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Preface

Welcome to the 7th workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX)!

Now, in its seventh year, INEX is an established evaluation forum for XML
information retrieval (IR), with over 100 organizations worldwide registered and
over 50 groups participating actively in at least one of the tracks. INEX aims to
provide an infrastructure, in the form of a large structured test collection and
appropriate scoring methods, for the evaluation of focused retrieval systems.

XML IR plays an increasingly important role in many information access
systems (e.g. digital libraries, web, intranet) where content is more and more a
mixture of text, multimedia, and metadata, formatted according to the adopted
W3C standard for information repositories, the so-called eXtensible Markup
Language (XML). The ultimate goal of such systems is to provide the right
content to their end-users. However, while many of today’s information access
systems still treat documents as single large (text) blocks, XML offers the oppor-
tunity to exploit the internal structure of documents in order to allow for more
precise access, thus providing more specific answers to user requests. Providing
effective access to XML-based content is therefore a key issue for the success of
these systems.

INEX 2008 was an exciting year for INEX, and brought a lot of changes.
In total eight research tracks were included, which studied different aspects of
focused information access:

Ad hoc Track The main track of INEX 2008 will investigate the effectiveness
of XML-IR and Passage Retrieval for three ad hoc retrieval tasks (Focused,
Relevant in Context, Best in Context).

Book Track Investigating information access to, and IR techniques for search-
ing full texts of digitized books.

Efficiency Track Investigating both the effectiveness and efficiency of XML
ranked retrieval approaches on real data and real queries.

Entity Ranking Track Investigating entity retrieval rather than text retrieval:
1) Entity Ranking, 2) Entity List Completion.

Interactive Track Investigating the behavior of users when interacting with
XML documents, as well as develop retrieval approaches which are effective
in user-based environments.

Question Answering Track Investigating technology for accessing structured
documents that can be used to address real-world focused information needs
formulated as natural language questions.

Link the Wiki Track Investigating link discovery between Wikipedia docu-
ments, both at the file level and at the element level.

XML Mining Track Investigating structured document mining, especially the
classification and clustering of structured documents.
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The Efficiency and Question Answering tracks were new for 2008. The consoli-
dation of the existing tracks, and the expansion to new areas offered by the two
new tracks, allows INEX to grow in reach.

The aim of the INEX 2008 workshop is to bring together researchers in
the field of XML IR who participated in the INEX 2008 campaign. During the
past year participating organizations contributed to the building of a large-scale
XML test collection by creating topics, performing retrieval runs and providing
relevance assessments. The workshop concludes the results of this large-scale
effort, summarizes and addresses encountered issues and devises a work plan for
the future evaluation of XML retrieval systems.

This is also the seventh INEX Workshop at the Schloss Dagstuhl – Leibniz
Center for Informatics, providing the unique setting where informal interaction
and discussion occurs naturally and frequently. It is clear that this has been
essential to the growth of INEX over the years, we feel honored and priviliged
for Dagstuhl housing the INEX 2008 Workshop.

Finally, INEX is run for but especially by the participants. It is a result of
tracks and tasks suggested by participants, topics created by particants, systems
build by participants, and relevance judgments provided by participants. So the
main thank you goes each of these individuals!

December 2008 Shlomo Geva
Jaap Kamps

Andrew Trotman
Chairs of INEX 2008
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Overview of the INEX 2008 Ad Hoc Track

Jaap Kamps1, Shlomo Geva2, Andrew Trotman3,
Alan Woodley2, and Marijn Koolen1

1 University of Amsterdam, Amsterdam, The Netherlands
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2 Queensland University of Technology, Brisbane, Australia
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Abstract. This paper gives an overview of the INEX 2008 Ad Hoc
Track. The main goals of the Ad Hoc Track were two-fold. The first goal
was to investigate the value of the internal document structure (as pro-
vided by the XML mark-up) for retrieving relevant information. This is
a continuation of INEX 2007 and, for this reason, the retrieval results
are liberalized to arbitrary passages and measures were chosen to fairly
compare systems retrieving elements, ranges of elements, and arbitrary
passages. The second goal was to compare focused retrieval to article
retrieval more directly than in earlier years. For this reason, standard
document retrieval rankings have been derived from all runs, and eval-
uated with standard measures. In addition, a set of queries targeting
Wikipedia have been derived from a proxy log, and the runs are also
evaluated against the clicked Wikipedia pages. The INEX 2008 Ad Hoc
Track featured three tasks: For the Focused Task a ranked-list of non-
overlapping results (elements or passages) was needed. For the Relevant
in Context Task non-overlapping results (elements or passages) were re-
turned grouped by the article from which they came. For the Best in
Context Task a single starting point (element start tag or passage start)
for each article was needed. We discuss the results for the three tasks,
and examine the relative effectiveness of element and passage retrieval.
This is examined in the context of content only (CO, or Keyword) search
as well as content and structure (CAS, or structured) search. Finally, we
look at the ability of focused retrieval techniques to rank articles, using
standard document retrieval techniques, both against the judged topics
as well as against queries and clicks from a proxy log.

1 Introduction

This paper gives an overview of the INEX 2008 Ad Hoc Track. There are two
main research question underlying the Ad Hoc Track. The first main research
question is that of the value of the internal document structure (mark-up) for
retrieving relevant information. That is, does the document structure help in
identify where the relevant information is within a document? This question,
first studied at INEX 2007, has attracted a lot of attention in recent years.
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Trotman and Geva [11] argued that, since INEX relevance assessments are not
bound to XML element boundaries, retrieval systems should also not be bound
to XML element boundaries. Their implicit assumption is that a system return-
ing passages is at least as effective as a system returning XML elements. This
assumption is based on the observation that elements are of a lower granular-
ity than passages and so all elements can be described as passages. The reverse,
however is not true and only some passages can be described as elements. Huang
et al. [4] implement a fixed window passage retrieval system and show that a
comparable element retrieval ranking can be derived. In a similar study, Itakura
and Clarke [5] show that although ranking elements based on passage-evidence is
comparable, a direct estimation of the relevance of elements is superior. Finally,
Kamps and Koolen [6] study the relation between the passages highlighted by the
assessors and the XML structure of the collection directly, showing reasonable
correspondence between the document structure and the relevant information.

Up to now, element and passage retrieval approaches could only be compared
when mapping passages to elements. This may significantly affect the compari-
son, since the mapping is non-trivial and, of course, turns the passage retrieval
approaches effectively into element retrieval approaches. To study the value of
the document structure through direct comparison of element and passage re-
trieval approaches, the retrieval results were liberalized to arbitrary passages.
Every XML element is, of course, also a passage of text. At INEX 2008, a simple
passage retrieval format was introduced using file-offset-length (FOL) triplets,
that allow for standard passage retrieval systems to work on content-only ver-
sions of the collection. That is, the offset and length are calculated over the text
of the article, ignoring all mark-up. The evaluation measures are based directly
on the highlighted passages, or arbitrary best-entry points, as identified by the
assessors. As a result it is now possible to fairly compare systems retrieving ele-
ments, ranges of elements, or arbitrary passages. These changes address earlier
requests to liberalize the retrieval format to ranges of elements [2] and later
requests to liberalize to arbitrary passages of text [11].

The second main question is to compare focused retrieval directly to tra-
ditional article retrieval. Throughout the history of INEX, participating groups
have found that article retrieval—a system retrieving the whole article by default—
resulted in fairly competitive performance [e.g., 7, 10]. Note that every focused
retrieval system also generates an underlying article ranking, simply by the or-
der is which results from different articles are ranked. This is most clear in the
Relevant in Context and Best in Context tasks, where the article ranking is an
explicit part of the task description. To study the importance of the underlying
article ranking quality, we derived article level judgments by treating every ar-
ticle with some highlighted text as relevant, derived article rankings from every
submission on a first-come, first-served basis, and evaluated with standard mea-
sures. This will also shed light on the value of element or passage level evidence
for document retrieval [1]. In addition to this, we also include queries derived
from a proxy log in the topic set, and can derive judgments from the later clicks
in the same proxy log, treating all clicked articles as relevant for the query at
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hand. All submissions are also evaluated against these clicked Wikipedia pages,
giving some insight in the differences between an IR test collection and real-world
searching of Wikipedia.

The INEX 2008 Ad Hoc Track featured three tasks:

1. For the Focused Task a ranked-list of non-overlapping results (elements or
passages) must be returned. It is evaluated at early precision relative to the
highlighted (or believed relevant) text retrieved.

2. For the Relevant in Context Task non-overlapping results (elements or pas-
sages) must be returned, these are grouped by document. It is evaluated by
mean average generalized precision where the generalized score per article is
based on the retrieved highlighted text.

3. For the Best in Context Task a single starting point (element’s starting tag
or passage offset) per article must be returned. It is also evaluated by mean
average generalized precision but with the generalized score (per article)
based on the distance to the assessor’s best-entry point.

We discuss the results for the three tasks, giving results for the top 10 par-
ticipating groups and discussing the best scoring approaches in detail. We also
examine the relative effectiveness of element and passage runs, and with content
only (CO) queries and content and structure (CAS) queries.

The rest of the paper is organized as follows. First, Section 2 describes the
INEX 2008 ad hoc retrieval tasks and measures. Section 3 details the collection,
topics, and assessments of the INEX 2008 Ad Hoc Track. In Section 4, we report
the results for the Focused Task (Section 4.2); the Relevant in Context Task
(Section 4.3); and the Best in Context Task (Section 4.4). Section 5 details
particular types of runs (such as CO versus CAS, and element versus passage),
and on particular subsets of the topics (such as topics with a non-trivial CAS
query). Section 6 looks at the article retrieval aspects of the submissions, both in
terms of the judged topics treating any article with highlighted text as relevant,
and in terms of clicked Wikipedia pages for queries derived from a proxy log.
Finally, in Section 7, we discuss our findings and draw some conclusions.

2 Ad Hoc Retrieval Track

In this section, we briefly summarize the ad hoc retrieval tasks and the sub-
mission format (especially how elements and passages are identified). We also
summarize the measures used for evaluation.

2.1 Tasks

Focused Task The scenario underlying the Focused Task is the return, to the
user, of a ranked list of elements or passages for their topic of request. The
Focused Task requires systems to find the most focused results that satisfy an
information need, without returning “overlapping” elements (shorter is preferred
in the case of equally relevant elements). Since ancestors elements and longer
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passages are always relevant (to a greater or lesser extent) it is a challenge to
chose the correct granularity.

The task has a number of assumptions:

Display the results are presented to the user as a ranked-list of results.
Users view the results top-down, one-by-one.

Relevant in Context Task The scenario underlying the Relevant in Context
Task is the return of a ranked list of articles and within those articles the rel-
evant information (captured by a set of non-overlapping elements or passages).
A relevant article will likely contain relevant information that could be spread
across different elements. The task requires systems to find a set of results that
corresponds well to all relevant information in each relevant article. The task
has a number of assumptions:

Display results will be grouped per article, in their original document order,
access will be provided through further navigational means, such as a docu-
ment heat-map or table of contents.

Users consider the article to be the most natural retrieval unit, and prefer an
overview of relevance within this context.

Best in Context Task The scenario underlying the Best in Context Task is the
return of a ranked list of articles and the identification of a best-entry-point from
which a user should start reading each article in order to satisfy the information
need. Even an article completely devoted to the topic of request will only have
one best starting point from which to read (even if that is the beginning of the
article). The task has a number of assumptions:

Display a single result per article.
Users consider articles to be natural unit of retrieval, but prefer to be guided

to the best point from which to start reading the most relevant content.

2.2 Submission Format

Since XML retrieval approaches may return arbitrary results from within docu-
ments, a way to identify these nodes is needed. At INEX 2008, we allowed the
submission of three types of results: XML elements; ranges of XML elements;
and file-offset-length (FOL) text passages.

Element Results XML element results are identified by means of a file name
and an element (node) path specification. File names in the Wikipedia collec-
tion are unique so that (with the .xml extension removed). The next example
identifies 9996.xml as the target document from the Wikipedia collection.

<file>9996</file>
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Element paths are given in XPath, but only fully specified paths are allowed.
The next example identifies the first “article” element, then within that, the
first “body” element, then the first “section” element, and finally within that
the first “p” element.

<path>/article[1]/body[1]/section[1]/p[1]</path>

Importantly, XPath counts elements from 1 and counts element types. For ex-
ample if a section had a title and two paragraphs then their paths would be:
title[1], p[1] and p[2].

A result element, then, is identified unambiguously using the combination of
file name and element path, as shown in the next example.

<result>
<file>9996</file>
<path>/article[1]/body[1]/section[1]/p[1]</path>
<rsv>0.9999</rsv>

</result>

Ranges of Elements To support ranges of elements, elemental passages are
given in the same format.1 As a passage need not start and end in the same
element, each is given separately. The following example is equivalent to the
element result example above since it starts and ends on an element boundary.

<result>
<file>9996</file>
<passage start="/article[1]/body[1]/section[1]/p[1]"

end="/article[1]/body[1]/section[1]/p[1]"/>
<rsv>0.9999</rsv>

</result>

Note that this format is very convenient for specifying ranges of elements, e.g.,
the following example retrieves the first three sections.

<result>
<file>9996</file>
<passage start="/article[1]/body[1]/section[1]"

end="/article[1]/body[1]/section[3]"/>
<rsv>0.9999</rsv>

</result>

FOL passages Passage results can be given in File-Offset-Length (FOL) for-
mat, where offset and length are calculated in characters with respect to the
textual content (ignoring all tags) of the XML file. A special text-only version of
1 At INEX 2007, and in earlier qrels, an extended format allowing for optional

character-offsets was used that allowed these passages to start or end in the middle
of element or text-nodes. This format is superseded with the clean file-offset-length
(FOL) passage format.
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the collection is provided to facilitate the use of passage retrieval systems. File
offsets start counting a 0 (zero).

The following example is effectively equivalent to the example element result
above.

<result>
<file>9996</file>
<fol offset="461" length="202"/>
<rsv>0.9999</rsv>

</result>

The paragraph starts at the 462th character (so 461 characters beyond the first
character), and has a length of 202 characters.

2.3 Evaluation Measures

We briefly summarize the main measures used for the Ad Hoc Track. Since
INEX 2007, we allow the retrieval of arbitrary passages of text matching the
judges ability to regard any passage of text as relevant. Unfortunately this simple
change has necessitated the deprecation of element-based metrics used in prior
INEX campaigns because the “natural” retrieval unit is no longer an element,
so elements cannot be used as the basis of measure. We note that properly
evaluating the effectiveness in XML-IR remains an ongoing research question at
INEX.

The INEX 2008 measures are solely based on the retrieval of highlighted
text. We simplify all INEX tasks to highlighted text retrieval and assume that
systems return all, and only, highlighted text. We then compare the characters
of text retrieved by a search engine to the number and location of characters of
text identified as relevant by the assessor. For best in context we use the distance
between the best entry point in the run to that identified by an assessor.

Focused Task Recall is measured as the fraction of all highlighted text that
has been retrieved. Precision is measured as the fraction of retrieved text that
was highlighted. The notion of rank is relatively fluid for passages so we use
an interpolated precision measure which calculates interpolated precision scores
at selected recall levels. Since we are most interested in what happens in the
first retrieved results, the INEX 2008 official measure is interpolated precision
at 1% recall (iP[0.01]). We also present interpolated precision at other early
recall points, and (mean average) interpolated precision over 101 standard recall
points (0.00, 0.01, 0.02, ..., 1.00) as an overall measure.

Relevant in Context Task The evaluation of the Relevant in Context Task
is based on the measures of generalized precision and recall [9], where the per
document score reflects how well the retrieved text matches the relevant text
in the document. Specifically, the per document score is the harmonic mean of
precision and recall in terms of the fractions of retrieved and highlighted text
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in the document. We use an Fβ score with β = 1/4 making precision four times
as important as recall (at INEX 2007, F1 was used). We are most interested in
overall performances so the main measure is mean average generalized precision
(MAgP). We also present the generalized precision scores at early ranks (5, 10,
25, 50).

Best in Context Task The evaluation of the Best in Context Task is based on
the measures of generalized precision and recall where the per document score
reflects how well the retrieved entry point matches the best entry point in the
document. Specifically, the per document score is a linear discounting function
of the distance d (measured in characters)

n − d(x, b)
n

for d < n and 0 otherwise. We use n = 500 which is roughly the number of
characters corresponding to the visible part of the document on a screen (at
INEX 2007, n = 1, 000 was used). We are most interested in overall performance,
and the main measure is mean average generalized precision (MAgP). We also
show the generalized precision scores at early ranks (5, 10, 25, 50).

3 Ad Hoc Test Collection

In this section, we discuss the corpus, topics, and relevance assessments used in
the Ad Hoc Track.

3.1 Corpus

The document collection was the Wikipedia XML Corpus based on the English
Wikipedia in early 2006 [3]. The Wikipedia collection contains 659,338 Wikipedia
articles. On average an article contains 161 XML nodes, where the average depth
of a node in the XML tree of the document is 6.72.

The original Wiki syntax has been converted into XML, using both general
tags of the layout structure (like article, section, paragraph, title, list and item),
typographical tags (like bold, emphatic), and frequently occurring link-tags. For
details see Denoyer and Gallinari [3].

3.2 Topics

The ad hoc topics were created by participants following precise instructions.
Candidate topics contained a short CO (keyword) query, an optional structured
CAS query, a one line description of the search request, and narrative with a
details of the topic of request and the task context in which the information need
arose. Figure 1 presents an example of an ad hoc topic. Based on the submitted
candidate topics, 135 topics were selected for use in the INEX 2008 Ad Hoc
Track as topic numbers 544–678.
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<topic id="544" ct_no="6">
<title>meaning of life</title>
<castitle>

//article[about(., philosophy)]//section[about(., meaning of life)]
</castitle>
<description>What is the meaning of life?</description>
<narrative>

I got bored of my life and started wondering what the meaning of
life is. An element is relevant if it discusses the meaning of life
from different perspectives, as long as it is serious. For example,
Socrates discussing meaning of life is relevant, but something like
"42" from H2G2 or "the meaning of life is cheese" from a comedy is
irrelevant. An element must be self contained. An element that is a
list of links is considered irrelevant because it is not
self-contained in the sense that I don’t know in which context the
links are given.

</narrative>
</topic>

Fig. 1. INEX 2008 Ad Hoc Track topic 544.

In addition, 150 queries were derived from a proxy-log for use in the INEX
2008 Ad Hoc Track as topic numbers 679–828. For these topics, as well as the
candidate topics without a 〈castitle〉 field, a default CAS-query was added
based on the CO-query: //*[about(., "CO-query")].

3.3 Judgments

Topics were assessed by participants following precise instructions. The asses-
sors used the new GPXrai assessment system that assists assessors in highlight
relevant text. Topic assessors were asked to mark all, and only, relevant text
in a pool of documents. After assessing an article with relevance, a separate
best entry point decision was made by the assessor. The Focused and Relevant
in Context Tasks were evaluated against the text highlighted by the assessors,
whereas the Best in Context Task was evaluated against the best-entry-points.

The relevance judgments were frozen on October 22, 2008. At this time 70
topics had been fully assessed. Moreover, 11 topics were judged by two separate
assessors, each without the knowledge of the other. All results in this paper
refer to the 70 topics with the judgments of the first assigned assessor, which is
typically the topic author.

– The 70 assessed topics were: 544–547, 550–553, 555–557, 559, 561, 562–563,
565, 570, 574, 576–582, 585–587, 592, 595–598, 600–603, 607, 609–611, 613,
616–617, 624, 626, 628, 629, 634–637, 641–644, 646–647, 649–650, 656–657,
659, 666–669, 673, 675, and 677.

In addition, there are clicked Wikipedia pages available in the proxy log for 125
topics:
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Table 1. Statistics over judged and relevant articles per topic.

total # per topic
topics number min max median mean st.dev

judged articles 70 42,105 502 618 603 601.5 15.3
articles with relevance 70 4,850 2 375 49 69.3 68.7
highlighted passages 70 7,510 3 906 59 107.3 131.0
highlighted characters 70 11,337,505 1,419 1,113,578 99,569 161,964.4 132,544.9
Unique articles with clicks 125 225 1 10 1 1.8 1.5
Total clicked articles 125 532 1 24 3 4.3 3.8

Number of passages per article
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Fig. 2. Distribution of passages over articles.

– The 125 topics with clicked articles are numbered: 679–682, 684–685, 687–
693, 695–704, 706–708, 711–727, 729–732, 734–751, 753–776, 778, 780–782,
784, 786–787, 789–790, 792–793, 795–796, 799–804, 806–807, 809–810, 812–
813, 816–819, 821–824, and 826–828.

Table 1 presents statistics of the number of judged and relevant articles,
and passages. In total 42,105 articles were judged. Relevant passages were found
in 4,850 articles. The mean number of relevant articles per topic is 69, but
the distribution is skewed with a median of 49. There were 7,510 highlighted
passages. The mean was 107 passages and the median was 59 passages per topic.2

Table 1 also includes some statistics of the number of clicked articles in the
proxy log. There are in total 225 clicked articles (unique per topic) over in total
125 topics, with a mean of 1.8 and a median of 1 clicked article per topic. We
filtered the log for queries issued by multiple persons, and can also count the
total number of clicks. Here, we see a total of 532 clicks (on the same 225 articles
before), with a mean of 4.3 and a median of 3 clicks per topic. It is clear that
the topics and clicked articles from the log are very different in character from
the ad hoc topics.

2 Recall from above that for the Focused Task the main effectiveness measures is
precision at 1% recall. Given that the average topic has 107 relevant passages in 69
articles, the 1% recall roughly corresponds to a relevant passage retrieved—for many
systems this will be accomplished by the first or first few results.
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Table 2. Statistics over best entry point judgement.

# topics number min max median mean st.dev
best entry point offset 70 4,850 1 87,982 14 1,746.2 4,826.5
first relevant character offset 70 4,850 1 87,982 20 1,821.4 4,862.9
fraction highlighted text 70 4,850 0.0005 1.000 0.580 0.549 0.425
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Fig. 3. Distribution of best entry point offsets.

Figure 2 presents the number of articles with the given number of passages.
The vast majority of relevant articles (3,696 out of 4,850) had only a single
highlighted passage, and the number of passages quickly tapers off.

Assessors where requested to provide a separate best entry point (BEP) judg-
ment, for every article where they highlighted relevant text. Table 2 presents
statistics on the best entry point offset, on the first highlighted or relevant char-
acter, and on the fraction of highlighted text in relevant articles. We first look
at the BEPs. The mean BEP is well within the article with 1,746 but the dis-
tribution is very skewed with a median BEP offset of only 14. Figure 3 shows
the distribution of the character offsets of the 4,850 best entry points. It is clear
that the overwhelming majority of BEPs is at the beginning of the article.

The statistics of the first highlighted or relevant character (FRC) in Table 2
give very similar numbers as the BEP offsets: the mean offset of the first relevant
character is 1,821 but the median offset is only 20. This suggests a relation
between the BEP offset and the FRC offset. Figure 4 shows a scatter plot the
BEP and FRC offsets. Two observations present themselves. First, there is a clear
diagonal where the BEP is positioned exactly at the first highlighted character
in the article. Second, there is also a vertical line at BEP offset zero, indicating
a tendency to put the BEP at the start of the article even when the relevant
text appears later on.

Finally, the statistics on the fraction of highlighted text in Table 2 show that
amount of relevant text varies from almost nothing to almost everything. The
mean fraction is 0.55, and the median is 0.58, indicating that typically over half
the article is relevant. Given that the majority of relevant articles contain such
a large fraction of relevant text plausibly explains that BEPs being frequently
positioned on or near the start of the article.
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Fig. 4. Scatter plot of best entry point offsets versus the first relevant character.

Table 3. Candidate Topic Questionnaire.

B1 How familiar are you with the subject matter of the topic?
B2 Would you search for this topic in real-life?
B3 Does your query differ from what you would type in a web search engine?
B4 Are you looking for very specific information?
B5 Are you interested in reading a lot of relevant information on the topic?
B6 Could the topic be satisfied by combining the information in different (parts of)

documents?
B7 Is the topic based on a seen relevant (part of a) document?
B8 Can information of equal relevance to the topic be found in several documents?
B9 Approximately how many articles in the whole collection do you expect to contain

relevant information?
B10 Approximately how many relevant document parts do you expect in the whole

collection?
B11 Could a relevant result be (check all that apply): a single sentence; a single para-

graph; a single (sub)section; a whole article
B12 Can the topic be completely satisfied by a single relevant result?
B13 Is there additional value in reading several relevant results?
B14 Is there additional value in knowing all relevant results?
B15 Would you prefer seeing: only the best results; all relevant results; don’t know
B16 Would you prefer seeing: isolated document parts; the article’s context; don’t know
B17 Do you assume perfect knowledge of the DTD?
B18 Do you assume that the structure of at least one relevant result is known?
B19 Do you assume that references to the document structure are vague and imprecise?
B20 Comments or suggestions on any of the above (optional)

3.4 Questionnaires

At INEX 2008, all candidate topic authors and assessors were asked to complete a
questionnaire designed to capture the context of the topic author and the topic
of request. The candidate topic questionnaire (shown in Table 3) featured 20
questions capturing contextual data on the search request. The post-assessment
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Table 4. Post Assessment Questionnaire.

C1 Did you submit this topic to INEX?
C2 How familiar were you with the subject matter of the topic?
C3 How hard was it to decide whether information was relevant?
C4 Is Wikipedia an obvious source to look for information on the topic?
C5 Can a highlighted passage be (check all that apply): a single sentence; a single

paragraph; a single (sub)section; a whole article
C6 Is a single highlighted passage enough to answer the topic?
C7 Are highlighted passages still informative when presented out of context?
C8 How often does relevant information occur in an article about something else?
C9 How well does the total length of highlighted text correspond to the usefulness of

an article?
C10 Which of the following two strategies is closer to your actual highlighting:

(I) I located useful articles and highlighted the best passages and nothing more,
(II) I highlighted all text relevant according to narrative, even if this meant high-
lighting an entire article.

C11 Can a best entry point be (check all that apply): the start of a highlighted passage;
the sectioning structure containing the highlighted text; the start of the article

C12 Does the best entry point correspond to the best passage?
C13 Does the best entry point correspond to the first passage?
C14 Comments or suggestions on any of the above (optional)

questionnaire (shown in Table 4) featured 14 questions capturing further con-
textual data on the search request, and the way the topic has been judged (a
few questions on GPXrai were added to the end).

The responses to the questionnaires show a considerable variation over topics
and topic authors in terms of topic familiarity; the type of information requested;
the expected results; the interpretation of structural information in the search
request; the meaning of a highlighted passage; and the meaning of best entry
points. There is a need for further analysis of the contextual data of the topics
in relation to the results of the INEX 2008 Ad Hoc Track.

4 Ad Hoc Retrieval Results

In this section, we discuss, for the three ad hoc tasks, the participants and their
results.

4.1 Participation

A total of 163 runs were submitted by 23 participating groups. Table 5 lists
the participants and the number of runs they submitted, also broken down over
the tasks (Focused, Relevant in Context, or Best in Context); the used query
(Content-Only or Content-And-Structure); and the used result type (Element,
Passage or FOL). Unfortunately, no less than 27 runs turned out to be invalid and
will only be evaluated with respect to their “article retrieval” value in Section 6.

Participants were allowed to submit up to three element result-type runs
per task and three passage result-type runs per task (for all three tasks). This
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Table 5. Participants in the Ad Hoc Track.
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4 University of Otago 0 6 0 6 0 3 3 0 6 6
5 Queensland University of Technology 6 6 6 15 3 9 9 0 18 18
6 University of Amsterdam 6 6 3 9 6 13 0 2 15 15
9 University of Helsinki 3 0 0 3 0 3 0 0 3 3

10 Max-Planck-Institut Informatik 3 1 1 5 0 5 0 0 5 5
12 University of Granada 3 3 3 9 0 9 0 0 9 9
14 University of California, Berkeley 2 0 1 3 0 3 0 0 3 3
16 University of Frankfurt 1 3 3 0 7 7 0 0 7 9
22 ENSM-SE 2 0 0 2 0 0 0 2 2 9
25 Renmin University of China 3 0 1 2 2 4 0 0 4 4
29 INDIAN STATISTICAL INSTITUTE 3 0 0 3 0 3 0 0 3 3
37 Katholieke Universiteit Leuven 6 0 0 3 3 6 0 0 6 6
40 IRIT 0 0 2 1 1 2 0 0 2 6
42 University of Toronto 2 0 0 0 2 2 0 0 2 3
48 LIG 3 2 0 5 0 5 0 0 5 5
55 Doshisha University 0 0 1 0 1 1 0 0 1 3
56 JustSystems Corporation 3 3 3 6 3 9 0 0 9 9
60 Saint Etienne University 3 0 0 3 0 3 0 0 3 9
61 Universit Libre de Bruxelles 0 0 0 0 0 0 0 0 0 2
68 University Pierre et Marie Curie - LIP6 2 0 0 2 0 2 0 0 2 2
72 University of Minnesota Duluth 2 2 2 6 0 6 0 0 6 6
78 University of Waterloo 3 3 4 10 0 8 2 0 10 13
92 University of Lyon3 5 5 5 15 0 15 0 0 15 15

Total runs 61 40 35 108 28 118 14 4 136 163

totaled to 18 runs per participant.3 The submissions are spread well over the ad
hoc retrieval tasks with 61 submissions for Focused, 40 submissions for Relevant
in Context, and 35 submissions for Best in Context.

4.2 Focused Task

We now discuss the results of the Focused Task in which a ranked-list of non-
overlapping results (elements or passages) was required. The official measure
for the task was (mean) interpolated precision at 1% recall (iP[0.01]). Table 6
shows the best run of the top 10 participating groups. The first column gives the
3 As it turns out, two groups submitted more runs than allowed: University of Lyon3

submitted 6 extra element runs, and University of Amsterdam submitted 4 extra
element runs. At this moment, we have not decided on any repercussions other than
mentioning them in this footnote.
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Table 6. Top 10 Participants in the Ad Hoc Track Focused Task.

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p78-FOERStep 0.7657 0.6873 0.5700 0.4879 0.2071
p10-TOPXCOarti 0.6804 0.6795 0.5807 0.5265 0.2967
p48-LIGMLFOCRI 0.7114 0.6665 0.5210 0.4216 0.1441
p92-manualQEin! 0.6664 0.6664 0.6139 0.5540 0.3065
p60-JMUexpe142 0.6918 0.6640 0.5800 0.4986 0.2342
p9-UHelRun394 0.7109 0.6619 0.5532 0.5028 0.2251
p14-T2FBCOPARA 0.7319 0.6395 0.4906 0.4026 0.1392
p25-weightedfi 0.6553 0.6346 0.5490 0.5222 0.2647
p5-GPX1COFOCe 0.6818 0.6344 0.5693 0.5178 0.2587
p29-LMnofb020 0.6830 0.6337 0.5537 0.5100 0.2847

participant, see Table 5 for the full name of group. The second to fifth column
give the interpolated precision at 0%, 1%, 5%, and 10% recall. The sixth column
gives mean average interpolated precision over 101 standard recall levels (0%,
1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top five groups (based on official measure for the task, iP[0.01]).

University of Waterloo Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25. In
addition, scores were boosted by doubling the tf values of the first 10 words
of an element.

Max-Planck-Institut für Informatik Element retrieval run using the CO
query. Description: The TopX system retrieving only article elements, us-
ing a linear combination of a BM25 content score with a BM25 proximity
score that also takes document structure into accout.

LIG Grenoble An element retrieval run using the CO query. Description:
Based on a language Model using a Dirichlet smoothing, and equally weight-
ing element score and its context score, where the context score are based
on the collection-links in Wikipedia.

