in

order to express their structural requirements properly. So, in order for users to re-

trieve information from abstracts, bodies or bibliographies, they will need to know the

actual names of those tags in a collection (for instance: abs, bdy, and bib). While this

information may be obtained from a document’s DTD or Schema there are situations

where the proprietor of the collection does not wish users to have access to those files.

Or, in the case of a heterogeneous collection, a single tag can have multiple names (for

example: abstract could be named abs, a, or abstract). This is a problem identified by

participants in the INEX 2004 heterogenous track [6]. In contrast, structural require-

ments in NLQs are expressed at a higher conceptual level, allowing the underlying

document’s structure to be completely hidden from users. Other proposed solutions

include the use of metatags to map between collections [6] and extensions to NEXI

[9].

3 Previous Work by Authors

This paper expands on the previous work of the authors presented in [10,11]. We

submitted our system, NLPX, to the 2004 INEX Natural Language Processing Track

where it performed very successfully (1
st
 in CAS, 2

nd
 in CO). INEX’s NLP track used

the same topics and assessments as its Ad-hoc track; however, participating systems

used a natural language query as input, rather than a query a formal language (NEXI)

query. Examples of both query types are expressed in Figure 1. Note that the query

actually contains two information requests, first, for sections about compression, and

second, for articles about information retrieval. However, the user only wants to re-

ceive results matching the first request. We refer to the former as returned re-

quests/results and the latter as support requests/results.

Fig. 1. A NEXI and Natural Language Query

We had previously participated in INEX’s Ad-hoc track with GPX, a system that

accepted NEXI formatted queries. Therefore, we decided to use GPX as a backend

system. This allowed us to concentrate on developing a frontend that translated natural

language queries to NEXI. Translation involved three steps that derived syntactic and

semantic information from the natural language query (NLQ). We refer to these three

steps as the NLPX framework and outline them below:

1. First we tagged words in the NLQ as either a special connotation or by their part

of speech. Special connotations are words of implied semantic significance. We

differentiated between three types: Structures (such as section, abstract) that

specified structural requirements, Boundaries (such as contains, about) that sepa-

rated structural and content requirements, and Instructions (such as find, retrieve)

that indicated if we had a return or support request. Words corresponding to spe-

cial connotations were hard-coded into the system and matched to query words

by a dictionary lookup. Remaining words were tagged by their part of speech

(such as noun, verb, conjunction) via a Brill Tagger [2].

NEXI: //article[about(.,‘information retrieval’)]

//sec[about(./, compression)]

NLQ: Find sections of articles about image and

text compression in articles about efficient informa-

tion retrieval

2. Second, we matched the tagged NLQs to query templates. The templates were

derived from the inspection of previous INEX queries. Since the NLQs occurred

in shallow context they required only a few templates, significantly less than if

one wished to capture natural language as a whole. Each template corresponded

to an information request. Each request had three attributes: Content, a list of

terms/phrases expressing content requirements, Structure, a logical XPath ex-

pression expressing structural requirements, and an Instruction, “R” for return

requests, and “S” otherwise.

3. Finally, the requests were merged together and output in NEXI format. Return

requests were output in the form A[about(.,C)] where A is the request’s struc-

tural attribute and C is the request’s content attribute. When all return requests

were processed, support requests were inserted. The insert position was located

by comparing the structural attributes of return and support requests and by find-

ing their longest shared descendant. The output of support requests had the form

D[about(E,F)] where D is the longest matching string, E is the remainder of the

support’s structural attribute and F is the support’s content attribute.

4 Improvements

Since our participation in INEX 2004 we have made several improvements to NLPX,

here we outline three major improvements and outline their motivation. Our first two

improvements were to increase the number of special connotations and templates

recognised by NLPX. These improvements correspond to the first two steps of the

NLPX framework established in Section 3. These improvements increased the range

of queries NLPX could handle, thereby increasing its robustness. The third improve-

ment was to implement a shallow parsing stage between the first two framework steps.

The shallow parser grouped together query terms into atomic semantic units before

full parsing. This allowed for further lexical analysis to be performed on the units,

leading to an overall increase in retrieval performance. Here, we discuss these three

improvements in detail.

4.1 Additional Special Connotations

The INEX natural language queries are very diverse in nature, presenting a challenge

for all those wishing capture their syntactic and semantic meaning, via a natural lan-

guage inference. In NLPX, we tag query words of semantic importance as special

connotations. Previously, NLPX recognised three special connotations: Instructions,

Boundaries and Structures. These connotations were able to handle many of the

INEX queries, however, they were not able to handle some of the more novel NLQs.

Therefore, we have extended the number of conations recognised by NLPX to allow

for a broader range of queries to be handled. Here we describe the special connota-

tions we added to NLPX.

4.1.1 Negators

The first connotation added to NLPX was negators. Negators fulfil the user’s informa-

tion need, by explicitly stating the information content that the user does not want to

retrieve, rather than the information content that they want to retrieve. Negators are

expressed in NEXI by the use of a minus symbol (-), and are expressed in NLQs by

the use of words such as no, non or not. An example of a negation occurs in topic

number 139.

Fig. 2. Topic Number 139. An example of the use of a negator.

4.1.2 Strengtheners

The second connotation we added to NLPX was strengtheners. Users employ

strengthens to add weighting to query terms that are highly important to their informa-

tion need. Strengthens are expressed in NEXI by the use of the plus (+) symbol, and

are expressed in NLQs by the use of terms and phrases such as particularly and major

focus. An example of a strengthener occurs in topic number 137.

Fig. 3. Topic Number 137. An example of the use of a strengthener.

NEXI: //article[(about(.//bb//au//snm, Bertino) or about(

.//bb//au//snm , Jajodia)) and about(.//bb//atl, security model) and

about(.//bb//atl, -"indexing model" - "object oriented model")]

NLQ: We wish to identify papers that cite work by authors Bertino

or Jajodia that deal with "security models". Security models should

thus be the subject in the title of the cited papers by Bertino or

Jajodia. We are interested in any kind of security models that Ber-

tino or Jajodia developed (e.g. authorization models). We are not

interested in other kind of models (e.g. objet oriented/indexing

models).

NEXI: //article [about(.//abs, "digital library") or about(.//ip1,

"digital library")]

NLQ: Find articles having digital libraries as their major focus,

which means that the topic should be treated in the abstract or

ingresses of the document to be relevant

4.1.3 Reverse Boundaries

The third connotation added was reverse boundaries. Previously we had identified a

boundary as a query term that separates structural items and content items. NLPX uses

boundaries to pair structures with their respective content. Examples of boundaries are

query terms such as talk about or contains. Reverse boundaries have a similar

function to ordinary boundaries, since NLPX also uses them to pair together structures

and content; however, reverse boundaries occur after the content items rather than

before. Often reverse boundaries are past tense versions of ordinary boundaries such

as talked about or contained. An example of a reverse boundary occurs in topic

number 160.

Fig. 4. Topic Number 160. An example of the use of a reverse boundary.

4.1.4 Self-Reference Topics

The fourth connotation added was a self-reference topic. A self-reference topic occurs

when some part, usual a content item, of the topic is referred to later on in the topic

using a pseudonym. Self-reference topics are conceptually similar to a noun subse-

quently been referenced via a pronoun. An example of self-reference topic occurs in

topic number 161 where the phrase that topic refers to the previously mentioned con-

tent terms database access methods for spatial and text data.

Fig. 5. Topic Number 161. An example of the use of a self-reference topic

4.1.5 Inclusion of Stopwords

The final new special connotations recognised by NLPX were stopwards. Stopwords

are words that occur in too frequently to be of any value in IR systems and are often

ignored. Our backend system GPX already ignores some stopwords; however, we

incorporated also them into NLPX since we wanted NLPX to be a generic interface

NEXI: //article[about(., image retrieval)]//sec[about(., "latent

semantic indexing")]

NLQ: We are looking for sections in articles where "image re-

trieval" is talked about, that describe "latent semantic indexing".

NEXI: //article[about(., database access methods for spatial data

and text)]//bm//bb[about(./atl, database access methods)]

NLQ: Find bibliography entries about database access methods for

spatial and text data from articles related to that topic.

that could be used by any XML-IR backend system. Rather than use the same stoplist

used in GPX that is derived from frequently occurring (>50,000 times) terms in the

INEX corpus we used a standard stop list defined in [4]. Once again we made this

decision so that NLPX would be a more generic interface.

4.2 Shallow Parsing

The second improvement we made to NLPX was to add an intermediate step of shal-

low parsing between our lexical tagging and template matching. Shallow parsing, also

called text chunking, is the process of dividing sentences into atomic, nonoverlapping

segments (called chunks), and then classifying them into grammatical classes. It is

usually performed after part of speech tagging, and as demonstrated by Abney [1] it

can be used as a precursor to full parsing. Alternatively it can be used in other tasks

such as index term generation, information extraction, text summation and bilingual

alignment. Initial research into shallow parsing was focused on identifying noun

phrases; however, more recent work has extended its reach to include general clause

identification.

There are two types of chunks that are systems recognised:

• Explicit Chunks: These are chunks that are explicitly defined by users by

adding parenthesises around important phrases in the query. For the purpose

of NLPX characters that signified a parenthesises were commas, colons,

semi-colons, brackets and quotation marks. Generally, parenthesises were

added to important content phrases rather than other types of phrases.

• Implicit Chunks: These are chunks that are not explicitly defined by users,

but rather derived by analysing the grammatical properties and/or context of

query terms. It is used to group together terms of implied significance in the

system. A classic example is to group together adjectives and nouns to forma

single noun phrase. In NLPX we identify four chunks of significance: In-

structions, Structures, Boundaries (include Reverse Boundaries) and Content.

We have previously incorporated a shallow parser in our previous work [12]. In

that version a process called transformation-based learning (TBL) [2] to learn when to

include query terms into a chunk based on both its grammatical properties (the tag of

the current term) and its context (the tags of surrounding terms). This process was

based upon the work of Ramshaw and Marcus [8] who originally used it to group

together noun phrases. We extended their theories to work on structured queries. Un-

fortunately, we did not have time to retrain our system to recognise the new special

connotations introduced earlier, therefore, we based the decision solely on the tag of

the current term.

4.3 Additional Templates

The final improvement we made to NLPX was the addition of new templates. These

additions were needed to handle both the new special connotations and the grouping

of query terms into chunks. Figure 7 presents the templates that NLPX previously

recognised:

Fig. 6. Existing NLPX Query Templates

Note that these templates work only on a word rather than a chunk level. However,

it was straightforward to migrate the templates since the set of four single–term termi-

nals (Instruction, Structure, Boundary and Content) had corresponding chunk classes.

However, we also added new query templates to the NLPX, which we describe here.

4.3.1 Conjuncting Structures

The first template added to NLPX was used to handle conjucting structures. This

occurs when two structures are separated by a conjunction (for example and, or). In

this situation it is implied that users wish to search elements that match either of the

structures. Figure 8 presents the templates added to the system while Figure 9 presents

topic 127, an example of conjuecting structures.

Fig. 7. Conjucting Structures Query Templates

Fig. 8. Topic Number 127. An example of the use of conjucting structure

Query: Request+

Request : CO_Request | CAS_Request

CO_Request: NounPhrase+

CAS_Request: SupportRequest | ReturnRequest

SupportRequest: Structure [Bound] Content+

ReturnRequest: Instruction Structure [Bound] Content+

Structure: StructureChunk [OtherStructure+]

OtherStructure : Conjunction StructureChunk

NEXI: //sec//(p| fgc)[about(., Godel Lukasiewicz and other fuzzy

implication definitions)]

NLQ: Find paragraphs or figure-captions containing the defi-

nition of Godel, Lukasiewicz or other fuzzy-logic implications

4.3.2 Reverse Boundaries

The second template added to NLPX was to handle the cases of reverse boundaries.

When NLPX encounters a Reverse Bounding it immediately matches the previously

parsed content items with the current structure begins a new request. Figure 10 pre-

sents the new query templates used to handle reverse boundaries and Figure 11 pre-

sents topic 160, which contains an example of a reverse boundary (and previous pre-

sented in figure 4).

Fig. 9. Reverse Boundary Query Templates

Fig. 10. Topic Number 160. An example of the use of a reverse boundary.

4.3.3 Parenthetical Information Requests

Parenthetical information requests occur when a new information request occurs in the

middle of another information request. Usually this occurs when a boundary element

occurs after a completed information request, thereby indicating that a instruction or a

structure has preceded it. When this occurs, NLPX must fully handle the new informa-

tion request, before returning to handle the remaining content information. Figure 11

presents the new query templates used to handle parenthetical information requests

and Figure 12 presents topic 160, which contains an example of a parenthetical infor-

mation requests (and previous presented in figure 4).

Fig. 11. Parenthetical Information Request Templates

SupportRequest: Structure [Bound] Content+ |

Structure Content+ [ReverseBound]

ReturnRequest: Instruction Structure [Bound] Content+ |

Instruction Structure Content+ [ReverseBound]

NEXI: //article[about(., image retrieval)]//sec[about(., "latent

semantic indexing")]

NLQ: We are looking for sections in articles where "image re-

trieval" is talked about, that describe "latent semantic indexing".

SupportRequest: Structure [SupportRequest] Bound Content+ |

ReturnRequest: Instruction Structure [ReturnRequest] Bound Con-

tent+

Fig. 12. Topic Number 145. An example of the use of a parenthetical information request.

5 System Backend

Once the NLQ has been tagged, chunked and matched to templates it is transformed

into a NEXI query using the existing NLPX system. This is a two stage process. First

we expanded the content of the query, by deriving phrases based on its lexical proper-

ties, such as noun phrases that include adjectives participles. Then we format a NEXi

query based upon its instruction, structure and content values. We pass this NEXI

query to our existing GPX system for processing, as if they were a standard Ad-hoc

query. GPX accepts NEXI queries, and returns a ranked list of XML elements. To

produce results GPX collects leaf elements from its index and dynamically creates

their ancestors. GPX’s ranking scheme rewards leaf elements with specific terms and

penalises leaf elements with common terms. It also rewards ancestors with multiple

relevant children and penalises ancestors with a single relevant child. Finally, phrases

are heavily rewarded, where an occurrence of a phrase in a result is defined as all

phrase words in the query occurring in the leaf element, even if they do not occur

continuously. To perform focused retrieval GPX selects the nodes highest ranked

nodes along an element tree and discounts any lower ranked overlapping elements. A

more comprehensive description of GPX can Be found in our accompanying paper as

well as earlier work [5]

6 INEX 2005

6.1 INEX 2005 Submissions

We made 4 submissions to the INEX 2005 NLP track, 2 each for the CO and CAS

topics. For all the submission we followed the same principle steps as outlined above,

however, we prepared 2 variations of each task: one that recognised queries’ structural

constraints and one that ignored them. In effect this produced not only traditionally

CO and CAS submissions, but also hybrid CO as CAS (i.e. CO+S) and CAS as CO

NEXI: //article[about(., image retrieval)]//sec[about(., "latent

semantic indexing")]

NLQ: We are looking for sections in articles where "image re-

trieval" is talked about, that describe "latent semantic indexing".

submissions. Overall, 1 submission was made in each of the CO and CO+S tasks and

2 submissions were made in the CAS task.

6.2 INEX 2005 Results

This section discusses the results of out 4 submissions. We present results for the

CO+S and CAS tasks. Since the CO task did not specify any structural constraints its

results are not included here. Due to length constraints we have not included any

graphs, however, we have included tables.

6.2.1 CO+S Results. Tables 1 -4 present the results for the CO+S tasks. In each of the

tables we have compared the results of the NLP submission with the results of a

baseline that used the original NEXI title as input. We present results for the Focused,

Thorough and FetchBrowse tasks. Note that for the Focused task 2 submissions were

produced, one that accepted the highest-ranking element on an element path (Focused)

and one that accepted leaves.

Table 1. The Results of the COS Focused Submissions

Metric Quant Score NLPX

Focused

Score Base Ratio (N/B)

Strict 0.1132 0.0692 1.6358 nXCG[10]

Gen 0.2017 0.1569 1.2855

Strict 0.1031 0.0712 1.4480 nXCG[25]

Gen 0.1759 0.1309 1.3438

Strict 0.1670 0.0674 2.4777 nXCG[50]

Gen 0.1578 0.1240 1.2726

Strict 0.0273 0.0126 2.1667 MAP

Gen 0.0647 0.0595 1.0874

Table 2. The Results of the COS Focused (Leaves) Submissions

Metric Quant Score NLPX

Leaves

Score Base Ratio (N/B)

Strict 0.1115 0.0538 2.0725 nXCG[10]

Gen 0.1960 0.1328 1.4759

Strict 0.1220 0.1209 1.0091 nXCG[25]

Gen 0.1717 0.1354 1.2681

Strict 0.1056 0.1087 0.9715 nXCG[50]

Gen 0.1670 0.1212 1.3779

Strict 0.0391 0.0274 1.4270 MAP

Gen 0.0710 0.0640 1.1094

Table 3. The Results of the COS Thorough Submissions

Metric Quant Score NLPX Score Base Ratio (N/B)

Strict 0.0482 0.0235 2.0511 nXCG[10]

Gen 0.1756 0.1675 1.0484

Strict 0.0634 0.0591 1.0728 nXCG[25]

Gen 0.1783 0.1665 1.0709

Strict 0.0855 0.0789 1.0837 nXCG[50]

Gen 0.1758 0.1662 1.0578

Strict 0.0020 0.0021 0.9524 MAP

Gen 0.0609 0.0608 1.0016

Table 4. The Results of the COS FecthBrowse Submissions

Metric Quant Score NLPX Score Base Ratio (N/B)

Strict 0.0009 0.0026 0.3462 MAP

Gen 0.0146 0.0510 0.2863

As the results show NLPX performs strong in comparison with the baseline. In par-

ticular in the Focused and Thorough tasks it outperforms the baseline in almost all of

the metrics. This is a significant improvement on last year, when NLPX was unable to

outperform the baseline. Unfortunately, it the baseline outperformed NLPX in the

FetchBrowse task, however, this was a trend experienced by all participants in the

NLP track. Further research will need to be conducted to see why this occurs.

8.2.2 CAS Submissions. Tables 5 -8 present the results for each of the CAS tasks. In

each of the tables we have compared the results of the NLP submission with the

results of a baseline that used the original NEXI title as input. We present results for

the Focused, Thorough and FetchBrowse tasks.

Table 5. The Results of the SSCAS Submissions

Metric Quant Score NLPX

Leaves

Score Base Ratio (N/B)

Strict 0.1250 0.1000 1.2500 nXCG[10]

Gen 0.2374 0.2517 0.9432

Strict 0.1378 0.1578 0.8733 nXCG[25]

Gen 0.2859 0.2885 0.9910

Strict 0.3738 0.1528 2.4463 nXCG[50]

Gen 0.3050 0.3681 0.8286

Strict 0.0218 0.0251 0.8685 MAP

Gen 0.1087 0.1357 0.8010

Table 6. The Results of the SVCAS Submissions

Metric Quant Score NLPX

Leaves

Score Base Ratio (N/B)

Strict 0.0800 0.0400 2.0000 nXCG[10]

Gen 0.1100 0.0848 1.2972

Strict 0.0662 0.0662 1.0000 nXCG[25]

Gen 0.1100 0.1081 1.0176

Strict 0.0582 0.0662 0.8792 nXCG[50]

Gen 0.1150 0.1086 1.0589

Strict 0.0070 0.0078 0.8974 MAP

Gen 0.0323 0.0282 1.1454

Table 7. The Results of the VSCAS Submissions

Metric Quant Score

NLPX

Leaves

Score Base Ratio (N/B)

Strict 0.1333 0.1167 1.1422 nXCG[10]

Gen 0.2423 0.2039 1.1883

Strict 0.1133 0.1267 0.8942 nXCG[25]

Gen 0.2446 0.2531 0.9664

Strict 0.1833 0.1200 1.5275 nXCG[50]

Gen 0.2491 0.2493 0.9992

Strict 0.0090 0.0107 0.8411 MAP

Gen 0.0646 0.0620 1.0419

Table 8. The Results of the VVCAS Submissions

Metric Quant Score NLPX

Leaves

Score Base Ratio (N/B)

Strict 0.1222 0.1222 1.0000 nXCG[10]

Gen 0.2197 0.2520 0.8718

Strict 0.1644 0.1257 1.3079 nXCG[25]

Gen 0.2136 0.2281 0.9364

Strict 0.2698 0.1142 2.3625 nXCG[50]

Gen 0.2110 0.2080 1.0144

Strict 0.0079 0.0086 0.9186 MAP

Gen 0.0758 0.0708 1.0706

Once again NLPX performs strongly against the baseline. Most of the time NLPX

either outperforms the baseline or achieves a score that is very close to the base

(>90%). Once again this is a significant improvement over the previous years attempts

ant verifies our belief that natural language interfaces have the potential to be a viable

alternative to formal languages.

8 Conclusion

Here we presented the improvements made to our existing XML-IR NLP interface.

Overall three improvements were made: the addition of more special connotations,

application of shallow parsing and inclusion of more templates. These improvements

have resulted in a performance increase in comparison with our previous system, both

in CO and CAS queries, where our backend system using NLPX performs comparably

to – and many times outperformed – our baseline system using NEXI input. This vali-

dates the claim that natural language is a potential viable alternative to formal query

languages in XML-IR.

Reference

1. Abney, S.: Parsing by Chunks. In: Principle-Based Parsing. Kluwer Academic Pub-

lisher (1991)

2. Brill, E.: A Simple Rule-Based Part of Speech Tagger. In: Proceedings of the Third

Conference on Applied Computational Linguistics (ACL), Trento, Italy (1992) 152–

155

3. Clark J., DeRose, S.: XML Path Language XPath Version 1.0. W3C Recommenda-

tion, The World Wide Web Consortium, November 1999 available at

http://www.w3.org/TR/xpath.

4. Fox, C: Lexical Analysis and Stoplists. In: Frankes, W.B., Baeza-Yates, R. (eds.): In-

formation Retrieval: Data Structures and Algorithms, Prentice-Hall, Upper Saddle

River, New Jersey, United States of America (1992) Chapter 7 102-130.

5. Geva, S.: GPX - Gardens Point XML Information Retrieval INEX 2004. In: Fuhr, N.,

Lalmas, M., Malik, S., Szlavik Z. (eds.): Advances in XML Information Retrieval:

Third International Workshop of the Initiative for the Evaluation of XML Retrieval,

INEX 2004, Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers.

Lecture Nodes in Computer Science, Vol 3493. Springer-Verlag, Berlin Heidelberg

New York (2005) 221–222

6. Larson, R.: XML Element Retrieval and Heterogenous Retrieval: In Pursuit of the

Impossible? In Proceedings of INEX 2005 Workshop on Element Retrieval Method-

ology, Glasgow, Scotland (2005) 38-41.

7. O’Keefe, R., Trotman, A.: The Simplest Query Language That Could Possibly Work,

In: Fuhr N., Malik, S. (eds.): INEX 2003 Workshop Proceedings. Dagstuhl, Germany

(2003) 167–174

8. Ramshaw, L. Marcus, M.: Text Chunking Using Transformation-Based Learning, In:

Proceedings of the Third Workshop on Very Large Corpora (1995) 82-94.

9. Trotman, A., Sigurbjörnsson, B.: NEXI: Now and Next, In: Fuhr, N., Lalmas, M.,

Malik, S., Szlavik Z. (eds.): Advances in XML Information Retrieval: Third Interna-

tional Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004,

Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers. Lecture Nodes in

Computer Science, Vol 3493. Springer-Verlag, Berlin Heidelberg New York (2005)

410–423

10. Woodley, A., Geva, S.: NLPX: An XML-IR System with a Natural Language Inter-

face, In: Bruza, P., Moffat, A., Turpin, A (eds.): Proceedings of the Australasian

Document Computing Symposium, Melbourne, Australia (2004) 71–74.

11. Woodley, A., Geva, S.: NLPX at INEX 2004, In: Fuhr, N., Lalmas, M., Malik, S.,

Szlavik Z. (eds.): Advances in XML Information Retrieval: Third International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2004,

Dagstuhl, Germany, December 6–8, 2004, Revised Selected Papers. Lecture Nodes in

Computer Science, Vol 3493. Springer-Verlag, Berlin Heidelberg New York (2005)

393–406

12. Woodley, A., Geva, S.: Applying Error-Driver Transformation-Based Learning to

Structured Natural Language Queries, In: Proceedings of the 2005 International Con-

ference on Cyberworlds. IEEE Computer Society, to appear in 2005.

13. van Zowl, Roelof, Bass, J., van Oostendorp, H., Wiering, F.: Query Formulation for

XML Retrieval with Brick. In Fuhr, N., Lamas, M., Trotman, A. (eds.): In Proceed-

ings of INEX 2005 Workshop on Element Retrieval Methodology, Glasgow, Scot-

land (2005) 75-83.

������� �	��

�����������������	������
����������! "���$#��%

�&�
'(��)*�+'(�,�
�-�.�/� 0�1�1%2435�	�&��#��76

8:9<;>=@?BA7C
9EDFDG=@?BA
HJILKBMONQP&RTSVUOKBW>RBMON:XEY[Z]_^VUONLY`^VN7abNLcedfUgWbNLcha`NiX`RBUOW(SkjmlnSVUONLWbW[N

o�pTq�r KBYb^Vchs[RBY`^VUgN_Mstjvu(wTx<wTy�X`RBUOW(SkjmlnSVUONLWbW[NBz[sb^{RTW[ILN
|(}�~<~[�B���<�<���]�B���m�<�

���-�L�L���>���B�,�h� N_^VUOW[��SV�[N:Z]K�ckckUO�bUgMOU�Sm��SVK%�(Y[N_^k��RBW(���7d5�"^VN_Sk^VUONL�BRBMnc��`c�SVNL�
UOW:W>R�SVYb^{RBMEMgRTW[��Y[RB�BN�
K�Y[Mgai�]N
�<N_^k�7�[NLMOZb¡¢Y[M(SVK*ReMOKBSnKB¡>YbckN_^VcL£T¤¥W¦wBxBx p zB¤¥P*lJ�Zb^VKBZ]K�ckN�a�R*¡¢^{RB�,N_
KB^V§:SVKQZ[RT^kSVUOZ>RTW(SVcJSV�>RTSJ !RTW(SVN�a�SVK7Ug�,ZbMONL�,NLW(S�R&W>RTSVY`^{RBM
MgRBWb��Y>RT��NhUOW(SVN_^k¡¨RTILNe¡¢KB^
SV�bN!^VN_Sk^VUONL�BRBM>KT¡F�7d5��abK(ILYb�,NLW(SVcLz�UOW>a`NLZ]NLW[a[RBW(SVM��:KB¡
SV�[N7ckN�RT^VI{��NLWb��UOW[N�£]©��bUgceZ>RBZ]N_^habNLckI_^VUO�]NLchKBYb^hILKBW(Sk^VUg�bYbSVUOK�WfSVK�SV�[UOceZb^VK�ª�NLI_S
RBW[a%Zb^VNLckN_W(SVc«ckK��,N&K�ZbUgWbUOK�W[c«ILKBW[ILN_^VWbUOW[�¦SV�[N*S{RTck§G£

¬ ­[®e¯]°G±7²:³i´t¯Gµ{±e®

¶¸·m¶ ¹»ºF¼�½¿¾GÀ]¼B½mº¸Á
ÂiÃÅÄ =@DGÆ59fÇ[ÈG? Ã{É =¢Ê`D	=@D�?T;`?BAÅË]ÌG9<Ë5Í¢9`DGÆ`ÈF9`Æ`?%Î¢ÏVD¸9 É ÈFA_9`ÍtÍÐ9EDGÆbÈF9EÆb?�ÑVÒe9EDFÌ�Æb? ÉÅÉ =¢DGÆ59%AÅ?BÍ@?TÓ
;(9ED É 9ED ÃÅÔ ?BA&= Ã7Ô7Õ 9 É&É_Õ ?,?T;`?TA_Ë]ÌG9<Ë5È Ã ?BA&A_?B9`Í@Í¢Ë�Ö5= ÃÅÃ =¢D É_Õ ?,×GA_Ê]Ø�? ÃÅÃ ÊEÙ
ÚkD]Ù¿ÊbAÅÖ�9 É =@ÊbD
Û7? É AÅ=¢?T;E9EÍ*Î¿ÚVÛiÒ�Ü-Ý"ÊbAÅ?BÊ<;`?BABÞF9 Ã DF9 É ÈGA_9`ÍJÍÐ9EDGÆbÈF9EÆb?,= ÃQÉ_Õ ?%ßt? Ã{É:Ô 9<Ë Ã Ê�Ùv9`A É Ê�?Tà>×FÍ¢9`=@D
Ê`ÈGA�=¢D]Ù¿ÊbAÅÖ�9 É =@ÊbDáDG?T?BÌnÞ�È Ã =@DFÆ�= É�ÃÅÕ Ê`ÈGÍÐÌ Õ ?TÍ¢×â9 Ã Ë ÃVÉ ?TÖã=@Ù ÉÅÕ ?�ÇbÈF?TA_Ë Ô 9 Ã 9EDF9`Í@Ë Ã ?BÌ
Ø�Ê`A_A_?BØ É Í@ËbÜFäiÊ Ô ?T;`?TA�Þ¸9 É ×FAÅ? Ã ?BD É Þtå:9 É ÈGAL9EÍ�æ�9EDGÆbÈF9EÆb?,ç«AÅÊGØ�? Ã_Ã =¢DGÆèÎvåiæJçhÒ É ?BØ Õ DG=ÐÇ[ÈG? Ã
9EA_?%DGÊ É Ì]?T;`?BÍ@Êb×t?BÌè?TDGÊbÈGÆ ÕèÉ Ê"Ø�Ê`Ö5?5ØTÍ@Ê Ã ? É Ê É_Õ ? Õ ÈGÖ�9`Dá×t?TALØ�?B× É =¢Ê`DáÊEÙhÍÐ9EDFÆ`ÈF9`Æ`?`Þ
9EDFÌ�9bØ É ÈF9EÍ�A_? Ã ÈGÍ É_Ã 9EA_?¦DGÊ É Ë`? É ÈG× É Ê Ô7Õ 9 ÉQÔ ?,ØTÊ`ÈGÍÐÌ	?Tà>×t?�Ø É�é@ê Þ¸ë<ì¥Ü

ÚkD É_Õ ?,ØB9 Ã ?¦ÊEÙ�Ï É A_9bÌ]= É =¢Ê`DF9`ÍOÑ:ÚVÛ,Þ Ô7Õ ?TA_?�Ì]ÊGØ�ÈGÖ5?TD É_Ã 9`AÅ?�ØTÊ`D Ã =¢ÌG?TA_?BÌ	9 ÃhÉ ?�à É Ê`DGÍ¢Ë
Îgí7î(ï5ÌGÊ]Ø�ÈGÖ5?BD É_Ã Ò�ÞeØTÍ¢9 ÃÅÃ =¢ØB9EÍ Ã ?B9EALØ Õ ?BDGÆ`=¢DG? Ã DG?B?BÌð9ñÇ[ÈG?BAÅËòØTÊ`Ö5×tÊ Ã ?BÌòÊ`Ù¦9ñÍ¢= ÃVÉ ÊEÙ
Ä ?TË Ô ÊbA_Ì Ã Ü(óñAÅ= É =¢DGÆ Ã È¸Ø Õ 9,Ç[ÈG?TA_Ë�= Ã Ç[ÈG= É ? Ã =@Ö5×GÍ¢?7Ù¿Ê`A É_Õ ?iØB9 Ã ÈF9EÍGÈ Ã ?TA�Þ`9ED¸Ì ÉÅÕ ?Q;(9`Í@ÈG?
9`ÌGÌ]?�Ì	ß[Ë	å:ænç�9`×G×GA_Êb9`Ø Õ ? Ã = Ã DGÊ É7Ô ÊbA É_Õ�É_Õ ?�Ø�ÊbÖf×FÍ@?Tà>= É Ë�Ê`Ù ÉÅÕ ? Ã ? É ?�Ø Õ DG=ÐÇ[ÈG? Ã Ü

ô D É_Õ ?èÊ ÉÅÕ ?BA Õ 9`DFÌ�ÞhÖ�9ED[ËõD¸9 É ÈFA_9`ÍiÍ¢9`DGÆ`ÈF9`Æ`?"=@D É ?BA{Ùv9bØ�? Ã Îvå:ænÚ{Ò�Ù¿Ê`A	Ç[ÈG?BAÅË>=¢DGÆ
ÃVÉ AÅÈFØ É ÈGA_?BÌ�Ì]Ê]ØTÈGÖ5?TD ÉLÃ ÎvÌF9 É 9`ßF9 Ã ? Ã Ò Õ 9<;`?"ßt?B?TD/Ì]?B;`?TÍ¢Ê`×t?BÌnÞeÖfÊ ÃVÉ Ê`Ù É_Õ ?TÖ É AL9ED Ã Ó
Ù¿Ê`A_Öf=¢DGÆfDF9 É ÈGA_9`ÍtÍÐ9EDFÆ`ÈF9`Æ`?i=¢D É Ê�ö É AÅÈFØ É ÈGA_?BÌø÷:ÈF?TA_Ë�æJ9`DGÆ`ÈF9`Æ`?%Î¥öF÷¦æ�Ò é ù Þ]úFÞFû�ì�ÜGC Õ = Ã
= Ã ×GA_Ê`ß¸9EßGÍ¢Ë�ßt?BØT9`È Ã ? ÉÅÕ ?ißt?TDG?�ü É_Ã«ÉÅÕ 9 É ØT9`D5ßt?QÆb9`=@DG?�Ìf=@D É_Õ 9 É ØT9 Ã ?Q9EA_?&Ö�È¸Ø Õ�Õ =@Æ Õ ?TA
ÉÅÕ 9`D%=¢D É AL9`Ì]= É =¢Ê`D¸9EÍ>=@DGÙ¨ÊbAÅÖ�9 É =¢Ê`D%AÅ? É A_=@?B;(9EÍ¥Ü�ÚkDFÌG?T?BÌnÞ`öF÷¦æñÎm9EDFÌf9ED>Ë Ã{É A_ÈFØ É ÈGA_?BÌ%Ç[ÈG?BAÅË
Í¢9`DGÆ`ÈF9`Æ`?,È Ã ?BÌ�Ù¿ÊbAi8:Ýèæ�AÅ? É A_=@?B;(9EÍJ9 ÃQÔ ?TÍ¢Í¨Ò7= ÃiÕ 9EALÌ]Í¢Ë	È Ã 9EßGÍ¢?�ß[Ë�DFÊ<;>=ÐØ�?�9ED¸Ì"ØT9 Ã ÈF9`Í
È Ã ?BA Ã ÜJÝ"ÊbAÅ?BÊ<;`?BA Ã ÈFØ Õ ÍÐ9EDGÆbÈF9EÆb? Ã =@Ö5×tÊ Ã ? É Ê Ä DGÊ ÔýÉÅÕ ? Ã{É A_ÈFØ É ÈGA_?�ÊEÙ ÉÅÕ ?	ÌG9 É 9EßF9 Ã ?
Î¿Ê`A7Ê`Ù ÉÅÕ ?�ÌGÊ]Ø�ÈGÖ5?TD É_Ã Ò�Ü

þ*È É ÌG9 É 9EßF9 Ã ?hÇ[ÈG?TA_Ë>=@DGÆi= Ã 9 ÃVÉ AÅ=ÐØ É =¢D É ?TA_AÅÊbÆb9 É =@ÊbDnÜTÚ É = Ã DGÊ É =¢D]Ù¿ÊbAÅÖ�9 É =@ÊbD�AÅ? É A_=@?B;(9`ÍmÜ
C Õ ?:È Ã ?TA Ä DGÊ ÔQÃhÔ7Õ 9 É*Ä =¢DFÌ�Ê`ÙJÌG9 É 9�= Ã Ø�Ê`D É 9`=@DG?�Ì�=¢D É_Õ ?¦ÌG9 É 9`ßF9 Ã ?`Þ É_Õ ?:=¢D]Ù¿Ê`A_Ö�9 É =@ÊbD
DG?T?�Ìÿ= Ã ×GA_?BØ�= Ã ?`Þ-9EDFÌè9	Ø�Ê`A_A_?BØ É Ç[ÈG?TA_ËøDG?BØT? Ã_Ã 9`AÅ=¢Í¢Ë	Í¢?B9bÌ ÃiÉ Ê�9	Ø�ÊbAÅA_?BØ É 9`D Ã{Ô ?TA�ÜtC Õ = Ã
Öf?�9ED Ã!ÉÅÕ 9 É«ÉÅÕ ?QDF9 É ÈGAL9EÍGÍÐ9EDFÆ`ÈF9`Æ`?&9`DF9EÍ¢Ë Ã = Ã Ö�È Ã{É =¢D É ?TA_×GAÅ? É!É_Õ ?iÇbÈF?TA_Ë�×t?TAÅÙ¿?BØ É Í¢Ë%9`DFÌ

ÈGDF9EÖ�ßF=@ÆbÈGÊ`È Ã Í¢Ë`Þ�Ùv9E=¢Í@=¢DGÆ Ô7Õ =ÐØ Õ�É_Õ ?«üFDF9`Íb9`D Ã{Ô ?TAn= Ã =@DFØTÊ`A_AÅ?�Ø É 9`DFÌ ÉÅÕ ?eÈ Ã ?BA�Ì]= Ã 9 É = Ã üF?�Ì�Ü
�GÊbA É_Õ = Ã A_?B9 Ã Ê`D�DFÊ É 9`ßGÍ¢Ë`Þ]DF9 É ÈGAL9EÍ�Í¢9`DGÆ`ÈF9`Æ`?:=¢D É ?TAÅÙv9`ØT? Ã Ù¿Ê`AQÌG9 É 9EßF9 Ã ? Ã ÊbDGÍ¢Ë�9E×G×GÍ¢Ë É Ê
;`?TA_Ë	AÅ? ÃVÉ AÅ=ÐØ É ?BÌ"Ì]Ê`Ö�9`=@D Ã Ü��e;`?TDÿ=¢D É_Õ ? Ã ?%Ì]Ê`Ö�9`=@D Ã Þ É_Õ ?%9ED Ã{Ô ?BA É Ê�9�Ç[ÈG?TA_Ë	= Ã Ê`Ù É ?TD
�����	�
����
 ï�� ��������� ï�î ������
 � ��� � ������� Ü
8:Ýèæ A_? É AÅ=¢?T;E9EÍ Ã{É 9`DFÌ Ã ßt? ÉkÔ ?B?TD ÉÅÕ ? Ã ? ÉkÔ ÊñÌ]ÊbÖ59`=@D Ã Î Ã ?B?�C
9EßnÜ ê Ò�Ü �
"! ��# ��� ï%$

	���
��� ï �&� 8¦Ýÿæ�üFÍ¢? Ã*é ' ì�Þ(9 Ã�Ô ?BÍ@Í]9 Ã ÌF9 É 9`ßF9 Ã ? Ã Þ�Ø�ÊbD É 9E=¢D Ã ÊbÖf? Ã{É A_ÈFØ É ÈGAL9EÍ[=@D]Ù¿ÊbAÅÖ�9 É =¢Ê`DnÞ
9EDFÌ ÉÅÕ ?5È Ã ?%Ê`Ùh9�åiænÚ Ô ÊbÈGÍÐÌÿßt?)(VÈ Ã{É =@üF?�Ì�Ünþ*È É =¢Dá8:ÝÿæõÚVÛ,Þ�9 Ã =¢D É AL9`Ì]= É =¢Ê`D¸9EÍ
ÚVÛ,Þ
ÉÅÕ ?Q=¢D]Ù¿Ê`A_Ö�9 É =¢Ê`D5DG?T?BÌ5= Ã Í@Ê]Ê Ã ?TÍ¢Ë�Ì]?�üFDG?�Ì59`DFÌ ÉÅÕ ?BAÅ?7= Ã DFÊ,×t?TA{Ù¿?�Ø É 9ED ÃÅÔ ?TA É Ê�9,Ç[ÈG?TA_Ë`Ü
Â å:ænÚ�= Ã�É_Õ ?TDõ9ÿ×¸9EA É Ê`Ù É_Õ ?	A_? É AÅ=¢?T;E9EÍe×FAÅÊ]ØT? Ã_Ã Þ
9ED¸Ì É_Õ È Ã = É ØT9`D�=¢D É ?TA_×GAÅ? É5Ã ÊbÖf?
ÇbÈF?TA_=@? Ã =@Ö5×t?BA{Ù¿?�Ø É Í¢Ë`Þ!9ED¸Ì Ã{É =¢Í¢Í*A_? É ÈGAÅDòÈ Ã ?TÙ¿ÈGÍ&AÅ? Ã ÈGÍ É_Ã Ü�C Õ ?	×GA_Ê`ßGÍ¢?TÖ = Ã�ÉÅÕ ?TD Ö59bÌ]?
ÏV?�9 Ã =@?BAVÑ É Ê Ã Ê`Í¢;`?`ÜTÜBÜQ9`DFÌ Ô ?%ØT9`D"?T;`?BD"=¢Ö59`Æ`=¢DG?�9EDÿ=@D É ?TAÅÙv9`ØT?�Æ`? É{É =@DGÆ�ßt? ÉÅÉ ?TA:A_? Ã ÈGÍ É_Ã
ÉÅÕ 9`D�Ö�9`D[ÈF9EÍ�Ç[ÈG?TA_=¢? Ã Î Ô7Õ =¢Ø Õ = Ã 9%DGÊ`D Ã ?TD Ã ?:=¢D�ÌG9 É 9EßF9 Ã ? Ã Ò�Ü[Ý"ÊbAÅ?BÊ<;`?BAeÖ5Ê`A_?:Æ`?BDG?TAL9EÍ
9E×G×GÍ¢=ÐØT9 É =@ÊbD Ã ØB9ED�ßt?¦Ì]? Ã =¢Æ`DG?�Ì�Ü[ÚkD�A_? É ÈGAÅDnÞ Ã ÈFØ Õ 9ED�=¢D É ?BA{Ùv9bØ�? Õ 9 Ã«É Ê%ßt?:;`?BAÅË5AÅÊbßGÈ Ã{É Þ
9EDFÌ�9EÍ¢Í¸ÇbÈF?TA_=@? Ã Ö�È Ã{É ßt?i9`DF9EÍ¢Ë Ã ?�Ì�ÞE?T;`?TD�=¢Öf×t?BA{Ù¿?�Ø É Í@ËbÜ`Ú É = Ã DGÊ É Ø�ÊbDFØ�?B=@;E9EßGÍ¢? É_Õ 9 ÉeÉÅÕ ?
Ã Ë Ã{É ?TÖ A_? É ÈFAÅD Ã DGÊ�9ED ÃÅÔ ?TA7ßt?BØT9`È Ã ?�= É Ì]=ÐÌ	DGÊ É ÈGD¸Ì]?TA ÃVÉ 9EDFÌ É_Õ ?�Ç[ÈG? Ã{É =¢Ê`DnÜ

* �>��+-,/.>� XEK��,N«¡¢N�RTSVY`^VNLc�KB¡�0]R�S�zEckN_��U�jvc�Sk^VY[IÅSVYb^VN�a,RTW>a,c�Sk^VYbI_SVYb^VN�a,abK(ILYb�,NLW(SVc�UOW�RBW�¤mWb¡¢KB^kj��R�SVUgKBW21eN_Sk^VUONL�BRBMFZ]K�UOW(SeKT¡��`UON_ 7£
35476"8 9�:<;)=?>@9A8?BACED&8@CFBG:GH 9G8?B<CED&8?C�BG:IH

HKJ�D&CF;L:<ME8?9 HNJ�D&CF;O:<MP8?9OQ-RTS2UWV HKJ�D&C�;O:<MP8?9OQYXTZ[V
\ J�MP8%:<MP8 SVN&]ES«K�WbM�� SVN<]`S�^õc�Sk^VY[IÅSVYb^VN c�Sk^VY[I_SVY`^VN_^�abRTS{R

`AM�a�J"BA;O6"8?=@J�MbM�:A:IH SVN&]ES«K�WbM�� I_K�W(SVNLW(SeRBW[adcTKT^ec�Sk^VY[I_SVY`^VN
e CP:<B<f §<N_�E
KB^{abc g �_�Nh¸����h¸��,Eikjlhl,E��mn+@��olpWhF�Ppd,`�

`AMP8%:<B
qdBG:<8
6"8@=?J"M +-rWr]��,tsvu&wyx c�Sk^VUOI_S

¶¸·?z {�|~})� ÀGÁ���|"À]¼"���(ÀW���hÀGÁ����
ÀW�l�t�*ÀW���[�
C Õ ?�ÚVåQ= É =Ð9 É =@;`?,Ù¿ÊbA_�«;E9EÍ¢ÈF9 É =@ÊbDøÊEÙ!8:Ýÿæ�ÛQ? É A_=¢?T;(9`ÍeÎ¿ÚVå��«8¦Òi9E=¢Ö Ã 9 É ?T;(9`Í@ÈF9 É =¢DGÆ ÉÅÕ ?
?��-?BØ É =@;`?BDG? Ã_Ã ÊEÙhÚkD]Ù¿ÊbAÅÖ�9 É =@ÊbDáÛ7? É AÅ=¢?T;E9EÍ Ã Ë ÃVÉ ?TÖ Ã Ù¿ÊbA�8:ÝÿæðÌ]Ê]Ø�ÈGÖ5?BD É_Ã Ü�C Õ ?fÚVå_�«8
Ø�Ê`Í¢Í¢?BØ É =@ÊbD,Æ`A_Ê`ÈG× Ã 9 Ã ? É Ê`Ù ê"'E�GêN� 9EA É =ÐØ�Í¢? Ã Ù¿AÅÊbÖ ÉÅÕ ?hÚI� � �k�hÊ`Ö5×GÈ É ?TA�ö>Ê]Ø�=¢? É ËbÞ Ô A_= ÉÅÉ ?BD
=@Dø8:ÝÿæeÞ Ô = ÉÅÕ 9 Ã ? É Ê`Ù É Êb×G=¢Ø Ã 9ED¸Ì Õ ÈGÖ�9`Dø9 Ã_Ã ? Ã_Ã Ö5?TD É_Ã ÊbD ÉÅÕ ? Ã ? É Êb×G=¢Ø Ã Ü

ÚkDÿëF���[û�ØT9`Ö5×F9E=¢Æ`DnÞ ÉkÔ Ê�Ì]=��t?BAÅ?BD É7É Ë>×t? Ã ÊEÙ É Êb×G=ÐØ Ã&Õ 9<;`?�ßt?T?BDøÌ]? Ã =¢Æ`DG?�Ì é�� ìv�
���
	� ï ��� ï_� �l�7�/��� ï � � ! ï�� �<� Îv� ôO� öGÒ É Ê`×G=ÐØ Ã Þ]9 Ã =@DFÌG=¢ØB9 É ?�Ì�ß[Ë ÉÅÕ ?T=¢A&DF9`Ö5?`Þ>AÅ?TÙ¿?TA
Ê`DFÍ@ËøÊ`D É ?�à É ÈF9EÍ�ØTÊ`D É ?TD É ÞtßFÈ É:É_Õ ?%È Ã ?TA�ØT9`DÿDG?T;`?BA É_Õ ?TÍ¢? Ã_Ã 9`ÌGÌ Ã ÊbÖ5? ÃVÉ AÅÈ¸Ø É ÈFA_9`Í
Õ =¢D ÉLÃ&É Ê Õ ?TÍ¢× É_Õ ? Ã Ë Ã{É ?BÖ�Ü

���
	� ï ��� ï¡ ���O� ï � � ! ï�� �<� Î�� Â öGÒ É Ê`×G=ÐØ Ã 9EÍ¢Í@Ê Ô 9�È Ã ?TA É_Õ 9 ÉhÄ DGÊ Ô É_Õ ? Ã{É A_ÈFØ É ÈGAÅ?QÊEÙÉÅÕ ?fÌ]Ê]ØTÈGÖ5?TD ÉLÃiÉ Ê�Ù¿Ê`A_Ö�ÈGÍÐ9 É ?%Ø�ÊbD Ã{É AL9E=¢D É_Ã ÊbD ÃVÉ AÅÈ¸Ø É ÈFA_9`Í�?TÍ¢?TÖ5?TD É_ÃiÉ_Õ 9 É�Õ ?K¢ Ã{Õ ?
Ô 9`D É_Ã&É Ê5ßt? Ã ?B9EALØ Õ ?BÌ�Ù¿Ê`A�Ü
óñ?5×F9`A É =¢ØT=@×F9 É ?�Ì É Ê ÉÅÕ ?�ØB9EÖ5×F9`=@ÆbDÿÙ¿Ê`A,ßtÊ É_Õ ØB9 É ?BÆ`ÊbAÅ=¢? Ã ÞtßFÈ É ÊbÈGA,9E×F×GAÅÊ[9`Ø Õ Ù¨Ê`Ó

Ø�È Ã ? Ã ×GAÅ=¢DFØ�=¢×F9`Í@Í¢ËâÊbD£� Â ö É Ê`×G=ÐØ Ã Ü Â Ã =¢Ö5×GÍ@=@üF?BÌò?TàG9EÖ5×GÍ¢?	ÊEÙ:ÚVå_�«8ãë����bû É Êb×G=¢Ø	= Ã
Æ`=¢;`?TD�=¢D/��=¢ÆFÜ ê Ü[C Õ ?:?BÍ@?BÖ5?TD É¥¤F¦�§	¨�©N¨�ªE« = ÃhÔ AÅ= ÉÅÉ ?TD�=¢D	å_�«8:Ú é � ì¥Þ]9,Ù¿Ê`A_Ö�9EÍ¸ÍÐ9EDGÆbÈF9EÆb?
Ù¿Ê`A78¦ÝÿæâAÅ? É A_=@?B;(9EÍ¥Ü

<
UOW[N&]��!SVKBZ[UOI 8
J<qd=@D � =?H � �����
	��
� CP:<B<f � 8?fAqP: � �A\�������� D&8 � M�J � ����� >

<
SVUOSVMON

>
ILKEabN7ckUg�BW[UOWb�,�<N_^VU��[I�RTSVUOK�W

<
c�SVU�SVMgN

>

<
I�RBc�SVU�SVMON

>
c"cBRT^kSVUOILMgN�cNcTcVNLI
� RB�]K�Y`S���£gz>ILKEa`N7ckUg�BW[UOW[���<N_^VU��[I�RTSVUOK�W����

<
cTILRBc�SVU�SVMgN

>

<
abNLckIÅ^VUgZ`SVUOK�W

>s-UOW>a�a`K(ILY[�,N_W(SVceKB^&abK(ILYb�,NLW(ShILKB�,Z]K�W[N_W(SVcLz>�,K�c�ShZb^VKB�>RB�bM��5ckNLI_SVUOK�WbcLz]SV�>RTS
abNLckIÅ^VUg�]N&SV�bN7RBZ[Z`^VK<RTIÅ�fKB¡�ILKEabN7ckUO��WbUOW[�,RBW>a%��N_^VU��>I�R�SVUOK�W¸£

<
cBabN_ckI_^VUOZbSVUOK�W

>

<
W>RT^k^{R�SVUO�<N

>¤�RB� �KT^V§EUgWb�,UOW5R¦ILK��,Z[RBW(�,SV�>RTSeRBY`SV�[NLW(SVUOI�R�SVNLchR: «Uga`N7^{RTW[��N7KB¡- �N_��a[R�S{R
�>RTckN5RBZbZ[MOUOI�RTSVUOK�Wbc�¡¢^VKB� a`U � NÅ^VNLW(S�ckKB¡@S¥ �RT^VN5�<NLW[abKB^VcL£��O£�£L£��e©¸K	�]N�^VNLMONL�BRBW(S�z
R,abK(ILYb�,NLW(S«KB^*abK(I_Y[�,NLW(S«ILKB�,Z]K�W[N_W(Se�:Y[c�SeabNLckIÅ^VUg�]N7SV�bN7 «�bK�MONiZ`^VKEI_NLckchKB¡
ILKEabN7ckUO��WbUOW[�,RBW>a%��N_^VU��>I�R�SVUOK�W¸z` «�[UOI{�5�,N�RTW[c��O£�£L£��

<
cTW>R�^k^{RTSVUO�<N

>

<
cTUOWbN&]��!SVK�Z[UOI

>

�! pt�K.>� l[]bRB�,ZbMONfKB¡7¤mP&ln� wTx�x p SVK�ZbUOI�£
©��[N |`��|#"�� NLMONL�,NLW(S,UOc�YbckN�aÿ¡ÐKB^ r KBW(SVNLW(Skj � W[M��ckNLRT^VI{�¸z�$ }E�T|`�T|%"�� ¡ÐKB^7c�Sk^VYbI_SVYb^{RTM��[UOW(SVc&RBW[a r�& X5^VNLZ`^VNLckNLW(S{RTSVUOKBW	UOW�P&ln�*¤{£(' �E� $ �`�*)E|`�
+�~UOc�Y[ckNLaá�(�èP&R�SVYb^{RBMh�¸RBWb��Y>RT��N-,n^VK(ILN_ckckUgWb�"S{RTck§`c,Z>RT^kSVUOILUOZ[RBW(SVcLz� «�bUgMON5SV�[N ~`}B�<�(}�|`��.(� UOc^VN_ckN_^V�<N�a�¡ÐKT^h�EY[��RTW%RBckckNLckckKB^VcL£

å_�e8iÚ � Â ö	ÇbÈF?TA_=@? ÃhÕ 9<;`? ÉÅÕ ?¦Ù¿Ê`A_Ö0/1/32547698:/;/1<-47=>8 Ô7Õ ?TA_? Â 9EDFÌ ��9`AÅ?:×¸9 ÉÅÕ¸Ã
9EDFÌ�þ 9`DFÌ@? 9EA_?:üFÍ É ?BA Ã Ü]óñ?�ØT9`D�AÅ?�9`Ì ÉÅÕ = Ã Ç[ÈG?TA_Ë�9 Ã �7A�� ï�� ��� � �E����!������ î � ï �y
CB
DFE ���<� �Y� î�G
 �]ïIH î ��� � �Y� î�G
 �]ï�� � Ü-þ 9ED¸ÌJ? Ø�ÊbAÅA_? Ã ×tÊ`DFÌ É Ê�Ì]= Ã (VÈGDFØ É =@ÊbD Ã Ê`A
Ø�Ê`DF(VÈGDFØ É =@ÊbD Ã Ê`ÙIK 9EßtÊbÈ É KFØTÍ¢9`È Ã ? Ã À(Leº��J¼�M /1/ }9N�OQP Þ Ô7Õ ?TA_? ��= Ã 9f×¸9 ÉÅÕ 9EDFÌ � 95Í@= ÃVÉ
ÊEÙ É ?TA_Ö Ã ÜbC Õ ?>R ¨�©K¨�ªE« R
×F9EA É ÊEÙ �
=¢ÆFÜ ê Æb=@;b? Ã 9�Æ`Ê>Ê]Ì%?Tà]9`Ö5×GÍ@?7Ê`Ù�9,Ç[ÈG?BAÅË�Ù¿ÊbAÅÖ�ÈGÍÐ9 É ?BÌ
=@D"å_�e8iÚ�Ü¸Ý"Ê`A_?¦=¢D]Ù¿ÊbAÅÖ�9 É =@ÊbD�9`ßtÊ`È É å��«8iÚ7ØT9ED�ßt?�Ù¿Ê`ÈGDFÌ�=¢D é � ì¥Ü

ÚkDñëF�E�bû5ÚVå_�«8 ØB9EÖ5×F9`=@ÆbDnÞ ÉkÔ Ê�Ì]=��-?TA_?TD É¦É 9 Ã{Ä]Ã 9E=¢Ö5?BÌ É Ê	=@D>;`Ê`Í¢;`?%åi9 É ÈGAL9EÍ
æ�9ED]Ó
Æ`ÈF9`Æ`?7ç«AÅÊGØ�? Ã_Ã =@DGÆ¸ÜEÚkD ÉÅÕ ?QüFA ÃVÉ ÊbDG?`ÞbØB9EÍ¢Í@?�Ì5å:æ
÷ýÎvå:9 É ÈFA_9`Í¸æJ9EDGÆbÈF9EÆb?i÷:ÈG?TA_=¢? Ã Ò�Þ`×F9EAÅÓ
É =ÐØ�=¢×F9ED É_Ã*Õ 9`Ì É ÊfØ�ÊbD Ã =¢Ì]?BAhÊ`DFÍ@Ë É_Õ ?TS «�§P¤%U�©
Vd¨�©%W#X ×F9`A É Ê`Ù É_Õ ? É Êb×G=¢Ø Ã 9ED¸Ì É Ê%A_? É ÈGAÅD
9 Ã ? É ÊEÙJ8¦Ýÿæè?BÍ@?BÖ5?TD ÉLÃ Î¿Ê`A&Ì]Ê<à]?TÍ Ã ÒeØTÊ`A_AÅ? Ã ×tÊ`DFÌ]=¢DGÆ É Ê ÉÅÕ ?¦A_?BÇ[ÈG? ÃVÉ Ü[åiÊ%Ö�9 ÉÅÉ ?TA Õ Ê Ô
ÉÅÕ ?BË�×t?TAÅÙ¿Ê`A_Ö5?BÌ ÉÅÕ ?B=@A Ã ?B9EALØ Õ Þ�ÊbA Ô7Õ ?TA_? ÉÅÕ ?7åiæJç Ô 9 Ã È Ã ?�Ì�ÜEC Õ ?&?T;E9EÍ¢ÈF9 É =@ÊbD�ÊEÙ-åiæ
÷
Ã Ë Ã{É ?TÖ Ã&Ô 9 Ã*ÉÅÕ ? Ã 9EÖ5?,9 Ã Ù¿ÊbA ÉÅÕ ?�î � $ E
N! É 9 Ã{Ä Ü

ÚkD É_Õ ? Ã ?BØTÊ`DFÌ�Ê`DG?`Þ�å:æ
÷�ë`å_�«8:Ú�Þ
ÊbD Ô7Õ =ÐØ Õ�ÉÅÕ = Ã ×F9E×t?BA�Ù¿Ê]ØTÈ Ã ? Ã Þ É_Õ ?�9`=@Ö Ô 9 Ã
É Ê É AL9ED Ã ÍÐ9 É ?5DF9 É ÈGAL9EÍeÍ¢9`DGÆ`È¸9EÆ`?�Ç[ÈG?BAÅ=¢? Ã =¢D É Ê ¨�©K¨WªP« Î Ä ?TË Ô Ê`ALÌáÍ¢= ÃVÉ Ò,9`DFÌ ¤F¦�§	¨�©N¨�ªE«
Îvå��«8iÚ{Ò�?TÍ¢?TÖ5?BD É_Ã Ù¿AÅÊbÖ ÉÅÕ ?YS «�§P¤%U�©
Vd¨�©%W#X Ü«äQ?TA_? ÉÅÕ ?è=¢ÌG?B9 = Ã�É Ê�ßGÈG=¢Í¢Ì/9âÆb?TDG?BAÅ=ÐØ
=@D É ?TAÅÙv9`ØT? ÉÅÕ 9 É ØTÊ`ÈGÍÐÌÿÈ Ã ?�Ìÿß[Ëÿ9ED>ËøA_? É A_=¢?T;(9`Í Ã Ë Ã{É ?TÖ AÅ?�9`Ì]=¢DGÆ	å_�e8iÚ:Ç[ÈG?TA_=¢? Ã Ü Â È É Ê`Ó
Ö59 É =ÐØT9`Í@Í¢Ë�Æ`?TDF?TAL9 É ?�Ì É Ê`×G=ÐØ Ã&Õ 9<;`? ÉÅÕ ?BD�ßt?T?BD�AÅÈFD Ô = ÉÅÕ 9 Ã ?�9EALØ Õ ?TDGÆb=@DG?

E
×FAÅÊ(;>=¢Ì]?�Ì

ß[Ë ÉÅÕ ?,Ê`A_Æb9EDG=[ZT?BA Ã Ü>ÚkD É_Õ = Ã ØB9 Ã ?`Þ ÉÅÕ ?,?B;(9`Í@ÈF9 É =¢Ê`D	= Ã*ÉVÔ ÊEÙ¿ÊbÍ¢Ì[�
ê Ü795Ø�ÊbÖ5×F9EA_= Ã Ê`D	ß¸? ÉkÔ ?T?TD É_Õ ?,?��-?BØ É =@;`?BDG? Ã_Ã Ê`Ù
?B9bØ Õ åiæ�÷�ëEå��«8iÚ Ã Ë Ã{É ?TÖøÜ
ë]Ü79�Ø�Ê`Ö5×F9`AÅ= Ã Ê`Døßt? ÉVÔ ?T?BDÿ?�9`Ø ÕÿÃ Ë Ã{É ?BÖ�9ED¸Ì"9�ßF9 Ã ?BÍ@=¢DG?�Ê`ß É 9E=¢DG?BÌ"ß[ËøAÅÈFDGDG=¢DGÆ ÉÅÕ ?
Ã Ë Ã{É ?BÖ

E
ÊbDò=¢DG= É =Ð9EÍ,ÎvÖ�9ED[È¸9EÍ¨Ò É Êb×G=ÐØ Ã Þ�=@D ÊbA_ÌG?TA É ÊâÇ[ÈF9ED É =@Ù¿Ë ÉÅÕ ? É AL9`Ì]?TÓ¥Ê��ð=¢D

×t?TAÅÙ¿Ê`A_Ö�9EDFØT?`Ü

� ���
¯G³Q°������	��®�
e³���
�
��ò³�
n°�����®��������>µ��

ÚkD�ÊbÈGAQ9E×G×GA_Êb9bØ Õ Þ>A_?BÇ[ÈG? ÃVÉLÃ 9`AÅ?,9EDF9EÍ¢Ë Ã ?BÌ ÉÅÕ A_Ê`ÈFÆ Õ�Ã ?T;`?BA_9`Í ÃVÉ ?T× Ã �
ê Ü Â ×¸9EA É Ó�ÊEÙ¨Ó Ã ×t?T?�Ø Õ Îvç ô öGÒ É 9`Æ`Æb=@DGÆñ= Ã ×t?BA{Ù¿ÊbAÅÖ5?BÌòÊbD ÉÅÕ ?"Ç[ÈG?TA_ËbÜ �e9bØ ÕõÔ ÊbA_Ìò= Ã
ÍÐ9Eßt?TÍ¢?BÌÿß[Ë"= É_Ã¦Ô Ê`ALÌÿØ�ÍÐ9 Ã_Ã Î ��������� DGÊbÈGDnÞt;`?BAÅßJÞt9bÌK(V?BØ É =¢;`?`ÜTÜBÜ_Ò�Ü�C�Ê	ØB9EA_AÅË�Ê`È É:ÉÅÕ = Ã
É 9 Ã{Ä�Ô ?,Ø Õ Ê Ã ? ÉÅÕ ?,Êb×t?TD]Ó Ã ÊbÈGA_ØT?iÙ¿A_?T? É Ê>Ê`ÍnC�AÅ?B?BC
9EÆbÆ`?TA é � ì�Ü

ë]Ü Â ç ô ö[ÓkÌ]?B×¸?BDFÌG9`D É�Ã ?BÖ59`D É =¢ØfA_?T×FAÅ? Ã ?BD É 9 É =¢Ê`Dá= Ã 9 ÉÅÉ A_=¢ßGÈ É ?�Ì É Êø?B9bØ ÕñÔ ÊbA_Ì�Ü[�FÊ`A
?�àG9`Öf×FÍ@? ÉÅÕ ?�DGÊbÈGD! �?�
B�
F� #�î(ï �

F� Ô =¢Í¢Í�ßt?%AÅ?B×GAÅ? Ã ?BD É ?BÌøß[Ë É_Õ ?%×GAÅ?�Ì]=ÐØT9 É ? �?� B�
	� $
#�î(ï �

	�#"%$'& Þ]ÊbA É_Õ ?,;`?TA_ß(�
����� ï � B�� -ß[Ë �') ï "

e1 * �
����� ï � B��+& Üù Ü��hÊ`D É ?Tà É ÓmÙ¿A_?T? Ã Ë>D É 9`Ø É =ÐØeAÅÈGÍ¢? Ã Ì]? Ã ØTAÅ=¢ßt? É_Õ ?hÖ5Ê ÃVÉ Ø�ÈFAÅA_?TD É ÆbA_9`ÖfÖ�9 É =ÐØT9EÍ[Ø�Ê`D ÃVÉ AÅÈFØ�Ó
É =¢Ê`D Ã =¢D5Ç[ÈG?TA_=¢? Ã 9`DFÌfÇ[ÈG? Ã{É =¢Ê`D Ã ÜEænÊ Ô Ó�Í@?B;`?TÍ Ã ?TÖ�9ED É =ÐØ&9`Ø É =¢Ê`D Ã 9EA_?&Ø�ÊbÖ�ßG=¢DG?BÌ Ô = ÉÅÕ
?B9bØ Õ�Ã Ë>D É 9`Ø É =¢Ø"AÅÈGÍ¢?`ÜhC Ô Ê ?Tà]9`Ö5×GÍ@? Ã ÊEÙ Ã ÈFØ Õ Ê`×t?TAL9 É =@ÊbD Ã Þ«9`×G×GÍ¢=@?�Ì É Ê É_Õ ?èÌ]?TÓ
Ã Ø�A_=@× É =@ÊbD�Ê`Ù�C�Ê`×G=ÐØ êBù ��Î¿ÚVå��«8+ëF�E�Eúl� �-,2� î �<�t��� î �<! E �?���/. î � î ��� î . E �k��� î �7�?���
D � ï E)K�������

	� #5î � î �E� # ��� ï �?� î � ï �
!��-��� !�
	� ïkî �?�l�?��� î . î � î �F� î . E î�G
 �]ï
 G10 ��! ï
� îEï�î G_î �����'��� Ò�Þ
9EA_?%Æ`=¢;`?TDá=¢D �
=¢ÆFÜ_ëGÜ�C Õ ?füFDF9EÍ!A_? Ã ÈGÍ É = Ã 9	Í¢Ê`Æ`=ÐØT9`Í
AÅ?B×GA_? Ã ?BD É 9 É =@ÊbD
ÃÅÕ Ê Ô Dñ=¢D ÉÅÕ ?5Í¢?�Ù É ×¸9EA É Ê`Ù���=¢ÆFÜ ù ÜnC Õ = Ã A_?T×GA_? Ã ?TD É 9 É =@ÊbDè= Ã¦É Ê É 9`Í@Í¢Ëÿ=¢DFÌ]?T×t?BDFÌG9`D É
Ù¿A_Ê`Ö É_Õ ?�Ç[ÈG?TA_=¢?BÌ�Ø�Ê`A_×GÈ Ã Þ]= É = Ã Êbß É 9`=@DF?BÌ	ß[Ë�Æ`?BDG?TAL9EÍ-Í¢=¢DGÆ`ÈG= Ã{É =ÐØ¦Êb×¸?BA_9 É =¢Ê`D Ã Ü

úFÜ7C Õ ? Ã ?BÖ�9ED É =¢Ø�AÅ?T×FAÅ? Ã ?BD É 9 É =¢Ê`D	= Ã&ÉÅÕ ?TDøAÅ?�Ì]ÈFØT?BÌ Ô = ÉÅÕ�ÉÅÕ ? Õ ?BÍ@×øÊEÙ Ã ×t?BØT=gütØ¦A_ÈGÍ@? Ã �
� 9�A_?BØTÊ`ÆbDG= É =@ÊbD�Ê`Ù Ã Ê`Ö5? É Ë>×G=ÐØT9`Í�Ø�ÊbD Ã{É A_ÈFØ É =@ÊbD Ã Ê`Ù«9�Ç[ÈG?TA_ËñÎ �2������� A�� ï ���
�-)	�/�

 G%0 ��! ïÅÒiÊbA:ÊEÙ ÉÅÕ ?fØ�ÊbAÅ×FÈ Ã Î �2��������� î � î � ï �
!��-� D ��� ï¥ï ��� G ��34���2�15K� A_?�Ù¿?TA ÃQÉ Ê ÉÅÕ ?
É 9EÆÿî	�76áîF�]ï E
F� Ò98

� 9`DFÌè9�Ì]= ÃVÉ =¢DFØ É =@ÊbDèßt? ÉVÔ ?T?BD Ã ?BÖ�9ED É =¢Ø�?BÍ@?BÖf?BD É_Ã Ö�9E×G×F=@DGÆ	Ê`D ÉÅÕ ? ÃVÉ A_ÈFØ É ÈFAÅ?
9`DFÌ�ÞGAÅ? Ã ×t?�Ø É =¢;`?TÍ¢ËbÞ>Ö�9E×F×G=@DFÆ5Ê`D ÉÅÕ ?�Ø�Ê`D É ?TD É 8

�
=@ÆbÈGA_? ùfÃ{Õ Ê ÔQÃ*ÉÅÕ ? Ã ×t?BØT=gü¸Ø�AÅÈGÍ¢? Ã*É_Õ 9 É 9`×G×GÍ¢Ë É Ê ÉÅÕ ?�?TàG9EÖ5×GÍ¢?`Ü
û]Ü Â É A_?B9 É Ö5?TD É Ê`Ù
AÅ?BÍ¢9 É =¢Ê`D Ã ?Tà]= Ã{É =¢DGÆ5ßt? ÉVÔ ?B?TD"Ì]= �-?TA_?TD É ?TÍ¢?TÖ5?TD É_Ã 8
' Ü7C Õ ?�Ø�ÊbD ÃVÉ AÅÈ¸Ø É =¢Ê`D	Ê`Ù�9 Ô ?BÍ@Í@ÓmÙ¿ÊbAÅÖ5?BÌ�å_�e8iÚ&Ç[ÈG?BAÅËbÜ
ö É ?T× Ãnê:É Ê�û�9`AÅ?:?�à]×GÍÐ9E=¢DG?BÌ�=¢D	Ö5Ê`A_?:ÌG? É 9`=@Í Ã =@D é¢ê �<ì�Þ]9 Ã*Ô ?TÍ¢Í�9 Ã DG?�Ø�? ÃÅÃ 9EA_Ë5Ø�ÊbAÅ×GÈ Ã

Ä DFÊ Ô Í¢?BÌ]Æb?79ED¸Ì ÉÅÕ ?Q?��t?�Ø É Ê`Ù É Ê`×F=¢ØQØ�Ê`Ö5×GÍ¢?�à]= É Ë%Ê`D É_Õ ?i9EDF9`Í@Ë Ã = Ã ÜEC Õ ?QAÅ?B×GA_? Ã ?BD É 9 É =@ÊbD
Ê`ß É 9E=¢DG?BÌ�9 É7ÉÅÕ ?,?BDFÌ	Ê`Ù!ö É ?B×iûfÌ]Ê]? Ã DGÊ É Ì]?T×t?BDFÌ�Ê`Dø9ED>Ë�A_? É AÅ=¢?T;(9`Í Ã Ë Ã{É ?BÖ ÊbA7Ç[ÈG?BAÅË
Í¢9`DGÆ`ÈF9`Æ`?bÜ>Ú É Ø�ÊbÈGÍ¢Ì�ßt? É AL9ED Ã Ù¿Ê`A_Ö5?BÌáÎ Ô = É_Õ Ö5Ê`A_?�Ê`A7Í¢? Ã_Ã =¢D]Ù¿Ê`A_Ö�9 É =@ÊbD	Í¢Ê Ã_Ã Òh=@D É Ê�9ED>Ë
?�à]= Ã{É =@DGÆfÙ¿ÊbAÅÖ�9EÍ�ÍÐ9EDGÆbÈF9EÆb?`Ü

C�A_9`D Ã Ù¿Ê`A_Ö59 É =¢Ê`D�×GA_Ê]ØT? ÃÅÃ Ù¿AÅÊbÖ ÊbÈGAiA_?T×GA_? Ã ?TD É 9 É =@ÊbD É Ê	å_�«8:Ú7= Ã DGÊ É¦ÃVÉ A_9`=@Æ ÕbÉ Ù¿Ê`AÅÓ
Ô 9EALÌ�ÜGÛ7?TÖ5?BÖ�ß¸?BA É_Õ 9 É 95å��«8iÚ7ÇbÈF?TA_Ë Õ 9 Ã*É_Õ ?�Ù¿Ê`A_Ö /1/�2J47698�/1/;< 47=>8{Ü
� Â*É Ø�ÊbD É ?TD É Í¢?T;`?BÍmÞBÍ¢=@DFÆ`ÈG= ÃVÉ =¢Ø!Ù¿?B9 É ÈGA_? Ã ÎvÍ¢= Ä ? X3W;: X=<2>1W S ©@?l©F«�U =¢D ÉÅÕ ?e?Tà]9`Ö5×GÍ@?<Ò�ØB9ED]Ó
DGÊ É ßt? Ä ?B× É 9EDFÌ%Ö�È Ã{É ßt? É AL9ED Ã Ù¿Ê`A_Ö5?BÌ�=@D�9ED59E×F×GAÅÊb×GA_=¢9 É ?hÖ�9EDFDG?TAQÎ Ã ?B?Qö>?BØ É Ü ù Ò�Ü

� Â*É�ÃVÉ AÅÈ¸Ø É ÈFA_9`Í&Í¢?T;`?TÍ¥Þ«9 Ã ? É Ê`Ù Ã ?B;`?TAL9EÍ É 9`Æñ=ÐÌ]?TD É =@üF?TA Ã Î ÉÅÕ 9 É ØT9EDõßt? ?¦C ? É 9EÆ
DF9`Öf? Ã Ê`A Ô =¢Í¢ÌGØB9EALÌ Ã Ò Õ 9 Ã�É Êøßt?�Ì]= Ã{É A_=¢ßGÈ É ?�Ìñ=¢D É Ê"×F9EA É_Ã�Â Þ�þ¦Þ5�»9`DFÌ ?�Þ É_Õ 9 É
Ô ?:A_? Ã ×t?BØ É =¢;`?TÍ¢Ë5ØT9`Í¢Í Ã ÈG×G×tÊbA É AÅ?�Ç[ÈG? Ã{É_Ã Þ Ã ÈG×G×tÊ`A É ?TÍ¢?TÖ5?TD É_Ã Þ[A_? É ÈGAÅD�AÅ?�Ç[ÈG? Ã{É_Ã 9`DFÌ
A_? É ÈFAÅDÿ?BÍ@?BÖ5?TD ÉLÃ Ü�C Õ ? Ã ?�Ù¿Ê`ÈGA¦×F9`A ÉLÃ:Â Þ-þ¦Þ[� 9`DFÌ5? 9`AÅ?�ßGÈF=@Í É Ù¿AÅÊbÖ�Ê`ÈGA¦AÅ?B×GA_?�Ó
Ã ?TD É 9 É =@ÊbDñÎ%�
=@Æ¸Ü ù Ò*=@D ÉÅÕ ?�Ù¿ÊbÍ@Í¢Ê Ô =@DGÆ Ô 9<Ë��
•

�/= Ã&ÉÅÕ ? K Ù¿A_9`Ö5?BÌ KJÎ Ã ?TÍ¢?BØ É ?BÌFÒ*?BÍ@?BÖ5?TD É D¸9EÖ5?�Î Ã ?T?L�
=@Æ¸Ü ù 9`DFÌ	= É_Ã ØT9`× É =¢Ê`DtÒ98
•

?ã= Ã ØTÊ`Ö5×tÊ Ã ?BÌ ÊEÙ�9`Í@Í¥� Ø Õ =¢Í¢Ì]A_?TD Î¿A_?TÍÐ9 É =@ÊbD !�
	� ï�î �Y��� Ò59`DFÌ É_Õ ?T=¢A É ?Tà É ÈF9EÍ
ØTÊ`D É ?TD É ÎvA_?TÍÐ9 É =¢Ê`D î�G
 �]ïÅÒ-8

:��Lf
:���8IQ�:���9�:I6"BID���V
q�6"BI6��"Bv6<q	�WQ
��V
HK6"8
6��G6"9&:<9�Q@f&V
6��GJ"CF8IQ
�
�5f<V

�����
���������������
���

→
���! Z#"��

:
:���8IQ�:���9�:I6"BvD���V
$ l¡1�%ckN�RT^VI{�bUgWb�

6&�'�Lf
q�6"BI6��"BI6Aq	�WQ
��V
HK6"8
6��G6"9&:<9�Q@f&V
6��GJ"CF8IQ�6(�)�vV

*,+-�
�.+0/

1
�Of
q�6"BI62�"BI6<q	�WQ
��V
HK6"8
63�A6"9&:<9�Q@f&V
6��GJ"CF8IQ
�
�5f<V

"��
→
" �54 "6�7 8�!�9" �54 "

�
q�6"BI6��"Bv6<q	�WQ
��V
P �': P
Z>R�^{RB�B^{RTZ[�

6&�
6��GJ"CF8IQ�6(�)�vV,[1*l ,
RT�]K�YbS

f
HK6"8
63�A6"9&:<9�Q@f&V
P �': P
a[R�S{RB�[RBckNLc

�! pt�(;F� l[]bRT�,Z[MONQKB¡n^VYbMgNiRBZ[ZbMOUgILRTSVUOK�W�¡¢KB^*SV�bNQ�<N_^V�[RBMtZ[�`^{RBckN=< 9�:I6"BvD��F=YM��)q�6"Bv6��"BI6<q	�	9 6��GJ"CF8
HN6"8
6��G6"9&:&9�> �Ð^VY[MONLc "��

→
" �54 "?�7 8�!�@" �54 " RTW>a �A�

→
�A�! ZB"�� �Å£C%�RBckUOI*ckN_��RBW(SVUOI^VN_Zb^VNLckNLW(S{R�SVUOK�W[ciRT^VN�RTSkSk^VUO�[Y`SVN�a�SVKfZ>R�^kSkjmKT¡¢jvckZ]NLNLI{�[N_c �¨MON�R�¡«ILKB�,Z]K�W[N_WESVc �Å£�Dâ�[NLW�RBZ[ZbM��bUOWb�

c��`W(S{RBIÅSVUgI*^VYbMONLcLz[I_K��,Z]K�WbNLW(SVc!RT^VN7�,NÅ^V��N�a%RTW>a�ckNL��RBW(SVUOI7RTI_SVUOK�W[ceRT^VN7R�ababN�a �¨�[NÅ^VN&UgabNLW(SVU�Sm�
^VN_M@R�SVUOK�W[chRBW[a%�<N_^V�[RBMG^VNLMgR�SVUgKBW�Z`^VN�abUOI�R�SVN'E��]K�Mga%Zb^VN�a`UgILRTSVNLc �Å£

•

Â = Ã&É_Õ ? Õ =@Æ Õ ? Ã{É ?TÍ¢?TÖ5?TD É DF9`Öf?,=¢D ÉÅÕ ? ?:C ? É A_?T?`Þ É_Õ 9 É = Ã DGÊ É ��ÊbA7Ê`DG?,ÊEÙ
= É_Ã Ø Õ =¢Í¢Ì]A_?TD#8

•

þ/= Ã ØTÊ`Ö5×tÊ Ã ?BÌ�Ê`Ù�9EÍ¢Í�Ê ÉÅÕ ?BA7?TÍ¢?TÖ5?TD ÉLÃ 9EDFÌ É_Õ ?T=¢A É ?�à É ÈF9EÍJØ�ÊbD É ?TD É Ü
ó�=¢Í¢ÌGØB9EALÌ>Ó�=¢Ì]?BD É =güF?�Ì É 9`Æ Ã Ê`Ù É_Õ ? Ã 9EÖ5?,×F9EA É 9`AÅ?�Ö5?TA_Æ`?�Ì�9EDFÌø9EA_?,Ø�ÊbD Ã =¢Ì]?BAÅ?�Ì É Ê
ßt? ÉÅÕ ? Ã 9EÖ5?�?TÍ¢?TÖ5?TD É Ü¸ö>?B?,9`D�?�àG9EÖ5×GÍ¢?�=@Dÿö>?�Ø É ÜÅúFÜ

F � ±e³:®HGJIi°�����
#�
ô ÈGA Ã Ë Ã{É ?TÖ Æ`?BDG?TAL9 É ? Ã�Ã ÊbÖ5?øÍ¢=@DFÆ`ÈG= ÃVÉ =ÐØ�Ó¥ÊbAÅ=¢?TD É ?�Ì ×GAÅ?�Ì]=ÐØT9 É ? Ã Ü«C Õ ?"Ö�9E=¢DðÊ`DF? Ã 9EA_?
X V=<#V(U(W�VW«�Ud¨LK Þ X3W :�X=<2>1W S © ?l©	« U 9EDFÌ ¦ SAM «�¤K¨�©3N�« Ü�å��«8iÚ-Ù¿ÊbAÅÖ�9 É AÅ?BÇ[ÈG=¢A_? Ã-É_Õ ?QK 9`ßtÊ`È É K

Initial representation Rules Result

R:�fIQa%N*¡���N
1

N
2

N
3N_�ES��¨N

1

z[ckNLRT^VI{�(�
Z[RT^{RB�T^{RBZb�1�¿R �
KB�`ª�N_I_S��¨N

1

z>R �
N_�ES��¨N

2

z>a`N�RBM7�
��N_^VckUOK�W1�¨���
��RTW>RB�BNL�,NLW(S��¨I��
RT��NLW(S��¨N

2

z>R �
 «U�SV�;�¨N

2

zbI��
WbK�YbW;�«�,KEabU��[N_^��¨I�zE�(�
R�^kSVUgI_MgN �¿a��
N_�ES��¨N

3

z[I_K�W(S{RBUOW(�
Z[RT^{RB�T^{RBZb�1�¨N��
KB�`ª�N_I_S��Ð¡ �
abRTS{RB�[RBckNLc*�¨� �
RT��NLW(S��¨N

3

z>a �
KB�`ª�N_I_S��¨N

3

z[N*�
RT�]K�YbS��¨NBz[� �
WbK�YbW;�«�,KEabU��[N_^��¨�bz(¡ �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

N
1

R
NL�(S��¨N

1

zbckN�RT^VI{���
K��Eª�NLI_S��¨N

1

z[R � ⇒

R

N
2

R¦I
NL�(S��¨N

2

z[abN�RTM[�
RB��N_W(S��¨N

2

z[R �
 «UOSV�;�¨N

2

zbI��
⇒

R¦I
RB�]KBYbS��¿REz[I��

N
3

a%N
NL�(S��¨N

3

z[ILKBW(S{RBUOW(�
RT��NLW(S��¨N

3

z[a �
KB�`ª�NLIÅS��¨N

3

z[N*�
⇒

a%N
ILKBW(S{RBUOW[c*�¿aGz[N��

paragraph ⇒ �
article ⇒

�b��� �K+-,

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

� �fI i , ¡-�

� s¥��x�[��� �N+Y,�svi x
� s�,Px

ILK�W(S{RTUgWbc*�¿aFzbN��
RB�]K�Y`S��¿R`zbI��
RB�]K�Y`S��¨N�zb�%�
�<N_^VckUOK�W;�¨�(�
��RBW[RB��NL�,N_W(S��¨I��
K��`ª¥NLI_S��Ð¡C�
a[R�S{RB�>RTckNLc*�¨�%�
W[KBY[W;�«�,KEa`U �[N_^��¨I�zE�(�
W[KBY[W;�«�,KEa`U �[N_^��¨�bz(¡ �

�! pt���F� ©��bN�ckNL��RTW(SVUOI�RBW[RBM��bckUOc%KB¡:©¸K�ZbUgI o yBx �¨MgNÅ¡¢S �Åz!UOc�^VN�a`Y[I_N�aâ�(�áckK��,N��BNLW[NÅ^VUgI�^VYbMONLc
�¨I_NLW(SVN_^ �Åz�MON�R�a`UOW[�"SVKèRøW[N_ ý^VN_Zb^VNLckNLW(S{R�SVUOK�W �Ð^VUO���(S �Å£)%
K�Mga Z`^VN�abUOI�R�SVNLcfN_�,Z[�>RTckU��LN� �KT^{abc
^VN_Zb^VNLckNLW(SVUOWb�:�7d5��S{RT�:W>RB�,N_c�RBW[a,SV�[Ne¡@^{RB�,N�a�MON_SkSVNÅ^«c�S{RTW>a`c
¡ÐKT^!SV�bNhNLMONL�,NLW(S
SV�[RTS�ck�[K�YbMga
�]N&^VN_SVYb^VWbN�a�SVK�SV�[N7Y[ckNÅ^�£]©��[N �b^Vc�SeSV�`^VNLN7^VYbMgN_c*a`N�RBMF «UOSV����N_^V�>RTM¸Z[�`^{RBckNLc�� 8
JL9&:G6�BID��b9G8
��� z
� 8
J�H	:G6"4
	¡=-8
�29A8
��� RTW>a�� 8
JyDGJ"ME8
6"=YMb9A8
��� £

Ø�ÍÐ9EÈ Ã ? Ã�É ÊèØ�Ê`D É 9`=@DâÊbDGÍ@Ë É ?Tà É ÈF9EÍhØTÊ`D É ?TD É ÜJç Õ AL9 Ã ? Ã ØT9`Dâßt?�A_?T×FAÅ? Ã ?BD É ?�Ì Ô = ÉÅÕ Ç[ÈGÊEÓ
É 9 É =¢Ê`DÿÖ�9EA Ä>Ã ÜFóñ?fØ Õ Ê Ã ? É Ê	ØTÊ`D Ã =¢ÌG?TAiÊbDGÍ@ËøDGÊ`ÈGDÿ× Õ A_9 Ã ? Ã7É A_?B9 É Ö5?TD É:Õ ?BAÅ?`Þtßt?BØT9`È Ã ?
Ê ÉÅÕ ?TA7A_?TÍÐ9 É =¢Ê`D Ã 9EA_? É A_9`D Ã ÍÐ9 É ?BÌ�=¢Dø9 Ã{É AL9E=¢Æ Õ[É Ù¿ÊbA Ô 9`A_Ì Ô 9<Ë`Ü

�FAÅÊbÖ 9ED�ÚVÛ ×tÊ`=¢D É ÊEÙ
;>=¢? Ô Þ]DFÊ`ÈGD�× Õ A_9 Ã ? Ã*Õ 9<;`? ÉÅÕ ?,Æb?TDG?TAL9EÍtÙ¿ÊbAÅÖ é¢ê`ê ìv�

��

→

�E� ï�� .��<� � E � î � .W
	� ï��
ÜTÜTÜ{ó Õ ?BAÅ? �E� ïf= Ã 9âÌ]? É ?TA_Öf=¢DG?BABÞ .��<� Î .��<� #
"�F� ����� Ò�= Ã 9EDð9`ÌK(V?BØ É =¢;`?`Þ«9ñDGÊbÈGDõÊ`A�9
Ø�Ê>ÊbA_Ì]=¢DF9 É ?BÌâ× Õ A_9 Ã ?bÞ E � î � = Ã 9èDGÊ`ÈFDò9`DFÌ .W
	� ï	Î .W
	� ï%#
"�	� �T��� Òf= Ã 9ÿ×FAÅ?B×tÊ Ã = É =@ÊbDF9EÍ
× Õ AL9 Ã ?¦Ê`AQ9fA_?TÍÐ9 É =¢;`?�ØTÍ¢9`È Ã ?bÜ

ÚkD�Ê`ÈFA«AÅ?B×GAÅ? Ã ?BD É 9 É =¢Ê`DJÞ(A_?TÍÐ9 É =@ÊbD Ã ßt? ÉkÔ ?T?TD�×GA_?TÖ5Ê]ÌG=güF?BA Ã 9ED¸Ì Õ ?�9`ÌfDFÊ`ÈGD Ã 9`AÅ?7?�à>Ó
×GAÅ? ÃÅÃ ?BÌ�ß[Ë¦×GA_?BÌG=¢ØB9 É ? Ã X�W;:�X=<�>�W S © ?l©	«�U Î¿=@Ù ÉÅÕ ?e×GAÅ?BÖ5Ê]Ì]=@üF?TAJ= Ã 97DGÊbÈGD¸Ò�ÊbA ¦ SAM «�¤K¨�©�N�«
Î¿=@Ù ÉÅÕ ?Q×GA_?TÖ5Ê]Ì]=@üF?BA!= Ã 9`D�9`ÌK(V?�Ø É =¢;`?�Ò�Ü`ç«A_?T×tÊ Ã = É =¢Ê`DF9`Í]A_?TÍÐ9 É =¢Ê`D Ã ßt? ÉVÔ ?T?BD�åiç Ã Î �1�?��� ÉÅÕ ?
Ù¿Ê`A_Ö�
��

→

��
head

� A�� ��
��
post

Ò&9EA_?¦AÅ?B×GA_? Ã ?BD É ?BÌ�ß>Ë X3W;:�X <#V�U(W�VW«�Ud¨LK Ü
Â Í¢ÍFÙ¿Ê`A_Ö Ã«Õ 9�;`?7ßt?B?TD�Ø�ÊbD Ã =ÐÌ]?TA_?BÌ Ô7Õ ?TD�9ED¸9EÍ¢Ë Ã =¢DGÆ ÉÅÕ ?QD¸9 É ÈFA_9`ÍGÍ¢9`DGÆ`ÈF9`Æ`?7Ç[ÈG?TA_=@? Ã Þ

ßGÈ ÉñÔ ? Ì]= Ã{É =¢DGÆbÈG= ÃÅÕ ?�Ì ÉVÔ Ê Ã ×t?�Ø�=@ü¸ØòØ�Ê`D ÃVÉ AÅÈFØ É =¢Ê`D Ã ÊEÙ�åQç ÃÿÉ Ê/ßFÈG=@ÍÐÌ É_Õ ?�Ù¿ÊbAÅÖ�9EÍ
ÇbÈF?TA_=@? Ã Ü

�n·m¶ �n½����5�
�øÁ�º���Á����¡�(ÀW�N�d�
ÚkD �«DGÆbÍ@= ÃÅÕ Þ É_Õ ? Ã =¢Ö5×GÍ@? ÃVÉ DGÊ`ÈGDò× Õ A_9 Ã ? Ã 9EA_?	9 Ã ÈFØBØ�? Ã_Ã =@ÊbD Ê`Ùi9bÌK(V?BØ É =¢;`? Ã Ê`AfDGÊ`ÈFD Ã
Ù¿Ê`Í¢Í@Ê Ô ?BÌ	ß>Ë	9 Õ ?B9`Ì	DFÊ`ÈGD[�

��
→

" _�
	��
b�

 &d�
b��

 Î ê Ò
C Õ ? Ã ?7Ö�ÈGÍ É =@Ó Ô ÊbA_Ì É ?BAÅÖ Ã 9EA_?&Í@? ÃÅÃ 9EÖ�ßG=¢Æ`ÈFÊ`È Ã
É_Õ 9ED Ã =@Ö5×GÍ¢?7DGÊ`ÈFD Ã Þ`9`DFÌ%Æb?TDG?BA_9`Í@Í¢Ë

AÅ?TÙ¿?TA É Êõ9ò×F9EA É =ÐØ�ÈGÍÐ9EA�Ì]ÊbÖ�9E=¢D é¢ê ë�ì�Ü&C Õ ?TË/9EA_?ÿDFÊ ÉøÃ ÈGß�(V?BØ É�É Ê Ö59`D[Ë Ã Ë>D É 9`Ø É =ÐØT9EÍ
;(9EA_=Ð9 É =¢Ê`D Ã Î Ã ?T?«DG?Tà É
Ã ?�Ø É =@ÊbD¸Ò�ÞB9`DFÌ�= É = Ã ÇbÈF= É ?«×GA_Ê`ßF9`ßGÍ¢? É_Õ 9 É
Ã ÈFØ Õ�É ?TA_Ö Ã A_?T×GA_? Ã ?TD É =¢DGÆ
ÉÅÕ ? Ã 9EÖ5?�Ø�ÊbDFØ�?T× É,Õ 9<;`? ÉÅÕ ? Ã 9EÖ5?fÙ¿Ê`A_Öã=¢DñÖ5Ê ÃVÉ ÊGØTØ�ÈFAÅA_?TDFØT? Ã ÊEÙ&9øØ�ÊbÍ@Í¢?BØ É =¢Ê`DnÜ[�FÊ`A
9EÍ¢Í É_Õ ? Ã ?¦A_?B9 Ã ÊbD Ã Þ ÉÅÕ ? Ã ? Ã =@Ö5×GÍ¢?,åQç Ã 9EA_?:;`?BAÅË�=¢D É ?BAÅ? ÃVÉ =@DFÆf=@D�=¢D]Ù¿Ê`A_Ö59 É =¢Ê`D	AÅ? É A_=@?B;(9`ÍmÜ
ö>Ê`Ö5?�?�àG9EÖ5×GÍ¢? Ã Î¿?�à É A_9bØ É ?BÌ�Ù¿A_Ê`Ö ÚVå_�e8 ëF�E�bû É Ê`×F=¢Ø Ã Ò*9`AÅ?¦Æ`=¢;`?TD	=¢DøC
9EßnÜLë	Î Ô = ÉÅÕ 9ED
9`ÌGÌ]= É =¢Ê`D¸9EÍ�A_ÈGÍ@?¦Ù¿ÊbA7×GA_Ê`×t?TA7DF9EÖ5? Ã �

��

→

�
 � Ò�Ü
ó�= ÉÅÕ å��«8iÚ�Þ`× Õ AL9 Ã ? Ã 9`AÅ?*A_?T×GA_? Ã ?TD É ?�Ì�ßt? ÉVÔ ?T?BD5Ç[ÈGÊ É 9 É =@ÊbD%Ö�9EA Ä>Ã Ü Â Í¢Í Ã ?BÇ[ÈG?TD¸Ø�? Ã

ÊEÙ Ô ÊbA_Ì Ã Ê`ßt?BË[=¢DGÆ É Ê�ÛQÈGÍ@? ê 9EA_? ÉÅÕ ?BD É AL9ED Ã Ø�A_=¢ß¸?�Ì�ßt? ÉVÔ ?T?BDøÇ[ÈGÊ É 9 É =¢Ê`D	Ö�9EA Ä]Ã Ü

* �>��+-, ;G� l]bRB�,Z[MONLc!KT¡nckUO�,Z[MON&W[KBY[W%Z[�`^{RBckNLc �Ð^VY[MON o ��UOWf¤¥P&ln�ðwBx�x p SVK�Z[UOILcL£
©¸K�Z[UOILc P*K�YbWfZb�b^{RTckN
����� <¥ckN_��RBW(SVUOI&W[NÅS¥
KB^V§Ec > � &���� P �': P �
�%	�� <¥�T^{RBZb�%SV�[NLKT^k� > �¨P �': P P �': P��
��� � <¥�:Y[M�SVUO�,NLabUgR:a`KEI_Y[�,NLW(S!�,KEa`NLMOc > �¨P �': P P �': PòP �': P��
����� <¥�BMOK��>RTM¸Z]K�ckU�SVUOK�W[UOWb�,c��bc�SVN_�,c > � &���� P �': P P �': P��
����� < � RBW5dfK�MgabK��BRBW > � ,nP ,JP��

�n·?z < º���� �
���òÁ�º���Á����¡�(ÀW�N�d�
åQÊ`ÈFD Ã Ê`A5DGÊbÈGD × Õ A_9 Ã ? Ã Í¢=¢D Ä ?BÌ É Êâ?�9`Ø Õ Ê ÉÅÕ ?TA5ß>Ë�×GA_?T×tÊ Ã = É =¢Ê`D Ã 9EA_? Ã ?BÖ59`D É =¢ØB9EÍ¢Í@Ë
;`?TA_Ë Ã =¢Æ`DG=@ü¸ØT9`D É,é¢êBù Þ ê ú(ìv�

��
→

�� " � A�� ��
�� &d� Îmë`Ò
C Õ ?BË Ê]ØBØ�ÈGA�9 Ã Ù¿A_?BÇ[ÈG?TD É Í¢Ëõ9 Ã ØTÊ`D Ã{É A_ÈFØ É =@ÊbD Ã Ö�9`Ì]? Ô = ÉÅÕ Û7ÈGÍ¢? ê Î Ã ?B?èC�9`ßnÜ ù Ò�Ü

äQÊ Ô ?T;`?BAe= É = Ã Ç[ÈG= É ? Õ 9�ZB9EALÌ]?BÊ`È Ã!É ÊfØ�ÊbD Ã =¢Ì]?BA ÉÅÕ ?BÖ 9 Ã 9�ÈFDG=¢Ç[ÈG?¦Ö�ÈGÍ É =gÓ Ô ÊbA_Ì É ?TA_Ö =¢D
ÉÅÕ ? Ã 9`Ö5? Ô 9<Ë`Ü¸ÚkDÿ×F9EA É =ÐØ�ÈGÍÐ9EA�Þ ÉÅÕ ?BËø9`AÅ? Ã ÈGßd(V?�Ø É:É Ê�Ö�9ED>Ë�;(9`AÅ=Ð9 É =@ÊbD Ã =@D É_Õ ?T=¢AiÙ¿Ê`A_ÖøÜ
�Jî�G �<� î ���]î !�� � � # �Y� é¢ê û<ìFÌ]= Ã{É =¢DGÆ`ÈG= ÃÅÕ ?BÌ�üF;`?7Ì]=��-?TA_?TD ÉeÃ =@Ö5×GÍ¢? Ã Ë>D É 9bØ É =¢ØhÙ¿Ê`A_Ö Ã�É_Õ 9 É
Ø�Ê`ÈFÍ¢Ì�A_?T×GA_? Ã ?TD É7ÉÅÕ ? Ã 9EÖ5?,ØTÊ`DFØT?T× É =¢D~�FAÅ?BDFØ Õ Ü��GÊbA7?TàG9EÖ5×GÍ¢?`ÞG?T;`?BD Ô = É_Õ Ê`È É:Ã ?TÖ�9ED]Ó
É =ÐØ�;E9EA_=¢9 É =¢Ê`D/Îm9 ÃfÃ Ë[DFÊ`D[Ë>Ö�ËGÒ�Þ É_Õ ?øåQç � î ����
 ï�îEï �

F�£�?�£� #�î �P�~�<� ï ���
�-) î �
� Ù¿Ê`ÈGDFÌò=¢D
CJÊb×G=ÐØJë`ëF�7ØT9ED,ßt?eÖfÊGÌ]=gü¸?BÌ Ô = ÉÅÕ DGÊiÊ`AJÍ@= É{É Í@? Ã ?BÖ59`D É =¢Ø«Ø Õ 9EDFÆ`?«=@D É Ê � î ����
 ïkî(ï �T� #5î �E���
B�
	� �<� ï ���
�') î �@� Þ �@�<� ï ���
�')K� î ����
 ïkî(ï �&�O� #�î �P���	� Þ � î �l��
 ïkî(ï �&�O� #�î �P���<� ï ���
�') î �@� Þ �@�A� ï ���
�-) î �

CB î �l��
 ïkî(ï �&�b� #�î �P���	� Þ �@� #5î �E��� E î)	� G ����� î ����
 ï �&�QB�
	�L�<� ï ���
�-) î �
� Þ¸? É Ø`Ü

Ý"ÊbAÅ?BÊ<;`?BA Ã ÈFØ Õ 9è× Õ AL9 Ã ?	Ì]Ê>? Ã Ê`Ù É ?TD DGÊ É ÊGØTØ�ÈFAf9 É 9`Í@Í*=¢D 9èA_?TÍ¢?T;E9ED É ?BÍ@?BÖ5?TD É Ü
ÚkDè9�× Õ AL9 Ã ? Õ 9<;>=¢DGÆ É_Õ ?�Ù¿Ê`A_Ö �
��

1

� A�� �
��
2

� Þ Ô ? Õ 9�;`?�DGÊ É ?�Ì ÉÅÕ 9 É Ê`DG?�Ê`Ù ÉÅÕ ?

* �>��+-, �G� l]bRB�,Z[MONLc!KT¡nI_K��,Z[MON&]�WbK�YbWfZb�b^{RBckN_cQ�?1eY[MONtw
��UOW5¤mP&ln�ðwBx�x p SVK�Z[UOILcL£
©¸K�ZbUgI_c P*KBY[W%Z[�b^{RTckN
����� �[UOc�SVKB^k�%KT¡ & ^kSVU��>ILUgRTM¸¤¥W(SVNLMOMOUO��NLWbILN
����� SV�[N7RT^VI{�bUOSVN_I_SVYb^VN7KT¡JR:�¦YbMOSVUO�,N�a`UgRQ^VN_Sk^VUONL�BRBMFc��bc�SVN_�
����� Y[ckN_^kjvILN_W(SVN_^VN�afa`NLckUO��Wf¡¢KB^e
NL�5ckU�SVNLc
����� SV�[N&�B^{RTWEY[MgRT^VU�Sm�fKT¡nMON�R�^VW[UOW[��K��Eª�NLI_SVc
� �#� RBWbW[KBS{R�SVUOK�W[c«UgWfUO��RB�BN&^VN_Sk^VUONL�BRTM
�%	 	 abNL��NLMOK�Zb�,NLW(S!KB¡�c��`W(SV�[NLckU��LNÅ^Vc«¡¢KB^h�:Y[ckUOI&IÅ^VN�RTSVUOK�W
����� NL�BRBMOY[RTSVUOK�W5�,N�RTckYb^VN*¡ÐKT^hILMOY[c�SVNÅ^VUOW[�

Ã ÈGßGÓ�åiç Ã AÅ?B×GA_? Ã ?TD ÉLÃ�É_Õ ? !&
F� ï � $ ï¥Þ Ô7Õ =@Í¢? ÉÅÕ ?iÊ ÉÅÕ ?BAeÊ`DG?QA_?T×GA_? Ã ?TD É_Ã!ÉÅÕ ? � �3G10 �&! ï!ÊEÙ ÉÅÕ ?
Ø�ÈGA_AÅ?BD É�Ã ?TD É ?BDFØ�?`Ü<C Õ ?eAÅÊbÍ@?«ÊEÙG?B9bØ Õ ×¸9EA É Ì]?T×t?BDFÌ Ã ÊbD ÉÅÕ ? Ã{É A_ÈFØ É ÈGAÅ?«Ê`Ù É_Õ ?hÌ]Ê]ØTÈGÖ5?TD É Ü

�FÊ`Ai?�àG9`Öf×FÍ@?bÞ Ã ÈF×G×tÊ Ã ? Ô ?�Í¢Ê>Ê Ä Ù¿ÊbA:9ED"?BÍ@?BÖ5?TD É ÌG?B9EÍ¢=¢DGÆ Ô = É_Õ �%�-) î � �Fî(ï �@
F� # � îF$
� � �<� B�
F��!�� � � ï �����?����� ÎvC�Ê`×G=ÐØJë �F' Ò�Ü>ÚkDø9`Dø9EA É =ÐØ�Í¢?�9`ß¸ÊbÈ É !�� � � ï �����?��� Ê`D É_Õ ? Ô7Õ Ê`Í¢?`Þ Ô ?
(VÈ ÃVÉ DG?T?�Ì É Ê�Í@Ê>Ê Ä Ù¿Ê`A ÉÅÕ ? É ?TA_Ö �%�') î � �Fî(ï �

	� # � î � � �<�F� Ü¸ÚkD>;`?TA Ã ?BÍ@ËbÞ¸9EDÿ9`A É =¢ØTÍ@?�9`ßtÊ`È É
�-) î � �Fî(ï �

F� # � î � � �<��� =¢D�Æb?TDG?BA_9`Í-Ö�È Ã{É Ø�Ê`D É 9`=@Dø9ED�?BÍ@?BÖf?BD É7É AÅ?�9 É =@DGÆ �%!�� � � ï �����?����� Ü

óñ? Õ 9�;`?7DGÊ É ?BÌ�Þb9(Ù É ?TAhë����`ú�ØT9EÖ5×F9`=@ÆbDnÞ É_Õ 9 É«ÉÅÕ = Ã = ÃÅÃ ÈG? Ô 9 Ã 9`Df=¢Ö5×tÊ`A É 9`D ÉeÃ Ê`ÈGALØ�?
ÊEÙ*Ö5= Ã Ó�A_? É A_=¢?T;(9`Í
Ù¿Ê`A Ã ?B9`A_Ø Õ ?BDGÆ`=¢DG? Ã Ü�ÚkD É_Õ ?�ØT9 Ã ?5Ê`Ù É Êb×G=ÐØ5ÌG? Ã ØTAÅ=¢× É =@ÊbD Ã Ø�ÊbD É 9`=¢DG=@DGÆ

��

1

� A�� �
��
2

Þ Ô7Õ ?BAÅ?
��
2

Ô 9 ÃJÉÅÕ ?&ØTÊ`D É ?�à É =¢D%Ö5Ê Ã{É Ì]Ê]Ø�ÈFÖf?BD ÉLÃ Þ(Ö�9ED[Ë�AÅ? É A_=@?B;`?BÌ
Ì]Ê�à]?BÍ Ã Ø�ÊbD É 9`=@DF?BÌ
��

1

=@D�9:ß¸9`ÌfØ�ÊbD É ?Tà É ÞE9`DFÌ ÉÅÕ ?BD Ô ?TA_?*DGÊ É A_?TÍ¢?T;(9`D É ÜF�GÊbA�?TàG9EÖ5×GÍ¢?`Þ
9 Ã ?B9EALØ Õ Ù¿Ê`A �@� î)"� � î(ï �

	� ���K� ï � # � B�
F� î	�]ï
 #
 G �?�����K� ÎmCJÊb×G=¢Ø ê ë � ÒfA_? É ÈFAÅDG?�ÌðÖ�9ED>Ë
Ì]Ê�à]?BÍ Ã 9EßtÊbÈ É DF9<;>=@Æ[9 É =¢Ê`D Ã Ë Ã{É ?BÖ Ã =@Dø×GÍÐ9EDG? Ã Ê`A Ã{Õ =¢× Ã =@D ÉÅÕ ?�üFA Ã{É AL9ED Ä]Ã Ü

ÚkD ÉÅÕ = Ã ØT9 Ã ?`Þ É Ê�AÅ?BÖ5?BÌ]Ë ÉÅÕ = Ã ×GAÅÊbßGÍ¢?TÖøÞ Ô ? Ô Ê`ÈGÍÐÌøÍ¢= Ä ? É Ê�×t?TA{Ù¿ÊbAÅÖ�9 !�
	� ï � $ ï%�Fî �
�<����� î �<! E Î¿Ù¿Ê`A �@� î)N� � îEï �

F�~���K� ï � # �	� =¢D É_Õ ?¦Ø�Ê`D É ?Tà É ÊEÙJ9 Ã ?BØ É =@ÊbD�ÊbAh9`D�9EA É =ÐØ�Í¢?i9`ßtÊ`È É
� î	�]ï
 #
 G �?�����	� ÞbÊbA!=¢D[;`?BA Ã ?TÍ¢ËGÒ�ÞEßGÈ É 9EÍ Ã Ê�9 !&
F���F� ï �

	� î ���<����� î �<! E Ô = É_Õ =@D�9 Ã =¢DGÆ`Í¢?QÌ]Ê<à]?TÍ
Î¿=@Ù!95Ì]Ê�à]?BÍ�= Ã AÅ?BÍ@?B;(9`D É&Ô = ÉÅÕ � îF�]ï
 #
 G �?�-���	� Þ ÉÅÕ ?BD"Ø Õ ?�Ø Ä Ù¿Ê`A �@� î)N� � î(ï �

	�n���K� ï � # �	� Ò�Ü

	QDGÙ¿Ê`A É ÈGDF9 É ?BÍ@Ë ÉÅÕ = Ã¦Ä =¢DFÌÿÊ`Ù!Ù¿?�9 É ÈGAÅ? Ã ØT9`D Õ 9`A_ÌGÍ@Ëøßt?fAÅ?B×GAÅ? Ã ?BD É ?BÌ Ô = ÉÅÕ 9 Ã =@DGÆbÍ@?
å_�«8:Ú�Ç[ÈG?TA_Ë`Ü¡�«;`?TD Ã Ê Ô ? É A_=¢?BÌ É Ê Ã =@Ö�ÈFÍ¢9 É ? Ã ÈFØ Õ 9"ßt? Õ 9�;>=¢Ê`ÈGA�Ünóá?�DGÊ É =ÐØ�?BÌ É_Õ 9 É
ÉÅÕ ?QÖ5Ê Ã{É Ù¿AÅ?�Ç[ÈG?TD É Ø�ÊbD]üFÆbÈGA_9 É =¢Ê`D Ô 9 Ã Ï
��

1

=¢D É_Õ ?iØ�ÊbD É ?Tà É ÊEÙ
��
2

Ñ Ô7Õ ?TD ÉÅÕ ? É Ê`×G=ÐØ
Ì]? Ã Ø�A_=@× É =¢Ê`DñØ�ÊbD É 9`=¢DG?BÌá9
��

1

� A�� �
��
2

× Õ AL9 Ã ?`Ü-óñ?�Ì]?�Ø�=ÐÌ]?BÌ É Ê É A_9`D Ã ÍÐ9 É ? Ã ÈFØ Õ
åQç Ã =@D ÉÅÕ ?�Ù¿ÊbÍ@Í¢Ê Ô =@DGÆ Ô 9<Ë��

� �hÊ`D É ?Tà É ÈF9EÍ Ã ?B9`A_Ø Õ � Â ÌFÌ]= É =¢Ê`D�Ê`Ù
��
2

=@D É Ê¦9 Ã ÈF×G×tÊ`A É ×F9`A É Ø�ÊbDFØ�?BAÅDG=¢DGÆ ÉÅÕ ? Ô7Õ Ê`Í¢?
9EA É =ÐØ�Í¢?�Î¿A_Ê>Ê É ?TÍ¢?TÖ5?TD É Ò�Ü

� �hÊ`D¸Ì]= É =@ÊbDF9EÍ Ã ?B9`A_Ø Õ � Â ÌGÌ]= É =¢Ê`DøÊ`Ù�9 Ã =¢Æ`D K
1K]ßt?�Ù¿ÊbAÅ?
��
2

=¢D ÉÅÕ ?�ØTÈGAÅA_?TD É ×F9EA É Ü
�FÊ`A*?TàG9EÖ5×GÍ¢?`Þ � î . î � î ��� î . E î G
 �]ï � î)"� � î(ï �

	�t���K� ï � # ��B�
	� î	�]ï
 #
 G �?�����K� ØB9ED	ßt?É AL9ED Ã Í¢9 É ?�Ì�=@D É Êl�

� ¦ Ud¨�©E¤EªE«
�G¦���W :�¨������ ¦;:�¨(W@>�W���©�ªE«W§���� ��� V��I¦��3W :d¨���������X�¦	N�©���¦E¨�©%W�X §CK�§K¨W«@>[§� !�
"�#�$ ¦��3W :�¨������
 ¦;:�¨�W2>�W���©�ªE«W§����

ÚkD�Ê`ÈFA É ? Ã{É_Ã%Ô = É_Õ ÚVå_�«8�ë����`ú"ØTÊ`Í¢Í@?�Ø É =@ÊbDnÞ ÉÅÕ = Ã 9E×G×GA_Êb9bØ Õ Í¢?BÌ É Êá9"=¢DFØTAÅ?�9 Ã ?�=¢D
×GAÅ?�Ø�= Ã =¢Ê`DõÊEÙ�9EßtÊbÈ É"ê �&%�Üeþ*È É�ÉÅÕ ?BD ÉÅÕ ? Ã ÈG×G×tÊbA É ?BÍ@?BÖf?BD É ØTÊ`D Ã{É A_ÈFØ É =@ÊbD = Ã Ç[ÈG= É ?

9EA É =@ü¸Ø�=Ð9EÍ¥ÞJ9`DFÌ ÉÅÕ = Ã = Ã ÌGÊ`DG? É Ê É_Õ ?	Ì]? É AÅ=¢Ö5?TD É Ê`Ù Ã{É A_=ÐØ É ?T;E9EÍ¢ÈF9 É =@ÊbDñÖ5? É AÅ=ÐØ Ã Î Ã{É A_=¢Ø É
ÇbÈ¸9ED É =7Z�9 É =@ÊbD�9`DFÌ Ã{É A_=¢Ø É =¢D É ?BAÅ×FAÅ? É 9 É =@ÊbD�Ê`Ù É 9EA_Æ`? É 9`DFÌl¢<ÊbA Ã ÈG×F×tÊ`A É ?TÍ¢?TÖ5?TD É AÅ?�ÇbÈF=@A_?�Ó
Öf?BD ÉLÃ�é@êN' ì¿Ò�Ü!þ*Ë Ø Õ Ê>Ê Ã =¢DGÆ ÉÅÕ = Ã5Ã{É AL9 É ?TÆ`Ë Ô ?�9bÌ]Ö5= ÉfÉÅÕ 9 É5Ô ?�Ù¿Ê]ØTÈ Ã ×GA_=¢DFØ�=¢×F9EÍ¢Í¢ËâÊ`D
;(9EÆbÈG?¦=¢D É ?TA_×GAÅ? É 9 É =¢Ê`D�9`DFÌ	Æ`?BDG?TAL9EÍ¢= Ã ?BÌ	Ç[ÈF9ED É =[ZB9 É =@ÊbDnÜ

� ��� ��� G �4

óá?ÿÆb=@;`? Õ ?BAÅ?ÿ9 Ã =¢Æ`DG=@ü¸ØT9`D É ?Tà]9`Ö5×GÍ@?bÞ Ô = ÉÅÕðÉÅÕ ?è9EDF9`Í@Ë Ã = Ã Ê`Ù,9 Ã Í@=¢Æ Õ[É Í¢Ë Ã =¢Öf×FÍ@=@üF?BÌ
;`?TA Ã =¢Ê`DèÊEÙ*C�Ê`×G=ÐØJë ê"� ÎvÚVå_�e8 ë����bûbÒ�Ü�ö>?T;`?BA_9`Í Ã Ë>D É 9`Ø É =ÐØ%×F9EA Ã =¢DGÆ Ã Ø�ÊbÈGÍÐÌÿßt?5×¸Ê ÃÅÃ =¢ßGÍ¢?
Ù¿Ê`A ÉÅÕ ? Ã 9EÖ5? Ã ?BD É ?BDFØ�?bÜ�ÚkDò×GA_9bØ É =ÐØ�?	9	Ï Ã Ø�ÊbAÅ?�Ñ5= Ã 9 ÉÅÉ A_=@ßFÈ É ?�Ì É Êè?�9`Ø Õ A_ÈGÍ¢?�AÅ?BÍ@?�9 Ã ?`Þ
Ì]?T×t?BDFÌ]=@DFÆ�ÊbD Ã ?T;`?BA_9`ÍG×F9`A_9`Ö5? É ?BA Ã ÚkD�ÊbÈGA Ã 9EÖ5×GÍ¢? É Êb×G=¢ØiÊ`DGÍ¢Ë ÉÅÕ ?:ßt? ÃVÉ&Ã ØTÊ`A_?BÌ5AÅ? Ã ÈGÍ É
= Ã Æ`=¢;`?TDnÜ
Îmë êN� ÒT�
=@DFÌ Ã ?BØ É =¢Ê`D Ã*É_Õ 9 É Ì]= Ã ØTÈ ÃÅÃ&ÉÅÕ ?,ÆbA_9`D[ÈGÍÐ9EAÅ= É Ë�ÊEÙ
Í¢?B9EA_DG=¢DGÆfÊ`ß�(V?BØ É_Ã Ü

�
=@ÆbÈGA_?nú ÃÅÕ Ê ÔQÃ¦ÉÅÕ ? ÉÅÕ AÅ?B?5Ö�9	(VÊ`A ÃVÉ ?T× Ã Ê`Ù É_Õ ?�9`DF9EÍ¢Ë Ã = Ã ÊEÙ ÉÅÕ = Ã�É Ê`×G=ÐØEÜ�C Õ ?�Í@?TÙ É
Ù¿A_9`Öf?�AÅ?B×GAÅ? Ã ?BD É_Ã&ÉÅÕ ?�AÅ? Ã ÈGÍ É Ê`Ù«ö É ?T× ù Î Ã ?B?�ö]?BØ É Ü_ë`Ò�Ütö>Ê`Ö5?�ÚVÛ&Ó*9EDFÌøØTÊ`A_×GÈ Ã Ó Ã ×t?BØT=gü¸Ø
AÅ?�Ì]ÈFØ É =@ÊbD AÅÈFÍ@? Ã 9EA_? É_Õ ?TDð9`×G×GÍ¢=@?�Ì 9ED¸ÌòÍ¢?B9`Ì É ÊñA_=@Æ ÕbÉ Ù¿AL9EÖ5?E� ÉÅÕ ? É ?BAÅÖ ���&! ï �

	� = Ã
AÅ?�Ø�Ê`ÆbDG=[ZT?BÌ�9 ÃnÉ 9EÆ:DF9EÖ5? �N��� ÎvÍ@=¢DG? ù Ò-8 ÉÅÕ ?*Ø�ÊbD Ã{É A_ÈFØ É =@ÊbD �%!	�y�F�Y��! � �������_!�
¡� = Ã Ø Õ 9`DGÆ`?�Ì
=@D É Ê À(Leº��J¼�M��dz N
����P Î¿Í¢=@DF? Ã ú É Ê ' Ò�Ü>C Õ ?iÊ É_Õ ?TAhA_?TÍÐ9 É =@ÊbD Ã 9EA_? Ä ?T× É Ü[C�AL9ED Ã Í¢9 É =¢Ê`D5=¢D É Ê
å_�«8:Ú*= Ã ×t?TAÅÙ¿Ê`A_Ö5?BÌ�9 Ã ?�à]×GÍÐ9E=¢DG?BÌ�9`ßtÊ<;`?bÜ

D � D � D 	 D � D � D �
��� :��":<MP8vQ�D � ���¡MdH&V
��� J�����:GD&8IQ%D � � D � V
	�� 9&:ID&8?=@J"M�Q%D � V
��� :��":<MP8vQ�D 	 � H"=Y9<D&CF9G9%V
��� 6��	:<ME8IQ%D 	 � D � V
��� J�����:GD&8IQ%D 	 � D � V
��� �"BI6�MPC�476"BA=Y8?fEQ%D � V
��� BG:&4 � MNq � BI:&476"8?=@J"MlQ�D � � D � �5Jva�V��� J�����:GD&8IQ%D � V
� ��� 4 :I6"B<ME=YMC�EQ�D � V
����� BG:&4 � MdJ"CFM � ; J�H"= �5:<B"Q%D � � D � V

reduction
−−−−−−→

rules

��� D � D � D �
�3�����������
63�AJ"CF8IQ%D � � D � V
�"Bv6"MPC�476"BA=Y8?f�Q�D � V
J3����:GD&8IQ%D � V
4 :I6"BAMP=YMC�EQ%D � V
BI:&4 � MNq � BI:&476"8?=@J"MlQ%D � � D � �5J�a�VBI:&4 � M�J"CFM � ;OJ�H"= �5:<B"Q%D � �5D � V

��� }��<|`� $ "����m}! +	"E|$#(��%'&*"B�<}��B~[�L~�(+	 �)�� $ |`��&+*-, ��� �B� $ �m}! +	"E|$#(��%.(<�(}�~�" "�}��E�T|�/�*10�2�3
}! �+	"E|$#(�+%.4�&*"��<}B�B~[��~�(+	 �)B� $ |`��&!*-,

�! pt�-5t� X`NL��RTW(SVUgIh^VNLZ`^VNLckNLW(S{RTSVUOKBW[ceKB¡n©¸K�ZbUgI-w o-6 z>RBW>a%RBYbSVKB��RTSVUOI7I_K�WE�<NÅ^VckUgKBW5UOW(SVK�P&ln�h¤Å£

7 �%µ�� µk¯��
8�·m¶ �e½ �ò½¿¼"�%º:97¼ �5�"¼BÀW�"�
CJAL9ED Ã ÍÐ9 É =@ÊbDâÊ`ÙQDF9 É ÈGAL9EÍhÍÐ9EDGÆbÈF9EÆ`?�Ç[ÈG?TA_=¢? Ã =¢D É Êñ9"Ù¿ÊbAÅÖ�9`ÍeÍÐ9EDFÆ`ÈF9`Æ`?�Í@= Ä ?�å_�«8:Ú�?TDGÓ
Ø�Ê`ÈFD É ?BA Ã*Ã Ê`Ö5?:Í¢=@Ö5= É_Ã Þ>Ö�9E=¢DGÍ¢Ë�ÌGÈG? É Ê ÉÅÕ ?:Ùv9bØ É*ÉÅÕ 9 É*ÉÅÕ ?¦DF9 É ÈGA_9`ÍtÍ¢9`DGÆ`È¸9EÆ`?i=¢D É ?BA{Ùv9bØ�?