University of Lyon3 A manual element retrieval run using the CO query.
Description: Using indri search engine in Lemur with manually expanded
queries from CO, description and narrative fields. The run is retrieving only
articles.

Saint Etienne University An element retrieval run using the CO query. De-
scription: A probabilistic model used to evaluate a weight for each tag: ”the
probability that tags distinguishes terms which are the most relevant”, i.e.
based on the fact that the tag contains relevant or non relevant passages.
The resulting tag weights are incorporated into an element-level run with
BM25 weighting.

Based on the information from these and other participants:

– All ten runs use the CO query. The fourth run, p92-manualQEin, uses a
manually expanded query using words from the description and narrative
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Table 7. Top 10 Participants in the Ad Hoc Track Relevant in Context Task.

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-RICBest 0.4052 0.3414 0.2739 0.2184 0.2263
p5-GPX1CORICe 0.3737 0.3430 0.2658 0.2135 0.2097
p92-manualQEin! 0.4138 0.3564 0.2659 0.2069 0.2092
p10-TOPXCOallA 0.3650 0.3049 0.2352 0.1908 0.1933
p4-WHOLEDOC 0.3696 0.3242 0.2476 0.1944 0.1917
p6-inex08artB 0.3481 0.2991 0.2200 0.1726 0.1752
p72-UMDRic2 0.3828 0.3341 0.2342 0.1882 0.1714
p12-p8u3exp511 0.2933 0.2710 0.2154 0.1612 0.1575
p56-VSMRIP05 0.3281 0.2638 0.2097 0.1608 0.1495
p48-LIGMLRIC4O 0.3595 0.3069 0.2303 0.1708 0.1486

fields. The tenth run, p29-LMnofb020, is an automatic run using the title
and description fields. All other runs use only the CO query in the title field.

– All runs retrieve elements as results.
– The systems at rank second (p10-TOPXCOarti), fourth (p92-manualQEin),

and tenth (p29-LMnofb020 ), are retrieving only full articles.

4.3 Relevant in Context Task

We now discuss the results of the Relevant in Context Task in which non-
overlapping results (elements or passages) need to be returned grouped by the
article they came from. The task was evaluated using generalized precision where
the generalized score per article was based on the retrieved highlighted text. The
official measure for the task was mean average generalized precision (MAgP).

Table 7 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task. The first column lists the participant,
see Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).

University of Waterloo Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25, and
grouped the results by articles and ranked the articles by their best scoring
element.

Queensland University of Technology Element retrieval run using the CO
query. Description: GPX run using a //*[about(.,keywords)] query, serving
non-overlapping elements grouped per article, with the articles ordered by
their best scoring element.

University of Lyon3 A manual element retrieval run using the CO query.
Description: the same as the Focused run above. In fact it is literally the
same article ranking as the Focused run. Recall that the run is retrieving
only whole articles.
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Table 8. Top 10 Participants in the Ad Hoc Track Best in Context Task.

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-BICER 0.3811 0.3233 0.2498 0.1979 0.2207
p92-manualQEin! 0.4087 0.3645 0.2784 0.2203 0.2171
p25-weightedfi 0.3454 0.3003 0.2481 0.2004 0.2009
p5-GPX1COBICp 0.3655 0.3367 0.2572 0.2019 0.1970
p6-submitinex 0.3447 0.2870 0.2203 0.1681 0.1693
p10-TOPXCOallB 0.2392 0.2321 0.1875 0.1528 0.1689
p12-p8u3exp501 0.2490 0.2303 0.1935 0.1487 0.1457
p72-UMDBIC1 0.3163 0.2710 0.1857 0.1451 0.1438
p56-VSMRIP08 0.2269 0.2010 0.1736 0.1397 0.1311
p40-xfirmcos07 0.2402 0.1869 0.1347 0.1083 0.0951

Max-Planck-Institut für Informatik Element retrieval run using the CO
query. Description: An element retrieval run using the new BM25 scoring
function (i.e., considering each element as “document” and then comput-
ing a standard BM25 model), selecting non-overlapping elements based on
score, and grouping them per article with the articles ranked by their highest
scoring element.

University of Otago Element retrieval run using the CO query. Description:
BM25 is used to select and rank the top 1,500 documents and whole docu-
ments are selected as the passage. That is, the run is retrieving only whole
articles.

Based on the information from these and other participants:

– The runs ranked sixth (p6-inex08artB) and ninth (p56-VSMRIP05 ) are us-
ing the CAS query. The run ranked third, p92-manualQEin, is using a man-
ually expanded query based on keywords in the description and narrative.
All other runs use only the CO query in the topic’s title field.

– All runs retrieve elements as results.
– Solid article ranking seems a prerequisite for good overall performance, with

third best run, p92-manualQEin, the fifth best run, p4-WHOLEDOC, and
the ninth best run, p56-VSMRIP05, retrieving only full articles.

4.4 Best in Context Task

We now discuss the results of the Best in Context Task in which documents were
ranked on topical relevance and a single best entry point into the document was
identified. The Best in Context Task was evaluated using generalized precision
but here the generalized score per article was based on the distance to the as-
sessor’s best-entry point. The official measure for the task was mean average
generalized precision (MAgP).

Table 8 shows the top 10 participating groups (only the best run per group
is shown) in the Best in Context Task. The first column lists the participant, see
Table 5 for the full name of group. The second to fifth column list generalized
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precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).

University of Waterloo Element retrieval run using the CO query. Descrip-
tion: the run uses the Okapi BM25 model in Wumpus to score all content-
bearing elements such as sections and paragraphs using Okapi BM25, and
kept only the best scoring element per article.

University of Lyon3 A manual element retrieval run using the CO query. De-
scription: the same as the Focused and Relevant in Context runs above. In
fact all three runs have literally the same article ranking. This run is re-
trieving the start of the whole article as best entry point, in other words an
article retrieval run.

Renmin University of China Element retrieval run using the CO query. De-
scription: using language model to compute RSV at leaf level combined with
aggregation at retrieval time, assuming independence.

Queensland University of Technology Run retrieving ranges of elements
using the CO query. The run is always returning a whole article, setting
the BEP at the very start of the article. Description: GPX run using a
//*[about(.,keywords)] query, ranking articles by their best scoring ele-
ment, but transformed to return the complete article as a passages. This
is effectively an article level GPX run.

University of Amsterdam Run retrieving FOL passages using the CO query.
Description: language model with local indegree prior, setting the BEP al-
ways at the start of the article. Since the offset is always zero, this is similar
to an article retrieval run.

Based on the information from these and other participants:

– As for the Relevant in Context Task, we see again that solid article rank-
ing is very important. In fact, we see runs putting the BEP at the start
of all the retrieved articles at rank two (p92-manualQEin), rank four (p5-
GPX1COBICp), and rank five (p6-submitinex ).

– The fourth ranked run, p5-GPX1COBICp, uses ranges of elements, albeit a
degenerate case where always the full article is selected. The fifth run, p6-
submitinex, uses fol passages, albeit again a degenerate case where the BEP
is always the zero offset.

– With the exception of the runs ranked nine (p56-VSMRIP08 ) and ten (p40-
xfirmcos07 ), which used the CAS query, all the other best runs per group
use the CO query.

4.5 Significance Tests

We tested whether higher ranked systems were significantly better than lower
ranked system, using a t-test (one-tailed) at 95%. Table 9 shows, for each task,
whether it is significantly better (indicated by “"”) than lower ranked runs. For
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Table 9. Statistical significance (t-test, one-tailed, 95%).

(a) Focused Task (b) Relevant in Context Task (c) Best in Context Task
1 2 3 4 5 6 7 8 9 10

p78 - - - - - - - - -
p10 - - - - - - - -
p48 - - - - - - -
p92 - - - - - -
p60 - - - - -
p9 - - - -
p14 - - -
p25 - -
p5 -
p29

1 2 3 4 5 6 7 8 9 10
p78 ! - ! ! ! ! ! ! !
p5 - ! - ! ! ! ! !
p92 - - ! ! ! ! !
p10 - - - ! ! !
p4 - - ! ! !
p6 - - - !
p72 - - !
p12 - -
p56 -
p48

1 2 3 4 5 6 7 8 9 10
p78 - - ! ! ! ! ! ! !
p92 - - ! ! ! ! ! !
p25 - ! ! ! ! ! !
p5 ! - ! ! ! !
p6 - - - ! !
p10 - - ! !
p12 - - !
p72 - !
p56 !
p40

example, For the Focused Task, we see that the early precision (at 1% recall) is a
rather unstable measure and none of the runs are significantly different. Hence we
should be careful when drawing conclusions based on the Focused Task results.
For the Relevant in Context Task, we see that the top run is significantly better
than ranks 2 and 4 through 10, the second best run better than ranks 4 and 6
through 10, the third ranked system better than ranks 6 through 10, and the
fourth and fifth ranked systems better than ranks 8 through 10. For the Best
in Context Task, we see that the top run is significantly better than ranks 4
through 10, the second and third runs significantly better than than ranks 5 to
10. The fourth ranked system is better than the systems ranked 5 and 7 to 10,
and the fifth ranked system better than ranks 9 and 10.

5 Analysis of Run and Topic Types

In this section, we will discuss relative effectiveness of element and passage re-
trieval approaches, and on the relative effectiveness of systems using the keyword
and structured queries.

5.1 Elements versus passages

We received 18 submissions using ranges of elements of FOL-passage results,
from in total 5 participating groups. We will look at the relative effectiveness of
element and passage runs.

As we saw above, in Section 4, for all three tasks the best scoring runs used
elements as the unit of retrieval. Table 10 shows the best runs using ranges of
elements or FOL passages for the three ad hoc tasks. All these runs use the CO
query. As it turns out, the best focused run using passages ranks outside the
top scoring runs in Table 6; the best relevant in context run using passages is
ranked fifth among the top scoring runs in Table 7; and the best best in context
run using passages is ranked fourth among the top scoring runs in Table 8. This
outcome is consistent with earlier results using passage-based element retrieval,

18



Table 10. Ad Hoc Track: Runs with ranges of elements or FOL passages.

(a) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p5-GPX2COFOCp 0.6308 0.6301 0.5379 0.4699 0.2502
p22-EMSEFocuse! 0.6745 0.5703 0.4481 0.3845 0.1545

(b) Relevant in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p4-WHOLEDOCPA 0.3696 0.3242 0.2476 0.1944 0.1917
p5-GPX1CORICp 0.3544 0.3209 0.2413 0.1860 0.1891

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p5-GPX1COBICp 0.3655 0.3367 0.2572 0.2019 0.1970
p6-submitinex 0.3447 0.2870 0.2203 0.1681 0.1693
p78-BICPRplus 0.2585 0.2206 0.1642 0.1248 0.1237

where passage retrieval approaches showed comparable but not superior behavior
to element retrieval approaches [4, 5].

However, looking at the runs in more detail, their character is often un-
like what one would expect from a “passage” retrieval run. For Focused, p5-
GPX2COFOCp is an article retrieving run using ranges of elements; and p22-
EMSEFocuse is a manual query run using FOL passages. For Relevant in Con-
text, both p4-WHOLEDOCPA and p5-GPX1CORICp are article retrieving runs
using ranges of elements. For Best in Context, p5-GPX1COBICp is an article
runs using ranges of elements; p6-submitinex is an article run using FOL pas-
sages; and p78-BICPRplus is an element retrieving run using ranges of elements.
So, all but two of the runs retrieve only articles. Hence, this is not sufficient evi-
dence to warrant any conclusion on the effectiveness of passage level results. We
hope and expect that the test collection and the passage runs will be used for
further research into the relative effectiveness of element and passage retrieval
approaches.

5.2 CO versus CAS

We now look at the relative effectiveness of the keyword (CO) and structured
(CAS) queries. As we saw above, in Section 4, one of the best runs per group
for the Relevant in Context Task, and two of the top 10 runs for the Best in
Context Task used the CAS query.

All topics have a CAS query since artificial CAS queries of the form

//*[about(., keyword title)]

were added to topics without CAS title. Table 11 show the distribution of target
elements. In total 86 topics had a non-trivial CAS query.4 These CAS topics
4 Note that some of the wild-card topics (using the “∗” target) in Table 11 had non-

trivial about-predicates and hence have not been regarded as trivial CAS queries.
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Table 11. CAS query target elements over all 135 topics.

Target Element Frequency
∗ 51
section 39
article 30
p 11
figure 3
body 1

are numbered 544–550, 553–556, 564, 567, 568, 572, 574, 576–578, 580, 583, 584,
586–591, 597–605, 607, 608, 610, 615–625, 627, 629–633, 635–640, 646, 651–655,
658, 659, 661–670, 673, and 675–678. As it turned out, 39 of these CAS topics
were assessed. The results presented here are restricted to only these 39 CAS
topics.

Table 12 lists the top 10 participants measured using just the 39 CAS topics
and for the Focused Task (a), the Relevant in Context Task (b), and the Best
in Context Task (c). For the Focused Task the CAS runs score lower than the
CO query runs. For the Relevant in Context Task, the best CAS run would have
ranked fifth among the CO runs. For the Best in Context Task, the best CAS
run would rank seventh among the CO runs. Overall, we see the that teams
submitting runs with both types of queries have higher scoring CO runs, with
participant 6 as a notable exception for Relevant in Context.

6 Analysis of Article Retrieval

In this section, we will look in detail at the effectiveness of Ad Hoc Track submis-
sions as article retrieval systems. We look first at the article rankings in terms of
the Ad Hoc Track judgements—treating every article that contains highlighted
text as relevant. Then, we look at the article rankings in terms of the clicked
pages for the topics derived from the proxy log—treating every clicked articles
as relevant.

6.1 Article retrieval: Relevance Judgments

We will first look at the topics judged during INEX 2008, the same topics as in
earlier sections, but now using the judgments to derive standard document-level
relevance by regarding an article as relevant if some part of it is highlighted
by the assessor. Throughout this section, we derive an article retrieval run from
every submission using a first-come, first served mapping. That is, we simply keep
every first occurrence of an article (retrieved indirectly through some element
contained in it) and ignore further results from the same article.

We use trec eval to evaluate the mapped runs and qrels, and use mean aver-
age precision (map) as the main measure. Since all runs are now article retrieval
runs, the differences between the tasks disappear. Moreover, runs violating the
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Table 12. Ad Hoc Track CAS Topics: CO runs (left-hand side) versus CAS runs
(right-hand side).

(a) Focused Task

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p60-JMUexpe136 0.7321 0.7245 0.6416 0.5861 0.2926
p48-LIGMLFOCRI 0.7496 0.7209 0.5307 0.4440 0.1569
p78-FOER 0.7263 0.7064 0.6070 0.5470 0.2222
p5-GPX1COFOCe 0.7167 0.6970 0.6416 0.5607 0.2613
p29-LMnofb020 0.7193 0.6759 0.5919 0.5553 0.2938
p10-TOPXCOallF 0.7482 0.6657 0.5514 0.4872 0.1923
p25-weightedfi 0.6665 0.6634 0.5915 0.5588 0.2662
p6-inex08artB 0.6689 0.6571 0.5397 0.4941 0.2098
p9-UHelRun394 0.7024 0.6515 0.5555 0.5189 0.2246
p72-UMDFocused 0.7206 0.6386 0.4913 0.3812 0.1111

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP
p6-inex08artB 0.6514 0.6379 0.5947 0.5072 0.2255
p56-VSMRIP02 0.7515 0.6314 0.4760 0.3656 0.1396
p5-GPX3COSFOC 0.6232 0.6220 0.5521 0.4617 0.2134
p25-RUCLLP08 0.5969 0.5969 0.5815 0.5439 0.2486
p37-kulcaselem 0.6817 0.5611 0.3525 0.2720 0.1256
p42-B2U0visith 0.6030 0.5360 0.4823 0.4442 0.1736
p16-001RunofUn 0.3110 0.2268 0.1673 0.1206 0.0364

(b) Relevant in Context Task

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-RICBest 0.4760 0.3769 0.2975 0.2261 0.2476
p5-GPX1CORICe 0.3946 0.3518 0.2660 0.2156 0.2161
p4-WHOLEDOC 0.3936 0.3492 0.2491 0.1991 0.2114
p10-TOPXCOallA 0.3892 0.3170 0.2339 0.1897 0.1963
p92-manualQEin! 0.3767 0.3370 0.2474 0.1943 0.1920
p6-inex08artB 0.3711 0.3114 0.2274 0.1778 0.1892
p72-UMDRic2 0.3908 0.3412 0.2280 0.1858 0.1740
p12-p8u3exp511 0.3178 0.2855 0.2227 0.1622 0.1673
p48-LIGMLRIC4O 0.3769 0.3384 0.2451 0.1827 0.1581
p56-VSMRIP04 0.2264 0.2005 0.1664 0.1345 0.1263

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p6-inex08artB 0.3799 0.3292 0.2379 0.1831 0.1932
p5-GPX3COSRIC 0.3482 0.3232 0.2381 0.1918 0.1762
p56-VSMRIP05 0.3401 0.2796 0.2133 0.1610 0.1498
p16-009RunofUn 0.0153 0.0156 0.0123 0.0095 0.0023

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP
p78-BICER 0.3883 0.3361 0.2514 0.1931 0.2162
p25-weightedfi 0.3342 0.3016 0.2360 0.1934 0.1992
p5-GPX1COBICp 0.3663 0.3358 0.2494 0.1911 0.1977
p92-manualQEin! 0.3677 0.3357 0.2558 0.2052 0.1939
p10-TOPXCOallB 0.2424 0.2397 0.1769 0.1447 0.1723
p6-submitinex 0.3454 0.3037 0.2248 0.1698 0.1707
p12-p8u3exp501 0.2536 0.2373 0.1924 0.1412 0.1440
p72-UMDBIC1 0.3171 0.2725 0.1746 0.1366 0.1363
p56-VSMRIP09 0.1562 0.1537 0.1377 0.1122 0.1034
p40-xfirmbicco 0.1594 0.1521 0.1357 0.1122 0.0656

Participant gP[5] gP[10] gP[25] gP[50] MAgP
p5-GPX3COSBIC 0.3109 0.2883 0.2235 0.1780 0.1659
p56-VSMRIP08 0.2123 0.1911 0.1481 0.1214 0.1227
p40-xfirmcos07 0.2381 0.1794 0.1348 0.1078 0.0908
p55-KikoriBest 0.1817 0.1721 0.1422 0.1123 0.0803
p16-006RunofUn 0.0307 0.0347 0.0307 0.0261 0.0128

task requirements—most notably non-overlapping results for all tasks, and hav-
ing scattered results from the same article in relevant in context—are now also
considered, and we work with all 163 runs submitted to the Ad Hoc Track.

Table 13 shows the best run of the top 10 participating groups. The first
column gives the participant, see Table 5 for the full name of group. The second
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Table 13. Top 10 Participants in the Ad Hoc Track: Article retrieval.

Participant P5 P10 1/rank map bpref
p78-BICER 0.6200 0.5257 0.8711 0.3753 0.3693
p92-manualQEin! 0.6371 0.5843 0.8322 0.3601 0.3917
p10-TOPXCOarti 0.5914 0.5386 0.8635 0.3489 0.3620
p5-GPX1COBICe 0.5686 0.5214 0.7868 0.3390 0.3580
p37-kulcoeleme 0.5229 0.4500 0.7468 0.3240 0.3335
p25-weightedfi 0.4914 0.4600 0.7192 0.3224 0.3350
p60-JMUexpe136 0.5429 0.4814 0.7843 0.3173 0.3380
p29-VSMfbElts0 0.5486 0.4800 0.7955 0.3163 0.3385
p9-UHelRun293 0.5714 0.4957 0.7766 0.3113 0.3317
p4-SWKL200 0.5657 0.4943 0.7950 0.3086 0.3292

and third column give the precision at ranks 5 and 10, respectively. The fourth
column gives the mean reciprocal rank. The fifth column gives mean average
precision. The sixth column gives binary preference measures (using the top R
judged non-relevant documents). Recall from the above that second ranked run
(p92-manualQEin) is a manual article retrieval run submitted to all three tasks.
Also the run ranked three (p10-TOPXCOarti) and the run ranked seven (p60-
JMUexpe136 ) retrieve exclusively articles. The relative effectiveness of these
article retrieval runs in terms of their article ranking is no surprise. Furthermore,
we see submissions from all three ad hoc tasks. Most notably runs from the Best
in Context task at ranks 1, 2, 4, and 6; runs from the Focused task at ranks 2,
3, 5, 7, 8, and 9; and runs from the Relevant in Context task at ranks 2 and 10.

If we break-down all runs over the original tasks, shown on the left-hand
side of Table 14), we can compare the ranking to Section 4 above. We see some
runs that are familiar from the earlier tables: three Focused runs correspond to
Table 6, five Relevant in Context runs correspond to Table 7, and seven Best in
Context runs correspond to Table 8. More formally, we looked at how the two
system rankings correlate using kendall’s tau.

– Over all 61 Focused task submissions the system rank correlation is 0.526
between iP[0.01] and map, and 0.574 between MAiP and map.

– Over all 35 Relevant in Context submissions the system rank correlation
between MAgP and map is 0.792.

– Over all 40 Best in Context submissions the system rank correlation is 0.787

Overall, we see a reasonable correspondence between the rankings for the ad hoc
tasks in Section 4 and the rankings for the derived article retrieval measures.
The correlation with the Focused task runs is much lower than with the Relevant
in Context and Best in Context tasks. This makes sense, since the ranking of
articles is an important part of the two “in context” tasks.

6.2 Article retrieval: Clicked pages

In addition to the topics created and assessed by INEX participants, we also
included 150 queries derived from a proxy log, and can also construct pseudo-
relevance judgments by regarding every clicked Wikipedia article as relevant.
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Table 14. Top 10 Participants in the Ad Hoc Track: Article retrieval per task
over judged topics (left) and clicked pages (right).

(a) Focused Task
Participant P5 P10 1/rank map bpref
p92-manualQEin! 0.6371 0.5843 0.8322 0.3601 0.3917
p10-TOPXCOarti 0.5914 0.5386 0.8635 0.3489 0.3620
p5-GPX1COFOCp 0.5686 0.5214 0.7868 0.3390 0.3580
p37-kulcoeleme 0.5229 0.4500 0.7468 0.3240 0.3335
p78-FOER 0.5714 0.4986 0.7995 0.3230 0.3273
p60-JMUexpe136 0.5429 0.4814 0.7843 0.3173 0.3380
p25-weightedfi 0.4914 0.4600 0.7192 0.3164 0.3319
p29-VSMfbElts0 0.5486 0.4800 0.7955 0.3163 0.3385
p9-UHelRun293 0.5714 0.4957 0.7766 0.3113 0.3317
p6-inex08artB 0.5486 0.4757 0.7851 0.2990 0.3104

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p60-JMUexpe142 0.1536 0.0862 0.5624 0.4853 0.8250
p48-LIGMLFOCRI 0.1449 0.0833 0.5191 0.4596 0.7153
p10-TOPXCOarti 0.1522 0.0841 0.5164 0.4538 0.8167
p78-FOER 0.1304 0.0819 0.4979 0.4404 0.8136
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7184
p55-KikoriFocu 0.1261 0.0732 0.4334 0.3727 0.7785
p22-EMSEFocuse! 0.1203 0.0783 0.4233 0.3704 0.8105

(b) Relevant in Context Task
Participant P5 P10 1/rank map bpref
p92-manualQEin! 0.6371 0.5843 0.8322 0.3601 0.3917
p5-GPX1CORICp 0.5686 0.5214 0.7868 0.3390 0.3580
p78-RICBest 0.5800 0.4943 0.8161 0.3371 0.3418
p60-JMUexpe150 0.5857 0.4886 0.8266 0.3107 0.3181
p10-TOPXCOallA 0.5257 0.4757 0.8226 0.3094 0.3275
p4-SWKL200 0.5657 0.4943 0.7950 0.3086 0.3292
p6-inex08artB 0.5486 0.4757 0.7851 0.2989 0.3104
p56-VSMRIP05 0.5486 0.4514 0.7752 0.2869 0.3041
p72-UMDRic2 0.5971 0.5157 0.8508 0.2715 0.3042
p22-EMSERICStr! 0.5029 0.4529 0.7079 0.2712 0.3054

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p60-JMUexpe150 0.1536 0.0862 0.5624 0.4853 0.8167
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p48-LIGMLRIC4O 0.1464 0.0841 0.5238 0.4647 0.7081
p78-RICBest 0.1348 0.0812 0.4979 0.4422 0.8126
p10-TOPXCOallA 0.1333 0.0775 0.5139 0.4397 0.7863
p72-UMDRic2 0.1275 0.0717 0.4560 0.4088 0.7526
p4-SWKL200 0.1159 0.0732 0.4168 0.3701 0.8007
p55-KikoriRele 0.1232 0.0710 0.4125 0.3501 0.7712

(c) Best in Context Task
Participant P5 P10 1/rank map bpref
p78-BICER 0.6200 0.5257 0.8711 0.3753 0.3693
p92-manualQEin! 0.6371 0.5843 0.8322 0.3601 0.3917
p5-GPX1COBICe 0.5686 0.5214 0.7868 0.3390 0.3580
p10-TOPXCOallB 0.5257 0.4757 0.8226 0.3261 0.3340
p25-weightedfi 0.4914 0.4600 0.7192 0.3224 0.3350
p60-JMUexpe151 0.5857 0.4886 0.8266 0.3086 0.3178
p6-submitinex 0.5457 0.4729 0.7793 0.2965 0.3081
p56-VSMRIP08 0.5486 0.4514 0.7752 0.2869 0.3041
p72-UMDBIC2 0.5886 0.5129 0.8440 0.2738 0.3016
p12-p8u3exp501 0.4771 0.4343 0.6997 0.2709 0.3058

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-submitinex 0.1594 0.0862 0.5673 0.4976 0.8164
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p60-JMUexpe151 0.1536 0.0855 0.5624 0.4844 0.8214
p78-BICPRplus 0.1522 0.0841 0.5432 0.4673 0.7799
p10-TOPXCOallB 0.1333 0.0775 0.5139 0.4398 0.8205
p72-UMDBIC1 0.1275 0.0710 0.4482 0.4011 0.7398
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7160
p55-KikoriBest 0.1261 0.0732 0.4334 0.3727 0.7785
p56-VSMRIP08 0.1130 0.0659 0.3943 0.3445 0.7258

Table 15 shows the best run of the top 10 participating groups. The first
column gives the participant, see Table 5 for the full name of group. The sec-
ond and third column give the precision at ranks 5 and 10, respectively. The
fourth column gives the mean reciprocal rank. The fifth column gives mean av-
erage precision. The sixth column gives binary preference measures (using the
top R judged non-relevant documents). Compared to the judged topics, we im-
mediately see much lower scores for the early precision measures (precision at
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Table 15. Top 10 Participants in the Ad Hoc Track: Clicked articles.

Participant P5 P10 1/rank map bpref
p5-Terrier 0.1594 0.0877 0.5904 0.5184 0.8266
p6-inex08artB 0.1623 0.0870 0.5821 0.5140 0.8150
p60-JMUexpe150 0.1536 0.0862 0.5624 0.4853 0.8167
p92-autoindri0 0.1565 0.0884 0.5601 0.4853 0.8211
p78-BICPRplus 0.1522 0.0841 0.5432 0.4673 0.7799
p48-LIGMLRIC4O 0.1464 0.0841 0.5238 0.4647 0.7081
p10-TOPXCOarti 0.1522 0.0841 0.5164 0.4538 0.8167
p72-UMDRic2 0.1275 0.0717 0.4560 0.4088 0.7526
p40-xfirmcos07 0.1217 0.0717 0.4301 0.3748 0.7184
p55-KikoriFocu 0.1261 0.0732 0.4334 0.3727 0.7785

5 and 10, and reciprocal ranks), while at the same time higher scores for the
overall measures (map and bpref). This is a result of the very low numbers of
relevant documents, 1.8 on average, that make it impossible to get a grips on
recall aspects. The runs ranked first (p5-Terrier), fourth (p92-autoindri0 ), and
seventh (p10-TOPXCOarti) retrieve exclusively full articles. Again, it is no great
surprise that these runs do well for the task of article retrieval.

The resulting ranking is quite different from the article ranking based on the
judged ad hoc topics in Table 13. They have only one run in common, although
they agree on five of the ten participants. Looking, more formally, at the system
rank correlations between the two types of article retrieval we see the following.

– Over all 163 submissions, the system rank correlation is 0.359.
– Over the 76 Focused task submissions, the correlation is 0.363.
– Over the 49 Relevant in task submissions, the correlation is 0.374.
– Over the 38 Best in Context task submissions, the correlation is 0.388.

Hence the judged topics above and the topics derived from the proxy log vary
considerable. A large part of the explanation is the dramatic difference between
the numbers of relevant articles, with 69.3 on average for the judged topics and
1.8 on average for the proxy log topics.

7 Discussion and Conclusions

In this paper we provided an overview of the INEX 2008 Ad Hoc Track that
contained three tasks: For the Focused Task a ranked-list of non-overlapping
results (elements or passages) was required. For the Relevant in Context Task
non-overlapping results (elements or passages) grouped by the article that they
belong to were required. For the Best in Context Task a single starting point
(element’s starting tag or passage offset) per article was required. We discussed
the results for the three tasks, and analysed the relative effectiveness of element
and passage runs, and of keyword (CO) queries and structured queries (CAS).
We also look at effectiveness in term of article retrieval, both using the judged
topics and using queries and clicks derived from a proxy log.
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When examining the relative effectiveness of CO and CAS we found that
for all tasks the best scoring runs used the CO query. This is in contrast with
earlier results showing that structural hints can help promote initial precision [8].
Part of the explanation may be in the low number of CAS submissions (28) in
comparison with the number of CO submissions (108). Only 39 of the 70 judged
topics had a non-trivial CAS query, and the majority of those CAS queries made
only reference to particular tags and not on their structural relations. This may
have diminished the value of the CAS query in comparison with earlier years.

Given the efforts put into the fair comparison of element and passage re-
trieval approaches, the number of passage and FOL submissions was disappoint-
ing. Twenty-two submissions used ranges of elements or FOL passage results,
whereas 118 submissions used element results. In addition, many of the pas-
sage or FOL submissions used exclusively full articles as results. Although we
received too few non-element runs to draw clear conclusions, we saw that the
passage based approaches were competitive, but not superior to element based
approaches. This outcome is consistent with earlier results using passage-based
element retrieval [4, 5].

As in earlier years, we saw that article retrieval is a reasonably effective at
XML-IR: for each of the ad hoc tasks there were three article-only runs among
the best runs of the top 10 groups. When looking at the article rankings inherent
in all Ad Hoc Track submissions, we saw that again three of the best runs of
the top 10 groups in terms of article ranking (across all three tasks) were in fact
article-only runs. This also suggests that element-level or passage-level evidence
is still valuable for article retrieval. When comparing the system rankings in
terms of article retrieval with the system rankings in terms of the ad hoc retrieval
tasks, over the exact same topic set, we see a reasonable correlation especially
for the two “in context” tasks. The systems with the best performance for the ad
hoc tasks, also tend to have the best article rankings. When we look at a different
topic set derived from a proxy log, and a shallow set of clicked pages rather than
a full-blown IR test collection, we see notable differences. Given the low number
of relevant articles (1.8 on average) compared to the ad hoc judgments (69.3 on
average), the clicked pages focus exclusively on precision aspects. This leads to
a different system ranking, although there is still some agreement on the best
groups. The differences between these two sets of topics require further analysis.