ØT9EDFDGÊ É Æ`=¢;`? Ã Ê`Ö5? Ã ×t?BØT=gü¸Øf=¢D Ã{É A_ÈFØ É =@ÊbD Ã¦É Ê ÉÅÕ ?5A_? É A_=¢?T;(9`Í Ã Ë ÃVÉ ?TÖøÜnC Õ ?fÙ¿ÊbAÅÖ�9`Í�ÍÐ9ED]Ó
Æ`ÈF9`Æ`?`Þ
=@Ù:DFÊ É ? Ã ×t?�Ø�=Ð9EÍ¢Í@Ë�Ì]? Ã =¢Æ`DG?�Ì Ù¿ÊbA ÉÅÕ = Ã 9E=¢Ö�Þ!= Ã 9á×G=@;`Ê É ×GA_?T;`?TD É =¢DGÆáÙ¿AÅÊbÖ 9ED>Ë
Ï{ØTÊ`Ö5Ö�ÈGDG=ÐØT9 É =¢Ê`D>Ñ,ßt? ÉVÔ ?T?BD"ßtÊ É_ÕÿÃ Ë Ã{É ?BÖ Ã Ül�FÊ`Ai?�àG9EÖ5×GÍ¢?`ÞF= É = Ã DGÊ É ×tÊ ÃÅÃ =¢ßGÍ@? É Ê�ØTÊ`D]Ó
Ã =ÐÌ]?TA É_Õ ?�Ù¿Ê`Í¢Í¢Ê Ô =¢DGÆ%Ù¿?�9 É ÈGAÅ? Ã&Ô = É_Õ =¢D Ã =¢DGÆbÍ@?,å_�e8iÚ&Ç[ÈG?BAÅ=¢? Ã�� �

� å_�e8iÚQÌ]Ê>? Ã DGÊ É 9`Í@Í¢Ê Ô É Ê�×t?TAÅÙ¿Ê`A_Ö 9ED>Ë	ØTÊ`DFÌG= É =@ÊbDF9EÍ Ã ?B9`A_Ø Õ Î Ã ?B?�ö>?�Ø É Ü ù Ü�ë`Ò�ÜFC Õ ?
È Ã ?�Ê`Ù9K
1K Ã =¢Æ`D = Ã DGÊ É�Ã ?BÖ�9ED É =¢ØB9EÍ¢Í@Ë A_?TÍ¢=Ð9EßGÍ¢?ø9EDFÌò= Ã ÊEÙ É ?BDõDGÊ É Ø�ÊbD Ã =ÐÌ]?BAÅ?�Ì�ß[Ë
Ã ?B9EALØ Õ ?BDGÆ`=¢DG? Ã Ü

� å_�e8iÚ&ØB9EDGDGÊ É ?T= ÉÅÕ ?BAQÌ]?�9EÍ Ô = ÉÅÕ Ø�ÊbD É ?�à É ÈF9`Í Ã ?�9EALØ Õ � Â AÅ?TÙ¿?TA_?TDFØ�? É Ê ÉÅÕ ?�Ø�ÊbD É ?�à É
Ê]ØBØ�ÈGA Ã ×GA_?�Ù¿?BAÅ?BD É =¢9`Í@Í¢Ë:ßt?�Ù¿ÊbAÅ? ÉÅÕ ?eA_? É AÅ=¢?T;`?�Ì¦?BÍ@?BÖ5?TD É ÞB=¢D ÉÅÕ ?e×F9EAL9EÆbA_9E× Õ ×GAÅ?�Ø�?�Ì]=@DGÆ
= É ÞtÊbAi=¢D É_Õ ?�=¢D É A_Ê]Ì]ÈFØ É =@ÊbDÿÊEÙ ÉÅÕ ? Ã ?BØ É =¢Ê`DnÞ¸? É ØEÜ�?:=¢AÅ?�Ø É Í¢ËøAÅ?TÙ¿?TA_=@DGÆ É Ê É_Õ ?%9`A É =ÐØ�Í¢?
9 Ã 9 Ã ÈG×G×tÊbA É ×F9`A É Ê`Ù ÉÅÕ ?�Ç[ÈG?BAÅËèÎm9 Ã&Ô ?�Ì]=ÐÌFÒ*= Ã*É Ê>Êf;E9EÆbÈG?`Ü

� å_�e8iÚ�Ì]Ê>? Ã DFÊ É ßGAÅ=¢DGÆè9`D[Ëñ×GAÅÊ<à]=@Ö5= É ËñÊ`×t?TAL9 É Ê`A Ã Ù¿Ê`A É ?TA_Ö Ã ÊbA Ã{É A_ÈFØ É ÈGA_?èÎ¿ßGÈ É
A_? É A_=¢?T;(9`Í!ÖfÊGÌ]?TÍ Ã ØT9`DâØTÊ`Ö5×t?TD Ã 9 É ?`ÞnÖ�9ED>Ë Ã Ë Ã{É ?BÖ Ã 9EÍ¢Í@Ê Ô 9��F?�à]=¢ßGÍ@? É A_?B9 É Ö5?TD É
ÊEÙ
× Õ A_9 Ã ? Ã¦é¢êK� ì�ÞF9EDFÌ Ã Ê`Ö5?,Ø�ÊbD Ã =¢Ì]?BA É_Õ ?,×GAÅÊ<à]=¢Öf= É Ë�ÊEÙ�Ì]Ê<à]?TÍ Ã�é@êN� ì¨Ò�Ü

� Ú É = Ã DGÊ É ×tÊ Ã_Ã =¢ßGÍ¢? É ÊáA_?T×GA_? Ã ?TD É DGÊ`D]Ó Õ =¢?TAL9EALØ Õ =ÐØT9EÍeA_?TÍÐ9 É =@ÊbD Ã ßt? ÉVÔ ?T?BDò?TÍ¢?TÖ5?TD É_Ã
Ô = ÉÅÕ å_�«8:Ú�Îv×GAÅ?�Ø�?�Ì]?TDFØT?¦Ù¿Ê`A7?Tà]9`Ö5×GÍ@?<Ò�Ü

� �
=@D¸9EÍ¢Í@ËbÞ¸å_�«8:Ú&= Ã Ê`DFÍ@Ë�9�Ç[ÈG?BAÅË	Í¢9`DGÆ`ÈF9`Æ`?bÜ]Ú É = Ã DGÊ É Ì]? Ã =¢Æ`DG?�Ì É Ê�Ì]?�9EÍ Ô = É_Õ 9ED>Ë
Í¢=@DGÆbÈG= ÃVÉ =¢Ø,Ù¿?B9 É ÈGA_? Ã ÜFó�= ÉÅÕÿÉÅÕ ?%Í@=¢DGÆ`ÈF= Ã{É =ÐØ�9`DF9EÍ¢Ë Ã = Ã Þ ÉÅÕ ?�=@D É ?BA{Ùv9`ØT?,üFDFÌ Ã:Ã ÊbÖ5?�=@DGÓ
É ?BAÅ? ÃVÉ =@DFÆ:A_?TÍÐ9 É =@ÊbD Ã ßt? ÉVÔ ?T?BD É ?TA_Ö Ã Î¿ÊbA
?BÍ@?BÖf?BD ÉLÃ Ò�ÞE9 Ã�Ã ?TÖ�9ED É =ÐØhAÅ?BÍ¢9 É =¢Ê`D Ã Îm9EÆb?TD É Þ
Ê`ß�(V?BØ É ÞG? É ØEÜ�Ò�ÞFßGÈ É7É_Õ ? É AL9ED Ã ÍÐ9 É =@ÊbD�Ù¿ÊbA_ØT? Ã È Ã*É Ê5Æb=@;`? ÉÅÕ = Ã7Ä DGÊ Ô Í@?�Ì]Æ`?¦ÈF×nÜ
ô D ÉÅÕ ?hÊbDG? Õ 9ED¸Ì�ÞBÙ¿ÊbAÅÖ�9`ÍbÍÐ9EDGÆbÈF9EÆb? ÃnÔ =¢Í¢Í>9`Í Ô 9�Ë Ã�Ã{É 9<Ë�ÖfÊbAÅ?h×GA_?BØ�= Ã ? ÉÅÕ 9ED�DF9 É ÈGAL9EÍ

Í¢9`DGÆ`ÈF9`Æ`? Ã ÜJÚ�Ù Ã Ê`Ö5? É =@Ö5? Ã�É_Õ ? Ã Ë Ã{É ?BÖ Ô = ÉÅÕ 9èåiæJÚ,Ê`È É ×t?TAÅÙ¿Ê`A_Ö Ã,ÉÅÕ ? Ã 9EÖ5? Ã Ë Ã{É ?BÖ
Ô = É_Õ 9 Õ 9`DFÌ>Ó�Ö59bÌ]?ÿå_�e8iÚ�ÇbÈF?TA_Ë`Þ É_Õ = Ã = Ã ßt?BØB9EÈ Ã ? ÉÅÕ ?è=@D É ?TAÅÙv9`ØT?øÙ¿ÊbÈGDFÌ�9âßt? ÉÅÉ ?BABÞ
ÖfÊbAÅ?	ØTÊ`Ö5×GÍ¢? É ?�9EDFÌ�¢<Ê`A�Ö5Ê`A_?	9`Ì]?�Ç[ÈF9 É ? Ô 9<Ë É ÊèA_?T×GA_? Ã ?TD É�É_Õ ?	=¢D]Ù¿Ê`A_Ö�9 É =@ÊbD DG?B?BÌ�Ü
ô D ÉÅÕ ?�Ê ÉÅÕ ?BA Õ 9ED¸Ì�Þ>Ù¿Ê`A79`Í@Í ÉÅÕ ?�A_?B9 Ã ÊbD Ã 9EßtÊ<;b?`Þ É_Õ ?�È Ã ?¦Ê`Ù ÉÅÕ ? Ã ?¦Ù¿ÊbAÅÖ�9EÍ-ÍÐ9EDGÆbÈF9EÆb? Ã Þ
=gÙ ÉÅÕ ?TË�9EA_?QDFÊ ÉeÉ_Õ Ê`ÈFÆ ÕbÉ*Ô = ÉÅÕ�ÉÅÕ = Ã 9E=¢Ö =@D�Ö5=@D¸Ì�Þ[Í¢?B9bÌ Ã«É Ê Ã Ê`Ö5?iÍ¢Ê Ã_Ã Ê`Ùn=@D]Ù¿ÊbAÅÖ�9 É =¢Ê`DnÜ

Ú�Ùe9ED"=¢D É ?TAÅÙv9`Ø�?�= Ã ;`?TA_Ë	=@D É ?BAÅ? Ã{É =@DGÆ�ßt?�ØT9EÈ Ã ?�= É ØT9ED"ßt?¦ÏV×FÍ@ÈGÆbÆ`?�Ì[Ñ É ÊèÎ Õ Ê`×t?TÙ¿ÈGÍ@Í¢ËGÒ
9ED[Ë Ä =¢DFÌ�Ê`Ù�Ù¿ÊbAÅÖ�9EÍnÍ¢9`DGÆ`ÈF9`Æ`? Ã Þ]9`DFÌ ÉÅÕ ?TD"ßt?�9`×G×GÍ¢=@?�Ì É Ê�Ö�9ED[Ë	?�à]= Ã{É =¢DGÆ Ã Ë Ã{É ?TÖ Ã Þ]= É
Ô Ê`ÈGÍÐÌÿ9EÍ Ã Ê�ßt? Ô Ê`A ÉÅÕ>Ô7Õ =@Í¢? É Ê�ÆbÊ5Ù¿ÈFA É_Õ ?TA¦9ED¸Ì É Ê�ßGÈF=@ÍÐÌÿ9 Ã Ë ÃVÉ ?TÖ Ô = ÉÅÕ 9 Ã ?BÍgÙ¨Ó�Ö�9`Ì]?
×G=@;`Ê É ÊbA Ô = ÉÅÕ ÊbÈ É ×G=¢;`Ê É 9 É 9`Í@Í¥Ü

8�·?z �e½ �ò½¿¼"�%º:97¼ �5� �[¾]ÀW�%��ÀG¼B½vºtÁ
ÚkD ÉÅÕ ?âî � $ E
N! É 9 Ã{Ä Þ ÉÅÕ ?	=¢DG×GÈ É = Ã ØTÊ`D Ã{É 9`D É 9EDFÌ É_Õ ?�A_? É AÅ=¢?T;E9EÍ Ã Ë Ã{É ?BÖ Ã 9`AÅ?�Ì]=��-?TAÅÓ
?TD É Ü�C�Êø?B;(9EÍ¢ÈF9 É ? É_Õ ? Ã ? Ã Ë Ã{É ?BÖ Ã�Ô ?�Í@Ê]Ê Ä 9 É,ÉÅÕ ?B=@A�Ê`È É ×GÈ É Îm9øA_9`D Ä ?BÌáÍ¢= Ã{É Ê`Ù&8:Ýÿæ
?TÍ¢?TÖ5?TD É_Ã Ò�ÜtÚkDèåiæ�÷�ëEå_�e8iÚ É 9 Ã{Ä Þ ÉÅÕ ?fØ Õ 9`Í@Í¢?TDFÆ`?�= Ã ×GAÅ?�Ø�= Ã ?BÍ@Ë É Ê�×GA_Ê]Ì]ÈFØT? ÉÅÕ ?%=@DF×GÈ É Þ
9EDFÌ ÉÅÕ ?�?T;(9`Í@È¸9 É =¢Ê`Dñ= Ã ×t?BA{Ù¿ÊbAÅÖ5?BÌá=¢DFÌ]=¢AÅ?�Ø É Í@ËbÞ ÉÅÕ A_Ê`ÈGÆ ÕáÉÅÕ ?�È Ã ?�Ê`Ù&9 Ã ?B9`A_Ø Õ ?BDGÆ`=¢DG?
ÉÅÕ 9 É = Ã Ø�ÊbÖ5ÖfÊbD É Ê59EÍ¢Ít×F9`A É =¢ØT=@×¸9ED ÉLÃ ÎvÌ]=��-?TA_?TD É =¢DG×GÈ ÉLÃ Þ Ã 9`Ö5? Ã Ë Ã{É ?TÖ�Ò�Ü]C Õ = Ã*Ô 9<Ë Ô ?
ØT9ED�Ö59 Ä ? Ã ÈGA_? ÉÅÕ 9 ÉhÉÅÕ ?�Ì]=��t?TA_?TD¸Ø�? Ã =¢D�AÅ? É A_=@?B;(9EÍ¸×t?TAÅÙ¿Ê`A_Ö59`DFØ�?:9EA_?QA_?B9`Í@Í¢Ë5Ì]ÈG? É Ê ÉÅÕ ?
ÇbÈ¸9EÍ¢= É Ë�ÊEÙ ÉÅÕ ?7=¢DG×GÈ É Þb9`DFÌ%= É ßt?BØ�ÊbÖ5? Ã ×tÊ ÃÅÃ =¢ßGÍ@? É Ê�Ø�ÊbÖ5×F9EA_?&9`Í@ÍFå:æ
÷�ëEå��«8:Ú Ã Ë Ã{É ?TÖ Ã
Ô = É_Õ ?B9`Ø Õ Ê ÉÅÕ ?TA�Ü
�«¤¥W�R�ababU�SVUOK�W�SVK�SV�bUOc*MOUOc�S�zGP&ln�*¤!UOc*W[KTS7a`NLckUO��WbN�a�SVK�a`N�RBMt «U�SV����RTW(�5a[R�S{RB�>RTckN_jvKB^VUONLW(SVN�a
ILK�Wbc�Sk^{RBUOW(SVcLz[�[YbS� �NQRT^VN7WbKBSeN_UOSV�bN_^eUOW(SVN_^VNLc�SVNLaf�(��SV�[UOceRTckZ]NLI_S�£

Â DFÊ ÉÅÕ ?TA Ô 9<Ë É Ê�?T;E9EÍ¢ÈF9 É ?¦=¢D É ?TAÅÙv9`Ø�? Ã = Ã*É Ê�ØTÊ`Ö5×F9EA_? É_Õ ?TÖ Ô = ÉÅÕ 9fÖ�9`D[ÈF9`Í�ßF9 Ã ?TÓ
Í@=¢DG?`Ü«C Õ ? Ã 9`Ö5? Ã Ë ÃVÉ ?TÖ+= Ã A_ÈGD ÊbDòÊ���Ø�=Ð9EÍ7å_�«8:ÚfÇ[ÈG?TA_=@? Ã�� Î¿Ö�9`D[ÈF9EÍ¢Í¢Ë Ô A_= ÉÅÉ ?BD ß[Ë
ÉÅÕ ?¦9EÈ É_Õ Ê`AhÊEÙn?B9bØ Õ�É Êb×G=¢Ø�Ò�Ü[ÚkD É_Õ = Ã ØT9 Ã ?bÞb9`È É ÊbÖ59 É =ÐØ7×GA_Ê]ØT? Ã_Ã ? Ã 9EA_?iØ�ÊbÖf×¸9EA_?BÌ Ô = É_Õ 9
Ö59`D[ÈF9`Í]×GA_Ê]Ø�? ÃÅÃ Ü<æJ= Ä ?79`Í@Í Õ ÈGÖ�9EDf=¢D É ?TA_;`?TD É =¢Ê`D Ã Îm9EDFÌ%ÚVÛõ?T;(9`Í@ÈF9 É =¢Ê`D%= Ã Ù¿ÈGÍ¢ÍGÊEÙ É_Õ ?TÖ�Ò�Þ
ÉÅÕ = Ã =@D É A_Ê]Ì]ÈFØT? Ã 9fDF? Ô ßG=Ð9 Ã �F9EÈ É Ê`Ö�9 É =¢Ø Ã Ë Ã{É ?BÖ Ã 9`AÅ?,ØTÊ`Ö5×F9EA_?BÌ Ô = ÉÅÕ 95Ç[ÈG?BAÅË�ßGÈG=¢Í É
ß[Ë	95Æ`=¢;`?TD�×t?TA Ã ÊbD�9 É 9fÆb=¢;`?TD É =¢Ö5?`ÜFç«A_Ê`ßF9`ßGÍ@Ë Ã Ê`Ö5?,Ì]=��-?TA_?TD É Ö�9ED[È¸9EÍ É A_9`D Ã Í¢9 É =¢Ê`D Ã
ÊEÙ É_Õ ? É Êb×G=¢ØiÌ]? Ã Ø�A_=@× É =¢Ê`D Ô Ê`ÈFÍ¢Ì Õ 9<;`?QÍ¢?BÌ É Ê�ßt? É{É ?BAhAÅ? Ã ÈGÍ É_Ã ÜbÝ"ÊbAÅ?BÊ<;`?BABÞEÖ59`D[Ëb� ôO� ö
É Ê`×F=¢Ø Ã Ì]Ê5DGÊ É7Õ 9�;`?,9ED>Ë�å��«8iÚ ¤�¦�§	¨�©N¨�ªE«�� Ü

�
=@D¸9EÍ¢Í@ËbÞTÖ�9ED>ÈF9EÍ É A_9`D Ã ÍÐ9 É =@ÊbD Ã Ù¨A_Ê`Ö Ì]? Ã Ø�A_=@× É =¢Ê`D É Êiå_�«8:Ún9EA_?!DGÊ É 9`Í Ô 9�Ë Ã Ùv9E= ÉÅÕ Ù¿ÈFÍmÞ
?T;`?TDf=@Ù ÉÅÕ = Ã = Ã Ö�ÈFØ Õ ßt? ÉÅÉ ?TA ÉÅÕ 9`D%= É!Ô 9 Ã =¢D�ëF�E�Eú é@êN� ì�Ü(ÚkDf×F9EA É =ÐØ�ÈFÍ¢9`ABÞ<Ö59`D[Ë2� Â ö Ã ÈFß]Ó
É Ê`×F=¢Ø Ã!Ã ?T?TÖ É Ê Õ 9<;`?79¦×GA_Ê`ßFÍ@?BÖ Ô = ÉÅÕ å��«8iÚ!Ø�Ê`D ÃVÉ A_9`=@D É_Ã Ü(C�Ê`×G=ÐØJë`û ê = Ã Ø Õ 9`A_9bØ É ?TAÅ= Ã{É =ÐØ
ÊEÙ ÉÅÕ = Ã = Ã_Ã ÈG?E�
Îmë`û ê Ò,óñ?ø9EA_? Ã ?�9EALØ Õ =¢DGÆè×F9EAL9EÆbA_9E× ÕFÃ�Ô7Õ =ÐØ Õ 9EA_?	Ì]? Ã Ø�?BDFÌG9ED É ÊEÙ:9 Ã ?�Ø É =@ÊbDòÌ]?�9EÍ¢=@DGÆ

Ô = ÉÅÕøÔ ?Tßø=¢D]Ù¿Ê`A_Ö59 É =¢Ê`D�AÅ? É A_=@?B;(9EÍ¥Ü
ÚkD É_Õ ?:Ê���ØT=¢9`Í É A_9`D Ã ØTAÅ=¢× É =@ÊbD�ÊEÙ ÉÅÕ ?�Ì]? Ã Ø�A_=¢× É =¢Ê`D�=¢D É Êfå_�e8iÚ�Þ ÉÅÕ ?¦×F9EAL9EÆ`AL9E× ÕFÃ 9EA_?

Ø�Ê`D Ã =ÐÌ]?TA_?BÌ É Ê5ßt?�Ì]?B9`Í@=¢DGÆ Ô = É_ÕøÔ ?Tßø=@D]Ù¿ÊbAÅÖ�9 É =¢Ê`D	A_? É AÅ=¢?T;E9EÍ��
��� ¦ Ud¨�©E¤EªE« ��� §F«W¤ ��� V �I¦���W;:d¨�� ������«�� UW«E¨�U�©	« NW¦dª������

�«;`?BD	=@Ù É_Õ = Ã =¢D É ?TA_×GAÅ? É 9 É =¢Ê`D�= Ã&Ã Ë>D É 9`Ø É =ÐØT9`Í@Í¢Ë�ØTÊ`A_AÅ?�Ø É Þ[= ÉQÃ ?B?TÖ Ã Ê`ß[;>=¢Ê`È ÃeÉ_Õ 9 É 9ED>Ë
Õ ÈGÖ�9ED�×t?TÊb×GÍ¢? Ô Ê`ÈFÍ¢ÌõÈGD¸Ì]?TA ÃVÉ 9EDFÌ É_Õ 9 É�É_Õ ? Ã ?BØ É =@ÊbDð= Ã Ø�ÊbDFØ�?TA_DG?�Ì ß[Ë É_Õ ?ÿ;`?TA_ßF9`Í
× Õ AL9 Ã ?5Î �E� î �7�?��� D � ï E D � G �?� B�
	� #�î(ï �

	� �<� ï ���
�') î � Ò��

��� ¦ Ud¨�©P¤�ªE« ��� §F«�¤ �I¦���W :d¨������	�W«�� UW«E¨ U�©F« N�¦�ª���� ��� V
þ*È É	É_Õ = Ã Ù¿Ê`A_Ö�= Ã DGÊ É Ø�ÊbAÅA_?BØ É =@D å��«8iÚáÎ Ô7Õ ?TA_? É_Õ ?áA_? É ÈFAÅDG?�Ì�?TÍ¢?TÖ5?TD É Ö�È ÃVÉ

Ø�Ê`D É 9`=@Dø9ED î G
 �]ï&Ø�ÍÐ9EÈ Ã ? é � ì¿Ò�Ü
C Õ ?%DF9`AÅAL9 É =@;`?�×F9`A É Ê`Ù ÉÅÕ = ÃiÉ Ê`×G=ÐØ%Ø�ÊbD]üFAÅÖ ÃQÉ_Õ ?f9EÈ ÉÅÕ ÊbA
K Ã å��«8:Ú É = É Í@?bÞtßGÈ É 9bÌGÌ Ã

É Ê ÉÅÕ ?:Ø�ÊbD]Ù¿È Ã =¢Ê`D¡� � ï E ��. î � î �F� î . E � DFE �
! E î �<�O������!������ î � ï �¥
CB ����! ï �

	� ������!���� G �?��� ï E �
ï
+.��
!)�<��� î(ï �&� ï
 D � G �?�
B�
F� #5îEï �

F� �<� ï ���
�') î � î �<� î ����
��<� � î �<�E�&� î � �<�����-) î � ï ��
�
 D �-)	��� *!&
 # . î �<�&� D � ï E . î � î ��� î . E �y�E����!���� G ��� î G
)	� * ï E ����� î �<�2!&
F�W���
�����<�&�/�������O�<���-�-) î � ï � Ü

8�· � �e½ �ò½¿¼"�%º:9Qºl�����
�[�T¼N� �
C Õ ?5Ù¿Ê`Í¢Í¢Ê Ô =¢DGÆø= Ã 9øDGÊbD]Ó¥?Tà Õ 9EÈ Ã{É =¢;`?fÍ¢= ÃVÉ Ê`Ù*×FAÅÊbßGÍ@?BÖ Ã ?TDFØTÊ`ÈGD É ?TA_?BÌñß[ËèÊbÈGA,DF9 É ÈGAL9EÍ
Í¢9`DGÆ`ÈF9`Æ`?	=@D É ?BA{Ùv9bØ�?`Ü!ÚkD ÊbÈGA5Ê`×F=@DG=¢Ê`DJÞ ÉÅÕ ? Ã ?ø= ÃÅÃ ÈG? Ã AÅ?B×GAÅ? Ã ?BD ÉfÉÅÕ ?øÖ5Ê ÃVÉ =@Ö5×tÊ`A É 9`D É
Ùv9`Ø É Ê`A Ã7ÉÅÕ 9 É Ö�9 Ä ? É_Õ ? Ã Ë ÃVÉ ?TÖ DFÊ É:Ô ÊbA Ä�Ô ?TÍ¢ÍJÙ¿ÊbA Ã Ê`Ö5? É Ê`×F=¢Ø Ã Ü¸óñ?%ÌGÊ�DFÊ É ßGA_Êb9bØ Õ
Õ ?TA_? ÉÅÕ ?�Ï{È Ã ÈF9EÍgÑøÌ]=���Ø�ÈGÍ É =¢? Ã�ÉÅÕ 9 É å:ænç Õ 9 Ã =¢D É AL9`Ì]= É =¢Ê`D¸9EÍ7=@D]Ù¿ÊbAÅÖ�9 É =¢Ê`D A_? É AÅ=¢?T;E9EÍ
Î Ã ×t?TÍ¢Í@=¢DGÆáÖf= Ã{É 9 Ä ? Ã Þ�DGÊ`= Ã ?	×GAÅÊ]ÌGÈFØ�?�Ìâß>ËâDGÊbDòÇ[ÈG?TA_Ë É ?TA_Ö Ã Þ�9EDF9`× Õ Ê`AL9 Ã ÞJ×GA_9`Æ`Ö�9 É =¢Ø
= Ã_Ã ÈF? Ã ÜTÜTÜ_Ò:ÞGßFÈ É AL9 ÉÅÕ ?TA É_Õ Ê Ã ? ÉÅÕ 9 É 9EA_? Ã ×t?BØ�=@ü¸Ø É Ê Ã{É A_ÈFØ É ÈGAL9EÍnØ�Ê`D ÃVÉ A_9`=@D É_Ã Ü
��D �>R�S

NhI�RBMOM>SV�[N)<mK
�,I_U@RTM > P*lJ�h¤�SVU�SVMONhKB¡tR7SVKBZ[UOIhUOc
SV�bNh�EYbN_^k��Z`^VK�Z]K�ckNLa��(�¦SV�bNhRBYbSV�bKB^�¨ckNLN�SV�bN�N&]bRB�,ZbMgN�KT¡:s-Ug�`£ o �Å£!©��bUgc%P*lJ�h¤,�EYbN_^k�áUOc%Y[ckN�aâ�(�èSV�[N�¤mP&ln� 6KHN> �EJ�D S{RBck§Z>R�^kSVUgI_UgZ[RBW(SVcL£
�=%
NLckUgabN_cLz
R�c�SVY[a`�øK�WÿSV�[N%Z]N_^k¡¢KB^V��RTW[ILNLc�KT¡&RBYbSVKB��RTSVUOI%P&ln�*¤7SVU�SVMONLc,I_K��,Z>R�^VN�aøSVK r �K
�,I_U@RTM¸SVU�SVMONLc«
K�Y[MgafZ`^VK��[RB�[M����]N7��N_^k��UOW(SVN_^VNLc�SVUOW[�`£
� %���SV�[Nh �RL��
N7ILRBWfWbKBSVN*SV�[RTS�� 	5:2� =YM�a�J�B<; 6"8?=@J"M BG:<8?B<=@:���6N4 � �[RBc!�]NLNLW�^VNLZbMgRBILN�a%�(� � 	 :2�
BG:<8?BA=
:���6N4 � �

� � �n½ �bÀW�eÀ �YL�½
���
½¿¼ �F· �hÍ¢9 ÃÅÃ =ÐØT9EÍ¸Í¢?�à]=¢ØB9EÍt×GAÅÊbßGÍ¢?TÖ Ã =¢D�ÚVÛ 9EA_? Ã ?BÖ59`D É =¢ØiA_?TÍÐ9 É =¢ÊbD Ã ßt?TÓ
ÉkÔ ?T?TD�Ì]=��t?BAÅ?TD ÉhÔ Ê`ALÌ Ã Î Ã Ë>DGÊbD[Ë>Ö�ËbÞ Õ Ë>×tÊ`D[Ë>Ö�ËbÞ`? É ØEÜ�Ò«9EDFÌ Ô ÊbA_Ì Ã�ÉÅÕ 9 ÉhÕ 9�;`?QÖ�ÈGÍ É =¢×GÍ¢?
Öf?�9EDG=¢DGÆ Ã Î Õ Ê`Ö5Ê`ÆbA_9`× ÕFÃ Ò�Ü!äQÊ`Ö5ÊbÆ`AL9E× ÕFÃ AL9E= Ã ?�9ñDG? Ô ×FAÅÊbßGÍ@?BÖ =@Dð8:Ýÿæ AÅ? É A_=@?B;(9`ÍmÞ
Ô7Õ ?TA_? Ã Ê`Ö5? Ô ÊbA_Ì Ã ØT9ED�ßt?:ÈGDFÌ]?BA Ã{É Ê>ÊGÌ�9 Ã DGÊbAÅÖ�9EÍtØTÊ`D É ?TD É Ó�ßF9 Ã ?BÌ�Ç[ÈG?BAÅË É ?BAÅÖ Ã Þ[ßGÈ É
9EÍ Ã Êá9 Ã�É 9EÆèDF9EÖ5? Ã Î¿ÊbAf9 Ã Ë[DFÊ`D[Ë>Ö ÊEÙi9 É 9EÆèDF9`Ö5?�Ò�Ü 	 Ã =¢DGÆñ9 Ã =¢Ö5×GÍ¢?	ÌG=¢Ø É =¢Ê`DGDF9`AÅË
ÊEÙ Ã Ë>DGÊ`D>Ë[Ö Ã&É Ê�Ì]? É ?BØ É A_?�Ù¿?BAÅ?BDFØ�? Ã*É Ê É 9`Æ�DF9EÖ5? Ã = Ã Ê`ß[;>=¢Ê`È Ã Í¢Ë�DGÊ É ?BDGÊ`ÈGÆ Õ Ü��FÊ`AQ?�à>Ó
9EÖ5×GÍ¢? ÉÅÕ ? Ô Ê`ALÌ Ã �%��
"! ��# ��� ï � 9EDFÌ �@�Y� B�
	� #�î(ï �

	�d� 9`AÅ?bÞ¸Ö5Ê Ã{É Ê`Ù ÉÅÕ ? É =¢Öf?bÞ-È Ã ?BÌÿÙ¿Ê`A
AÅ?TÙ¿?TA_=@DGÆ É Êè8:Ýèæ/?TÍ¢?TÖ5?TD É_Ã Î � � �?���n�?�
B�
	� #5îEï �

	� � �E
N! ��# ��� ï � î�G
 �]ï � Ò�Ü
þ*È ÉfÕ Ê Ô É Ê
Ì]?B9`Í Ô = ÉÅÕ 9	Ç[ÈG?TA_Ë"9`ßtÊ`È É � #2� � ï � # ���	� î �E
"! ��# ��� ï_#
"�������	� ÎvC�Êb×G=¢ØJë ê �[Ò7Ê`A �@�?��!�
 #2$
.���� ï �¥�?�
B�
F� #5îEï �

F�P� ÎvC�Ê`×G=ÐØJë`ëEú[Ò��7ó Õ 9 É =gÙ É_Õ ?iÇ[ÈG?TA_Ë�= Ã �7A�� ï ���
�')	�)�?�
B�
F� #5îEï �

F� î�G
 �]ï
�?�
B�
	� #�î(ï �

	�t�A� ï ���
�-) î �@� � Â Ø É ÈF9`Í@Í¢Ë5= É Ì]Ê>? Ã DFÊ É*Ã ?T?BÖ Ã Ê%Ì]=���ØTÈGÍ ÉhÉ Ê Õ 9ED¸Ì]Í@? ÉÅÕ = ÃhÔ = ÉÅÕ
Ã ×t?�Ø�=@ü¸Ø Ã Ë[D É 9bØ É =¢Ø:Ù¿?�9 É ÈFAÅ? Ã Þ]ßGÈ ÉiÔ ?,ØTÍ@?�9EA_Í@Ë�ÈGDFÌ]?BA{Ó�? Ã{É =¢Ö�9 É ?BÌ ÉÅÕ = Ã = Ã_Ã ÈG? Ã ÊfÙv9`ABÜ

� �nÁ�¼BÀ �`¼B½ � À �YL
½%�l�
½¿¼ �¸· ö>Ê`Ö5?ø×GA_? ÉÅÉ Ë ØTÊ`D>;`Ê`Í¢È É ?�Ì Ç[ÈG?BAÅ=¢? Ã 9EA_?øÇ[ÈG= É ?ÿÌ]=���Ø�ÈGÍ É�É Ê
9EDF9`Í@Ë Ã ?¦×GAÅÊb×t?TA_Í@Ë��
Î ê ú>û`Òkóá?59EA_?�Í¢Ê>Ê Ä =¢DGÆ�Ù¿ÊbA¦×F9EAL9EÆbA_9E× ÕFÃ =¢Dá9`A É =¢ØTÍ@? Ã Îv9`ßtÊ`È É =@D]Ù¿ÊbAÅÖ�9 É =¢Ê`DÿA_? É AÅ=¢?T;E9EÍ¨Ò����

ÎvÌG?B9EÍ¢=¢DGÆ Ô = É_Õ AÅ?BÍ@?B;(9ED¸Ø�?:Ù¿?T?�Ì]ßF9`Ø Ä Ò��	�&Ü
Â Õ ÈGÖ�9ED�ØB9ED�ÈGDFÌ]?BA Ã{É 9`DFÌ Ô = ÉÅÕ ÊbÈ É Î É Ê]Ê�Ö�ÈFØ Õ ÒeÌ]=���Ø�ÈGÍ É Ë ÉÅÕ 9 É 9�AÅ?BÍ@?B;(9ED É ×F9EAL9(Ó

Æ`AL9E× Õ�Ã{Õ ÊbÈGÍÐÌ�Ì]?�9EÍ Ô = É_Õ A_?TÍ¢?T;E9EDFØ�?7Ù¿?T?�Ì]ßF9`Ø Ä Î	
 � Í¢=¢D Ä ?BÌ É Ê É_Õ ?iDFÊ`ÈGD � . î � î ��� î . E � Ò��
��� }B�<|`� $ "B���m}! +	"`|$#(��%V��~E�#+B���[}�|`� +�~ �(��|��`�B� .(} "�*-, ���) �m}+ +	"E|$#(��%¥�(�%"�� .(}T~ $ � �(�<� ' `} $�� *-,
þ*È ÉQÉÅÕ = Ã = Ã 95×GA_Ê`ßFÍ@?BÖ Ù¿Ê`AQÊbÈGA Ã Ë Ã{É ?BÖ�Þ ÉÅÕ 9 ÉQÉ ?TD¸Ì Ã7É Ê�Í¢=¢D Ä × Õ AL9 Ã ? Ã*É Ê É_Õ ?�Ø�Í¢Ê Ã Ó

? Ã{É ?BÍ@?BÖf?BD É 9 Ã ×tÊ Ã_Ã =¢ßGÍ¢?�Îv=@D É_Õ ?�9`ß Ã ?BDFØ�?fÊEÙhÊ ÉÅÕ ?BA,Ø�ÊbD ÃVÉ AL9E=¢D É_Ã Ò�Ü-ÚkD ÉÅÕ = Ã ØT9 Ã ?fßtÊ É_Õ
� � Î¿×GA_?T×tÊ Ã = É =¢Ê`DF9`Í�× Õ A_9 Ã ?<Òi9EDFÌ

 ��Îv;`?TA_ßF9EÍ
× Õ A_9 Ã ?<Òi9EA_?�Í¢=¢D Ä ?BÌ É Ê É_Õ ?fDGÊbÈGD � î � $
ï �
!������K�	� ÜtC Õ = ÃiÄ =@D¸ÌøÊ`Ù!Ö5= ÃVÉ 9 Ä ? Ã =¢D Ã{É A_ÈFØ É ÈGA_9`Í�Ø�ÊbD ÃVÉ A_9`=@D É_Ã Ö�9�Ë�AÅ? Ã ÈFÍ É =@Dÿ;`?BAÅË	ß¸9`Ì
×t?TAÅÙ¿Ê`A_Ö59`DFØ�? Ã Ù¿ÊbA ÉÅÕ ? Ã ?�Ø�ÊbÖf×FÍ@?Tà	Ç[ÈG?TA_=¢? Ã Ü

< ºl���5�5���&�5� � �>Á5�
ÀGÁ-¼ �nÁ
º����
�d�5�l�t· C Õ A_Ê`ÈGÆ Õ Ê`È É*É_Õ ?�Ç[ÈG?TA_Ë�9`DF9EÍ¢Ë Ã = Ã Þ Ô ?,È Ã ? Ã ?B;bÓ
?TAL9EÍ Ä =¢DFÌ Ã ÊEÙ¦=¢D]Ù¿Ê`A_Ö59 É =¢Ê`Dð9EßtÊ`È É5É_Õ ?ÿØ�Ê`A_×GÈ Ã Þ!9`Ö5Ê`DGÆ Ô7Õ =ÐØ ÕõÉÅÕ ?5?¦C ? Îm9EDFÌ ÉÅÕ ?
É ?TA_Ö Ã 9 ÃÅÃ Ê]ØT=¢9 É ?BÌ Ô = ÉÅÕðÉ 9`Æ DF9EÖ5? Ã Ò�Þ«ßFÈ É 9`Í Ã Ê Ã Ê`Ö5? Ã ×t?BØ�=@ü¸Ø"Í@=¢DGÆbÈG= Ã{É =ÐØÿØ�Ê`D ÃVÉ AÅÈFØ�Ó
É =¢Ê`D Ã Ü	�FÊ`A�?�àG9`Öf×FÍ@?bÞ(9 Ã�ÃÅÕ Ê Ô D%ß>Ë���=¢ÆFÜLû]Þ(9¦Ç[ÈG?TA_Ë�9EßtÊbÈ É �@�?�
B�
F� #5îEï �

F� G ���t
F����
) î �P�
ÎvC�Ê`×G=ÐØJëF�`ú[Ò
=@Ö5×GÍ¢=ÐØ�= É ?TÍ¢ËfA_?�Ù¿?BA Ã�É Ê�9ED�9EÈ ÉÅÕ ÊbAiÎ É 9EÆ R ¦;: R
=¢D�ÚVå��«8 ØTÊ`Í¢Í¢?BØ É =@ÊbD¸Ò98 � D
F���K�
!�� ï �?��� H � î���î	$��¸î(ï ���K� ÎmCJÊb×G=¢ØJë � �[Òf=¢D É AÅÊGÌ]ÈFØ�? Ã 9�ßG=¢ßGÍ¢=@ÊbÆ`AL9E× Õ =ÐØ"?TÍ¢?TÖ5?TD É Ü Â Í¢Í ÉÅÕ ? Ã ?
AÅÈGÍ¢? Ã 9`AÅ?:DG?�Ø�? Ã_Ã 9EA_Ë É Ê59EDF9`Í@Ë Ã ?iÖ�9ED>Ë�Ç[ÈG?BAÅ=¢? Ã ×GAÅÊb×t?TA_Í@ËbÞ[ßGÈ É 9EA_?¦9ED	Ê`ß ÃVÉ 9`Ø�Í¢? É Ê ÉÅÕ ?
?�à É ?BD Ã =¢Ê`D�Ê`Ù ÉÅÕ ? É Ê]Ê`Í É Ê�Æ`?BDG?TAL9EÍ�ØTÊ`A_×¸ÊbA_9GÞ>Ê`A É Ê Õ ? É ?TAÅ?BÆ`?BDGÊ`È Ã ØTÊ`Í¢Í@?�Ø É =@ÊbD Ã�� Ü
�*¤¥W�SV�bUgc&Z>R�^kSVUOILY[MgRT^QILRBckN¦SV�[UOc&ckK�MOYbSVUOKBWøabK(NLc&W[KBS7MON�RBa�SVKfRTW(�� �N_MOMOj¿¡ÐKT^V�,N�a�P&ln�*¤h�(YbN_^k�(z
ckK¦SV�[N&ILKT^k^VNLI_ShP*lJ�h¤J¡ÐKB^V� UOc!�[W>RBMOM��%ckNLMONLIÅSVN�aF£

�&P*KTSVNiSV�[RTShSV�[N_ckNi^VYbMgN_c&RT^VN:c�Sk^VYbI_SVYb^VNÅjmckZ]NLI_U �[I�z]�bYbShW[KTS7a`K���RBUOW`jmckZ]N_ILU��>I �¨UgW�SV�bNiI�RTckN¦KT¡
¤¥P*lJ�iztSV�[UOc:�,N�RTW[cQSV�>RTS:W[K�^VYbMONLc¦�[R���N��]N_NLW"ckN_S�YbZ"NLckZ]NLI_U@RTMgM��"¡¢KB^�ILKB�,Z[Y`SVN_^:ckILUONLWbILN
UOWb¡ÐKT^V��RTSVUOK�Wf^VNÅSk^VUONL�BRBM7�Å£

6&�¥:
	5J�B���Q%6&V
:���8IQv:�� D&=-8%:�V
6��	:<MP8IQ�:�� 6&V
J�����:ID&8IQ�: � �vV
Z�6	:���6N>���6"8%:<9�Q �IV

⇒

* � �
*����	� ��
 �A��*C�
���A�����
Z�6	:���6N>��d6"8%:&9�Q �vV

=YMdD�4 CPHK:&9�Q%6
�5DvV
DGJ"MP8
6"=-MP9�Q%D �)�vV

6&�
=YM�a&J"B<; 6"8?=@J"MlQ%6&V
S/JN47HKJ(�"6�M�Q �vV
�&fEQ%6
� �vV

⇒

* � �
�

� ��*C�
*��8�����
*����	� ��
 �A���C�
S/JN47HNJ
��6"M�Q �vV

=YMdD�4 CPHK:<9�Q%H
�56&V
=YMdD�4 CPHK:<9�Q%H
�5DvV
DGJ"MP8
6�=YMP9�Q%D �)�vV

�! pt���F� l][RT�,Z[MONLc,KB¡7I_KB^VZ[Ybc�jmabNLZ]NLW[a[RTW(S�^VY[MONLcLz�RTZ[Z[MOUON�aáK�W � 	5J�B���9�D&=Y8?=-M��/Z�6	:���6N>��d6"8%:&9 ��¨MON_¡@S�z>©tKBZ[UOI-w q x �«RBW[a�� =YM�a�J"BA;O6"8?=?J"M �&f¥S/JN47HKJ(��6"M � �Ð^VUO���(S�z[©tKBZ[UOI-wBxTu%�Å£

� �
#�>³ �k¯��
Û7? Ã ÈGÍ É_Ã Ù¿Ê`AJåiæ�÷�ëEå��«8iÚ É 9 ÃÅÄ 9`AÅ?�;`?BAÅËiÆbÊ>Ê]Ì�Ü��FÊ`AJ9EÍ¢Í É 9 ÃÅÄ>Ã Þ�=@D�9EÍ¢Ö5Ê Ã{É 9`Í@Í`Öf? É A_=¢Ø Ã Þ ÉÅÕ ?
ßF9 Ã ?TÍ¢=@DF?�Î Ã ?B?Qö>?BØ É Ü_ûGÜ ëbÒJ= Ã ÊbÈ É ×t?BA{Ù¿ÊbAÅÖ5?BÌ�ß>Ë�9 É Í¢?B9 Ã{É Ê`DG?&×F9EA É =ÐØ�=¢×F9`D É AÅÈGDJÞE9EDFÌ%Ê`Ù É ?TD
ß[Ë"9EÍ¢Í�×F9EA É =ÐØ�=¢×F9ED É_Ã ÜFÚkD ÉÅÕ ?fØ�ÈGA_;`? ÃQÉÅÕ 9 É:Ô ?%Ø Õ Ê Ã ?�Î%�
=@Æ¸Ü ' Ò�Þ ÉÅÕ ?%Ì]=��-?TA_?TDFØ�?%ßt? ÉVÔ ?T?TD
ÉÅÕ ?5ßt? ÃVÉ A_ÈGDñ9`DFÌ É_Õ ?5ßF9 Ã ?TÍ¢=¢DG?f= Ã ßt? ÉkÔ ?B?TD ë %+Î¨Ù¿Ê`A Ã{É A_=¢Ø É,Ã{É A_ÈFØ É ÈGAL9EÍ�?T;(9`Í@È¸9 É =¢Ê`DtÒ
9EDFÌ ù û % Î¿Ù¿Ê`A¥� ôO� öGÒ�ÞG9`DFÌ ÉÅÕ = Ã = Ã Ç[ÈG= É ?,A_?T×GA_? Ã ?TD É 9 É =@;`?¦Ê`Ù ÉÅÕ ?,ú>ë�A_? Ã ÈGÍ É Æ`AL9E× ÕFÃ Ü

C Õ ? Ã ?BØTÊ`DFÌ�ØTÊ`Ö5Ö5?TD É = ÃhÉÅÕ 9 É ×F9`A É =¢ØT=@×¸9ED ÉLÃ Ì]ÊfDGÊ É Æ`? ÉhÉ_Õ ?T=¢A&ßt? Ã{É A_? Ã ÈGÍ É_Ã =@D ÉÅÕ ?
Ã 9`Öf? Ã ÈGßGÓ É 9 ÃÅÄ>Ã �nó Õ =¢Í@? Ô ?èÎ@�eØTÊ`Í¢?�Ì]? Ã Ýÿ=@DG? Ã Ì]?	ö]9`=@D É Óv� É =¢?TDFDG?�Ò,Êbß É 9`=@D ÉÅÕ ?�ßt? ÃVÉ
Ã ØTÊ`A_? Ã =@D£� Â ö Ô = É_Õ 9ÿ;(9EÆbÈG?�=¢D É ?BAÅ×GA_? É 9 É =@ÊbD ÊEÙQ?BÍ@?BÖf?BD ÉLÃ Î ' Ü 9ÿ9`DFÌ ' Ü ß 6â9EDFÌ Ô ?
?�à]×t?BØ É ?BÌ É Ê�ßt?�Ö5Ê`A_? Ã È¸ØTØ�? ÃÅÃ Ù¿ÈGÍ ÉÅÕ ?BAÅ? ÉÅÕ 9EDÿ=@DÿÊ ÉÅÕ ?BA É 9 ÃÅÄ>Ã Þ Ã ?T?%ö]?BØ É¸ù Ü ëbÒ�Þ!	QDF=@;`?BA{Ó
Ã = É Ë�Ê`Ù���ÍÐ9EÆb?TD]Ù¿ÈGA É ×t?BA{Ù¿Ê`A_Ö Ã ßt? É{É ?TAQ=¢D Ã{É A_=¢Ø É =¢D É ?TA_×GAÅ? É 9 É =¢Ê`DñÎ ' Ü ØBÒ&9ED¸Ì"÷:ÈG?T?BD Ã Í¢9`DFÌ
	QDG=¢;`?TA Ã = É ËfÊ`ÙJC�?BØ Õ DGÊbÍ@ÊbÆ`Ë%Æb? ÉLÃ«ÉÅÕ ?¦ßt? Ã{É AÅ? Ã ÈGÍ É_Ã =@D � ô É 9 ÃÅÄ Î ' Ü Ì¸Ò�Ü>C Õ ?:9`×G×GA_Êb9bØ Õ ? Ã
9EA_? ÉÅÕ ?TAÅ?TÙ¿Ê`A_?iÇ[ÈG= É ?¦Ì]=��t?BAÅ?BD É Þ>9EDFÌ ÉÅÕ = Ã ×GA_Ê`Ö5= Ã ? Ã ;`?TA_Ë%=¢D Ã{É A_ÈFØ É =@;b?:9EDFÌ�ØTÊ`D Ã{É A_ÈFØ É =¢;`?
Ø�Ê`DGÙ¿AÅÊbD É 9 É =¢Ê`D Ã =¢D ÉÅÕ ?�Ù¿È É ÈGAÅ?bÜ

� � ±e®i´ �Å³��>µV±h®
ÚVå_�«8ðë����bû&åiæ�÷�ëEå��«8iÚ É 9 Ã{Ä ×GAÅÊ(;`? Ã�ÉÅÕ 9 ÉJÉÅÕ ? Õ ?TÍ¢×�ßGA_Ê`ÈGÆ Õ[É ß[Ë�9`D,DF9 É ÈGAL9EÍ`ÍÐ9EDGÆbÈF9EÆb?
=@D É ?TAÅÙv9`ØT?¦= Ã ;`?BAÅË�?��-?BØ É =@;b?`ÜFå_�«8:Ú&Ç[ÈG?TA_=@? ÃhÉÅÕ 9 É 9`AÅ?�9`È É ÊbÖ59 É =ÐØT9`Í@Í¢Ë�Ê`ß É 9E=¢DG?BÌ�Ù¿A_Ê`Ö 9
Ì]? Ã Ø�A_=@× É =¢Ê`D�=@D��«DGÆbÍ@= Ã{Õ Í@?�9`Ì É Ê�ßt? ÉÅÉ ?TA*A_? Ã ÈGÍ ÉLÃ«ÉÅÕ 9`D�Ö�9ED>ÈF9EÍ-ÇbÈF?TA_=@? Ã ÞbË`? É*Ô A_= ÉÅÉ ?TD�ß[Ë
?�à]×t?TA É_Ã ÜGC Õ = Ã = Ã&ÉÅÕ ?�×GAÅÊ]ÊEÙ É_Õ 9 É DF9 É ÈGA_9`Í�ÍÐ9EDGÆbÈF9EÆb?:?Tà]×GÍ¢9`DF9 É =@ÊbD Ã ÊEÙ!9ED�=¢D]Ù¿Ê`A_Ö�9 É =@ÊbD
DG?T?�Ìè9`AÅ?%DGÊ É ÊbDGÍ¢Ëø?�9 Ã =@?BA É Ê�Ù¿ÊbAÅÖ�ÈGÍÐ9 É ?`Þ-ßGÈ É 9EÍ Ã Ê	Ö5Ê`A_?%?��t?�Ø É =@;`?bÜ�C Õ ?fA_? Ã ÈGÍ É_Ã 9`Í Ã Ê
Ø�Ê`DGüFAÅÖ É_Õ ?�9 Ã_Ã ÈFÖf× É =¢Ê`D Ã Ö�9`Ì]?,=¢D É_Õ ?�=@D É A_Ê]Ì]ÈFØ É =¢Ê`D[�GßFÈG=@ÍÐÌ]=¢DGÆ�9fD¸9 É ÈFA_9`Í�ÍÐ9EDGÆbÈF9EÆb?
=@D É ?TAÅÙv9`ØT?&Ù¿Ê`Ae8:Ýÿæ"A_? É AÅ=¢?T;E9EÍ]= Ã Ö�ÈFØ Õ Ì]= �-?TA_?TD É«ÉÅÕ 9ED�Ì]Ê`=¢DGÆ,= É Ù¿Ê`AhÌG9 É 9EßF9 Ã ?7Ç[ÈG?BAÅË>=¢DGÆ
Ê`A É AL9`Ì]= É =¢Ê`D¸9EÍ-ÚVÛ�Ü

Ý"ÊbAÅ?BÊ<;`?BABÞ É ?BØ Õ DG=ÐÇbÈF? Ã È Ã ?�Ì�ß[Ë	×F9EA É =ÐØ�=¢×F9ED É_Ã 9EA_?,Ç[ÈG= É ?�Ì]=��-?TA_?TD É 8¸C�?B9EÖ Ã7Õ 9<;`?,9
Í@Ê É�É Ê¦Í@?�9EA_D,Ù¿A_Ê`Ö ?B9`Ø Õ Ê É_Õ ?TA�Þ<9EDFÌ�ÆbÍ@ÊbßF9EÍ[AÅ? Ã ÈGÍ ÉLÃ
Ã{Õ ÊbÈGÍÐÌ�=@Ö5×GA_Ê<;`?*9iÍ¢Ê É =¢D ÉÅÕ ?hÙ¿È É ÈGAÅ?bÜ

 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1

nX
C

G

rank%

a) VVCAS
(metric: nxCG,quantization: gen)

St-Etienne (rank 1)
Baseline (rank 4)

 0

 0.08

 0.16

 0.24

 0.32

 0 0.5 1

nX
C

G

rank%

b) VSCAS
(metric: nxCG,quantization: gen)

St-Etienne (rank 1)
Baseline (rank 4)

 0

 0.2

 0.4

 0.6

 0 0.5 1

nX
C

G

rank%

c) SSCAS
(metric: nxCG,quantization: gen)

Klagenfurt (rank 1)
Baseline (rank 2)

St-Etienne (rank 4)
 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1

nX
C

G

rank%

d) COS:Focussed
(metric: nxCG,quantization: gen)

QUT (rank 1)
St-Etienne (rank 2)
Baseline (rank 12)

�! pt���F��� �,ILUgRBM�P&���7wTP*lJ�h¤*^VNLckY[M�SVc:¡¢KB^ $�$ r�& XGz $ X r�& XGz�X[X r�& X�RBW>a r � X]£ sbK(ILYbckckN�aS{RTck§`cLzbW[KT^V��RBMOU��LN�a%N&]ESVNLW>a`N�a�ILYb�¦YbM@R�SVN�a��<RTUOW¸z[��N_W[N_^{RTMgUOckN�a��(Y>RTW(SVU���RTSVUOK�W>� o�� �¿£

þhÈ É ?B9bØ ÕâÉ ?BØ Õ DG=ÐÇ[ÈG?�×GA_Ê]Ì]È¸Ø�? Ã ÆbÊ>Ê]Ì Ã Ø�ÊbAÅ? Ã Ù¿Ê`A%9øÆb=@;b?TD É 9 Ã{ÄèÉ Ê É_Õ ?�ÌG? É A_=¢Öf?BD É ÊEÙ
9EDGÊ ÉÅÕ ?BA�ÊbDG?`Þ�9`DFÌ É_Õ ?�ßt? Ã{É�Ô 9�Ë É Êÿ×GA_Ê`ÆbAÅ? ÃÅÃ = Ã ×GAÅÊbßF9EßGÍ¢Ë É ÊèÌG?�üFDG?	9"DG? Ô Ö5Ê]Ì]?BÍ
É 9 Ä =¢DGÆ�9EÍ¢Í Ô7Õ 9 É�Ô ?%DG?B?BÌè=@D É Êø9`ØBØ�Ê`ÈFD É Î¿Í¢= Ä ?fØTÊ`DFÌG= É =@ÊbDF9EÍ�9`DFÌèØ�ÊbD É ?�à É ÈF9`Í Ã ?B9`A_Ø Õ ? Ã
×GAÅÊb×tÊ Ã ?BÌ�=@D ÉÅÕ = Ã 9`A É =¢ØTÍ@?<Ò�Ü

�
��
J°�
J®i´
 �
� o ��XESk^ ��RTMg§�K� «ck§`U¨zt©*£Ozt�¸UOW¸z¸s
£Oz DøRBWb�bz � £gz1,-NÅ^ �_j r RT^V�>RTMOMgK`z � £	�,lJ�BRTMgY[RTSVUOW[�fP*RTSVYb^{RTMJ�tRBW`j��Y>RT��N ,n^VK(ILNLckckUOWb��©¸NLI{�[WbU@�(YbNLc«UOWf¤¥Wb¡¢KB^V��RTSVUOKBW21hN_Sk^VUONL�BRTM¿£�� wBx
� o�o y�E o u p� w*��X`Z>R�^VI{§ � K�W[N_cLz�
�£	� D �>R�SeUOc«SV�bN*^VK�MONQKT¡nP*�1,èUOW%SVN&]ES!^VN_Sk^VUONL�BRBM
�@� wBx
� o EEwTu� y�� & W>aE^VK�Y`SVckK�Z]K�YbMOK�cLzJ¤Å£Oz��:£ � £ 1hU�SVI{�[UON�zF,-£ ©��[RBW[UOckI{���ñP&R�SVYb^{RTMe�tRTW[��Y[RB�BN�¤mW(SVN_^k¡¨RTILNLc�SVK

� RTS{RT�>RBckN_c E & W�¤mW(Sk^VKEabY[IÅSVUgKBW¸£ � KBYb^VW>RTM]KB¡¸P&RTSVY`^{RBM]�tRTW[��Y[RB�BN&lJWb��UOW[N_N_^VUOW[� . � o-6+6<p �w 6 E q`o� u � & £ r K�Z]NLc�S{RT§<N�z � K�WbNLcLz�
�£ X]£��`P*RTSVYb^{RTMb�¸RBWb��Y>RT��N!¤mW(SVN_^k¡¨RTILNLc�SVK � RTS{RB�[RBckNLcL£[©��[N�
7WbK� «MOjN�ab�BNQlJWb��UOW[N_N_^VUOW[�O1eNL�EUON_ � � o 6�6 x �hwBw p E`wTu 6