Finally, the Ad Hoc Track had two main research questions. The first main
research question was the comparative analysis of element and passage retrieval
approaches, hoping to shed light on the value of the document structure as
provided by the XML mark-up. We found that the best performing system used
predominantly element results, although the number of non-element retrieval
runs submitted is too low to draw any definite conclusions. The second main
research question was to compare focused retrieval directly to traditional article
retrieval. We found that the best scoring Ad Hoc Track submissions also tend to
have the best article ranking, and that the best article rankings were generated
using element-level evidence. For both main research questions, we hope and
expect that the resulting test collection will prove its value in future use. After
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all, the main aim of the INEX initiative is to create bench-mark test-collections
for the evaluation of structured retrieval approaches.
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A Appendix: Full run names

Group Run Label Task Query Results Notes
4 151 p4-SWKL200 RiC CO Pas
4 152 p4-WHOLEDOC RiC CO Ele Article-only
4 153 p4-WHOLEDOCPA RiC CO Pas Article-only
5 122 p5-Terrier BiC CO Pas Article-only
5 123 p5-Terrier Foc CO Pas Article-only
5 124 p5-Terrier RiC CO Pas Article-only
5 133 p5-GPX2COFOCp Foc CO Pas Article-only
5 138 p5-GPX1COBICe BiC CO Ele
5 139 p5-GPX1COFOCe Foc CO Ele
5 140 p5-GPX1CORICe RiC CO Ele
5 141 p5-GPX3COSBIC BiC CAS Ele
5 142 p5-GPX3COSFOC Foc CAS Ele
5 143 p5-GPX3COSRIC RiC CAS Ele
5 144 p5-GPX1COBICp BiC CO Pas Article-only
5 145 p5-GPX1COFOCp Foc CO Pas Article-only
5 146 p5-GPX1CORICp RiC CO Pas Article-only
6 255 p6-submitinex BiC CO FOL Article-only
6 264 p6-inex08artB RiC CAS Ele
6 265 p6-inex08artB RiC CO Ele
6 269 p6-inex08artB RiC CO Ele
6 270 p6-inex08artB Foc CAS Ele
6 271 p6-inex08artB Foc CO Ele
6 274 p6-inex08artB Foc CO Ele
6 276 p6-inex08artB Foc CO Ele
9 174 p9-UHelRun293 Foc CO Ele
9 176 p9-UHelRun394 Foc CO Ele
10 91 p10-TOPXCOallF Foc CO Ele
10 92 p10-TOPXCOallB BiC CO Ele
10 93 p10-TOPXCOallA RiC CO Ele
10 207 p10-TOPXCOarti Foc ? Ele Article-only
12 97 p12-p8u3exp501 BiC CO Ele
12 100 p12-p8u3exp511 RiC CO Ele
14 205 p14-T2FBCOPARA Foc CO Ele
16 233 p16-009RunofUn RiC CAS Ele
16 234 p16-006RunofUn BiC CAS Ele
16 244 p16-001RunofUn Foc CAS Ele
22 62 p22-EMSEFocuse Foc CO Ele Manual Invalid
22 66 p22-EMSEFocuse Foc CO FOL Manual
22 68 p22-EMSERICStr RiC CO Ele Manual Invalid
25 30 p25-RUCLLP08 Foc CAS Ele
25 278 p25-weightedfi Foc CO Ele
Continued on Next Page. . .
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Group Run Label Task Query Results Notes
25 282 p25-weightedfi BiC CO Ele
29 238 p29-VSMfbElts0 Foc CO Ele
29 253 p29-LMnofb020 Foc CO Ele Article-only
37 227 p37-kulcaselem Foc CAS Ele
37 230 p37-kulcoeleme Foc CO Ele
40 54 p40-xfirmbicco BiC CO Ele
40 296 p40-xfirmcos07 BiC CAS Ele
40 297 p40-xfirmcos07 Foc CAS Ele Invalid
42 299 p42-B2U0visith Foc CAS Ele
48 59 p48-LIGMLFOCRI Foc CO Ele
48 72 p48-LIGMLRIC4O RiC CO Ele
55 279 p55-KikoriFocu Foc CAS Ele Invalid
55 280 p55-KikoriRele RiC CAS Ele Invalid
55 281 p55-KikoriBest BiC CAS Ele
56 190 p56-VSMRIP02 Foc CAS Ele
56 197 p56-VSMRIP04 RiC CO Ele Article-only
56 199 p56-VSMRIP05 RiC CAS Ele Article-only
56 202 p56-VSMRIP08 BiC CAS Ele
56 224 p56-VSMRIP09 BiC CO Ele
60 11 p60-JMUexpe136 Foc CO Ele Article-only
60 53 p60-JMUexpe142 Foc CO Ele
60 81 p60-JMUexpe150 RiC CO Ele Invalid
60 82 p60-JMUexpe151 BiC CO Ele Invalid
72 106 p72-UMDFocused Foc CO Ele
72 154 p72-UMDBIC1 BiC CO Ele
72 155 p72-UMDBIC2 BiC CO Ele
72 277 p72-UMDRic2 RiC CO Ele
78 156 p78-FOER Foc CO Ele
78 157 p78-FOERStep Foc CO Ele
78 160 p78-BICER BiC CO Ele
78 163 p78-BICPRplus BiC CO Pas
78 164 p78-RICBest RiC CO Ele
92 177 p92-autoindri0 BiC CO Ele Article-only
92 178 p92-autoindri0 Foc CO Ele Article-only
92 179 p92-autoindri0 RiC CO Ele Article-only
92 183 p92-manualQEin BiC CO Ele Manual Article-only
92 184 p92-manualQEin Foc CO Ele Manual Article-only
92 185 p92-manualQEin RiC CO Ele Manual Article-only
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Exploiting User Navigation to Improve Focused
Retrieval

M. S. Ali, Mariano P. Consens, Bassam Helou, and Shahan Khatchadourian

University of Toronto
{sali, consens, bassam, shahan}@cs.toronto.edu

Abstract. A common approach for developing XML element retrieval
systems is to adapt text retrieval systems to retrieve elements from docu-
ments. Two key challenges in this approach are to effectively score struc-
tural queries and to control overlap in the output across different search
tasks. In this paper, we continue our research into the use of navigation
models for element scoring as a way to represent the user’s preferences
for the structure of retrieved elements. Our goal is to improve search
systems using structural scoring by boosting the score of desirable ele-
ments and to post-process results to control XML overlap. This year we
participated in the Ad-hoc Focused, Entity Ranking and the Efficiency
Tracks, where we focused our attention primarily on the effectiveness of
small navigation models. Our experiments involved three modifications
to our previous work; (i) using separate summaries for boosting and
post-processing, (ii) introducing summaries that are generated from user
study data, and (iii) confining our results to using small models. Our
results suggest that smaller models can be effective but more work needs
to be done to understand the cases where different navigation models
may be appropriate.

1 Introduction

At INEX 2008, the University of Toronto investigated the effectiveness of using
XML summaries [8] in structural scoring for XML retrieval. An XML summary
is a graph-based model that is found by partitioning elements in the collection.
By weighting the graph, it represents a navigation model of users traversing ele-
ments in their search for relevant information to satisfy their information need.
Our use of navigation models was originally developed for use with the perfor-
mance evaluation measure structural relevance (SR) [5, 2]. SR is a measure of
the expected relevance value of an element in a ranked list, given the probability
of whether the user will see the element one or more times while seeking relevant
information in the higher-ranked results [5]. SR has been shown to be a stable
measure that effectively evaluates element, passage, document and tree retrieval
systems [2]. Its effectiveness has been validated using navigation models based
on either collection statistics or user assessments.

Our search engine uses the Lucene text retrieval system as its basis. Our
main adaptation of it is that we index the collection based on XML elements
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as documents. Specifically, for INEX 2008, we considered indexes for article,
section and p elements. This allowed us to consider the scoring of elements in
much the same way as documents would be scored in classical text retrieval.
To structurally score elements, we employed boosts corresponding to the label
path of the candidate element. In focused retrieval, a significant problem of
using Lucene in this way is that it does not prevent overlap (which is known to
degrade the quality of results) and so a post-processor is used to control overlap.
A key feature of our approach is that both score boosting and post-processing
use navigation models in structural scoring.

Our approach to structural scoring involved: (i) using separate and inde-
pendent navigation models for boosting and post-processing, (ii) introducing
navigation models that are generated from user study data, and (iii) focusing
on the effectiveness of very small models. In this paper, we show how naviga-
tion models have been integrated into structural scoring by using concepts from
structural relevance. In particular, we show experimentally how post-processing
can be used to not only control overlap, but also to improve the system effective-
ness. We do this by presenting three different approaches to post-processing: (a)
INEX overlap control where the lowest ranking element in a pair of overlapping
elements is removed from the results, (b) Navigation overlap control where the
element which was most highly weighted using a pre-selected navigation model
is removed from the results, and (c) Ranked list control where the set of elements
from the same document that had the highest structural relevance [2] would be
included in the system output.

Existing approaches to XML retrieval have relied on rote return structures
and ad-hoc tuning parameters for structural scoring of elements. A naive ap-
proach assumes that XML documents are structured as articles, and so only
logical elements such as articles, sections and paragraphs are returned in the
search results. Another approach is to allow users to specify structure, such as
using NEXI which is a notation for expressing XML queries that includes struc-
tural constraints and hints [15]. NEXI can be used in conjunction with XPATH
to retrieve strict XML structural paths according to what the user specifies in
the query. Other approaches to structural retrieval, like XRANK [9] or Clarke’s
Re-ranking Algorithm [7], use element weighting schemes to iteratively score and
re-rank results to improve the final system output. In this work, we rely on a
probabilistic model of navigation developed for the evaluation measure struc-
tural relevance. Other models exist, most notably the model that underlies the
PRUM evaluation measure [12].

We first investigated the effectiveness of using XML summaries as a way to
introduce structural scoring into XML retrieval at INEX 2007 in the Thorough
Ad Hoc Track in element retrieval [3]. Our initial approach allowed complex
modeling of user navigation using large models that were derived solely from
collection statistics in XML summaries (such as element length, element depth
and element label paths). In this work, we greatly extend this work, and, in
particular, focus on the effectiveness of using smaller models, and weighting
schemes that are based on user assessments.
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The paper is structured as follows. In Section 2, we review the preliminary
concepts of the information seeking behaviour of users and structural relevance.
In Section 3, we present the navigation models that we used in INEX 2008. In
Section 4, we present the XML retrieval system that was used in this work. In
Section 5, we present our results for INEX 2008. Finally, in Section 6 we discuss
our findings and future work.

2 Preliminary Concepts

In structural scoring in XML retrieval, the key challenge is to differentiate among
candidate elements those that meet the user’s preference for elements whose
structure supports how they fulfill their information need or those that minimize
the redundancy that a user will experience while seeking for relevant information
from search results. The goal of a focused system is to retrieve non-overlapping
elements (or passages) that contain relevant information. For INEX 2008, only
focused results, which contain no overlapping elements, are considered. We show
how the more general concept of redundancy in structural relevance can be used
as an effective way to address problems with overlap in XML retrieval [10] by
providing a means to structurally score XML elements based on user preferences
and XML element structural characteristics.

In this work, the redundancy between elements is measured using structural
relevance and found using different navigation models of how users experience
redundancy while browsing for relevant information in retrieved documents. In
Section 2.1, the information seeking behaviour of users fulfilling an information
need is presented. This is followed by Section 2.2 where structural relevance and
its underlying probabilistic model of redundancy based on user navigation is
presented.

2.1 Information Seeking Behaviour

In element retrieval, we assume that users consult the system output going from
one rank to the next, visiting the element in context [2]. The user stops consult-
ing the output when their information need has been satisfied. A visited element
is considered to have been seen by the user. After seeing an element, the user
may visit additional elements by browsing out of the element into the rest of
its parent XML document. This process of visiting, browsing and seeing con-
tent (in elements) within documents to seek relevant information is called user
navigation. During this process the user may encounter content in already seen
elements, and, thus, redundant content. If the user tolerates redundant content,
then the relevant content that is seen a number of times remains relevant to the
user. If the user does not tolerate redundant content, then relevant content is
considered non-relevant if already seen. In this work, we assume that the user
does not tolerate (redundancy) seeing content more than once. In structural rel-
evance, overlap is a special-case of redundancy where overlapping elements are
on the same XML branch in the same document instance [5].
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2.2 Structural Relevance

Structural relevance (SR) [2] is a measure of the relevance of the results given
that the user may find some of the results in the output redundant. Here, we
present structural relevance for elements (although, more generally, these con-
cepts hold for trees and passages). We define the redundancy of an element to a
user as whether the content of the element has been previously seen by the user
from the search results. We measure it by finding the probability of whether the
content has been seen more than once while the user was seeking to fulfill their
information need, given the search results and how the user navigates between
elements within the collection to find relevant information.

SR depends on the user’s browsing history, which is the set of elements that
a user has viewed. We calculate SR as the expected relevance value of a ranked
list given that the user does not find the results redundant:

SR(R) =
k∑

i=1

rel(ei) · (1− p(ei;R[ei−1])) (1)

where the system output R = {e1, e2, . . . , ek} is a ranked list of k elements, the
browsing history R[ei−1] =

⋃i−1
j=1 ej is the set of elements that are ranked higher

than the i-th element ei ∈ R, rel(ei) ∈ [0, 1] is the relevance value of element ei,
and the redundancy p(ei;R[ei−1]) is the probability that the element ei is seen
more than once by the user.

In SR, redundancy of an element is defined as the probability that a user
has seen an element given that they may have navigated to it from a previously
seen element. The following definition formalizes the probabilistic model of user
navigation that underlies redundancy in SR.

User Navigation. The probability that the content in an element is seen
by a user while visiting a different element is

p(e; f) = P (e seen|Visit to f) (2)

If e and f are from two different documents then e is not seen and p(e; f) = 0; if
e = f then e is seen with certainty and p(e; f) = 1; otherwise, e and f are from
the same document, so e is seen with some probability 0 ≤ p(e; f) ≤ 1.

The redundancy of the element e in the ranked list R when the user does not
tolerate seeing redundant content is p(ei;R[ei−1]) =

∏i−1
j=1 1− p(ei; ej) . In [2],

it was shown how User Navigation (above) can be simplified to p(e; f) = π(e),
the steady-state probability that the user will see e, if the user can navigate to
every element in a document from any other element in the document (where
e $= f , e and f are from the same document, and e has not been previously seen
by the user).

We model user navigation using a navigation graph that represents docu-
ments in the collection. Each node in the graph corresponds to a partition of
the elements in the collection. Every element in the collection is included in a
partition in the navigation graph (which, as an aside, is precisely an XML sum-
mary). To calculate the probabilities for user navigation, weights are ascribed to
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Fig. 1. Examples of (i) Document instance, (ii) p∗ summary, (iii) p∗|c summary, and
(iv) user navigation graph.

the edges (or paths) of the navigation graph. These weights are then normalized
across each row, and the resultant transition matrix represents the user navi-
gation probabilities in Equation 2. To find the steady-state probabilities π(e),
the matrix is iteratively multiplied with itself until all rows are equal [13] (pp.
200–213).

In this section, we presented information seeking behaviour and structural
relevance. In the next section, we present different scenarios for creating the
XML summary of the collection, and weighting the resultant navigation graph
to determine the steady-state probabilities that we can use for structural scoring
of elements.

3 Proposed Navigation Models for INEX 2008

Navigation models represent how users navigate between elements while seeking
relevant information from structured search results. In structural scoring, we use
these models to both boost candidate retrieval elements and for post-processing
ranked lists to control overlap. In this section, we provide the background to
understand what is entailed in a navigation model and the navigation models
considered in INEX 2008.

XML structural summaries (referred to as summaries) provide a way to rep-
resent navigation models based on the structure of documents in the collection.
We refer to these models as summary navigation models. Summaries are graphs
representing relationships between sets of document elements with a common
structure (paths, subtrees, etc.). For instance, AxPRE summaries [8] define a
broad range of the different summaries available in the literature. They are cre-
ated using an axis path regular expression language that is capable of describing
a plethora of partitioning schemes. For example, a p∗ summary partitions XML
elements based on their incoming paths, since p∗ is the axis path regular ex-
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pression describing paths of parent (p) axis traversals. Similarly, a p∗|c summary
is the axis path regular expression describing paths of parent (p) with a single
child (c) axis traversals. Figure 1 shows an example Wikipedia article instance
in (i), its p∗ summary in (ii), and its p∗|c summary in (iii). The elements in the
summary partitions are called the extent of the summary partition.

Summary navigation models are weighted via collection statistics of child
nodes that are used to bi-directionally weight the edges (as opposed to paths) in
the navigation graph. Examples of different weighting statistics include content
length, extent size, and element depth. Content length weights are the number
of characters of content in the elements in the extent of the child nodes. Extent
size is the number of elements in the extent of a child node. Finally, depth
weights are the same as content but damped (divided) by the path depth of the
elements in the extent of the child nodes. Using the methodology for finding pi(e)
described in the previous section, and 2343 randomly selected Wikipedia articles
summarized using a p∗ summary and whose partitions were mapped to the user
navigation graph shown in Figure 1(iv), we get Table 1C which shows summary
navigation models for Wikipedia based on path, content and depth weights.

Navigation models can also be generated from user assessments. We refer
to these models as user navigation models. In [6], assessments from the INEX
2006 Interactive Track user study were used to produce user navigation models.
The INEX 2006 user study consisted of 83 participants for 12 assessment topics
with user activity recorded for 818 documents from the INEX 2006 Wikipedia
collection [11]. Figure 1(iv) shows the five types of XML elements that partici-
pants visited in the 2006 user study; namely, ARTICLE, SEC, SS1, SS2, and OTHER.
These correspond to elements whose label paths are the root /article (ARTICLE),
a section path /article/body/section (SEC), a subsection path SEC/section (SS1),
a sub-subsection path SS1/section (SS2), and all other elements’ paths (OTHER).
We call Figure 1(iv) the user navigation graph.

Table 2 tabulates the observed visits and mean time spent in visits for element
assessments by participants in the INEX 2006 user study. For instance, partici-
pants visited SS2 elements and then navigated to element ARTICLE 4 times. The
mean time spent in SS2 before navigating to element ARTICLE was on average
12.3 seconds. This led to an overall time, which we refer to as an episode, of 12.3
x 4 = 49.2 seconds. The most visited element was SEC, and the largest mean time
spent occurred in navigations to SEC elements from ARTICLE. These assessments
of user navigation can be used to weight the paths in the user navigation graph
in Figure 1(iv). The resultant navigation probabilities p(e; f) for the user navi-
gation model, based on normalizing the number of visits in Table 2, are shown
in Table 1A. Similarly, we can generate user navigation models (based on the
same user navigation graph) for the observed time-spent and episodes. The user
navigation models developed in [6] are shown in Table 1B.

Additionally, we investigated the use of trivial navigation models that were
composed of two nodes; a main node that would contain one type of element
and the other node which would include all other elements in the collection.
The main node has a high steady-state probability (we used 0.999) and the
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A. Normalized Weights for Visits
Destination

Source ARTICLE SEC SS1 SS2 OTHER
ARTICLE 0.0 0.87 0.11 0.01 0.01
SEC 0.40 0.54 0.06 0.0 0.0
SS1 0.31 0.34 0.0 0.0 0.01
SS2 0.21 0.11 0.68 0.0 0.0
OTHER 0.58 0.0 0.08 0.0 0.33
B. User Navigation Models

ARTICLE SEC SS1 SS2 OTHER
Visit 0.281 0.606 0.105 0.002 0.006
Episode 0.410 0.531 0.050 0.001 0.009
Time spent 0.318 0.209 0.129 0.028 0.317
C. Summary Navigation Models

ARTICLE SEC SS1 SS2 OTHER
Path 0.361 0.537 0.087 0.014 0.001
Content 0.103 0.434 0.089 0.013 0.361
Depth 0.309 0.435 0.067 0.008 0.181

Table 1. Visit user model transition matrix.

Destination
Source ARTICLE SEC SS1 SS2 OTHER
ARTICLE 0 (0) 138 (100.4) 18 (48.7) 1 (22) 2 (76)
SEC 278 (57.0) 372 (14.7) 41 (11.3) 0 (0) 0 (0)
SS1 46 (13.1) 50 (10.2) 50 (9.52) 0 (0) 1 (48)
SS2 4 (12.3) 2 (264.5) 13 (5.3) 0 (0) 0 (0)
OTHER 7 (27.7) 0 (0) 1 (4) 0 (0) 4 (26)

Table 2. Number of visits (mean time spent)
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Fig. 2. Trivial navigation models used in INEX 2008

other node would have a correspondingly small steady-state probability (0.001).
We proposed two trivial models; namely the article model and the ss2 model.
These have the effect of an exclusion filter in that the elements in the main
node will be less preferred in the results than other nodes. The proposed trivial
navigation models are shown in Figure 2. For INEX 2008, five navigation models
were considered: summary navigation models path and depth (Table 1C), user
navigation model visit (Table 1B), and, the article and ss2 trivial navigation
models (Figure 2).

In this section, we have presented how different navigation models are gener-
ated, and presented the 5 navigation models that we used in INEX 2008. In the
next section, we present a description of our search system, how we implemented
boosts, and a description of the different post-processors that we used in INEX
2008.

4 System Description

This section provides details on how we implemented our search engine, which
is based on Apache Lucene.

4.1 Lucene

The p∗ structural summary of the Wikipedia XML collection, originally gener-
ated using code from DescribeX [4], consisted of 55486 summary nodes (with
aliasing on tags containing the substrings link, emph, template, list, item,
or indentation). The extents in the structural summary were then mapped to
the navigation graph shown in Figure 1(iv) to produce the summary navigation
models. As the collection was summarized, modified Apache Lucene [1] code was
used to index the tokens. The posting list also included character offsets. Tokens
not excluded from the stop word filter had punctuation symbols removed and
the tokens maintained their case. The structural summary was generated at the
same time as each document was indexed, and the payload information for each
token occurrence included the summary partition in which the token appears.

To accommodate the structural hints in the INEX topics, separate indexes
were built for each tag identified by the structural hint present within the set of
INEX topics which included “article”, “section”, and “p”. For example, building
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an index for the “p” tag would index the first “p” element and its children,
including nested “p” elements, until its respective closing tag. Thus, a file with
multiple non-overlapping indexed elements will create multiple documents within
the index, and these non-overlapping elements are easily identified since the
index stores the character offsets as previously mentioned. This results in having
element-level documents which allows the calculation of idf scores for terms
within elements. Table 3 shows the index sizes (which includes term frequencies,
file paths and the payload information).

Tag Size
article 6.07GB
section 4.84GB

p 4.63GB
Table 3. Index sizes using tag-level documents

Lucene’s query parser was adapted to accept Top-X [14] NEXI queries with
structural hints. The queries were encoded using boolean operators to represent
tokens that were mandatory, optional, or to be excluded. Double quotes indicat-
ing adjacent tokens were removed since token positions were not indexed. Prior
to running a query, the query was examined for any structural hints and the
required indexes were searched as a single merged index using Lucene’s regular
application interface. If no structural hints were identified, the complete set of
element indexes were used in the search.

In the Content Only (CO) sub-task, queries are specified using keywords and
content-related conditions. Structure can be included in the query as hints to
reduce the number of returned elements. CO queries with structural hints are
called Content Only + Structure (CO+S) queries. For CO+S queries, it is left
to the discretion of the search engine to interpret it as either strict or vague.
Our system used the element labels in structural hints to include or exclude
specific search indexes while processing the query. Queries were not explicitly
interpreted as either strict or vague. The score of elements was composed of
two main factors; (i) content relevance, and (ii) a score boost based on the label
path of the smallest element (Section 4.2) that enclosed the content. The highest
scoring elements from Lucene were then post-processed (Section 4.3) to ensure
that the final results returned were focused.

4.2 Boosting Strategies

The collection was indexed at the element-level for article, section, and p. In
our experiments, we included runs with score boosting per term occurrence and
using the average of the term scores as a modifier to Lucene’s original document
score. The boost used was the stationary probability π(e) of the partition in the
summary of the element in which the term occurs. The baseline payload score
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per occurrence was set to 1 and the boosted term score was the baseline plus
the stationary probability. The scenarios reported in this paper include runs
with either no boosting, boosted using the path summary navigation model
(Table 1B), or boosted using the visit user navigation model (Table 1C).

4.3 Post-processing Algorithms

The purpose of post-processing is to control overlap and produce focused runs
from Lucene’s results. We present three different approaches to post-processing.
The first approach, called INEX Overlap Control and shown in Figure 3, removes
all parent-child overlap from the ranked list by comparing each pair of elements
ei and ej in R, and removing the lower-ranked element if they are on the same
branch.

The second approach, called Navigation Overlap Control and shown in Fig-
ure 4, involves removing parent-child overlap where overlapped elements were
ranked closely to one another (in the results reported here, the window size was
set to 10 rank positions). Instead of removing the lowest ranked overlapped el-
ement, the element with the highest steady-state probability was removed from
the ranked list. This is akin to removing the element most likely to be visited
by an element within the same document using any path.

The third approach, called Ranked List Overlap Control and shown in Fig-
ure 5, was developed in INEX 2007 and involves computing SR for scenarios
where redundant elements (i.e., from the same document) are systematically re-
moved or reordered in the ranked list until the highest scoring scenario is found.
We assume that all redundant elements are relevant and place the restriction
that a document cannot be excluded from the ranked list by removing all of its
elements that were present in the original result list.

So, the post-processing of overlap used either; (i) a simple heuristic to re-
move the lowest ranked elements that were overlapped; (ii) a more complex
heuristic to remove the most redundant overlapped elements; or (iii) an algo-
rithm to find the most structurally relevant non-overlapped set of elements. To
determine redundancy and structural relevance in post-processing, we used four
navigation models; namely, a trivial navigation model based on article elements
being redundant, a second trivial navigation model based on sub-subsection el-
ements being redundant, a depth summary navigation model, and a path user
navigation model.

5 Results INEX 2008

In this section, we present our results from our participation in INEX 2008 in
the Ad-Hoc Focused Track (Section 5.1), the Efficiency Track (Section 5.2), and
the Entity Ranking Track (Section 5.3).
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Algorithm INEX Overlap Control

Input: Ranked list R = e1, e2, . . . of k elements.
Output: Ranked list with overlapped elements removed R∗

1: let m be the length of R∗

2: m = 1
3: for i = 1 to k do
4: skip = false
5: for j = 1 to i− 1 do
6: if ei and ej are on same branch then
7: skip = true
8: end if
9: end for

10: if skip = false then
11: R∗[m] = ei

12: m = m + 1
13: end if
14: end for

Fig. 3. Remove lowest ranked overlapped elements from a ranked list

Algorithm Navigation Overlap Control

Input: Ranked list R = e1, e2, . . . of k elements.
Input: Summary graph S with navigation π(e) for element e.
Output: Ranked list with overlapped elements removed R∗

1: let window be the minimum distance between competing elements
2: let m be the length of R∗

3: m = 0
4: for i = 1 to k do
5: skip = false
6: for j = 1 to k do
7: if ei and ej are on same branch then
8: if |i− j| > 10 then
9: skip = true

10: else
11: if πei > πej then
12: skip = true
13: end if
14: end if
15: end if
16: end for
17: if skip = false then
18: R∗[m] = ei

19: m = m + 1
20: end if
21: end for

Fig. 4. Remove the least isolated overlapped elements
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Algorithm Ranked List Overlap Control

Input: Ranked list R = e1, e2, . . . of k elements.
Input: Summary graph S
Output: Ranked list R

′
in Ω

Output: Ranked list in Ω with highest SRP Rsr

Output: Ranked list with overlapped elements removed R∗

1: let n be number of overlapped elements in R
2: let Ω be the scenarios of R
3: for R

′
∈ Ω do

4: if SR(R
′
)/k > SR(R∗)/k AND then

5: Rsr = R
′

6: end if
7: end for
8: R∗ = INEX List Control(Rsr)

Fig. 5. Find the highest scoring scenario.

5.1 Ad-hoc Focused Element Retrieval Content-Only Sub-Task

We submitted results for the Ad-hoc Focused Track using element retrieval in
the Content-Only Sub-Task. We submitted 3 runs: B2U0 visit-heur, B2U0 tiny-
path-sr, and B2U0 tiny-path-heur. Runs B2U0 visit-heur and B2U0 tiny-path-
heur were boosted using the navigation models visit (Table 1B) and path (Ta-
ble 1C), respectively. Both of these runs were post-processed using INEX overlap
control. They showed similar performance. Unfortunately, the B2U0 tiny-path-sr
run (which was boosted and post-processed using the path summary navigation
model in Table 1C), was not admissible in the focused task due to overlap in the
run (because of a syntax error in the ranked list overlap control post-processor
code). Our results reported here show an extended set of runs that are indicative
of the effectiveness of our proposed approach to structural scoring, and we re-
name the runs B2U0 visit-heur and B2U0 tiny-path-heur to PATH INEX NONE
and VISIT INEX NONE, respectively in Table 4 and Figure 6.

The runs reported here are top-100 results for the Wikipedia collection across
235 topics in INEX 2008 evaluated using the official INEX measures (inex eval)
MAiP and (inex eval) interpolated precision across interpolated recall points.
The purpose of these runs was to investigate empirically whether there existed
predictable combinations of boosting and post-processing that would result in
more effective systems.

In Table 4, we show the MAiP evaluations for all tested configurations. The
configuration for each run consisted of the type of navigation model used to
boost results (Boost), the approach used to post-process the run to remove over-
lap (Overlap), and the navigation model used by the approach for removing
overlap (Navigation). For instance, our best run was first boosted using the
visit user navigation model, and then post-processed with the depth summary
navigation model. The NAV runs (navigation overlap control using the algo-
rithm shown in Figure 4) did not perform well (a maximum MAiP of 0.102 with
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Boost Overlap Navigation MAiP
NONE INEX NONE 0.111
NONE NAV DEPTH 0.0924
NONE SR ARTICLE 0.0685
NONE SR DEPTH 0.130
NONE SR SS2 0.10172
NONE SR VISIT 0.0817
PATH INEX NONE 0.115
PATH NAV DEPTH 0.107
PATH SR ARTICLE 0.0745
PATH SR DEPTH 0.139
PATH SR SS2 0.106
PATH SR VISIT 0.080
VISIT INEX NONE 0.123
VISIT NAV DEPTH 0.102
VISIT SR ARTICLE 0.0723
VISIT SR DEPTH 0.145
VISIT SR SS2 0.116
VISIT SR VISIT 0.089

Table 4. Mean-average interpolated precision using HiXEval for INEX 2008 Focused
Runs (k=100, 235 topics)

boosting using the visit user navigation model was observed). In INEX 2007
[3], we observed that post-processing with the depth summary navigation model
improved the effectiveness of systems. This was a full summary of the collec-
tion with a navigation graph that consisted of 55486 nodes, as opposed to the
smaller model of only 5 nodes used this year. Moreover, we note that regardless
of the boost, the best overall post-processor (by MAiP) was the depth sum-
mary navigation model. Additionally, we observed that, for each boost (NONE,
PATH, VISIT), the relative performance of the post-processor configurations
(Overlap-Navigation pairs in Table 4) was consistent, and was (listed from best
configuration to worst) SR-DEPTH % INEX-NONE % SR-SS2 % NAV-DEPTH
% SR-VISIT % SR-ARTICLE.

In Figure 6, we show the interpolated I-R curves for the six best runs reported
in Table 4. The runs were within +/-0.05 precision of each other across recall
points. Using MAiP, significant differences in overall performance were observed;
the depth summary navigation model and INEX overlap control consistently
performed better than the other configurations. From these results (and obser-
vations from INEX 2007 using large models), it seems that system effectiveness
can be improved by using separate summaries for boosting and post-processing.
Moreover, we observed similar performance within the small models (specifically
that the depth model out-performed other models) as in large models, suggesting
that the size of the model is not as important as the type of model used. Finally,
these preliminary results suggest that boosting is effective, and that boosting
with a user navigation model is more effective than using summary navigation
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Fig. 6. Interpolated precision-recall in Focused Task using summary boosts, INEX
overlap heuristics, and optimal structural relevance.

models. It remains to be seen whether these observations can be generalized
across search tasks.