� p � ,-N_^k^{RBYbM�S�z r £gz��h^VKBc ��z %h£	�&P&R�SVYb^{RTM��tRBWb��Y[RB��N:¤¥W(SVNÅ^k¡¨RBI_NLcL£7l]bZbMOKB^VUOW[� & ^kSVUOILUgRBM�¤mW(SVNLMOMOUOj��NLWbILN � o-6Bq�q � o yBy�E o�� w� � �,s[Yb�b^�zbPi£gz��h^VK��Åª�K��[RBWbW¸z�
�£	�J�*¤%1 �&��� & �*YbN_^k�%�tRTW[�BY>RB�BN7¡ÐKT^h¤¥W`¡ÐKB^V��R�SVUgKBW21hN_Sk^VUONL�BRTM
UgW��7d5� � K(ILYb�,NLW(SVcL£>¤mW r ^VKB¡¢S�z�Dð£Oz��&R�^VZ]N_^�z � £Oz
&^{RT¡@S�z � £gz��GKB�GN_M¿z � £Oz(NLabcL£	�#,�^VK(ILNLN�aEjUgWb��c&KT¡�SV�[N�w�uBSV� & WbWEY>RTM-¤¥W(SVNÅ^VW>RTSVUOK�W[RBM &er d X`¤ �*¤%1 r K�Wb¡¢N_^VNLWbILN�K�Wb1hNLckNLRT^VI{�	RBW>a
� NL�<N_MgKBZ[�,NLW(S:UOWè¤¥W`¡ÐKT^V��RTSVUOK�W 1hNÅSk^VUgN_��RTM¨znP*N_ 	��KB^V§ r U�Sm�(znPhN_ 	��KB^V§]z : X & z &er d,n^VNLckcLz[P*NÅ
��KB^V§ r U�S¥�<z[P��¦z : X & �vwBx�x o � o�� w�E oLq x� � ��X`UO��Y`^V�`ª
�T^VW[ckckK�WFz-%e£gz ©F^VKBSV��RTW¸z & £Oz �*NL�BR`z XG£Oz �¸RBMO��RBcLz d	£gz �¸RT^VckNLWFz %h£Oz
d5RBMOUO§Gz.X]£�� ¤mP&ln� wBx�x p �*Y[Uga`NLMOUgWbNLc ¡¢KB^ ©¸K�ZbUOI � N_�<NLMOK�Zb�,NLW(S �vwBxBx p ��(SkSVZ�� cNc�UgWbN&]G£ UgcL£ UOWb¡¢KB^V��RTSVUO§]£ Y[WbUOjma`Y[UOck�[Y`^V�b£ abN�c�wBxBx p cTUOWESVNÅ^VW>RTM-cTZGa`¡?cB© � x p £ ZGaE¡¥£� q �,©¸^VKTSV��RBW¸z & £Oz�X`UO��Y`^V�`ª��B^VW[ckckKBW¸z3%h£	�bP*RT^k^VK�
N�a¦l[]ESVNLW[abNLaQ��,�RTSV�i¤F�¨P&ln�*¤��Å£(� w o � o � E<u<x� 6 ��X`I{�[�,UgaFz��:£	� ,n^VKB�>RT�[UOMOUgc�SVUOI ,�R�^kSkjmKT¡¢j¥X`Z]NLN_IÅ��©tRB���BUgWb� : ckUOWb� � NLILUOckUOK�Wø©¸^VN_NLcL£�¤mW��F¤mWbjSVN_^VW>R�SVUgKBW>RTM r KBWb¡¢N_^VNLWbILNQK�WfP*N_ õdfNÅSV�[KEabc«UOW5�tRBWb��Y[RB��N ,n^VK(ILN_ckckUgWb�b£�� o-6�6 u%�� o x �,©-RTW[WbUgNÅ^�zE�i£Oz �*U�^{RT^{a`KBS�z � £ � £Ozbd5RTSV�[UONLYFz`d	£	� & W[RBM��`ckUgWb�QP*RTSVYb^{RTM>�tRBWb��Y[RB��N �*Y[N_^VUONLc
RTS¤¥P&ln�ðwBxBxBub£ � w o �ty 6�p E(u�x 6� o�o � & ^{RB�,Z[RTS �LUOcLz & £gzG�BRBW�abN_^'DøN_U@a`N�z¸©*£Oz
*KBc�SVN_^�z r £Oz¸�BRTW.%
K��,�,N_M¿z�,-£	�:�¸UOW[�BY[UOc�SVUOI�RBMOM��Ej�,KBSVUO�BRTSVN�a5¤¥Wb¡¢KB^V��RTSVUOKBW�1eN_Sk^VUONL�BRBM¨£7¤¥W
7NLW(S�z & £gz]N�aF£	�FlnW[I_�`ILMOKBZ]N�abUgR�KT¡��¸UO�b^{R�^k��RBW>a¤¥Wb¡¢KB^V��R�SVUgKBWáXEILUONLWbILN�£ $ K�MOYb�,N ��6 £ød5RT^VILN_M � NL§E§<N_^�zt¤mW[I�£Oz-P*N_ ���KB^V§]z %�RTckNLM �vwBxBx�x �
wBx o E`w�wBw� o w���dfKB^VN�RTY¸zEs
£Oz`XE\L�[UOMOMOKBS�z#,t£	� r K�W(Sk^VUO�[Y`SVUgKBW[c
a`NLcJSVN_IÅ�bW[Ug�(Y[NLcJabY¦Sk^{RBU�SVN_��N_W(S
RTYbSVK���R�SVUg�EYbNabNLc!MgRBWb��YbNLc��:MgRi^VNLI{�[N_^VI{�[N&a�� UOWb¡ÐKT^V��RTSVUOK�WF£J©¸NLI{�[WbUOI�RBMG^VNLZ]KB^kS�z`¤�1e¤kX & zEsb^{RTW[ILNT�vwBxBx p �� o y �,© �_K�Y[§�N_^V��RBWbW¸z<l«£Oz
7MgR��BRBW[cLz � £ �J£Oz � RTI��(Y[NL�,UOW¸z r £	�tl � NLIÅSVUg��NeY[ckNeKT¡¸W[RTSVYb^{RTM>MgRBWb��Y[RB��NZb^VK(ILNLckckUOWb��SVNLI{�[WbUg�EYbNLci¡¢KB^,RBYbSVKB��RTSVUOI�ILK�W�0]R�SVUgKBWèKT¡h�¦YbMOSVU�j¿ �KT^{a�SVN_^V�,c �tSV�[N�^VKBMONfKT¡
abN_^VUO�BRTSVUOK�W[RBM��,KB^VZb�[KBMOK��B�<z-Z>R�^kS¦KB¡eckZ]NLNLI{�"S{RT���BUgWb�bzJRTW>aøck�>RTMOMgK� Z[RT^VckUOW[�`£	¤mW���,n^VKTj
ILNLN�a`UOW[��c7KT¡
SV�[N�wBxTSV� & W[WEY[RBM-¤¥W(SVN_^VW[RTSVUOK�W[RBM &er d XE¤ �*¤%1 r K�Wb¡¢N_^VNLWbILN,KBW/1hN_ckN�RT^VI{�RBW>a � NL�<N_MgKBZ[�,NLW(S«UOW�¤¥Wb¡¢KB^V��R�SVUgKBW�1eN_Sk^VUONL�BRBM¨z(,J�bUgMgRBabNLMOZ[�bUgR`z�, & z : X & z &er d ,�^VNLckcLz
P*N_
��KT^V§ r UOSm�(zbP��:z : X & � o 6�6�� � o u q E o�pBp� o u
� & ^{RB�,Z[RTS �LUOcLz & £ ©*£Oz[©¸ckKB^VUOcLz>©*£gz
hK�c�SVN_^�z r £ �:£ & £gz`��RTWfa`N_^ D�NLUgabN�zb©*£ ,-£	� ,J�`^{RBckN_jv�[RBckN�a¤¥Wb¡¢KB^V��R�SVUgKBWO1eN_Sk^VUONL�BRTM¿£]¤mWb¡¢KB^V��RTSVUOK�W ,�^VKEI_NLckckUOW[���òd5RBW>RT��NL�,N_WES ��5 � o 6�6Bq � ��6 y�E � x �� o�p �,s>RT�b^VN�z r £gz � RTI��(Y[NL�,UOWFz r £	�L%
K(K�c�SVUOWb� $ R�^VU@RTW(S[1hN_ILK��BW[U�SVUOK�W: «U�SV���¸UO�B�ESJX`NL��RTWESVUOI_cL£`¤mW��,n^VK(ILN_N�abUOW[�Bc&KB¡JSV�[N o�q SV��¤mWESVNÅ^VW>R�SVUgKBW>RBM r KBWb¡¢N_^VNLW[I_N¦K�W r KB�,Z[Y`S{RTSVUOK�W[RBM��¸UOWb��Y[UOc�SVUOILcLz
r � �¸¤¥P �/wTx�xBx`zGXbRBRT^V�b^��bI{§<NLW>�vwBxBx�x �ew � u(EEw � x� o�� �
QR���RTU¿z �:£Oz �¸RBMO��RBcLz d�£�� ¤¥P*lJ� wBxBx p lJ�BRTMgY[RTSVUOK�W dfN_Sk^VUOILc �vwBxBx p ��(SkSVZ�� cNc�UgWbN&]G£ UgcL£ UOWb¡¢KB^V��RTSVUO§]£ Y[WbUOjma`Y[UOck�[Y`^V�b£ abN�c�wBxBx p cTUOW[N&]Ej¥wBx�x p jv�,N_Sk^VUOILck�Eub£ ZGa`¡¥£� o�� � �*NL�BR`zbXG£Oz`�FNLKBj¥XEZGKT^V§]z`d	£��t�I,�RTSV��¤¥WE�<NÅ^kSVN�a�s-UOMONh¡ÐKT^«¤mWb¡¢KB^V��RTSVUOK�WL1eN_Sk^VUONL�BRBM¨£t¤mW�s[Yb�b^�z
P:£Oz(�tRTMO��RBcLzEd	£gzEd5RBMOUO§Gz`X]£gz<NLabcL£	�#,�^VK(ILNLNLabUOW[�Bc�KT¡GSV�[N«ckN_ILK�W[a5D�KB^V§Eck�bK�Z,KT¡GSV�[N«¤mW[U�SVUgRTj
SVUg��N*¡ÐKB^«SV�[N7ln�BRBMOY>R�SVUgKBW5KB¡��7d5��^VN_Sk^VUONL�BRTMF�¨¤¥P*lJ���Åz � NLI_NL�¦�]NÅ^ o�p E o�� zGwBx�xBy`zGXEIÅ�bMOK�ckc
� RB�Bc�SVY[�[M¨z��*N_^V��RBW(�-�vwBx�xTu%� o�o x�E oBo��� o�q ��XbRBYb�BRB��W[RTS�z
�£Oz�%
K�Yb���[RBW[N_�5z`d	£Oz r �b^VUOck�,NLW(S�z r £	�-XEN�RT^VI{�[UOWb�i�&d5��a`KEI_Y[�,NLW(SVcJYbckUOW[�^VNLMONL�BRBWbILNQZb^VK�Z[RB��RTSVUOK�WF£!¤¥W �]X(Sk^VUgWb� ,n^VK(ILN_ckckUgWb�%RBW[af¤¥W`¡ÐKT^V��RTSVUOK�W 1eN_Sk^VUONL�BRBM¨z(,�RBabKBY[N�z
¤mS{RBM��<z>X`Zb^VUOWb��N_^kj $ N_^VMgRT�bz[PhN_
��KB^V§]zbP��¦z : X & �vwBxBxBu%�ew�u(w�EEw p u� o-6 � DøK(KEa`MgNÅ�(z & £Oz �*N_��REz]X]£��nP&�;,J�õRTSe¤mP&ln��wTx�xTub£ � w o �ty q w2EEy 6 u� wBx ��XESk^ ��RTMg§�K� «ck§`U¨zE©*£OzENLaF£	�GP&R�SVYb^{RBM>�tRTW[�BY>RB�BNh¤mWb¡ÐKT^V��RTSVUOK�WO1eN_Sk^VUONL�BRBM¨£
7MOYE
N_^ & I�RBabNL�,UOI,JYb�[MOUOck�[N_^�z � KB^{aE^VNLI{�ES�z`P&�Y� o 6�6�6 �� w o �,s[Yb�b^�z`P:£Ozb�tRBMO��RTcLz>d	£gz>d5RBMOUO§]z]XG£Oz>X �LM����`UO§]z���£OzbN�a`cL£�� & a`�BRBW[I_NLc!UOWf�&d5�	¤mWb¡¢KB^V��RTSVUOK�W
1hN_Sk^VUONL�BRTM¨£¸©��bU�^{a D�KB^V§Eck�[K�Z�KB¡�SV�bN:¤mW[U�SVUgRTSVUO�<Ni¡ÐKT^&SV�[N¦ln�BRBMOY[RTSVUOK�W	KT¡
�7d5�ø^VN_Sk^VUONL�BRBM
�¨¤¥P&ln���Å£�¤¥W�sbY[�`^�z[P:£Oz]�¸RBMO��RBcLzGd	£OzFd5RTMgUO§]zFX]£gz]X �LM����EUg§]z���£Oz>N�a`cL£�� & ab�BRTW[ILN_ceUOW��&d5�¤¥Wb¡¢KB^V��R�SVUgKBW_1eN_Sk^VUONL�BRTM¿£�©
�[U�^{a D�KB^V§Eck�[KBZQKT¡`SV�bNJ¤mW[U�SVUgRTSVUO�<Nn¡¢KB^tSV�bN�ln�BRBMOY>R�SVUgKBWiKT¡b�&d5�
^VN_Sk^VUONL�BRBM��¨¤¥P*ln� �Å£ $ K�MOY[�,N�yBu 6 y�KT¡*�FNLI_SVY`^VN�P*KTSVNLc:UgW r K��,Z[Y`SVN_^�XEILUONLW[I_N�£Oz�XEIÅ�bMOK�ckc
� RB�Bc�SVY[�[M¨z��*N_^V��RTW(�(z � NLILN_�¦�]N_^ � E q ztwBxBxBu`z-XEZb^VUOW[�BN_^kj $ N_^VMgRB�bzGPhN_ ���KT^V§]zGP��¦z : X &�vwBx�x p �

Processing Heterogeneous Collections in XML
Information Retrieval

Diego Vińıcius Castro Pereira, Klérisson Vińıcius Ribeiro Paixão, and
Maria Izabel Menezes Azevedo

Department of Computer Science,
State University of Montes Claros, Montes Claros(MG), Brazil

mimaizabel@gmail.com, klerisson@hotmail.com, diegovcastro@yahoo.com.br

Abstract. By conception, our model explores the diversity of XML
markups, having its potential really explored only in heterogeneous col-
lections. To evaluat its performance, we inscribe in INEX 2004 Heteroge-
neous track with 34 other institutions, and from them, only 5, included
ours, submitted runs. In this paper, we describe how the approach we
used in INEX 2004 and 2005 process heterogeneous collections, without
any mapping of DTDs.

1 Introduction

The conception of our model[3] had as starting point the observation and theo-
retical confirmation[1] that the markups of the XML[4] document are semanti-
cally related to the content that they delimit. We consider the structure of XML
standard as a new source of evidence, capable to assist in the identification of
the information contained in documents without, however, being a necessary
condition to its identification.

In accordance with this premise, our model does not use formal aspects of
the XML, such as the DTDs. Our objective is to associate the markups of XML
with their content, based on statistical measures similar to those that relate the
frequency of terms to the document information, in the standard vector space
model.

Thus, by conception, our model explores the diversity of markups of XML,
having its potential really avaliated only in heterogeneous collections, where the
diversity of structures will allow better linking between the semantic of markups
and its content.

To make possible the evaluation of our model, we inscribe in heterogeneous
track, in INEX 2004[6]. The operational difficulties had not allowed the conclu-
sion of the stage of judgment and we did not obtain a quantitative evaluation of
our model, but we send 6 submissions, and we were one among the 5 institutions
that had obtained it.

In this article, we detail how our model processes heterogeneous collections,
presenting how is calculated each one of the sub factors introduced in the con-
ventional vectorial model to explore the characteristics of XML language.

The remain of this article is organized in following the way: Section 2 presents
a revision of other works directed to the processing of heterogeneous collections.
Section 3 details the calculation of each subfactor in heterogeneous collections.
Section 4 presents he results and section 5 concludes the article.

2 Related Works

At INEX’04 according to Sauvagnat and Boughanem[11]“the idea behind the
heterogeneous track is that information seeker is interested in semantically mean-
ingful answer irrespectively to the structure of documents”. So, this idea moti-
vated then to present a model which uses the propagation method of relevance.
This model is based in automatically indexing and introduces an interesting
query processing that is able to process sub-queries eventually linked logically.
For this, the first step is to transform NEXI topics into XFIRM queries. And
then, this new query is decomposed into sub-queries. After each sub-queries has
been processed the result of each one of them is propagated to generate whole
result of query. However, mapping structural conditions from one DTD into
other was a problem, and to solve it they presented one DTD built manually,
comparing the different DTDs.

Other relevance work was presented by Larson[7] which continued to explore
the approach of fusion to XML retrieval. This approach to the Heterogeneous
Track was to treat the different collections as separate database with their own
DTD, but these distinctions database can be treated as a single database on his
system. Other important work described by Larson was the configuration file
which could specify some subset of tags to be used with the same meaning, for
example //p, //p1, //tf for “paragraphs” searches. Apparently, Larson did not
have problems with tags without mean such as Fld001, but he did not mentioned.

Moreover, at “A Test Platform for the INEX Heterogeneous Track”[2] was
presented an approach for creating a unified heterogeneous structure from the
heterogeneous data source. To build this unified conceptual model first they
identify groups of concepts semantically similar. To do this, they used a tool
called WordNet develop by Christine Fellbaum[5] which is able to detect simi-
larity between “editor” and “edition”, for example. Finally, to treat tags without
mean is necessary to capture the DTD comments preceding then and from the
descriptions look for the best cluster to put them.

All the participants of Heterogeneous Track had difficulties to treat a single
document that was 217 Mb in size. So, to solve this trouble, Larson[7] proposed
to treat each of main sub-elements as separated documents, and Lehtonen[8]
proposed to divided it into fragments, but he explores a size-based division.
Although, large documents are problem at “Het Track”, they are not a relevance
problem to “Het Track”, but to retrieval systems.

3 XML Factor Calculation

On article A Universal Model For XML Information Retrieval published on INEX
2004, we have defined how the standard vector space model statistics will be
calculated just adapting them to the element division of information, present
on XML documents. On the next paragraphs, we will describe how the factor,
(fxml), will process heterogeneous collections to allow the return of elements from
documents with independent existence structure of any map between them, given
by equation[9][10]:

ρ(Q,D) =
∑

ti ∈ Q ∩D
Wq(ti) ∗Wd(ti) ∗ fxml(ti, e)

Q ∗D
(1)

We will explore the follow characteristics of XML standard:

– Your nested structure through the Nest Factor (fnh);
– The similarity between the query structure and the documents, through the

Structure Factor (fstr);
– The Co-occurrence between terms and markups, through the Co-occurrence

Factor (focr).

Taking the expression

fxml(ti, e) = fnh(ti, e) ∗ fstr(ti, e) ∗ focr(ti, e) (2)

3.1 Nesting Factor

The Nesting Factor expresses the importance of terms considerating it position
on the XML tree. Like the example of Augmentation Factor, this factor looks
for reduce the term contribution to relevance of it ancestor elements for distant
elements in XMLs tree. The factor proposed not have a fixed defined value, but
have an inverse relation with the distance between the level of element that
contains the term and the ancestor. Is given by:

fnh(ti, e) =
1

(1 + nl)
(3)

where, nl is the number of levels from element e to its sub-element that contains
the term ti, being able to vary between the following values:

– fnh(ti,e) = 1, for terms directly in elements e;
– fnh(ti,e) = 1/nd, where nd are depth of the XML tree.

In Fig. 1, we have fnh(computer,fm) = 1/(1+3). This factor will reduce the term
contribution for relevance of elements more distant, in direction to root of XML
tree. It compensate the large frequency of a term in elements more extern by
nesting of XML structure, which consider the terms of a sub-elements counted
all them ancestors. With no this consideration the more extern elements tend
to occupy always the first positions on ranking of important elements showed to
user. With prejudice the intern ones. Not showing in it expression any sub-factor
about markups from document the difference of collection will not affect it value
neither becomes difficulty calculate.

Fig. 1. The Nesting Factor

3.2 Structure Factor

The Structure Factor denotes how a query with structural restriction (CAS)
are satisfied by context of determinate element. It was defined considerating
how big the markups number as big will be your chance in attend the express
information necessity on query. Mathematically is given by relation between the
common markups restriction query and the total structural restriction on query.
Where,

fstr(ti, e) =
(common markups + 1)

(nr qmarkups + 1)
(4)

Where,

– common markups are the common markups number in the query structural
constraints and in the context of element e that contains ti;

– nr markups are the markups number in the query structural containts.

It can vary from:

– fstr(ti,e) = 1/(nr qmarkups+1), when no query’s constraints markups ap-
pears in the context of ti;

– fstr(ti,e) = 1 when all query’s structural constraints markups appears in the
context of ti.

To the query’s picture, express in NEXI[12], processed above the heterogeneous
collection will have the following results.
To the element /artigo/pessoa/nome at the first article:

– nr qmarkups = 2;
– common markups = 2;

and
– fstr(ti, e) = (2+1)/(3+1) = 3/4.

Fig. 2. The Structure Factor

To element /article/person/name at the second article:

– nr markups = 2;
– common markups = 2;

and
– fstr(ti,e) = (0+1)/(3+1) = 1/4.

This factor will valorize more the element /artigo/pessoa/nome at the first
article, where fstr is equal 3/4 whose context better attends the structural con-
straints present in the query. But won’t impede the element /article/person
/name at the second article, where fstr is equal 1/4 also returned to user garant-
ing the models application on heterogeneous collections.

It is important in CAS queries, where the user express the elements that
will better fit its information need. For CO queries, fstr will always be equal 1,
because:

– nr qmarkups = 0 (CO queries not have a structural restriction);
– common markups = 0 (there is not common markups in no structural con-

straints queries);
doing

– fstr (ti,e) = 1.

Consequentially, in this case the factor fstr will not influence the relevance equa-
tion.

3.3 CO-occurrence factor

The last factor, Co-occurrence Factor, express the semantic link between markups
and its content. For express mathematically this semantic relation, we utilize the
standard vectorial model principle on relation terms and documents: as big the
frequency in that term appears delimited by determinated markup, as big the
semantical link between them. The value this semantical relation, for determi-
nated query, will depends of frequency of terms and markups in collection too.
This factor is calculated by equation:

focr(ti, e) = cf(ti, e) ∗ idf(ti, e) ∗N ∗ icf(e) (5)

where,

– cf(ti,e) is the number of times the markup of element e, denoted by m,
delimits a textual content containing term ti. In other words, number of
co-occurrences of term ti and markup m in the collection;

– idf(ti,e) is the inverse of the number of elements e that contain ti.

So, cf(ti, e)∗idf(ti, e), is the reason between the number of times term ti appears
with m for the numbers of the elements contain ti in the collection.

– icf(e) is the inverse of the number of times markup m appears in the collec-
tion.

– N is the total number of elements in the collection;
finally,

– icf(e) express the popularity of markups m in the collection.

If a user do the following query for a heterogeneous collection in conformity
with the ??:

Will get the answers in this following way: /article/person/name whose
co-occurrence factor is given by:

– cf(Paulo, name) = 1;
– idf(Paulo) = 1/4;
– icf(name) = 1/1;
– N = 14;
– focr(Paulo, name) = (1 ∗ 1/4) ∗ (1/1 ∗ 14) = 3.5.

/artigo/pessoa/nome whose the co-occurrence factor is given by:

– cf(Paulo, nome) = 2;
– idf(Paulo) = 1/4;
– icf(nome) = 1/3;
– N = 14;
– focr(Paulo, nome) = (2 ∗ 1/4) ∗ (1/3 ∗ 14) = 2.333.

/artigo/pessoa/estado whose the co-occurrence factor is given by:

– cf(Paulo, estado) = 1;

Fig. 3. The Co-occurrence Factor

– idf(Paulo) = 1/4;
– icf(estado) = 1/3;
– N = 14;
– focr(Paulo, estado) = (1 ∗ 1/4) ∗ (1/3 ∗ 14) = 1.166

The fact of /article/person/name and /artigo/pessoa/nome be returned
to user denotes the capacity of our system works with different structure collec-
tions.

This disposition occurs because <name> is super valorized, in virtue of it
rareness in the collection.

And the element /artigo/pessoa/estado be returned although not attend
the query but obtain the minor co-occurrence factor.

The co-occurrence factor valorize the co-occurrence terms and markups, con-
siderating the markups popularity. With this factor we pretend explore the
characteristic language XML originated from your conception: the presence of
markups that describe it contents.

For a better efetivity of our model is important that there’s a strait seman-
tical relation between terms and markups that will be more in heterogeneous
collections, given the probable diversity of documents structure.

Concluding, the XML Factor (fxml) explore the characteristics of XML lan-
guage, searching for semantic between terms, searching for information behind
the words.

4 Results

We submitted runs to the INEX Initiative for heterogeneous collections, but as its
assessments were not concluded, we have no Recall/Precision Curves. It follows
a sample of an answer to a query showing results from many sub-collections,
confirming that our model can deal with different DTDs.
For query:

//article[about(.//author,Nivio Ziviani)]

we get the following answer:

<topictopic-id=‘‘2’’> . . .
<result>

<subcollection name=‘‘ieee’’/>
<file>co/2000/ry037</file>
<path>/article[1]/fm[1]/au[1]</path>
<rank> 3</rank>

</result> . . .
<result>

<subcollection name=‘‘dblp’’ />
<file>dblp</file>
<path>/dblp[1]/article[177271]/author[4]</path>

<rank>6</rank>
</result> . . .
<result>

<subcollection name=‘‘CompuScience’’ />
<file>exp-dxf1.xml.UTF-8</file>
<path>/bibliography[1]/article[23]/author[1]</path>
<rank> 30</rank>

</result>
. . .
<result>

<subcollectionname=‘‘hcibib’’ />
<file>hcibib</file>
<path>/file[1]/entry[229]/article[1]/author[1]</path>
<rank>139</rank>

</result>

5 Conclusion

To be written after the conclusion of Heterogeneous track.

References

1. S. Abiteboul, P. Buneman and D. Suciu.: Data on the Web - From Relations
to Semistructured Data in XML. Mogan Kaufmann Publishers, San Francisco,
California, (2000) 27–50.

2. S. Abiteboul, I. Manolescu, B. Nguyen, N. Preda.: A Test Plataform for the INEX
Heterogeneous Track. INEX (2004) LNCS

3. M. Azevedo, L.Pantuza e N. Ziviane.: A Universal Model for XML Information
Retrieval. INEX (2004) LNCS 3493 311–321 (2005).

4. T. Bray, J. Paoli, C. M. Sperberg-McQueen and E. Maler.: Extensible Markup
Language (XML) 1.0. 2nd ed. http://www.w3.org/TR/REC-xml, Cct 2000. W3C
Recommendation 6 October (2000).

5. C. Fellbaum.: WordNet : An Electronic Lexical Database. MIT Press. (1998).
6. N. Fuhr and M. Lalmas.: INEX document Collection. http://inex.is.informatik.uni-

duisburg.de:2004/internal/, Duisburg, (2004).
7. R. R. Larson.: Cheshire II at INEX ’04: Fusion and Feedback for the Adhoc and

Heterogeneous Tracks. INEX (2004) LNCS 3493 322–336.
8. M. Lehtonen.: Extirp 2004: Towards Heterogeneity. INEX (2004) LNCS 3493 372–

381.
9. B. Ribeiro-Neto e R. Baeza-Yates.: Modern Information Retrieval. Addison Wesley.

(1999) pp. 27–30.
10. G. Salton e M. E. Lesk.: Computer evaluation of indexing and text processing.

Journal of the ACM. 15(1) (1968) 8–36.
11. K. Sauvagnat, M. Boughanem.: Using a relevance propation method for Adhoc

and Heterogeneus tracks in INEX 2004. INEX (2004) LNCS 3493 337–348.
12. A. Trotman and B. Sigurbjornsson.: Narrowed extended xpath i. In In INEX 2004

Workshop Proceedings, page ..., (2004).

The Interactive Track at INEX2005

Birger Larsen1, Saadia Malik2 and Anastasios Tombros3

1 Dept. of Information Studies, Royal School of LIS, Copenhagen, Denmark
blar@db.dk

2 Fak. 5/IIS, Information Systems, University of Duisburg-Essen, Duisburg, Germany

malik@is.informatik.uni-duisburg.de

3 Dept. of Computer Science, Queen Mary University of London, London, UK
tassos@dcs.qmul.ac.uk

Abstract. In its second year, the Interactive Track at INEX focused on
addressing some fundamental issues of interactive XML retrieval. In addition,
the track also expanded by including two additional tasks and by attracting
more participating groups. A total of 11 research groups and 108 test persons
participated in the three different tasks that were included in the track. In this
paper, we describe the main issues that the Interactive Track at INEX 2005 tries
to address, and the methodology and tasks that were used in the track.

1 Introduction

The overall motivation for the Interactive Track at INEX is twofold. First, to
investigate the behaviour of users when interacting with components of XML
documents, and secondly to investigate and develop approaches for XML retrieval
which are effective in user-based environments.

One of the major outcomes of the Interactive Track in 2004 was the need to
investigate methods that can be supportive during the search process based on
features extracted from the XML formatting [1, 2]. Problems that might be solved
using such methods include overlapping components, and the presentation of
retrieved elements in the hit list.

In the baseline system that was offered in 2005 these two issues were addressed.
This offered us the opportunity to study how overall user search behaviour was
affected by these changes when compared to the behaviour observed in 2004.

In addition, the following aims were addressed in 2005 following the
recommendations of the INEX Methodology Workshop at the Glasgow IR Festival1:

• To elicit user perceptions of what is needed from an XML retrieval system. The
aim is to see whether element retrieval is what users need: Does element retrieval
make sense at all to users, do users prefer longer components, shorter components
or whole documents, would they rather have passages than elements, etc.

1 See http://www.cs.otago.ac.nz/inexmw/ for the proceedings and presentation slides.

• To identify an application for element retrieval. This year, a mixture of topics that
were simulated work tasks [3] (based on topics from the ad hoc track) and
information needs formulated by the test persons themselves. The aim of including
the latter was to enable studies of what characterises the tasks users formulate, and
to see what kinds of applications users might need an element retrieval system for.

• To introduce an alternative document collection with the Lonely Planet collection
as an optional task in order to broaden the scope of INEX and to allow test persons
with different backgrounds (e.g. educational) to participate.

The format of the Interactive Track in 2005 was deliberately of an exploratory nature,
and has relatively broad aims rather than addressing very specific research questions.
Element retrieval is still in its infancy and many basic questions remain unanswered
as shown by the discussions at the IR Festival. Aside from the automatic and detailed
logging of test persons as used last year, more emphasis was placed on producing
qualitative results. Many of the aims stated above were therefore dealt with through
careful interviewing and detailed questionnaires. A total of three tasks were available
to the track participants: one compulsory task that all participants had to fulfil with a
minimum number of test persons, and two optional tasks. These tasks combined
several element retrieval systems, topic types and XML collections. By providing a
multitude of different perspectives it is our hope that the Interactive Track can aid in
illuminating some of the core issues in element retrieval.

The remainder of the paper is organised as follows: The three tasks are described
briefly in Section 2, followed by details of the participating groups in Section 3. In
depth descriptions of Task A and Task C are given in Sections 4 and 5 respectively,
whereas Task B is only described briefly in Section 2. Concluding remarks are given
in Section 6.

2 Tasks in the INEX2005 Interactive Track

2.1 Task A - Common baseline system with IEEE collection

In this task each test person searched three topics in the IEEE collection: Two
simulated work tasks provided by the organisers, and one formulated by the test
person herself in relation to an information need of her own. The baseline system used
by all participants was a java-based element retrieval system built within the Daffodil
framework2, and was provided by the track organisers. It has a number of
improvements over last year's baseline system, including handling of overlaps, better
element summaries in the hit list, a simpler relevance scale, and various supportive
interface functionalities. Task A was compulsory for all participating groups with
minimum of 6 test persons.

2 See http://www.is.informatik.uni-duisburg.de/projects/daffodil/index.html.en

2.2 Task B - Participation with own element retrieval system

This task allowed groups who have a working element retrieval system to test their
system against a baseline system. Groups participating in Task B were free to choose
between the IEEE collection or the Lonely Planet collection, and had a large degree of
freedom in setting up the experiment to fit the issues they wanted to investigate in
relation to their own system. If the IEEE collection was used Daffodil was offered as
baseline system. For the Lonely Planet collection a baseline system was kindly
provided by Roelof van Zwol from the Contentlab at Utrecht University3. The
recommended experimental setup was very close to that of Task A, with the main
difference that simulated work tasks should be assigned to test persons rather than
freely chosen. This in order to allow for direct comparisons between the baseline
system and the local system.

Task B was optional for those groups who had access to their own element
retrieval system, and was separate from task A. Thus additional test persons needed to
be engaged for task B. See [7] in this volume for an example of an experimental setup
used in Task B.

2.3 Task C - Searching the Lonely Planet collection

This task allowed interested groups to carry out experiments with the Lonely Planet
collection. Each test person searched four topics which were simulated work tasks
provided by the organisers. The system (B3–SDR) provided by Utrecht University
was used in this task. The system is a fully functional element retrieval system that
supports several query modes. Task C was optional for those groups who wished to
do experiments with the new collection, and was separate from task A and B. Thus
additional test persons needed to be engaged for task C. Note that the Lonely Planet
collection allows for test persons that do not have a computer science background (In
contrast to the IEEE CS collection used in Task A).

Detailed experimental procedures including questionnaires and interview guides for
all three tasks were provided to the participants. In addition, a specification of a
minimum logging format was provided for local systems in Task B. As for last year,
minimum participation in the INEX Interactive Track did not require a large amount
of work as the baseline system for Task A was provided by the track. The bulk of the
time needed for participating groups was spent on running the experiments;
approximately 2 hours per test person.

3 Participating groups

A total of 12 research groups signed up for participation in the Interactive Track and
11 completed the minimum number of required test persons. Their affiliations and
distribution on tasks are given in Table 1 below. All 11 groups participated in Task A

3 See http://contentlab.cs.uu.nl/

with a total of 76 test persons searching on 228 tasks. Only one group, University of
Amsterdam, participated in Task B, but with 14 test persons searching on 42 tasks.
Four groups participated in Task C with 18 test persons searching 72 tasks. A total of
108 test persons from the 11 active participants took part in the Interactive Track. In
comparison, in 2004, 10 groups took part with 88 test persons.

 Task A Task B Task C4

Research Group
Test Persons

(Topics)
Test Persons

(Topics)
Test Persons

(Topics)
CWI, University of Twente, The Netherlands 6 (18) - 4 (16)
Kyungpook National University, Korea 12 (36) - -
Oslo University College, Norway 8 (24) - -
Queen Mary University of London, England 6 (18) - -
RMIT University, Australia 6 (18) - 4 (16)
Royal School of LIS, Denmark 6 (18) - 6 (24)
Rutgers University, USA 6 (18) - 4 (16)
University of Amsterdam, The Netherlands 6 (18) 14 (42) -
University of Duisburg-Essen, Germany 6 (18) - -
University of Tampere, Finland 8 (24) - -
Utrecht University, The Netherlands 6 (18) - -
Total 76 (228) 14 (42) 18 (72)

Table 1. Research groups participating in the Interactive Track at INEX2005.

4 Task A

4.1 Document corpus

The document corpus used in Task A was the 764 MB corpus of articles from the
IEEE Computer Society’s journals (version 1.8, merged new & old collection).

4.2 Relevance assessments

The intention was that each viewed element should be assessed with regard to its
relevance to the topic by the test person. This was, however, not enforced by the
system as we believe that it may be regarded as intrusive by the test persons [4]. In
addition, concerns have been raised that last year’s composite two dimensional scale
was far too complex for the test persons to comprehend [5, 6]. Therefore it was
chosen to simplify the relevance scale, also in order to ease the cognitive load on the

4 At the time of writing Task C has not been completed. The numbers are estimates based on

feedback

test persons. The scale used was a simple 3-point scale measuring the usefulness (or
pertinence) of the element in relation to the test person’s perception of the task:

2 – Relevant
1 – Partially Relevant
0 – Not Relevant

Please note that in contrast to the assessments made for the ad hoc track, there was no
requirement on the test persons to view each retrieved element as independent from
other viewed components. We have chosen not to enforce any rules in order to allow
the test persons to behave as close as possible to what they would normally do.

For Task C we experimented with a slightly more complex relevance scale (see
Section 6.2 below).

4.3 System

The baseline system used in Task A is a java-based element retrieval system built
within the Daffodil framework. The HyREX retrieval engine5 was used as backend in
the baseline system.

Fig. 1 below shows the query and results list interface of the baseline system. After
entering a query and pressing “Search” a search progress indicator informs the test
person about the number documents found. A related term list also appeared,
suggesting alternative search terms (not shown). The results are presented as
documents and in some cases the system indicates which elements that may be most
closely related to the query.

Double-clicking a document or an element opens this in a new window as shown in
Fig. 2 below. This is split in two panes: one with a Table of Contents of the whole
document, and one with the full text of the selected element. The selected element is
displayed on the right. On the left, the Table of Contents indicates the currently
viewed element, other retrieved elements, viewed and assessed elements. The
relevance scale is implemented as simple icons to be clicked:

- Relevant

 - Partially Relevant

 - Not Relevant

The logging in the baseline system was saved to a database for greater flexibility and
stability. The log data comprises of one session for each topic the test person
searches. The log for each session records the events in the session, both the actions
performed by the test person and the responses from the system.

5 http://www.is.informatik.uni-duisburg.de/projects/hyrex/

Fig. 1. Query box and result list display in the baseline system used in Task A.

4.4 Tasks/Topics

In order to study the questions outlined in Section 1 above related to the needs for
element retrieval systems and possible applications of such systems, both real and
simulated information needs were used in Task A.

The test persons were asked to supply examples of own information needs. As it
may be hard for the test persons to formulate topics that are covered by the collection,
the test persons emailed two topics they would like to search for 48 hours before the
experiment. The experimenters then did a preliminary search of the collection to
determine which topic had the best coverage in the collection. The topics supplied by
the test persons were not all well-suited to an element retrieval system, but they all
had a valuable function as triggers for the structured interview where it was attempted
to elicit user perceptions of what they need from an element retrieval system, and to
identify possible applications for element retrieval. They may also be valuable for the
formulation of topics for next year’s track. Therefore, both topics were recorded and
submitted as part of the results.

Retrieved
document

Retrieved
elements

Query
fields

The simulated work tasks were derived from the CO+S and CAS INEX 2005 ad-
hoc topics, ignoring any structural constraints. In order to make the topics
comprehensible by other than the topic author, it was required that the ad hoc topics
not only detail what is being sought for, but also why this is wanted, and in what
context the information need has arisen. This information was exploited for creating
simulated work task situations for Task A that, on the one hand will allow the test
persons to engage in realistic searching behaviour, and on the other provide a certain
level of experimental control by being common across test persons6.

Fig. 2. Full text result in the baseline system used in Task A.

For Task A, six topics were selected and modified into simulated work tasks. In
last year’s track we attempted to identify tasks of different types and to study the
difference between them, but with out great success. This year a simple partition has
been made into two categories:

• General tasks (G category), and
• Challenging tasks (C category), which are more complex and may be less

easy to complete.

In addition to their own information need, each test person chose one task from each
category. This allows the topic to be more “relevant” and interesting to the test
person. A maximum time limit of 20 minutes applied for each task. Sessions could
finish before this if the test person felt they have completed the task.

6 See the work of Borlund for more information on simulated work tasks, e.g. Borlund, 2003

(http://informationr.net/ir/8-3/paper152.html)

4.5 Experimental design

4.5.1 Experimental matrix
A minimum of 6 test persons from each participating site were used. Each test person
searched on one simulated work task from each category (chosen by the test person)
as well as one of their own topics. The order in which task categories were performed
by searchers was permuted in order to neutralise learning effects. This means that one
complete round of the experiment requires 6 searchers.

The basic experimental matrix looked as follows:

Rotation 1: OT, STG, STC
Rotation 2: STC, OT, STG
Rotation 3: STG, STC, OT
Rotation 4: STG, OT, STC
Rotation 5: STC, STG, OT
Rotation 6: OT, STC, STG

Where OT = Own task, and STG, STC are the two 2 simulated work task categories.
As can be seen from Table 1 above some groups did more than 6 test persons. It was
attempted to coordinate the permutation rotations across these groups to arrive at an
equal distribution of across the track.

4.5.2 Experimental procedure
The experimental procedure for each test person is outlined below.

1. Experimenter briefed the searcher, and explained the format of the study
2. Tutorial of the system was given with a training task, and experimenter answered

any questions
3. ‘Instructions to searchers’ handed out
4. Any questions answered by the experimenter
5. Entry questionnaire handed out
6. Task description for the first category handed out, and a task selected
7. Pre-task questionnaire handed out
8. Task began, and experimenter logged in. Max. duration 20 minutes. Experimenter

logged out.
9. Post-task questionnaire handed out
10. Steps 7-10 were repeated for the two other tasks
11. Post-experiment questionnaire handed out
12. Interview

The system training, the three tasks and completion of questionnaires and interview

were performed in one, continuous session. An Instructions to searchers document
gave information to the searchers about the experiment and their role in it, including
basic information about system information, an outline of the experimental procedure,
and how to assess elements for relevance. A number of questionnaires and guidelines
for post-experiment interviews were provided by the track organisers. The purpose of

the semi-structured interview was to attempt to elicit user perceptions of what they
need from an element retrieval system, and to identify possible applications for
element retrieval.

5 Task C

Task C was optional for those groups who wished to experiment with the Lonely
Planet collection, and was separate from Task A and B. Thus additional test persons
needed to be engaged for Task C. Task C is meant as an exploratory task to initiate
interactive experiments with the LP collection.

5.1 Document corpus

The document corpus used in Task C was the Lonely Planet collection deployed by
Roelof van Zwol. The Lonely Planet collection consists of 462 XML documents with
information about destinations, which is particularly useful for travellers that want to
find interesting details for their next holiday or business trip. The collection is called
the "WorldGuide" and has been provided by the publishers of the Lonely Planet
guidebooks. The collection not only contains useful information about countries, but
also includes information about interesting regions and major cities. For each
destination an introduction is available, complemented with information about
transport, culture, major events, facts, and an image gallery that gives an impression
of the local scenery.

5.2 Relevance assessments in Task C

A slightly more complex approach was taken for the collection of relevance
assessments in Tack C. The two-dimensional relevance scale was a modified version
of a scale proposed at the INEX Methodology Workshop at the Glasgow IR Festival
[6]. The relevance assessments were explained to the test persons as follows:

Two different dimensions are used to assess the relevance of an XML document

component. The first determines the extent to which a document component contains
relevant information for the search task. It can take one of the following three values:
highly relevant, somewhat relevant, and not relevant. A document component is
highly relevant if it covers aspects of the search task without containing too much
non-relevant information. A document component is somewhat relevant if it covers
aspects of the search task and at the same time contains much non-relevant
information. A document component is not relevant if it does not cover any aspect of
the search task.

The second relevance dimension determines the extent to which a document
component needs the context of its containing XML document to make full sense as
an answer. It can take one of the following three values: just right, too large, and too
small. A document component is just right if it is reasonably self-contained and it

needs little of the context of its containing XML document to make full sense as an
answer. Alternatively, the document component can be either too large or too small.
A document component is too large if it does not need the context of its containing
XML document to make full sense as an answer. A document component is too small
if it can only make full sense within the context of its containing XML document.

Given the above relevance values, the final assessment score of a document
component can take one of the following five values:

• Not Relevant (NR) – if the document component does not cover any aspect of
the search task;

• Partial Answer (PA) – if the document component is somewhat relevant (i.e.
covers only some aspects of the search task) and just right (i.e. it is reasonably
self-contained but still needs some of the context of its containing XML
document to make full sense);

• Exact Answer (EA) – if the document component is highly relevant (i.e. covers
all, or nearly all, aspects of the search task without containing too much non-
relevant information) and just right;

• Broad Answer (BA) – if the document component is either highly or somewhat
relevant and too large (i.e. it is reasonably self-contained and does not really
need the context of its containing XML document to make full sense); and

• Narrow Answer (NA) - if the document component is either highly or somewhat
relevant and too small (i.e. it is not self-contained and can only make full sense in
the context of its containing XML document).

The test persons could select one of these values from a T-shaped relevance
assessment box as shown in Fig. 4 and Fig. 5.

5.3 System

An interactive system for Task C was provided by Utrecht University. It is a fully
functional element retrieval system which has been configured to suit Task C. There
were two versions of the system: One which presented the results in context of the full
text (i.e., highlighted), and an alternative version which presented the results in
isolation. Fig. 3 shows the query ad result list interface common to both system
versions. Fig. 4 and 5 shows the interface for the versions which showed results in
context and isolated respectively.

5.4 Tasks/Topics

Eight topics that have previously been used for experiments with the Lonely Planet
Worldguide were selected and modified into short simulated work tasks for Task C.
The tasks were arbitrarily split into 2 categories, and each test person searched two
tasks from each category.

5.5 Experimental design

A minimum of 4 test persons from each participating group were used in Task C.
Each test person searched two simulated work tasks (chosen by the test person) from
each of the two categories – a total of four per test person. The order in which task
categories were performed was permuted in order to neutralise learning effects. This
means that one complete round of the experiment required 4 searchers.

Fig. 3. Query box and result list display used in Task C.

The basic experimental matrix looks as follows:

Rotation 1: Iso-C1, Cxt-C2
Rotation 2: Iso-C2, Cxt-C1
Rotation 3: Cxt-C1, Iso-C2
Rotation 4: Cxt-C2, Iso-C1

Where Iso = system with isolated results, and Cxt = system with results in context. C1
and C2 were the two simulated work task categories. The experimental procedure was
very similar to the ones used in Task A. However, no interview was conducted at the

Query
field

Result
list

Links
to text

end of the experiment. A number of questionnaires were provided by the track
organisers.

Fig. 4. Task C system version which presented the results highlighted in context of the full text.

Fig. 5. Task C system version which presented the results in isolation.

6 Concluding remarks

In its second year, the Interactive Track at INEX focused on addressing some
fundamental issues of interactive XML retrieval. In addition, the track also expanded
by including two additional tasks and by attracting more participating groups. A total
of 11 research groups and 108 test persons participated in the three different tasks that
were included in the track. In this paper, we have described the main issues that the
Interactive Track at INEX 2005 tries to address, and the methodology and tasks that
were used in the track. At the time of writing the results are still under analysis. It is
hoped that we can present an initial analysis at the INEX2005 workshop at Schloss
Dagstuhl.

7 Acknowledgments

As organisers we would like to thank the participating research groups for their work
and input concerning the format of the track. In addition, we would like to thank Pia
Borlund from the Royal School of Library and Information Science for help on
constructing simulated work tasks, Claus-Peter Klas from University of Duisburg-
Essen for help in running Daffodil, Roelof van Zwol and Sandor Spruit, Utrecht
University, for making their system available for Task C, and finally Jovan Pehcevski
and co-workers for developing their relevance scale for use in the interactive track.

8 References

1. Tombros, A., Larsen, B. and Malik, S. (2005): The Interactive Track at INEX 2004. In:
Fuhr, N., Lalmas, M., Malik, S. and Szlávik, Z. eds. Advances in XML Information
Retrieval: Third International Workshop of the Initiative for the Evaluation of XML
Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8, 2004, Revised Selected
Papers. Berlin: Springer, p. 410-423. (Lecture Notes in Computer Science ; 3493)

2. Larsen, B., Tombros, A., and Malik, S. (2004): Interactive Track Workshop Report. Slides
presented at the INEX Workshop, December 2004
[http://inex.is.informatik.uni-duisburg.de:2004/workshop.html#Reports]

3. Borlund, P. (2003): The IIR evaluation model: a framework for evaluation of interactive
information retrieval. In: Information Research, vol. 8, no. 3, paper no. 152. [Available at:
http://informationr,net/ir/8-3/paper152.html]

4. Larsen, B., Tombros, A. and Malik, S. (2005): Obtrusiveness and relevance assessment in
interactive XML IR experiments. In: Trotman, A., Lalmas, M. and Fuhr, N. eds.
Proceedings of the INEX 2005 Workshop on Element Retrieval Methodology, held at the
University of Glasgow, 30 July 2005. Second Edition. Dunedin (New Zealand): Department
of Computer Science, University of Otago, p. 39-42.
[http://www.cs.otago.ac.nz/inexmw/Proceedings.pdf, visited 15-12-2005]

5. Pharo, N. and Nordlie, R. (2005): Context matters : an analysis of assessments of XML
documents. In: Crestani, F. and Ruthven, I. eds. Context: Nature, Impact, and Role : 5th
International Conference on Conceptions of Library and Information Science, CoLIS 2005,
Glasgow, UK, June 2005, Proceedings. Berlin: Springer, p. 238-248. (Lecture Notes in
Computer Science ; 3507)

6. Pehcevski, J., Thom, J. A. and Vercoustre, A.-M. (2005): Users and assessors in the context
of INEX: Are relevance dimensions relevant? In: Trotman, A., Lalmas, M. and Fuhr, N. eds.
Proceedings of the INEX 2005 Workshop on Element Retrieval Methodology, held at the
University of Glasgow, 30 July 2005. Second Edition. Dunedin (New Zealand): Department
of Computer Science, University of Otago, p. 47-62.
[http://www.cs.otago.ac.nz/inexmw/Proceedings.pdf, visited 15-12-2005]

7. Kamps, J., de Rijke, M. And Sigurbjörnsson, B. (2005): University of Amsterdam at INEX
2005: Interactive Track. In: This volume.

University of Amsterdam at INEX 2005:
Interactive Track

Jaap Kamps1,2, Maarten de Rijke2, and Börkur Sigurbjörnsson2

1 Archives and Information Science, Faculty of Humanities, University of Amsterdam
2 Informatics Institute, Faculty of Science, University of Amsterdam

Abstract. This is a preliminary report on the University of Amster-
dam’s participation in the INEX 2005 Interactive Track. We participated
in Task A, a common baseline system with the IEEE collection, as well
as in Task B, in which the baseline system is compared to a home-grown
XML element retrieval system, xmlfind.

1 Introduction

This paper documents the University of Amsterdam’s participation in the INEX
2005 Interactive Track. We conducted two experiments. First, we took part in
the concerted effort of Task A, in which a common baseline system, Daffodil/-
HyREX, is used to study test-persons searching the IEEE collection, Second, as
part of the Interactive Track’s Task B, we conducted a comparative experiment,
in which the baseline retrieval system, Daffodil/HyREX, is contrasted with our
home-grown XML element retrieval system, xmlfind.

The rest of the paper is organized as follows. Next, Section 2 documents the
XML retrieval systems used in the experiment. Then, in Section 3, we detail
the set-up of the experiments. The preliminary results of the experiments are
discussed in Section 4. Finally, in Section 5, we draw some initial conclusions.

2 XML Retrieval Systems

2.1 Baseline System: Daffodil

The Daffodil system supports the information seeking process in Digital Libraries
[2]. As a back-end, the HyREX XML retrieval system was used [3]. For details,
see [4].

2.2 Home-grown System: xmlfind

The xmlfind system provides an interface for a XML information retrieval search
engine [1]. It runs on top of a Lucene search engine [5]. The underlying index
contains individual XML element in the IEEE collection [6].

Figure 1(top) shows the search box and the result list. The results are grouped
per article, where (potentially) relevant elements are shown. Clicking on any of

Fig. 1. Screen shots of xmlfind: (top) result list, (bottom) detailed view.

Table 1. Experimental matrix for the comparative experiment.

Rotation Task 1 Task 2 Task 3
Task System Task System Task System

1 1 G-1 Daffodil C-1 xmlfind Own choice
2 2 C-1 Daffodil G-1 xmlfind Own choice
3 3 G-1 xmlfind C-1 Daffodil Own choice
4 4 C-1 xmlfind G-1 Daffodil Own choice
5 1 G-2 Daffodil C-2 xmlfind Own choice
6 2 C-2 Daffodil G-2 xmlfind Own choice
7 3 G-2 xmlfind C-2 Daffodil Own choice
8 4 C-2 xmlfind G-2 Daffodil Own choice
9 1 G-3 Daffodil C-3 xmlfind Own choice

10 2 C-3 Daffodil G-3 xmlfind Own choice
11 3 G-3 xmlfind C-3 Daffodil Own choice
12 4 C-3 xmlfind G-3 Daffodil Own choice
13 1 G-1 Daffodil C-1 xmlfind Own choice
14 2 C-1 Daffodil G-1 xmlfind Own choice

the elements will open a new window displaying the result. Figure 1(bottom)
shows the full article with the focus on the selected element. The results display
window has three planes. On the left plane, there is a Table of Contents of the
whole article. On the right plane, the article is displayed with the selected part
of the document in view. On the top plane, the article’s title, author, etc. are
displayed, as well as a menu for assessing the relevance of the result.

3 Experimental Setup

The whole experiment was run in a single session where test persons for both
Task A and Task B worked in parallel. The test persons were first year Computer
Science students.

3.1 Task A: Community Experiment

Task A is the orchestrated experiment in which all teams participating in the
Interactive Track take part [4]. We participated in Task A with six test persons,
who searched the IEEE Collection with the Daffodil/HyREX baseline system.
There were three tasks: two simulated work tasks (a ‘general’ task and a ‘chal-
lenging’ task) and the test person’s were asked to think up a search topic of their
own. The experiment was conducted in close accordance with the guidelines, for
further details we refer to [4].

3.2 Task B: Comparative Experiment

Task B is a comparison of the home-grown xmlfind system with the Daffodil/-
HyREX baseline system. We participated in Task B with fourteen test persons.

Table 2. Topic created by test person.

A. What are you looking for?
Who build the first computer and what did it look like?

B. What is the motivation of the topic?
I would like to know how the history of the computer began
and what the first computer looked like, was it very big or
very small, did it have a monitor?

C. What would an ideal answer look like?
The name of the inventor and a picture of how the first com-
puter looked.

The experimental setup is largely resembling the setup of Task A. Again, test
persons do two simulated work tasks (a ‘general’ and a ‘challenging’ task) as well
as search for a topic they were asked to think up themselves. The experimental
matrix is shown in Table 1. Every test person searches for two simulated tasks,
each one with a different system. Next, the test persons search for their own
topic with a system of their choice.

Due to the number of test persons involved, we were unable to conduct
individual exit interviews. Instead, we used an extended post-experiment ques-
tionnaire.

4 Preliminary Results

We have only started to process the massive amount of data collected during the
experiment. Each test person searched with four different accounts, one for each
task, plus one or two additional accounts for training. This generated in total 94
search logs. Additional to this, each person filled in questionnaires before and
after each task, and before and after the experiment, resulting in, in total, 160
questionnaires. Below, we will just give some preliminary results.

Own topics As part of the experiments, test persons were asked to think
up a search topic of their own interest, based on a short description of the
IEEE collection’s content. Some topics created by test persons were excellent.
Table 2 shows an example of a topic being (i) within the collection’s coverage,
(ii) reflecting a focused information need, and (iii) even containing potential
structural retrieval cues. However, most topic were not so perfect. Even though
test persons were asked to think up two different topics, almost half of the test
persons did not create a very suitable topic. Frequently, topics addressed very
practical advice on computer components or software, such as addressed in FAQs,
and some were simply off-topic. Perhaps more positively, the own topics were
for the vast majority focused, asking for very specific information that could, in
principle, be contained in a relatively short piece of text.

Table 3. Responses by test persons.

13. Did you like the idea that the search
engine takes into account the structure of
the documents? Why?

14. Do you find it useful to be pointed to
relevant parts of long articles? Why?

Yes, you will have a good overview of the
total article/document.

Yes, because you are able to see which ar-
ticles are worth reading and which are not.

Yes, for specific information this is very
useful.

Yes, gives the user an idea about the arti-
cle in question.

Yes, easier to see how long the article is. You don’t need to see other parts.
Yes, its easier to see the contents of the
document, better navigation.

Yes, you don’t have to dig into the article
yourself.

Yes, it didn’t bother me. Yes, it’s more easy to find what you’re
looking for.

Yes, less reading time, clear overview. Yes, saves time.
Yes, it shortens search time. Yes, because if scan-read long articles, you

easily miss some relevant parts.
Yes, saves work. Yes, works faster.
Yes, because its much faster. Yes, its faster.
Yes, this way of finding information takes
less time.

Yes, now you don’t have to read the whole
article. You can get straight to the part
where the information is.

Yes, its easier to see where relevant infor-
mation is located.

Yes, it takes less time to find the relevant
parts.

Yes, it makes it easier to find specific para-
graphs.

Yes, if programmed right it can save time.

Yes, it makes it a lot easier to find what
you are looking for.

Yes, it is lots more easier.

Yes, because makes me have to search less. Yes, to search less.

System of Choice Test persons in Task B were free to select with which of
the two system they searched for the third topic. Out of the 14 test persons, 4
(28.6%) choose to search with the Daffodil/HyREX system, the other 10 (71.4%)
choose to search with the xmlfind system.

General Views Test persons in Task B were, as part of the extended post-
experiment questionnaire, asked a number of questions about their opinions on
the concept of an XML retrieval engine. Table 3 lists the responses to two of the
questions, where each row represents the same test person. The responses where
equivocally positive, and the responses highlight many of the hoped advantages
of an XML retrieval system.

5 Discussion and Conclusions

This paper documents the University of Amsterdam’s participation in the INEX
2005 Interactive Track. We participated in two tasks. First, we participated in

the concerted effort of Task A, in which a common baseline system, Daffodil/-
HyREX, was used by six test-persons to search the IEEE collection, Second, we
conducted a comparative experiment in Task B, in which fourteen test persons
searched alternately with the baseline retrieval system, Daffodil/HyREX, and
our home-grown XML element retrieval system, xmlfind.

We detailed the experimental set-up of the comparative experiment. Both
experiments, involving in total twenty test persons, were conducted in parallel
in a single session. This ensured that the experimental conditions for all test
persons are very equal. Unplanned external causes, such as the down-time of
the Daffodil/HyREX system were affecting all test persons equally. Due to the
large number of test persons present at the same time, we had to minimize the
need for experimenter assistance. This was accomplished by generating person-
alized protocols for all test persons. In these protocols, test persons were guided
through the experiment by means of verbose instructions on the transitions be-
tween different tasks. Four experimenters were available, if needed, to clarify the
instructions or provide other assistance. This worked flawlessly, and allowed us
to handle the large numbers of test persons efficiently.

Although we are still in the process of analyzing the massive amount of data
collected during the experiments, we discussed a few initial results. The general
opinion on the XML retrieval systems was equivocally positive. Departing from
earlier systems that return ranked lists of XML elements, both the Daffodil/Hy-
REX and xmlfind are grouping the found XML elements per article (similar to
the Fetch & Browse task in the Adhoc Track). Test persons seem to conceive the
resulting system as an article retrieval engines with some additional features—
yet with great appreciation for the bells and whistles!

Acknowledgments

This research was supported by the Netherlands Organization for Scientific Re-
search (NWO) under project numbers 017.001.190, 220-80-001, 264-70-050, 612-
13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.006, and 640.001.501.

References

1. T. Bakker, M. Bedeker, S. van den Berg, P. van Blokland, J. de Lau, O. Kiszer,
S. Reus, and J. Salomon. Evaluating XML retrieval interfaces: xmlfind. Technical
report, University of Amsterdam, 2005.

2. Daffodil. Distributed Agents for User-Friendly Access of Digital Libraries, 2005.
http://www.is.informatik.uni-duisburg.de/projects/daffodil/.

3. HyREX. Hyper-media Retrieval Engine for XML, 2005. http://www.is.

informatik.uni-duisburg.de/projects/hyrex/.
4. B. Larsen, S. Malik, and T. Tombros. The interactive track at inex2005. In This

Volume, 2005.
5. Lucene. The Lucene search engine, 2005. http://lucene.apache.org/.
6. B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approch to XML

Retrieval. In INEX 2003 Workshop Proceedings, pages 19–26, 2004.

http://www.is.informatik.uni-duisburg.de/projects/daffodil/
http://www.is.informatik.uni-duisburg.de/projects/hyrex/
http://www.is.informatik.uni-duisburg.de/projects/hyrex/
http://lucene.apache.org/

Kyungpook National University at INEX 2005:
Interactive Track

Heesop Kim and Heejung Son

Department of Library & Information Science, Kyungpook National University

Daegu, 702-701, South Korea

heesop@knu.ac.kr; sonhjung@postech.ac.kr

Abstract. The two basic objectives of this study were: (1) to investigate how
the interface designs influence the searchers' satisfaction and (2) to examine
how the users’ backgrounds affect in their searching of the XML documents.
To achieve these objectives, we used INEX iTrack Daffodil retrieval system
which provided by the organizers of the INEX 2005 and recruited 12 students
in different backgrounds. The major changes of the system interface are (1)
structured presentation of documents and elements in the result list, (2)
adoption of more specified search window and simpler relevance assessment
scale, (3) application of small eye symbol for already viewed documents or
elements and (4) adoption of own tasks from the searchers. The responses from
the questionnaires of this year were analyzed and compared with those of INEX
2004 Interactive Track. In results, users’ satisfaction on understandability of
tasks and similarity to other tasks were increased, whereas their satisfaction on
ease of learning the system, ease of using the system, and understandability of
using the system were decreased with newly designed system interface in INEX
2005. To examine our second objectives we chosen two test groups with
different backgrounds in this experiment. One group is consisted of 6 students
who are majoring in Computer Engineering (CE) and expected to be more
familiar with the IEEE test collection; the other is consisted of 6 students who
are majoring in Library and Information Science (LIS) and expected to have
more previous knowledge of searching techniques. 36 transaction log files,
questionnaires and interview results were analyzed to look into the differences
in search characteristics and attitude to the search system evaluation between
these two groups. It is noteworthy that LIS group tends to show more activities
in their query iteration, and spend more time in their searching than the CE
group in XML document searching. However, CE group (Mean = 7.6
documents or components) showed more elaborate in their relevance
assessments than the LIS group (Mean = 4.9 documents or components) do.
The majority of CE group pointed out ‘delay of response time,’ ‘broken display
of numerical formulas and images,’ and ‘limited of Boolean operators’ as the
weakness of the newly designed interface, whereas the majority of LIS group

pointed out the adaptation of ‘search within the results,’ capability and
consistency of ‘viewed ones indicating’ which related with the common search
capabilities in general IR system. We need an in-depth analysis of the
differences of these two groups in the light of interface design for more
effective XML retrieval system.

B3-SDR @ Interactive Track: User Interface
Design Issues

Roelof van Zwol1, Sandor Spruit1, and Jeroen Baas2

1 Utrecht University, Department of Computer Science, Center for Content and
Knowledge Engineering, Utrecht, the Netherlands {roelof, sandor}@cs.uu.nl

2 Elsevier, User Centered Design, Amsterdam, the Netherlands
j.baas@elsevier.com

Abstract. For structured document retrieval systems to work in prac-
tice, it is necessary to realize a match between the functionality of the
interface offered to the user, and the behavior of the retrieval strategy
that drives the retrieval process. The main difference between the tradi-
tional retrieval system and the structured document retrieval system, is
the capability of the retrieval strategy to retrieve relevant document frag-
ments, i.e. XML elements, as the result of a user information need instead
of complete documents. In addition, a structured document retrieval sys-
tem allows the user to specify his information need using both structural
and content-based constraints. The potential to the user is enormous,
provided that this new functionality can be efficiently integrated into
the current user model for information seeking. This influences both the
query formulation process, and the presentation of results.
In this article we present how various aspects of the retrieval strategy are
integrated into the user interface for B3-SDR . Within INEX, the de-facto
language for specifying the user information need is NEXI, an XPath-
flavored language, with support for content-based information retrieval.
A user specifies the structural aspects of his information need using the
path-expressions offered by XPath, while the content-based constraints of
the information need are expressed using filters on the path-expressions.
Although the NEXI query language is relatively simple, on can not expect
from the average user that he ‘speaks’ fluent NEXI. Therefore the B3-
SDR interface offers the Bricks graphical approach for constructing NEXI
queries, besides the command-line option.
With respect to the presentation of results, the B3-SDR system offers
a number of alternatives that impact the way a user evaluates the re-
sults retrieved by the system. Besides the problem of overlapping results,
which occurs when the system retrieves an XML element and its ’over-
lapping’ parent, the system also provides different document views.
By default the system provides an in-context view of a document, when
the user wants to inspect one of the retrieved document fragments. In
this case, the document fragment is highlighted within the original docu-
ment. Alternatively, a user can request an isolated view of the document
fragment, where the system only displays the part that was assumed
relevant. The user has the option to inspect the entire document. The
main objective of Task C of the INEX Interactive Track in 2005 was to
examine this particular feature.

Context matters? User behaviour and element retrieval

Ragnar Nordlie and Nils Pharo
Oslo University College, Dept. of Journalism, Library and Information Science

The fundamental proposition underlying XML-assisted retrieval, at least as understood in the
INEX context, is that users of information retrieval systems are better assisted if they are
presented with search results that not only identify relevant documents, but also point directly
to relevant parts of the documents. The validity of this proposition depends on at least two
factors: that users are actually able to identify relevance upon being shown parts of documents
at various levels of granularity; and if so, that they behave accordingly, i.e. that they will not
feel compelled, for some reason, to view the whole article even if they have been shown and
have looked at the relevant parts. In our paper we intend to investigate these two questions
based on data from the 2004 and 2005 INEX Interactive Track. Our hypotheses are that users
are more assured in their relevance judgements when they are based on full articles, and that
their preferred search behaviour includes verifying relevance judgements by looking at the
context of the viewed element.

In our paper “Context matters: an analysis of XML documents”, we investigated the relevance
assessments of the users in the 2004 INEX Interactive experiments, expressed in a three-part
scale of “usefulness” and “specificity”, respectively. We found that users looked relatively
more frequently at whole articles than at elements of articles; that users had difficulties in
dealing with the combined relevance measure that were used, but that they were more likely
to judge a full article “useful” than an element of the same article, and that there was no
corresponding tendency to judge an element more “specific” than the full article. Overall,
there was a general tendency to judge elements as more relevant than full articles, but this did
not hold for judgements of elements and the full text of the same article.

The 2005 user assessments make use of a single measure of relevance. This will hopefully
eliminate some of the uncertainty in the interpretation of the users’ judgements and provide a
clearer picture of users’ ability to judge relevance on various levels of granularity. We will
follow up last year’s investigation on the 2005 data, and extend it to consider a number of
factors that might influence users’ ability to make relevance judgements on document parts,
and that we did not look into in the previous paper, notably

- the sequence in which the users view the components (full article first vs. component
first)

- the size and granularity level of the component
- user- and task-dependent factors such as type of question, user experience and domain

knowledge, and perceived and experienced difficulty of the search task.

A preliminary investigation of interview data from the 2005 data collection seem to indicate
that users feel the need to assure themselves of the validity of their judgement by looking at
the full article, regardless of what relevance judgement they have given to the components
they look at. We will study the search logs to investigate to which extent this perceived need
for assurance is reflected in actual user behaviour. A combined study of users’ relevance
assessments and actual search behaviour will provide a rich background for determining the
potential usefulness of a retrieval system based on XML-partitioned documents.

XML documents clustering by structures with
XCLS

Richi Nayak and Sumei Xu

School of Information Systems, Queensland University of Technology

Brisbane, Australia {r.nayak@qut.edu.au}

Abstract. We present the results of clustering the structural descriptions
(ordered labelled trees) of XML documents with XCLS. We have reported 5
sub-tasks corresponding to 5 corpuses. XCLS is a novel clustering algorithm to
assemble heterogeneous XML documents by measuring their level similarity
with a global criterion function. XCLS does not require the pair-wise similarity
to be computed between two individual documents, rather measures the
similarity at clustering level utilising structural information of XML documents.
XCLS utilises a Level structure format to represent the XML documents for
efficient processing. The clustering quality depends on the calculation of level
similarity and whether the level similarity can represent the documents’
structural similarity correctly.

1 Introduction

With the continuous growth in XML data, the ability to manage collections of XML
documents and to discover knowledge from them becomes essential for databases and
information retrieval systems. Several tools are developed to deliver, store and
querying XML data [2,4,10]. However, they do require efficient data management
techniques such as indexing based on structural similarity to support an effective
document storage and retrieval. The grouping of similar XML documents according to
structural similarity helps to achieve this.

The clustering process categorizes the XML data based on a similarity
measure without the prior knowledge on the taxonomy. There exists a number of
clustering methods dealing with (structured) database objects and text (unstructured)
data [2, 21]. The XML documents are semi-structured and hierarchal, representing not
only the values of individual items but also the relationships between data items. The
inherent flexibility of XML, in both structure and semantics, poses new challenges to
find similarity among XML data.
 Research on measuring the similarity of XML documents is gaining
momentum [1,3,6,7,8]. Most of these methods rely on the notion of tree edit distance
developed in combinational pattern matching – finding common structures in tree
collection [14]. (A document is usually represented as a tree structure.) These methods
are built on pair-wise similarity between two documents or document structures
(represented as trees). The pair-wise similarity is measured using the local functions
between each pairs of objects to minimise the intra-cluster similarity and maximize the
inter-cluster similarity. The similarity value between each pair of trees is mapped into
a similarity matrix. This matrix becomes the input to the clustering process using either
the hierarchical agglomerative clustering algorithm or k-means algorithms [5]. They

mailto:{r.nayak@qut.edu.au

are generally computationally expensive when the data sources are large due to the
need of pair wise similarity matching among diverse documents.
 Our strategy is quite different from these pair-wise clustering approaches. It is
inspired by the clustering algorithms developed for transactional data, characterized by
high dimensionality and large volume, such as LargeItem [13] and Clope [12] that do
not need to compute a pair wise similarity. These methods define the clustering
criterion functions on the cluster level calling global similarity measures to optimize
the cluster parameters. Each new object is compared against the existing clusters
instead of comparing against the individual objects. Since the computations of these
global metrics are much faster than that of pair-wise similarities, global approaches are
very efficient. These methods are not suitable for XML documents. They do not
consider the hierarchical structure of a document, (i.e. the level positions, context or
relationships of elements) that is the main essence of XML data.
 We apply the XML Clustering with Level Similarity (XCLS) algorithm to
cluster the given INEX XML corpus data by structures only using global similarity
measures. XCLS uses the Level structure format to represent the documents and the
LevelSim global criterion function to measure the similarity at clustering level utilising
the hierarchal relationships between elements of documents.

Figure 1: The XCLS approach

Level
Structure
Representation

Structure
Matching:
LevelSim
Measurement

Clustering
with
LevelSim

Cluster Cluster Cluster

XML
Documents

2 XML documents clustering with LevelSim (XCLS)

Given a set of XML documents D, the clustering solution C= {C1, C2 … Cq} is a
partition of {D1, D2 … Dn}, such that [C1 U C2 U … U Cq = {D1, D2 … Dn}] and [Ci ∩
Cj = Φ] for any 1 ≤ i, j ≤ q, where n is the number of XML documents; q is the number
of clusters. Ci denotes a cluster in the clustering solution. Di denotes an XML
document represented as a (newly introduced) level structure format.
 The XCLS method (figure 1) first represents the XML documents in the
Level structure form. The global criterion function, LevelSim, measures the similarity
at clustering level considering hierarchical structures of the XML documents to cluster
them, thus ignoring the need to compute the pair-wise similarity between two
individual documents.

2.1 Level structure: Inferring of XML documents structure

To be applicable to general Web documents and any type of XML documents – well-
formed, valid and ill-formed – the XCLS algorithms starts with inferring the structural
information within the document represented as the ordered labelled tree.

Figure 2: An XML Document (X_Movie) & its tree representation (T_Movie)

<?xml version=”1.0” encoding=”UTF-8”?>
<Movie Database>
 <Movie>
 <Title> Gold Rush </Title>
 <Year> 1925 </Year>
 <Directed by>
 <Director> Charles Chaplin </Director>
 </Directed by>
 <Genres>
 <Genre> Comedy </Genre>
 <Genre> (more) </Genre>
 </Genres>
 <Cost>
 <Actor>
 <FirstName> Charles </FirstName>
 <LastName> Chaplin </LastName>
 </Actor>
 <Actor> (more) </Actor>
 </Cost>
 </Movie>
 <Movie> (more) </Movie>
</Movie Database>

When inferring the structure, the focus is on paths of elements with content

values (i.e. leaves in a document tree), without considering attributes in an XML
document. The inferred structure preserves the hierarchy and the context of elements
of the documents. For an element, multiple instances of values are ignored, as these are
redundant information for structure’s presentation and the occurrence of elements is
not important for clustering in most cases. Additionally, XCLS does not consider the
order of sibling when computing the similarity, as the order of sibling is not important
for the clustering.

Figures 2 shows a XML document (X_Movie) and its corresponding
structural tree (T_Movie). In order to enhance the clustering speed, the name of each
element is denoted by a distinct integer.

Figure 3: Level structure for T_Movie Figure 4: Level structure of the cluster

We define a novel concept of the level structure to show the level and the elements in
each level of a tree structure. The Figure 3 shows the level structure for T_Movie. The
level structure contains the information such as element values and their occurrences
and levels in the hierarchy. We also define the level structure for clusters preserving
the hierarchical information of document. Each level of a cluster contains a collection
of elements of the same level for all documents within the cluster. The figure 5 shows

a tree structure of a document on Actor information and its corresponding level
structure. The Figure 4 shows the level structure of a cluster containing both the Movie
and Actor documents.

 Figure 5: T_Actor and its level structure

2.2 Clustering global criterion function with level similarity (LevelSim)

Considering the level information and elements’ relationships/context of XML data, a
new solution for measuring structural similarity between two XML objects (cluster to
tree, tree to tree, cluster to cluster) is developed which is called Level Similarity
(LevelSim). It measures the common items in each corresponding level, and allocates
different weight according to the level (i.e. high level (e.g. root) has more weight than
low level (e.g. leaf)).

Elements are matched according to the level information of each object. We
define the criterion function for matching two objects, a tree and a cluster, as each tree
will be matched against the existing clusters. Cluster may contain only one tree as well.

The order of matching between two objects is important due to the structural
information present in an XML document. The LevelSim when matching object 1 (tree)
to object 2 (cluster) is defined as:

∑

∑∑
−

=

−−

−

=

−−
−

=

−−

→

××

××+××
=

×
×+×

=

1

0

1

1

0

1
2

1

0

1
1

21
21

))((

)(5.0)(5.0

5.05.0

L

k

kLk

L

j

jLj
L

i

iLi

ZrN

rCNrCN

ZTreeWeight
ComWeightComWeightLevelSim

1 denotes the total weight of the common elements in all levels considering

the level information of object 1;
ComWeight

2ComWeight denotes the total weight of the common elements in all levels
considering the level information of object 2;
TreeWeight denotes the total weight of all items in each level of the tree (object 1);

Z is the size of the cluster (the number of trees within cluster);
iCN1 denotes the sum of occurrences of every common elements in level i of object 1;
jCN2 denotes the sum of occurrences of every common elements in level j of object 2;

kN denotes the number of elements in level k of the tree.
r is the increasing factor of weight, which is usually larger than 1 to indicate that the
higher level elements have larger than lower level elements called as “Base Weight”;
L is the number of levels in the tree.

LevelSim yields the values between 0 and 1; 0 indicates completely different objects
and 1 indicates homogenous objects.

Figure 6: Two different cases showing the process of matching a tree to a cluster

2.3 The process of structure matching between two objects

The steps to match elements of a tree (object 1) to elements of a cluster (object 2) are
as follows:
1. Start with searching common elements in the 1st level of both objects. If at least

one common element is found, mark the number of common elements with the
level number in object 1 () and the number of common elements with the level
number in object 2 (), then go to step 2. Otherwise, go to step 3.

0
1N

0
2N

2. Move both objects to next level (level i++, level j++) and search common
elements in these new levels; If at least one common element is found, mark the

number of common elements with the level number in object 1 () and the
number of common elements with the level number in object 2 (), then go to
step 2. Otherwise, go to step 3.

iN1
jN 2

3. Only move object 2 to next level (level j), then search common elements in the
original level (i) of object 1 and the new level (j) of object 2. If at least one
common element is found, mark the number of common elements with the level
number in object 1 () and the number of common elements with the level
number in object 2 (), then go to step 2. Otherwise, go to step 3.

iN1
jN 2

4. Repeat the process until all levels in either object have been matched.
After completion of structure matching the Level Similarity (LevelSim) is computed.

The Figure 6 shows two different cases of matching object 1 to object 2. In

the first case, object 1 is the tree T_Movie, object 2 is the cluster only containing the
tree T_Actor. In the second case, object 1 is the same, but object 2 is the cluster
containing both T_Actor and T_Movie.

The operation LevelSim is not transitive. As a result, the level similarity
between two objects is computed, & , and the larger value
between these two is chosen:

21→LevelSim 12→LevelSim

 . 12211221 :? →→→→ >= LevelSimLevelSimLevelSimLevelSimLevelSim

The LevelSim emphasizes different importance of elements in different level
positions by allocating different weight to them. The hierarchical relationships of
elements are also considered by counting occurrences of common elements sharing
common ancestors. The derivation of level structure from a tree is straightforward; and
the computation of LevelSim is quite effective.

/*Phase 1 – Allocation*/
For all XML trees to be clustered
• read the next tree (represented as level structure);
• compute the LevelSim between the tree and each existing cluster;
• assign the tree to an existing cluster if maximum of LevelSim(s) is found

between two objects and LevelSim > LevelSim_Threshold;
• otherwise, form a new cluster containing the tree.

/*Phase 2 – Reassignment (adjustment) */
For all XML trees
• read the next tree (i.e. level structure);
• compute the LevelSim between the tree and each existing cluster;
• reassign the tree to an existing cluster if maximum of LevelSim(s) is found

between two objects and LevelSim > LevelSim_Threshold;
• otherwise, form a new cluster containing the tree.

/*Stop if there is ano improvement in two iterations*/

Figure 7: The sketch of XCLS core clustering algorithm

2.4 Clustering with Level Similarity

The problem is to group each XML document within the XML sources into an existing
cluster that have the maximum level similarity (LevelSim) or to a new cluster. The
figure 7 outlines the algorithm that includes two phases of allocation and reassignment.
In the allocation phase, clusters are progressively formed driven by the criterion
function LevelSim. After that in reassignment phase, only a few iterations are required
to refine the clustering and optimize the LevelSim. If no changes in the clustering
solution formed by previous iteration, the clustering process is stopped. The XCLS
algorithm uses a user-defined threshold LevelSim_Threshold below that the cohesion
between two objects is not considered e.g., LevelSim < LevelSim_Threshold. This
threshold (between 0 and 1) can be set according to the application requirement, if
only highly homogenous documents are to be grouped the threshold is set higher (near
1) otherwise it is set as lower value (near 0).

3 Experimental Evaluation

The data used in experiments are the MovieDB corpus and the INEX corpus. The
MovieDB corpus has 11 thematic classes and 11 possible structure classes. The INEX
corpus has 6 thematic classes (Computer, Graphics, Hardware, Artificial Intelligence,
Internet, Parallel) and 2 structural classes (Transaction journals vs Others). Some
documents could not be parsed therefore are ignored during the clustering process.
Some features of the corpus are shown in the table 1.

Dataset Bad trees
(ill-formed)

Trees to be
Clustered

Distinct
Labels

m-db-s-0-test 5 4811 195
m-db-s-1-test 4 4814 197
m-db-s-2-test 9 4809 197
m-db-s-3-test 9 4809 194

inex-s-test 0 6053 173

Table 1: Features of the data sets

The intra-cluster similarity is computed by measuring the level similarity
between a pair of trees (i.e. XML document structures) within a cluster. The intra-
cluster similarity of a cluster is the average of all pair-wise level similarities within the
cluster. The intra-cluster similarity of the clustering solution is the average of the intra-
cluster similarities of clusters taking into account the number of trees within each
cluster. The Level Similarity between two trees is quite similar to the level similarity
measure between a tree and a cluster. It is defined as:

ji
ji TreeWeightTreeWeight

jiComWeightjiComWeight
LevelSim

+
→+→

=→

)()(21

ji

ij TreeWeightTreeWeight
ijComWeightijComWeight

LevelSim
+

→+→
=→

)()(21

 ijjiijjiji LevelSimLevelSimLevelSimLevelSimLevelSim →→→→ >= :?,

Where is the total weight of the common items in each
level between tree

)(1 jiComWeight →

i and treej while matching treei to treej and using the level number of
treei; is the same as above but using the level number of tree)(2 jiComWeight → j;

 and are the total weight of all items in each levels of tree
iTreeWeight iTreeWeight i and

treej respectively, and are calculated in the same way when matching tree to cluster.
The intra-cluster similarity of a cluster Ci is defined as

)1(5.0

)(1 1
,

−××
=
∑ ∑
= +=

nn

LevelSim
CIntraSim

n

i

n

ij
ji

i

 where n is the number of trees in Ci.

For a clustering solution C = {C1, C2 … Ck}, the intra-cluster similarity of the
clustering is defined as:

N

nCIntraSim
IntraSim

k

i
ii∑

=

×
= 1

)(
 where ni is the number of trees in Ci, N is the

total number of trees in the Clustering and k is the number of clusters in the solution.
The inter-cluster similarity measures the separation among different clusters.

It is computed by measuring the level similarity between two clusters. The inter-cluster
similarity of the clustering solution is the average of all pair-wise level similarities of
two clusters. The Level Similarity between two clusters is defined as similar to two
trees, using the objects as clusters:

ji
ji ghtClusterWeightClusterWei

jiComWeightjiComWeight
LevelSim

+
→+→

=→

)()(21

ji

ij ghtClsuterWeightClusterWei
ijComWeightijComWeight

LevelSim
+

→+→
=→

)()(21

 ijjiijjiji LevelSimLevelSimLevelSimLevelSimLevelSim →→→→ >= :?,

The inter-cluster similarity for the clustering solution C = {C1, C2 … Ck} is:

)1(5.0

1 1
,

−××
=
∑ ∑
= +=

kk

LevelSim
InterSim

k

i

k

ij
ji
 where k is the number of clusters in the clustering.

All the experiments were done in the machine with 2.8GHZ Intel Celeron

CPU and 1G of RAM. Table 2 and 3 show the performance of XCLS on these data sets
with the various parameters set during the experiments. One of the experimental runs
has the parameter of max clusters set as 1000. It means XCLS automatically groups
the documents into clusters without a prior knowledge. Another experimental run has
the parameter of max clusters set as required clusters. In the first clustering process,
the number of clusters are usually large (>100) depending on the similarity threshold.
In the following iterations, it decreases automatically. Clustering is not controlled by
level threshold, but is controlled by the level similarity between the tree and the
original cluster or other clusters in the following iterations.

There are two parameters in XCLS: Base Weight and Similarity Threshold
that need to set during run-time. A number of experiments with different values are

carried out to evaluate the XCLS performance. The experiments conclude XCLS is not
hypersensitive with these parameters Experiments have found the suitable values of
‘Base Weight’ between 1.3 and 2.5 and of ‘similarity threshold’ between 0.3 and 0.7.

 Dataset Run BaseWeight SimThreshhold IntraSim InterSim

m-db-s-0-test 1 1.45 0.65 0.793437 0.093376
 2 1.5 0.65 0.791116 0.128861

m-db-s-1-test 1 1.5 0.25 0.664616 0.230575
 2 1.5 0.5 0.661578 0.183368

m-db-s-2-test 1 1.45 0.29 0.6006 0.270311
 2 1.5 0.8 0.608698 0.274835

m-db-s-3-test 1 1.45 0.235 0.562381 0.317
 2 1.5 0.8 0.570773 0.290998

inex-s-test 1 1.45 0.5 0.712204 0.180065
 2 1.5 0.5 0.71986 0.189902

Table 2: XCLS accuracy performance

Dataset Run PreProcessTime(S) ClusteringTime(S)Iterations
m-db-s-0-test 1 6.172 10.5 7

 2 6.094 10.281 7
m-db-s-1-test 1 7.172 14.031 8

 2 8.031 10.435 6
m-db-s-2-test 1 10.781 35.515 15

 2 11.156 32.468 15
m-db-s-3-test 1 11.953 41.687 15

 2 11.578 41.281 15
inex-s-test 1 27.453 12.14 4

 2 27.406 12.234 4
Table 3: XCLS scalability performance

Table 4 and 5 shows the time performance of XCLS on m-db-s-0 and inex-s.
The pre-processing time includes the generation of level structure for all documents.
The clustering time includes the time to group the represented level structures in
clusters using LevelSim measurement.

The time complexity of pair-wise clustering algorithms is at least O(m2),
where m is the number of elements in the documents. This is infeasible for large
amount of data. XCLS computes the structure similarity between the document
structure and clusters avoiding the need of pair-wise comparison. Its time complexity

is O(m×c×p×n): m is number of elements in documents; c is number of clusters; p is
number of iterations; n is number of distinct elements in clusters. The documents
grouped into a cluster should have similar structures and elements. So the number of
distinct elements in clusters should always be less than the distinct elements in
documents. The number of iterations is usually small and its maximum can be
configured. Therefore, if the number of clusters is less than the number of documents
(that is usually the case) the time cost is linear to the number of documents.

0

1

2

3

4

5

6

7

500 1000 1500 2000 2500 3000 3500 4000 4500
no. of document s

Pr
ep

ro
ce

ss
in

g
ti

me

(s

ec
on

ds
)

0

2

4

6

8

10

12

14

500 1000 1500 2000 2500 3000 3500 4000
no. of document s

c
lu

st
e
ri

ng
 t

im
e

(s
ec

on
ds

)

Table 4: The execution time of XCLS on m-db-s-0

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000
no. of document s

Pr
e
pr

o
ce

s
si

n
g
 t

i
me

(s

e
co

n
ds

)

0

2

4

6

8

10

12

14

1000 2000 3000 4000 5000 6000
no. of document s

C
l
u
s
t
e
r
i
n
g

t
i
m
e

(
s
e
c
o
n
d
s
)

Table 5: The execution time of XCLS on inex-s

Experiments were also performed to test the sensitivity of XCLS on the order
of input data using the same data source. The clustering process of XCLS was repeated
many times with the input data sources presented in randomly order to XCLS. The
results were not exactly same, but were very close. It shows that XCLS is
independence of the order input.

4 Conclusions and Future Work

We used the XCLS algorithm based on the intuitive idea of the global criterion
function LevelSim for easy and effective clustering solution of movie and INEX data
sets by their structures. XCLS efficiently clusters a large number of documents from

different domains and with a large number of distinct labels, without knowing the
number of clusters. XCLS evaluates the structural similarity in the clustering level
instead of document level, thus it does not need to calculate the pair-to-pair distance
between documents. It considers the hierarchical structure of XML documents in the
algorithm, but is not strict to the parent-child relationship, which makes it more
reasonable in the heterogeneous environment. The experiments show the effectiveness
of XCLS using the global criterion function in comparison to the clustering algorithms
using a locally defined criterion function based on pair-wise similarity.

The main weakness of XCLS is that it can not cluster XML documents into a
specific number directly, which means, the information of number of clusters does not
help the clustering process at all. However, this information provides an important hint
for the clustering. XCLS is not good at recognizing the details of the structure. The
cluster is presented by level structures, which only record the elements and their
occurrences, but not the trees they come from; i.e. it is impossible to recognize which
part is from which tree in the level structures. Therefore, if trees have complex
overlapped structures, the calculation of level similarity between a tree and a cluster is
not accurate. It was easy to get the result of m-db-s-0 and inex-s, which have not been
transformed. But for the corpuses m-db-s-1, m-db-s-2 and m-db-s-3, it is a challenge
for XCLS. It is really hard to get the right values for the parameters.

XCLS needs some future work to improve its effectiveness. XCLS ignored
the sematic similarity among documents, which is impractical in the flexible
environment on web since people may use different tags to describe the same thing. As
WordNet can organize English words into synonym sets and defined different relations
link the synonym sets, it can be added to the pre-processing phase to recognize the
sematic similarity among elements.

References

1. Bertino, E., Guerrini, G. & Mesiti, M. (2004). A Matching Algorithm for

Measuring the Structural Similarity between an XML Document and a DTD and
its applications. Information Systems, 29(1): 23-46.

2. Boag S. Chamberlin D, Fernández M, Florescu D, Robie J and Siméon J.
“XQuery 1.0: An XML Query Language” W3C Working Draft, September, 2005.
http://www.w3.org/TR/2005/WD-xquery-20050915/

3. Flesca, S., Manco, G., Masciari, E., Pontieri, L., & Pugliese, A. (2005). Fast
Detection of XML Structural Similarities. IEEE Transaction on Knowledge and
Data Engineering, Vol 7 (2), pp 160-175.

4. Guardalben, G. (2004), Integrating XML and Relational Database Technologies:
A Position Paper, HiT Software Inc, retrieved May 1st ,2005, from
http://www.hitsw.com/products_services/whitepapers/integrating_xml_rdb/integra
ting_xml_white_paper.pdf.

5. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data Clustering: A Review. ACM
Computing Surveys (CSUR), 31(3), 264-323.

6. Leung, H.-p., Chung, F.-l., & Chan, S. C.-f. (2005). On the use of hierarchical
information in sequential mining-based XML document similarity computation.
Knowledge and Information Systems, 7(4),pp 476-498.

7. Nayak R and Iryadi W (2006). XMine: A methodology for mining XML structure.
To appear in The Eighth Asia Pacific Web Conference. January 2006, China.

8. Nayak R & Xia, F. B. (2004). “Automatic integration of heterogenous XML-
schemas”, Proceedings of the International Conferences on Information
Integration and Web-based Applications & Services. Jakarta, Indonesia, Sec 27-29,
pp. 427-437.

9. Nayak, R., Witt, R., and Tonev, A. (2002) Data Mining and XML documents,
International Conference on Internet Computing, USA.

10. Xylem L. (2001). Xylem: A dynamic Warehouse for XML data of the Web,”
IDEAS’01, pp3-7, 2001.

11. Yergeau, F, Bray T, Paoli J, Sperberg-McQueen, C M and Maler E. (2004).
Extensible Markup Language (XML) 1.0 (Third Edition) W3C Recommendation,
February 2004, http://www.w3.org/TR/2004/REC-XML-20040204/

12. Ying Y, Guan X and You J. (2002), CLOPE: A Fast and effective clustering
algorithm for transactional data,

13. Wang, K., Xu, C. (1999), Clustering Transactions Using Large Items, in the
proceedings of ACM CIKM-99, Kansas, Missouri.

14. Zhang, K., & Shasha, D. (1989). Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems. SIAM Journal Computing, 18(6), 1245-
1262.

15. Zhao, Y., & Karypis, G. (2002). Evaluation of Hierarchical Clustering Algorithms
for Document Datasets. The 2002 ACM CIKM, USA.

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/

A Flexible Structured-based Representation for

XML Document Mining

Anne-Marie Vercoustre, Mounir Fegas, Saba Gul, and Yves Lechevallier

INRIA, Rocquencourt, France

Abstract. This paper reports on the INRIA group’s approach to XML
mining while participating in the INEX XML Mining track 2005. We use
a flexible representation of XML documents that allows taking into ac-
count the structure only or both the structure and content. Our approach
consists of representing XML documents by a set of their sub-paths, de-
fined according to some criteria (length, root beginning, leaf ending). By
considering those sub-paths as words, we can use standard methods for
vocabulary reduction, and simple clustering methods such as K-means
that scale well. We actually use an implementation of the clustering al-
gorithm known as dynamic clouds that can work with distinct groups
of independent variables. This is necessary in our model since embedded
sub-paths are not independent.

Sequential Pattern Mining for Structure-based

XML Document Classification

Calin Garboni, Florent Masseglia and Brigitte Trousse

INRIA Sophia Antipolis, AxIS Research Team
2004 route des lucioles - BP 93
06902 Sophia Antipolis, France

E-mail: {Surname.Name}@inria.fr

Abstract. This article is related to a new XML Document classification
method based on extracting frequent sequential patterns applied on the
structure of the documents of each predefined clusters. The article will
be organised like this. Section 1. will define the sequential pattern mining
problem in large databases and will remind the main sequential pattern
mining definitions. Section 2. will introduce the principles of structure
discovery from a set of XML documents. Our goal is to extract a schema
that will be representative of the whole set of documents. In this context,
“representative” will be interpreted as “frequent”. In fact, we consider
that a frequent sub-tree in a collection of XML document may be consid-
ered as a interesting knowledge regarding this collection. This sub-tree
can be exploited as a further DTD or may stand for a characteristic of
the collection (this is the main idea of our approach). After presenting
related work, we describe in section 4 our approach composed of different
steps (cleaning and format transformation, predefined clusters character-
isation in terms of frequent sequential patterns, used measures to classify
each document). Section 5 will present our experiments and our results
on the Movie collection.

Keywords: XML Document, structure mining, clustering, clas-

sification, frequent sequential pattern

Categorization and Clustering of XML

documents using Structure and Content

Information

Ludovic DENOYER, Patrick GALLINARI

LIP6 - University of Paris 6

Abstract. The widespread use of XML has urged the need to develop
tools to efficiently store, access and organize XML corpus. The INEX
initiative has resulted in major improvements in XML retrieval systems,
but today, related tasks, like categorization or structure matching, should
be investigated. We consider here the problem of clustering XML docu-
ments using their structure.
In this paper, we propose a Belief networks-based stochastic model which
is able to describe different kind of relations between structural elements.
We show how these models can be used to transform semi structured doc-
ument into vectors. We then use these vectors for clustering and cate-
gorization of XML documents. We test our model on the different corpora
provided by the INEX XML Mining Challenge - http://xmlmining.lip6.fr.

Transforming XML trees for efficient

classification and clustering

Laurent Candillier, Isabelle Tellier, Fabien Torre

GRAppA - Charles de Gaulle University - Lille 3
http://www.grappa.univ-lille3.fr
candillier@grappa.univ-lille3.fr

Pertinence - 32 rue des Jeuneurs -75002 Paris
http://www.pertinence.com

Abstract. Most of the existing methods we know to tackle datasets
of XML documents directly work on the trees representing these XML
documents. We investigate in this paper the use of a different kind of
representation for the manipulation of XML documents. Our idea is to
transform the trees into sets of attribute-values, so as to be able to ap-
ply various existing methods of classification and clustering on such data,
and benefit from their strengths. We apply this strategy both for the clas-
sification task and for the clustering task using the structural description
of XML documents alone. For instance, we show that the use of boosted
C5 leads to very good results in the classification task of XML docu-
ments transformed so. The use of SSC in the clustering task benefits
from its ability to provide as output an interpretable representation of
the clusters found. Finally, we also propose an adaptation of SSC for
the classification of XML documents, so that the produced classifier is
understandable.

Clustering XML Documents using

Self-Organizing Maps for Structures

F. Trentini, M. Hagenbuchner, A. Sperduti3, A.C. Tsoi, F. Scarselli1, and M.

Gori

University of Siena, Siena, Italy

University of Wollongong, Wollongong, Australia

University of Padova, Padova, Italy

Australian Research Council, Canberra, Australia

Abstract. Self-Organizing Maps capable of encoding structured infor-

mation will be used for the clustering of XML documents. Documents

formatted in XML are appropriately represented as a graph structure. It

will be shown that the Self-Organizing Maps can be trained in an unsu-

pervised fashion to group XML structured data into clusters, and that

this task is scaled in linear time with increasing size of the corpus.

INEX 2005 Multimedia Track

Roelof van Zwol1, Gabriella Kazai2, and Mounia Lalmas2

1 Utrecht University, Department of Computer Science, Center for Content and
Knowledge Engineering, Utrecht, the Netherlands

roelof@cs.uu.nl
2 Department of Computer Science, Queen Mary University of London, London,

United Kingdom
{gabs, mounia}@dcs.qmul.ac.uk

Abstract. In this article the activities of the INEX 2005 Multimedia
track are reported. We succesfully realized our objective, to provide an
evaluation platform for the evaluation of retrieval strategies for XML-
based multimedia documents. In this first exploratory year the focus was
on the retrieval of XML fragments, using both content-based text and
image retrieval.

1 Challenge and Objectives

The main objective of the INEX 2005 multimedia track is to provide an evalua-
tion platform for structured document retrieval systems that do not only include
text in the retrieval process. Many structured document collections today also
contain other types of media, such as images, speech, and video. To include these
media types into the retrieval process and to produce a meaningful ranking is far
from trivial. Using the structure of the document as a semantic/logical backbone
for the retrieval of multimedia document fragments will allow us to investigate
this problem from a new perspective. In the first year of the multimedia track,
we provided an evaluation platform for the retrieval of multimedia structured
document fragments, rather similar to the methodology used for the INEX Ad
Hoc track.

The task set for the multimedia track was to retrieve relevant document frag-
ments based on an information need with a structured multimedia character. A
structured document retrieval approach in that case should be able to combine
the relevances of the different media types into a single (meaningful) ranking
that is presented to the user. The INEX multimedia track differs from other ap-
proaches in multimedia information retrieval, in the sense that it focuses on using
the structure of the document to extract, relate, and combine the relevances of
different multimedia fragments. The focus for 2005 was on the combination of
text and image retrieval, using a strict interpretation of the structural compo-
nents of the specified information need.

1.1 Track Outline

To give an impression of the activities deployed in the multimedia track a step-
by-step outline is presented below.

– Acquisition of the Lonely Planet worldguide. One of the first steps was to ac-
quire the a suitable XML collection that was easily accessible and contained
well integrated multimedia objects. We acknowledge the Lonely Planet or-
ganization for providing us the WorldGuide XML collection.

– Extension of the NEXI query language. The original NEXI query language
supported only text-based information retrieval. For the multimedia track, it
is necessary to specify a similarity search on images, besides text. Therefore
a small extension to the NEXI query language is defined.

– Baseline system for topic formulation. Both a text-based and an image-based
retrieval system is provided to support the topic formulation process.

– Topic formulation procedure and selection. A topic formulation procedure
is setup, similar is for the Ad-hoc track. Besides a search for relevant text
fragments based on a particular information need the participants were asked
to do a preliminary search for relevant images. This resulted in a pool of 25
topics, which is used for the retrieval performance experiment.

– Evaluation Methodology. We decided to keep the evaluation methodology
simple, and use only binary relevancy judgments. This allowed us to adopt
the TREC evaluation methodology.

– Assessment platform. The assessments are performed with the XRAI assess-
ment tool provided by Dr. Benjamin Piwowarski of the University of Chile,
Santiago. We are most grateful for his support. The XRAI tool is also used
for the Ad-hoc track.

– Assessment procedure. Instead of the two-step assessment procedure, we
only performed the first step, where relevant fragments of the document are
highlighted, if the fragment satisfied all the requirements of the information
need (SSCAS interpretation). In total eight participants took part in the
assessment procedure. Two topics remained un-assessed.

– Evaluation of results. In total twenty-five runs were submitted by five partic-
ipants (QMUL, QUTAU, RMIT, UTRECHT, and UTWENTE). Using the
TREC evaluation tool, we reported the standard measures used in TREC.

1.2 Lonely Planet XML Document Collection

The corpus used for the INEX 2005 multimedia track is based on the Lonely
Planet WorldGuide, made available by the Lonely Planet organization. The
Lonely Planet collection consists of 462 XML documents with information about
destinations, that is particularly useful for travellers that want to find inter-
esting details for their next holiday or business trip. This particular collec-
tion is referred to as the ”WorldGuide” and can be viewed online at: http:
//www.lonelyplanet.com/worldguide/. The collection not only contains use-
ful information about countries, but also includes information about interesting
regions and major cities. For each destination an introduction is available, com-
plemented with information about transport, culture, major events, facts, and
an image gallery that gives you an impression of the local scenery.

2 Topic Formulation

This section start with some examples to introduce the approach followed for
(1) the inclusion of content-based image retrieval into the specification of the
information request in NEXI, and (2) the topic development procedure.

2.1 Examples

Within the multimedia track well focus on the content and structure topics, as
these allow explicit formulation of the multimedia character in the information
request, e.g. NEXI-CAS query. Consider for example the topic based on the
Lonely planet collection below:

Example 1.

Information need: Find images depicting scuba diving activities for desti-
nations with a tropical climate and that discuss exploring the beautiful un-
derwater nature by diving activities.
Information request:

//destination[about(.//weather,tropical climate)

and about(.//activities, beautiful "underwater nature" diving)]

//images//image[about(., scuba diving)]

The information need of Example 1 contains both textual and image elements.
E.g. about(.//weather,tropical climate) specifies the condition requesting
information about a tropical climate that is to be found within the XML element
weather underneath a destination element. Furthermore, image elements are
requested that depict scuba diving scenes.

Although the target elements of the above example are images, so far, simple
textual retrieval approaches may be sufficient to produce the required output by
searching image captions. However, a combination of text and image retrieval
systems is encouraged within the track as these may in fact produce better
results. Consider therefore Example 2.

Example 2.

Information need: Find images depicting scuba diving activities, like in
BN5970 6.jpg, for destinations with a tropical climate and that discuss ex-
ploring the beautiful underwater nature by diving activities.
Information request:

//destination[about(.//weather,tropical climate)

and about(.//activities, beautiful "underwater nature" diving)]

//images//image[about(., scuba diving src:/image/BN5970_6.jpg)]

The extension to the information need of Example 2, where an example picture is
specified, enforces the inclusion of content-based image retrieval techniques into
the retrieval process. To specify the corresponding information request in NEXI,
a small extension to the query language is needed (src:/image/BN5970 6.JPG).

2.2 Multimedia Extension to NEXI

By expressing both the content and image components of the information need
within the same about clause, we are effectively overloading its meaning, leaving
it to the retrieval system to decide if a text or image search (or both) is required.
The reason for doing so is to emphasize the multimedia nature of the track. Using
the extended about-clause, we can specify query constraints for a document frag-
ment (which may be pure text, image, or a combination of multiple media) using
a textual description (e.g. about(//image, scuba diving), about(//destination,
scuba diving)) or using similar images (e.g. about(//image, src:/image/BN5970
6.jpg), about(//destination, src:/image/BN5970 6.jpg)) or any combination of
the above, as used in Example 2. Various combinations of query conditions will
require different strategies where text and image retrieval can be combined. The
tracks focus is on the combination of the two techniques and therefore we en-
courage the submission of topics that force systems to implement content-based
image retrieval (e.g. about(//destination, src:/image/BN5970 6.jpg)).

2.3 Topic Development Procedure

Below a desciption of the topic format is given, as used for the topic specifica-
tion within the Multimedia track. Next, we will describe the topic development
guidelines that where formulated to construct the topic pool.

Topic Format. The topic format for the multimedia track consists of the fol-
lowing fields: a description, castitle, and narrative. The following information
should be contained in each of these fields:

– <description> A brief description of the information need, specifying any
structural, textual, and visual requirements/composition on the content. The
description must be precise, concise, and informative, but it must contain
the same terms and the same structural requirements that appear in the
castitle, albeit expressed in natural language.

– <castitle> A valid NEXI expression based on the Lonely Planet document
collection that contains at least one about clause containing at least one
image component. The expression is of the form //A[B] or //A[B]//C[D].

– <narrative> A detailed explanation of the information need and the de-
scription of what makes and element relevant or not. The narrative should
explain not only what information is being sought, but also the context and
motivation of the information need, i.e. why the information is being sought
and what purpose it may serve. Assessments will be made on compliance to
the narrative alone; it is therefore important that this description is clear
and precise.

Topic Development Guidelines Each participating group was requested to sub-
mit 3 (CAS) topics. The additional constraints, as defined in the Topic devel-
opment Guide for the INEX Ad Hoc track apply, for so far they are applicable
and not overruled in the following steps:

Step 1: Initial topic statement. Create a one or two sentence description of
the information you are seeking. This should be a simple description of the
information need without regard to retrieval system capabilities or document
collection peculiarities. Record the context and motivation of the information
need, i.e. why the information is being sought.
Step 2: Exploration phase. In this step the initial topic statement is used to
explore the collection. Obtain an estimate of the number of relevant elements,
then evaluate whether this topic can be judged consistently. For this purpose
two search engines were available, a text-based system and an image-based
system, which could be used by the participants for topic development.
Step 2a: Assess the top 25 text fragments. Judge the relevancy of the retrieved
text fragments (using binary relevance only). Each result should be judged
on its own merits. Abandon a search, if there are fewer than 2 or more than
20 relevant text fragments in the result list.
Step 2b: Assess top 25 images. Since most participants did not have an off-
the-shelves system available for the multimedia track, we have chosen to
do a separate scan for the relevance of the image component. Therefore,
the participants had to assess the top 25 images and judge their relevance
(using binary relevance only). Each result should be judged on its own merits.
Abandon the search, if there are fewer than 2 or more than 20 relevant images
in the result list.
Step 2c: Inspect document matching. To assure that the document collection
has a reasonable chance of completely fulfilling the text and image-based
constraints of the information need a check at document level is needed.
The participants were asked to count the number of documents that both
satisfy the textual conditions and the image conditions. I.e. if a relevant
text fragment was found, and there is an image that belongs to the same
XML document, a match is found that corresponds to the information need.
Abandon the topic if less than 3 matches are found over the top 25 results
for both components.
Step 3: Write description, title, and narrative. During this step the partic-
ipants completed the topic definition by writing the description, title, and
narrative.
Step 4: Topic submission. Once finished, the topics were submitted using the
on-line Candidate Topic Submission Form on the INEX website.

Topic Pool In total 8 participating groups submitted a total of 25 topics. In
Example 3, one of the topics as submitted for the multimedia track is presented.
It shows that any XML document fragment can be requested as the result of
an information need, in this case the root element destination of the XML
document is returned, while various conditions are formulated using both textual
and visual requirements.

Example 3.

<?xml version="1.0" encoding="ISO-8859-1"?>

<inex_topic topic_id="2" inex_track="MM">

<castitle>

//destination[(about(., church) and about(., Europe)) or

about(.//images//image, +church +Cathedral) or

about(.//images//image, src:/images/BN6082_10.jpg)]

</castitle>

<description>

I want information, text or images, about churches and church

architecture in Europe.

</description>

<narrative>

I’m planning a round trip in Europe with an aim to see as many

interesting churches as possible. I want to have information

about the locations, history and architecture of the churches.

Also, I want to see pictures of the churches and cathedrals in

Europe.

</narrative>

</inex_topic>

3 Assessments

The definition of relevance used for the assessments is based on the definition
employed in the INEX ad-hoc track with the exception that we measure exhaus-
tivity only on a binary scale. In addition, reflecting the SSCAS task, we only
consider an XML element relevant if it strictly matches the structural conditions
specified within the query, i.e. only target elements may be relevant and only if
they are contained in an XML document that satisfies the querys containment
constraints.

Therefore, a given multimedia fragment is said to be relevant if it discusses
(or depicts) the topic of request to any degree and if it strictly adheres to the
structural conditions requested by the user. Similarly to the ad-hoc track, the
assessment procedure follows the highlighting approach. However, given the bi-
nary nature of relevance, the assessment procedure for the multimedia track
consists only of a single pass. During this single pass assessors were requested to
highlight multimedia fragments that contain only relevant content, i.e. relevant
content that contains no (or only minimal) non-relevant content. In the case of
textual content, only relevant text fragments, e.g. words or sentences, should be
highlighted. In the case of images, since currently it is not possible to highlight
only a part of an image, the whole image should be highlighted if it contains
relevant content (regardless of how much of the image may be non-relevant).
The assessments are carried out with the XRAI assessment tool, developed by
Dr. Benjamin Piwowarski of the University of Chile, Santiago. See Figure 1 for
a snapshot of the interface, where fragments from the Lonely Planet collection
are marked relevant (highlighted).

In total 8 participating groups took part in the assessment. As a result, 23
out of 25 topics have been assessed, providing us a solid basis for the evaluation
in this first exploratory year of the multimedia track. Table 1 provides more

Fig. 1. Snapshot of the XRAI interface.

detailed insight in the assessment results for the individual assessments. Topics
8, 21, 22, and 24 are emphasized, because the level at which the assessment
were performed, differentiated from the objectives in the castitle, and the topic
description. These topics are removed from the official evaluation. However, after
modifying the castitles of the topic description, these topics can be included for
the ’extended’ evaluation. This requires that the participants resubmit their
runs, using the extended topic and assessment pools. An online evaluation tool
is available for this purpose.

In this report we will only present the results for the official topic and assess-
ment pools, based on the original submissions by the participants. The official
evaluation is therefore based on a pool of 19 topics, whereas for the extended
evaluation 23 topics are available.

Table 1. Details of the assessment per topic.

Topic Relevant Topic Relevant

1 29 14 44
2 75 15 18
3 13 16 40
4 13 17 10
5 4 18 -
6 8 19 20
7 10 20 -
8 5 21 25
9 31 22 21
10 50 23 4
11 2 24 77
12 11 25 2
13 64

4 Evaluation of Results

In this section, we will provide the summary table statistics, the interpolated
recall-precision averages and the precision at document cutoff levels. These re-
sults are calculated using the TREC evaluation scripts, version 7.3.

Fig. 2. Interpolated precision-recall averages @ 11 standard recall levels.

5 Conclusions and Future Work

A detailed analysis of the results for the Multimedia track remains to be done.
However, at this point we can conclude that despite the exploratory nature
of the first year, many achievements have been realized. We have successfully
acquired and exploited the Lonely Planet WorldGuide, which proved to be a
useful starting point. With a minimum extension, we could successfully adopt the

Fig. 3. Interpolated precision-recall averages @ 11 standard recall levels.

Fig. 4. Precision @ document cuttoff levels.

NEXI query language for multimedia structured document retrieval. A topic pool
of 23 topics has been created and assessed. Five participating groups succeeded in
building a multimedia retrieval system for structured documents and submitted
a total of 25 runs for the evaluation.

A solid basis is created to run the multimedia track again next year. We
will have to reconsider many of the choices made, such as for instance the topic
formulation procedure and the evaluation metrics, which are currently based on
the standard TREC methodology.

Acknowledgments

At this point we would like to thank all participants for the efforts to make
the first year for the multimedia track a success. In particular we are grateful
to the support we received from Dr. Benjamin Piwowarski, who helped us out
with the relevance assessments. Finally, we would like to express our gratitude
towards the Lonely Planet organization, for providing us with this interesting
XML collection.

Integrating Text Retrieval and Image Retrieval in XML Document Searching

D. Tjondronegoro, J. Zhang, J. Gu*, A. Wardhani, S. Geva

Queensland University of Technology
2 George Street,GPO Box 2434, Brisbane, QLD 4001 Australia

{dian,jinglan.zhang, j2.gu, a.wardhani, s.geva}@qut.edu.au

Abstract: XML document format has been adopted as an industry standard by W3C. XML
format contains the document content data and metadata. It marks up semantic document
elements such as document, paragraph, images, maps etc. It contains structures and allows
exploiting the internal structure in order to find keywords in certain document elements. The
structure of XML format also supports more specific query and answers than text only
documents. For example, a traditional document based query can be “return a document that
contains an image like this one”. An XML document can support the same query. However, it
can also support other type of queries requesting more details, e.g. “return the paragraph that
contains an image like this one” or “return the images that are similar to the sample image”.

A picture is worth of one thousand words. Thus, many documents contain a mixture of text and
images. For example, almost every webpage contains text and images so that they are more
attractive and easier to understand than a page full of text. Images play an important role in
webpage or article presentation. However, this information has not been explored sufficiently
in traditional Information Retrieval systems. Many research issues are still open.

In information retrieval, usually the more information is used, the stricter the query is and the
more precise the searching result should be. For example, “an excellent IT student” is stricter
than “an IT student” which is again stricter that “a student”. The text descriptions in an XML
document, including the text content or the caption of the image, usually contain more precise
information about an image. However, sometimes the keywords appeared in the text
description are totally different from the content of an image. For example, the caption of an
image may be “This place was a sea two million years ago” but the content of the image may be
a mountain. We assume that if the image content is used in addition to the pure text-based
retrieval, the retrieval result should be better than text-only or image-only retrieval. As an
image specification in the query makes the query stricter than the query without the image, we
assume image elements can be treated as if they were text elements containing ordinary
keywords. This also implies that the query result should be more precise than the query result
based on text only.

We test this hypothesis by doing a series of experiment using the Lonely Planet XML document
collection provided by INEX2005 organizing committee. Two search engines, an XML
document search engine using both content and structure and a content-based image search
engine are used at the same time. Multiple test and image processing algorithms have been
implemented. The results generated by these two search engines are merged together to form a
new result. This paper presents our current work, initial results, some findings and vision into
future work.

* supported by Jiangsu Government Scholarship of Overseas Studies.

mailto:a.wardhani, dian }@qut.edu.au

Combining Image and Structured Text Retrieval

D.N.F. Awang Iskandar, Jovan Pehcevski, James A. Thom, and
S. M. M. Tahaghoghi

School of Computer Science and Information Technology
RMIT University, GPO Box 2476V
Melbourne 3001, Victoria, Australia

{dayang, jovanp, jat, saied}@cs.rmit.edu.au

Abstract. Two common approaches to retrieving images from a collection are
retrieval by text keywords, and retrieval by visual content. However, it is widely
recognised that it is impossible for keywords alone to fully describe visual con-
tent. In this paper we present our approach of combining evidence from a content-
oriented XML retrieval system and a content-based image retrieval system using
a linear evidence combination approach as part of the INEX 2005 Multimedia
track.

1 Introduction

In large document collection it is common to find multimedia elements such as images,
video, and sound. Presenting these multimedia elements in a standard way is beneficial
as it might ease the retrieval process. The eXtensible Markup Language (XML) is a
standard developed by the World Wide Web Consortium to describe data in a structured
manner, allowing it to be stored and sent easily. Hence, description of multimedia ele-
ments can be represented in XML documents. The INitiative for the Evaluation of XML
Retrieval (INEX) provides a platform for participants to evaluate the effectiveness of
their XML retrieval techniques using uniform scoring procedures and a forum to com-
pare results. INEX 2005 comprises seven tracks. The multimedia track was established
with the aim of retrieving relevant XML document fragments containing various types
of multimedia1.

The RMIT group participated in the multimedia track with a fusion system that
combines evidence and ranks the query results based on text and image similarity. Our
motivation is to explore and analyse methods for combining evidence from content-
based image retrieval (CBIR) with content-oriented XML retrieval. We explain and
evaluate our approach in this paper.

The remainder of this paper is organised as follows. In Section 2 we explain the
multimedia queries. We describe the approach which we use to retrieve the XML doc-
uments and the associated images based on the multimedia queries in Section 3. In
Section 4, we present the analysis of our results. Related work to combination of ev-
idence for retrieving image and text is briefly explained in Section 5. We conclude in
Section 6 with a discussion of our findings and suggestions for future work.

1 Multimedia Track @ INEX,
http://inex.is.informatik.uni-duisburg.de:2004/presentations/

INEX-MM-track.pdf

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="mm6" inex_track="MM" query_type="CAS" ct_no="14">

<castitle>

//destination[about(., Europe) and about(.//culture//history, king queen)]

//images//image[about(., royal palace residence src:/images/BN7386_10.jpg)]

</castitle>

<description> From all European destinations that were ruled by either

a king or a queen in their cultural history, find images depicting a royal

palace residence. </description>

<narrative>We are a group of historians interested in royal palaces. We

want to visit destinations that contain at least one royal palace. We are

focused on European destinations that were ruled by either a king or a

queen in their cultural history. From these destinations, we want to find

images depicting a royal palace residence.</narrative>

</inex_topic>

Fig. 1. Example of a multimedia CAS query with one image as the source

2 Multimedia Queries

The multimedia retrieval task focuses on combination of text and images. In INEX
2005, the data collection was provided by Lonely Planet. As an initial task, INEX par-
ticipants propose several topics which typically represent the information needed by the
users from the collection. As an example, we proposed the topic “European destinations
which have a palace” as shown in Figure 1.

Two types of queries are explored in INEX: content-only (CO) and content-and-
structure (CAS). CO queries are free text queries. CAS queries contain explicit struc-
tural constraints. The INEX multimedia track uses the latter query type to represent the
topic. The CAS query is contained in the castitle element.

The CAS query in Figure 1 can be interpreted as “find images depicting a royal
palace residence from all European destinations that were ruled by either a king or a
queen in their cultural history in the XML documents where the image is similar to
BN7386 10.jpg”. The element to be retrieved as the answer for this topic is an image
which is similar to BN7386 10.jpg.

There are 25 multimedia topics for the Lonely Planet collection. We observed that
these topics belong to three topic categories. The first category includes topics that
contain only text. The second category includes topics that contain a mixture of images
and text, where the target element of each topic in this category is an image element.
The third category is the same as the second, except that the target element of each topic
is element other than image. The number of multimedia topics that belong to a category
and a summary of the required results for each category is shown in Table 1.

Topic Num. of Retrieval Required Collection
Category Topics System Used Query Result Involved

1 12 Content-oriented hybrid Text only XML document
XML retrieval

2 8 Content-oriented hybrid XML Text and image. XML document
retrieval and GIFT Image as target element and image

3 5 Content-oriented hybrid XML Text and image. Target XML document
retrieval and GIFT element other than image and image

Table 1. Result category, retrieval system used, required query result and the collection involved.

3 Our Approach

In this experiment, we used two systems to obtain the results for the multimedia queries.
Since the XML document structure serves as a semantic backbone for the retrieval of
multimedia fragments, we used a content-oriented hybrid XML retrieval system [6] to
retrieve the relevance documents. The GNU Image Finding Tool (GIFT)2, a content-
based image retrieval system is utilised to retrieve the results based on the visual fea-
tures of a multimedia query source images.

According to Vogt et. al [9] “The chorus effect occurs when several retrieval ap-
proaches suggest that an item is relevant to a query ... this tends to be stronger evidence
for relevance than a single approach doing so”. In achieving the Chorus Effect, data
fusion techniques have been employed to combine the evidence from GIFT and the
content-oriented hybrid XML retrieval system. We base our retrieval process on the
information retrieval data fusion process. The three following phases are involved [8]:

1. The collection selection phase focuses on identifying the document collection which
is most likely to contain relevant documents for the user queries.

2. The document selection phase concerns on determining the number of relevant doc-
uments to be retrieved from the document collection.

3. The merging (or also known as fusion) phase deals with combining the evidence
from multiple retrieval systems.

3.1 Phase One: Collection Selection

We view the Lonely Planet data as having three different collections which are corre-
lated to one another. The first collection is XML documents, second is the image and
third is the map. As illustrated in Table 1, the XML document collection is used to
process all the queries. The image collection is used to process the queries for topic
categories 2 and 3. The map collection was not used as the topic which needed the map
as the target element was not assessed.

2 http://www.gnu.org/software/gift/

3.2 Phase two: Document Selection

In this phase, each system retrieves the relevant documents or images and a list of
normalised retrieval status values (RSVs) is returned as the result. We determined that
the 250 top-rank documents with RSVs will be retrieved by the content-oriented hybrid
XML retrieval system. Similarly with GIFT, the RSVs of all the images in the collection
are returned as the result. The RSVs are ranked in descending order. The following
sections explain how each system is used to generate RSVs for each multimedia query
that is later used in the merging phase to produce the final run results.

Content-based Image Retrieval Content-based image retrieval aims to retrieve im-
ages on the basis of features automatically extracted from the images themselves. Prior
to querying GIFT with an image, the image collection needs to be indexed. The index-
ing process involves image feature extraction and feature indexing using an inverted file
data structure where the approach is inspired by text retrieval [7].

The colour and texture features of the images from the Lonely Planet collection are
automatically extracted by GIFT. Both local and global colour features are used. As for
extracting the image texture, GIFT utilises a bank of circularly symmetric Gabor filters.

GIFT’s query engine was developed using Multimedia Retrieval Markup Language
(MRML) [4] to evaluate and calculate the query image and the target image feature
similarity based on the data from the inverted file. As a result, a ranked list of image
answers based on the query image and the target image feature similarity is presented
to the user. GIFT also provide the mechanism to perform relevance feedback through
MRML. For this experiment, we did not perform any relevance feedback.

In retrieving the images for the multimedia topics, we presented the images which
are listed in the src (source) element in the multimedia CAS query as the query image
to GIFT. We implemented a function which enable all the images in the Lonely Planet
collection to be retrieved and ranked. The default Classical IDF algorithm is used and
we set the search pruning option to 100%. This allows us to perform a complete feature
evaluation for the query image, even though the query processing time is longer.

Content-oriented Hybrid XML Retrieval The system we use in the INEX 2005 mul-
timedia track follows a hybrid XML retrieval approach [6], combining information re-
trieval features from Zettair3 (a full-text search engine) with XML-specific retrieval
features from eXist4 (a native XML database).

First, for each multimedia topic a translation module is used to automatically trans-
late the underlying information need into a Zettair query. Terms that appear in the
castitle part of the topic (with all structural query constraints and image references
completely removed) are used to formulate the Zettair query. A list of (up to) 250
destination elements – presented in a descending order according to their estimated
likelihood of relevance – is then returned as a resulting answer list for the INEX topic.

Second, to retrieve elements rather than full articles, a second topic translation mod-
ule is used to formulate the eXist query. As the support elements and the target element

3 http://www.seg.rmit.edu.au/zettair/
4 http://exist-db.org/

of each INEX topic are strictly matched, both the terms and the structural query con-
straints from the topic (without the actual image references) are used to formulate the
eXist query. We use the OR eXist query operator to generate the element answer list
for a given topic. The answer list contains (up to) 250 matching elements, which are
taken from articles that appear highest in the ranked list of articles previously returned
by Zettair.

Last, a post-processing retrieval module that uses an XML-specific ranking heuristic
(TPF) is used to rank and present the required answer elements [5].

3.3 Phase Three: Merging Evidence of CBIR and Keyword-based XML
Retrieval

A simple linear evidence combination is applied to merge the RSVs from both systems.
Using the following formula based on Aslandogan et. al [1], the RSVs are combined to
generate a new score for the result rank list, R, of the multimedia queries.

R = α ·SI +(1−α) ·SH

We let α be a parameter that influences the weighting scheme between the two
retrieval systems (GIFT and hybrid XML retrieval), SI represents the normalised RSV
from GIFT and SH is the normalised RSV from the hybrid XML retrieval system.

The rationale behind varying the weighting scheme is to investigate the effect of
giving certain biases to a system. When the value of α is set to 1.0, only the RSVs from
GIFT are used. On the other hand, only the hybrid XML retrieval RSVs will used when
the value of α is set to 0.0. We performed six runs for each multimedia topic and the α
value for each run is as illustrated in Table 2.

4 Result Analysis

This section provides an explanation of the results which are only based on 19 topics
that belong to the official multimedia topic pool. We evaluated our results based on the
standard recall and precision retrieval performance measures. The following measures
are also used:

– Precision at cut-off (P@n): Precision after n document fragments retrieved. This
shows precision at fixed points in the ranking.

– Mean average precision (MAP): Mean of the average precision. Average Precision
is the average of the precision after each relevant document fragment is retrieved.

– R-precision: Precision value after the number of relevant topic document fragments
retrieved.

The following discussion is based on Table 2. We observed the precision at cut-off
1, 5, 10 and 50. The highest precision after one document fragment retrieved is 0.5263
where the α value is 0.9, that is run RMIT-4. There is no visible change of precision
values for all other runs at this cut-off value.

Run α P@n MAP R-Prec
1 5 10 50

RMIT-0 0.0 0.4737 0.3684 0.3053 0.1484 0.2759 0.3267
RMIT-1 0.1 0.4737 0.3684 0.3053 0.1484 0.2771 0.3267
RMIT-2 0.3 0.4737 0.3684 0.3105 0.1484 0.2779 0.3259
RMIT-3 0.5 0.4737 0.3684 0.3053 0.1474 0.2764 0.3259
RMIT-4 0.9 0.5263 0.3368 0.2579 0.1474 0.2664 0.3168
RMIT-5 1.0 0.4737 0.2737 0.2105 0.1295 0.2244 0.2525

Table 2. The alpha (α) values, P@C, MAP and R-Prec for each run.

Combining evidence from text and image at the same weight, where the value of
α is 0.5 will lead to a precision value which is constantly similar for α values of 0.0,
0.1 and 0.3 after 5 document fragments retrieved. This can be seen for runs RMIT-0
to RMIT-3, which indicates that having the same amount of evidence from the CBIR
system and the text retrieval system does not affect the precision performance. The
precision values drop as the α value is increased.

The highest value when precision after 50 document fragments retrieved is observed
for runs that have α values less than 0.3. This means that giving more weight to the
evidence from the text retrieval results in better performance when retrieving a larger
number of document fragments.

Run RMIT-2 with the α value of 0.3 gives the best performance for MAP. This in-
dicates that run RMIT-2 returns more relevant documents earlier when retrieving the
destination articles. As for the R-precision, run RMIT-0 and RMIT-1 has the same per-
formance.

Based on Figure 2, runs for RMIT-0, RMIT-1 and RMIT-2 give the best overall
interpolated recall precision averages performance. Run RMIT-4 performed best at low
recall level. A constant performance can be seen for all the runs when the recall level is
0.8 and above.

5 Related Work

Data fusion, also known as combination of evidence, is a method of merging multiple
source of evidence to form new evidence. In information retrieval, data fusion has been
shown to improve the retrieval effectiveness when compared to using a single retrieval
strategy [3, 8, 9]. According to Lee [3], “several researchers have investigated the ef-
fect of combining multiple representations of either queries or documents, or multiple
retrieval techniques on retrieval performance because different representations or dif-
ferent retrieval techniques can retrieve different documents”.

Multimedia retrieval using combination of evidence have been studied by Haque [2].
In his study, he compared the retrieval performance of using only image and multime-
dia (combination of text and image). He conducted experiments using three types of
combining algorithms which are feature merging, weighted sum of ranking score and
weighted sum of inverse rank position. Using combination of evidence, multimedia re-
trieval performs better than image retrieval. The weighted sum of inverse rank position

Fig. 2. Interpolated Recall Precision Averages for each run (best viewed in colour).

algorithm is shown to have the highest eleven point average precision in the multimedia
retrieval. The weighted sum of ranking score algorithm performed slightly lower than
the weighted sum of inverse rank position algorithm.