5.2 Efficiency Track

The Efficiency Track is a forum for the evaluation of both the effectiveness
and efficiency of XML ranked retrieval approaches. For INEX 2008, the track
consists of 568 queries for which participants provide timed runs. By query type,
our results were:

(A) 540 Queries Ad-Hoc-style, average time is 3166 ms with query times vary-
ing from 15 to 26063 ms.

(B) 21 Queries High-dimensional content retrieval, average time is 8460 ms,
with query times varying from 188 to 61141 ms.
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(C) 7 Queries High-dimensional structure retrieval. average time is 12090 ms,
with query times varying from 2948 to 35328 ms.

Figure 7 shows our overall performance results. The figure is a histogram of
query execution times for all 568 queries. It shows that most queries took under
2 seconds to execute. The median of query times is 1703 ms. Nonetheless, a
sizable proportion (about 16%) of the queries took more than 5 seconds to exe-
cute. The query execution time included two main components. First, the time
required by Lucene to interpret the query, retrieve candidate elements from one
or more indexes and return back a posting list with thorough results. Second,
the time to post-process the results to output focused results. Our system was
run on Windows XP in a virtual machines using VMWare GSX on a Sun Fire
V20z Server cluster running on Red Hat Enterprise Linux. The VM was con-
figured with 2048 MB of RAM and one virtual 2.39 GHz cpu running over an
AMD opteran TMProcessor 250. Our results are biased to some extent due to
virtualization issues such as the slow I/O of virtual disks, and poor thread syn-
chronization in VMWare for real-time applications. Nevertheless, for 35 topics,
our system needed more than 10s. The slow queries occurred across all query
types. Although, further research is needed to isolate both the queries and the
characteristics of the queries that caused our system to process them inefficiently,
we hypothesize that it was the processing of popular terms that slowed down
our system.

5.3 Entity Ranking

The Entity Ranking Track uses the Wikipedia data, where systems may exploit
the category metadata associated with entities in entity retrieval. For example,
consider a category “Dutch politicians”. The relevant entities are assumed to be
labelled with this category or other closely related category in the categorization
hierarchy, e.g. “politicians”.

Our participation involved developing 6 new topics and conducting assess-
ments. The results for this track are still pending, and, thus, we leave this dis-
cussion for future work.

6 Conclusions

In this work, we have shown how navigation models can be used effectively in
both element score boosting and in the post-processing of overlap. The models
can be derived either from collection statistics or user assessments. The most sig-
nificant observation in this work is that small models based on either assessments
or collection statistics can be used. Our results in INEX 2007 suggested that the
depth summary navigation model was a good model to use for post-processing.
In this study, our results have corroborated with the observations in INEX 2007,
but, importantly we have shown that smaller models can be used. Small models
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Fig. 7. Histogram of query times in the INEX 2008 Efficiency Track

are more easily interpreted and more efficient to use in our computations. In
the future, we hope to generalize this methodology for structural scoring as a
way to test and compare how different search engines handle different structural
constraints and hints.

References

1. Apache Lucene Java. http://lucene.apache.org, 2008.
2. M. S. Ali, M. P. Consens, G. Kazai, and M. Lalmas. Structural relevance: a common

basis for the evaluation of structured document retrieval. In CIKM 2008, pages
1153–1162, New York, NY, USA, 2008. ACM.

3. M. S. Ali, M. P. Consens, and S. Khatchadourian. XML retrieval by improv-
ing structural relevance measures obtained from summary models. In INEX 2007.
LNCS 4862, pages 34–48, 2007.

4. M. S. Ali, M. P. Consens, S. Khatchadourian, and F. Rizzolo. DescribeX: Inter-
acting with AxPRE Summaries. In ICDE 2008, pages 1540–1543. IEEE, 2008.

5. M. S. Ali, M. P. Consens, and M. Lalmas. Structural Relevance in XML Retrieval
Evaluation. In SIGIR 2007 Workshop on Focused Retrieval, pages 1–8, 2007.

6. M. S. Ali, M. P. Consens, and B. Larsen. Representing user navigation in XML
retrieval with structural summaries. (submitted for acceptance). In ECIR 2009.

7. C. Clarke. Controlling overlap in content-oriented XML retrieval. In SIGIR 2005,
pages 314–321, New York, NY, USA, 2005. ACM Press.

44



8. M. P. Consens, F. Rizzolo, and A. A. Vaisman. AxPRE Summaries: Exploring the
(Semi-)Structure of XML Web Collections. In ICDE 2008, pages 1519–1521, 2008.

9. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked keyword
search over xml documents. In SIGMOD 2003, New York, NY, USA, 2003. ACM
Press.

10. G. Kazai, M. Lalmas, and A. P. de Vries. The overlap problem in content-oriented
xml retrieval evaluation. In SIGIR 2004, pages 72–79, New York, NY, USA, 2004.
ACM.

11. S. Malik, A. Tombros, and B. Larsen. The Interactive Track at INEX2006. In
INEX 2006. LNCS 4518, pages 387–399, 2007.

12. B. Piwowarski, P. Gallinari, and G. Dupret. Precision recall with user modeling
(PRUM): Application to structured information retrieval. ACM Trans. Inf. Syst.,
25(1):1, 2007.

13. S. M. Ross. Introduction to Probability Models. Academic Press, New York, 8th
edition, 2003.

14. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine
for TopX search. In Proc. VLDB Conf., pages 625–636, 2005.

15. A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In INEX
2004. LNCS 3493, pages 34–48, 2005.

45



Proximity-Aware Scoring for XML Retrieval

Andreas Broschart1,2, Ralf Schenkel1,2, and Martin Theobald1

1 1Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 2Saarland University, Saarbrücken, Germany
{abrosch,schenkel,mtb}@mpi-inf.mpg.de

Abstract. Proximity enhanced scoring models significantly improve re-
trieval quality in text retrieval. For XML IR, we can sometimes enhance
the retrieval efficacy by exploiting knowledge about the document struc-
ture combined with established text IR methods. This paper elaborates
on our approach used for INEX 2008 which modifies a proximity scoring
model from text retrieval for usage in XML IR and extends it by taking
the document structure information into account.

1 Introduction

Term proximity has been a common means to improve effectiveness for text re-
trieval, passage retrieval, and question answering, and several proximity scoring
functions have been developed in recent years (for example, [4–7]). For XML
retrieval, however, proximity scoring has not been similarly successful. To the
best of our knowledge, there is only a single existing proposal for proximity-
aware XML scoring [1] that computes, for each text position in an element, a
fuzzy score for the query, and then computes the overall score for the element
as average score over all its positions.

Our proximity score for content-only queries on XML data [2] extends the
existing proximity score by Büttcher et al. [4], taking into account the document
structure when computing the distance of term occurrences.

2 Proximity Scoring for XML

To compute a proximity score for an element e with respect to a query q =
{t1 . . . tn} with multiple terms, we first compute a linear representation of e’s
content that takes into account e’s position in the document, and then apply a
variant of the proximity score by Büttcher et al. [4] on that linearization.

Figure 1 shows an example for the linearization process. We start with the
sequence of terms in the element’s content. Now, as different elements often dis-
cuss different topics or different aspects of a topic, we aim at giving a higher
weight to terms that occur together in the same element than to terms occur-
ring close together, but in different elements. To reflect this in the linearization,
we introduce virtual gaps at the borders of certain elements, whose sizes depend
on the element’s tag (or, more generally, on the tags of the path from the doc-
ument’s root to the element). In the example, gaps of section elements may
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be larger than those of p (paragraph) elements, because the content of two ad-
jacent p elements within the same section element may be considered related,
whereas the content of two adjacent section elements could be less related.
Some elements (like those used purely for layout purposes such as bold or for
navigational purposes such as link) may get a zero gap size. The best choice
for gaps depends on the collection. Gap sizes are currently chosen manually; an
automated selection of gap sizes is subject to future work.

Fig. 1. An XML document and its linearization

Based on the linearization, we apply the proximity scoring model of Büttcher
et al. [4] for each element in the collection to find the best matches for a query
q = {t1, . . . , tn} with multiple terms. This model linearly combines, for each
query term, a BM25 content score and a BM25-style proximity score into a
proximity-aware score. Note that unlike the original, we compute these scores
for elements, not for documents, so the query-independent term weights in the
formulas are inverse element frequencies ief(t) = log2

N−ef(t)+0.5
ef(t)+1 , where N is

the number of elements in the collection and ef(t) is the number of elements
that contain the term t. Similarly, average and actual lengths are computed for
elements. The BM25 score of an element for a query is

scoreBM25(e, q) =
∑

t∈q

ief(t)
tf(e, t) · (k1 + 1)

tf(e, t) + K

To compute the proximity part of the score, Büttcher et al. first compute
an accumulated interim score acc(ti) for each query term ti that depends on
the distance of this term’s occurrences in the element to other, adjacent query
term occurrences. Formally, for each adjacent occurrence of a term tj at distance
d to an occurrence of ti, acc(ti) grows by ief(tj)/d. The proximity part of an
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element’s score is then computed by plugging the acc values into a BM25-style
scoring function:

scoreprox(e, q) =
∑

t∈q

min{1, ief(t)}acc(t) · (k1 + 1)
acc(t) + K

where, K=k·[(1−b)+b· |e|
avgel ] (analogously to the BM25 formula) and b, k1, and k

are configurable parameters that are set to b = 0.5 and k = k1 = 1.2, respectively.
The overall score is then the sum of the BM25 score and the proximity score:

score(e, q) = scoreBM25(e, q) + scoreprox(e, q)

3 AdHoc Track Results

3.1 Results for Focused Task

Our recent development of TopX focused on improving its retrieval quality. For
the Focused Task, we submitted the following three runs:

– TopX-CO-Baseline-articleOnly:a CO run that considered the non-stemmed
terms in the title of a topic (including the terms in phrases, but not their
sequence) except terms in negations and stop words. We restricted the collec-
tion to the top-level article elements and computed the 1,500 articles with the
highest scoreBM25 value as described in Section 2. Note that this approach
corresponds to standard document-level retrieval.

– TopX-CO-Proximity-articleOnly: a CO run that reranked the results of
the TopX-CO-Baseline-articleOnly run by adding the scoreprox part de-
scribed in Section 2. We used gaps of size 30 for section and p elements.
(Due to the limited number of runs we could not evaluate different gap sizes;
see [2] for a more thorough study with older INEX topics.)

– TopX-CO-Focused-all: an element-level CO run that considered the terms
in the title of a topic without phrases and negations, allowing all tags for
results. Note that, unlike our runs in previous years, we did not use a tag-
specific ief score, but a single global ief value per term; we demonstrated
in [3] that this gives better results for CO queries than tag-specific inverse
element frequencies.

run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
TopX-CO-Proximity-articleOnly 0.6804 0.6795 (3) 0.5807 0.5265 0.2967
TopX-CO-Baseline-articleOnly 0.6700 0.6689 (4) 0.5940 0.5354 0.2951
TopX-CO-Focused-all 0.7464 0.6441 (11) 0.5300 0.4675 0.1852

Table 1. Results for the Focused Task: interpolated precision at different recall levels
(ranks for iP[0.01] are in parentheses) and mean average interpolated precision

Table 1 shows the official results for these runs. It is evident that element-level
retrieval generally yields a higher early precision than article-level retrieval, but
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the quality quickly falls behind that of article-level retrieval. This is reflected in
the official results where our article-level runs are at positions 3 and 4, whereas
the element-level run is at position 11. Proximity scoring with gaps can in general
help to improve early precision with article-level retrieval, at the cost of a slightly
reduced recall. However, the MAiP average of the proximity-based run slightly
improves over the baseline without proximity.

3.2 Other Tasks

We submitted a run to each of the other two tasks in the AdHoc track, where
each of them was based on the CO titles of topics and the BM25-style element-
level score shown in Section 2. To produce the runs for the RelevantInContext
task, we ran TopX in document mode. This yielded a list of documents ordered
by the highest score of any element within the document, together with a list of
elements and their scores for each document. This yielded reasonable results with
a MAgP value of 0.19329103, corresponding to rank 6 of all runs; this is a good
improvement over 2007, which we mainly attribute to the better performance of
the new scoring function.

To compute the best entry point for a document, we post-processed the
RelevantInContext runs by simply selecting the element with highest score from
each document and ordered them by score. This yielded reasonable results as
well, with a MAgP value of 0.16888404, corresponding to rank 13 among all
runs.

4 Conclusions and Future Work

This paper presented a structure-aware proximity score for XML retrieval that
helps to improve the retrieval effectiveness of gap-free approaches for article-level
retrieval. Our future work will focus on automatic methods to determine good
gap sizes for elements, determining characteristics for queries where proximity
boosts performance, and extending proximity scoring to queries with structural
constraints.
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Abstract. This paper describes the integration of our methodology for the dy-
namic retrieval of XML elements [1] with traditional article retrieval to facili-
tate the Focused and the Relevant-in-Context Tasks of the INEX 2008 Ad Hoc 
Track.  The particular problems that arise for dynamic element retrieval in 
working with text containing both tagged and untagged elements have been 
solved [2]. The current challenge involves utilizing its ability to produce a rank-
ordered list of elements in the context of focused retrieval. Our system is based 
on the Vector Space Model [5]; basic functions are performed using the Smart 
experimental retrieval system [4]. Experimental results are reported for the Fo-
cused, Relevant-in-Context, and Best-in-Context Tasks of both the 2007 and 
2008 INEX Ad Hoc Tracks.   

1.  Introduction 

Our work for INEX 2008 centers on producing good elements in a focused retrieval 
environment. Dynamic element retrieval—i.e., the dynamic retrieval of elements at 
the desired degree of granularity—has been the focus of our investigations at INEX 
for some time [1, 2]. We have demonstrated that our method works well for both 
structured [1] and semi-structured text [2] and that it produces a result identical to that 
produced by the search of the same query against the corresponding all-element index 
[3]. In [2], we show that dynamic element retrieval (with terminal node expansion) 
produces a result considerably higher than that reported by the top-ranked participant 
for the INEX 2006 Thorough task. The picture changes, however, when overlap is no 
longer allowed—i.e., when the task changes to focused retrieval. A review of our Ad 
Hoc results for all three INEX 2007 tasks shows that in each case, our results rank in 
the mid-range of participant scores. In 2008, our goal is to improve those results. 
Since the Ad Hoc tasks for INEX 2008 are identical to those of INEX 2007 and the 
evaluation procedures remain essentially unchanged as well, we are able to compare 
our 2008 results not only to those of other participants but also to our own earlier 
(2007) results for the same tasks. 
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2. Experiments with the INEX 2007 and 2008 Collections 

In this section, we include the results produced by our methods for the three INEX 
2007 Ad-hoc tasks, namely, Focused, Relevant-in-Context, and Best-in-Context. To 
produce its best results, our system needs tuning to establish appropriate values for 
term weighting with respect to a metric (in this case, iP[0.01] for the focused task); 
these results reflect that tuning. 

There are two important issues which arise with respect to the Focused and Rele-
vant-in-Context (RIC) tasks. The first relates to how the documents of interest (i.e., 
with respect to a specific query) are identified. The second is the method by which the 
focused elements are selected from those documents. The results reported in [2] for 
2007 compare the values achieved by dynamic element retrieval to (base case) all-
element retrieval. The focused elements themselves are selected based on correlation 
(i.e., the highest-correlating element along a path is chosen). Thus, for these experi-
ments, the documents of interest were determined by the process of dynamic element 
retrieval (see [2] for details), and the focused elements were selected based on corre-
lation.  

To improve these results, we revised our approach to focused retrieval by incorpo-
rating dynamic element retrieval with article retrieval as follows. For each query, we-
retrieve n articles. We then use dynamic element retrieval to produce the rank-ordered 
list of all elements (from these n documents) having a positive correlation with the 
query. Overlap is removed by what we refer to as a terminal-node strategy, which al-
ways gives precedence to the terminal node along a path (ignoring correlation). Then 
m focused elements from this list are reported. This is the method by which focused 
elements are produced for the 2007 and 2008 Focused and RIC tasks reported below. 
Negative terms (those preceded by a minus) are removed from both query sets. 

2.1 Focused Task  

The INEX 2007 Focused Task results are given in Table 1. Best results are produced 
when 25 documents are retrieved and 500 elements reported (n = 25, m = 500); at 
0.5386 this value would place at rank 1 in the 2007 rankings. (If negative terms are 
not omitted from the query set, the corresponding value at n = 50, m = 750 is 0.5293, 
which still exceeds the first place value in the rankings). 

The results produced by the same methodology for the INEX 2008 Focused Task 
are given in Table 2. Best case results here are produced at n = 25 and m = 500, 
where the value of iP[0.01] is 0.6225 (equivalent to rank 23). Our INEX 2008 sub-
mission (which included negative query terms) produced a value of 0.6251 at 
iP[0.01] for a rank of 21. 
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Table 1. iP[0.01] Results for Focused Task (2007) 

 
 

50 250 500 1000 2000 3000 4000

25 0.4972 0.5383 0.5386 0.5381 0.5381 0.5381 0.5381

50 0.4751 0.5338 0.5367 0.5343 0.5343 0.5343 0.5343

100 0.4510 0.4962 0.5242 0.5273 0.5238 0.5238 0.5238

250 0.4697 0.4603 0.4920 0.5031 0.5136 0.5098 0.5098

500 0.4664 0.4589 0.4746 0.4990 0.4995 0.5052 0.5058

NUMBER OF ELEMENTSNUMBER OF 
ARTICLES

 
 
 

Table 2. iP[0.01] Results for Focused Task (2008) 
 

50 250 500 1000 2000 3000 4000

25 0.6222 0.6225 0.6091 0.6091 0.6091 0.6091 0.6091

50 0.6064 0.5995 0.6104 0.6006 0.6006 0.6006 0.6006

100 0.6054 0.5759 0.5871 0.5997 0.5965 0.5965 0.5965

250 0.6009 0.5769 0.5711 0.5744 0.5746 0.5811 0.5749

500 0.5972 0.5930 0.5499 0.5740 0.5723 0.5643 0.5681

NUMBER OF ELEMENTSNUMBER OF 
ARTICLES

 
 
 

2.2 Relevant-in-Context Task  

The RIC results are produced using the result file from the Focused task and grouping 
the elements by article. Results are reported in document-rank order. Table 3 shows 
the 2007 best case result with an MAgP value of 0.1415 at n = 250, m = 4000 (rank 9 
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for the 2007 rankings). 2008 RIC results are shown in Table 4. The best value is 
achieved at n = 500, m = 2000, where MAgP = 0.1751 (which would rank at 15 for 
2008). Our submitted run (which includes negative terms) produced a  MAgP value 
of 0.1714 and ranked 18. 
 

Table 3. MAgP Results for RIC Task (2007) 

 
 
 
 

Table 4. MAgP Results for RIC Task (2008) 

 
 
 

50 250 500 750 1000 1500 2000 3000 4000

25 0.0767 0.0951 0.0978 0.0977 0.0977 0.0977 0.0977 0.0977 0.0977

50 0.0772 0.1034 0.1129 0.0977 0.1155 0.1154 0.1154 0.1154 0.1154

100 0.0772 0.1098 0.1190 0.1253 0.1305 0.1310 0.1315 0.1313 0.1313

250 0.0771 0.1113 0.1243 0.1292 0.1330 0.1385 0.1408 0.1408 0.1415

500 0.0772 0.1112 0.1230 0.1292 0.1326 0.1373 0.1393 0.1391 0.1405

NUMBER OF ELEMENTS
NUMBER OF 

ARTICLES

50 250 500 750 1000 1500 2000 3000 4000

25 0.0975 0.1034 0.1026 0.1026 0.1026 0.1026 0.1026 0.1026 0.1026

50 0.1108 0.1277 0.127 0.126 0.1259 0.1259 0.1259 0.1259 0.1259

100 0.1128 0.1426 0.1488 0.1486 0.1465 0.1457 0.1457 0.1457 0.1457

250 0.1126 0.1508 0.1606 0.1645 0.1667 0.1661 0.1649 0.1632 0.1622

500 0.1134 0.154 0.1642 0.1678 0.1707 0.1749 0.1751 0.1726 0.1675

NUMBER OF 
ARTICLES

NUMBER OF ELEMENTS
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2.3 Best-in-Context Task 

Finding the Best Entry Point (BEP) is a task which is not related to focused retrieval. 
We examined a number of factors which might be useful in determining the BEP, in-
cluding correlation, tag set membership, and physical location. For 2007, best results 
were obtained based purely on physical position, but a very similar result was pro-
duced by a combination of two factors (tag set membership and location). Investiga-
tions into this question continue. 
 

5. Conclusions 

Our current methods performed very well for the 2007 Focused and RIC tasks. When 
we apply the same methods to the same tasks in 2008, the results, while acceptable, 
are not as good. Our current efforts are directed at determining the cause. 
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Abstract. We present a Retrieval Information system for XML docu-
ments using a learning to rank approach. This system learns a ranking
function using a training of queries and relevance judgments on a subset
of documents. We compare two ranking models, one that optimizes a
classical ranking loss and one that takes into account the position of the
mis-ordered pair in the list.

1 Introduction

Ranking algorithms have been applied in the Machine Learning field for some
time. In the field of IR, they have first been used for combining features or
preference relations in tasks such as meta search [1], [2]. Using learning to rank
functions has led to improved performances in a series of tasks such as passage
classification or automatic summarization [3]. More recently, they have been used
for learning the ranking function of search engines [4], [5], [8], [9].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the document
itself. The ranking algorithm will learn to combine these different features in an
optimal way, according to a specific loss function, using a set of examples. The
direct approach of learning to rank algorithms is to optimize the mean pairwise
error as in [5] or in [2]. This criterion is never used as an evaluation measure in
Information Retrieval, because users are more interested in the top ranked items.
Recent works design approximation on Information Retrieval’s error measures
as Mean Average Precision [6] or Discounted Cumulated Gain [7].

We propose here an approach of a learning to rank algorithm which optimizes
an error that focuses on the top ranked documents.

The paper is organized as follows, in section 2 we present the ranking model.
In section 3 we comment the results obtained by our model and compare them
to a ranking model which optimizes the mean of mis-ordered pairs [5].

2 Ranking model

In this section we briefly describe a probabilistic model of ranking which can be
adapted to Information Retrieval or Structured Information Retrieval.
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The main idea behind the Machine Learning Ranking is to learn a total strict
order on X , a set of elements. This allows us to compare any pair of elements in
the set.

Given this total order, we are able to order any subset of X in a ranking
list. For Information Retrieval on XML documents, X will be the set of couples
(documents, query) for all documents and queries in the collection and the total
order is the natural order on the document’s scores. In addition, we need a
training set of ordered pairs of examples to learn how to rank. This training set
will provide us with a partial order on the elements of X . Our algorithm will
use this information to learn a total order on X and it will then be able to rank
new elements.

2.1 Notations

As described above, we assume available a set X of elements ordered by a partial
order noted ≺. This relation will be used when it is possible to compare element
pairs of X . Let D be the set of all documents in the Wikipedia collection and Q
be the set of CO-queries. In the context of structured IR, we will make define
X = Q×D . The partial order hypothesis on X = Q×D , means that for a subset
of the queries in Q we know preferences between some of the documents in D.
For a given query, these preferences will define a partial order on the documents
in D. The preferences among documents are provided by manual assessments
during INEX’06 and INEX’07 sessions.

Ranking We represent each element x ∈ X by a vector (x1, x2, ..., xl) where xi

are features needed to rank elements of X . The following linear combination of
features is used to define the ranking function fω, that we will use to learn a
total order on X :

fω(x) = ω1 · Indri(x) + ω2 ·Okapi(title(x)) + ω3 · LM(title(x)) (1)

where ωl
i are the parameters of the combination to be learned, Indri [10]

is the score of the search engine in the Lemur toolkit, Okapi is an Okapi [12]
Model applied on the title of a document and LM for a Language Model using
a Jelinek-Mercer smoothing function.

Ranking loss The first model tries to minimize the exponential AUC loss
function as below :

Re(X , ω) =
∑

q∈Q









∑

x∈X−
q

efω(x)








∑

x′∈X+
q

e−fω(x′)








 (2)

where X+
q ≺ X−

q means that X−
q is better than X−

q .
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The second model tries to optimize a loss which depends on the position in
the ranked list. We assume a mis-ordered pair at the top of the list will cost
more than a mis-ordered pair at the end.

RΦ(X , ω) =
∑

q∈Q





∑

x∈X−
q x′∈X+

q

Owa(f(x′)− f(x))




 (3)

where Owa(f(x′)− f(x)) is a decrease function : Rn → R .

3 Experiments

3.1 Learning base

The Wikipedia collection [13] has been used with different sets of queries for
training and testing. INEX 2006 queries and assessments were used for training
and the relevance judgments of INEX 2007 gived us a validation set to determine
hyperparameters of the model. We built for each topic, a subset of 1500 docu-
ments according to the Indri search engine and we transformed each document
in a vector of features as presented before. At the end, we tested the two ranking
models on the INEX 2008 queries.

3.2 Results

The runs submitted to the official evaluation were bugged. New results will be
presented at the workshop.
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Abstract. In this work we propose new utility models for the struc-
tured information retrieval system Garnata, and expose the results of
our participation at INEX’08 in the AdHoc track using this system.

1 Introduction

Garnata [5] is a Structured Information Retrieval System for XML documents,
based on probabilistic graphical models [7, 8], developed by members of the re-
search group “Uncertainty Treatment in Artificial Intelligence” at the University
of Granada. Garnata has already been tested at two editions of the INEX Work-
shop [4, 6], and its theoretical basis is explained in more detail in [1, 2].

Garnata computes the relevance degree of each component or structural unit
in a document by combining two different types of information. On the one
hand, the specificity of the component with respect to the query: the more
terms in the component appear in the query, the more relevant becomes the
component, that is to say, the more clearly the component is only about (at
least a part of) the topic of the query. On the other hand, the exhaustivity of
the component with respect to the query: the more terms in the query match
with terms in the component, the more relevant the component is, i.e., the more
clearly the component comprises the topic of the query. The components that
best satisfy the user information need expressed by means of the query should
be, simultaneously, as specific and exhaustive as possible.

These two dimensions of the relevance of a component with respect to the
query are calculated in a different way. To compute the specificity, the probabil-
ity of relevance of each component is obtained through an inference process in a
Bayesian network representing the structured document collection. The exhaus-
tivity is obtained by first defining the utility of each component as a function of
the proportion of the terms in the query that appear in this component. Then the
Bayesian network is transformed into an influence diagram which computes the
expected utility of each component, by combining the probabilities of relevance
and the utilities in a principled way.

59



In this work we propose a modification of the system by defining the utility
in a different manner, in such a way that those components that do not contain
most of the query terms are penalized more heavily. By defining a parametric
model, it is possible to adjust the degree of utility to make the system behave
more similarly to a strict AND (if not all or almost all the query terms are in
the considered component, this one will be scarcely relevant) or to a less strict
AND.

2 Utility Models in the Garnata System

As we focus in this work on the utility component of the Garnata system, we will
not enter into details of the Bayesian network model representing the document
collection. This model is able to efficiently compute the posterior probabilities
of relevance of all the structural units U of all the documents, given a query Q,
p(U |Q). These probabilities represent the specificity component of each struc-
tural unit U : the more terms indexing U also belong to Q, the more probable is
U .

The Bayesian network is then enlarged by including decision variables RU ,
representing the possible alternatives available to the decision maker (retrieve
unit U), and utility variables VU , thus transforming it into an influence dia-
gram. The objective is to compute the expected utility of each decision given Q,
EU(RU |Q).

In Garnata the utility value VU of each structural unit U is composed of a
component which depends on the involved unit, other component which depends
only on the kind of tag associated to that unit, and another component inde-
pendent on the specific unit (these three components are multiplied in order to
form the utility value, see [4]).

The part depending on the involved unit, which is the only one we are going
to modify, is defined as the sum of the inverted document frequencies of those
terms contained in U that also belong to the query Q, normalized by the sum of
the idfs of the terms contained in the query: a unit U will be more useful (more
exhaustive), with respect to a query Q, as more terms of Q also belong to U :

nidfQ(U) =

∑
T∈An(U)∩Q idf(T )
∑

T∈Q idf(T )
(1)

An(U) in the previous equation represents the set of terms contained (either
directly or indirectly) in the structural unit U .

3 New Utility Models

As it can be observed from equation (1), the utility or exhaustivity of a struc-
tural unit U with respect to a query Q grows linearly with the number of query
terms appearing in U (reaching a maximum equal to 1 when all the terms of the
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query appear in the unit). In our experience with the system in different appli-
cations [3, 4], we have observed that this linear growing, when combined with
the probabilities computed from the Bayesian network (which measure speci-
ficity), can cause that small structural units, which only match with a fraction
of the query terms, become more relevant that other, greater structural units
that contain more terms from the query. In many cases this behaviour is not
the expected one, because probably a user who employs several terms to express
his/her query is expecting to find most of these terms in the structural units
obtained as the answer of the system to this query. For that reason we believe
that it is interesting to define other utility models which give more importance
(in a non-linear way) to the appearance of most of the terms in the query.

In this work we propose a parametric non-linear utility model that, as the
parameter grows, the more terms from the query must be contained in a struc-
tural unit to get a high utility value. A way of obtaining this behaviour is by
using the following transformation:

nidfQ,n(U) = nidfQ(U)
e(nidfQ(U))n

− 1

e − 1
(2)

In this way, when n = 0 we have nidfQ,0(U) = nidfQ(U), that is to say, we
reproduce the original model, and the greater the value of the integer parameter
n we obtain a behaviour more similar to a strict AND operator. In Figure 1 we

can observe several plots of the function x exn
−1

e−1 for different values of n.
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Fig. 1. Function x exn
−1

e−1
, for n = 0, 1, 2, 3, 5.
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4 Experimental Results

In this INEX 2008 edition, we have participated submitting nine runs in the ad
hoc track (content only). More specifically, three in each of the Focused, Relevant

in Context and Best in Context sub-tasks. Table 1 shows the positions in the
ranking according to the official evaluation measures (MAgP for Best In Context

and Relevant in Context, and iP [0.01] for Focused), the sub-task and finally the
run identifier.

Position Value Sub-task RunId

52 0.468793 Focused p8 u3 exp 5 1110
53 0.46700756 Focused p8 u3 exp 3 1110
54 0.44861908 Focused p15 u3 exp 5 1110

25 0.1575066 Relevant In Context p8 u3 exp 5 1110
26 0.1575066 Relevant In Context p8 u3 exp 5 0100
27 0.15174653 Relevant In Context p8 u3 exp 3 1110

18 0.14567388 Best In Context p8 u3 exp 5 0100
19 0.14563043 Best In Context p8 u3 exp 3 0100
22 0.13697283 Best In Context p15 u3 exp 3 0100

Table 1. Runs submitted to the INEX’2008 ad hoc tasks and positions in the rankings.

With respect to the parameters, we have used the weight files 8 and 15 (p8
and p15 as prefixes of the run identifiers), and utility files 3 (u3, contained in the
identifiers), with the first values presented in Table 2 and in Table 3 the second
ones (see [4] for details about these parameters and their use by the model).

Tag Weight file 8 Weight file 15

name 20 200
title 20 50
caption 10 30
collectionlink 10 30
emph2 10 30
emph3 10 30
conversionwarning 0 0
languagelink 0 0
template 0 0
default value 1 1

Table 2. Importance of the different types of units used in the official runs.
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Tag Utility file 3

conversionwarning 0
name 0.85
title 0.85
collectionlink 0.75
languagelink 0.0
article 2.5
section 1.25
p 1.5
body 2.0
emph2 1.0
emph3 1.0
default value 1.0

Table 3. Relative utility values of the different types of units used in the official runs.