Aslandogan et .al [1] compared the retrieval performance of indexing person im-
ages on the web. They compared the retrieval performance on four approaches: text
that is in HTML form evidence followed by face detection, face detection and recog-
nition, linear evidence combination, and Dempster-Shafer evidence combination. The
linear evidence combination and Dempster-Shafer evidence combination yield the same
retrieval performance.

6 Conclusions and Future Works

We have experimented with the linear evidence combination approach in merging the
normalised RSVs from two retrieval system for retrieving multimedia information from
structured documents. We observed that to obtain best overall retrieval performance, an
XML retrieval system needs to combine a fair amount of evidence from a CBIR sys-
tem. On the other hand, to obtain best retrieval performance when ten or less elements
are retrieved, a CBIR system needs to combine a little bit of evidence from an XML
retrieval system.

In the future we plan to investigate different evidence combination methods.

Acknowledgements
This research was undertaken using facilities supported by the Australian Research
Council and an RMIT VRII grant. We acknowledge Jonathan Yu for his assistance
in proposing and assessing a multimedia topic.

References

1. Y. A. Aslandogan and C. T. Yu. Evaluating strategies and systems for content based index-
ing of person images on the Web. In MULTIMEDIA ’00: Proceedings of the eighth ACM
international conference on Multimedia, pages 313–321, New York, NY, USA, 2000. ACM
Press.

2. N. Haque. Image Ranking for Multimedia Retrieval. Ph.D. thesis, School of Computer Science
and Information Technology, Royal Melbourne Institute of Technology, 2003.

3. J. H. Lee. Analyses of Multiple Evidence Combination. In SIGIR ’97: Proceedings of the 20th
annual international ACM SIGIR conference on Research and development in information
retrieval, pages 267–276, New York, NY, USA, 1997. ACM Press.

4. W. Müller, H. Müller, S. Marchand-Maillet, T. Pun, D. M. Squire, Z. Pec̆enović, C. Giess and
A. P. de Vries. MRML: A Communication Protocol for Content-Based Image Retrieval. In
Fourth International Conference On Visual Information Systems (VISual 2000), Lyon, France,
November 2–4 2000.

5. J. Pehcevski, J. A. Thom and S. M. M. Tahaghoghi. RMIT University at INEX 2005. In
Pre-Proceedings of the Fourth INEX Workshop, Dagstuhl, Germany, November 28–30, 2005,
2005.

6. J. Pehcevski, J. A. Thom and A-M. Vercoustre. Hybrid XML Retrieval: Combining Infor-
mation Retrieval and a Native XML Database. Information Retrieval, Volume 8, Number 4,
pages 571–600, 2005.

7. D. M. Squire, W. Müller, H. Müller and T. Pun. Content-based Query of Image Databases:
Inspirations from Text Retrieval. Pattern Recognition Letters, Volume 21, Number 13–14,
pages 1193–1198, 2000. (special edition for SCIA’99).

8. T. Tsikrika and M. Lalmas. Merging Techniques for Performing Data Fusion on the Web. In
CIKM ’01: Proceedings of the tenth international conference on Information and knowledge
management, pages 127–134, New York, NY, USA, 2001. ACM Press.

9. C. C. Vogt and G. W. Cottrell. Predicting the Performance of Linearly Combined IR Systems.
In SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 190–196, New York, NY, USA, 1998.
ACM Press.

Multimedia Extensions for B3-SDR, based on
Principle Component Analysis

Roelof van Zwol

Utrecht University, Department of Computer Science, Center for Content and
Knowledge Engineering, Utrecht, the Netherlands

roelof@cs.uu.nl

Abstract. The INEX 2005 multimedia track focusses on the retrieval
of document fragments, containing both relevant text-fragments and im-
ages. In this short article we only shortly discuss the additional compo-
nents that are added to the B3-SDR system for the Multimedia track
and the evaluation of the results.

1 Introduction

Structured document retrieval allows for the retrieval of document fragments, i.e.
XML elements, containing relevant information. The main INEX adhoc task fo-
cusses on text-based XML element retrieval. Although text is dominantly present
in most XML document collections, other types of media can also be found in
those collections. Existing research on multimedia information retrieval has al-
ready shown that it is far from trivial to determine the combined relevance of
a document that contains several multimedia objects. The objective here is to
exploit the XML structure that provides a logical level at which multimedia
objects are connected.

For the multimedia track, we started with a text-based system for structured
document retrieval and a basic system for image retrieval. Using principle com-
ponent analysis, we were able to merge the relevance scores calculated by the two
systems, while using the underlying XML structure as a logical container. Prin-
cipal component analysis (PCA) is a classical statistical method that has been
widely used in data analysis and compression. In short, it provides us the means
to transform an N-dimensional point set to representation in a N-1-dimensional
space, while minimizing the error introduced due to the transposition. The in-
tegration of PCA for the multimedia track into our system only required trans-
formations from a two-dimensional point set to a one-dimensional point set, i.e.
text and images to a combined relevance score.

To evaluate the effectiveness of PCA to combine relevance rankings for text-
fragments and images, we also submitted a text-only run, an annotation run and
a combined-PCA-annotation run (mixed-cross). The annotation based run first
obtains the captions that are available for the images that are specified in the
information request, and then performs a text-based search. The mixed cross
run first uses annotation-based enrichment of the text-based search, performs a
image search, followed by a PCA merge of the relevance scores.

2 Results

Figure 1 shows the interpolated precision averages at eleven standard recall lev-
els. From the figure, it can be clearly seen that using the image annotations
(Utrecht-1) has a positive effect on the precision, when inspecting the higher
recall levels. However our PCA-based runs (Utrecht-2 .. Utrecht-4) are not as
successful as expected, when compared to the text-only run (Utrecht-0). Addi-
tional analysis is needed to investigate the cause, but it is likely that the poor
performance of the image retrieval system is the main cause for failure.

Interpolated Recall Precision Averages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 Recall

P
re

ci
si

o
n

UTRECHT-0
UTRECHT-1
UTRECHT-2
UTRECHT-3
UTRECHT-4
UTRECHT-5

Fig. 1. Interpolated recall-precision averages.

3 Conclusions

[Due to the limited amount of time, only an extended abstract is provided for
the pre-liminary proceedings]

INEX 2005 Guidelines for
Topic Development

Bö a,
Mounia Lalmas, Birger Larsen, and Saadia Malik

1 Aims
he INEX initiative is to provide the means, in the form of a large test collection and

2 Introduction
ionally used in information retrieval (IR), consist of three parts: a set of

 test collection for XML retrieval differs from traditional IR test collections in many respects.

his guide deals only with the topics of the test collection and provides detailed guidelines for their

n requires a balance between competing interests. The

hen creating topics, a number of factors should be taken into consideration. Topics should:

 be authored by an expert in (or someone familiar with) the subject areas covered by the collection,

l system might provide,

ir coverage, e.g. broad or narrow topic queries,

3.1 Topic Types
A clear and precise description of the information need is required in order to unambiguously
determine whether or not a given element fulfills the given need. In a test collection this description is

rkur Sigurbjörnsson, Andrew Trotman, Shlomo Gev

The aim of t
appropriate measures, for the evaluation of content-oriented XML element retrieval. Within the INEX
initiative it is the task of the participating organizations to provide the topics and relevance assessments
that will contribute to the test collection. Each participating organization, therefore, plays a vital role in
this collaborative effort.

Test collections, as tradit
documents, a set of information needs called topics, and a set of relevance assessments listing (for each
topic) the set of relevant documents.

A
Although it still consists of the same three parts, the nature of these parts is fundamentally different. In
IR test collections, documents are considered units of unstructured text, queries are generally treated as
collections of terms and / or phrases, and relevance assessments provide judgments whether a
document as a whole is relevant to a query or not. XML documents, on the other hand, organize their
content into smaller, nested structural elements. Each of these elements in the document’s hierarchy,
along with the document itself (the root of the hierarchy), is a retrievable unit. In addition, with the use
of XML query languages users of an XML retrieval system can express their information need as a
combination of content and structural conditions: they can restrict their search to specific structural
elements within the collection. Consequently the relevance assessments for an XML collection must
also consider the structural nature of the documents and provide assessments at different levels of the
document hierarchy.

T
creation for INEX 2005.

3 Topic Creation Criteria
Creating a set of topics for a test collectio
performance of retrieval systems varies largely for different topics. This variation is usually greater
than the performance variation of different retrieval methods on the same topic. Thus, to judge whether
one retrieval strategy is (in general) more effective than another, the retrieval performance must be
averaged over a large and diverse set of topics. In addition, to be a useful diagnostic tool, the average
performance of the retrieval systems on the topics can be neither too good nor too bad as little can be
learned about retrieval strategies if systems retrieve no, or only relevant, documents.

W

•
• reflect real needs of operational systems,
• represent the type of service an operationa
• be diverse,
• differ in the
• be assessed by the topic author.

INEX 2005 Guidelines for Topic Development Page 1

known as the narrative
recording of the narrati

. It is the only true and accurate interpretation of a user’s needs. Precise
ve is important for scientific repeatability – there must exist, somewhere, a

 between two types of query, those that
ave Content And Structure hints (CAS) and those that have Content Only (CO) hints.

bed as so by
e narrative.

 simulates a user who does not know (or does not want to use) the actual structure of the
XML documents in a query. This profile is likely to fit most users searching XML digital libraries.

vant hits, a user might decide to add structural

 [1]
ee the INEX 2005 website for the specification).

itae machine learning researcher

 add
ructural hints:

/vt[about(., machine learning researcher)]

ults to vt elements only, which the user knows are vitae.

different versions of the information need. The
arrative is the description of what is, and is not, a relevant result. The CO query is a query a user

 use when refining the query
y adding structural hints, in order to express the information need more precisely.

to that of not using
ructural hints.

ontains two kinds of structural hints: where to look (support elements), and what
elements to return (target elements). In prior INEX workshops the target element hint has been

ere to look has always been interpreted loosely.

e of
e structural constraints.

tructural hints?

definitive description of what is and is not relevant to the user.

Many different queries could be drawn from the narrative, and some are be better than others. For
example, some might contain phrases; some might contain ambiguous word; while some might even
contain domain specific terms. At INEX a distinction is drawn
h

Regardless of the query, the search engine results are not necessarily relevant. Even though a result
might contain search terms from the query, it might not match the narrative description. Equally, some
relevant documents might not be found, but they remain relevant because they are descri
th

3.1.1 Content Only + Structure (CO+S)
The CO query

Upon discovering their CO query returned many irrele
hints. This is similar to a user adding + and – to a web query when too many irrelevant pages are found.
At INEX, these added structural constraints (+S) are specified using the formal syntax called NEXI
(s

Example
Suppose a user wants to look at vitae of machine learning researchers. They enter the CO query:

v

but discover that most results are about machine learning and are not vitae. They decide to
st

/

restricting the res

So the CO+S topic consists of three important and
n
might enter into a retrieval engine. The +S query is a query the user might
b

The CO+S task is investigating relevance ranking algorithms for ad hoc element retrieval. This year
the task is specifically investigating the usefulness of structural hints. AT INEX 2005 it will be
possible to compare the performance (on the same topic) of using structural hints
st

3.1.2 Content And Structure (CAS)
A CAS query c

interpreted either strictly or loosely (vaguely). Wh

These prior workshops have created considerable debate over how to interpret where to look. There is
the database view: all structural constraints must be followed strictly (by exact match). Then there is
the information retrieval view: an element is relevant if it satisfies the information need, irrespectiv
th

At INEX 2005 the multitude of loose and strict interpretations of topics will be compared side by side.
The question being asked is this: are the structural constraints more valuable if followed exactly or are
they better interpreted as s

INEX 2005 Guidelines for Topic Development Page 2

In order to compare these interpretations it is necessary to make judgments for each about function of a
query. Each CAS topic will therefore include a set of CAS sub-topics. These sub-topics are the
constituent clauses of a topic that, when combined, constitute the actual topic.

 as the query:

[about(.//au, "Jiawei Han") and about(., xml storage)]//sec[about(., native

article//sec[about(., native xml databases)]
 databases)]

unction can be written in the form

ed from the query
ch that in

[about(Q,B)]R[about(S, C)]

PRS for C; that is, the entire path is compounded into A.

 be human-assessed individually. From the assessments four sets of
dgments will be automatically-derived (full details will be given at the assessment stage):

 VVCAS: the information retrieval assessments of the whole topic (done against the narrative).

less of the
target element constraint. Boolean operators between support elements are followed strictly.

get

Whe strict

y scoring each search engine against each of these interpretations it is possible to determine if the

rnative to entering queries into search engines, a user might ask a librarian to find the
 to satisfy their need. Such a user would give a verbal description to the librarian using a

the ability of a search engine to satisfy the
Of course, NLP techniques are also used in

xample

Example
Suppose a user is interested in the work of Jiawei Han on the storage of XML documents in either a
native XML, or relational, database. They might express this information need

//article
xml databases) or about(., xml relational databases)]

which has four about functions (sub-topics)

//article//au[about(.,"Jiawei Han")]
/article[about(., xml storage)] /

//
//article//sec[about(., xml relational

from this example it is clear that each about f

A[about(., B)]

where B is a content only query, and A is a navigational XPath expression construct
su

P

A is PQ for B, and

The topic and each sub-topic will
ju

•
• SVCAS: the subset of VVCAS assessments that strictly satisfy the target element constraint.
• VSCAS: those VVCAS assessments that satisfy all support element constraints, regard

• SSCAS: those assessments that strictly satisfy all support element constraints as well as the tar
element constraint.

re, for XYCAS, X is the target element and Y is the support element, and either can be S for

or V for vague.

B
differences in the interpretations are reflected in performance. In other words, are the sets significantly
different?

3.1.3 Natural Language Processing (NLP)
As an alte
information
natural language. The NLP track at INEX is examining
information need give this natural language description.
other tracks, but using a query written in a formal query language.

Just as there are many CO queries derivable from the narrative, there are many ways to express the
need in natural language. However it is expressed, it is important that it matches the narrative while at
the same time it is not the narrative.

The purpose of the NLP experiments at INEX 2005 is to compare the performance of CO, CO+S and
NLP techniques. To do this it is important that the same terms are used in each version of the query.

E

INEX 2005 Guidelines for Topic Development Page 3

Suppose a user wants to look at vitae of machine learning researchers and chose the CAS query:

//vt[about(., machine learning researcher)]

chers

information need, but for different
purposes.

planation of the information need and the description of what makes an

ntext and motivation of the information need, i.e., why the information is being sought and
hat work-task it might help to solve. Assessments will be made on compliance to the narrative alone;

etail below.

e identified in the sub-topic. For sub-topics, include here the castitle of
e topic.

n need.

 syntactically correct, a parser has been implemented in Flex and Bison (the GNU
tools compatible with LEX and YACC) and is available for download or online use (see

bin/nexi.cgi)

Phrases are encapsulated in double quotes. Furthermore the terms can have either the prefix + or –,
asize an important concept, and – is used to denote an unwanted concept.

computer science” +degree –master

ple
e following text might be judged relevant to the information need, even though it contains the word

the NLP version would contain the same words and structural constraints:

Find me some vitae of machine learning resear

which is a brief matter of fact description of the information need.

4 Topic Format
Topics are made up of several parts, these parts explain the same

<narrative> A detailed ex
element relevant or not. The narrative should explain not only what information is being sought, but
also the co
w
it is therefore important that this description is clear and precise.

<description> A brief description of the information need written in natural language - to be used in
the NLP track. The description must be precise, concise, and as informative as the <title> and
<castitle> combined. The topic description is discussed in more d

<title> A short explanation of the information need. It serves as a summary of the content of the user’s
information need. The exact format of the topic title is discussed in more detail below. The title is
present only in CO+S topics.

<castitle> A short explanation of the information need, specifying any structural requirements. The
exact format of the topic title is discussed in more detail below. The castitle is optional in CO+S topics
but mandatory in CAS topics.

<parent> Each CAS topic containing more than one about function will be submitted with a set of sub-
topics describing the information need of each single about function. In order to match the sub-topics
with the topic the parent must b
th

Note that the description must be interchangeable with the title and castitle. Any ambiguity or
disagreement is resolved by reference to the narrative, the only accurate definition of the
informatio

4.1 Topic <title>
To ensure topics are

http://metis.otago.ac.nz/a

4.1.1 CO Topics
The topic title is a short representation of the information need. Each term is either a word or a phrase.

where + is used to emph

Example
A user wants to retrieve information about computer science degrees that are not master degrees:

“

the + and – signs are used as hints to the search engine and do not have strict semantics. As an exam
th
master.

INEX 2005 Guidelines for Topic Development Page 4

The university offers a program leading to a PhD degree in computer science.
Applicants must have a master degree…

xampl

e

information retrieval” +semi-structured documents

ugh it neither contains
e word semi-structured, nor the phrase “information retrieval”.

he main goal of INEX is to promote the evaluation of content-oriented XML retrieval

.2 Topic <castitle>
al specification of the topic description

language (NEXI) see the INEX web-site or in the proceedings of INEX 2004 [1].

, parsers have been implemented in Flex and Bison

rm:

D]

ere A and C are navigational XPath expressions using only the descendant axis. B and D are
redicates using about functions for text (explained below); the arithmetic operators <, <=, >, and >= for

nd the connectives and and or. The about function has the same syntax as the XPath
nction contains. Usage is restricted to the form:

d descendant axis; and query is an IR query having
e same syntax as the CO titles (i.e. query terms). The about function denotes that the content of the

ath is about the information need expressed in the query. As with the title, the
astitle is only a hint to the search engine and does not have definite semantics.

atter:

[.//fm//yr = 2003 and about(.//fm, INEX)]//*[about(., native XML databases)]

3, although the
roceedings were published in 2004. In the formalism expressed above,

 = //article
B = .//fm//yr = 2003 and about(.//fm, INEX)
C = //*

E
A user wants to retrieve information about IR from semi-structured documents:

“

As in the previous example the following text might be judged relevant, even tho
th

T
by providing a large test collection of XML documents, uniform scoring procedures, and
a forum for organizations to compare their results…

Although the semantics of phrases and the + / – tokens is not strict, they may be of use to the retrieval
engine. A full example of a CO topic is given in the appendix.

4
Only a high level description is included here, for a more form

To make sure that topics are syntactically correct
(the GNU tools compatible with LEX and YACC) and are available for download. An online version of
the parser is also available: http://metis.otago.ac.nz/abin/nexi.cgi

The castitle is optional for CO+S topics but mandatory for CAS topics.

4.2.1 CO+S Topics
Castitles are XPath (http://www.w3c.org/TR/xpath) expressions of the fo

A[B]

or

A[B]C[

wh
p
numbers; a
fu

about(.path, query)

where path is empty or contains only tag-names an
th
element located by the p
c

Example
A user wants to know what the INEX participants said about native XML databases in 2003. The user
assumes that the conference proceedings are mentioned somewhere in the front m

//article

The user might be happy with retrieving something from the Proceedings of INEX 200
p

A

INEX 2005 Guidelines for Topic Development Page 5

D = about(., native XML databases)

Example

ants find articles about flight simulators written in Java. The user thinks it is likely
ht simulators, and a paragraph talking about Java

[about(.//abs, flight simulator) and about(.//p, java) and about(., flight

h articles which do not have an abstract so long as they are
bout Java implementation of flight simulators.

f the INEX initiative is to build a test collection for the evaluation of content

 contain a castitle written in the same XPath subset used in CO+S topics. They differ only
 so far as every about function must also be submitted as a separate sub-topic. Each sub-topics will

 each explaining the purpose of the about function
in the final whole topic. The sub-topics can be matched with the topic using the parent field of the sub-

current INEX IEEE collection there are several tags used interchangeably (for historical paper-
ublishing reasons). Tags belonging to the following groups are considered to be equivalent and can be

, ip4, ip5, item-none, p, p1, p2, p3

, h4

precise and concise, but it must contain the same terms and the same
uage.

Example
out computer science degrees that are not master degrees and

computer science" +degrees -master

out degrees in computing science, but not masters degrees

 not master degrees

Suppose a user w
that such articles have an abstract that mentions flig
implementation. Thus they might write:

//article
simulator java)]

When looking at the results the user is not likely to be picky whether the results fit the query exactly.
They might, for example, be happy wit
a

he main purpose oT
oriented XML retrieval. The most valuable part of the collection is the human made relevance
assessments. Thus, each structure query must have at least one about function in the rightmost
predicate.

An example CO+S topic is attached as an appendix.

4.2.2 CAS Topics
CAS topics
in
include a separate narrative, castitle and description –

topic.

An example CAS topic and the constituent sub-topics are attached as an appendix.

4.2.3 Equivalent tags
In the
p
used interchangeable in a query.

Paragraphs: ilrj, ip1, ip2, ip3
Sections: sec, ss1, ss2, ss3
Lists: dl, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le, list, numeric-list, numeric-rbrace, bullet-list
Headings: h, h1, h1a, h2, h2a, h3

4.3 Topic <description>
The description should be
structural requirements that appear in the <title> and the <castitle>, albeit expressed in natural lang

A user wants to retrieve information ab
has chosen the title query:

"

for the title. From this they might choose a description of either:

etrieve information abr

or

 want descriptions of computer science degrees that areI

a

s they are equivalent, but:

INEX 2005 Guidelines for Topic Development Page 6

get information about computing degrees, but not about master or PhD computing degrees

irement that
formation about PhD degrees is not sought.

 is important to compare results that are based on natural language queries (the description) with

erefore, be as informative as the title and castitle.

lopment

05 under Tasks/Tracks → adhoc → Submit Topic.

hen developing a topic, use a print out of
ut the topic you are creating.

escription of the information need without regard to retrieval system capabilities or document

dd to this a
escription of the work-task, that is, with what task it is to help (e.g. writing an essay on a given topic).

lts

rits. That is, information is still relevant even if it is the thirtieth time you have seen the same
formation. It is important that your judgment of relevance is consistent throughout this task. Using

 Form record the number of found relevant elements and the path

 idea of which terms (if any) could be added to
e query to make the query as expressive as possible for the kind of elements you wish to retrieve.

lready judged), and record the number of relevant results in Candidate Topic Form. Record the

eld of the Candidate Topic Submission Form.

aving judged the top 100 results you should have a clear idea of what makes a component relevant or

 what makes it relevant or
relevant. Also record the context and motivation of the information need. Include the work-task, that

on will take after having been found (e.g. written report). Make sure your

cannot be chosen as it expresses a different information need - there is an additional requ
in

It
queries that are based on the more formal languages (the title, and castitle.) The description must,
th

5 Procedure for Topic Deve
Each participating group will have to submit 3 CO+S and 1 CAS topic (along with sub-topics) by the
6th May 2005. Submission is done by filling in the Candidate Topic Submission Form on the INEX
web site: http://inex.is.informatik.uni-duisburg.de/20

The topic creation process is divided up into several steps. W
the online Candidate Topic Form to record all information abo

Step 1: Initial Topic Statement
Create a one or two sentence description of the information you are seeking. This should be a simple
d
collection peculiarities. This should be recorded in the Initial Topic Statement field. Record also the
context and motivation of the information need, i.e. why the information is being sought. A
d

Step 2: Exploration Phase
In this step the initial topic statement is used to explore the collection. Obtain an estimate of the
number of relevant elements then evaluate whether this topic can be judged consistently. You may use
any retrieval engine for this task, including your own or HyRex (HyRex can be accessed via the INEX
website).

Step 2a: Assess Top 25 Resu
Judge the top 25 retrieval results. To assess the relevance of a retrieved element use the following
working definition: mark it relevant if it would be useful if you were writing a report on the subject of
the topic, or if it contributes toward satisfying your information need. Each result should be judged on
it own me
in
the Candidate Topic Submission
representing each relevant element. Then if there are:

• fewer than 2 or more than 20 relevant within the top 25, abandon the topic and use a new one,
• more than 2 and fewer than 20 relevant within the top 25, perform a feedback search (see below).

Step 2b: Feedback Search
After assessing the top 25 element, you should have an
th

Use the expanded query, to retrieve a new list of candidates. Judge the top 100 results (some are
a
expanded query in the title fi

Step 3: Write Narrative
H
not. It is important to record this in minute detail as the narrative of the topic. The narrative is the
definitive instruction used to determine relevance during the assessment phase (after runs have been
submitted). Record not only what information is being sought, but also
ir
is: the form the informati
description is exhaustive as there will be several months between topic development and topic
assessment.

INEX 2005 Guidelines for Topic Development Page 7

Step 4 CO+S: Optionally Write castitle
Optionally re-write the title by adding structural constraints and target elements. Record this as the
castitle on the Candidate Topic Submission Form. Also record why you think the structural hints might
help in the narrative.

ts

ieval, description for filtering, etc.). In case of dispute, the narrative is the definitive
efinition of the information need – all assessments are made relative to the narrative and the narrative

 Topic. Make sure you submit all candidate topics no later than the 6th May 2005.

he collection
exploration phase is used as part of the topic selection process. The final set of topics will be

uation.

discussions they created. We are very grateful for this
contribution. This document is a modified version of the topic development guides from previous

gs of the INEX 2004 Workshop, (pp. 16-40).

 Example CO+S Topic
<title>
<castitle>//article[about(.//bb, Rumbaugh Jacobson Booch) and about(.//abs, formal
methods)]//sec[about(., formal logic reason UML diagrams)]</castitle>

f formal methods and logics to
cite Rumbaugh, Jacobson, or Booch.

 formal methods and logics in
 I
st

te

l

Step 4 CAS: Write Sub-Topics
For CAS topics each about function is itself an information need that must be satisfied. Write the list
of sub-topics and repeat steps 1 – 6 for each sub-topic. It is important that the topic is the sum of its
sub-topics.

Step 5: Refining Topic Statemen
Finalize the topic title, castitle, description, and narrative. It is important that these parts all express the
same information need; it should be possible to use each part of a topic in a stand-alone fashion (e.g.
title for retr
d
alone.

Step 6: Topic Submission
Once you are finished, fill out and submit the on-line Candidate Topic Submission Form on the INEX
website http://inex.is.informatik.uni-duisburg.de/2005/ under Tasks/Tracks→ Adhoc→ Topics→
Submit

6 Topic Selection
From the received candidate topics, the INEX organisers will decide which topics to include in the final
set. This is done to ensure inclusion of a broad set of topics. The data obtained from t

distributed for use in retrieval and eval

7 Acknowledgments
The topic format proposed in this document is based on the outcome of working groups set up during
previous INEX workshops along with the online

INEX workshops.

References
[1] Trotman, A., & Sigurbjörnsson, B. (2004). Narrowed Extended XPath I (NEXI). In

Proceedin

Appendix 1:
<inex_topic query_type="CO+S">

formal logic reason UML diagrams</title>

<description>I want to know about the application o
reason about UML diagrams. Relevant items probably
</description>
<narrative>My main interest is the application of
software development. I choose to search for its application to UML diagrams because
think it is an interesting application area. To be relevant, a document/component mu
discuss the use of formal logics, such as first-order-, temporal-, or description-
logics, to model or reason about UML diagrams. I’m only interested in proper formal
logics, Business-logics and Client-logics do not have a proof system and are therefore
not considered to be formal logics. I think that sections are the most appropria
unit of retrieval for this fairly specific topic, since I’m not really interested in
reading a lot about UML stuff in general. I want to focus in on the document parts
that talk about logic. I think it is useful for the search engine to look for citation
to the UML trio: Rumbaugh, Jacobson and Booch. Similarly think that it might be usefu
to put the formal methods constraints on the abstract to stress that I’m only
interested in this particular subset of UML articles. Of course a relevant article
need not have this sort of reference or abstract, therefore the relevance of an

INEX 2005 Guidelines for Topic Development Page 8

element will be judged on basis of how well it explains the use of formal logics to
model or reason about UML diagrams.</narrative>
</inex_topic>

Appendix 2: Example CAS Topic
The topic

<inex_topic topic query_type="CAS">

bs[about(.,"data mining")]</castitle>
 Jiawei Han</description>

e>I'm writing a short article about the impact of Jiawei Han on the field of
ng. Therefore I'm interested in finding a short and concise overview of his

apers. I believe this is to be found in the abstracts of his papers. To be relevant,
 written by Jiawei Han, about "data mining". Any

Jiawei Han")]
about(.,"data mining")]

 element of

abs[about(.,"data mining")]

rst,

/article//au[about(.,"Jiawei Han")]

inex_topic topic query_type="CAS">
itle>//article//au[about(.,"Jiawei Han")]</castitle>

parent>//article[about(.//au,"Jiawei Han")]//abs[about(.,"data mining")]</parent>
 author</description>
Jiawei Han and only by Jiawei Han. A relevant

esult will contain his name as an author of a work.</narrative>

ic query_type="CAS">
castitle>//article//abs[about(.,"data mining")]</castitle>
parent>//article[about(.//au,"Jiawei Han")]//abs[about(.,"data mining")]</parent>

n>Give a synopsis of what’s happening in data mining</description>
 To be relevant, the component has to be an abstract about "data mining".

ny topics of data mining(e.g. association rules, data cube etc.) should be considered

her Example CAS Topic
EX topic 155 would be submitted as a whole

<inex_topic type="CAS">
and
)]</castitle>

re caption about the self organising map from
ragraphs about the self organising feature

ap.</description>
gures depicting the architecture or configuration of the self

elements that
couple of

<castitle>//article[about(.//au,"Jiawei Han")]//a
<description> a synopsis of data mining papers by
<narrativ
ata minid

p
the component has to be the abstract,
topics of data mining (e.g. association rules, data cube etc.) should be considered as
relevant.</narrative>
</inex_topic>

has two about functions (sub-topics) that must be satisfied

//article//au[about(.,"
//article//abs[

each of which is submitted as a separate topic, with a parent

//article[about(.//au,"Jiawei Han")]//

fi

/

<
<cast
<
<description>Identify Jiawei Han as an
narrative>I’m interested in works by <

r
</inex_topic>

and second

<inex_topic top
<
<
<descriptio
narrative><

A
as relevant.</narrative>
</inex_topic>

so this CAS topic is submitted using three Candidate Topic Submission Forms.

3: AnotAppendix
IN

<castitle>//article[about(.//p,"self organising feature map")
about(.//fm//yr,2000)]//fig[about(.//fgc,"self organizing map"
<description>Return figures having a figu
rticles dating to about 2000 and with paa

m
<narrative>Looking for fi
organizing feature map. The figures should be from articles having
discuss the map. Relevant material should be from around 2000 give or take a
years. The SOM method is described or its use is an application described.</narrative>
</inex_topic>

INEX 2005 Guidelines for Topic Development Page 9

and as parts for

//article//p[about(., "self organising feature map")]

/yr [about(.,2000)] //article//fm/
/article//fig// /fgc[about(.,"self organizing map")]

ure map")]</castitle>
 map") and

(.//fm//yr,2000)]//fig[about(.//fgc,"self organizing map")]</parent>
ription>paragraphs about the self organising feature maps</description>

narrative>Looking for articles having elements that discuss the self organizing maps.
es the result relevant. A discussion of Kohonen’s other work

bout(.,2000)]</castitle>
le[about(.//p,"self organising feature map") and

/fm//yr,2000)]//fig[about(.//fgc,"self organizing map")]</parent>
tion>looking for papers published during or about the year 2000</description>

narrative>Relevant material should be from around 2000 give or take a couple of years.
n 1998 and 2002 is relevant, anything outside that range is

about(.,"self organizing map")]</castitle>
le[about(.//p,"self organising feature map") and

bout(.//fm//yr,2000)]//fig[about(.//fgc,"self organizing map")]</parent>
ion>Return figure captions about the self organising maps</description>

arrative>Looking for figures depicting the architecture or configuration of the self
Table captions are relevant, but an abstract would be to big

irst, f

<inex_topic type="CAS">
<castitle>//article//p[about(., "self organising feat
parent>//article[about(.//p,"self organising feature<

about
<desc
<
And discussion of SOM mak
is not relevant.</narrative>
</inex_topic>

second,

<inex_topic type="CAS">

ticle//fm//yr [a<castitle>//ar
parent>//artic<

about(./
<descrip
<
Anything published betwee
not of interest.</narrative>
</inex_topic>

and third

<inex_topic type="CAS">

ticle//fig//fgc[<castitle>//ar
parent>//artic<

a
<descript
<n
organizing feature map.
and is therefore not relevant.</narrative>
</inex_topic>

INEX 2005 Guidelines for Topic Development Page 10

INEX 2005 Retrieval Task
and Result Submission
Specification
Mounia Lalmas
Monday, June 20, 2005

Retrieval Task
The retrieval task to be performed by the participating groups of INEX 2005 is defined as the ad-hoc
retrieval of XML elements. In information retrieval (IR) literature, ad-hoc retrieval is described as a
simulation of how a library might be used, and it involves the searching of a static set of documents
using a new set of topics. While the principle is the same, the difference for INEX is that the library
consists of XML documents, the queries may contain both content and structural conditions and, in
response to a query, arbitrary XML elements may be retrieved from the library. Within the ad-hoc
retrieval task we define the following three sub-tasks:

CO sub-task: content-oriented XML retrieval using content-only conditions.

Queries with content-only conditions (CO queries) are requests that ignore the document structure and
contain only content related conditions, e.g. only specify what an element should be about without
specifying what that component is. The need for this type of query for the evaluation of XML retrieval
stems from the fact that users may not care about the structure of the result components or may not be
familiar with the exact structure of the XML documents. The <title> part of the CO+S topics should
be used as queries for the CO sub-task.

The aim of an XML retrieval system is to find relevant elements for a given topic of request, where
relevance in XML retrieval has two dimensions: exhaustivity and specificity. An element is exhaustive
if the topic of request is exhaustively discussed within that element, whereas an element is specific if
the element is highly focussed on the topic. The general aim of an XML retrieval system is to find the
elements that are most specific and most exhaustive with respect to the topic of request.

XML retrieval systems may employ various retrieval strategies. These strategies can be viewed as how
we, as system developers, assume a user will want the output of a search to be. In INEX 2005, three
strategies have been defined for the CO sub-task.

- Focussed retrieval strategy: The aim of the focussed retrieval strategy is to find the most
exhaustive and specific element in a path. In the case where an XML retrieval system has
estimated a parent and one if its children elements to be equally exhaustive and specific for a
given topic, the parent element should be returned. In addition, when a parent has been estimated
as more exhaustive than one of its children elements, but that child element has been estimated as
more specific than its parent, then the child element should be returned. In this way, preference for
specificity over exhaustivity is given. This strategy means that a retrieval run (i.e. the retrieved
elements) cannot contain any overlapping elements. This strategy is intended for approaches that
are concerned with a very focussed retrieval of XML elements, i.e. aiming at targeting the
appropriate level of granularity for a given topic. A CO sub-task that uses the focussed retrieval
strategy is referred to as CO.Focussed.

- Thorough retrieval strategy: The aim of the thorough retrieval strategy is to find all highly
exhaustive and specific elements. It will be therefore the case that, due to the nature of relevance
in XML retrieval (e.g. if a child element is relevant, so will be its parent, although to a greater or
lesser extent), an XML retrieval system that has estimated an element to be relevant may decide to
return all its ancestor elements. This means that runs for this task may contain a large number of
overlapping elements. It is however a challenge to rank these elements appropriately, as systems
that rank highly exhaustive and specific elements before less exhaustive and specific ones, will
obtain a higher effectiveness performance. This strategy is intended for XML retrieval approaches
that do not deal with the overlapping issue from a system perspective, but that they consider it as
an interface and results presentation issue. It is however still crucial that “highly” relevant

2

elements are ranked first. A CO sub-task that uses the thorough retrieval strategy is referred to as
CO.Thorough.

- Fetch and browse retrieval strategy: The aim of the fetch and browse retrieval strategy is to first
identify relevant articles (the fetching phase), and then to identify the most exhaustive and
specific elements within the fetched articles (the browsing phase). In the fetching phase, articles
should be ranked according to how exhaustive and specific they are (i.e. the most exhaustive and
specific articles should be ranked first). In the browsing phase, ranking should be done according
to how exhaustive and specific an element in an article is when compared to other elements in the
same article. This strategy is intended for XML retrieval approaches that are based on a mixture of
document retrieval and element retrieval strategies. A CO sub-task that uses the fetch and browse
retrieval strategy is referred to as CO.FetchBrowse.

+S sub-task: content-oriented XML retrieval using additional structural hints.

Upon discovering that a CO query returned many irrelevant hits, a user may decide to add structural
hints. These structural hints are expressed in the <castitle> part of the CO+S topics, which should be
used as the query for the +S sub-task. The aim of the +S sub-task is to specifically investigate the
usefulness of the structural hints. The performance on the same topic when using the structural hints
will be compared to that when not using structural hints (i.e. the runs for the CO sub-task).

As for the CO sub-task, there are three retrieval strategies, which are defined in exactly the same way
as for the CO sub-task. A +S sub-task that uses the focussed retrieval strategy, the thorough retrieval
strategy, and the fetch and browse retrieval strategy is referred to as, respectively, +S.Focussed,
+S.Thorough, and +S.FetchBrowse.

(It should be noted that the relevance of the elements will be assessed using the <narrative> part of the
CO+S topics. Runs from the CO sub-task and the +S sub-task will be merged to create the assessment
pool.)

CAS sub-task: content-oriented XML retrieval based on content-and-structure
(CAS) queries.

CAS queries are topic statements that contain explicit references to the XML structure, and explicitly
specify the contexts of the user’s interest (e.g. target elements) and/or the context of certain search
concepts (e.g. containment conditions). More precisely, a CAS query contains two kinds of structural
constraints: where to look (i.e. the support elements), and what to return (i.e. the target elements). A
structural constraint can been interpreted as either strict or vague. With a strict interpretation, the
structural constraints must be followed strictly, i.e. by exact match. With a vague interpretation, an
element is relevant if it satisfies the information need, irrespective of the structural constraints, which
are considered as structural hints. The aim of the CAS sub-task is to investigate whether the structural
constraints are more valuable if they are followed strictly, or as structural hints. The <castitle> part of
the CAS topics should be used as queries for the CAS sub-task.

As structural constraints can apply to support and target elements, we define four strategies for the CAS
sub-task, where for XYCAS, X is the target element and Y is the support element, and either can be S
for strict and V for vague:

- VVCAS strategy: where the structural constraints in both the target elements and the support
elements are interpreted as vague.

- SVCAS strategy: where the structural constraints in the target elements are interpreted as strict
and the structural constraints in the support elements are interpreted as vague.

- VSCAS strategy: where the structural constraints in the target elements are interpreted as vague
and the structural constraints in the support elements are interpreted as strict.

3

- SSCAS strategy: where the structural constraints in both the target elements and the support
elements are interpreted as strict.

In the above four strategies, the aim is to retrieve the most exhaustive and specific elements with
respect to the topic of request. By evaluating each XML retrieval approach against each of these
interpretations, it will be possible to determine if the difference in interpretations has an effect on
performance.

The guidelines for the NLP retrieval task will be given separately.

Result Submission
For the CO and +S sub-tasks and their corresponding strategy, e.g. CO.Focussed, CO.Thorough, … +S.
Thorough, +S.FetchBrowse, up to 3 runs may be submitted. The results of one run must be contained in
one submission file (i.e. up to 18 files can be submitted in total). A submission may contain up to 1500
retrieval results for each of the INEX topics included within that sub-task (e.g. for the +S.Focussed
strategy of the +S sub-task only submit the search results obtained using the <castitle> part of the
CO+S topics).

For the Fetch and Browse strategy, for both the CO and +S sub-tasks, the retrieved elements (obtained
through the browse phase) of the top ranked article (obtained through the fetch base) should be ranked
first, then the retrieved elements of the second ranked article should be ranked, etc. The ranking of the
fetched articles will be derived automatically.

It should be noted that although the motivation for the CO+S is to specifically investigate the
usefulness of the structural hints, the INEX organisers will only report effectiveness performance of
each individual run. Pairwise comparison between e.g. a CO.Focussed run and its respective
+S.Focussed run will have to carried out by the participants themselves, to be reported in the INEX
2005 workshop. In addition, for participants that are only interested in the CO sub-task, there are no
requirements to submit runs for the +S sub-task, and vice versa.

Please note that not all CO+S topics have a <title> and <castitle> parts. This means that there were no
additional structural constraints, so the +S and CO runs are the same. For pairwise (CO vs. +S)
comparison purpose, these topics should be ignored.

For the CAS sub-task, a retrieval run is composed of the elements that have been estimated as relevant
to the CAS topic. For the CAS sub-task and their corresponding strategy, e.g. VVCAS, VSCAS, up to
2 runs may be submitted. At least 1 run must be submitted for the VVCAS strategy. A submission may
contain up to 1500 retrieval results for each of the CAS topics. Although performance will be
calculated on the parent-topics, participants are asked to submit runs for all CAS topics (including the
sub-topics). The results from the sub-topics can be thought of as partial “evidence” used by the
retrieval approach to help rank results for the parent-topic. Note that the structural constraints for the
sub-topics should be interpreted as vague.

Submission format
For relevance assessments and the evaluation of the results we require submission files to be in the
format described in this section. The submission format for the CO, +S, and CAS sub-tasks is defined
in the following DTD:

<!ELEMENT inex-submission (description, collections, topic+)>
<!ATTLIST inex-submission
 participant-id CDATA #REQUIRED
 run-id CDATA #REQUIRED
 task (CO.Focussed | CO.Thorough | CO.FetchBrowse |
 +S.Focussed | +S.Thorough | +S.FetchBrowse |
 VVCAS | VSCAS | SVCAS | SSCAS) #REQUIRED
 query (automatic | manual) #REQUIRED
>
<!ELEMENT description (#PCDATA)>

4

<!ELEMENT topic (result*)>
<!ATTLIST topic
 topic-id CDATA #REQUIRED
>

<!ELEMENT collections (collection+)>
<!ELEMENT collection (#PCDATA)>

<!ELEMENT result (in?,file, path, rank?, rsv?)>
<!ELEMENT in (#PCDATA)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (available at
http://inex.is.informatik.uni-duisburg.de/2005/inex05/ShowParticipants05.jsp), a run ID (which must
be unique for the submissions sent from one organisation – also please use meaningful names as much
as possible), the identification of the task (e.g. CO.Focussed, +S.FetchBrowse, etc), and the
identification of whether the query was constructed automatically or manually from the topic. Please
note that at least one of the runs for each sub-task must be with the use of automatic queries.
Furthermore each submitted run must contain a description of the retrieval approach applied to generate
the search results. A submission contains a number of topics, each identified by its topic ID (as
provided with the topics).

For compatibility with the heterogeneous collection track, the <collections> tag is mandatory. There
should be with <collections> at least one <collection> tag, which is by default set to “ieee” for the ad
hoc track. The <in> tag is optional for the ad hoc track (<in> states from which collection each result
comes from).

For each topic a maximum of 1500 result elements may be included per sub-task (i.e. CO.Focussed,
CO.Thorough, …, +S.Thorough, +S.FetchBrowse, VVCAS, …, SSCAS). A result element is described
by a file name and an element path, and it may include rank and/or retrieval status value (rsv)
information. For the ad hoc retrieval task, <collection> is set to “ieee”. Here is a sample submission
file for the focussed retrieval strategy of the CO sub-task:

<inex-submission participant-id="12" run-id="VSM_Aggr_06" task=”CO.Focussed”
query=”automatic”>

<description>Using VSM to compute RSV at leaf level combined with
aggregation at retrieval time, assuming independence and using
augmentationweight=0.6.

</description>
 <collections>
 <collection>ieee</collection>
 </collections>

<topic topic-id="01">
<result>

 <file>tc/2001/t0111</file>
 <path>/article[1]/bm[1]/ack[1]</path>
 <rsv>0.67</rsv>

</result>
<result>

 <file>an/1995/a1004</file>
 <path>/article[1]/bdy[1]/sec[1]/p[3]</path>
 <rsv>0.1</rsv>

</result>
[...]

</topic>
<topic topic-id="02">

[...]
</topic>
[...]

</inex-submission>

5

Regarding the Fetch and Browse retrieval strategy, the most relevant elements of the most relevant
article should be ranked first, then the most relevant elements from the second most relevant article
should then be ranked, etc. An example is given below.

<topic topic-id="01">
<result>

<file>tc/2001/t0111</file>
<path>/article[1]/bm[1]/ack[1]</path>
<rank>1</rank>

</result>
<result>

<file>tc/2001/t0111</file>
<path>/article[1]/sec[1]/</path>
<rank>2</rank>

</result>
[...]
<result>

<file>xg/2005/t0135</file>
<path>/article[1]/bm[1]/ack[1]</path>
<rank>3</rank>

</result>
<result>

<file>xg/2005/t0135</file>
<path>/article[1]/sec[1]/</path>
<rank>4</rank>

</result>
[...]

</topic>

An article element can be returned only if the article itself has been estimated as the most relevant
element (with respect to the article). Finally note that a submission run ha a maximum of 1500
elements, thus one challenge in the Fetch and Browse retrieval strategy is to determine the number of
relevant elements to return for each fetched (relevant) article.

Rank and RSV
The rank and rsv elements are provided for submissions based on a retrieval approach producing
ranked output. The ranking of the result elements can be described in terms of:

• Rank values, which are consecutive natural numbers, starting with 1. Note that there can be
more than one element per rank.

• Retrieval status values (RSVs), which are positive real numbers. Note that there may be
several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a
retrieval approach does not produce ranked output.

File and path
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX
collection, we need a way to identify these nodes without ambiguity. Within INEX submissions,
elements are identified by means of a file name and an element (node) path specification, which must
be given in XPath syntax.

File names must be given relative to the INEX collection’s xml directory (excluding the xml
directory from the file path). The file path should use '/' for separating directories. Note that only article
files (e.g. no volume.xml files) can be referenced here. The extension .xml must be left out. Example:

an/1995/a1004

Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

6

Path ::= '/' ElementNode Path | '/' ElementNode '/' AttributeNode | '/' ElementNode

ElementNode ::= ElementName Index

AttributeNode ::= '@' AttributeName

Index ::= '[' integer ']'

Example:

/article[1]/bdy[1]/sec[4]/p[3]

This path identifies the element which can be found if we start at the document root, select the first
“article” element, then within that, select the first “bdy” element, within which we select the fourth
“sec” element, and finally within that element we select the third “p” element.

Important: XPath counts elements starting with 1 and takes into account the element type, e.g. if
a section had a title and two paragraphs then their paths would be given as: ../title[1],
../p[1] and ../p[2].

A result element may then be identified unambiguously using the combination of its file name and
element path. Example:

<result>
<in>ieee</in>

 <file>an/1995/a1004</file>
<path>/article[1]/bdy[1]/sec[1]/p[3]</path>

</result>

An application that can be used to check the correctness of a given path specification is available at
http://inex.is.informatik.uni-duisburg.de/2005/browse.html. Note that this application requires the input
of a file name and element path. If these are correctly given, the specified XML element within its
container article element will be displayed.

Result Submission Procedure
To submit a run, please use the following link:

http://inex.is.informatik.uni-duisburg.de/2005/

Then go to Tasks/Tracks->Adhoc->Submissions. The online submission tool will be available soon.

Acknowledgments
The sub-tasks and the strategies are based on the outcome of the INEX 2004 workshop. These were
also further extensively discussed and debated on the INEX 2005 organisers list, and the INEX 2005
discussion list. These discussions and debates are greatly appreciated and acknowledged. Finally,
special thanks go to Shlomo Geva, Gabriella Kazai, Yosi Mass, Tassos Tombros and Andrew Trotman
for their comments and clarifications on this document.

1. Introduction
During the retrieval runs, participating organisations evaluated the 87 INEX 2005 topics (40 content +
structure (CO+S) and 47 content-and-structure (CAS) queries) against the IEEE Computer Society
document collection and produced a list (or set) of document components (XML elements1) as their
retrieval results for each topic. The top 1500 components in a topic’s retrieval results were then
submitted to INEX. The submissions received from the different participating groups have now been
pooled and redistributed to the participating groups (to the topic authors whenever possible) for
relevance assessment. Note that the assessment of a given topic should not be regarded as a group task,
but should be provided by one person only (e.g. by the topic author or the assigned assessor).

The aim of this guide is to outline the process of providing relevance assessments for the INEX 2005
test collection. This requires first a definition of relevance (Section 2), followed by details of what
(Sections 3) and how (Section 4) to assess. Finally, we describe the on-line relevance assessment
system that should be used to record your assessments (Section 5).

2. Relevance in INEX
Relevance in INEX is defined according to the following two dimensions:

• Exhaustivity (E), which describes the extent to which the document component discusses the topic
of request.

• Specificity (S), which describes the extent to which the document component focuses on the topic
of request.

In order to decrease assessment effort, a highlighting procedure is used in INEX 2005, leading to the
following process for assessment (more details in Sections 4 and 5):

• In the first pass, assessors highlight text fragments that contain only relevant information

• In the second pass, assessors judge the exhaustivity level of any elements that have highlighted parts.

As a result of this process, any elements that have been fully highlighted will be automatically labelled
as fully specific. The main advantage of this highlighting approach is that assessors will now only have
to judge the exhaustivity level of the elements that have highlighted parts (in the second phase). The
specificity of any other (partially highlighted) elements will be calculated automatically as some
function of the contained relevant and irrelevant content (e.g. in the simplest case as the ratio of
relevant content to all content, measured in number of words or characters).

An exhaustivity level is therefore requested for all document components that contain some relevant
information, and can be any of the following values:

 Highly exhaustive (HE): the component discusses most or all aspects of the topic of request.
In the relevance assessment system, E2 is represented as two green squares.

 Partially exhaustive (PE): the component discusses only few aspects of the topic of request.
In the relevance assessment system, E1 is represented as two squares, one green and the other
white.
 Too small (TS): the component contains some relevant material, but the relevant fragment is

too small to be assessed. In the relevance assessment system, TS is a pale green rectangle.

Within the relevance assessment system, a component – that contains some relevant information and
has not yet been assessed has an unknown exhaustivity. The corresponding icon is (a green and a
red squares). All other elements will be – automatically - assumed as Not Exhaustive (NE).

1 The terms document component and XML element are used interchangeably.

1

INEX 2005 Relevance
Assessment Guide

3. What to judge

Depending on the topic, a pooled result set may contain initially around 500 articles.

Traditionally, in evaluation initiatives for information retrieval, like TREC or CLEF, relevance is
judged on document level, which is treated as the atomic unit of retrieval. In XML retrieval, the
retrieval results may contain document components of varying granularity, e.g. paragraphs, sections,
articles, etc. Therefore, to provide comprehensive relevance assessment for an XML test collection, it is
necessary to obtain assessment for all components at the different levels of granularity that
contain any relevant information.

This means that if you find, say, a section of an article relevant to the topic of the request (i.e.
containing highlighted text), you will then need to provide assessment with regards to exhaustivity for
the found relevant component, for all its ascendant elements until you reach the article component
(unless this can be automatically inferred, e.g. the parent of a highly exhaustive (HE) element will be
itself highly exhaustive (HE)), and for all its descendant elements that contain relevant information (i.e.
containing highlighted text) until you have identified all relevant sub-components.

Such comprehensive assessments are necessary as it is demonstrated by the following example.
Consider the XML structure in Figure 1. Let us say that you judged the marked sec element relevant to
the topic, as partially exhaustive (PE, denoted by , see Section 2). Given this single assessment, it
would not be possible to deduce the exhaustivity level of the ascending or descending elements. For
example, both bdy and article may be judged either highly (HE) or partially exhaustive (PE) depending
on the volume of additional relevant information contained within the other sections and in the fm and
bm components. Looking at the sub-components of our sec element, it is clear that no conclusions can
be drawn from the assessment score assigned to our sec element regarding the exhaustivity level of its
sub-components; for example, one of the paragraphs of the second ss2 element may be too small (TS)
while the other may be partially exhaustive (PE).

Figure 1. Example XML structure

As a general rule, it can be said that the exhaustivity level of a parent element is always equal to or
greater than the exhaustivity level of its children elements. This is due to the cumulative nature of
exhaustiveness. For example, the parent of a highly exhaustive (HE) element will always be highly
exhaustive (HE), since the child element already discusses all or most aspects of the topic. However,
besides this general rule, no specific rules exist that would automate all the exhaustivity assessment of
ascendant and descendant elements of relevant components. Therefore, you will need to explicitly
judge the exhaustivity level of all elements that contain relevant information. This is the only way
to ensure both comprehensive and consistent relevance assessments.

2

[article]
 [fm]
 ...
 [bdy]

 [sec]
 [ss1]
 [ip1]
 [ss2]
 [p]
 [p]
 [ss2]
 [ip1]
 [p]
 [lc]
 [li]
 [p]
 [p]
 [li]
 [p]
 [ss1]
 [ss1]
 [sec]
 ...
 [bm]
 ...

4. How to judge
As described in Section 2, the assessment process is to be done in two phases.

• In the first pass, assessors highlight text fragments that contain only relevant information. A vital
consideration is that the highlighting must be based solely on the specificity dimension (e.g.
ignoring exhaustivity in the first phase). Assessors should be made aware not to highlight larger
contexts because these are more exhaustive, if at the same time they are less specific (i.e. contain
irrelevant fragments). It is important that only purely relevant information fragments get
highlighted. To decide which text to highlight, you should skim-read the whole article (that a result
element is a part of - even if the result element itself is not relevant!) and identify any relevant
information as you go along. The on-line system can assist you in this task by highlighting
keywords (that are chosen using the interface) and pool elements (elements retrieved by
participating systems) within the article (see Section 5).

• In the second phase, you should assess the exhaustivity of the components that intersect with any of
the highlighted passages (i.e. identified in the first phase). The on-line assessment system (see
Section 5) will identify for you all elements that have to be assessed for phases 2.

During the relevance assessment of a given topic, all parts of the topic specification should be consulted
in the following order of priority: narrative, topic description, and topic title. The narrative should be
treated as the most authoritative description of the user's information need, and hence it serves as
the main point of reference against which relevance should be assessed. In case there is conflicting
information between the narrative and other parts of a topic, the information contained in the narrative
is decisive. Note that it is not because that a term listed within the topic is not present in an element that
the element is not relevant. It may be that a component contains some or maybe all the terms, but is
irrelevant to the topic of the request. Also, there may be components that contain none of the terms yet
are relevant to the topic.

For both the CO+S and CAS topics, the topic titles (may) contain structural constraints in the form of
XPath expressions. These structural conditions should be ignored during your assessment. This means
that you should assess the elements returned for a CO+S and CAS topic as whether they satisfy your
information need (as specified by the topic) with respect to the content criterion only.

Note that some result elements may be related to each other (ascendant/descendant), e.g. an article and
some sections or paragraphs within the article. This should not influence your assessment. For example
if the pooled result contains Chapter 1 and then Section 1.3, you should not assume that Section 1.3 is
more relevant than Sections 1.1, 1.2, and 1.4, or that Chapter 1 is more relevant than Section 1.3 or vice
versa. Remember that the pooled results are the product of different retrieval engines, which warrants
no assumptions about the level of relevance based on the number of retrieved related components!

You should judge each document component on its own merits! That is, a document component is still
relevant even if it the twentieth you have seen with the same information! It is imperative that you
maintain consistency in your judgement during assessment. Referring to the topic text from time to time
will help you maintain judgement consistency.

5. Using the on-line assessment system (X-Rai)
There is an on-line relevance assessment system (XML Retrieval Assessment Interface) provided at:

https://inex.lip6.fr/2005 /xrai

which allows you to view the pooled result set of the topics assigned to you for assessment, to browse
the IEEE-CS document collection and to record your assessments. Use your INEX username and
password to access this system.

The assessment tool works with opera and recent "gecko" browsers: we highly recommend you to
use Opera (version 8 or up only) available at http://www.opera.com. Other compatible browsers are:

• Mozilla (version 1.7 or up) at http://www.mozilla.org/products/firefox/.
• Firefox (version 1 and up) at http://www.mozilla.org/products/mozilla1.x/.

3

Note that JavaScript must be enabled for the assessment tool to work and that the assessment tool is
not compatible with Internet Explorer. Any bug report should be submitted using the project
homepage (https://developer.berlios.de/projects/x-rai/) using the link in the “Links” menu of the
interface (Figure 2).

5.1. Home page
After logging in, you will be presented with the Home page (see Figure 2) listing the topic ID numbers
of the topics assigned to you for assessment (under the title “Choose a pool”). This page can always be
reached by clicking on the “X-Rai” link of the menu bar on any subsequent pages.

Figure 2: Home page and menu bar

In the “Links” menu

• INEX 2005: link to the official INEX web site.

• X-Rai project: link to the development web site of X-Rai where you can
submit bug reports or/and feature requests.

• Guide: the latest version of this assessment guide.

Each X-Rai page is composed of the following components:
• The menu bar, which is itself composed of four parts:

1. The login name (e.g. “demo” in Figure 2),
2. A list of menu items, which can be accessed by holding the mouse over the menu

label (e.g. “Links” in Figure 2.),
3. The location within X-Rai, where each location step is a hyperlink (in Figure 2, we

are at the root of the web site, so the only component of the location is “X-Rai”,
which is a link to the home page),

4. The menu bar may also contain a number of icons (displayed on the right hand side,
see Figure 3a). Click on one of these icons to display (or hide):

 Information about X-Rai.

 Toggle the help
• The main window.
• An optional status bar (see Figure 5), displayed only when assessing a pool, i.e. in pool, sub-

collection or article view (see relevant sections below) appears at the bottom of the window and
shows the number of unknown assessments you have to judge before completing assessing the
document (in Figure 5, there is only one unknown assessment).

4

• In the status bar, three arrows (, and) may be used to navigate quickly between the
elements to be assessed. You may also use the shortcut keys of 1 (left), 2 (up) and 3 (right). The
up arrow enables you to move to a level up in the hierarchy, e.g. from an article or a collection
part to its innermost enclosing part of the collection (you move in the opposite direction by
selecting a sub-collection or an article). The left arrow can be used to go to the previous
element to be assessed, while the right arrow to go to the next element to be assessed.

The on-line assessment system provides three main views (Sections 5.2 to 5.4):

1. Pool view,
2. Sub-collection view, and
3. Article view

5.2. Pool view
Clicking on a topic ID will display the Pool main page for that topic (see Figure 3a).

Here, a new menu item, “Pool”, appears on the menu bar at the top of the window.

Within the “Pool” menu (Figure 3b), with the “Topic” submenu item you can display the topic
statement in a popup window. This is useful as it allows you to refer to the topic text at any time during
your assessment.

The “Keywords” submenu item allows you to access a feature, where you can specify a list of words or
phrases to be highlighted when viewing the contents of an article during assessment. These cue words
or phrases can help you in locating potentially relevant texts within an article and may aid you in
speeding up your assessment (so add as many relevant cue words as you can think of!). You may edit,
add to or delete from your list of keywords at any time during your assessment (remember, however, to
refresh the currently assessed article to reflect the changes). You may also specify the preferred
highlighting colour for each and every keyword. After selecting the “Keywords” menu item, a popup
window will appear showing a table of coloured cells. A border surrounding a cell signifies a colour
that is already used for highlighting some keywords. Move the mouse over a coloured cell to display the
list of keywords that will be highlighted in that colour. To edit the list of words or phrases for a given
colour, click on the cell of your choice. You will be prompted to enter a list of words or phrases (one
per line) to highlight. You can choose three different highlighting modes using the drop-down menu:
using coloured fonts, drawing a border around the phrase or using a background colour. Note that the
words or phrases you specify will be matched against the text in the assessed documents in their exact
form, i.e. no stemming is performed.

Under the title “Collections” is the list of collections to be assessed. In INEX 2005 (ad hoc task) there
is only one such collection, the IEEE collection.

The left or right arrows on the status bar move the focus to the previous or next collection, where there
is at least one element to assess (since there is only one collection, so no change will occur).

5

Figure 3a. Pool view

Figure 3b. Pool menu:

Topic: displays topic
statement.
Keywords: to manipulate
list of words and phrases to
highlight.

Clicking the hyperlink of “IEEE collections” will take you into the sub-collection view.

5.3. Sub-collection view
The sub-collection views allow you to browse the different sub-collections within the IEEE collection,
i.e. volumes, years within a given volume (see Figure 4), the collection of articles within a given
volume and year. Note that this view will show all elements within a sub-collection, i.e. all articles
within a given volume and year, and not only the ones that need to be assessed. For each possible sub-
collection, there is an indication on the number of documents to be assessed in it (if this number is
greater than 0), both for documents that were initially in the pool and for documents you choose to
assess.

The left or right arrows on the status bar move the focus to the previous or next sub-collection, where
there is at least one document to assess. You can also directly click on a link to a sub-collection.