Finally, the suffix of the run identifier corresponds to the values of each of
the four configurations of the component of the utility function independent on
the involved unit (see [4]).

Although there has been a significant reduction of runs submitted in this
2008 edition – measured as focused retrieval – (Focused: from 79 last year to 61
this edition; Relevant in Context: from 66 to 40; Best in context: from 71 to 35),
we could say that in terms of the percentiles of the positions in the rankings,
we are improving our results in Relevant in Context (from percentiles 66-74 last
year, to 62-67 this year) and Best in Context (from 63-70 to 51-62), and more
or less we maintain the positions in Focused (from 84-89 to 85-88).

It is noticeable that within the Focused task, Garnata’s performance is rel-
atively low, and keeps more or less the same positions than last year, and how
the methods described in [4] for adjusting the output for the requirements of
the other two tasks make a good job from the raw results from Garnata. Clearly
Best in Context is the sub-task where the performance is higher, and where the
best improvement is achieved.

Finally, we have run an experiment with the 2008 assessments, evaluated
with the same evaluation tools used in this edition, where we do not apply the
transformation presented in Eq. (2), but applying the original Eq. (1), nidfQ(U),
in order to determine the improvement of the new approach. Table 4 shows the
values of the official evaluation measures with the utility model used in previous
editions (first column), this year with the new model (second column) and the
percentace of change (third column). As noticed, the percentages of change are
most of them very large, fact that confirms our initial hypothesis that the new
transformation could improve the results.
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With nidfQ(U) With nidfQ,n(U) %Change Sub-tasks Run Id.
0.365532 0.468793 28.25 Focused p8 u3 exp 5 1110
0.365532 0.467008 27.76 Focused p8 u3 exp 3 1110
0.341435 0.448619 31.39 Focused p15 u3 exp 5 1110

0.082615 0.157507 90.65 Relevant In Context p8 u3 exp 5 1110
0.067482 0.157507 133.41 Relevant In Context p8 u3 exp 5 0100
0.082615 0.151747 83.68 Relevant In Context p8 u3 exp 3 1110

0.075307 0.145674 93.44 Best In Context p8 u3 exp 5 0100
0.075307 0.145630 93.38 Best In Context p8 u3 exp 3 0100
0.078243 0.136973 75.06 Best In Context p15 u3 exp 3 0100

Table 4. Comparison between runs applying or not the transformation in Eq. (2).

5 Concluding Remarks

In this paper we have presented the participation of the University of Granada
group in the 2008 INEX edition in the AdHoc tasks. This is based on the work
developed in previous years, but introducing a new utility model which gives
more importance (in a non-linear way) to the appearance of most of the terms
in the query. We have shown in the previous section that this new approach
considerably improves the results with respect to not to use it.

With respect to the comparison of our results with the rest of participants,
we could say that we are in the middle of the rankings, improving with respect
to the last edition of INEX.

Regarding future research in the context of INEX, we have to work in the
improvement of the raw results of Garnata, as they are the base for the different
sub-tasks. Also, we have designed an approach to answer CAS queries, which
will be evaluated in the next edition of the evaluation campaign.

Acknowledgments. This work has been jointly supported by the Spanish Con-
sejeŕıa de Innovación, Ciencia y Empresa de la Junta de Andalućıa and Ministerio
de Educación y Ciencia, under projects TIC-276 and TIN2005-02516, respec-
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Abstract. This paper documents our experiments in six of the INEX 2008 tracks:
Ad Hoc, Book Search, Entity Ranking, Interactive, Link the Wiki, and XML Min-
ing. We discuss our aims, experiments, results and findings for each of these
tracks.

1 Introduction
In this paper, we describe our participation in six of the INEX 2008 tracks.

For the Ad Hoc Track, we explore the good performance of standard document re-
trieval systems in term of their superior document ranking when compared to element
retrieval approaches. Our aim is to investigate the relative effectiveness of both ap-
proaches. We experiment with combining the two approaches to get the best of both
worlds.

For the Book Track, our aims were two-fold: 1) to investigate the effectiveness of
using book level evidence for page level retrieval, and 2) experiment with using Wiki-
pedia as a rich resource for topical descriptions of the knowledge found in books, to
mediate between user queries and books in the INEX Book Track collection.

For the Entity Ranking Track, our aim was to explore the relations and dependencies
between Wikipedia pages, categories and links.

For the Interactive Track, we particated in the concerted experiment designed by
the organizers. The specific aims of the experiment were to investigate the impact of the
task context for two types of simulated tasks were defined that are believed to represent
typical information needs of Wikipedia-users: fact-finding tasks and research tasks.

For the Link the Wiki Track, our aim was to investigate a two-tier approach to link
detection: first, a relevant pool of foster (candidate) articles is collected; second, sub-
string matching with the list of collected titles to establish an actual link. We specifically
look at the effectiveness of the two-tier approach on early precision and on recall.

For the XML Mining Track, our aim was to explore whether we can use link infor-
mation to improve classification accuracy.

The document collection for all tracks except the Book Search track is based on
the English Wikipedia [31]. The collection has been converted from the wiki-syntax to
an XML format [4]. The XML collection has more than 650,000 documents and over
50,000,000 elements using 1,241 different tag names. However, of these, 779 tags occur
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only once, and only 120 of them occur more than 10 times in the entire collection. On
average, documents have almost 80 elements, with an average depth of 4.82.

The rest of the paper describes our experiments for each of the tracks in a relatively
self-contained sections. First, in Section 2, we report the results for the Ad Hoc Track.
Then Section 3 presents our retrieval approach in the Book Track. Followed by our
results for the Entity Ranking Track in Section 4. Then, in Section 5, we discuss our
Interactive Track experiments. Followed by Section 6 detailing our approach and results
for the Link the Wiki Track. And last but not least, in Section 7, we discuss our XML
Mining Track experiments. Finally, in Section 8, we discuss our findings and draw some
conclusions.

2 Ad Hoc Track

For the INEX 2008 Ad Hoc Track we aim to investigate several methods of combining
article retrieval and element retrieval approaches. We will first describe our indexing
approach, then the run combination methods we adopted, the retrieval framework, and
finally per task, we present and discuss our results.

2.1 Retrieval Model and Indexing
Our retrieval system is based on the Lucene engine with a number of home-grown
extensions [11, 20].

For the Ad Hoc Track, we use a language model where the score for a element e
given a query q is calculated as:

P (e|q) = P (e) · P (q|e) (1)

where P (q|e) can be viewed as a query generation process—what is the chance that the
query is derived from this element—and P (e) an element prior that provides an elegant
way to incorporate link evidence and other query independent evidence [9, 19].

We estimate P (q|e) using Jelinek-Mercer smoothing against the whole collection,
i.e., for a collection D, element e and query q:

P (q|e) =
∏

t∈q

((1− λ) · P (t|D) + λ · P (t|e)) , (2)

where P (t|e) = freq(t,e)
|e| and P (t|D) = freq(t,D)P

e′∈D |e| .
Finally, we assign a prior probability to an element e relative to its length in the

following manner:

P (e) =
|e|β∑
e |e|β , (3)

where |e| is the size of an element e. The β parameter introduces a length bias which is
proportional to the element length with β = 1 (the default setting). For a more thorough
description of our retrieval approach we refer to [27]. For comprehensive experiments
on the earlier INEX data, see [24].

Our indexing approach is based on our earlier work [6, 15, 16, 25, 26, 27].
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– Element index: Our main index contains all retrievable elements, where we index
all textual content of the element including the textual content of their descendants.
This results in the “traditional” overlapping element index in the same way as we
have done in the previous years [26].

– Article index: We also build an index containing all full-text articles (i.e., all wiki-
pages) as is standard in IR.

For all indexes, stop-words were removed, but no morphological normalization such as
stemming was applied. Queries are processed similar to the documents, we use either
the CO query or the CAS query, and remove query operators (if present) from the CO
query and the about-functions in the CAS query.

2.2 Combining Article and Element Retrieval

Our experiments with combining runs all use the same two base runs:

– Article: a run using the Article index; and
– Element: a run using the element index.

Both runs use default parameters for the language model (λ = 0.15,β = 1.0). As
shown by Kamps et al. [17], article retrieval leads to a better document ranking, whereas
element retrieval fares better at retrieving relevant text within documents. We therefore
assume that a combined approach, using the document ranking of an article level run
with the within document element ranking of an element level run, outperforms both
runs on the “in context” tasks.

We experiment with three methods of combining the article and element results.

1. ArtRank: retain the article ranking, replacing each article by its elements retrieved
in the element run. If no elements are retrieved, use the full article.

2. Multiplication: multiply element score with article score of the article it belongs to.
If an element’s corresponding article is not retrieved in the top 1,000 results of the
article run, use only the element score.

3. CombSUM: normalise retrieval scores (by dividing by highest score in the results
list) and add the article score to each element score (if article is not in top 1,000
results for that topic, only element score is used). Thus elements get a boost if the
full article is retrieved in the top 1,000 results of the article run.

Our Focused and Relevant in Context submissions are all based on the following
base “Thorough” runs:

– inex08 art B1 loc in 100 and el B1 T: using the ArtRank method to combine
article and element runs;

– inex08 art B1 loc in 100 comb sum el B1 T: using the CombSUM method to
combine article and element runs; and

– inex08 art B1 loc in 100 x el B1 T: using Multiplication to combine article
and element runs.
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Table 1: Results for the Ad Hoc Track Focused Task (runs in emphatic are no official
submissions)

Run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
Article 0.5712 0.5635 0.5189 0.4522 0.2308
Element 0.6627 0.5535 0.4586 0.4062 0.1710
ArtRank 0.6320 0.6025 0.5054 0.4569 0.1991
CombSUM 0.6556 0.5901 0.4983 0.4553 0.1989
Multiplication 0.6508 0.5614 0.4547 0.4117 0.1815
Element CAS 0.6196 0.5607 0.4941 0.4396 0.2000
ArtRank CAS 0.6096 0.5891 0.5361 0.4629 0.2140
CombSUM CAS 0.6038 0.5811 0.5158 0.4506 0.2044
Multiplication CAS 0.6077 0.5855 0.5328 0.4601 0.2126

We also made CAS versions of these Thorough runs, using the same filtering method
as last year [6]. That is, we pool all the target elements of all topics in the 2008 topic
set, and filter all runs by removing any element type that is not in this pool of target
elements.

All our official runs for all three tasks are based on these Thorough runs. Because of
the lengthy names of the runs, and to increase clarity and consistency of presentation,
we denote all the official runs by the methods used, instead of the official run names we
used for submission.

2.3 Focused Task

To ensure the Focused run has no overlap, it is post-processed by a straightforward list-
based removal strategy. We traverse the list top-down, and simply remove any element
that is an ancestor or descendant of an element seen earlier in the list. For example,
if the first result from an article is the article itself, we will not include any further
element from this article. In the case of the CAS runs, we first apply the CAS filter and
then remove overlap. Doing this the other way around, we would first remove possibly
relevant target elements if some overlapping non-target elements receive a higher score.
These high scoring non-target elements are then removed in the CAS filtering step, and
we would lose many more promising elements than if we apply the CAS filter first.

Table 1 shows the results for the Focused Task. Somewhat surprisingly, the Article
run outperforms the Element run on the official Focused measure iP[0.01], although the
Element run fares much better at the earliest precision level iP[0.00]. Both CombSUM
and Multiplication attain higher scores for iP[0.00] than ArtRank, but the latter keeps
higher precision at further recall levels. The Multiplication method loses much more
precision than the other two methods. Compared to the baseline runs Article and Ele-
ment, the combination methods ArtRank and CombSUM lead to substantial improve-
ments at iP[0.01], where the Multiplication method performs slightly worse than the
Article run. However, the standard Article run clearly outperforms all other runs when
looking at overall precision.

Looking at the CAS runs, we see that the differences are small, with ArtRank lead-
ing to the highest iP[0.01] and MAiP scores. The CAS filtering method leads to im-
provements in overall precision—all MAiP scores go up compared to the non CAS
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Table 2: Results for the Ad Hoc Track Relevant in Context Task (runs in emphatic are
no official submissions)

Run gP[5] gP[10] gP[25] gP[50] MAgP
Article 0.3376 0.2807 0.2107 0.1605 0.1634
Element 0.2784 0.2407 0.1879 0.1471 0.1484
ArtRank 0.3406 0.2820 0.2120 0.1627 0.1692
CombSUM 0.3281 0.2693 0.2099 0.1615 0.1665
Multiplication 0.3295 0.2827 0.2136 0.1654 0.1695
Element CAS 0.3378 0.2837 0.2236 0.1719 0.1703
ArtRank CAS 0.3437 0.2897 0.2207 0.1712 0.1734
CombSUM CAS 0.3481 0.2991 0.2200 0.1726 0.1752
Multiplication CAS 0.3482 0.2888 0.2198 0.1724 0.1748

variants—but has a negative effect for early precision as both iP[0.00] and iP[0.01]
scores go down, except for the Multiplication run, where the iP[0.01] score goes up.
Also, the CAS version of the Multiplication run does improve upon the Article run for
precision up to 10% recall.

2.4 Relevant in Context Task
For the Relevant in Context task, we use the Focused runs and cluster all elements be-
longing to the same article together, and order the article clusters by the highest scoring
element. Table 2 shows the results for the Relevant in Context Task. The Article run
is better than the Element across the board, which is to be expected, given the results
reported in [17]. It has a superior article ranking compared to the Element run, and as
we saw in the previous section, it even outperformed the Element run on the official
measure for the Focused task. However, this time, the combination methods ArtRank
and Multiplication do better than the Article run on all reported measures, except for
the Multiplication run on gP[5]. Since they use the same article ranking as the Article
run, the higher precision scores of the ArtRank and Multiplication show that the ele-
ments retrieved in the Element run can improve the precision of the Article run. The
CombSUM method, while not far behind, fails to improve upon the Article run on early
precision levels (cutoffs 5, 10, and 25). Through the weighted combination of article
and element scores, its article ranking is somewhat different from the article ranking of
the Article run (and the ArtRank and Multiplication runs).

The CAS filtering method leads to further improvements. The Element CAS run
outperforms the standard Article run, and the combination methods show higher preci-
sion scores than their non CAS counterparts on all cutoff levels. This time, the Comb-
SUM method benefits most from the CAS filter. Whereas it was well behind on per-
formance compared to the other two combination methods, its CAS version has the
highest scores for gP[10], gP[50] and MAgP. Perhaps surprisingly, the Element CAS
run is even on par with the combined runs.

2.5 Best in Context Task

The aim of the Best in Context task is to return a single result per article, which gives
best access to the relevant elements.
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Table 3: Results for the Ad Hoc Track Best in Context Task (runs in emphatic are no
official submissions)

Run gP[5] gP[10] gP[25] gP[50] MAgP
Element 0.2372 0.2213 0.1778 0.1384 0.1394
Article 0.3447 0.2870 0.2203 0.1681 0.1693
Article offset 190 0.2462 0.2042 0.1581 0.1204 0.1228
ArtRank 0.2954 0.2495 0.1849 0.1456 0.1580
CombSUM 0.2720 0.2255 0.1872 0.1487 0.1560
Multiplication 0.2782 0.2399 0.1866 0.1496 0.1577
Element CAS 0.2758 0.2410 0.1929 0.1517 0.1487
ArtRank CAS 0.3101 0.2616 0.1952 0.1539 0.1587
CombSUM CAS 0.3081 0.2547 0.1942 0.1532 0.1581
Multiplication CAS 0.3098 0.2595 0.1944 0.1545 0.1596

We experimented with three methods of selecting the best entry point:

– Highest Scoring Element: simply the highest scoring element (HSE) returned for
each article. We use this on the ArtRank combined run;

– offset 0: the start of each returned article; and
– offset 190: the median distance from the start of the article of the best entry points

in the 2007 assessments.

Table 3 shows the results for the Best in Context Task.
The Article run is far superior to the Element run for the Best in Context Task, on

all cutoff levels and in MAgP. In fact, the Article run outperforms all combined runs
and CAS runs. The combined ArtRank run does better than the pure article run with
BEPs at offset 190. Note that both these two runs have the same article ranking as
the standard Article run. The highest scoring element is thus a better estimation of the
BEP than the median BEP offset over a large number of topics. However, using the
start of the element clearly outperforms both other runs. Of the three run combination
methods, ArtRank gets better scores at early precision levels (cutoffs 5 and 10), but is
overtaken by the Multiplication method at further cutoff levels. All three combinations
do outperform the Element run and the article run with fixed offset of 190.

The CAS runs again improve upon their non CAS variants, showing that our filtering
method is robust over tasks, retrieval approaches and combination methods. As for the
non CAS variants, ArtRank gives the best early precision, but the Multiplication gets
better precision at later cutoff levels.

The combination methods consistently improve upon the Element retrieval approach,
but are far behind the standard Article run. This means that our focused retrieval tech-
niques fail to improve upon an article retrieval approach when it comes to selecting the
best point to start reading a document. A closer look at the distribution of BEPs might
explain the big difference between the standard Article run and the other runs. The me-
dian BEP offset for the 2008 topics is 14 and 49% of all BEPs is at the first character.
This shows that choosing the start of the article will in most cases result in a much better
document score than any offset further in the document.
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2.6 Findings

To sum up, the combination methods seem to be effective in improving early precision.
For the official Focused measure, iP[0.01], they lead to substantial improvements over
both the Article run and the Element run. The ArtRank method gives the best results
for the official measure. Although the Element run scores slightly better at iP[0.00], the
combination methods show a good trade off between the good overall precision of the
Article run and the good early precision of the Element run. Combining them with the
CAS filter improves their overall precision but hurts early precision.

For the Relevant in Context task, all three methods improve upon the Article and
Element runs for MAgP. The ArtRank method shows improvement across all cutoff lev-
els. The Multiplication method leads to the highest MAgP scores of the three methods.
The CAS filter further improves their effectiveness, although the differences are small
for the ArtRank method. Here, the combined runs show the best of both worlds: the
good article ranking of the Article run and the more precise retrieval of relevant text
within the article of the Element run.

In the Best in Context task, of the three combination methods, ArtRank scores better
on early precision, while the other two methods do better at later cutoff levels. However,
no focused retrieval method comes close to the effectiveness of the pure Article run.
With most of the BEPs at, or very close to, the start of the article, there seems to be
little need for focused access methods for the Wikipedia collection. This result might be
explained by the nature of the collection. The Wikipedia collection contains many short
articles, where the entire article easily fits on a computer screen, and are all focused on
very specific topics. If any text in such a short article is relevant, it usually makes sense
to start reading at the start of the article.

Finally, the CAS filtering method shows to be robust over all tasks and focused
retrieval methods used here, leading to consistent and substantial improvements upon
the non CAS filtered variants.

3 Book Track

For the Book Track our aims were two-fold: 1) to investigate the effectiveness of using
book level evidence for page level retrieval, and 2) experiment with using Wikipedia
as a rich resource for topical descriptions of the knowledge found in books, to mediate
between user queries and books in the INEX Book Track collection.

We use Indri [28] for our retrieval experiments, with default settings for all param-
eters. We made one index for both book and page level, using the Krovetz stemmer, no
stopword removal, and created two base runs, one at the book level and one at the page
level.

3.1 Book Retrieval Task

Koolen et al. [18] have used Wikipedia as an intermediary between search queries
and books in the INEX Book collection. They experimented with using the link dis-
tance between so called query pages—Wikipedia pages with titles exactly matching
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the queries—and book pages—each book in the collection is associated with one or
more Wikipedia pages based on document similarity—as external evidence to improve
retrieval performance. We adopt this approach with the aim to investigate its effective-
ness 1) on queries that have no exact matching Wikipedia page and 2) in the context of
focussed retrieval, namely, the Page in Context task.

We obtained the query pages by sending each query to the online version of Wiki-
pedia and choosing the first returned result. If the query exactly matches a Wikipedia
page, Wikipedia automatically returns that page. Otherwise, Wikipedia returns a results
list, and we pick the top result. The idea is that most search topics have a dedicated page
on Wikipedia. With the 70 topics of the 2008 collection, we found dedicated Wikipedia
pages for 23 queries (38.6%). The book pages are obtained by taking the top 100 tf.idf
terms of each book (w.r.t. the whole collection) as a query to an Indri index of all Wiki-
pedia pages.1 Next, we computed the link distance between query pages and book pages
by applying a random walk model on the Wikipedia link graph to obtain a measure of
closeness between these pages. Books associated with Wikipedia pages closer in the
link graph to the query page have a higher probability of being relevant [18]. We then
combine these closeness scores with the retrieval scores from an Indri run.

The probability of going from node j at step s from the query node to node k is
computed as:

Ps+1|s(k|j) = Ps|s−1(j) ∗
ljk

lj
(4)

where ljk is the number of links from node j to node k, lj is the total number of links
from node j and Ps|s−1(j) is the probability of being at node j after step s.

To combine content based retrieval scores with external evidence, Craswell et al. [3]
guessed transformation functions from looking at distributions of log odds estimates for
different features. URL length, link indegree and click distance (the minimum of clicks
to the page from a root page) were modelled by sigmoid functions, leading to substantial
improvements when combined with a BM25 baseline. We choose a standard sigmoid
function for the transformation:

sigmoid(b, q) =
1

1 + e−cl(b,q)
(5)

where cl(b, q) is the closeness score for book b and query q. The sigmoid function
ensures that at the low end of the distribution, where there is no relation to relevance,
the closeness scores are transformed to values very close to 0.5 (a closeness score of
zero would be transformed to 0.5). Close to 1, the closeness scores rapidly increase
to 0.73. Thus, only the books at the high end of the distribution receive a boost. We
combine this with Indri’s retrieval score by simple addition:

S(b, q) = Indri(b, q) + sigmoid(b, q) (6)

The INEX 2007 Book Track test collection contains only judgements on the book
level, with shallow pools – an average of 15.7 books judged for each of the 250 topics.
Although there are only 70 topics in the 2008 topic set, the test collection should contain

1 This is based on the Wikipedia dump of 12 March, 2008.

73



more judgements per topic and even judgements on the page level. This will allow for a
much more detailed analysis of the effectiveness of using Wikipedia as an intermediary
between search queries and books.

3.2 Page in Context

As in the Ad Hoc Track, we experiment with methods of re-ranking the page level
runs using book level evidence. Because Indri scores are always negative (the log of a
probability, i.e. ranging from −∞ to 0), combining scores can lead to unwanted effects
(page score + book score is lower than page score alone). We therefore transform all
scores back to probabilities by taking the exponents of the scores. We experimented
with the following three methods.

1. Plus: add exponents of page score and book score (if the book is not retrieved, use
only page score).

2. Multiplication: multiply exponents of page and book scores (if book is not re-
trieved, discard page).

3. BookRank: use book score for all retrieved pages.

The 2008 Book Track assessment still have to take place at the time of writing, so we
cannot give any results on our submitted runs.

4 Entity Ranking

In the entity ranking track, our aim is to explore the relations and dependencies between
Wikipedia pages, categories and links. For the entity ranking task we have looked at
some approaches that proved to be successful in last year’s entity ranking and ad hoc
track. In these tracks it has been shown that link information can be useful. Kamps and
Koolen [14] use link evidence as document priors, where a weighted combination of the
number of incoming links from the entire collection and the number of incoming links
from the retrieved results for one topic is used. Tsikrika et al. [29] use random walks
to model multi-step relevance propagation from entities to their linked entities. For the
entity ranking track specifically also the category assignments of entities can be used.
Vercoustre et al. [30] use the Wikipedia categories by defining similarity functions be-
tween the categories of retrieved entities and the target categories. The similarity scores
are estimated using lexical similarity of category names. We implemented, extended
and combined the aforementioned approaches..

4.1 Model

We would like to create a model that exploits both link and category information and
try to find a natural way of combining these different sources of information.
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Category information Although for each topic one or a few target categories are pro-
vided, relevant entities are not necessarily associated with these provided target cate-
gories. Relevant entities can also be associated with descendants of the target category
or other similar categories. Therefore, simply filtering on the target categories is not
sufficient. Also, since Wikipedia pages are usually assigned to multiple categories, not
all categories of an answer entity will be similar to the target category. We calculate
for each target category the distances to the categories assigned to the answer entity. To
calculate the distance between two categories, we tried three options. The first option
(binary distance) is a very simple method: the distance is 0 if two categories are the
same, and 1 otherwise. The second option (contents distance) calculates distances ac-
cording to the contents of each category, the third and option (title distance) calculates
a distance according to the category titles. For the title and contents distance, we need
to calculate the probability of a term occurring in a category. To avoid a division by
zero, we smooth the probabilities of a term occurring in a category with the background
collection:

P (t1, ..., tn|C) =
n∑

i=1

λP (ti|C) + (1− λ)P (ti|D) (7)

where C, the category, consists either of the category title to calculate title distance,
or of the concatenated text of all pages belonging to that category to calculate con-
tents distance. D is the entire wikipedia document collection, which is used to estimate
background probabilities.

We estimate P (t|C) using a parsimonious model [10] that use an iterative EM al-
gorithm as follows:

E-step: et = tft,C · αP (t|C)
αP (t|C) + (1− α)P (t|D)

M-step: P (t|C) =
et∑
t et

, i.e. normalize the model (8)

The initial probability P (t|C) is estimated using maximum likelihood estimation. We
use KL-divergence to calculate distances, and calculate a category score that is high
when the distance is small as follows:

Scat(Cd|Ct) = −DKL(Cd|Ct) = −
∑

t∈D

(
P (t|Ct) ∗ log

(
P (t|Ct)
P (t|Cd)

))
(9)

where d is a document, i.e. an answer entity, Ct is a target category and Cd a category
assigned to a document . The score for an answer entity in relation to a target category
(S(d|Ct)) is the highest score, corresponding to the smallest distance, from the scores
S(Cd|Ct), the scores for the distances from the categories of the document to the target
category.

In contrast to [30], where a ratio of common categories between the categories asso-
ciated with an answer entity and the provided target categories is calculated, we take for
each target category only the minimal distance of the distances from the answer entity
categories to a target category. So if one of the categories of the document is exactly
the target category, the distance and also the category score for that target category is
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0, no matter what other categories are assigned to the document. Finally, the score for
an answer entity in relation to a query topic (S(d|QT )) is the sum of the scores of all
target categories:

Scat(d|QT ) =
∑

Ct∈QT

argmax
Cd∈d

S(Cd|Ct) (10)

List Completion The second task in the entity ranking track is list completion. Instead
of the target category, for each topic a few relevant examples entities are given. We treat
all categories assigned to the example entities as target categories. Our approach for
using the link and the category information is the same as before. But to get the final
score of an article in relation to a topic, we use two variants. The first one is:

SSum(d|QT ) =
∑

ex∈QT

∑

Cex∈ex

argmax
Cd∈d

Scat(Cd|Cex) (11)

In the second variant SMax(d|QT ), instead of summing the score of each example cat-
egory, we only take the maximum score i.e. shortest distance for all example categories
of the entity examples to one of the categories of the document. Furthermore, we use
the example entities for explicit relevance feedback through query expansion.

Link Information We implement two options to use the link information: relevance
propagation and document link degree prior. For the document link degree prior we use
the same approach as in [14]. The prior for a document d is:

PLink(d) = 1 +
IndegreeLocal(d)

1 + IndegreeGlobal(d)
(12)

The local indegree is equal to the number of incoming links from within the top ranked
documents retrieved for one topic. The global indegree is equal to the number of in-
coming links from the entire collection.

The second use of link information is through relevance propagation from initially
retrieved entities, as was done last year in the entity ranking track by Tsikrika et al. [29].

P0(d) = P (q|d) (13)

Pi(d) = P (q|d)Pi−1(d) +
∑

d′→d

(1− P (q|d′))P (d|d′)Pi−1(d′) (14)

Probabilities P (d|d′) are uniformly distributed among all outgoing links from the doc-
ument. Documents are ranked using a weighted sum of probabilities at different steps:

P (d) = µ0P0(d) + (1− µ0)
K∑

i=1

µiPi(d) (15)

For K we take a value of 3, which was found to be the optimal value last year. We try
different values of µ0 and distribute µ1...µK uniformly.
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Table 4: Document link degree prior results

# docs µ MAP P10
Baseline 0.1840 0.1920

50 0.6 0.1898 - 0.2040 -

50 0.5 0.1876 - 0.2000 -

100 0.7 0.1747 - 0.2000 -

100 0.3 0.1909 - 0.1920 -

500 0.5 0.1982◦ 0.2000 -

500 0.3 0.1915 - 0.2040◦
1,000 0.5 0.1965 - 0.1960 -

1,000 0.4 0.1965◦ 0.2000 -

Table 5: Category distances results

Dist. Weight MAP P10
Binary 0.1 0.2145 - 0.1880 -

Cont. 0.1 0.2481•◦ 0.2320◦

Title 0.1 0.2509◦ 0.2360◦

Cont. 0.05 0.2618•◦ 0.2480•◦Title 0.05

Note: Significance of increase over baseline according to t-test, one-tailed, at significance levels
0.05 (◦), 0.01 (•◦), and 0.001 (•).

Combining Information Finally, we have to combine our different sources of informa-
tion. We start with our baseline model which is a standard language model. We have two
possibilities to combine information. We can make a linear combination of the probabil-
ities and category score. All scores and probabilities are calculated in the log space, and
then a weighted addition is made. Secondly, we can use a two step model. Relevance
propagation takes as input initial probabilities. Instead of the baseline probability, we
can use the scores of the run that combines the baseline score with the category infor-
mation. Similarly, for the link degree prior we can use the top results of the baseline
combined with the category information instead of the baseline ranking.

4.2 Experiments

For our training data we use the 25 genuine entity ranking test topics that were devel-
oped for the entity ranking track last year. Since no results are available on the test data
yet, we only report on our results on the training data.

For our baseline run and to get initial probabilities we use the language modeling
approach with Jelinek-Mercer smoothing, Porter stemming and pseudo relevance feed-
back as implemented in Indri [28] to estimate P (d|q). We tried different values for the
smoothing λ, and λ = 0.1 gives the best results, with a MAP of 0.1840 and a P10
of 0.1920. For the document link degree prior we have to set two parameters: µ, that
determines the weight of the document prior. For µ we try all values from 0 to 1 with
steps of 0.1. The weight of the baseline is here (1 − µ). Only values of µ that give the
best MAP and P10 are shown in Table 4. We have to decide how many documents are
used to calculate the document prior, and look at 50, 100, 500 and 1,000 documents.

The results of using category information are summarized in Table 5. The weight
of the baseline score is 1.0 minus the weight of the category information. For all three
distances, a weight of 0.1 gives the best results. In addition to these combinations, we
also made a run that combines the original score, the contents distance and the title
distance. When a single distance is used, the title distance gives the best results. The
combination of contents and title distance gives the best results overall.

In our final experiments we try to combine all information we have, the baseline
score, the category and the link information. Firstly, we combine all scores by making
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Table 6: Results linear combination

Link Info Weight MAP P10
Prior 1.0 0.2564•◦ 0.2680•◦

Prior 0.5 0.2620•◦ 0.2560•◦

Prop. 0.1 0.2777•◦ 0.2720•◦

Table 7: Results two step model

Link info Weight MAP P10
Prior 0.5 0.2526•◦ 0.2600•◦

Prop. 0.2 0.2588•◦ 0.2960 •

Prop. 0.1 0.2767•◦ 0.2720•◦

Table 8: Feedback results

RF PRF MAP P10
No No 0.1409 0.1240
Yes No 0.1611 0.1600
Yes Yes 0.1341 0.1960

Table 9: List Completion results

Dist. Weight S(A|QT ) Ct MAP P10
Baseline LC 0.1611 0.1600

Cont. 0.1 Sum No 0.2385•◦ 0.2520◦

Cont. 0.9 Sum Yes 0.2467• 0.2560◦

Cont. 0.2 Max No 0.1845 - 0.2360 -

Title 0.1 Sum No 0.2524•◦ 0.2640◦

Title 0.9 Sum Yes 0.2641• 0.2760◦
Title 0.5 Max No 0.1618 - 0.2080 -

Cont. 0.05 Sum No 0.2528• 0.2640◦Title 0.05

a linear combination of the scores and probabilities (shown in Table 6). The best run
using category information (weight contents = 0.05, and weight title = 0.05) is used
in combination with the link information. Secondly, we combine the different sources
of information by using the two step model (see Table 7). Link information is mostly
useful to improve early precision, depending on the desired results we can tune the
parameters to get optimal P10, or optimal MAP. Relevance propagation performs better
than the document link degree prior in both combinations.

For the list completion task, we can also use the examples for relevance feedback.
To evaluate the list completion results, we remove the example entities from our rank-
ing. Applying explicit and pseudo relevance feedback leads to the results given in Ta-
ble 8. Additional pseudo relevance feedback after the explicit feedback, only improves
early precision, and harms MAP. We take the run using only relevance feedback as our
baseline for the list completion task.

When we look at the previous entity ranking task, the largest part of the improve-
ment comes from using category information. So here we only experiment with using
the category information, and not the link information. We have again the different cate-
gory representations, content and category titles. Another variable here is how we com-
bine the scores, either add up all the category scores (SSum(A|QT )) or taking only the
maximum score (SMax(A|QT )). Not part of the official task, we also make some runs
that use not only the categories of the example entities, but also the target category(ies)
provided with the query topic. In Table 9 we summarize some of the best results. The
combination of contents and title distance, does not lead to an improvement over using
only the title distance. The maximum score does not perform as well as the summed
scores. We use all categories assigned to the entity examples as target categories, but
some of these categories will not be relevant to the query topic introducing noise in the
target categories. When the scores are summed, this noise is leveled out, but when only
the maximum score is used it can be harmful.
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4.3 Findings

We have presented our entity ranking approach where we use category and link infor-
mation. Category information is the factor that proves to be most useful and we can do
more than simply filtering on the target categories. Category information can both be ex-
tracted from the category titles and from the contents of the category. Link information
can also be used to improve results, especially early precision, but these improvements
are small.

5 Interactive Experiments
In this section, we discuss our participation in the INEX 2008 Interactive Track (iTrack).
For the Interactive Track, we participated in the concerted experiment designed by the
organizers. The overall aim of the iTrack is to understand the how users interact with
structured XML documents; the specific aims of the INEX 2008 Interactive Track were
to investigate the impact of the task context. Two types of simulated tasks were defined
that are believed to represent typical information needs of Wikipedia-users: fact-finding
tasks and research tasks. The track is set up to investigate whether the different task
types lead to different information interaction: for example, a test-person may prefer
different levels of granularity to view documents, different numbers of results, etc. In
addition, other factors that may impact the test person’s information seeking behavior
and satisfaction, such as her knowledge of and interest in the task at hand, are also
recorded

As in previous years, the Daffodil system is used for element retrieval. The system
returns elements of varying granularity based on the hierarchical document structure.
All elements coming from the same document are grouped together in the hitlist (as
in the Ad Hoc Track’s Relevant in Context task). Any result in the hitlist is clickable
and shows the corresponding part of the document in the result display. In addition,
all elements matching the query are shown with background highlighting in the result
display. For further information about the track set-up we refer to [22].

5.1 Approach
We recruited eight test persons in which seven of them completed the experiment. One
test person failed to complete the experiment due to system failure. Hence, our results
are based on the data from seven test persons. The organizers provided six simulated
search tasks corresponding to two different task types. The first type is fact-finding:
search tasks that request specific information for a topic. An example fact-finding task
is:

As a frequent traveler and visitor of many airports around the world you are
keen on finding out which is the largest airport. You also want to know the
criteria used for defining large airports.

The second type is research: search tasks that required broad information of a topic and
the information can only be found by collecting information from several documents.
An example research task is:
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Table 10: Post-task questionnaire, with answers on a 5-point scale (1-5).

Q3.1: How understandable was the task?
Q3.2: How easy was the task?
Q3.3: To what extent did you find the task similar to other searching tasks that you typically

perform?
Q3.6: Are you satisfied with your search results?
Q3.7: How relevant was the information you found?
Q3.8: Did you have enough time to do an effective search?
Q3.9: How certain are you that you completed the task?

Table 11: Post-task responses on searching experience: mean scores and standard devi-
ations (in brackets)

Type Q3.1 Q3.2 Q3.3 Q3.6 Q3.7 Q3.8 Q3.9
All tasks 4.50 (0.65) 3.29 (1.38) 3.71 (1.27) 3.14 (1.61) 3.29 (1.59) 3.14 (1.35) 2.86 (1.41)
Fact Finding 4.71 (0.49) 3.00 (1.91) 3.43 (1.72) 2.43 (1.81) 2.43 (1.81) 2.86 (1.77) 2.57 (1.81)
Research 4.29 (0.76) 3.57 (0.53) 4.00 (0.58) 3.86 (1.07) 4.14 (0.69) 3.43 (0.79) 3.14 (0.90)

You are writing a term paper about political processes in the United States and
Europe, and want to focus on the differences in the presidential elections of
France and the United States. Find material that describes the procedure of
selecting the candidates for presidential elections in the two countries.

Each test person chose and worked with one simulated task from each category.

5.2 Results
We provide an initial analysis of the data gathered through questionnaires and log files.
We will limit our attention here to the post-task questionnaire (Q3, selected questions
are shown in Table 10) and the corresponding log data.

The responses of the test persons are summarized in Table 11. If we look at the
responses over all tasks the average response varies from 2.86 to 4.50 signaling that
the test persons were reasonably positive. We also look at the responses for each task
type. Here we see that test persons understood both tasks very well (Q3.1). Fact find-
ing receives higher responses on average, which makes sense given the nature of the
simulated tasks and thereby confirms that the chosen simulated tasks represent the par-
ticular task types. For all other questions in Table 11, the research task type is receiving
higher responses on average. That is, the research task was regarded easier (Q3.2) and
more similar to other searching task (Q3.3) compare to the fact finding task. Admittedly,
this may be a result of our choice of test persons who all have an academic education.
Moreover, test persons were more satisfied with the search results provided by the sys-
tem (Q3.6) for the research task. A possible explanation is that the research tasks are
more open-ended than the fact finding task where test persons need to find a specific
and precise answer. Hence, additional material provided by the system may be more
useful in the research task context. This explanation is supported by the response when
asked about the relevancy of the found information (Q3.7). Test persons believed that
they found more relevant results for the research task.
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Next, we look at the time test persons spent on each task. On the question whether
there was enough time for an effective search (Q3.8), responses for the fact finding
tasks were lower than for the research tasks. This is rather surprising since the fact-
finding task is less open-ended. As a case in point, the log data shows that, on average,
test persons spent 9 minutes and 17 seconds on a fact finding task and 11 minutes 17
seconds on a research task. Almost all test persons did not use the maximally allotted
time of 15 minutes per task. A possible explanation is that the system did not support
them well enough in finding relevant results for fact-finding (Q3.6), or at least that
they expected the system to do better (which may be an unrealistic expectation based
on searching for similar questions on the Web at large using Internet search engines).
This is consistent with the assessment of task completion (Q3.9) where, on average,
test persons were less certain that they completed the fact finding task compared to the
research task. Also note that the standard deviation for fact finding task in almost all
questions are larger than the research task. A possible explanation is again that several
test persons were not satisfied with the results they found when completing the fact
finding task. We look forward to analysing this hypothesis against the data collected in
the other experiments, hoping to reveal whether it can indeed be attributed to the impact
of the task type.

5.3 Findings
We reported the result of the Interactive Track experiment based on seven test persons
using the post-task questionnaire and corresponding log files. We found that our test
persons spent more time on completing the research task in comparison to fact finding
task. We also found that test persons regarded the research task easier, were more sat-
isfied with the search result and found more relevant information for the research task.
This is plausibly related to the task type, where test persons regard more information
as relevant or useful when searching for a more open-ended research task. Fact finding
tasks require a more specific and precise answer, which may diminish the additional
value of exploring a wide range of search results. We plan to analyze the data in greater
detail, e.g., by examining possible differences between tasks types also for the data
collected by other groups.

6 Link Detection Experiments
In this section, we discuss our participation in the Link The Wiki (LTW) track. LTW is
aimed at detecting or discovering missing links between a set of topics, and the remain-
der of the collection, specifically detecting links between an origin node and a destina-
tion node, hence effectively establishing cross-links between Wikipedia articles. This
year the track consisted of two tasks. What both tasks had in common was that it con-
sisted of 2 sub-tasks; the detection of links from an ‘orphan’ (outgoing) and to an ‘or-
phan’ (incoming). The issue of link density and link repetition as mentioned in [33] has
not been addressed, henceforth we restricted our experimentation to detecting unique
cross-links.

The first task was a continuation of the track of last year with the detection of links
between whole articles where no anchor or Best Entry Point (BEP) was required. A
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difference with the task of the previous year was the number of ‘orphan’ topics, namely
a random sample of 6,600 topics which equals about 1% of the total collection. Existing
links in origin nodes were removed from the topics, making these articles ‘orphans.’ A
threshold of 250 was set for both the number of incoming and outgoing links.

The second task used 50 orphan topics which were submitted by the track partici-
pants and went further than link detection on the article level as the BEP was required.
Another requirement for these topics was that a plausible number of outgoing and in-
coming links is 50. Multiple BEPs were allowed; each anchor was allowed to have 5
BEPs.

6.1 Experiments with Detection of Article-to-Article Links

Information Retrieval methods have been employed to automatically construct hyper-
text on the Web [1, 2]. Previous research with generic and learning approaches of link
detection in the Wikipedia are for example [6, 7, 8, 12, 13, 21]. General information
retrieval techniques were used in [6, 7, 8, 13]. An approach that used link structures
to propagate more likely ‘linkable’ anchor texts was presented in [12], and a machine
learning approach with standard classifiers was presented in [21].

We have chosen to employ a collection-independent approach with IR techniques
as outlined in [6] and continue the experimentation with that approach and put it more
under the test. This means we do not rely on any learning, heavy heuristics or existing
link structures in the Wikipedia. Our approach is mostly based on the assumption that
to detect whether two nodes are implicitly connected, it is necessary to search the Wiki-
pedia pages for some text segments that both nodes share. Usually it is only one specific
and extract string [1]. One text segment is defined as a single line, and a string that both
nodes share is a potentially relevant substring. Only relevant substrings of at least 3
characters length are considered in our approach, because anchor texts of 3 characters
or less do not occur frequently, and to prevent detecting too many false positives.

We adopt a breadth m–depth n technique for automatic text structuring for identi-
fying candidate anchors and text node, i.e. a fixed number of documents accepted in
response to a query and fixed number of iterative searches. So the similarity on the doc-
ument level and text segment level is used as evidence. We used the whole document as
a query with the standard Vector Space Model (VSM) implementation of Lucene [20],
i.e., for a collection D, document d, query q and query term t:

sim(q, d) =
∑

t∈q
tft,q ·idft
normq

· tft,d ·idft
normd

· coordq,d · weightt , (16)

where

tft,X =
√

freq(t, X)
idft = 1 + log |D|

freq(t,D)

normq =
√∑

t∈q tft,q · idft2

normd =
√

|d|
coordq,d = |q∩d|

|q| .
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Moreover, we also used the standard Language Modeling (LM) framework of ILPS-
Lucene [11], which we already discussed in Section 2.

Before the actual link detection process starts, we do some pre-processing by ex-
tracting for each topic the title enclosed with the <name> tag with a regular expression
and store that in a hash-table for substring matching. We do not apply case-folding, but
we do remove any existing disambiguation information put between brackets behind
the title.

We do not assume that links are reciprocal, so we have different approaches for
detecting outgoing and incoming links, though we set a threshold of 250 for both type
of links and do not allow duplicated links. Links also appear locally within an article to
improve navigation on that page, but this was outside the scope of the LTW track.

– There is an outgoing link for an ‘orphan’ topic when the title of a ‘foster’ article
occurs in the orphan topic.

– There is an incoming link for an orphan when the title of the orphan occurs in a
foster topic.

We submitted 3 official runs based on this generic approach:

Amsterdam Turfdraagsterpad(UvA) a2a 1 The whole orphan article is used as a
query, where the VSM is used. The pool of plausible ‘foster’ (candidate) articles is
the top 300 of the ranked list returned by this query. This is our baseline run.

Amsterdam Turfdraagsterpad(UvA) a2a 2 The term frequencies of the orphan ar-
ticle are conflated, and the resulting bag of words is used as query with LM with
default settings. The pool of plausible ‘foster’ (candidate) articles is the top 300 of
the ranked list returned by this query.

Amsterdam Turfdraagsterpad(UvA) a2a 3 The whole orphan article is used as a
query, where the VSM is used. The pool of plausible ‘foster’ (candidate) articles is
the top 500 of the ranked list returned by this query.

6.2 Experiments with Detection of Article-to-BEP Links

We submitted 4 runs for the article-to-BEP task. For all of these runs, we assume that
the BEP is always the start of the article, thus the offset is always 0. Another difference
with the first task was that actual anchor text had to be specified using the File-Offset-
Length (FOL) notation. Multiple BEPs per anchor were only computed for the run
Amsterdam Turfdraagsterpad(UvA) a2bep 5. The 4 official submitted Article-to-
BEP runs were:

Amsterdam Turfdraagsterpad(UvA) a2bep 1 The whole orphan article is used as
query with the VSM, and the top 300 results are used to find potential cross-links.

Amsterdam Turfdraagsterpad(UvA) a2bep 2 The term frequencies of the orphan
article are conflated, and the resulting bag of words is used as query with LM with
default settings. The pool of plausible ‘foster’ (candidate) articles is the top 300 of
the ranked list returned by this query.

Amsterdam Turfdraagsterpad(UvA) a2bep 3 The whole orphan article is used as
query with the VSM. The top 50 ranking articles is harvested. Each of these article
is used again as a query to retrieve its top 6 results. This results in a potential pool
of 300 foster articles.
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Table 12: Official results of the Article-to-Article runs for the Link The Wiki Track

Run Links MAP P@5 Rank
Amsterdam Turfdraagsterpad(UvA) a2a 1 In 0.339272695 0.833743098 16/25
Amsterdam Turfdraagsterpad(UvA) a2a 2 In 0.287957616 0.832444188 22/25
Amsterdam Turfdraagsterpad(UvA) a2a 3 In 0.357581856 0.837737848 15/25
Amsterdam Turfdraagsterpad(UvA) a2a 1 Out 0.107164298 0.284862095 15/25
Amsterdam Turfdraagsterpad(UvA) a2a 2 Out 0.108885207 0.293142884 14/25
Amsterdam Turfdraagsterpad(UvA) a2a 3 Out 0.101743892 0.268992346 17/25

Table 13: Official results of the Article-to-BEP runs for the Link The Wiki Track

Run Links MAP P@5 Rank
Amsterdam Turfdraagsterpad(UvA) a2bep 1 In 0.234947342 0.932647059 9/30
Amsterdam Turfdraagsterpad(UvA) a2bep 2 In 0.16157935 0.949807692 22/30
Amsterdam Turfdraagsterpad(UvA) a2bep 3 In 0.156616929 0.933123249 25/30
Amsterdam Turfdraagsterpad(UvA) a2bep 5 In 0.234947342 0.932647059 8/30
Amsterdam Turfdraagsterpad(UvA) a2bep 1 Out 0.097272945 0.524529751 20/30
Amsterdam Turfdraagsterpad(UvA) a2bep 2 Out 0.087151118 0.48392250 22/30
Amsterdam Turfdraagsterpad(UvA) a2bep 3 Out 0.091064252 0.604179122 21/30
Amsterdam Turfdraagsterpad(UvA) a2bep 5 Out 0.143689485 0.748596188 14/30

Amsterdam Turfdraagsterpad(UvA) a2bep 5 This run is similar to the first Article-
to-BEP run, but we expanded this run by allowing more than 1 BEP for each an-
chor. We use the depth-first strategy, and the broader-narrower conceptualization of
terms by re-grouping the extracted list of titles based on a common substring. For
example, the anchor text Gothic could refer to the topic “Gothic,” but also to topics
with the titles “Gothic alphabet”, “Gothic architecture”, “Gothic art”, “Gothic
Chess”, and so on.

6.3 Experimental Results

The current experimental results are evaluated against the set of existing links (in the
un-orphaned version of the topics) both for the sample of 6,600 topics in the first task
as well as the 50 topics of the article-to-BEP task. The results of the user assessments
of the 50 topics have not been released yet of this writing. The results of our official
submissions are depicted in Table 12 for the first task with the detection of links on
the article-level and in Table 13 for the article-to-BEP. The performance was measured
with the Mean Average Precision (MAP) and the Precision at rank like the precision at
5 percent (P@5). Moreover, our runs are put in context by ranking them in the list that
includes the runs of the other participants based on the MAP score.

These results, especially the sub-optimal results for the outgoing links and the gen-
eral results on the article-level, warrant some reflection on several limitations of our
approach. We did exact string matching with the titles of the potential foster topics
and did no apply case-folding or any kind of normalization. This means we could have
incorrectly discarded a significant number of relevant foster articles (false negatives);
effectively under-generating the outgoing links and under-linking the topics.
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We achieved one of the highest early precisions for the incoming links for both
tasks. The precision drops later on as the fallout increases, which hurts the eventual
MAP score—this suggests that the ranked list of results should be cut-off earlier, and
that more relevant articles should be retrieved in the top. The limitations of using whole
document as query, combined with the VSM, has been tested. We also tested the LM
method with default parameter values for compiling such a list by using a conflated set
of terms from an orphan topic, however, this has proven not to be very effective for the
accuracy of the detection of the incoming links, and also hardly affects the accuracy of
the detection of the outgoing links.

6.4 Findings

In summary, we continued with our experimentation with the Vector Space Model, con-
ducted some tests with Language Modeling, and simple string processing techniques for
detecting missing links in the Wikipedia. The link detection occurred in 2 steps: first, a
relevant pool of foster (candidate) articles is collected; second, substring matching with
the list of collected titles to establish an actual link. We used entire orphaned articles
as query. Clearly, we showed the constraints of this approach, especially on the article
level. Our Article-to-BEP runs are also dependent on this first step. However, we found
that we can significantly improve the accuracy of the detection of our outgoing links by
generating multiple BEPs for an anchor.

7 XML Mining Track

Previous years of the XML mining track have explored the utility of using XML docu-
ment structure for classification accuracy. It proved to be difficult to obtain better per-
formance [5]. This year the data consist of a collection of wikipedia XML documents
that have to be categorized into fairly high-level wikipedia categories and the link struc-
ture between these documents. Link structure has been found to be a useful additional
source of information for other tasks such as ad hoc retrieval [14] and entity ranking
(see Section 4). Our aim at the XML Mining Track is to examine whether link structure
can also be exploited for this classification task.

7.1 Classification Model

For our baseline classification model we use a classical Naive Bayes model [23]. The
probability of a category given a document is:

P (cat|d) =
P (d|cat) ∗ P (cat)

P (d)
(17)

Since P (d) does not change over the range of categories we can omit it. For each
document the categories are ranked by their probabilities, and the category with the
highest probability is assigned to the document:

ass cat(d) = arg max
cat∈cats

P (d|cat) ∗ P (cat)

= arg max
cat∈cats

P (t1|cat) ∗ P (t2|cat) ∗ .. ∗ P (tn|cat) ∗ P (cat) (18)
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where ti...tn are all terms in a document. The probability of a term occurring in a
category is equal to its term frequency in the category divided by the total number of
terms in the category. Feature (term) selection is done according to document frequency.
We keep 20% of the total number of features [32]. The link information is used as
follows:

P0(cat|d) = P (cat|d)

P1(cat|d) =
∑

d→d′

P (d|d′)P (cat|d′)

P2(cat|d) =
∑

d′→d′′

P (d|d′′)P (cat|d′′) (19)

where d′ consist of all documents that are linked to or from d, and d′′ are all documents
that are linked to or from all documents d′. The probabilities are uniformly distributed
among the incoming and/or outgoing links. The final probability of a category given a
document is now:

P ′(cat|d) = µP0(cat|d) + (1− µ)(αP1(cat|d) + (1− α)P2(cat|d)) (20)

The parameter µ determines the weight of the original classification versus the weight
of the probabilities of the linked documents. Parameter α determines the weight of the
first order links versus the weight of the second order links.

7.2 Experiments

Documents have to be categorized into one of fifteen categories. For our training exper-
iments, we use 66% of the training data for training, and we test on the remaining 33%.
We measure accuracy, which is defined as the percentage of documents that is correctly
classified, which is equal to micro average recall. Our baseline Naive Bayes model
achieves an accuracy of 67.59%. Macro average recall of the baseline run is consider-
ably lower at 49.95%. All documents in the two smallest categories are misclassified.
Balancing the training data can improve our macro average recall.

When we use the link information we try three variants: do not use category infor-
mation of linked data, use category information of the training data, and always use
category information of linked data. Other parameters are whether to use incoming or
outgoing links, µ and α. For parameter µ we tried all values from 0 to 1 with steps
of 0.1, only the best run is shown. The results are given in Table 14. The accuracy of
the runs using link information is at best only marginally better than the accuracy of
the baseline. This means that the difficult pages, which are misclassified in the baseline
model, do not profit from the link information. The links to or from pages that do not
clearly belong to a category and are misclassified in the baseline run, do not seem to
contribute to classification performance. These linked pages might also be more likely
to belong to a different category.

On the test data we made two runs, a baseline run that achieves an accuracy of
69.79%, and a run that uses in- and outlinks, α = 0.5 and µ = 0.4, with an accuracy
of 69.81%. Again the improvement in accuracy when link information is used is only
marginal.
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Table 14: Training Classification results

Inlinks Outlinks In- and Outlinks
Link info α µ Accuracy µ Accuracy µ Accuracy
Baseline 0.6759 0.6759 0.6759
None 0.5 0.5 0.6766 1.0 0.6759 0.4 0.6764
None 0.75 1.0 0.6759 1.0 0.6759 1.0 0.6759
None 1.0 1.0 0.6759 1.0 0.6759 1.0 0.6759
Training 0.5 0.5 0.6793 0.4 0.6777 0.4 0.6819
Training 0.75 0.5 0.6793 0.5 0.6777 0.5 0.6806
Training 1.0 0.6 0.6780 0.5 0.6780 0.6 0.6777
All 0.5 0.5 0.6780 0.3 0.6816 0.4 0.6858
All 0.75 0.6 0.6780 0.3 0.6848 0.5 0.6819
All 1.0 0.6 0.6784 0.4 0.6858 0.6 0.6787
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7.3 Analysis

We try to analyze on which kind of pages the most errors are made in our baseline
run. Considering the length of pages, shorter pages do not tend to be more difficult than
longer pages as can be seen in Figure 1. The difficult pages to classify can be recognized
by comparing the output probability of the two highest scoring categories. This is shown
in Figure 2 where we divided the training data over 6 bins of approximately the same
size sorted by the fraction (Pcat1/Pcat2).

In our baseline run pages without links also seem to get misclassified more often
than pages with in- and/or outlinks (see Figure 3). When link information is available,
and we try to use it, there are two sources of error. The first source of error, is that
not all linked pages belong to the same category as the page to classify (see Table 15).
However, when we classify pages that have links using only the link information, there
are some cases where the accuracy on these pages is well above the accuracy of the
complete set. To obtain our test data we have used both incoming and outgoing links,
which means that almost half of the pages do not belong to the same category as the
page to classify. Secondly, we only know the real categories of the pages in the training
data, which is only 10% of all data. For all pages in the test data, we estimate the
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Table 15: Statistics of training and test data

# pages links % links with same cat.
Data total with inlinks with outlinks with links /page inlinks outlinks links
Training 11,437 2,627 (23%) 5,288 (46%) 5,925 (52%) 0.7 76.8% 41.1% 45.8%
Test 113,366 88,174 (77%) 103,781 (91%) 107,742 (94%) 5.6 77.2% 53.4% 59.0%

probability of each category belonging to that page. With a classification accuracy of
almost 70%, this means we introduce a large additional source of error.

7.4 Findings

It is difficult to use link information to improve classification accuracy. A standard
Naive Bayes model achieves an accuracy of almost 70%. While link information may
provide supporting evidence for the pages that are easy to classify, for the difficult pages
link information is either not available or contains too much noise.

8 Discussion and Conclusions
In this paper, we documented our efforts at INEX 2008 where we participated in six
tracks: Ad hoc, Book, Entity Ranking, Interactive, Link the Wiki, and XML-Mining.

For the Ad Hoc Track, we investigated the effectiveness of combining article and
element retrieval methods. We found that the ArtRank method, where the article run
determines the article ranking, and the element run determines which part(s) of the text
is returned, gives the best results for the Focused Task. For the Relevant in Context
Task, the Multiplication method is slightly better than ArtRank and CombSUM, but for
the CAS runs, where we filter on a pool of target elements based on the entire topic set,
the CombSUM method gives the best performance overall. The combination methods
are not effective for the Best in Context Task. The standard article retrieval run is far
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superior to any focused retrieval run. With many short articles in the collection, all
focused on very specific topics, it makes sense to start reading at the start of the article,
making it hard for focused retrieval techniques to improve upon traditional document
retrieval. The CAS pool filtering method is effective for all three tasks as well, showing
consistent improvement upon the non CAS variants for all measures.

For the Book Track, we experimented with the same run combination methods as in
the Ad Hoc Track. We also combined a standard content based book retrieval run with
external evidence from Wikipedia. Using the idea that Wikipedia covers many of both
the topics found in books and searched for by users, and the dense link graph between
Wikipedia pages, we use the link distance between pages matching the query and pages
matching the content of the books in the collection as measure of topical closeness. The
topic assessment phase has yet to start, so we cannot report any results in this paper,
but we aim to investigate the effectiveness of combination methods for document and
focused retrieval techniques in a book retrieval setting, where the documents are far
larger than in the Wikipedia collection. With entire books, providing a good access point
to a specific topic might show focused retrieval techniques to be much more effective
than traditional document retrieval.

For the Entity Ranking Track, we have presented our entity ranking approach where
we use category and link information. Category information is the factor that proves to
be most useful and we can do more than simply filtering on the target categories. Cat-
egory information can both be extracted from the category titles and from the contents
of the category. Link information can also be used to improve results, especially early
precision, but these improvements are small.

For the Interactive Track, we found that our test persons spent more time on com-
pleting the research task in comparison to fact finding task. We also found that test
persons regarded the research task easier, were more satisfied with the search result
and found more relevant information for the research task. This is plausibly related to
the task type, where test persons regard more information as relevant or useful when
searching for a more open-ended research task. Fact finding tasks require a more spe-
cific and precise answer, which may diminish the additional value of exploring a wide
range of search results.

For the Link the Wiki Track, we continued with our experimentation with the Vec-
tor Space Model, conducted some tests with Language Modeling, and simple string
processing techniques for detecting missing links in the Wikipedia. The link detection
occurred in 2 steps: first, a relevant pool of foster (candidate) articles is collected; sec-
ond, substring matching with the list of collected titles to establish an actual link. We
used entire orphaned articles as query. Clearly, we showed the constraints of this ap-
proach, especially on the article level. Our Article-to-BEP runs are also dependent on
this first step. However, we found that we can significantly improve the accuracy of the
detection of our outgoing links by generating multiple BEPs for an anchor.

For the XML-Mining Track, our aim was to explore whether we can use link in-
formation to improve classification accuracy. Previous years of the XML mining track
have explored the utility of using XML document structure for classification accuracy.
Link structure has been found to be a useful additional source of information for other
tasks such as ad hoc retrieval. Our experiments suggest that it is difficult to use link in-
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formation to improve classification accuracy. A standard Naive Bayes model achieves
an accuracy of almost 70%. While link information may provide supporting evidence
for the pages that are easy to classify, for the difficult pages link information is either
not available or too noisy to be promoting the classification accuracy.
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Abstract. This paper describes the joint participation of University of Lyon 3
and LIA-University of Avignon in the INEX 2008 Ad-Hoc Retrieval track. In this
first participation, we tested two ideas: (i) evaluate the performance of standard
IR engines used in full document retrieval for XML element retrieval; (ii) evalu-
ate the effectiveness of multiword terms as query terms. The second idea, more
labor intensive, involved manual multiword term gathering from the Wikipedia
corpus following an initial query. Different search strategies involving query ex-
pansion and term weighting were then designed and submitted to the Indri query
language.

1 Introduction

INEX XML retrieval aims to evaluate systems performance in retrieving relevant doc-
ument components (e.g. XML elements) rather than whole documents. It is therefore a
natural assumption that participating systems would make use of the XML structure in
their query and that they would locate xml elements or passages rather than full arti-
cles. This assumption is however not a mandatory requirement and systems retrieving
full articles are welcomed as a means of comparing full article vs element retrieval. The
corpus used in the 2008 edition is the same as in previous years, it is the 2006 version
of the English Wikipedia comprising 659,388 articles without images [1]. From this
corpus, participants were asked to submit topics corresponding to real life information
need. A total of 133 such topics were built. A topic consists of four fields: Content
Only field ( CO or Title ) with a multiword term expression of the topic; a Con-
tent Only + Structure version of the topic ( CAS ) which is the title with indication of
xml structure where the relevant elements may be found; a description field which is a
slightly longer version of the title field; and a narrative field comprising a summary
with more details about the expected anwsers. Typically, the narrative would indicate
things to eliminate from relevant answers and draw boundaries on relevant articles that
can be geographic, spatial, genre or historical in nature. Some title fields contained
booleen operators that required systems to explicitly exclude (-) or include (+) certain
terms in the relevant answer elements.

The Ad Hoc track is divided into 3 subtasks: Focused retrieval, Relevant-in-Context
(RiC), Best-in-Context (BiC). The focused task requires systems to return a ranked list
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of relevant non-overlapping elements or passages. This is called the “fetching phase”.
The Relevant-in-Context task builds on the results of the focused task. Systems are
asked to select, within relevant articles, several non-overlapping elements or passages
that are specifically relevant to the topic. This is called the “browsing phase”. The Best-
in-Context task is aimed at identifying the best entry point (BEP) to read a relevant
article. This tests the capacity of a system to select one and only one best starting point
for reading a relevant article.

As this is our first participation in INEX, we tested a strategy based on two ideas: (i)
evaluate the performance of state-of-art IR engines used in full document retrieval; (ii)
evaluate the effectiveness of using multiword terms as query terms. The first strategy,
which can be perceived as the “principle of least effort” tested several features of the
Indri engine to implement different search strategies. The second strategy, more labor
intensive, consisted in manually term gathering from Wikipedia corpus from an initial
query. The two strategies were combined. Two types of results were computed by the
track organizers: (i) xml element or passage retrieval and (ii) full article retrieval. Our
runs obtained nice performances in the xml retrieval and very good performances in
full article retrieval. Indeed, one of our runs took the first position in two tasks (Fo-
cused task, Relevant-in-Context task) and 2nd position in Best-in-Context task for full
document retrieval. This tends to support the relevance of retrieving full articles in Ad-
hoc XML retrieval.

2 Corpus preparation

No pre-processing was performed on the corpus. In particular, no lemmatization was
performed. An inverted Indri index was constructed on the xml file of the corpus. A nice
feature of the Indri index is that word occurrences and positions in the original texts are
also recorded. This is a significant difference with other IR engines such as Lucene.
The corpus was then loaded onto the TermWatch system, a text analysis platform which
we designed [2]. In this experiment, only TermWatch’s interface was used to in order to
construct Indri queries and view returned articles as html files.