5.4. Article view
It is in this article view that elements can be assessed. The article view (see Figure 5) displays all the
XML elements of an article together with their content. There are two types of objects within an article
view: XML elements and passages. The latter are defined by the assessor while highlighting whereas
the former are predefined by the XML file. XML elements boundaries are denoted by < and >
(less/greater in pale blue). { A passage in the interface has a yellow background and is enclosed within
two braces on a blue background like this sentence }. For each element, the assessment value is
displayed at its start, that is after the “<” for an XML element.

6

Figure 4. Sub-collection view

Highlighting

You are in the highlighting mode when the marker icon in the status bar is . During the highlight
phase, you should identify only relevant (i.e. totally specific) passages by highlighting them.
Passages can span over XML element boundaries. The passage limits are predefined by a pre-
processing of XML files and correspond “more or less” to sentence boundaries. A consequence of
this is that you should highlight the smallest passage that encloses the only relevant information if
the predefined boundaries do not correspond exactly to the totally specific fragment.

To highlight a passage, select it with the mouse as you would do in any word processor or text
editor, and click on the square with the yellow background (or press “h”).

If you make an error, you can unhighlight it by selecting the non relevant passage and clicking on
the square with the white background (or press “u”).

Assessing

Once you have finished to highlight relevant passages, you may switch to the assessing mode by
clicking on the yellow marker. You can also switch by pressing the “m” (for mode) key. Once you
have switched, it is not possible to (un)highlight passages any more and the icon in the status bar

should look like a crossed marker (). To assess an element, simply click on the assessment icon.
An assessment panel will then appear:

The first line shows the list of possible assessments for the current assessed element. The second
line contains shortcuts to set or remove “too small” judgements for some or all of the children - and,
as a consequence, to all the descendants: the first button assesses all the non judged children as
“too small”; the second one assesses all children as “too small”, and the third one resets the

Figure 5. Article view

7

assessments to “unknown” for children judged “too small”. The process is recursive: if a value is
changed for a child, then the same operation is applied for its own children. For example, judging a
child as “too small” will judge the child children as TS, etc.

You should always give the exhaustivity value of the strictly contained data, that is without taking
into account the component context (i.e. parent or sibling component). Any XML element that
contains at least a passage cannot be judged as “too small”. The interface will prevent you from
doing so (in the above Figure, the “too small” assessment is disabled).

In order to assess an XML element, you can have a quick look at its boundaries by putting the
mouse pointer over an element assessment: the content of the XML element will be bordered by a
red line. You can also change the background colour of an XML element by clicking on its
assessment while pressing the shift key. You can switch back to the normal display by clicking again
on its assessment while pressing the shift key. This is useful when assessing big elements (like a
section, etc.) so you can inspect their full content before judging them.

Judging an element (or its descendants) “too small”

If the assessed XML element intersects with one or more passages but does not contain any one
passage completely, it is possible to assess it as “too small”. This will also automatically assess its
descendants as TS. When the element - denoted X in the following - is not too small itself but its
descendants (or a part of them) are, then it is possible to judge all of them as “too small”. The
procedure to follow is:

1. assess explicitly all the descendants which are not “too small”

2. click on the X assessment icon, and press on the icon “assess the remaining children as too
small” (the icon). Note that the interface will automatically judge as TS any descendant of a
too small element.

It is also possible to judge all the descendants as “too small”, overriding their values by clicking on
the TS icon with a red border (). If you made a mistake and want to reset the assessments of the
descendants, you can also remove all the TS judgements of the descendants by clicking on the
crossed pale rectangle icon ().

Assessment consistency

Contrarily to last years, there is no pre-checking on the allowed exhaustivity values. If there is a
conflict after the user assessed an element, then the conflicting assessment value(s) is/are reset to
"unknown" so the judge has to reassess it: for example, let a section be assessed as HE and its only
paragraph as HE. If the user changes the paragraph assessment to PE or unknown/too small, then the
section assessment is set to unknown.

Another example of consistency check is when you change an assessment from “too small” to
another value: the descendants, which were previously assessed as “too small”, will be reset to
“unknown”.

8

5.6. Saving your assessments

The assessment tool this year does not automatically save the assessments, but you NEED TO
SAVE YOUR RELEVANCE ASSESSMENTS by clicking on the disk icon:

The icon is disabled (grey shade) when all assessments are saved.

Be warned that Opera doesn't provide a way to prevent from exiting a page without saving
assessments. PLEASE ONLY USE THE INTERFACE TO NAVIGATE INTO THE SITE as this
is the only way to prevent you from leaving a page with non-saved assessment(s).

9

!

Figure 6. Status bar (article view only): highlighting mode (top) and
assessing mode (bottom)

The disk icon (here disabled): saving your assessments

The left/right arrows: going to the previous/next element to judge
The up arrow: going to the sub-collection view that contains the article

The eye: shows or hides the pool elements

The yellow marker: switch between the highlighting and the assessing
view.

The mark reflects the status of the document: completely assessed and
validated (green), completely assessed but not validated (red), and not
completely assessed and not validated (grey). You can validate a
document (i.e., mark it as finished) only if the mark is red.

The number indicates the number of elements to be assessed.

The yellow/white square (when in highlighting mode) permits to (un)
highlight the selected passage.

Icon Shortcut Action description

All views within a pool

1 Highlight the previous element, (sub)collection or document to assess

2 Go to the container (sub-collection for an article, etc.)

3 Highlight the next element, (sub)collection or document to assess

Article view

control+s
Save the current assessment

Hide the pool elements

Show the pool elements

Article view - highlighting mode

h Highlight the currently selected passage.

u Unhighlight the currently selected passage

m Finish highlighting and switch to the assessing mode

Article view - assessing mode

Mark the article as finished

Mark the article as not finished

m Go back to the highlighting mode

September 2005
Mounia Lalmas and Benjamin Piwowarski

10

INEX 2005 Evaluation Metrics

Gabriella Kazai Mounia Lalmas

1. INTRODUCTION
This document describes the official INEX 2005 metrics,
which are the eXtended Cumulated Gain (XCG) Metrics.

2. RELEVANCE ASSESSMENTS
Relevance assessments are given according to two relevance
dimensions: exhaustivity and specificity. In INEX 2005, ex-
haustivity is measured using 3 + 1 levels: highly exhaus-
tive (e = 2), somewhat exhaustive (e = 1), not exhaustive
(e = 0) and “too small” (e =?). Specificity is measured on
a continuous scale with values in [0, 1], where s = 1 repre-
sents a fully specific component (i.e. one that contains only
relevant information).

We denote the relevance degree of an assessed component,
given by the combined values of exhaustivity and specificity,
as (e, s), where e ∈ ?, 0, 1, 2 and s ∈ [0, 1]. For example,
(2, 0.72) denotes a highly exhaustive component, 72% of
which is relevant content.

An important property of the exhaustivity dimension is its
propagation effect, reflecting that if a component is rele-
vant to a query then all its ascendant elements will also
be relevant. Due to this property, all nodes along a rele-
vant path1 are always relevant (with varying degrees of rel-
evance), hence resulting in a recall-base2 comprised of sets
of overlapping elements.

2.1 Relevance assessments for the CAS tasks
This year there are four sets of CAS judgments, one for each
of the four CAS interpretations - each derived from the same
initial set of judgments.

2.1.1 VVCAS
The assessments as done by the assessors (against the nar-
rative); i.e. no change is made to the original assessment

1A relevant path is a path in an article file’s XML tree,
whose root node is the article element and whose leaf node
is a relevant component (i.e. (e > 0, s > 0)) that has no or
only irrelevant descendants.
2The term recall-base refers to the collection of assessments
within the test collection that forms the ground-truth for
evaluation experiments.

set.

2.1.2 SVCAS
Those VVCAS judgments that strictly satisfy the target el-
ement requirement. This set of judgments was computed by
taking the VVCAS judgments and removing all judgments
that do not satisfy the target element. This is a simple
matching process in all except topic 260 in which the target
element is specified as //bdy//*, in which case all descen-
dants of //bdy (excluding //bdy) are target elements.

2.1.3 VSCAS
A relevant element is not required to satisfy the target re-
quirement, however the document must satisfy all other re-
quirements specified in the query. In all except two cases,
this requirement is that for a judgment of the parent topic
to be relevant, it must come from a document that also
has SVCAS judgments for all its children. In one exception
(topic 247), this conjunction is replaced with a disjunction.
In the other exception (topic 250) there are (presently) no
judgments.

2.1.4 SSCAS
Those VSCAS judgments that satisfy the target element
requirement. The are computed from the VSCAS judgments
in the same way that SVCAS judgments are computed from
VVCAS judgments.

Note that all CAS tasks were evaluated according to the
Thorough strategy (i.e. “overlap=off”), see Section 4.2.1.

3. DEFINITION OF AN IDEAL RECALL-
BASE

An ideal recall-base is defined to evaluate the CO.Focussed
task.

An ideal recall-base is a subset of the full recall-base, where
overlap between relevant reference elements is removed so
that the identified subset represents the set of ideal answers,
i.e. those elements that should be returned to the user.
Given a set of preference relations among the (e, s) value
pairs, those components representing the best element for
the user are selected. This is done through the definition
of a preference function on the possible (e, s) pairs and a
methodology for traversing an XML tree and selecting ideal
nodes based on their relative preference relations to their
structurally related nodes.

Quantisation functions are used for modelling various sets of
possible user preferences, adjustable to a given user model.
The following two functions are used in INEX’05: quantstrict

(Equation 1) and quantgen (Equation 2). The strict func-
tion models a user for whom only fully specific and highly
exhaustive components are considered worthy. The gener-
alised (gen) function credits document components accord-
ing to their degree of relevance, hence allowing to model
varying levels of user satisfaction gained from not perfect,
but still relevant components or near-misses3.

quantstrict(e, s) :

�
1 if e = 2 and s = 1,
0 otherwise.

(1)

quantgen(e, s) := e ∗ s (2)

The following methodology is adopted to traverse the XML
trees and select the ideal nodes. Given any two components
on a relevant path, the component with the higher quantised
score is selected. In case two components’ scores are equal,
the one higher in the tree is chosen (i.e. parent/ascendant).
The procedure is applied recursively to all overlapping pairs
of components along a relevant path until one element re-
mains. After all relevant paths have been processed, a final
filtering is applied to eliminate any possible overlap among
ideal components, keeping from two overlapping ideal paths
the shortest one.

The use of an ideal recall-base supports the evaluation view-
point (needed for the CO.Focussed task) whereby compo-
nents in the ideal recall-base should be retrieved, while the
retrieval of near-misses could be rewarded as partial suc-
cesses, but other systems need not be penalised for not re-
trieving such near-misses.

4. OFFICIAL METRICS: EXTENDED CU-
MULATED GAIN (XCG)

The XCG metrics are a family of metrics that are an exten-
sion of the cumulated gain (CG) based metrics of [1] and
which aim to consider the dependency of XML elements
(e.g. overlap and near-misses) within the evaluation. The
extension of these metrics to INEX lies in the way 1) the rel-
evance score for a given document component is calculated
via the definition of relevance value (RV) functions, and 2)
the definition of the ideal recall-bases (see previous section).

The XCG metrics include the user-oriented measures of nor-
malised extended cumulated gain (nxCG) and the system-
oriented effort-precision/gain-recall measures (ep/gr).

4.1 xCG and normalisedxCG (nxCG)
The xCG metric accumulates the relevance scores of re-
trieved documents along the ranked list. Given a ranked
list of document components, xCG, where the element IDs
are replaced with their relevance scores, the cumulated gain
at rank i, denoted as xCG[i], is computed as the sum of the

3Note that the calculation of the generalised quantisation
score by multiplying the exhaustivity and specificity values
is somewhat ad-hoc and may be revised in the future.

relevance scores up to that rank:

xCG[i] :=

iX
j=1

xG[j] (3)

For example, the ranking xGq = <3, 1, 0, 0, 1, 3, 2, 2, 0, 0>
produces the cumulated gain vector of
xCG = <3, 4, 4, 4, 5, 8, 10, 12, 12, 12>.

For each query, an ideal gain vector, xI, can be derived
by filling the rank positions with the relevance scores of
all documents in the recall-base (or as in the case of the
CO.Focussed task, with the relevance scores of all elements
in the ideal recall-base) in decreasing order of their degree
of relevance. The corresponding cumulated ideal gain vector
is referred to as xCI. For our toy example, the ideal gain
vector may be xI = <3, 3, 3, 3, 2, 2, 2, 1, 1, 0, ...>, for which
we obtain xCI = <3, 6, 9, 12, 14, 16, 18, 19, 20, 20, ...>.

A retrieval run’s xCG vector can then be compared to this
ideal ranking by plotting both the actual and ideal cumu-
lated gain functions against the rank position.

By dividing the xCG vectors of the retrieval runs by their
corresponding ideal xCI vectors, we obtain the normalised
xCG (nxCG) measure:

nxCG[i] :=
xCG[i]

xCI[i]
(4)

For a given rank i, the value of nxCG[i] reflects the relative
gain the user accumulated up to that rank, compared to the
gain he/she could have attained if the system would have
produced the optimum best ranking. For our example gain
vector xG, we obtain
nxCG = <1, 0.67, 0.44, 0.33, 0.36, 0.5, 0.56, 0.63, 0.6, 0.6>.
For any rank the normalised value of 1 represents ideal per-
formance.

Systems may be compared at several cutoff values, e.g.
nxCG[1] or nxCG[100]. In addition, we may average nxCG
scores up to a given rank as:

MAnxCG[i] :=

Pi
j=1 nxCG[j]

i
(5)

For example, we obtain MAnxCG[6] = 0.55 for our xG vec-
tor.

4.2 Calculating a component’s relevance value
The definition of the xCG and nxCG metrics is based on
the gain value, xG[i], that a user obtains when examining
a returned result component. In this section we detail how
this gain is calculated.

We define a relevance value (RV) function, r(ci), as a func-
tion that returns a value in [0, 1] for a component ci in a
ranked result list, representing the component’s relevance
or gain value to the user. The meaning of such a value may
be compared to the notion of utility, reflecting the worth
that a retrieved component holds for the user. A score of 0
reflects no relevance or utility, 1 is highest relevance score
and values in between represent various gain levels.

Such a relevance value will depend on a number of factors,
like the component’s exhaustivity and specificity degree (i.e.
its (e, s) values). When retrieval results are assumed inde-
pendent, the gain value of a document can be obtained as
a direct function of these two parameters. When results
are dependent, a component’s gain value will likely be influ-
enced by additional aspects, such as what the user may have
seen at earlier ranks or what additional elements he/she can
access from the current returned component. A wide variety
of RV functions may be defined, each capturing a different
type of user behaviour. Currently XCG supports a simple
model of a user, taking into account overlap and near-misses.

4.2.1 Overlap
To reflect the viewpoint of a user for whom any already
viewed components become irrelevant, the possible overlap
of result elements with already seen components must be
considered when calculating the relevance value of a given
component. We define the following result-list dependent
relevance value (RV) function:

rv(ci) := f(quant(assess(ci))) (6)

where assess(ci) is a function that returns the assessment
value pair (e, s) for the i-th component in the ranking if
it is given within the recall-base and (0, 0) otherwise. The
function quant(·) is a quantisation function (e.g. Equation 1
and Equation 2).

The f(·) function can take several forms depending on the
kind of dependency that exist among result elements within
the ranking. We only consider the dependency of a given
component to already retrieved components (i.e. those ear-
lier in the ranking). We have three possibilities: 1) a com-
ponent may be returned for the first time (i.e. no related
nodes have been seen by the user before), 2) it may have
already been seen by the user in full (e.g. if a container
section of the current paragraph result was returned at an
earlier rank), 3) some parts of it may have been seen before
(e.g. if a paragraph of the current section result has already
been returned). We define three versions of f(·) for each of
these cases.

For a not-yet-seen component, we set f(x) = x. The RV
function then returns the quantised assessment value pair
quant(assess(ci)):

rv(cnot yet seen) := quant(assess(ci)) (7)

For a component that has been fully seen already by the
user, we define f(x) = (1−α) ·x, and hence the RV function
as:

rv(cfully seen) := (1 − α) · quant(assess(ci)) (8)

The weighting factor of α represents how much frustration
a user is willing to tolerate when accessing redundant com-
ponents or component-parts. For example, setting α = 1
reflects a user who does not tolerate already viewed com-
ponents. In this case, the RV function returns 0 for a fully
seen, and hence redundant, component, reflecting that it
represents no value to the user any more. In INEX’05, α is
set to 1.

Finally, if a component has been seen only in part before,

then its relevance value is calculated as:

rv(cpartially seen) :=α ·

mP
j=1

(rv(cj) · |cj |)

|ci|
+ (1 − α) · quant(assess(ci))

(9)

where m is the number of ci’s child nodes and | · | is the
length of an element (in characters).

Overlap can be ignored (e.g. for the Thorough tasks) within
the evaluation by simply adopting Equation 7 regardless if
a result element overlaps with other results or not. We
will refer to this mode of evaluation as “overlap=off”, while
the result-list dependent functions defined above as “over-
lap=on”.

4.2.2 Near-misses
To consider the retrieval of near-misses within the evalua-
tion, we reward a partial score for the retrieval of non-ideal
elements that are structurally related to ideal components.
This year, only those relevant elements of the full recall-
base are considered near-misses which are not included in
the ideal recall-base4.

Given this set of near-misses and the ideal recall-base, the
XCG metrics are applied such that the ideal gain vector of
a query, xI, is derived from the ideal recall-base, and the
gain vectors, xG, corresponding to the system runs under
evaluation are based on the full recall-base. The relevance
score of a near-miss component is calculated by Equation 6.

Before the final gain value can be assigned to xG[i], we need
to apply a dependency normalisation function, which en-
sures that the total score for any sub-tree of an ideal node
cannot exceed the maximum score achievable when the ideal
node itself is retrieved. For example, an ideal node may have
a large number of relevant child nodes whose total RV score
may exceed that of the ideal node. The dependency nor-
malisation function (rvnorm(ci)) safeguards against this by
ensuring that for any cj ∈ S:X

c∈S

rv(c) ≤ rv(cideal) (10)

where S is the set of retrieved descendant nodes of the ideal
node cideal, and where cideal is on the same relevant path as
cj . The final normalised relevance score provides the gain
value result components: xG[i] = rvnorm(ci).

4.3 Effort-precision: ep
The cumulated gain based measures described so far provide
a recall-oriented view of effectiveness at fixed rank positions.
We may ask what is the amount of effort required of the
user to reach a given level of cumulated gain when scanning
a given ranking. Furthermore, we may wish to measure
the amount of required effort compared to an ideal ranking.
The horizontal line drawn at the cumulated gain value of r,
shown in Figure 1, illustrates this view. Based on this, and
analogue to the definition of nxCG, we define a precision-
oriented XCG measure, effort-precision ep as:

ep[r] :=
eideal

erun
(11)

4Note that e =? are currently considered as e = 0

where eideal is the rank position at which the cumulated
gain of r is reached by the ideal curve and erun is the rank
position at which the cumulated gain of r is reached by
the system run. A score of 1 reflects ideal performance,
where the user need to spend the minimum necessary effort
to reach a given level of gain.

Effort-precision, ep, is calculated at arbitrary gain-recall
points, where gain-recall is calculated as the cumulated gain
value divided by the total achievable cumulated gain [3]:

gr[i] :=
xCG[i]

xCI[n]
=

Pi
j=1 xG[j]Pn
j=1 xG[j]

(12)

where n is the total number of relevant documents. The
meaning of effort-precision at a given gain-recall value is
the amount of relative effort (where effort is measured in
terms of number of visited ranks) that the user is required
to spend when scanning a system’s result ranking compared
to the effort an ideal ranking would take in order to reach
a given level of gain relative to the total gain that can be
obtained.

This method follows the same viewpoint as standard pre-
cision/recall, where recall is the control variable and preci-
sion the dependent variable. In our case, the gain-recall is
the control variable and effort-precision the dependent vari-
able. As with precision/recall, interpolation techniques are
necessary to estimate effort-precision values at non-natural
gain-recall points, e.g. when calculating effort-precision at
standard recall points of [0.1, .., 1], denoted as e.g. ep@0.1.
Given the nature of our xCG curve, a simple linear interpo-
lation method is used.

As with standard precision/recall, the uninterpolated mean
average effort-precision, denoted as MAep, is calculated by
averaging the effort-precision values obtained for each rank
where a relevant document component is returned. For non
retrieved relevant document component a precision score of
0 is assigned. We also calculate an average over the interpo-
lated effort-precision values at standard recall points, which
we refer to as iMAep. Analogue to recall/precision graphs,
we plot effort-precision against gain-recall and obtain a de-
tailed summary of a system’s overall performance.

4.4 TheQ and R metrics
A criticism of the nxCG metrics is that they do not average
well across topics [2] (in [4]). The reason for this is that as
the total number of relevant documents differs across topics,
so does the upperbound performance at fixed ranks.

A solution has been suggested in [4] in the form of the follow-
ing measures, where the explicit incorporation of the rank
position in the denominator ensures that performance is cal-
culated against an always increasing ideal value:

Q − measure =
1

R

iX
j=1

isrel(dj)
cbg(j)

cig(j) + j
(13)

where R is the total number of relevant documents, dj is
the document retrieved at rank j, isrel(·) is a binary func-
tion that returns 1 if the document is relevant (to any de-
gree) and 0 otherwise. The function cbg(·) is a so-called cu-
mulated bonus gain function, which is defined as cbg(i) :=

Figure 1: Calculation of nxCG and effort-precision
(ep)

bg(i) + cbg(i − 1), where bg(i) := g(i) + 1 if g(i) > 0 and
bg(i) := 0 otherwise, and g(i) is the gain value at rank i.
The function cig(·) is the cumulated bonus gain derived for
the ideal vector (analogue to cbg(·)).

R − measure =
cbg(R)

cbg(R) + R
(14)

We employ versions of the above measures, adapted to XML
and referred to as Q and R.

5. WHAT RESULTS ARE REPORTED?
The results of the following metrics are reported:

• Effort-precision/gain-recall (ep/gr) at standard gain-
recall points (e.g. 0.1,0.2,..,1) (e.g. ep@0.1: effort-
precision at 0.1 gain-recall).

• Non-interpolated mean average effort-precision (MAep),
calculated as the average of effort-precision values at
each natural gain-recall point (i.e. whenever a relevant
XML element is found).

• Interpolated mean average effort-precision (iMAep),
calculated as the average of effort-precision values at
the standard gain-recall points.

• Normalised xCG (nxCG) at various rank positions
(e.g. nxCG[30] denoted as nxCG@30DCV : nxCG
at rank 30, and nxCG[0.1rank%], denoted as
nxCG@0.1rank%: nxCG at 10% of the length of the
output list, e.g. 1500).

• Mean average nxCG at rank 1500 (MAnxCG[1500]),
calculated as the average of nxCG[i] values for i = 1
to 1500.

• Q and R.

The official system-oriented evaluation will be based on the
ep/gr measures, with MAep being the main overall perfor-
mance indicator. The official user-oriented evaluation will
be based on the nxCG measures.

All results can be accessed at https://inex.lip6.fr/2005/metrics/
using your INEX login. The official rankings will be posted
on the INEX web site.

6. EVALJ
All metrics have been implemented within a single Java
project: the EvalJ evaluation package, which can be down-
loaded from https://sourceforge.net/projects/evalj/.

To download the code, please follow the instructions on
https://sourceforge.net/cvs/?group id=136430 and use:

cvs -d:pserver:anonymous@cvs.sourceforge.net:

/cvsroot/evalj login

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:

/cvsroot/evalj co -P EvalJ

Alternatively, installer files can be accessed from
http://evalj.sourceforge.net/. These should just install di-
rectly.

There is a README included within EvalJ, detailing how
to run the various metrics.

7. EVALUATING DIFFERENT TASKS
The XCG metrics take several parameters, which define how
e.g. overlap is to be handled. These parameters are read at
run time from a config file. A config file, inex2005.prop is
provided within EvalJ, which contains the official settings
for the parameters and their explanations. These are as
follows.

7.1 CO.Focussed and COS.Focussed
These tasks are evaluated using the overlap=on option, which
means that overlap and near-misses are considered within
the evaluation. The ideal recall-base is generated automat-
ically within the evaluation based on the selected quantisa-
tion functions and the methodology described in section 3.
The assessment pool IDs are given to filter the total set of
assessments, which is necessary in order to select the official
pools, e.g. for multi-assessed topics.

TASK: CO.Focussed #or COS.Focussed

METRICS: nxCG, ep/gr, q

ALPHA: 1.0

OVERLAP: on

QUANT FUNCTIONS: gen, strict

DCV: 1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 500, 1000,

1500

ASSESSMENTS DIR: $apath/adhoc2005/official/CO+S/*/

QUERY TYPE: CO+S

SUBMISSIONRUNS DIR: $apath/inex2005 runs/*/

7.2 CO.Thorough and COS.Thorough
These tasks are evaluated using the overlap=off option, which
mean that overlap is tolerated within the evaluation. This
means that no ideal recall-base is generated and the gain

value of a component is only a function of its exhaustivity
and specificity values, regardless if it overlaps or not with a
previously returned element. The assessment pool IDs are
given to filter the total set of assessments, which is necessary
in order to select the official pools, e.g. for multi-assessed
topics.

TASK: CO.Thorough #or COS.Thorough

METRICS: nxCG, ep/gr, q

ALPHA: 1.0

OVERLAP: off

QUANT FUNCTIONS: gen, strict

DCV: 1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 500, 1000,

1500

ASSESSMENTS DIR: $apath/adhoc2005/official/CO+S/*/

QUERY TYPE: CO+S

SUBMISSIONRUNS DIR: $apath/inex2005 runs/*/

7.3 SSCAS, SVCAS, VSCAS and VVCAS
These tasks are evaluated based on the Thorough task as-
sumption, with overlap=off.

TASK: SSCAS #or SVCAS, VSCAS, VVCAS

METRICS: nxCG, ep/gr, q

ALPHA: 1.0

OVERLAP: off

QUANT FUNCTIONS: gen, strict

DCV: 1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 500, 1000,

1500

ASSESSMENTS DIR: $apath/official/SSCAS/ #or .../SVCAS/,

.../VSCAS/, .../VVCAS/

QUERY TYPE: CAS

SUBMISSIONRUNS DIR: $apath/inex2005 runs/*/

7.4 CO.FetchBrowse and COS.FetchBrowse
The evaluation methodology for this task is different from
all other tasks in that two separate evaluation scores are
calculated: an article-level and an element-level score.

The article-level score regards a system’s ability to find rel-
evant documents in the first place. To obtain this score, we
first filter the recall-base to only contain article nodes. The
ideal gain vector is obtained by sorting the filtered set by
quantised score. We compare this ideal gain vector to the
list of article nodes derived from a system run. To derive the
list of articles from a run, we reduce each XML element in
the run to its article root and keep from any two duplicate
entries the first occurrence (e.g. from < a1/e1, a1/e2, a2 >
we derive < a1, a2 >).

The element-level score reflects a system’s ability to locate
the relevant elements within an article document. We report
an average of the scores calculated for each cluster (where
a cluster is made up of the list of elements returned within
a given article). The recall-base for a given cluster consists
of the relevant elements within the given article (the article
element itself removed), where elements are ordered in de-
creasing quantised value. The list of elements in a cluster
in a run (again with article nodes removed) is then com-
pared against the cluster’s recall-base directly. The indi-
vidual cluster-scores are then averaged over all clusters and
then over all queries.

We only report effort-precision/gain-recall measures for the
FetchBrowse tasks, as the selection of an appropriate docu-
ment cutoff value for nxCG is an open question (due to the
small number of relevant elements within each cluster-recall-
base, i.e. article). In addition, we only use the overlap=off
option as overlap=on requires further considerations.

TASK: CO.FetchBrowse #or COS.FetchBrowse

METRICS: nxCG, ep/gr, q

ALPHA: 1.0

OVERLAP: off

QUANT FUNCTIONS: gen, strict

DCV: 1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 500, 1000,

1500

ASSESSMENTS DIR: $apath/adhoc2005/official/CO+S/*/

QUERY TYPE: CO+S

SUBMISSIONRUNS DIR: $apath/inex2005 runs/*/

8. WHAT ELSE IS TO COME?
We will publish results where the too small elements are con-
sidered as relevant and will also evaluate the FetchBrowse
tasks using overlap=on. These, however, require changes
to the EvalJ code, which will be distributed under a new
version number after the workshop, with possible additional
changes that may result from discussions at the workshop.
Please also let us know of any problems and bugs you may
find so that these can also be fixed. Thanks.

9. ACKNOWLEDGMENTS
We are very grateful for the work of Benjamin Piwowarski,
who has provided the metrics web interface (at
https://inex.lip6.fr/2005/metrics/) and has also implemented
the inex-2002 (inex-eval) and inex-2003 (inex-eval-ng) met-
rics in EvalJ, the results of which are reported alongside the
official metrics.

We would like to thank Andrew Trotman for providing the
CAS assessment pools for the different CAS tasks and for
contributing section 2.1 to this paper.

Special thanks to Arjen de Vries and Saadia Malik for their
invaluable help with hands-on work as well as for their many
useful comments and email discussions.

Many thanks to all members of the organisers mailing list for
their helpful comments and special thanks to all participants
for all their efforts and hard work.

10. REFERENCES
[1] K. Järvelin and J. Kekäläinen. Cumulated Gain-based

evaluation of IR techniques. ACM Transactions on
Information Systems (ACM TOIS), 20(4):422–446,
2002.

[2] N. Kando, K. Kuriyama, and M. Yoshioka. Information
retrieval system evaluation using multi-grade relevance
judgements - discussion on averageable single-numbered
measures (in japanese). Technical report, 2001.

[3] J. Kekäläinen and K. Järvelin. Using graded relevance
assessments in IR evaluation. Journal of the American
Society for Information Science and Technology,
53(13):1120–1129, 2002.

[4] T. Sakai. New performance metrics based on
multigrade relevance: Their application to question
answering. In NTCIR Workshop 4 Meeting Working
Notes, June 2004.

 INEX 2005 Heterogeneous
Track Tasks and Result
Submission Specification

Heterogeneous Track Tasks
The Heterogeneous track has two tasks this year “HET.CO” and “HET.CAS”. The first task focuses on
content-oriented XML retrieval and second attempts to use structural clues in retrieval. For the
HET.CO task the goal is to retrieve elements from the various collections based on their content (or
implied content in the case of references for articles, books, etc.), therefore the issue for retrieval is
mapping the content specification of the topic titles across the collections regardless of structure. For
HET.CAS the retrieval must map not only content (and implied content) but also structure, or implied
structure. For example if a query specifies that an “article” is to be about a topic, then the results should
rank articles (whether full text or bibliographic entries) ahead of other elements or document types
(such as books, PhD Theses, web pages, etc.)

Topics
There are also two types of topics this year: Those selected from the Adhoc Track, drawn from the
CO+S adhoc topics, and those created especially for the track. Topics will include both a text title and
the NEXI castitle elements. (Topics will be announced on Nov. 1)

Collections
The specific collections for the Heterogeneous track are available on the INEX participants web site.
These are available as compressed tar files:

1. Berkeley2.tar.gz
2. bibdbpub2.tar.gz
3. CompuScience2.tar.gz
4. dblp2.tar.gz
5. hcibib2.tar.gz
6. qmuldcsdbpub2.tar.gz
7. zdnet-xml.tar.gz

In addition, the IEEE collection used in the Adhoc track and the LonelyPlanet collection used in
Multimedia track are available (Use of the LonelyPlanet data is optional and requires a separate user
agreement like those used for the IEEE data -- see the Multimedia track section of the INEX
participants web site for details.)

Result Submission
For each topic up to 6 runs may be submitted, 3 for the HET.CO task and 3 for the HET.CAS task. The
results of one run must be contained in one submission file (e.g. up to 3 files can be submitted for each
task). A submission may contain up to 1500 retrieval results for each of the topics.

Submission format
For relevance assessments and the evaluation of the results we require submission files to be in the
same format as used for the adhoc tasks, as described in this section. The overall submission format is
defined in the following DTD:

<!ELEMENT inex-submission (description, collections, topic+)>
<!ATTLIST inex-submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (HET.CO | HET.CAS) #REQUIRED
query (automatic | manual) #REQUIRED
>

 2

<!ELEMENT description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic
topic-id CDATA #REQUIRED
>
<!ELEMENT collections (collection+)>
<!ELEMENT collection (#PCDATA)>
<!ELEMENT result (in?,file, path, rank?, rsv?)>
<!ELEMENT in (#PCDATA)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Each submission must contain the participant ID of the submitting institute (available on the INEX
participants’ site), a run ID (which must be unique for the submissions sent from one organisation –
also please use meaningful names as much as possible), the task which should be HET.CO or
HET.CAS and an indication of whether the query was constructed automatically or manually from the
topic.
Furthermore each submitted run must contain a description of the retrieval approach applied to generate
the search results. A submission contains a number of topics, each identified by its topic ID (as
provided with the topics).
For each submission the collections used in the run must be specified. A maximum of 1500 result
elements may be included for each topic. A result element is described by a collection name in which
the result element has been found (using the optional “in” tag), by a file name, and an element path. It
may include rank and/or retrieval status value (rsv) information.

Before detailing the various elements of the DTD, here is a sample submission file:

<inex-submission participant-id="3" run-id="HET_CO_RUN1" task=”HET.CO”
query=”automatic”>
<description>Using Logistic Regression to match titles and abstracts
for all databases
</description>
<collections>
<collection>ieee</collection>
<collection>Berkeley2</collection>
<collection>bibdbpub2</collection>
<collection>CompuScience2</collection>
<collection>dblp2</collection>
<collection>hcibib2</collection>
<collection>qmuldcsdbpub2</collection>
<collection>ZDNet</collection>
</collections>LonelyPlanet</collection>
<topic topic-id="01">
<result>
<in>Berkeley2</in>
<file>Berkeley2/95/09/CUBGLAD84227121S</file>
<path>/USMARC[1]/VarFlds[1]/VarDFlds[1]</path>
<rsv>0.67</rsv>
</result>
<result>
<in>dblp2</in>
<file>dblp2/2003/08/26/journals/jcc/FraderaS02</file>
<path>/entry[1]/article[1]</path>
<rsv>0.1</rsv>
</result>
[...]
</topic>
<topic topic-id="02">
[...]
</topic>
[...]
</inex-submission>

 3

Rank and RSV
The rank and rsv elements are provided for submissions based on a retrieval approach producing
ranked output. The ranking of the result elements can be described in terms of

• Rank values, which are consecutive natural numbers, starting with 1.
• Retrieval status values (RSVs), which are positive real numbers. Note that there may be

several elements having the same RSV value.

Either of these methods may be used to describe the ranking within a submission. If both rank and rsv
are given, the rank value is used for evaluation. These elements may be omitted from a submission if a
retrieval approach does not produce ranked output.

In, File and path
Since XML retrieval approaches may return arbitrary XML nodes from the documents of the INEX Het
Track collection, we need a way to identify these nodes without ambiguity. This year the structure of
the collections has been changed to enable support by the XRai evaluation tool. This means that instead
of single (or a few) files for each Het collection, there is now a directory structure for each collection
with each individual file representing a single xml document (as has always been the case in the IEEE
collection). Now for INEX Het Track submissions, elements are identified by means of an “in” element
(which includes the name of the collection for a given result), the file name (which also includes the
collection name as well as the file path and file name for each individual document file), and element
(node) path specification, which must be given in XPath syntax. File names for each collection (except
IEEE) are rooted in the top-level collection directory, which is named for the collection and excludes
higher-level directories in your local file path. The file path should use '/' for separating directories. The
2 exceptions are the file names for the IEEE collection (which should be in the same form used in the
adhoc tasks) and the ZDNet collection which should have the form “xml/articles/21…” Note also that
only article files for the IEEE collection should be used (e.g. no volume.xml files). The extension
“.xml” must be left out for ALL file names.

Element paths are given in XPath syntax. To be more precise, only fully specified paths are allowed, as
described by the following grammar:

 Path ::= '/' ElementNode Path

| '/' ElementNode '/' AttributeNode
| '/' ElementNode

 ElementNode ::= ElementName Index

 AttributeNode ::= '@' AttributeName

 Index ::= '[' integer ']'

Example:

 /article[1]/bdy[1]/sec[4]/p[3]

This path identifies the element which can be found if we start at the document root, select the first
“article” element, then within that, select the first “bdy” element, within which we select the fourth
“sec” element, and finally within that element we select the third “p” element.

Important: XPath counts elements starting with 1 and takes into account the element type, e.g. if a
section had a title and two paragraphs then their paths would be given as: ../title[1], ../p[1]
and ../p[2].

A result element may then be identified unambiguously using the combination of its file name and
element path.

 4

Example:
…
<result>
 <file>qmuldcsdbpub2/1996/inproceedings/Doc_711</file>
 <path>/DOCUMENT[1]/TITLE[1]</path>
</result>
…

Result Submission Procedure
The run submission link will be set up as soon as possible. Details will be sent to the Het track mailing
list.

October 25, 2005
Ray R. Larson

INEX 2005 Multimedia Track - Working Document

Roelof van Zwol Mounia Lalmas Gabriella Kazai

October 4, 2005

1 Introduction

This guide serves as the working document for the INEX 2005 Multimedia Track and will accumulate
all necessary guides.

1.1 Objective

The main objective of the INEX 2005 multimedia track is to provide an evaluation platform for
structured document retrieval systems that do not only include text in the retrieval process. Many
structured document collections today also contain other types of media, such as images, speech, and
video. To include these media types into the retrieval process and to produce a meaningful ranking is
far from trivial.

Using the structure of the document as a semantic/logical backbone for the retrieval of multimedia
document fragments will allow us to investigate this problem from a new perspective. In the first year
of the multimedia track, we plan to provide an evaluation platform for the retrieval of multimedia
structured document fragments, rather similar to the methodology used for the INEX Ad Hoc track.

1.2 Task description

The task for the multimedia track is to retrieve relevant document fragments based on an information
need with a structured multimedia character. A structured document retrieval approach in that case
should be able to combine the relevances of the different media types into a single (meaningful) ranking
that is presented to the user. The INEX multimedia track differs from other approaches in multimedia
information retrieval, in the sense that it focuses on using the structure of the document to extract,
relate and combine the relevances of different multimedia fragments.

The focus for 2005 will be on the combination of text and image retrieval. For this purpose we will
use the Lonely Planet document collection, which can be explored at: http://contentlab.cs.uu.
nl/lonelyplanet/Collections/LonelyPlanet/. The required login and password for this web-site
is sent to the participating groups, once the data-handling agreement for the Lonely Planet collection
is received by the organization.

2 Topic development guide

This topic development guide is heavily based on the developement guide used for the INEX 2005
Adhoc track1 Here we will redefine the Topic format and Topic formulation procedure. For clarity we

1http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/TD05.pdf

1

have inserted a part of the section about topic creation criteria.

2.1 Topic creation criteria

Creating a set of topics for a test collection requires a balance between competing interests. The
performance of retrieval systems varies largely for different topcis. This variation is ussually greater
than the performance variation of different retrieval methods on the same topic. Thus, to judge
whether one retrieval strategy is (in general) more effective than another, the retrieval performance
must be averaged over a large and diverse set of topics. In addition, to be a useful diagnostic tool,
the average performance of the retrieval systems on the topics can be neither too good nor too bad as
little can be learned about retrieval strategies if systems retrieve no, or only relevant, documents.When
creating topics, a number of factors should be taken into consideration. Topics should:

• be authored by an expert in (or someone familiar with) the subject areas covered by the collec-
tion,

• reflect real needs of operational systems,

• represent the type of service an operational system might provide,

• be diverse,

• differ in their coverage, e.g. broad or narrow topic queries,

• be assessed by the topic author.

In addition we add for the multimedia track that the topics should:

• have a clear multimedia character, which should be clearly specified in the topic description and
narrative.

Within the multimedia track we’ll focus on the content and structure topics, as these allow explicit
formulation of the multimedia character in the information request, e.g. NEXI-CAS query.

Consider for example the topic based on the Lonely planet collection below:

Example 1
<inex topic inex track="MM" query type="CAS" topic id="0">

<description>Find images depicting scuba diving activities for destinations with a tropical cli-
mate and that discuss exploring the beautiful underwater nature by snorkeling and diving activi-
ties</description>
<castitle>//destination[about(.//weather,tropical climate) and about(.//activities, beautiful “un-
derwater nature” snorkeling and diving)]//images//image[about(., scuba diving)]</castitle>
<narrative>We want to go on a scuba diving trip to a destination with a tropical climate and beau-
tiful underwater scenery (nature). Therefore we want to find some images on this subject, so that we
can have some pre-holiday fun.</narrative>
</inex topic>

2

The description and narrative specify the information need and its explanation. Based on
this information need, we can formulate a NEXI-query as given in the title section of the topic
definition. Our example query above includes both textual and image components of the information
need, e.g. about(.//weather,tropical climate) is a condition that the weather textual element of
a destination should talk about tropical climate, while the //image[about(., scuba diving) asks
for images that depict scuba diving scenes.

Although the target elements of the above example are images, so far, simple textual retrieval
approaches may be sufficient to produce the required output by searching image captions. However,
a combination of text and image retrieval systems is encouraged within the track as these may in fact
produce better results.

Consider next the following example topic:

Example 2
<inex topic inex track="MM" query type="CAS" topic id="0">

<description>Find images depicting scuba diving activities, like in BN5970 6.jpg, for destinations
with a tropical climate and that discuss exploring the beautiful underwater nature by snorkeling and
diving activities</description>
<castitle>//destination[about(.//weather,tropical climate) and about(.//activities, beautiful “un-
derwater nature” snorkeling and diving)]//images//image[about(., scuba diving) and about(., src:
/image/BN5970 6.jpg)]</castitle>
<narrative>We want to go on a scuba diving trip to a destination with a tropical climate and beau-
tiful underwater scenery (nature). Therefore we want to find some images on this subject, so that we
can have some pre-holiday fun.</narrative>
</inex topic>

In this example, an instance of the about clause, about(., src:/image/BN5970 6.jpg), uses a
slightly different syntax to the usual two arguments of a path directive and a textual description of
the information need. Here the second argument contains a reference to a multimedia object, in this
case, the name and path of an image file. This extension of the about clause allows for querying by
sample.

By expressing both the content and image components of the information need within the same
about clause, we are effectively overloading its meaning, leaving it to the retrieval system to decide
if a text or image search (or both) is required. The reason for doing so is to emphasise the multi-
media nature of the track. Using the extended about clause, we can specify query constraint for a
document fragment (which may be pure text, image, or a combination of multiple media) using a tex-
tual descriptions (e.g. about(//image, scuba diving), about(//destination, scuba diving))
or using similar images (e.g. about(//image, src:/image/BN5970 6.jpg), about(//destination,
src:/image/BN5970 6.jpg)).

Various combinations of query conditions will require different strategies where text and image
retrieval can be combined. The track’s focus is on the combination of the two techniques and therefore
we encourage the submission of topics that force systems to implement content-based image retrieval
(e.g. about(//destination, src:/image/BN5970 6.jpg)).

3

2.2 Topic format

The topic format for the multimedia track consists of the following fields: a description, castitle,
and narrative. The following information should be contained in each of these fields:

• <description> A brief description of the information need, specifying any structural, textual,
and visual requirements/composition on the content. The description must be precise, concise,
and informative, but it must contain the same terms and the same structural requirements that
appear in the castitle, albeit expressed in natural language.

• <castitle> A valid NEXI expression based on the Lonely Planet document collection that
contains at least one about clause containing at least one image component. The expression is
of the form //A[B] or //A[B]//C[D].

• <narrative> A detailed explanation of the information need and the description of what makes
and element relevant or not. The narrative should explain not only what information is being
sought, but also the context and motivation of the information need, i.e. why the information
is being sought and what purpose it may serve. Assessments will be made on compliance to the
narrative alone; it is therefore important that this description is clear and precise.

The additional constraints, as defined in the Topic development Guide for the INEX Ad Hoc track
apply, for so far they are applicably and not overruled in this additional guide.

2.3 Topic development guidelines

Each participating group will have to submit 3 (CAS) topics by July 15, 2005 using the on-line form
provided.

The topic creation process is divided in several steps.
Step 1: Initial topic statement
Create a one or two sentence description of the information you are seeking. This should be a

simple description of the information need without regard to retrieval system capabilities or document
collection perculiarities. This should be recorded in the Initial Topic Statement field. Record also the
context and motivation of the information need, i.e. why the information is being sought.

Step 2: Exploration phase
In this step the initial topic statement is used to explore the collection. Obtain an estimate of the

number of relevant elements, then evaluate whether this topic can be judged consistently. We have
two search engines available, a text-based system and an image-based system, which can be used by
the participants for topic development. These are reachable from: http://contentlab.cs.uu.nl/
∼lonelyplanet/.

Step 2a: Assess the top 25 text fragments
You have to judge the relevancy of the retrieved text fragments (using binary relevance only).

Each result should be judged on its own merits. Abandon a search, if there are fewer than 2 or more
than 20 relevant text fragments in the result list.

Step 2b: Assess top 25 images
Since most participants will not have an off-the-shelves system available for the multimedia track,

we have chosen to do a separate scan for the relevance of the image component. Therefore you’ll have
to assess the top 25 images and judge their relevance (using binary relevance only). Each result should

4

be judged on its own merits. Abandon the search, if there are fewer than 2 or more than 20 relevant
images in the result list.

Step 2c: Inspect document matching
To assure that the document collection has a reasonable chance of completely fulfilling the text

and image-based constraints of the information need a check at document level is needed. In this step,
you have to count the number of documents that both satisfy the textual conditions and the image
conditions. I.e. if a relevant text fragment was found, and there is an image that belongs to the same
XML document, a match is found that corresponds to the information need. Abandon the topic if
less than 3 matches are found over the top 25 results for both components.

Step 3: Write description, title, and narrative
During this step you’re asked to complete the topic definition by writing the description, title,

and narrative. Please obey the instruction that are given for the topic development procedure, as
described in the INEX 2005 Guidelines for Topic Development.

Step 4: Topic submission
Once you are finished, fill out the on-line Candidate Topic Submission Form on the INEX website

at http://inex.is.informatik.uni-duisburg.de/2005 under Tasks/Tracks → Multimedia → Topics →
Submit Topic. Make sure you submit all your candidate topics no later than 15 July, 2005. Thank
you.

3 Relevance assessments guidelines

We base the definition of relevance on the definition employed in the INEX ad-hoc track with the
exception that we measure exhaustivity only on a binary scale. In addition, reflecting the SSCAS task,
we only consider an XML element relevant if it strictly matches the structural conditions specified
within the query, i.e. only target elements may be relevant and only if they are contained in an XML
document that satisfies the query’s containment constraints.

Therefore, a given multimedia fragment is said to be relevant if it “discusses” (or depicts) the topic
of request to any degree and if it strictly adheres to the structural conditions requested by the user.

Similarly to the ad-hoc track, the assessment procedure follows the highlighting approach. How-
ever, given the binary nature of relevance, the assessment procedure for the multimedia track consists
only of a single pass. During this single pass assessors are to highlight multimedia fragments that
contain only relevant content, i.e. relevant content that contains no (or only minimal) non-relevant
content. In the case of textual content, only relevant text fragments, e.g. words or sentences, should
be highlighted. In the case of images, since currently it is not possible to highlight only a part of an
image, the whole image should be highlighted if it contains relevant content (regardless of how much
of the image may be non-relevant).

The on-line assessment interface can be accessed at https://inex.lip6.fr/2005/xrai-mm/ using your
multimedia track login. The assessment system is described in the INEX 2005 Relevance Assessment
Guide2. The only difference is that the Toolbar has been simplified. Firgure 1 shows a document
of the Lonely Planet collection being assessed. The toolbar can be seen in the bottom left corner.
The icons from left-to-right are: remove assessments, save assessments, save assessments and move
to the previous document, save assessments and move to the next document, show or hide support
elements(i.e. retrieval results), set document as assessed, highlight selected text fragment, unhighlight

2http://inex.is.informatik.uni-duisburg.de/2005/internal/pdf/Relevance Assessment2005.pdf

5

Figure 1: The on-line assessment system and toolbar

selected text fragment and passage information. Please make sure you set a document as assessed and
save it before moving onto the next document to assess.

All highlighted multimedia fragments will be saved as exhaustive, fully specific and strictly satis-
fying the structural constraints.

Given the small collection and the strict structural match we expect that assessment work will be
light. However, the strict relevance criteria may bring up unforeseen questions that we would like to
hear about. We would like to ask assessors to keep a log book and record any questions or uncertainties
that arised during assessment or any situations when you felt you had to make perhaps not-so-obvious
decisions. For each issue or question, please record the topic id and the particular XML element
that sparked the question. To help you with this reporting task, the assessment system provides an
easily accessible passage information facility (the right-most button of the Toolbar). Simply highlight
a passage and click the clipboard button to display all the reference information that you need to
include in a log entry. Please then submit your log to us or even make it available to everyone by
emailing the list of multimedia participants. Thank you.

6

4 Acknowledgements

This guide is heavily based on the Topic Development Guide for the INEX 2005 Ad hoc track. We
are thankful for the guidelines provided there and thankfully adopt them, for as far as applicable, for
the INEX 2005 Multimedia track.

We would like to express our gratitude for the work of Benjamin Piwowarski for providing the
necessary modifications to the on-line assessment system.

5 Example

Based on the example introduced earlier, the following should be submitted:
1) Affiliation: Utrecht University, the Netherlands
2) Author (name, e-mail): Roelof van Zwol, roelof@cs.uu.nl
3) Initial topic statement:
We want to go on a scuba diving trip to a destination with a tropical climate and beautiful underwater
scenery (nature). Therefore we want to find some images on this subject, so that we can have some
pre-holiday fun.
4) Number of relevant text-fragments in TOP 25: 14
5) Top 25 retrieved text fragments (path, document):
file: comoros-and-mayotte-755.xml path:/destination[1]/images[1]
file: bonaire-3807.xml path: /destination[1]/images[1]
...
file: vancouver-18170.xml path:/destination[1]/activities[1]
6) Number of relevant image fragments in TOP 25: 7
7) Top 25 retrieved images (image name or path, document):
file: australia-245.xml image: /images/BN918 1.jpg
file: belize-590.xml image: /images/BN9002 8.jpg
...
file: comoros-and-mayotte-755.xml image: /images/BN5970 6.jpg
8) Matching documents: 4
9) Candidate topic:
<inex topic inex track=‘‘MM’’ query type="CAS">
<description>Find images depicting scuba diving activities for destinations with
a tropical climate and that discuss exploring the beautiful underwater nature by
snorkeling and diving activities.</description>
<castitle>//destination[about(.//weather,tropical climate) and about(.//activities, beautiful ”un-
derwater nature” snorkeling and diving)]//images//image[about(., scuba diving) and about(.,
src:/image/BN5970 6.jpg)]</castitle>
<narrative>We want to go on a scuba diving trip to a destination with a tropical
climate and beautiful underwater scenery (nature). Therefore we want to find some
images on this subject, so that we can have some pre-holiday fun.</narrative>
</inex topic>

7

INEX iTrack Daffodil

11th October 2005

1 Introduction

DAFFODIL1 is a retrieval system aiming at providing strategic support during the in-
formation seeking process in Digital Libraries. A custom-fitted version of Daffodil
has been setup as the baseline system for this year’s Interactive Track. This version
includes the following tools: Search tool, Progress tool and Related Term tool. For the
search tool at the backend theHyper-media Retrieval Engine for XML (HyREX)2 has
been used.

2 Logging in

In the Login screen (Figure 1), the experimenter has to fill in information relating to:
• Login name and password,
• Task, possible values are A and B
• Topic Id, the unique id assigned to a topic
• Rotation, indication of the order in which the current test person performs the

tasks.
Please consult the Track Guidelines document for the meanings of these identifiers,
and details about how to log in when doing experiments.

Once you have logged in please minimise or close the Personal Library on the right,
as it is not to be used in the experiments.

3 Search Tool

The search tool (Figure 2) view is divided into two parts. The first part is theQuery
Form. Depending on the document collection, different search fields are made avail-
able. For the IEEE collection, the available fields are title, author, publication year and
freetext (for fulltext search). The second part is theResult Listwhere the search hits
will be presented (see below).

3.1 Performing a Search

If you have entered a query, e.g. "GPS mobile phones", in the freetext field and hit the
search button, the search is performed in the full text of the selected collection. The
current query is presented in the frame below, and can be edited there.

1http://www.is.informatik.uni-duisburg.de/projects/daffodil
2http://www.is.informatik.uni-duisburg.de/projects/hyrex/

1

Figure 1: Login screen

Figure 2: Search in progress

2

A progress tool (Figure 2 lower left) will open up and show some information about
the state of the search, and how many objects are found in the digital library.

Figure 3: Result list

3.2 Related Terms

The terms found related by the Related Term Tool to the given query terms are also
presented on the right side. The context menu, or dragging, can be used to modify
query terms as depicted in Figure 3.

3.3 Result List

The result list is presented in a hierarchy. At the first level whole documents are pre-
sented, while elements from the documents are presented at subsequent levels as de-
picted in Figure 3. The presented elements are the most highly ranked elements from
the document. By grouping the result list in this way overlapping results are avoided.

Each first level entry in the result list is preceded by a bar that gives information
about its relevance to the query. It also shows the name of the author(s), the title,
publication year and journal name of the document. Along with this all terms matching
the query are highlighted in a special color.

3.3.1 Sorting

The result list is ordered by the Retrieval Status Value (RSV) by default. It is possible
to choose a different sorting order from the "Sort by" drop down list. Possible options
are

• Authors
• Title
• Year

3

3.3.2 Navigation

Navigation is possible either by using the scrollbar or by using the arrow icons at the
top of the result list. Double left arrow («) moves the selection to the first document in
the result list. Single left arrow (<) moves the selection to the previous document in the
result list. Single right arrow (>) moves the selection to the next document in the result
list. Double right arrow (») moves the selection to the last document in the result list.

3.3.3 Viewing Details (Full text)

The full text of a document or an element can be viewed either by double clicking or
by using the context menu in the Result list (Figure 4).

Figure 4: Document details

The Detail window is split into two sub windows and a top bar. The left window
contains the table of contents of the document. Here the RSV of any retrieved elements
within the document are indicated by a RSV bar similar to those in the Result list. The
right window displays the details of the currently selected document element.

In order to move back and forth within the document, single arrow buttons can be
used while double arrow buttons can be used to move to the next and previous enteries
in the result list. Along with the navigational buttons, the top toolbar also contains
icons for giving a relevance assessment of the currently viewed element. The possible
values are Relevant (fully coloured), Partially Relevant (partially coloured) and Not
Relevant (no colours). For a selected element, the assessment is given by clicking one
of these three icons. Already viewed items and those which have been assessed are
iconzed by a small eye and feedback icon respectively as shown in Figure 4.

4

4 Installation

4.1 Requirements

Install Java 1.4.2http://java.sun.com/j2se/1.4.2/download.html]
on your machine.

4.2 iTrack Daffodil

Then use you browser to fetch the following URLhttp://www.is.informatik.
uni-duisburg.de/projects/daffodil/InexDaffodil.jnlp

This will download the Daffodil application to your machine and begin installation.
During installation you will be asked to accept a number of certificates, and if you want
desktop integration. Choosing the latter will provide you with a Daffodil desktop icon
providing easy access to the system. Before you log on the first time please create a
personilazation file as detailed below.

If you are behind a Firewall or a Proxy, please refer to the information athttp://
www.is.informatik.uni-duisburg.de/wiki/index.php/FAQs#We_have_
a_firewall_and_I_cannot_connect_to_Daffodil._But_we_do_have_
a_proxy.

4.3 Personalization

Daffodil needs to be personalized with setting specific to the interactive track. Create
a file called "daffuser.properties" in your home dir, and include in this file the settings
found at:http://www.is.informatik.uni-duisburg.de/wiki/index.
php/Daffuser.properties_for_inex_users

Please note that this will personalize the system for the user currently logged onto
your machine. If you want to log om the machine with a different login, you need to
copy the daffuser.properties file to the home dir of this users account.

The home dir for windows users is typically the same as the folder containing the
"My Documents" folder, but you may wish to check with your system administrator if
you are unsure. For example:

C:\Documents and Settings\larsen, for the user larsen

5 Logging

Please refer to the Track Guidelines for details on the logging procedures. A log
viewer is available athttp://inex.is.informatik.uni-duisburg.de/
2005/inex05/LogViewer/testuser.jsp

5

http://java.sun.com/j2se/1.4.2/download.html]
 http://www.is.informatik.uni-duisburg.de/projects/daffodil/InexDaffodil.jnlp
 http://www.is.informatik.uni-duisburg.de/projects/daffodil/InexDaffodil.jnlp
http://www.is.informatik.uni-duisburg.de/wiki/index.php/FAQs#We_have_a_firewall_and_I_cannot_connect_to_Daffodil._But_we_do_have_a_proxy.
http://www.is.informatik.uni-duisburg.de/wiki/index.php/FAQs#We_have_a_firewall_and_I_cannot_connect_to_Daffodil._But_we_do_have_a_proxy.
http://www.is.informatik.uni-duisburg.de/wiki/index.php/FAQs#We_have_a_firewall_and_I_cannot_connect_to_Daffodil._But_we_do_have_a_proxy.
http://www.is.informatik.uni-duisburg.de/wiki/index.php/FAQs#We_have_a_firewall_and_I_cannot_connect_to_Daffodil._But_we_do_have_a_proxy.
http://www.is.informatik.uni-duisburg.de/wiki/index.php/Daffuser.properties_for_inex_users
http://www.is.informatik.uni-duisburg.de/wiki/index.php/Daffuser.properties_for_inex_users
http://inex.is.informatik.uni-duisburg.de/2005/inex05/LogViewer/testuser.jsp
http://inex.is.informatik.uni-duisburg.de/2005/inex05/LogViewer/testuser.jsp

INEX2005 Logging guidelines
Interactive Track v1.0 – Sept 30, 2005

Page 1 of 4

Logging guidelines
In this year’s INEX2005 interactive track local systems can be tested against a baseline
system provided by the track organisers (The B task – see the Interactive Track Guidelines).
The purpose of these guidelines is to ensure that the logs of local systems are comparable to
that of the baseline system. In addition we hope that the experiences gained from these tests
can inform the development of a Standardized XML schema for Digital Library Logging as
initiated by DELOS1.

The log data will comprise of one session for each topic the test person searches. Each session
will be recorded in a log that records the events in the session, both the actions performed by
the test person and the responses from the system. Table 1 below contains a list of suggestions
of the type of events that can be logged for each session; items in bold are suggested as a
minimum set of events to log.

An example of the logs files from this year’s baseline system is given in the Appendix below.
Please note that the local logs do not have to follow this exact format, but should be in a
format that can be transformed into a similar format or a common XML format.

Table 1. Events to log for each session. Suggested minimum requirements in bold.
For each session

• Session ID
• Login time
• Logout time
• Test Person ID
• Collection (IEEE, LP)

For each event
• Begin and End Time stamps for every action (year-month-day ; hh:mm:ss:ms)
• Session ID (Session ID) added to every action
• Eventtype, as stated below

Types of events logged
• Submitted queries (query type (e.g. free-text, use of fields, NEXI, Bricks) ; Exact

query terms as inputted by the test person)
• Query results (number of retrieved elements/documents ; rank/RSV ;

DocID/elementID for all retrieved documents)
• Any viewed hits and how the user got there (DocID/elementID ; Directly from

hitlist/From browsing)
• Any use of interface functionalities (e.g., Next 10 hits, hit page 7, Next hit. Sort

results etc.)
• Any browsing within documents (elementID ; where the user came from)
• Relevance assessments (docID/elementID ; assessment)

1 see http://www.is.informatik.uni-duisburg.de/wiki/index.php/JPA_2_-_WP7

http://www.is.informatik.uni-duisburg.de/wiki/index.php/JPA_2_-_WP7

INEX2005 Logging guidelines
Interactive Track v1.0 – Sept 30, 2005

Page 2 of 4

Appendix
Sample log from the 2005 baseline system with comments.

Walkthrough
Various data is contained in the section element. This followed by the events caused by the
test person.