3 Query formulation

We performed a baseline run using the original sequence of text in the title field without
stop word removal and without attempting to extract query words or terms. The other
runs were based on a multiword query term construction process which can be described
by the following steps:
1. we first searched the wikipedia corpus using terms from the three fields title, de-
scription and narrative of each topic. We did not use the CAS field and we ignored
the “+, -” operators in the other fields. The multiword terms collected from these
three fields were formulated as Indri queries. The terms were combined by one or
two Indri belief operators (band, combine) or proximity operators (odN). For more
details on the Indri query language, see 3.

3 http://www.lemurproject.org/lemur/IndriQueryLanguage.php
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2. from the retrieved articles, we manually explored the top 20 for more terms with
which to expand the initial set of terms in (1). This led to acquiring synonyms, ab-
breviations, hypernyms, hyponyms and associated terms. At this stage, we can have
anything from 2-20 multiword terms per topic, expressed as subsets of query terms
linked by one or two Indri operators.

3. this second set of expanded query terms was combined with the #or operator.

4. different search strategies were then tested on the expanded set of terms using other
features of Indri search engine such as query expansion (QE) and weighting. The
precise parameters for each run will be detailed hereafter.

The multiword term gathering phase was the most labor-intensive, requiring roughly
one to two hours per topic.

4 Search strategies

We submitted only full article retrieval for the three subtasks (focused, RiC, BiC). On
the whole, we devised five different search strategies for the three tasks (15 runs alto-
gether). We first tested a baseline strategy using basic Indri without multiword query
terms, then progressively built more complex search strategies by adding IR mecha-
nisms such as query expansion and term weighting to multiword query terms linked by
Indri belief operators.

Table 1. Table 1. Ad-hoc runs for the three tasks: Focused, RiC, BiC.

RunID Approach
ID92 manual indri01 multiword term with Indri #or operator
ID92 auto indri02 automatic one word query with Indri #combine operator
ID92 manualQE Indri03 multiword term with Indri query expansion (QE)
ID92 manual weighting Indri04 multiword term with Indri term weighting (TW)
ID92 manual weightingQE Indri05 multiword term with Indri TW and QE

4.1 Baseline bag-of-word search

Run ID: ID92 auto indri02
This is an automatic run using only the query input from the title field of the topic, with-
out stopword removal. The constituent words were linked by the “#combine” operator
and submitted to Indri search engine. The idea is to test the performance of Indri basic
engine without additional enhancements.

4.2 Multiword term search

Run ID: ID92 manual indri01
In this run, the multiword terms gathered during the process described in section 3 are
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linked by the “or” operator. No other features were used. This run is a counterpart to
the baseline run. We test a basic automatic bag-of-word search in section 4.1 against
manually acquired multiword query terms.

4.3 Multiword term search with Query expansion (QE)

Run ID: ID92 manualQE Indri03
This run is based on manual indri01 run with Indri query expansion mechanism using
the following parameters. The number of added terms is 50. These terms were all
extracted from the top ranked documents using the original query. Finally, in the
expanded query, the original query was weigthed to %. These three parameters

were learned based on TREC Enterprise 2007 track results
on the CSIRO website corpus. Thus from a totally different corpus than the one used in
INEX.

4.4 Weighted multiword term search

Run ID: ID92 manual weighting Indri04
This run takes the multiword query terms in manual indri01 and converts them into a
weighted bag of words. Each word occurring in at least one query term is used. Its
weight is set to where is the number of query terms with as head word
(noun focus) and the number of terms where it appears as a modifier word. We then
used the Indri operator “weight” to combine these words and their weights.

4.5 Weighted multiword term search with Query expansion

Run ID: ID92 manual weightingQE Indri05
This run combines the two preceding strategies, i.e multiword query terms with term
weighting and QE.

5 Results

INEX Ad-Hoc evaluations are carried out at different levels of precision and recall.
For the focused task, interpolated precision (iP) is calculated at 0.00, 0.01, 0.05 and
0.10 recall levels with iP[0.01] being the official measure. For the Relevant-in-Context
and Best-in-Context task, the measure is mean average generalised precision (MAgP)
at early ranks (5, 10, 25, 50). The same search strategies were submitted for all three
tasks. We present the results obtained by our five runs for the three tasks ranked by xml
retrieval, then by full document retrieval.

5.1 Rank by XML element retrieval

Although we submitted only full articles, our runs were ranked by xml retrieval. We
present scores obtained for the three subtasks.
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Table 2. Results for the Focused task. (Total runs submitted: 61)

RunID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP Rank at iP[0.01]
ID92 manualQE Indri03 0.66 0.66 0.61 0.55 0.30 6th
ID92 manual indri01 0.65 0.64 0.58 0.51 0.24 12th
ID92 manual weightingQE Indri05 0.62 0.62 0.59 0.55 0.28 23rd
ID92 manual weighting Indri04 0.59 0.58 0.56 0.54 0.25 32nd
ID92 auto indri02 0.56 0.56 0.52 0.45 0.24 38th

Focused search A total of 61 runs were submitted by 17 institutions.
Four of our runs are ranked in the first half of all submitted runs with the “ID92

manualQE Indri03 run” being ranked at the 6th position. Not surprisingly, the auto-
matic baseline (ID92 auto indri02) running a bag-of-word query approach showed the
worst performance.

Figure 1 shows all levels of precision of our runs. It appears that at iP[0.15] all
srategies but the baseline outperformed simply manual run (ID92 manual indri01).
At iP[0.50] only strategies with query expansion (QE) outperform the Indri baseline
(ID92 auto indri02).

Fig. 1. Precision of Lyon 3 & University of Avignon runs on focused task
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Relevant-in-Context A total of 40 runs were submitted for this task by all participants.
The table below shows the scores obtained by our five runs at different precision levels,
their MagP and overall ranks.

Table 3. Results for Relevant-in-Context task. (Total runs submitted: 40)

RunID gP[1] gP[2] gP[3] gP[5] MAgP Rank
ID92 manualQE Indri03 0.55 0.50 0.46 0.41 0.20 4th
ID92 manual weightingQE Indri05 0.52 0.47 0.44 0.37 0.18 12th
ID92 auto indri02 0.44 0.40 0.37 0.32 0.17 19th
ID92 manual indri01 0.54 0.48 0.45 0.39 0.15 24th
ID92 manual weighting Indri04 0.45 0.45 0.40 0.35 0.14 32nd

Here again, the “ID92 manualQE Indri03 run” outperformed the others although
the order of performance is somewhat different. Surprisingly, the baseline approach
(ID92 auto indri02) outperformed both the manual multiword term approach (ID92
manual indri01) and the same approach with weighting (ID92 manual weighting
Indri04) whereas these two runs had higher precisions at early recall levels.

Best-in-Context Our runs basically conserve the order or performance as in RiC task
with all runs moving forward to higher ranks. Particularly noticeable is the good perfor-
mance of the ID92 manualQE Indri03 which is ranked 2nd out of 35 submitted runs.

Table 4. Results for Relevant-in-Context task. (Total runs submitted: 35)

RunID gP[1] gP[2] gP[3] gP[5] MAgP Rank
ID92 manualQE Indri03 0.56 0.49 0.45 0.40 0.21 2nd
ID92 manual weightingQE Indri05 0.47 0.44 0.42 0.38 0.19 6th
ID92 auto indri02 0.39 0.37 0.36 0.32 0.17 10th
ID92 manual indri01 0.55 0.47 0.45 0.40 0.16 14th
ID92 manual weighting Indri04 0.40 0.43 0.37 0.34 0.15 17th

5.2 Ranking by full article retrieval

Here, our runs obtained even better rankings than in the xml element ranking. Our
“ID92 manualQE Indri03 run” ranked 1st for both the Focused and Relevant-in-Context
tasks and 2nd for the Best-in-Context task. Table 5 below give more details of these re-
sults. For each task, we indicate the run’s MAP and rank out of all submitted runs.

As we can see, the performance order of our runs do not change in the three tasks
and the scores remain the same because we submitted the same search strategies irre-
spective of subtasks.
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Table 5. Rankings for full document retrieval. Focused(Foc), Relevant-in-Context (RiC), Best-
in-Context task (BiC) tasks. Total runs submitted: 76, 49 and 38 resp.

RunID MAP Foc RiC BiC
ID92 manualQE Indri03 0.36 1st 1st 3rd
ID92 auto indri02 0.32 12th 8th 10th
ID92 manual weightingQE Indri05 0.32 17th 9th 11th
ID92 manual indri01 0.26 48th 32nd 23rd
ID92 manual weighting Indri04 0.25 56th 39th 30th

6 Discussion

Based on a survey of the results obtained in INEX 2007 ad-hoc task, it appeared that
retrieving full articles instead of specific xml elements or passages was not a ridiculous
strategy. Indeed, in the 2007 edition, systems that submitted runs with only full article
retieval featured among the top 10 best runs in each task: 8th in focused retrieval, 3rd in
RiC and 1st in RiC ([3]). This can be explained by several factors most of which have
been analysed in previous INEX conferences [4]:

1. assessment of INEX topics are performed by participants themselves. For INEX
2006 & 2007, these assessments showed that for the BiC task, the best entry point
(BEP) to begin reading a relevant article is situated not far from the beginning of
the article. Thus a system retrieving full articles is not seriously handicapped for
this task.

2. depending on the length of a given wikipedia article, the relevant portion can cor-
respond to the full article rather than to sub-elements as these may be judged less
self-contained by assessors. This point will require further investigation. However,
from our summarily observations, the length of most wikipedia articles is at least a
full A4 paper.

3. the scoring metrics appear not to be unfavorable to full article retrieval especially
for the BiC task, hence the good performance of systems retrieving full articles.
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Abstract. In this paper, we describe University of Waterloo’s approaches
to the Adhoc, Book, and Link-the-Wiki tracks. For the Adhoc track, we
submitted runs for all the tasks, the Focused, the Relevant-in-Context,
and the Best-in-Context tasks. The preliminary results show that we
ranked first among all participants for each task, by the simple scoring
of elements using Okapi BM25. In the Book track, we participated in the
Book retrieval and the Page-in-Context tasks, by using the approaches
we used in the Adhoc track. The Book track has yet to produce pre-
liminary results. In the Link-the-Wiki track, we submitted runs for both
File-to-File and Anchor-to-BEP tasks, using PageRank [1] algorithms
on top of our previous year’s algorithms that yielded high performance.
The preliminary results indicate that our baseline approaches work best,
although other approaches have rooms for improvements.

1 Introduction

In 2008, University of Waterloo participated in the Adhoc, the Book, and the
Link-the-Wiki tracks. In the Adhoc track, we implemented both passage and
element retrieval algorithms to compare the relation between the best passages
and the best elements. This is in contrast to our 2007 runs [3] that compared the
passage-based element retrieval algorithm against the simple element retrieval
algorithm. We scored elements and passages using a biased BM25 and language
modeling [5], in addition to Okapi BM25 [6] to see the effect of scoring functions
in retrieval results.

In the Book track, we implemented our tried and true element retrieval al-
gorithm with Okapi BM25 to retrieve best books and pages.

In the Link-the-Wiki track, we added PageRank algorithm [1] in addition to
using anchor density [3, 7] for the numbers of links to return for each topic.

This paper is organized as follows. In Section 2, we describe our approaches
to the Adhoc track, and in Section 3, we describe our approaches to the Book
track. In Section 4, we describe our approaches in the Link-the-Wiki track. We
conclude this paper with directions for future work in Section 5.

2 Ad hoc Track

In the Adhoc track, as in the past year, the basic retrieval algorithms used are
element retrieval and passage retrieval.
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The only difference between element retrieval and passage retrieval is the
retrieval unit. In element retrieval, we only scored the following elements in
corpus,

<p>, <section>, <normallist>, <article>, <body>, <td>, <numberlist>,
<tr>, <table>, <definitionlist>, <th> ,<blockquote>, <div>, <li>,
<u>.

In passage retrieval, we scored passages of any word-lengths.
To score an element or a passage, we converted each topic into a disjunction

of query terms without negative query terms. We located positions of all query
terms and XML tags using Wumpus [2]. We then used two versions of Okapi
BM25 [6] to score passages and elements. The score of an element/passage P
using Okapi BM25 is defined as follows.

s(P ) ≡
∑

t∈Q

Wt
fP,t(k + 1)

fP,t + k(1− b + b plP
avgdl )

, (1)

where Q is a set of query terms, Wt is an IDF value of the term t in the collection,
fP,t is the sum of term frequencies in a passage P , plP is a passage length of
P , and avgdl is an average document length in Wikipedia collection to act as a
length normalization factor.

Using a biased Okapi BM25, the first α words’ term frequency is multiplied
by β. The reason behind this is that because in Best-in-Context task it appears
that the closer the best entry point is to the beginning of an article, the more
relevant it is judged, we thought that the closer the terms are to the beginning
of an element the more relevant they are.

We tuned parameters using INEX2007 Adhoc track evaluation scripts dis-
tributed via email by the organizers. Our tuning approach was such that the sum
of all relevance scores, ip[0.00], ip[0.01], ip[0.05], ip[0.10], and MAiP are maxi-
mized. However, by looking at the training results, the choice of the parameters
did not seem much different if we had chosen the official metrics, ip[0.01] for the
Focused task, and MAiP for Relevant-in-Context and Best-in-Context task.

2.1 Focused Task

In the focused task, after scoring all elements and passages, we eliminated
overlaps and returned the top 1500 elements and passages. There are four runs
we submitted. For element retrieval, we submitted three runs using Okapi BM25
with parameters k = 4 and b = 0.8, the biased Okapi BM25 with α = 10, β = 2,
k = 3, and b = 0.8. For passage retrieval, we submitted a run using Okapi BM25
with k = 4 and b = 1.2.

Our biased Okapi BM25 approach ranked first amongst 19 participants and
the 61 runs. Table 1 shows the results of our individual runs.

Although our biased Okapi BM25 approach performed better than the sim-
ple BM25, it did not give substantial improvement. However, it may give an
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insight into efficient scoring by possibly only scoring the first words of an ele-
ment/passage and ignoring the rest. This would not only reduce the length of
elements/passages to score, but also the number of elements/passages to score
because many of them overlap at the beginning. A look into the scores of all
elements/passages that start at the same character is necessary.

The passage run was disqualified because of overlaps. While training with
correct overlap elimination, the evaluation scores of the passage run was some-
what lower than that of BM25 run. Re-evaluation of the correct run is under
way. However, the overall impression is that Okapi BM25 is the best scoring
function and that users prefer element results to passage results. One question
left is, would users prefer ranges of elements over single elements or passages?

Run Rank ip[0.01]
Biased Okapi 1 0.68731056
Okapi BM25 2 0.68654649
Passage Retrieval - -

Table 1. Results of Waterloo’s Runs in the Adhoc Track Focused Task

2.2 Relevant-in-Context Task

In the Relevant-in-Context task, the results of the top 1500 elements/passages
using Okapi BM25 in the Focused task was grouped in two different ways. The
first way is to rank the articles according to the score of the articles themselves
with parameters k = 2 and b = 0.8, the second way is to rank the articles accord-
ing to the scores of the highest scoring elements/passages the article contains
with k = 2 and b = 0.8.

Our run with best element score ranked first amongst 11 participants and
their 41 runs. Table 2 shows the results of our individual runs.

Because there was no substantial difference between ranking articles by the
article scores and ranking articles by their best element scores, it may be as
effective to fetch the articles with the highest articles score first, and then run
element retrieval on the retrieved set.

Run Rank ip[0.01]
Best Element Score 1 0.22631027
Article Score 2 0.22523137
Table 2. Results of Waterloo’s Runs in the Adhoc Track Relevant-in-Context Task
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2.3 Best-in-Context Task

In the Best-in-Context task, we recorded the scores of the best element/passage
in each article for biased and simple Okapi BM25, and returned the top 1500
elements/passages. The parameters used for element retrieval with Okapi BM25
are k = 1.2 and b = 0.4, for element retrieval with biased Okapi BM25 are
α = 10, β = 2, k = 0.6, and b = 0.4, and for passage retrieval using Okapi BM25
are k = 1.4 and b = 0.8.

Our simple Okapi BM25 based run scored the first amongst 13 participants
and their 35 runs. Table 3 shows the results of our individual runs.

The performance of all the approaches are similar during the training phase
and the results are fully what we had expected. As in the Focused task, the
biased Okapi function did similarly well to a simple Okapi BM25, implying a
possible efficiency improvement. The results of the passage run is not impressive
as expected. This fact is quite alarming given that the only difference between
the two approaches is the unit of scoring; the highest scoring passage must be
quite far apart from the highest scoring element. This explains why our passage-
based element retrieval run of INEX 2007 was not as effective as the simple
element retrieval run.

Run Rank ip[0.01]
Okapi BM25 1 0.22065149
Biased Okapi BM25 3 0.20970581
Passage Retrieval 24 0.12374541

Table 3. Results of Waterloo’s Runs in the Adhoc Track Best-in-Context Task

3 The Book Track

In the Book track, we employed the element retrieval algorithm with Okapi
BM25 as described in Section 2. The only difference is the unit of scoring, which
are document, page, region, and section. Since we had no training data available
from previous years, we ran our algorithms with arbitrary parameters.

In the Book search task, the first run was obtained by ranking books accord-
ing to the document scores, and the second run was obtained by ranking books
according to their best element scores.

All runs for the Page-in-Context task differed in how the books were ranked.
The first run ordered books by their best element scores, the second run ordered
books by the books’ score with manual query expansion. The manual query
expansion was done by observing the query phrases and adding any extra query
phrases that may be helpful to disambiguate the queries. For example, if the
query phrase is just “mouse”, but the description of the user’s information need
suggests that it pertains to the animal mouse, as opposed to the computer mouse,
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the expanded query phrase would be “animal mouse”. Query expansion normally
increases precision, but it also increases the processing time. Since one of the
goal of book search is to create an efficient search system, our assumption is
that applying query expansion only on the whole book score maybe reasonable.
Other effort to shorten search processing time was to make a distributed search.
The problem with this approach was that in order to create a merged list of
top scoring elements precisely, for each distributed node, it was necessary to
compute and store all the element scores, which was costly. To see how much
of top elements for each node could be cut-off without affecting the results, we
made the above two runs with various cut-off values, including no cut-off.

4 Link the Wiki Track

Following the previous year’s successful run, we decided to extend our basic
approaches for both incoming and outgoing links by incorporating PageRank [1].
Our File-to-File runs mirror our Anchor-to-BEP runs by employing the same
algorithms, but abstracting out to the article level. Therefore, in this section, we
describe our approaches to Anchor-to-BEP runs.

Outgoing Links As in the last year, the basic ingredient to computing outgoing
links is the following ratio, γ.

γ =
$ of files that has a link from anchor a to a file d

$ of files in which a appears at least once

Because this year, we are allowed to specify multiple destinations for a given
anchor phrase, for each anchor phrase that appear in the corpus, we computed γ
for the most frequent destination, but kept up to four other destinations on the
list. We sorted all anchor phrases by γ, and then for each topic file, we looked
for the locations of the anchor phrase. Once the anchor phrases are located, we
listed the destinations in the order of frequency in the corpus. We specified the
best entry point as the beginning of the article.

For the second run, we computed the maximum number of anchor phrases
that a topic file can contain using the size of the topic file. As in [3], we define
the anchor density δ as

δ =
# number of anchor strings in the file

size of the file in bytes
.

We computed that anchor density is linear and that there are 3.584 anchor per
KB of a document in the corpus and set the number of anchor phrases in the
topic files accordingly.

For the second run, instead of ordering the anchor phrases by the γ values,
we ordered them by the PageRank value. For this run, there is no cut-off values
as in the second run.
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Preliminary results that compared the runs against the links in Wikipedia
corpus indicate that both for File-to-File and Anchor-to-BEP runs, our first runs
without an anchor density performed best among our submissions followed by
our second runs with anchor density. The runs based on PageRank performed
poorest among our submissions. Compared to other participants, both our runs
at the Flie-to-File and the Anchor-to-BEP tasks ranked third.

The fact that our anchor density approach did not perform as well as our
baseline approach is buffling. Maybe we needed to compute anchor density per
word, instead of per file size. But more importantly, the anchor density may vary
not only by size, but also by the type of articles.

Incoming Links
The first run of the incoming links is done exactly the same as in Waterloo’s

last year’s run. For each topic file, we created a query that consists of the topic
title, and looked for the files that contains the title. We did not differentiate
between the articles that contain the query term, but we simply picked the first
250 articles in the corpus. The best entry point to the topic file was set to the
beginning of the article.

For the second run, we used the same set of query terms, but applied the
element retrieval algorithm in the Adhoc track to rank the article that contains
the query terms according to its highest element score.

For the third run, we took the result of our third outgoing run to compute a
topic oriented PageRank [4] and reranked all articles containing the query term
by these values.

The preliminary results that compared runs against the links in Wikipedia
corpus indicate that for File-to-File run, our PageRank based approach per-
formed best, closely followed by our baseline approach, and for Anchor-to-BEP
run, our baseline run performed slightly better than our PageRank run. In either
case, our element retrieval based runs did not perform as well as our other runs.
Compared to other participants, our best run in the File-to-File task ranked
second among participants and our best run in the Anchor-to-BEP task ranked
fifth among participants.

It is interesting to see that our baseline approach did equally well as our
PageRank approach and did much better than our element retrieval approach.
Our poor performance of element retrieval based approach is probably due to
lack of training. The fact that PageRank was reasonably effective in finding
incoming links, but not in finding outgoing links requires further investigation.

5 Conclusions and Future Work

This year, we extended our previous year’s best performing algorithms to im-
prove the performance. Unfortunately, our simple algorithms from the previous
years not only did the best amongst all our runs, but also did best amongst
all the runs in all the tasks in the Adhoc track. This may indicate the useless-
ness of the XML structure. On the other hand, since it seems that the passage
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runs do not perform as well as our element runs, marking up elements do seem
useful. Moreover, the effect of specifying ranges of elements as opposed to the
current approaches of choosing the single elements or passages is a new area to
investigate.

A very interesting area of future research is the effect of positioning within
a document to the relevance. Maybe the poor performance of passage retrieval
in the Best-in-Context task is because the highest scoring passage within a doc-
ument is located further down in the document than the second highest scoring
passage that starts close to the beginning of the document. Therefore combining
the score of a passage with the positional/structured information seems promis-
ing.
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Abstract. Combining evidence of relevance coming from two sources —
a keyword index and a keyphrase index — has been a fundamental part
of our INEX-related experiments on XML Retrieval over the past years.
In 2008, we focused on improving the quality of the keyphrase index and
finding better ways to use it together with the keyword index even when
processing non-phrase queries. We also updated our implementation of
the word index which now uses a state-of-the-art scoring function for
estimating the relevance of XML elements. Compared to the results from
previous years, the improvements turned out to be successful in the INEX
2008 ad hoc track evaluation of the focused retrieval task.

1 Introduction

The interest in developing methods for keyphrase search has decreased recently
in the INEX community partly because most of the queries are not keyphrase
queries [1]. However, we believe that indexing interesting phrases found in the
XML documents can be useful even when processing non-phrase queries. As
the XML version of the Wikipedia is full of marked-up phrases, we have been
motivated to work on the quality of the phrase index, as well, in order to capture
those word sequences that document authors really intended to be phrases.

In the previous years, our ad hoc track results have not been at the same
level with the best ad hoc track results. We believed that the reason lay in
the keyword index and the tfidf scoring function because the top results were
achieved with the probabilistic retrieval model. Lesson learned: we introduced
BM25 as the new scoring function for the keyword index. The latest results of
the INEX 2008 evaluation show great improvement from previous years. How
much the improvement is due to the state-of-the-art scoring function and how
much to the improved phrase index is still unclear, though.
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This article is organised as follows. Section 2 describes our IR system as
it was implemented in 2008. In Section 3, we show how the keyphrases are
extracted from the document collection into a keyphrase index. Section 4 details
the scoring methods for both the word index and the keyphrase index. Our results
are presented in Section 5, and finally, we draw conclusions and directions for
future work in Section 6.

2 System description

Documents, selection of indexed XML elements, term index, phrase index, and
system architecture will be described here.

3 The anatomy of a keyphrase index

Building a keyphrase index starts from finding or detecting the word sequences
that should be considered keyphrases. As we are indexing hypertextual XML
documents, it is natural to use the characteristics of hypertext documents and
the markup language in the analysis as we detect passages that are potentially
indexed keyphrases. The analysis is followed by a text mining method for ex-
tracting Maximal Frequent Sequences.

3.1 Phrase detection and replication

Most of the XML markup in the Wikipedia articles describes either the presen-
tation of the content or the hyperlink structure of the corpus, both of which
show as mixed content with inline level XML elements. In these cases, the start
and end tags of the inline level elements denote the start and the end of a word
sequence that we call an inline phrase. These phrases include the anchor texts of
hyperlinks as well as phrases with added emphasis, e.g., italicized passages. An
exact definition for the XML structures that qualify was presented at the INEX
2007 workshop [2]. Intuitively, the inline phrases are highly similar to the multi-
word sequences that text mining algorithms extract from plain text documents.
Therefore, the tags of the inline elements are strong markers of potential phrase
boundaries. Because phrase extraction algorithms operate on word sequences
without XML, we incorporate the explicit phrase marking tags into the word
sequence by replicating the qualified inline phrases.

Considering the effect of replication, we only look at the character data as the
tags and other XML markup are removed before phrase extraction. The most
obvious effect is the increase in phrase frequency of the replicated inline phrases
with a similar side effect on the individual words they compose of. Moreover, the
distance between the words preceding and following the phrase increases, which
makes the phrase boundaries more explicit to those phrase extraction algorithms
that allow gaps in the multiword sequences.

Duplicating the inline phrases lead to a 10–15% improvement in the MAiP on
the INEX 2007 topics [3], but more recent experiments where the phrases were
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replicated three times have shown even further improvement when tested on the
same topics. Note that these results depend on the phrase extraction algorithm
and that other algorithms than ours may lead to different figures. Anyway, we
chose to see if the triplication of the inline phrases works on the INEX 2008
topics, as well, and built the phrase index correspondingly.

3.2 MFS extraction

A frequent sequence is defined as a sequence of words that must occur in the
same order more often than a given sentence-frequency threshold. MFSs are
constructed by expanding a frequent sequence to the point where the frequency
drops below the threshold. This way we obtain a compact phrasal description of
a document collection [4].

More description to be added here.

4 Scoring XML fragments

The scoring function used with the word index was BM25 as implemented in
the Lemur Toolkit [5]. Computation of the Retrieval Status Value for the MFS’s
will be described here.

5 Results

We submitted three runs for the ad hoc track task of focused retrieval. The
configurations of the submitted runs were based on experiments on the ad hoc
track topics of INEX 2007, according to which the best proportion of weight
given to terms and phrases would be around 92:8–94:6. The weight is given to
the word index component is part of the Run ID. The initial results are shown
in Table 1.

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
UHel-Run1-92 0.6920 0.6503 0.5540 0.4983 0.2239
UHel-Run2-93 0.7030 0.6617 0.5556 0.5013 0.2255
UHel-Run3-94 0.7109 0.6619 0.5532 0.5028 0.2251

Table 1. Evaluation of our three official runs submitted for the focused retrieval task.

What we learn from these results is still unclear but the figures are highly
similar to those with the INEX 2007 topics.
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6 Conclusion and future work

The biggest change in our system from 2007 took place in the scoring function
that contributes over 90% of the total relevance score of each XML fragment. We
discarded tfidf and replaced it with BM25 which assumes the probabilistic model
for information retrieval. Thanks to that update, our results are now comparable
with the best results overall.

A topic-specific analysis of the results is still to come.
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Abstract. Structured document retrieval is becoming more popular
with the increasing quantity of data available in XML format. In this
paper, we describe a search engine model for structured document re-
trieval that uses language modelling and smoothing at the document
and collection levels for calculating the relevance of each element of the
query. Element priors, CAS query constraint filtering, and the +/- oper-
ators are also used in the ranking procedure. We also present the results
of our participation in the 2008 INEX ad hoc track.

Key words: Focused retrieval, Index database, Language model, Search
engine

1 Introduction

Information retrieval has become a part of our everyday lives. With the growing
amount of available information, it has become challenging to satisfy a specific
information need. We expect the retrieval procedure to find the smallest and
most relevant information unit available, especially if our information need is
very specific. Information retrieval procedures usually return whole documents
as a result of a user query, but with the increasing number of structured XML
data sources, the information unit size can be varied from whole documents to
sections, paragraphs, or even individual sentences. The choice of an appropriate
information unit size is left to the retrieval procedure, which determines which
portions of a document are considered relevant. If the search procedure is re-
turning parts of a document, it is necessary to eliminate overlapping content so
that the user does not have to inspect duplicate content. This reduces the time
it takes for the user to browse through the results.

The outline structure of the documents we are searching could also be known,
so the user could specify additional structural constraints in the query, i.e., to
return only relevant paragraphs or images. Such queries are called content-and-
structure (CAS) queries, as opposed to content-only (CO) queries, which do
not have those structural constraints and contain only the keywords from the
query. Using CAS queries, the user can generate a more specific query that could
improve the retrieved results.
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The structure of the document could also be exploited in the ranking of the
document elements. The location of the returned element in the document could
indicate its potential relevance. For example, elements at the beginning of the
document could be considered to be more relevant in most cases. Also, elements
that are nested deep in the document structure could be considered less relevant.

In Section 2, we give an overview of our search engine and how it is modelled.
In Section 3, we describe the ranking method used in our search engine and the
data model that the method requires. In Section 4, we present and discuss our
experimental results, and in Section 5, we give our concluding remarks.

2 System overview

Our search engine [3] was developed for the CADIAL project. The search engine
provides access to a collection of Croatian legislative documents and has built-in
support for morphological normalization. All of the documents have a similar
structure, which consists of a title, introduction, body, and signature. Further-
more, the body is divided into articles, and each article into paragraphs. This
document structure can prove to be useful, as it can be exploited by the retrieval
procedures. This was the main motivation for our participation in the INEX ad
hoc track, as the documents from the Wikipedia collection used in that track
are also structured and written in XML format, with document structure tags
such as article, body, section, paragraph, table, and figure.

For the purpose of text processing, we use the Text Mining Tools (TMT)
library [5]. The most basic text processing operation is tokenization, which is
implemented for use with the UTF-8 character set that we use for internal text
representation. Input documents are in XML format, and any part of the docu-
ment can be indexed. The search engine can also use an inflectional lexicon for
morphological normalization, but we did not have a lexicon built for the English
language, so we instead used stemming, specifically the Porter stemmer.

At the core of our search engine is an index database containing all words
found in the document collection, along with their respective positions in the
documents. Words are stored in their normalized form if morphological normal-
ization is used, or stems of words are stored if stemming is used. The index
database also contains additional statistical data needed for the new ranking
method we implemented for the INEX ad hoc track: see remark further, as well
as the structure of the elements for each document in the collection. The list
of document elements to index is defined during the process of indexing, so we
can choose which elements to index, i.e., article, body, section, paragraph, and
figure, or to index the documents without their structure, i.e., only the article
root tag. A document collection index database is built using an index builder
tool, and than saved to a file in binary format. Serialization and deserialization
procedures used are also implemented in the TMT library.
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3 Ranking method and underlying data model

We implemented a new ranking method in our search engine that can support
the document structure and be relatively straightforward and efficient to use on
a large document collection. We also added support for CAS queries and the +/-
keyword operators.