1. The test person logs in (or rather the experimenter does it for her to ensure that
everything is done correctly, e.g., selection of task, collection and topic)

2. She searches in a free-text field supporting Boolean queries. After a couple of seconds
69 elements are retrieved

3. She sorts the results by year
4. She sort the results by RSV (Retrieval Status Value)
5. She chooses to look at the full-text (‘detailquery’) of the element ranked first (a

subsection)
6. She assesses the element with the value ‘2’
7. She browses to the previous subsection in the same document by pressing the ‘prev’

button
8. After pressing ‘prev’ again the containing section is displayed
9. She assesses this section with the value ‘1’
10. She then chooses the view the abstract from a different document from the result list

(the system displays the whole front matter)
11. She logs out.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE session SYSTEM "session.dtd">
 <session id="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 userid="unidu_searcher_001"
 timestamp="2005/09/23 09:45:31:99"
 duration="6 m 7 s 970 ms "
 colletion="IEEE"
 task="A"
 topicid="IEEE-G-003">

 <events>

 <!-- This is an example log, converted and simplified to present the
 idea that how a log should look like so that we can do comparisons
 across systems -->
 <!-- The log consists of events with a set of minimal recommended
 elements, and a system-specific element, where everybody can put
 the real system log, that fires an event -->

 <event id="5a.-2d3babc:10681f1aaf4:-7ffc@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="login"
 beginTimestamp="2005/09/23 09:45:33:334"
 endTimestamp="2005/09/23 09:45:34:000">
 <!-- This is the actual login event by the user -->
 <!-- Minimal needed info: userid, timestamp -->
 <userid>unidu_searcher_001</userid>
 </event>

INEX2005 Logging guidelines
Interactive Track v1.0 – Sept 30, 2005

Page 3 of 4

 <event id="6a.-2d3babc:10681f1aaf4:-7ffc@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="search"
 beginTimestamp="2005/09/23 09:45:33:334"
 endTimestamp="2005/09/23 09:47:01:737">
 <!-- This is a normal search for metadata -->
 <!-- Minimal needed info: querytype, query, timestamp -->
 <!-- Querytype has somehow to be defined: e.g. boolean, NEXI,
 BRICKS, etc. -->
 <!-- The query should be given exactly as inputted by the user -->
 <querytype>boolean,free-text</querytype>
 <query>GPS, mobile phones</query>
 <numberOfFoundDocs>69</numberOfFoundDocs>
 <results>
 <result rank="1" file="co/2000/rx107" path="article[1]/bdy[1]/sec[10]
 /ss1[2]" rsv="0.16628836582695"/>
 <result rank="2" file="co/1998/ry053" path="/article[1]" rsv="
 0.164833086254384"/>
 <result rank="3" file="co/2000/rx107" path="/article[1]/bdy[1]/sec[10]"
 rsv="0.16032668116438"/>
 <result rank="4" file="tc/1995/t1169" path="/article[1]/bdy[1]/sec[3]"
 rsv="0.159319299371904"/>
 <result rank="5" file="td/2000/l0444" path="/article[1]/bdy[1]/sec[4]"
 rsv="0.158636569166586"/>
 <!—Only 5 are shown here, but all retrieved elements should be
 given in the log. This will enable us to study characteristics
 of both what the user chose and what they didn't choose -->
 </results>
 </event>

 <event id="62.-2d3babc:10681f1aaf4:-7ff4@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="filter"
 beginTimestamp="2005/09/23 09:47:45:42"
 endTimestamp="2005/09/23 09:47:45:42" >
 <type>sort</type>
 <attribute>year</attribute>
 <predicate>greater-then</predicate>

 </event>

 <event id="65.-2d3babc:10681f1aaf4:-7ff1@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="filter"
 beginTimestamp="2005/09/23 09:48:11:962"
 endTimestamp="2005/09/23 09:48:11:962">
 <type>sort</type>
 <attribute>rsv</attribute>
 <predicate>greater-then</predicate>

 </event>

 <event id="66.-2d3babc:10681f1aaf4:-7ff0@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="detailquery"
 timestamp="2005/09/23 09:48:33:570" >
 <coming-from>resultlist</coming-from>
 <docid>2602</docid>
 <file>co/2000/rx107</file>
 <path>/article[1]/bdy[1]/sec[10]/ss1[2]</path>
 <rank>1</rank>
 </event>

INEX2005 Logging guidelines
Interactive Track v1.0 – Sept 30, 2005

Page 4 of 4

 <event id="6c.-2d3babc:10681f1aaf4:-7fea@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="relevance-assessment"
 timestamp="2005/09/23 09:49:16:237" >
 <docid>2602</docid>
 <file>co/2000/rx107</file>
 <path>/article[1]/bdy[1]/sec[10]/ss1[2]</path>
 <assessment>2</assessment>

 </event>

 <event id="6f.-2d3babc:10681f1aaf4:-7fe7@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="detailbrowsing"
 timestamp="2005/09/23 09:49:31:618" >
 <coming-from>prev</coming-from>
 <docid>2602</docid>
 <file>co/2000/rx107</file>
 <path>/article[1]/bdy[1]/sec[10]/ss1[1]</path>

 </event>

 <event id="72.-2d3babc:10681f1aaf4:-7fe4@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="detailbrowsing"
 timestamp="2005/09/23 09:50:01:808" >
 <coming-from>prev</coming-from>
 <docid>2602</docid>
 <file>co/2000/rx107</file>
 <path>/article[1]/bdy[1]/sec[10]</path>

 </event>

 <event id="74.-2d3babc:10681f1aaf4:-7fe2@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="relevance-assessment"
 timestamp="2005/09/23 09:50:06:692" >
 <docid>2602</docid>
 <file>co/2000/rx107</file>
 <path>/article[1]/bdy[4]/sec[10]</path>
 <assessment>1</assessment>

 </event>

 <event id="76.-2d3babc:10681f1aaf4:-7fe0@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="abstractquery"
 timestamp="2005/09/23 09:50:21:264" >
 <coming-from>resultlist</coming-from>
 <rank>10</rank>
 <docid>6679</docid>
 <file>pd/1996/p4065</file>
 <path>/article[1]/fm[1]</path>

 </event>

 <event id="86.-2d3babc:10681f1aaf4:-7fd0@ea127.0.0.1:5678"
 sessionid="c2.134a7d8:10677fcc8a8:-7f3f@UA"
 eventType="logout"
 timestamp="2005/09/23 09:51:39:69" >

 </event>
 </events>
</session>

INEX2005 Interactive Track Page 1 of 5
Introduction to the experiment (A task)

Introduction to the experiment

Thank you for agreeing to participate in the experiment.

All the collected data will be treated as confidential and it will not be possible to
identify you as person with the data after the experiment has ended.

The purpose of this document is to inform you about how to prepare for the
experiment.

The overall goal of the experiment is to investigate the performance of a new system
for information retrieval. In response to your queries the system presents articles to
you, and also attempts to indicate which parts of the articles that may be most closely
related to your search.

On the day of the experiment, you will be asked to carry out a number of search tasks
in the system. Two tasks will be supplied by the experimenter. In addition, we would
like you to search for information on a topic relating to an interest of your own. This
could, for instance, be related to your work or a topic of general interest to you. The
collection you will be searching consists of articles from computer science journals
covering a broad range of topics in fields related to computers and computing, and the
topic you search for should therefore relate to this subject area. In order to maximise
the chances that your own topic is covered by the collection, please email two topics
of interest to you to the experimenter before the day of the experiment. The
experimenter will then do a preliminary search of the collection to examine their
coverage in the collection, and inform you which one to search on when the
experiment starts.

Please record your topics in the forms found in Appendix B. The description of a
topic should include:

A. A short description of what you are looking for, i.e., what you will ask the
system to find.

B. A description of the motivation for the topic, i.e., why you are looking for this
information or what problem you intend to solve with the information. Such
details of the context of your topic are useful in giving the experimenter a
better understanding of your topic.

C. A reflection on the ideal answer you would like to be presented with, i.e. what
a perfect answer would look like to satisfy your topic.

An example of such a topic is given below. An overview of the collection can be
found in Appendix A which you may skim read to help you in formulating your
topics.

Please email the two topics to your experimenter
by the time given in the email which contained this document.

INEX2005 Interactive Track Page 2 of 5
Introduction to the experiment (A task)

Topic example
A. What are you looking for (what do you want the system to find)?

I want information about conferences and workshops in the multimedia field.
This may be found in articles titled "call for papers" or "upcoming events"

B. What is the motivation of the topic (why are you looking for this, what problem can
be solved with the information, and in what context did the problem arise)?

I am starting to organize a workshop on multimedia and I am collecting
information about other multimedia events (mainly conferences and
workshops) in order to decide the most appropriate topics and dates for my
workshop.

C. What would an ideal answer look like (what should a perfect answer contain to
solve your problem)?

Relevant items mention conferences or workshops in a multimedia related
field with their topics of interest and dates. Items that only mention the name
of the conference are somewhat relevant because I can look for further
information myself. Items mentioning conferences outside the multimedia field
or information about multimedia are not relevant

INEX2005 Interactive Track Page 3 of 5
Introduction to the experiment (A task)

Appendix A – overview of the document collection

The document collection that you can search contains articles published by the IEEE
(Institute of Electrical and Electronics Engineers), and contains material published
between 1995 and 2004. There are about 14,000 articles in the collection.

The broad area covered by the articles is Computer Science. The material is intended
both for a computer science and a non-specialist, more general audience.

One part of the collection contains publications designed to inform readers about
trends and news in a number of broad fields related to computers and computing (e.g.
software, graphics, Internet computing, applications of computing in science and
engineering, intelligent systems, distributed systems, microcomputer &
microprocessor design, etc.). Apart from technical issues, these magazines also touch
on topics such as the history of computing. These publications typically cover
material that practitioners, researchers, and managers can use to keep up to date with
current issues and developments in the wider field of computing.

The other part contains publications that are scholarly journals designed to inform
readers on the state of the art in a number of specialized fields related to computers
and computing. The areas covered in these journals range from software engineering,
knowledge and data engineering and mobile computing, to intelligent systems and AI,
graphics and visualisation and computational biology and bioinformatics.

The collection can only be searched in its entirety, that means, you can not specify
which of the two parts you wish to search. The results returned to your search can
contain information from any of the publications included in the collection that best
match your search.

INEX2005 Interactive Track Page 4 of 5
Introduction to the experiment (A task)

Appendix B – forms for recording topics

Own topic no. 1
A. What are you looking for (what do you want the system to find)?

B. What is the motivation of the topic (why are you looking for this, what problem can
be solved with the information, and in what context did the problem arise)?

C. What would an ideal answer look like (what should a perfect answer contain to
solve your problem)?

INEX2005 Interactive Track Page 5 of 5
Introduction to the experiment (A task)

Own topic no. 2
A. What are you looking for (what do you want the system to find)?

B. What is the motivation of the topic (why are you looking for this, what problem can
be solved with the information, and in what context did the problem arise)?

C. What would an ideal answer look like (what should a perfect answer contain to
solve your problem)?

INEX2005 Interactive Track Page 1 of 3
Instructions to searchers

Instructions to searchers

Thank you for agreeing to participate in the experiment. All the collected data will be
treated as confidential and it will not be possible to identify you as person with the
data after the experiment has ended.

The purpose of this document is to give you information about the experiment and
your role in it.

You will be asked to search on a number of tasks on a single search system. You will
first be given a practice run with the system. In this run you will be given a training
task. During this practice run you can ask any questions about any of the features of
the system. The collection you will be searching consists of full text articles from the
journals published by the IEEE Computer Society. The broad topic area is computer
science with a focus on hardware and software development. The time span covered
by the collection is 1995 to 2004.

In this experiment you will be asked to search on three tasks: two from two task
categories as well as one of your own tasks. The experimenter has chosen that of your
tasks that best matches the content of the collection. For the two other tasks, you will
have a choice of one from three available tasks. For each task you can take a
maximum of 20 minutes. If you feel you have completed the task before the 20
minute period you can notify the experimenter and the session will be stopped.

The overall goal of the experiment is to investigate the performance of a new system
for information retrieval. In response to your queries the system presents articles to
you, and also attempts to indicate which parts of the articles may be most closely
related to your search. Feel free to browse the results returned by the system and to
submit as many different queries to the system as you like for each task. It is an
important aspect of the experiment to collect your assessments of the relevance of the
information presented to you by the system. To help us collect this data, please select
an assessment score for each viewed piece of information. More information about the
system and its features can be found below.

During the experiment you will also be asked to complete several additional
questionnaires:
- Before the experiment (measuring search experience)
- Before each task (measuring task familiarity)
- After each task
- After the experiment (collecting experiment feedback)

The experiment will conclude with an interview.

Thank you for your help!

INEX2005 Interactive Track Page 2 of 3
Instructions to searchers

System features

The experimenter will log into the system for you; once for each task.

After login you will see a form for query formulation. A number of query fields are
offered: Author, Title, Year and Free-text. The Free-text field allows searching in the
full text of the documents. Holding your mouse over a field offers search tips for that
field.

After entering a query and pressing “Search” a search progress indicator will inform
you about the number documents found. A related term list will also appear,
suggesting alternative search terms. The results are presented as documents and in
some cases the system also attempts to indicate which parts of the articles that may be
most closely related to your search.

Double-clicking a document or part of it will open the part in a new window. This is
split in two panes: one with a Table of Contents of the whole document, and one with
the selected part of the document.

Retrieved
document

Parts of the
document

Query
fields

INEX2005 Interactive Track Page 3 of 3
Instructions to searchers

Any part of the document which you have already viewed is indicated with a small
eye (). Please remember select an assessment score for each viewed piece of
information that reflect the usefulness of the seen information in solving the task.
Three different scores are available at the right-hand top of the page:

 - Relevant

 - Partially Relevant

 - Not Relevant

The symbols are also used in the in the Table of Contents for already assessed parts.

The currently viewed part of the document is highlighted in the Table of Contents.
Other parts of the document can be viewed by clicking a different heading in the
Table of Contents. Once you feel that there is no more relevant information in the
document, please close it by pressing - this will return you to the result list where
you may choose to examine another document, or to perform a new search.

Please do NOT press the “Exit” button at any time as this will terminate your session.

Assessment scores. Click
to assess the current part of

the document

Currently viewed part of the document.
Click to view another part.

Click here
to close the
document

INEX2005 Interactive Track Page 1 of 1
Training task

Training task

Task ID: Training

You have become involved in the organization of a workshop on multimedia at
your department. You would like to collect information about other multimedia
events (conferences, workshops, etc.) in order to decide the most appropriate
topics and dates for the workshop at your department.

Find, for instance, pieces of information that include "Call for papers" or
"Upcoming Events" in multimedia related research areas.

INEX2005 Interactive Track Page 1 of 1
Tasks, Category “G”

Please select one of the following tasks:

Task ID: G1

New anti-terrorism laws allow intelligence agencies like the FBI (Federal
Bureau of Investigation) and CIA (Central Intelligence Agency) to monitor
computer communications to spot suspected criminals and terrorists. You
would like to find information about how this affects your own and other
people’s privacy and to know what concerns have been raised.

Find, for instance, information that discusses the Carnivore or Echelon
projects or other similar surveillance of computer communication.

Task ID: G2

Your department has produced a Linux-program and it is being discussed
whether to release it under a public license such as GNU or GPL (General
Public License). Therefore, you have been asked to find information about the
implications of releasing the code under a public license as an open source
program.

Find, for instance, information that discusses different licensing schemes or
articles about the impact of open source programs.

Task ID: G3

Video games are being played by an ever increasing number of people of all
ages, and the game industry is becoming a major economic player. You would
therefore like to find non-technical information about how video games have
affected people’s lives as well as how the games have changed the
entertainment industry.

Find, for instance, information discussing the concerns that playing video
games may lead to a rise in violent behaviour, or information about the effect
of video games on the film industry.

INEX2005 Interactive Track Page 1 of 1
IEEE CS tasks, Category “C”

Please select one of the following tasks:

Task ID: C1

One of your friends has recently bought a small handheld Global Positioning
System (GPS) unit, and the possibilities offered by this technology have
caught your interest. You would like to explore new killer applications for
mobile devices. Therefore, you are looking for examples and descriptions of
applications that use GPS, for devices such as mobile phones, PDAs (Personal
Desktop Assistants) and other wireless and mobile devices.

Find, for instance, information that discusses examples of how applications
that use GPS can be used to accomplish new tasks or provide new services.

Task ID: C2

In your daily work you sign on to a range of different systems both locally and
remotely. On many of them you have different user IDs and different
passwords, and you find it annoying to have to verify your identity again and
again. In addition, you find it demanding to maintain all these IDs and
passwords and to keep them secure.
You have heard about LDAP (Lightweight Directory Access Protocol) and
other single sign-on procedures, and wish to learn more about them to assess
the potentials for creating a single sign-on procedure for your local network
(with both Unix, Linux, PC and Mac platforms).

Find, for instance, information that discusses single sign-on procedures, or
state of the art user-authentication methods.

Task ID: C3

Data security and authenticity is an important issue at your work place. One
approach to ensure data authenticity is the so-called “steganography” where
data is embedded in various media files like images, sound files, video files
and so on. A commonly used data embedding technique is Watermarking
where data can be effectively hidden in a file without the changes being visible
to the common person. You want to learn more about Watermarking as a
technique for data embedding that will enable you to verify the authenticity of
a file.

Find, for instance, information that discusses the use of Watermarking
techniques to hide information that will allow later validation of a files
authenticity.

Page 1 of 2

INEX2005 Interactive Track
Q1

To be filled in by the experimenter

Participating site: Searcher ID:

Rotation: 1 2 3 4 5 6

Before-experiment Questionnaire

1. Initials:

2. Age:

3. Gender (Please circle)

Male / Female

4. What is your first language?

5. Current occupation:

6. What university degrees, minor or majors do you have or plan to take in the
near future (if any)?

 Degree/major Year

 __ _______

 __ _______

 __ _______

__ _______

7. Have you participated in previous on-line searching studies, as

Experimenter Yes Test person Yes

 No No

8. Overall, how many years have you been doing on-line searching? ________ years

More questions on the next page

Page 2 of 2

INEX2005 Interactive Track
Q1

Please, circle the number closest to your experience:

How much experience have
you had

No
experience Some

experience
A great
deal of

experience
9. Searching on
computerised library
catalogues either locally
(e.g. your library) or
remotely (e.g. Library of
Congress)

1 2 3 4 5

10. Searching on digital
libraries of scientific
articles (e.g. ACM Digital
Library)

1 2 3 4 5

11. Searching on WWW
search engines 1 2 3 4 5

12. Searching on other
systems, please specify the
system(s) on the lines
below:

1 2 3 4 5

13. Reading or accessing
journals and magazines
published by the Institute
of Electrical and
Electronics Engineers
(IEEE)

1 2 3 4 5

Please circle the number most appropriate to your searching behaviour:

Never Once or

twice a year

Once or
twice a
month

Once or
twice a week

One or
more times

a day

14. How often do
you perform a
search on any
kind of system?

1 2 3 4 5

Please circle the number that best indicates to what extent you agree with the following statement:

 Strongly
disagree Disagree Neutral Agree Strongly

agree

15. I enjoy carrying
out information
searches

1 2 3 4 5

Page 1 of 1

INEX2005 Interactive Track
Q2

To be filled in by the experimenter

Participating site: Searcher ID:

Rotation: 1 2 3 4 5 6 Task: G1 G2 G3 C1 C2 C3 Own

Before-each-task Questionnaire

 Please circle the number that best indicates your perception of the task you have chosen:

 Not at all Somewhat Extremely

1. Are you familiar
with the topic of the
given task?

1 2 3 4 5

2. Do you think it
will be easy for you
to search on this
task?

1 2 3 4 5

 Please circle the number that best indicates your perception of the task you have chosen:

 Long, e.g.,
a whole
article

Medium,
e.g., a

section in
an article

Short, e.g.,

a single
paragraph

3. How large would
you expect an ideal
answer to be?

1 2 3 4 5

 4. Do you expect that a single answer/piece of information/..? will be enough for your task?

 Yes, the answer can probably be found within a single piece of information.

 No, I expect that I will have to combine pieces of information from many sources to
solve the task.

Page 1 of 2

INEX2005 Interactive Track
Q3

To be filled in by the experimenter

Participating site: Searcher ID:

Rotation: 1 2 3 4 5 6 Task: G1 G2 G3 C1 C2 C3 Own

After-each-task Questionnaire

Please circle the number which best corresponds to your opinion:

 Not at
all Somewhat Extremely

1. Was it easy to get started
on this search? 1 2 3 4 5

2. Was it easy to do the
search on the given task? 1 2 3 4 5

3. Are you satisfied with
your search results? 1 2 3 4 5

4. Do you feel that the task
has been fulfilled? 1 2 3 4 5

5. Do you feel that the
search task was clear? 1 2 3 4 5

6. Was the search task
interesting to you? 1 2 3 4 5

7. Did you know a lot
about the topic of the task
in advance?

1 2 3 4 5

8. Did you have enough
time to do an effective
search?

1 2 3 4 5

Please circle the number which best corresponds to the searching experience you just had:

 Not at
all Somewhat Extremely

9. How well did the system
support you in this task? 1 2 3 4 5

More questions on the next page

Page 2 of 2

INEX2005 Interactive Track
Q3

Please circle the number which best corresponds to your views on the information presented to
you by the system:

14. Was a single answer/piece of information/..? enough to solve your task?

 Yes, the task could be solved with a single piece of information.

 No, I had to combine pieces of information from many sources to solve the task.

15. In what ways (if any) did you find the system interface useful in this task?

16. In what ways (if any) did you find the system interface not useful in this task?

 Not at
all Somewhat Extremely

10. On average, how
relevant to the search task
was the information
presented to you?

1 2 3 4 5

11. Did you in general find
the presentation in the
result list useful?

1 2 3 4 5

12. Did you find the parts
of the documents in the
result list useful?

1 2 3 4 5

13. Did you find the Table
of Contents in the Full Text
view useful?

1 2 3 4 5

Please continue overleaf if necessary

Page 1 of 2

INEX2005 Interactive Track
Q4

To be filled in by the experimenter

Participating site: Searcher ID:

Rotation: 1 2 3 4 5 6

Post-experiment Questionnaire

1. Please rank the three tasks you have worked in relation to their difficulty:

- Most difficult:

- Middle difficult:

- Least difficult:

 Please circle the number better corresponding to your view on the questions:

 Not at
all Somewhat Extremely

2. How understandable
were the tasks? 1 2 3 4 5

3. To what extent did you
find the tasks similar to
other searching tasks that
you typically perform?

1 2 3 4 5

4. How easy was it to learn
to use the system? 1 2 3 4 5

5. How easy was it to use
the system? 1 2 3 4 5

6. How well did you
understand how to use the
system?

1 2 3 4 5

More questions on the next page

Page 2 of 2

INEX2005 Interactive Track
Q4

7. What did you like about the search system?

8. What did you dislike about the search system?

9. Do you have any general comments?

Thank you for your help!!!

Please continue overleaf if necessary

INEX2005 Interactive Track Page 1 of 2
Interview Guidelines

Guidelines for Post-experiment Interviews

General information
The type of interview will be semi-structured. General guidelines and a “script” for
the interview will be provided in this document; experimenters are also to probe the
searchers for further clarifications/information where appropriate, depending on the
response.

Recording interviews
The minimum requirement will be to write down the answers to questions as fully as
possible. The interview transcripts will need to be sent back to the experimenters in
electronic format, so experimenters will be responsible for putting the responses in
appropriate electronic format. The track organisers will provide appropriate template
spreadsheets to make data input as convenient and uniform as possible. To facilitate
this, please use the numbers provided in the script below (e.g. b-1i) when recording
the answers in your transcripts. These numbers will be used for input in the provided
spreadsheets.

Preferably, an audio recording of each interview should be performed, and the
transcript made at a later time with no risk of loss of information from the interview.

Interview script
In general, we are trying to investigate the following issues:
a. Interface issues
b. Issues related to the tasks
c. Retrieval granularity (Document vs. element retrieval, Passage vs. element

retrieval)
d. Applications for element retrieval
e. Other issues

a. Interface Issues
1. Did you find the ranked results presentation useful?
2. Do you have any comments about the way we present documents in the ranked list

(i.e., present a document and its top ranked elements together)?
3. Did you like the use of the table of contents in the Document View?

i. If yes, why did you find it useful?
4. Are there any other features that you would like to see incorporated at the

interface?
i. If yes, why would you find them useful?

INEX2005 Interactive Track Page 2 of 2
Interview Guidelines

b. Issues related to the tasks
1. For each of the simulated tasks you searched (note which):

i. Did you find it realistic?
ii. Did you find it interesting?

iii. Why/why not?
iv. Did the search tip help (the last sentence of the simulated task: “Find,

for instance, …”)?
v. How did you use the search tip when searching?

vi. How did you use the main part of the tasks description?
2. For your own task:

i. Did you find it difficult to formulate a task?
ii. Did you need more information to do so, or access to the collection?

iii. After having worked with your own task, is there any information you
would like to add to the description?

c. Retrieval granularity
For the task that you were asked to formulate yourselves:
1. What was generally the length of the best answers? Document / section /

paragraph level? Something else?
i. If you thought elements were more useful, did you normally have to

combine multiple elements to find solutions to tasks?
2. Did you find that the task could be answered from the information contained

within a single document?
3. Did you find the structural breakdown of documents useful?
4. Did you think that the breakdown to structural elements (sections etc.)

corresponded to items containing answers to your tasks?
i. Did you think that answers were mainly contained within one or more

elements?
ii. Did you think that answers typically spanned over more than one

element (or element part)?
iii. Did you think that answers typically were included in a smaller part of

a single element?
iv. Did you think that a breakdown of documents based on topics would

be preferable to the structural one?

d. Applications of element retrieval
1. Did you like the idea of a retrieval system that takes into account the structural

breakdown?
2. Did you find it well suited to your own task?
3. Do you think that such a retrieval system can have applications to other tasks?

i. If yes, can you name some?

e. Other issues
1. Any other expectations that you may have from such a system?
2. Are there any other comments that you want to make?

Mining XML documents
Bridging the gap between Machine Learning and Information Retrieval

Joint Challenge

In cooperation with the INEX Initiative (INitiative for the Evaluation of XML
Retrieval) from the DELOS Network of Excellence and the PASCAL Network

of Excellence.

Web site: http://xmlmining.lip6.fr

Contact: xmlmining@lip6.fr

1 Overview

The objective of the challenge is to develop machine learning methods for structured data
mining and to evaluate these methods for XML document mining tasks. The challenge is
focused on classification and clustering for XML documents. Datasets coming from different
XML collections and covering a variety of classification and clustering situations are
provided to the participants. The challenge will run in two rounds: the first round corresponds
to the present call and will run between July and November 2005 with results presented at the
INEX workshop at the end of November 2005 (November 28-30). A second round will be
organized between January and March 2006 with a presentation of the participants’ results at
a later workshop (e.g. the Pascal challenge workshop on April 2006 in Venice, or a joint
workshop INEX - Pascal). Participation is open to all.

2 General description of the challenge

2.1 Context and Motivations

This challenge aims at gathering machine learning (ML), Information Retrieval (IR) and
XML researchers in order to:

o Define the new key problems for structured data mining with ML techniques.
o Identify and assess the potential of ML techniques for dealing with generic ML tasks

such as classification and clustering in the structured domain.
o Build XML document collections, define evaluation methodologies and develop

software which will be used for the evaluation of structured classification and
clustering.

o Compare existing methods on different structured datasets corresponding to actual
XML document collections.

Learning in structured domains is a recent research direction in the ML field. Structured data
do appear in many different domains. For this challenge, we will focus on structured textual

http://inex.is.informatik.uni-duisburg.de/2005/
http://www.delos.info/
http://www.pascal-network.org/
http://xmlmining.lip6.fr/
mailto:xmlmining@lip6.fr
http://inex.is.informatik.uni-duisburg.de/2005/

data and more precisely on XML document collections. There already exists a very active
community in the IR/ XML domain which has started to work on XML search engines and
XML textual data. This community is mainly organized since 2002 around the INEX
initiative (INitiative for the Evaluation of XML Retrieval) which is funded by the DELOS
network of excellence on Digital Libraries. INEX has already gathered large XML textual
collections. The challenge is a joint event co-organized by the two networks (PASCAL and
DELOS).

2.2 Key issues to be investigated for structured document
classification and clustering

Among the many open problems for handling structured data, we will focus in this challenge
on the two generic tasks of classification and clustering. The goal of the challenge is therefore
to explore algorithmic, theoretical and practical issues regarding the classification and
clustering of structured data. The challenge is also aimed as a discussion forum for defining
new ML problems specific to XML documents.
Dealing with XML document collections is a particularly challenging task for ML and IR.
XML documents are defined by their logical structure and their content (hence the name
semi-structured data). Both types of information should be addressed in order to effectively
mine XML documents.

Structure document information is described through an ordered labelled tree where labels
correspond to XML tags which may or may not carry semantic information. In document
collections, content information is composed of text and images, but for this challenge, only
the textual part is considered. The textual content is usually contextually dependent of the
logical structure XML documents usually come in large collections; this means that the
scalability issue is fundamental here.
Depending on the application context, it may be relevant to consider the structure information
alone or both structure and content of the documents.
We will then consider two different sets of tasks corresponding respectively to Structure Only
and Structure and Content classification and clustering.

The challenge will explore classification and clustering tasks for XML data through a series
of tests performed on collections with different characteristics, like their size, content,
complexity or structural organization, in order to test the different methods in different
applicative contexts. These collections will be generated using existing XML collections, (see
the collections description). For both classification and clustering, the goal will be to identify
either a known the information source or the thematic of documents. Either structure, content
or both might be relevant for these tasks.

Structure Only tasks

In the following, Structure Only tasks correspond to classification or clustering using the
structural description of XML documents alone, i.e. the XML ordered labelled tree providing
the relations between the document elements. The input space in this case corresponds to the
tag alphabet which is usually of limited size and to the relations between these tags.
Dealing with structure alone measures the ability to identify information sources in the
context of XML data. Note that in many other domains (e.g. biology) data also come as

ordered labelled trees so that investigating classification and clustering methods for such trees
has many applications outside the field of XML.

Structure and Content tasks

Structure and content tasks correspond to classification or clustering of whole XML
documents, i.e. the XML tree and the textual content associated to the nodes. In this case the
input space is much larger than for the structure only task since both the tag space and the
textual content have to be considered.

The structure and content tasks are more challenging than structure alone and encompass
different generic tasks. For our purpose XML documents gathered from heterogeneous
sources may be characterized through two dimensions: their structure and their thematic. The
structure may correspond to a specific DTD or schema (e.g.: for the Inex collection this might
be the format of a specific journal or the specific DTD used by an editor for a series) and the
thematic may be associated to the general scientific area of the document (e.g. vision, virtual
reality, etc). Depending on the application, both dimensions may be involved in the
characterization of a class or cluster.
Consider these two dimensions, structure (S) and thematic (T). Figure 1 and 2 illustrate two
examples where each class (resp. cluster) corresponds to a given colour. Each class may be
considered as a mixture of one or more themes and structures. The different sources and
themes may also overlap in different proportions leading to classification (clustering) tasks
with different complexity.
Figure 1 illustrates a simple case where classes correspond exactly to structures (Si) or
sources. Even in this simple case, where each category is associated to a structure, content too
may be useful when the statistics of the different thematic vary among classes.

S1 S2 S3 S4 S5

T1

T2

T3

T4

T5
Figure 1 : each source corresponds to a specific structure (5 sources here – corresponding to
columns) – the different thematic (rows) will appear in different proportions in each source.

Each color corresponds to a class.

Figure 2 illustrates a more complex problem where each class corresponds to a mixture of
structural (S) and content (T) information.

S1 S2 S3 S4 S5

T1

T2

T3

T4

T5
Figure 2: the different structural and thematic classes are visualized horizontally and

vertically (there are 5 structures sources and 5 thematic for this example). The different
information sources are identified by different colors. 9 classes are thus identified in this
figure. Each class corresponds to a mixture of thematic (T) and structure (S) information.

Depending on the practical application in mind, one may distinguish different generic
problems like:

• identify common structures across different content types or themes (structure
oriented classification and clustering) - this is illustrated in figure 1 where each class
corresponds to a specific structure and deals with all the collection themes.

• identify different content types across structures (content oriented classification and
clustering). Classes would then correspond to the horizontal lines in figure 1.

• identify homogeneous classes for both structure and content information (Content and
Structure clustering and classification) - this corresponds to figure 2. This is the more
general task and encompasses many different situations. Classes correspond to colours
in figure 2.

Guidelines for the XML Document Mining Tasks

1 Description of the challenge

1.1 Tasks

The challenge will focus on classification and clustering for the two following tasks:

Structure Only: clustering and classification of XML documents using only the structure
information present in the documents. The goal of this task is to find the different structural
families of documents.
For this task, we consider that each XML document has a single label corresponding to the
structural source the document comes from. We aim at finding this structure label for each
document of the corpus. Note that this task corresponds to clustering and classification of
ordered labelled trees.

Structure and content: clustering and classification of XML documents using structure and
content information. Both structure and content may be useful for characterizing the different
classes in these tasks. This generic task is representative of many different practical situations
where structure and content depend one on the other. For example, documents may share the
same type of structure but content (word) distribution is different for the different structural
elements across classes. Documents may also come from different sources, all the sources
addressing the whole set of thematic but with different thematic distributions across sources.

For simplification we will suppose for both tasks that each document may have only one label
(we do not consider the multilabeled case here).

1.2 Corpora
We have developed different corpora for the challenge. For all of them, we have been using or
gathering first an existing corpus of XML documents – we make use of three such “original”
corpus in the challenge (MovieDB, INEX, WIPO). We have then defined by hand structural
DTD transformations and applied them on these original collections thus creating document
sets with new characteristics. These transformations were defined so as to highlight and test
some specific capacity of ML algorithms and to create a whole set of classification or
clustering tasks of different complexities.
The different corpora prepared for the challenge are described below. For each task a training
and a test set will be provided. Participant may participate to an arbitrary number of tasks.
Two runs may be submitted for each task.

1.2.1 MovieDB

The MovieDB corpus is a corpus of XML documents describing movies. It was built using
the IMDB database1. It contains 9643 XML documents. Each document is labelled by one
thematic category which represents the genre of the movie in the original collection and one

1 http://www.imdb.com

http://www.imdb.com/

structure category. There are 11 thematic categories and 11 possible structure categories
which correspond to transformations of the original data structure.

MovieDB will be used for both the structure only and structure and content tasks. For all
tasks, there are 11 predefined classes (or clusters). For structure only, the first two tasks
(denoted M-DB-S-1-c and M-DB-S-1-cg in the table below) correspond respectively to
classification (-c) and clustering (-cg) of the XML labelled trees of the original MovieDB
documents. Other structure only tasks for this corpus (tasks M-DB-S-2-c and –cg to M-DB-
S-4-c and -cg) do correspond to classification and clustering on a series of transformed
MovieDB collections. The transformations have been defined so that each series should be –
in principle- more difficult to classify / cluster than the preceding. For structure and content
tasks, (M-DB-C&S-1-c or –cg and M-DB-C&S-2-c or –cg) there are 11 classes which
correspond to a specific correlation between structure and content. For the Second data set (-
2-c and -2-cg) classes have a higher overlap than for the first one (-1-c and -1-cg) and
classification / clustering should be more difficult.
MovieDB has been preprocessed using a Porter stemmer.

1.2.2 INEX

The INEX corpus is the document corpus used for ad-hoc retrieval in INEX since its
beginning in 2002. It is composed of 12017 XML documents. Each document comes from an
IEEE journal (18 journals in all). The collection has been re-labelled into 6 thematic classes
(Computer, Graphics, Hardware, Artificial Intelligence, Internet, Parallel) and 2 structural
classes (Transaction journals vs Others). INEX will be used here for the Structure only and
the structure and content tasks. For the former (INEX-S-c and INEX-S-cg) the goal is to
perform classification / clustering into the two structural classes (Transaction journals vs
Others). There are two types of structure and content tasks: (INEX-C&S-1-c and INEX-
C&S-1-cg) correspond respectively to classification and clustering into the 6 hand defined
thematic categories. Heterogeneous sources may contribute to the same thematic class, for
these two tasks). (INEX-C&S-2-c and INEX-C&S-2-cg) do correspond to classification and
clustering into the 18 original journal categories for which both structure and content should
be used to identify the journal.
INEX has been preprocessed using a Porter stemmer.

1.2.3 WIPO

The WIPO corpus is a corpus of XML documents describing patents. This corpus is content
oriented since its structure only brings little information. The corpus is composed of 75250
documents from 114 thematic categories. It will only be used here for the structure and
content task where the goal will be to find the patent categories (WIPO- C&S –c and
WIPO- C&S –cg tasks).
WIPO has not been preprocessed.

The tables below summarize the characteristics of the tasks.

1.3 Tasks summary
In the first tables, column -c and –cg hold respectively for classification and clustering. This
means for example that M-DB-S-1-c and M-DB-S-1-cg are respectively a classification and a
clustering task on the same corpus M-DB-S-1.

We will provide a series of training corpuses with the document labels by August 31 (a
preliminary training corpus is made available by the end of July) and test corpuses by October
15. Labels should not be used for clustering. The number of classes is supposed to be known
for clustering.

1.3.1 Structure only tasks

Name of the task Description of the corpus Number of labels
M-DB-S-1-c
M-DB-S-1-cg

Corpus of XML labelled trees from the
IMDB database.

11

M-DB-S-2-c
M-DB-S-2-cg

Same corpus with additional noise on the
structure

11

M-DB-S-3-c
M-DB-S-3-cg

Same corpus with additional noise on the
structure

11

M-DB-S-4-c
M-DB-S-4-cg

Same corpus with additional noise on the
structure

11

Tasks M-DB-S-2-x to M-DB-S-4-x correspond to classification and clustering on
transformations of the original labelled trees dataset M-DB-S. Transformations 2 to 4 are
of increased complexity. Both clustering and classification complexity should increase
accordingly.

Name of the task Description of the corpus Number of labels
INEX-S-c
INEX-S-cg

Labelled trees from the INEX database. The
goal is to find if a document comes from a
“Transaction on…” series or from an other
series

2

1.3.2 Content and Structure tasks

Name of the task Description of the corpus Number of labels
INEX-C&S-1-c
INEX-C&S-1-cg

Original INEX document database content +
structure. 6 classes corresponding to hand
defined thematic.

6

Name of the task Description of the corpus Number of labels
WIPO- C&S -c
WIPO- C&S -cg

This is the WIPO corpus of patents. The goal
is to find the patent category.

114

Name of the task Description of the corpus Number of labels
M-DB-C&S-1-c
M-DB-C&S-1-cg

MovieDB corpus with a hand-defined
dependency between content and structure.

11

M-DB-C&S-2-c
M-DB-C&S-2-cg

Same, but more complex correlations and
therefore more complex classification or
clustering task.

11

Name of the task Description of the corpus Number of labels
INEX-C&S-2-c INEX original collection. The task consists 18

INEX-C&S-2-cg in finding the journal of each document.

1.4 Evaluation Measures

1.4.1 Clustering: Entropy and Purity

In order to evaluate clustering quality, we will use two measures:

• The entropy between the clusters and the original labels of the documents
• The purity of the clusters

1.4.2 Categorization: Precision and Recall

In order to evaluate classification quality, we will use the classical precision-recall curves and
the micro-average and macro-average F1 measures.

1.5 Schedule

The challenge will run in two rounds: the first round corresponds to the present call and will
run between July and November 2005 according to the schedule below, with results presented
at the INEX workshop at the end of November 2005. A second round will be organized
between January and March 2006 with a presentation of the participants’ results at a
workshop to be organized later on (e.g. the Pascal challenge workshop in April 2006 in
Venice, or a joint workshop INEX - Pascal).
For each round, training sets and test sets will be provided. Participants are encouraged to test
their methods on the training sets before submitting their results.
For each round, participant may send results for an arbitrary number of tasks.
Two runs may be submitted for each task.

First round schedule

JULY – 30 Training corpora with document labels downloadable from

the Web Site. These corpora can be used to make
preliminary experiments for clustering and categorization.

AUGUST – 31 Final corpora downloadable on the Web Site (same as above
– errors corrected if any).

OCTOBER – 15 Test corpora available.
OCTOBER – 31 Deadline for submitting results.
NOVEMBER – 10 Deadline for submitting articles.
NOVEMBER – 28-30 INEX Workshop in Schloss Dagstuhl

(http://www.dagstuhl.de/).

Second round schedule
To come

http://www.dagstuhl.de/

1.6 How to…

1.6.1 How to get the corpora
The INEX corpus may be used by all participants provided an agreement form is signed.
Access to all corpuses will then be conditioned by the signature of this agreement.
The corpora can be downloaded from the challenge web site (http://xmlmining.lip6.fr).
In order to get them, you must:

- Download the agreement form from http://xmlmining.lip6.fr/agreement.pdf and fax us
the signed agreement (+33144277000) with the following indications – to: P. Gallinari
– subject: xml-mining challenge.

- Send an e-mail with subject “register” at xmlmining@lip6.fr

Once we have received both, you will be sent a login/password to access the collections.

Registered INEX participants are only required to send the e-mail with subject “register” and
the name of the INEX registered organization.

1.6.2 Corpora format

Each corpus is included in a zip file containing:
• A set of XML documents. Each file corresponds to one XML document
• A “relfile” directory containing one file for each category, each file contains the

name of the documents in the corresponding category.

1.6.3 Preprocessing

The corpora (except WIPO) have all been pre-processed. Participants are not supposed to use
additional preprocessing in order to facilitate the comparison of the performances of the
proposed models.

1.6.4 Additional Information and contact

For any question, please send an email to:
xmlmining@lip6.fr

1.7 Submitting the results

An evaluation server will be made accessible later.

1.8 Organizers
Challenge organizers

Ludovic DENOYER (University Paris 6, Fr)
Patrick GALLINARI (University Paris 6, Fr)
Anne-Marie VERCOUSTRE (Inria Rocquencourt, Fr)

http://xmlmining.lip6.fr/
http://xmlmining.lip6.fr/agreement.pdf
mailto:xmlmining@lip6.fr
mailto:xmlmining@lip6.fr

Guillaume WISNIEWSKI (University Paris 6, Fr)

Challenge committee

Pascal side

Samy BENGIO (IDIAP, Martigny, Ch)
Ludovic DENOYER (University Paris 6, Fr, also for INEX)
Patrick GALLINARI (University Paris 6, Fr, also for INEX)
Marko GROBELNIK (Jozef Stefan Institute, Ljubljana, Sl)
Massi PONTIL (University College, London, UK)
Juho ROUSU (Royal Holloway, University of London, UK)

Inex Side

Remi GILLERON (University Lille & INRIA, Fr)
Mounia LALMAS (Queen Mary, London, UK)
Marie-Christine ROUSSET (University Orsay & INRIA, Fr)
Marc TOMMASI (University Lille & INRIA, Fr)
Anastasios TOMBROS (Queen Mary, London, UK)
Anne-Marie VERCOUSTRE (Inria Rocquencourt, Fr)

Relevance Feedback Task

The process of information retrieval is an uncertain one. Searchers may have less than
well developed ideas of what they are searching for and the types of information
available for retrieval; they may be unable to express a conceptual need for
information in terms of a suitable query. Early in the development of IR, researchers
recognized that although users often had difficulty expressing their informational
needs precisely, they could recognize useful information when they saw it. That is,
although searchers may be unable to readily convert informational needs into
requests, once the system presents them with an initial set of documents, they can
easily differentiate between those documents that do contain useful information and
those that do not.

This recognition led to the notion of relevance feedback (RF): users evaluating
(marking or selecting) a small set of documents as relevant or irrelevant with respect
to an informational need. RF techniques use data from the selected documents (i.e.,
those returned by the system in response to the user's original query and then
evaluated by the user for relevance) to automatically reformulate that query. They
modify the initial query and produce a revised query - the feedback query - to be
processed by the retrieval system. RF algorithms can be also used for Automatic
Query Refinement (AQR) by applying an automatic process that marks the top results
returned by the search engine as relevant and the tail results as non relevant for use by
subsequent iterations

The aim of this track is to investigate relevance feedback in the context of XML
retrieval. In standard full text search engines, RF has been translated into detecting a
"bag of words" that are good (or bad) at retrieving relevant information. These terms
are then added to (or removed from) the query and weighted according to their power
in retrieving relevant information. With XML documents, a more sophisticated
approach - one that can exploit the characteristics of XML - is necessary. The
approach should ideally consider not only content but also the structural features of
XML documents. The query reformulation process must therefore infer which content
and structural elements are important for effectively retrieving relevant data.

INEX has two types of tasks, Content Only (CO) and Context and structure (CAS).
CO queries are free text queries (like those used in TREC) for which the retrieval
system should retrieve relevant XML elements of varying granularity, whereas CAS
queries contain explicit structural constraints such as containment conditions. This
year is the second year of RF track at INEX. While in the first year the RF track
concentrated on CO queries only, this year we will expand the RF track to CAS
queries as well.

Please note that participants in the track must register for the INEX initiative. To have
access to the test collection and in particular the relevance assessments, participants
must perform the relevance assessment task. Participants in the RF track are also
required to submit retrieval runs to the ad-hoc task, since the ad-hoc runs will serve as
baselines for the RF task.

Description of the task

By 10 August 2005, participants in the Relevance Feedback (RF) track should submit
their retrieval runs (search results) as per the Ad Hoc task guidelines. The participant's
runs will serve as the baselines upon which RF will be performed. Participants should
refer to the Ad Hoc retrieval task guidelines for detailed information on the formatting
requirements of search results.

On 21 October 2005, relevance assessment data will be distributed to the participants.
RF feedback runs can then be performed, using feedback from the top-ranked 20
elements retrieved in the original CO/CAS runs. To limit the number of RF
submissions we chose a subset of some common ad-hoc tracks for participants to test
their RF algorithms. Participants may submit up to 3 RF runs for each of their original
submitted Ad Hoc runs for the CO.Thorough, CO+S.Thorough and VVCAS tracks.
Totally there could be at most 9 CO submissions (3 RF * 3 original), 9 CO+S
submissions (3 RF * 3 original) and 6 VVCAS submissions (3 RF * 2 Original).
Please note that some topics may not be used in the RF track if they are judged
inadequate for that purpose (e.g., if they do not retrieve enough relevant elements).
There are no restrictions on the number of iterations of relevance feedback for a given
query. Participants must submit their RF runs by 09 Nov 2005.

An RF run is built as follows: The assessment of the top 20 elements from the original
base run is checked against the relevance assessment data. Those top 20 elements are
then frozen with their original rank and the rest of the elements (the unseen elements)
are re ranked based on the assessment of the top 20. So an RF submission must have
the top 20 elements of the base run as the top 20 elements in the RF run while
elements from rank 20 and lower can be re ranked. A participant may apply several
RF iterations in each run where in iteration i (i starts from 1) the elements at position
(i-1)*20 till i*20-1 (first element is at position 0) are frozen and the elements below
them (starting from position i*20) are re ranked. The submission format for the RF
runs is similar to the original Ad-hoc runs where we add two new fields to the
submission header:

base_run_id – the id of the original ad-hoc run
iterations – number of iterations used for the RF submission

The reported evaluation scores for each RF submission will measure the improvement
of the RF run over the original base run.

Participants should be aware that they will have 18 days between the distribution of
relevance assessments and submission of RF runs. Evaluation results will be
distributed on 15 November 2005.

Schedule

Apr 08: Deadline for the submission of "Application for Participation".

Apr 09 -
Apr 15:

The collection of XML documents will be distributed to all
participants on the receipt of their signed data handling
agreement.

Apr 18: Participants will be provided with detailed instructions and

formatting criteria for candidate topics/queries.
May 06: Submission deadline for candidate topics.

May 27:
Distribution of final set of topics/queries to participants along
with detailed information on the formatting requirements of
the search results.

Aug 10: Submission deadline of search results.

Aug 26: Distribution of merged results to participants for relevance
assessments.

Sep 20: Submission deadline for relevance assessments.

Oct 21: Distribution of XML test collection and evaluation scores to
participants.

Nov 9: Submission of the relevance feedback runs
Nov 13: Submission of papers for the workshop pre-proceedings.

Nov 15: Distribution of evaluation scores to participants for the
RF track

Nov 22: Workshop pre-proceedings and workshop programme online.
Nov 28-
30: Workshop in Schloss Dagstuhl. (http://www.dagstuhl.de/).

Organisers:

Yosi Mass
yosimass@il.ibm.com

Carolyn Crouch
ccrouch@d.umn.edu

http://www.dagstuhl.de/
mailto:yosimass@il.ibm.com
mailto:ccrouch@d.umn.edu

NLPX Task:Natural Language Processing for XML Information
Retrieval

XML is rapidly becoming an accepted standard for storage, communication, and
exchange of information. Most information in typical XML documents is expressed in
natural language texts. Yet, most software tools built for XML document retrieval
tasks do not use natural language interfaces. Natural Language Processing (NLP)
techniques are yet to be applied to Information Retrieval tasks over XML collections.

The field of NLP has been extensively studied in the context of Information Retrieval
over Text collections. NLP has the potential to offer better tools for easing the syntax
overload of interfaces to XML collections such as the proposed Xpath and XQuery
languages. NLP interfaces can exploit the syntax of XML, and pragmatics of natural
language, better than current Text Retrieval interfaces that are based primarily on
language semantics, keyword/phrase matching and conventional database indexing
methods. XML, through its rich self documenting contextual information, is an
excellent domain to develop practical and more powerful applications of NLP.

The ultimate goal is to design and build software that will analyse, understand, and
generate results in response to queries that humans express naturally. The primary
objective of retrieval would be to interpret both structural and content constraints of
an information need expressed in a natural language query (as opposed to the rigid
syntax of XPath). The IR system would not only select and rank suitable documents,
but select the more suitable XML elements within documents that best satisfy the
information need (both accurately and concisely).

The purpose of the NLP track at INEX 2005 is to bring together researchers and
developers who are interested in exchanging new ideas and presenting results in the
field of XML Information Retrieval with emphasis on related NLP tools. The track is
intended to act as a forum for promoting interaction among researchers in the field of
Natural Language Processing and XML Information Retrieval.

Tasks:

There are two distinct tasks in the NLP track in 2005 - NLQ2NEXI and NLP.

NLQ2NEXI - a simplified task that does not require participants to index the
collection or to implement a search engine. Instead, NLQ2NEXI requires the
translation of a natural language query, provided in the element of a topic, into a
formal INEX <title> element (NEXI is a derivative of XPath with a simplified syntax
and having an IR-flavoured interpretation.) The submissions of all participants will be
evaluated by a running the titles on search engine/s that can operate on NEXI
expressions. The objective is to compare the results obtained with natural language
queries (translated into NEXI) with the results that are obtained by the same search
engine/s when using the original NEXI expressions. This task is designed to allow
new participants with NLP expertise to join the INEX workshop without the need to
develop a search engine.

NLQ - this task has no restrictions on the use of any NLP technique to interpret the
queries as they appear in the <description> element of a topic. Here participants are

required to submit retrieval runs, but enjoy the freedom to implement any NLP
techniques in their search engine. The objective is not only to compare between
different NLP based systems, but to also compare the results obtained with natural
language queries with the results obtained with NEXI queries by any other system in
the Ad-hoc track. We wish to test whether natural language queries are effective
alternatives to formal queries and to quantify the trade off in performance.

Organisers:

Shlomo Geva
s.geva@qut.edu.au

Tony Sahama
t.sahama@qut.edu.au

	JuruXML-inex'05-lncs.pdf
	4.1 VVCAS results
	4.2 SSCAS results
	4.3 VSCAS results
	4.4 SVCAS results

	dopichaj.pdf
	The University of Kaiserslautern at INEX 2005
	Philipp Dopichaj

	QUT@INEX05.pdf
	GPX - Gardens Point XML IR at INEX 2005

	nayak-inex-xcls.pdf
	2.1 Level structure: Inferring of XML documents structure
	2.2 Clustering global criterion function with level similari
	2.3 The process of structure matching between two objects

	3 Experimental Evaluation
	References

	Context matters.pdf
	Context matters? User behaviour and element retrieval

	TD05.pdf
	Aims
	Introduction
	Topic Creation Criteria
	Topic Types
	Content Only + Structure (CO+S)
	Content And Structure (CAS)
	Natural Language Processing (NLP)

	Topic Format
	Topic <title>
	CO Topics

	Topic <castitle>
	CO+S Topics
	CAS Topics
	Equivalent tags

	Topic <description>

	Procedure for Topic Development
	Topic Selection
	Acknowledgments
	References
	Appendix 1: Example CO+S Topic
	Appendix 2: Example CAS Topic
	Appendix 3: Another Example CAS Topic

	iTrack05-docs-for-PreProcs.pdf
	iTrack05_System-guide-v1.pdf
	Introduction
	Logging in
	Search Tool
	Performing a Search
	Related Terms
	Result List
	Sorting
	Navigation
	Viewing Details (Full text)

	Installation
	Requirements
	iTrack Daffodil
	Personalization

	Logging

	dm-guidelines.pdf
	Overview
	General description of the challenge
	Context and Motivations
	Key issues to be investigated for structured document classification and clustering

	Guidelines for the XML Document Mining Tasks
	Description of the challenge
	Tasks
	Corpora
	MovieDB
	INEX
	WIPO

	Tasks summary
	Structure only tasks
	Content and Structure tasks

	Evaluation Measures
	Clustering: Entropy and Purity
	Categorization: Precision and Recall

	Schedule
	How to…
	How to get the corpora
	Corpora format
	Preprocessing
	Additional Information and contact

	Submitting the results
	Organizers

	rf and nlp.pdf
	Relevance Feedback Task
	Description of the task
	Schedule
	Organisers:
	NLPX Task:Natural Language Processing for XML Information Retrieval
	Tasks:
	Organisers:

	inex2005_ws_toc.pdf
	Table of Contents
	Methodology
	Multiple tracks
	Ad-hoc track
	Relevance feedback track
	Natural language query track
	Heterogeneous track
	Interactive track
	Document mining track
	Multimedia track
	APPENDIX
	
	
	Ad-hoc track
	Heterogeneous track
	Multimedia track
	Interactive track
	Document mining track
	Relevance feedback track
	Natural language query track

	Organisers
	Project leaders
	Contact persons
	Topic format specification
	Online relevance assessment tool
	Metrics
	Relevance feedback task
	Natural language processing task
	Heterogeneous collection track
	Interactive track
	Document mining track
	XML multimedia track

	Preface
	Acknowledgements
	Schloss Dagstuhl

	inex2005_ws_frontpage.pdf
	Pre-Proceedings
	Norbert Fuhr
	Mounia Lalmas
	Saadia Malik
	Gabriella Kazai

	page01: 1
	page11: 2
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76
	page761: 77
	page771: 78
	page781: 79
	page791: 80
	page801: 81
	page811: 82
	page821: 83
	page831: 84
	page841: 85
	page851: 86
	page861: 87
	page871: 88
	page881: 89
	page891: 90
	page901: 91
	page911: 92
	page921: 93
	page931: 94
	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101
	page1011: 102
	page1021: 103
	page1031: 104
	page1041: 105
	page1051: 106
	page1061: 107
	page1071: 108
	page1081: 109
	page1091: 110
	page1101: 111
	page1111: 112
	page1121: 113
	page1131: 114
	page1141: 115
	page1151: 116
	page1161: 117
	page1171: 118
	page1181: 119
	page1191: 120
	page1201: 121
	page1211: 122
	page1221: 123
	page1231: 124
	page1241: 125
	page1251: 126
	page1261: 127
	page1271: 128
	page1281: 129
	page1291: 130
	page1301: 131
	page1311: 132
	page1321: 133
	page1331: 134
	page1341: 135
	page1351: 136
	page1361: 137
	page1371: 138
	page1381: 139
	page1391: 140
	page1401: 141
	page1411: 142
	page1421: 143
	page1431: 144
	page1441: 145
	page1451: 146
	page1461: 147
	page1471: 148
	page1481: 149
	page1491: 150
	page1501: 151
	page1511: 152
	page1521: 153
	page1531: 154
	page1541: 155
	page1551: 156
	page1561: 157
	page1571: 158
	page1581: 159
	page1591: 160
	page1601: 161
	page1611: 162
	page1621: 163
	page1631: 164
	page1641: 165
	page1651: 166
	page1661: 167
	page1671: 168
	page1681: 169
	page1691: 170
	page1701: 171
	page1711: 172
	page1721: 173
	page1731: 174
	page1741: 175
	page1751: 176
	page1761: 177
	page1771: 178
	page1781: 179
	page1791: 180
	page1801: 181
	page1811: 182
	page1821: 183
	page1831: 184
	page1841: 185
	page1851: 186
	page1861: 187
	page1871: 188
	page1881: 189
	page1891: 190
	page1901: 191
	page1911: 192
	page1921: 193
	page1931: 194
	page1941: 195
	page1951: 196
	page1961: 197
	page1971: 198
	page1981: 199
	page1991: 200
	page2001: 201
	page2011: 202
	page2021: 203
	page2031: 204
	page2041: 205
	page2051: 206
	page2061: 207
	page2071: 208
	page2081: 209
	page2091: 210
	page2101: 211
	page2111: 212
	page2121: 213
	page2131: 214
	page2141: 215
	page2151: 216
	page2161: 217
	page2171: 218
	page2181: 219
	page2191: 220
	page2201: 221
	page2211: 222
	page2221: 223
	page2231: 224
	page2241: 225
	page2251: 226
	page2261: 227
	page2271: 228
	page2281: 229
	page2291: 230
	page2301: 231
	page2311: 232
	page2321: 233
	page2331: 234
	page2341: 235
	page2351: 236
	page2361: 237
	page2371: 238
	page2381: 239
	page2391: 240
	page2401: 241
	page2411: 242
	page2421: 243
	page2431: 244
	page2441: 245
	page2451: 246
	page2461: 247
	page2471: 248
	page2481: 249
	page2491: 250
	page2501: 251
	page2511: 252
	page2521: 253
	page2531: 254
	page2541: 255
	page2551: 256
	page2561: 257
	page2571: 258
	page2581: 259
	page2591: 260
	page2601: 261
	page2611: 262
	page2621: 263
	page2631: 264
	page2641: 265
	page2651: 266
	page2661: 267
	page2671: 268
	page2681: 269
	page2691: 270
	page2701: 271
	page2711: 272
	page2721: 273
	page2731: 274
	page2741: 275
	page2751: 276
	page2761: 277
	page2771: 278
	page2781: 279
	page2791: 280
	page2801: 281
	page2811: 282
	page2821: 283
	page2831: 284
	page2841: 285
	page2851: 286
	page2861: 287
	page2871: 288
	page2881: 289
	page2891: 290
	page2901: 291
	page2911: 292
	page2921: 293
	page2931: 294
	page2941: 295
	page2951: 296
	page2961: 297
	page2971: 298
	page2981: 299
	page2991: 300
	page3001: 301
	page3011: 302
	page3021: 303
	page3031: 304
	page3041: 305
	page3051: 306
	page3061: 307
	page3071: 308
	page3081: 309
	page3091: 310
	page3101: 311
	page3111: 312
	page3121: 313
	page3131: 314
	page3141: 315
	page3151: 316
	page3161: 317
	page3171: 318
	page3181: 319
	page3191: 320
	page3201: 321
	page3211: 322
	page3221: 323
	page3231: 324
	page3241: 325
	page3251: 326
	page3261: 327
	page3271: 328
	page3281: 329
	page3291: 330
	page3301: 331
	page3311: 332
	page3321: 333
	page3331: 334
	page3341: 335
	page3351: 336
	page3361: 337
	page3371: 338
	page3381: 339
	page3391: 340
	page3401: 341
	page3411: 342
	page3421: 343
	page3431: 344
	page3441: 345
	page3451: 346
	page3461: 347
	page3471: 348
	page3481: 349
	page3491: 350
	page3501: 351
	page3511: 352
	page3521: 353
	page3531: 354
	page3541: 355
	page3551: 356
	page3561: 357
	page3571: 358
	page3581: 359
	page3591: 360
	page3601: 361
	page3611: 362
	page3621: 363
	page3631: 364
	page3641: 365
	page3651: 366
	page3661: 367
	page3671: 368
	page3681: 369
	page3691: 370
	page3701: 371
	page3711: 372
	page3721: 373
	page3731: 374
	page3741: 375
	page3751: 376
	page3761: 377
	page3771: 378
	page3781: 379
	page3791: 380
	page3801: 381
	page3811: 382
	page3821: 383
	page3831: 384
	page3841: 385
	page3851: 386
	page3861: 387
	page3871: 388
	page3881: 389
	page3891: 390
	page3901: 391
	page3911: 392
	page3921: 393
	page3931: 394
	page3941: 395
	page3951: 396
	page3961: 397
	page3971: 398
	page3981: 399
	page3991: 400
	page4001: 401
	page4011: 402
	page4021: 403
	page4031: 404
	page4041: 405
	page4051: 406
	page4061: 407
	page4071: 408
	page4081: 409
	page4091: 410
	page4101: 411
	page4111: 412
	page4121: 413
	page4131: 414
	page4141: 415
	page4151: 416
	page4161: 417
	page4171: 418
	page4181: 419
	page4191: 420
	page4201: 421
	page4211: 422
	page4221: 423
	page4231: 424
	page4241: 425
	page4251: 426
	page4261: 427
	page4271: 428
	page4281: 429
	page4291: 430
	page4301: 431
	page4311: 432
	page4321: 433
	page4331: 434
	page4341: 435
	page4351: 436
	page4361: 437
	page4371: 438
	page4381: 439
	page4391: 440
	page4401: 441
	page4411: 442
	page4421: 443
	page4431: 444
	page4441: 445
	page4451: 446
	page4461: 447
	page4471: 448
	page4481: 449
	page4491: 450
	page4501: 451
	page4511: 452
	page4521: 453
	page4531: 454
	page4541: 455
	page4551: 456
	page4561: 457
	page4571: 458
	page4581: 459
	page4591: 460
	page4601: 461