3.1 Language model

For our ranking method, we used language modelling [4]. The basic idea behind
this method is to estimate a language model for each element, and then rank the
element by the likelihood of generating a query with the given language model.
Therefore, we can calculate the relevance of every element e to the specified
query Q:

P (e|Q) = P (e) · P (Q|e), (1)

where P (e) defines the probability of element e being relevant in the absence
of a query; and P (Q|e) is the probability of the query Q, given an element e.
We estimated the element priors in the following way:

P (e) =
1

1 + elocation
· 1
1 + edepth

, (2)

where elocation is the local order of an element, ignoring its path; and edepth

is the number of elements in the path, including e itself. For example, for an ele-
ment /article[1]/body[1]/p[5], the location value is 5, and its depth is 3. A similar
formula for calculating element priors was used in previous work by Huang et
al. [1]. We experimented with this formula, and found that changing the coef-
ficients in the formula does not improve the results any further. The formula,
in this simple form, yields noticeable improvements in the retrieval performance.

For a query Q = (q1, q2, ..., qm), assuming the query terms to be independent,
P (Q|e) can be calculated according to a mixture language model:

P (Q|e) =
m∏

i=1

(1− λd − λc)Pelem(qi|e) + λdPdoc(qi|D) + λcPcol(qi|C), (3)

where λd is the smoothing factor for the document level; λc is the smooth-
ing factor for the collection level; and Pelem(qi|e), Pdoc(qi|D), Pcol(qi|C) are
probabilities of the query term qi given the element, document, and collection,
respectively. The smoothing is done on two levels: the document and the col-
lection levels, with the restriction that λ ∈ [0, 1] and λd + λc < 1. Wang et al.
[6] found that smoothing on both the document and collection levels produced
significantly better results than just smoothing on the whole collection. They
used the Two-Stage smoothing method, and compared it to the Dirichlet priors
and Jelinek-Mercer smoothing method. We chose to use our smoothing method
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because the values of the smoothing factors λd and λc have a very intuitive
meaning. Although we considered additional smoothing at the section level, we
did not implement it, because the section elements could be nested in each other,
so we would not have a constant number of smoothing factors.

The probabilities of the query term qi given the element, document, or a
collection are calculated in the following way:

Pelem(qi|e) =
tf(qi|e)

length(e)
, (4)

Pdoc(qi|D) =
tf(qi|D)

length(D)
, (5)

Pcol(qi|C) =
tf(qi|C)

length(C)
, (6)

where tf(qi|e), tf(qi|D), tf(qi|C) are the term frequency of the query term qi

in the element, document, and collection, respectively; length(e), length(D), length(C)
are the length of the element, document, and collection, respectively, in terms
of the number of words.

3.2 Ranking the elements

In the ranking procedure, other factors may influence the scores for each element.
Elements are first scored using the language model formula 1, and then filtered
according to the structural constraints from the CAS query, if there are any. For
example, if the CAS query specifies that the user wants to find a figure, then
elements that contain the element figure in their XPath are promoted to the top
of the rank. The promotion of these elements is done sequentially from top to
bottom, so the order of relevance for these elements is preserved.

We also implemented the +/- keyword operators, meaning that keywords
from the query marked with the plus operator must be contained in the returned
element, and keywords marked with the minus operator must not be contained
in the element. For performance reasons, this operation is integrated in the
calculation of the probabilities in the language model, so elements that do not
satisfy the constraints of these operators, i.e., those that do not contain keywords
marked with the plus operator or do contain keywords marked with the minus
operator, are automatically assigned a score of zero.

Finally, when all the retrieved elements are ranked, we have to eliminate
overlapping elements so that the ranking procedure does not return duplicate
content. This is done simply by iterating through the results from top to bottom
and eliminating elements whose XPath is fully contained in any of the previous
elements’ XPath, or if any of the previous elements’ XPath is fully contained in
the XPath of the element currently being analyzed.
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Table 1. Tag set of indexed elements

No. Tag name
1 article
2 body
3 section
4 p
5 table
6 figure
7 image

3.3 Index database

The index database is the backbone of our search engine. In the database, we
store the positions of words in every element being indexed. Along with word
indices, some other statistical data is also stored for use in language modelling.
Each element is represented with its own language model, so some data must
be stored separately for every element in the collection, e.g., term frequency for
that element and the element length. The size of the index database is therefore
dependent on the number of elements we want to index, so we chose to index
only elements that are most likely to be relevant, as shown in Table 1.

The document as a whole is also considered as an element. Other data that is
not stored for every element includes the term frequency for the entire collection,
number of elements containing each term, unique term count, total term count,
and total element count.

Collection information is also stored in the index database. Information such
as the structure of the elements being indexed, i.e., the parent child relations of
the elements in the document, needs to be stored in order for the language model
to perform the necessary smoothing operations at the document and collection
level, and also to reconstruct the proper XPath for every retrieved element.

4 Ad hoc results

Results for our runs are given in Table 2 and are sorted by the interpolated
precision measure at 1% recall, i.e., iP[0.01], which is the official measure of the
focused retrieval task in the INEX ad hoc track. Other measures include inter-
polated precision at other early levels of recall, i.e., iP[0.00], iP[0.05], iP[0.10],
and mean average interpolated precision over 101 standard levels of recall, i.e.,
MAiP. The best result for each measure is marked in boldface. The name of
the run contains the type of query used, i.e., CO for content-only and CAS for
content-and-structure query. It also contains the returned information unit, i.e.,
document or element, and the smoothing factors used, i.e., ld for document level
and lc for collection level. Note that the smoothing factors are in the range from
0.0 to 1.0 with the restriction that λd +λc < 1, so for the run cas-element-ld5-lc4
the smoothing factors are λd = 0.5 and λc = 0.4.
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Table 2. Official results for our runs

No. Run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
1 co-document-lc6 0.6389 0.5949 0.5051 0.4699 0.2551
2 cas-element-ld5-lc4 0.6684 0.5530 0.4048 0.3248 0.1440
3 co-element-ld2-lc5 0.6907 0.5417 0.4007 0.2920 0.0994
4 co-element-ld2-lc1 0.6718 0.5241 0.3922 0.2963 0.0929
5 cas-element-ld2-lc5 0.6494 0.5203 0.3569 0.2593 0.1134
6 cas-element-ld1-lc6 0.6642 0.5063 0.3652 0.2610 0.1133

Fig. 1. Recall precision graph for our runs

Immediately from the results, we can see that the retrieval of the whole doc-
ument gives better performance at higher levels of recall than element retrieval,
as can be seen from the precision-recall graph in Fig. 1. Only at very low lev-
els of recall, i.e., iP[0.00], does element retrieval outperform document retrieval.
Similar results, where the document retrieval outperforms element retrieval at
iP[0.01] and at higher levels, were seen in previous years and in some of the
systems in this year’s ad hoc track. This could, perhaps, be a consequence of the
way in which we perform relevance assessments, where fully relevant documents
are assigned to most of the topics. Another problem could be that the articles
in the Wikipedia collection are very specific to their content, and the topics
are usually not very specific. This leads to a situation where many articles are
marked as fully relevant, and only a few have some specific relevant elements.

Smoothing factors also had a significant impact on the retrieval performance.
As we mentioned previously, retrieving whole documents outperformed element
retrieval at higher levels of recall, so it is reasonable to expect that higher smooth-
ing at the document level would yield better results. This can be seen in our
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cas-element-ld5-lc4 run in Fig. 1, where higher smoothing at the document level
contributes to significantly better performance at higher levels of recall than
other runs with lower smoothing at the document level, e.g., cas-element-ld2-
lc5 and cas-element-ld1-lc6. Liu et al. [2] also found that the document score
greatly influenced the retrieval performance. They implemented a separate doc-
ument and element index, and combined the document and element score.

The use of CAS query constraint filtering did improve retrieval performance
overall, especially at midrange levels of recall. At low levels of recall the difference
is not significant, and even at iP[0.00], the performance is slightly worse than the
run using CO queries. Perhaps more complex processing of CAS queries could
yield some improvement at low levels of recall, although most of the topics did
not use the structural features of CAS queries.

Although we did not do a direct comparison on the influence of the +/-
keyword operator and element priors on the retrieval performance, we did notice
during development that using both the operators and element priors did in fact
improve performance slightly.

5 Conclusion

We developed a search engine for structured document retrieval and implemented
a simple ranking method that uses language modelling and smoothing at two
levels: the document and the collection level. Retrieving whole documents per-
formed better than element retrieval at higher levels of recall, which could per-
haps be attributed to the nature of the topics. Element retrieval performed better
than document retrieval only at the lowest level of recall, i.e., iP[0.00]. Filtering
of elements’ structural path to the CAS query constraints contributed to the
improvement in retrieval performance, as well as the higher smoothing factor at
the document level. We have also used element priors and implemented the +/-
keyword operators, which we noticed tend to improve the retrieval performance,
but we did not investigate their impact on performance in detail.

We developed our system from the ground up, putting an emphasis on sim-
plicity, efficiency, and effectiveness. Language modelling proved to be very effec-
tive, and yet relatively simple. This was our first year participating in the INEX
ad hoc track, and we are pleased with the results. There is much room left for
improvements, e.g., relevance feedback and incorporating link evidence, but we
will leave that for future years.
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Abstract. This paper describes the work that we did at Indian Statis-
tical Institute towards XML retrieval for INEX 2008. Beside the Vector
Space Model (VSM) that we have been using since INEX 2006, this
year we implemented Language Model (LM) in our text retrieval system
(SMART) to retrieve XML elements against the INEX Adhoc queries.
Like last year, we considered Content-Only (CO) queries and submitted
three runs for the FOCUSED sub-task. Two runs are from Vector Space
Model and one using Language Model. One run from each model is at
document level, while the third run at the element level using VSM ap-
proach. We applied blind feedback for both the runs from VSM approach.
For the run with LM approach it was our first attempt to implement
LM in the SMART system and then to customize it for XML retrieval.
Though this run was of preliminary nature without any feedback, its per-
formance is quite satisfactory, better than VSM runs. In general, relative
performance of our document-level runs are respectable, and still much
way ahead of the element level retrieval run. Our immediate next task is
therefore to focus on how to improve element retrieval.

1 Introduction

Traditional Information Retrieval systems return whole documents in response
to queries, but the challenge in XML retrieval is to return the most relevant
parts of XML documents which meet the given information need. Since INEX
2007 [1] arbitrary passages are also permitted as retrievable units, besides the
usual XML elements. A retrieved passage can be a sequence of textual content
either from within an element or spanning a range of elements. Since INEX 2007
also classified the adhoc retrieval task into three sub-tasks: a) the FOCUSED
task which asks systems to return a ranked list of elements or passages to the
user; b) the RELEVANT in CONTEXT task which asks systems to return rel-
evant elements or passages grouped by article; and c) the BEST in CONTEXT
task which expects systems to return articles along with one best entry point to
the user.
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Each of the three subtasks can be based on two different query variants:
Content-Only(CO) and Content-And-Structure(CAS) queries. In the CO task,
the user poses the query in free text and the retrieval system is supposed to return
the most relevant elements/passages. A CAS query can provide explicit or im-
plicit indications about what kind of element the user requires along with a tex-
tual query. Thus, a CAS query contains structural hints expressed in XPath [2]
along with an about() predicate.

This year we submitted three adhoc focused runs, two from Vector Space
Model (VSM) based approach and one from Language Modelling (LM) approach.
VSM sees both the document and the query as bags of words, and uses their
tf-idf based weight-vectors to measure the inner product similarity as a measure
of closeness between the document and the query. The documents are retrieved
and ranked in decreasing order of the similarity-value.

In LM, probability of a document generating the query terms are taken as
the measure of similarity between the document and the query. However the
difference lies in the fact that queries are explicitly modelled as a sequence of
query terms, not a set of query terms. The relative positions of the query terms
in the query matters during the probability calculations.

We used our modified SMART system for the experiments at INEX 2008.
Earlier we had customized the SMART text retrieval system for XML element
retrieval based on VSM approach. We submitted two such runs, one at the
document retrieval level, and the other at the element level. For both these runs
we used blind feedback as post-processing of initial document retrieval.

This year we implemented LM into SMART as well and equipped it with
XML retrieval. Our third run was based on this implementation at the document
level.

All three runs was for the FOCUSED sub-task of the Adhoc track considering
CO queries only.

In the following section we describe our general approaches for all these runs,
and discuss results and further work in Section 3.

2 Approach

Like last year, to extract the useful parts of the given documents, we short-
listed about thirty tags that contain useful information: <p>, <ip1>, <it>,
<st>, <fnm>, <snm>, <atl>, <ti>, <p1>, <h2a>,<h>, <wikipedialink>,
<section>, <outsidelink>, <td>, <body>, etc. Documents were parsed using
the LIBXML2 parser, and only the textual portions included within the selected
tags were used for indexing. Similarly, for the topics, we considered only the
title and description fields for indexing, and discarded the inex-topic, castitle
and narrative tags. No structural information from either the queries or the
documents was used.

The extracted portions of the documents and queries were indexed using sin-
gle terms and a controlled vocabulary (or pre-defined set) of statistical phrases
following Salton’s blueprint for automatic indexing [3]. Stopwords were removed
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in two stages. First, we removed frequently occurring common words (like know,
find, information, want, articles, looking, searching, return, documents, relevant,
section, retrieve, related, concerning, etc.) from the INEX topic-sets. Next, words
listed in the standard stop-word list included within SMART were removed
from both documents and queries. Words were stemmed using a variation of the
Lovin’s stemmer implemented within SMART. Frequently occurring word bi-
grams (loosely referred to as phrases) were also used as indexing units. We used
the N-gram Statistics Package (NSP)1 on the English Wikipedia text corpus and
selected the 100,000 most frequent word bi-grams as the list of candidate phrases.
Documents and queries were weighted using the Lnu.ltn [4] term-weighting for-
mula. For each of 135 adhoc queries(544-678), we retrieved 1500 top-ranked XML
documents or non-overlapping elements.

2.1 Document-level Run

We submitted two runs at the document level retrieval. One was based on LM
approach and the other one on VSM approach.

LM approach: The run LM-nofb-0.20 was based on language modelling ap-
proach. We implemented a language modelling framework within the SMART
system [5].Since, the SMART system was designed specifically for VSM, we
had to cast it in terms of VSM for smooth integration within SMART. Here
we briefly introduce the key concepts of LM, its relationship with VSM and our
experiments with the LM implementation based on the work of Hiemstra [6].

The model uses the following definitions.
Let D be a discrete random variable denoting the document which the user

has in mind. The sample space of D is the finite set comprising of all documents
in the collection {d1, . . . , dN}.

Let Ii be a discrete random variable denoting the “importance of the ith
query term” over the sample space 0, 1, where 0 stands for unimportant and 1
for important.

Let Ti be a discrete random variable denoting “the ith query term”, which
sample space contains a finite number of points {t(1), . . . , t(m)} each referring
to an actual term in the collection, where m refers to the no. of words in the
dictionary built on the given corpus.

The joint probability P (D, I1, . . . , In, T1, . . . , Tn) completely defines the in-
formation retrieval problem for a query of length n [6]. A query is generated
by first selecting a document d with probability P (D = d). Given that d is the
document the user has in mind, tossing for importance and selecting the query
terms is done independently for each query term ti with probabilities P (Ii) and
P (Ti|Ii, D) respectively. Hence,

P (D, I1, . . . , In, T1, . . . , Tn) = P (D)
n∏

i=1

P (Ii)P (Ti|Ii, D) (1)

1 http://www.d.umn.edu/∼tpederse/nsp.html
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Distributing sums over the products we get

P (D, T1, . . . , Tn) = P (D)
n∏

i=1

1∑

k=0

P (Ii = k)P (Ti|Ii = k, D) (2)

Ranking the documents by ( 2) will in fact rank the documents in decreasing
order of the probability that the document is relevant given the query.

The probabilities are defined by using the number of documents in the col-
lection and the term frequencies of a term in a document. Let tf(t, d) denote
the term frequency of term t in document d.

From the urn model, it is quite straightforward to see that:

P (D = d) =
1

# of documents
(3)

P (Ti = ti|Ii = 1, D = d) =
tf(ti, d)∑
t tf(t, d)

(4)

P (Ti|Ii = 0) =

∑
k tf(ti, k)∑
t,k tf(t, k)

=
cf(ti)

cf(t)
(5)

where cf(ti) is the collection frequency of the term ti and cf(t) is the collec-
tion size.

Alternatively, the collection frequencies can be replaced with document fre-
quencies to maintain similarity with VSM, which uses document frequencies:

P (Ti) =
df(ti)

df(t)
(6)

To make the notations simpler: let P (Ii = 1) be denoted by λi and hence
P (Ii = 0) would become (1 − λi). Let P (Ti|Ii = 1, D) be denoted by P (Ti|D)
and P (Ti|Ii = 0) be replaced with P (Ti).

As a result (2) becomes

P (D, T1, . . . , Tn) = P (D)
n∏

i=1

((1 − λi)P (Ti) + λiP (Ti|D)) (7)

From LM to VSM

Dividing (7) by
∏n

i=1(1 − λi)P (Ti) wouldn’t affect the ranking because λi

and P (Ti) have the same value for each document. Infact any monotonic trans-
formation of the document ranking function will produce the same ranking of
the documents. Instead of using the product of weights, beacuse of the obvious
diasdvantage of decrease in the probability values after successive multiplica-
tions, the formula can be implemented by using the sum of logarithmic weights.
Doing so and replacing P (D), P (Ti|D) and P (Ti) by the definitions in equations
(3), (4) and (6) results in:

P (Dj = dj , T1 = t1, . . . , Tn = tn) =
n∑

i=1

log(1 +
λitf(ti, d)

∑
t df(t)

(1 − λi)df(ti)
∑

t tf(t, d)
) (8)
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Also we can associate non uniform prior probabilities to document relevance
resulting in

P (Dj = dj , T1 = t1, . . . , Tn = tn) = log(
∑

t

tf(t, d))+
n∑

i=1

log(1+
λitf(ti, d)

∑
t df(t)

(1− λi)df(ti)
∑

t tf(t, d)
)

(9)
For nnn query weights i.e. qk = tf and

dk = log(1 +
tf × (sum of dfs)

df × document length
×

λk

1 − λk
) (10)

(k = 1, . . . , m ).and λk = λ for all k).
the vector product of the two, dk and qk is identical to the rhs of equation

(9) and hence is an useful estimation of P (Dj = dj , T1 = t1, . . . , Tn = tn) acting
as measure for similarity score.

So, for a system with the vector data structure implemented in it, reweighting
the document vectors and using simple term frequencies as weights of the query
vectors would give the LM scores with the dot product operation on vectors.
Our LM run was only at the document level with no feedback using λk = λ =
0.20 for all k.

VSM approach: For run, VSMfb, we retrieved whole documents only using
blind feedback. We applied automatic query expansion following the steps given
below for each query (for more details, please see [7]).

1. For each query, collect statistics about the co-occurrence of query terms
within the set S of 1500 documents retrieved for the query by the baseline
run. Let dfS(t) be the number of documents in S that contain term t.

2. Consider the 50 top-ranked documents retrieved by the baseline run. Break
each document into overlapping 100-word windows.

3. Let {tl, . . . , tm} be the set of query terms (ordered by increasing dfS(ti))
present in a particular window. Calculate a similarity score Sim for the
window using the following formula:

Sim = idf (t1) +
m∑

i=2

idf (ti) ×
i−1
min
j=1

(1 − P (ti|tj))

where P (ti|tj) is estimated based on the statistics collected in Step 1 and is
given by

# documents in S containing words ti and tj
# documents in S containing word tj

This formula is intended to reward windows that contain multiple matching
query words. Also, while the first or ”most rare” matching term contributes
its full idf (inverse document frequency) to Sim, the contribution of any
subsequent match is deprecated depending on how strongly this match was
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Fig. 1. Parse tree for a fragment of a wikipedia document

predicted by a previous match — if a matching term is highly correlated to
a previous match, then the contribution of the new match is correspondingly
down-weighted.

4. Calculate the maximum Sim value over all windows generated from a docu-
ment. Assign to the document a new similarity equal to this maximum.

5. Rerank the top 50 documents based on the new similarity values.
6. Assuming the new set of top 20 documents to be relevant and all other

documents to be non-relevant, use Rocchio relevance feedback to expand
the query. The expansion parameters are given below:

number of words = 20

number of phrases = 5

Rocchio α = 4

Rocchio β = 4

Rocchio γ = 2.

For each topic, 1500 documents were retrieved using the expanded query.

2.2 Element-level Run

For the element-level retrieval, we adopted a 2-pass strategy. In the first pass,
we retrieved 1500 documents for each query using query expansion and blind
feedback.

In the second pass, these documents were parsed using the libxml2 parser,
and leaf nodes having textual content were identified. Figure 1 shows a fragment
of a file from the wikipedia collection. The leaf nodes that have textual content
are enclosed in rectangles in the figure. The total set of such leaf-level textual
elements obtained from the 1500 top-ranked documents were then indexed and
compared to the query as before to obtain the final list of 1500 retrieved elements.

As is clear from figure 1, permitting only leaf-level textual elements to be
retrieved has an obvious disadvantage: nodes such as <p> or <body> are very
often not considered retrievable elements, because of the occurrence of nodes like
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<emph3> and <collectionlink> under the <p> or <body> node. It is not
surprising, therefore, that the VSMfbElement run performs poorly.

We incorporated within SMART the capability to retrieve elements at inter-
mediate (i.e. non-leaf) levels of the XML tree. Here the query is compared to
all elements that contain text, instead of only the leaf-level textual nodes. In
order to avoid any overlap in the final list of retrieved elements, the nodes for
a document are sorted in decreasing order of similarity, and all nodes that have
an overlap with a higher-ranked node are eliminated.

3 Results

The results as reported in the inex website over relevance judgment for 70 topics
are shown in Table 1.

Table 1. Metric: Interpolated Precision/Recall task: FOCUSED , CO re-
trieval unit: Element

Run Id iP@0.00 iP@0.01 iP@0.05 iP@0.10 MAiP Official Rank
VSMfb 0.6318 0.6197 0.5451 0.4950 0.2708 24/61
VSMfbElts0.4 0.7148 0.6325 0.4782 0.4248 0.1531 18/61
LM-nofb-0.20 0.6830 0.6337 0.5537 0.5100 0.2847 17/61
Best Run (FOERStep) n/a 0.6873 n/a n/a n/a 1

For the top-performing run, the scores other than the official one (iP@0.01)
is not available (n/a) at the moment. But interestingly, if we consider precision
at the first retrieval unit (iP@0.00), our element run VSMfbElts0.4 is the best.
Though if we consider overall performance, our document-level runs (VSMfb and
LM-nofb-0.20 ) are far more better. One possible reason is the use of pivoted
length normalization [8] without having the knowledge of pivot and slope for
wikipedia collection [9]. For the VSM-based runs we considered slope = 0.4 and
pivot = 80, which was seen to be yielding best result for early precision.

4 Conclusion

This was our third year at INEX. Our main objective this year was to see the
performance of LM approach vis-a-vis VSM. Therefore we implemented LM into
SMART retrieval system. Its performance is certainly assuring as it fares the best
among our runs. However the retrieval was at the document-level only. We need
to extend it to element-level retrieval. For the VSM runs, document-level run
is quite satisfactory. Though for the element-level run, there is plenty of room
for improvement. We need to study the effect of document length normalization
in-depth for XML collection and adopt a suitable strategy for wikipedia corpus.
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There is also enough scope of studying and thereby proposing effective term-
weighting scheme for different element-tags in the XML tree. We hope these will
be an exciting exercises which we plan to do in the coming days.
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Abstract. This paper reports experimental results our approach using the vector
space model for retrieving large-scale XML data, to improve the retrieval preci-
sion on the Evaluation of XML Retrieval (INEX) 2008 Adhoc Track. The vector
space model is commonly used in the information retrieval community. Last year,
for the Evaluation of XML Retrieval (INEX) 2007 Adhoc Track, we developed a
system using a relative inverted-path (RIP) list and a Bottom-UP Scheme (BUS)
approach. The system made it possible to search faster than ever for XML data.
However the system has a room for improvement in terms of the retrieval preci-
sion. To improve the retrieval precision, the system tries two methods, using CAS
title and using Pseudo Relevance Feedback (PRF).

1 Introduction

There are two approaches for XML information retrieval (IR): one based on database
models, the other based on information retrieval models. Our system is based on the
vector space model[3] from information retrieval. In the field of information retrieval,
the retrieval unit returned by IR systems is typically a whole document or a document
fragment, such as a paragraph in passage retrieval. Traditional IR systems based on
the vector space model compute a postings file as term vectors for each retrieval unit,
and calculate similarities between the units and the query. Specifically, the postings file
maps each XML node from words, and the query consists of some words.

Our system uses keywords (multi-word terms, single words) as the query and sepa-
rates XML [1] documents into two parts: content information (the keywords) and struc-
tural information. XML nodes correspond to retrieval units, and nodes that include
query terms can be quickly retrieved using an inverted-file list. For very large XML
documents, all XML nodes are indexed to each term directly included in the node itslef,
but not the node’s children or more distantly related nodes. During the retrieval phase,
the score of a retrieved node is calculated by merging the scores from its descendant
nodes. To merge scores while identifying parent-child relationships, the system em-
ploys a relative inverted-path list (RIP list) that uses nested labels with offsets to save
the structural information.

In the INEX 2008, our experiment targets the CO Task and the CAS Task. The sys-
tem accepts CO queries, which are terms enclosed in <title> tags. Therefore, the system
can accept CAS queries as constrained condition, which are XPath[2] representations
enclosed in <castitle> tags. For improving the retrieval precision, the system adopts
Pseudo Relevance Feedback (PRF).
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The rest of this article is divided into three sections. In section 2, we describe the
IR model for XML documents. In section 3, we describe experimental results. And in
section 4, we discuss results and future work.

2 XML Information Retrieval

Our system uses a TF-IDF scoring function for retrieval. TF-IDF is additive, therefore a
node score can be easily calculated by merging the scores of its descendant nodes. The
TF-IDF score Lj of the jth node is composed of the term frequency t fi of the ith term
in the query, the number of nodes fi including the ith term, and the number of all the
nodes n in the XML collection.

Lj =
t∑

i=1
t fi · log(

n
fi
) (1)

However, if the node score is the sum of the scores of its descendants, there is the
problem that the root node always has the highest score in the document. Therefore, the
score Rj of the jth node is composed of the number T j of terms contained in the jth
node, the score Lk of the kth descendant of the jth node, and the number Tk of terms
contained in the kth node.

Rj =
∑

k childreno f j
D · Lk (2)

T j =
∑

k childreno f j
Tk (3)

where D(= 0.75) is a decaying constant, which is as shown in the following equation.
Then the TF-IDF score Rj is normalized by the number of terms T j.

R′j =
Rj

T j
(4)

Then s j is the occurrence of terms included in both the query and jth node,

s j = count(δ j), δ j =
⋃

k childreno f j
γk,

where α is the set of terms included in the query, and β j is the set of terms included in
the jth node. The conjunction, γ j = α ∩ β j, is the set of query terms included in the jth
node.

After that, the score RSVj of jth node is conposed of the TF-IDF score R′j and the
S j, which is one of the heuristic scores we call a leveling score. If a node contains all
terms in the query, the leveling score is the highest,

RSVj = R′j +
Q · s j
q

(5)

where Q(= 30) is a constant number and q is the number of terms in the query.
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Then the retrieved results are chosen from the node list, which is sorted in descend-
ing order of RSV scores. All the thresholds are determined from a few topics of the
Focused task of the INEX 2007[4].

In addtion, the PRF method considers the 10 top-ranked XML nodes retrieved by
the baseline run, and chooses the 20 top-ranked terms in the TF-IDF score as additional
query terms.

3 Experimental Results

3.1 INEX 2008 Adhoc Track
To index the XML 2008 Adhoc Track document collection, the system first parses all
the structures of each XML document with an XML parser and then parses all the text
nodes of each XML document with an English parser. The size of the index containing
both content information and structure information is about 8.32 GB. Thereafter, the
system uses the same index in every experiment.

Our experiment targets the CO Task and the CAS Task. The system accepts CO
queries, which are terms enclosed in <title> tags. Therefore, the system can accept
CAS queries with XPath as constrained condition, which are XML tags enclosed in
<castitle> tags.

For each query set, there is the Focused task, the Relevant in Context task, and the
Best in Context task in the INEX 2008 Adhoc Track. All the tasks are as same tasks as
in the INEX 2007 Adhoc Track. Hence the system parameters are tuned for the Focused
task on topics from INEX 2007.

The system is installed on the same PC used on INEX 2006 and INEX 2007 for
comparison. The PC has 2GHz CPU, 2GB RAM, and 300GB SATA HDD, and the
system is implemented in Java 1.6.0 07. The time it takes to parse and load the 659,388
files on the PC is about 8.17 hours excluding file-copying time. The database size is
about 3.18 GB on HDD.

3.2 Experimental Results
Table 1 shows results for the three Adhoc tasks using the main evaluation measure for
INEX 2008. Unfortunately, There are some bugs in our system, so the listed results
include Topic 544–650 for the Forcused task only.

Table 1. Top 10 of 29 participants on Focused

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] AiP
RIP 01 0.4156 0.2947 0.2257 0.1719 0.0599
RIP 02 0.4192 0.3076 0.2477 0.1975 0.0686
RIP 03 0.3502 0.2961 0.2280 0.1814 0.0635

RIP 01 was a baseline using TF-IDF, RIP 02 was using CAS titles, and RIP 03 was
effected by PRF method.
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4 Conclusions

From the results RIP 03 was greater than RIP 01 as AiP, but lesser than RIP 01 as
iP[0.00]. Because RIP 03 was effected by PRF method, so RIP 03 was slightly up to
RIP 01. RIP 02 was the best score using CAS titles, there was ranked 41th with 0.5535
in the official ranking.

This paper reports the effectiveness of both the CAS Titles and the PRF method.
Hence we have to invest reasons of bugs and should evaluate the effectiveness regarding
both using the CAS Titles and using the PRF method.
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Abstract. We present in this paper the work of the Information Re-
trieval Modeling Group (MRIM) of the Computer Science Laboratory of
Grenoble (LIG) at the INEX 2008 Ad Hoc Track. We study here the use
of non structural relations between document elements (doxels) in con-
junction with document/doxel structural relationships. The non struc-
tural links between doxels of the collection come from the collectionlink
doxels. We characterize the non structural relations with relative exhaus-
tivity and specificity scores. Results of experiments on the test collection
are presented. Our best run is in the top 5 for iP[0.01] values for the
Focused Task.

1 Introduction

This paper describes the approach used for the Ad Hoc Track of the INEX 2008
competition. Our goal here is to show that the use of non structural links and
the use of structural links lead to high quality results for an information retrieval
system on XML documents. We consider that handling links between doxels in
a “smart” way may help an information retrieval system, not only to provide
better results, but also to organize the results in a way to overcome the usual
simple list of documents. For INEX 2008 runs, we obtained very good results for
low recall values (0.00 and 0.01).

The use of non structural links, such as Web links or similarity links has been
studied in the past. Well known algorithms such as Pagerank [1] or HITS [3] do
not integrate in a seamless way the links in the matching process. Savoy, in [6],
showed that the use of non structural links may provide good results, without
qualifying the strength of the inter-relations. In [7], Smucker and Allan show
that similarity links may help navigation in the result space. Last year, for our
first participation at INEX [9], our approach using non-structural links and a
vector space model outperformed runs without using the links. This year, we
go further by refining the non structural relationships used, and by integrating
during the matching phase the RSV of the document that contains a relevant
doxel.
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In the following, the non structural relations between doxels will be referred
to as the non structural context of the doxels. Our assumption is that docu-
ment parts are not only relevant because of their content, but also because they
are related to other document parts that answer the query. The document that
contains a doxel d will be referred as the structural context of d. In some way,
we revisit the Cluster Hypothesis of van Rijsbergen [8], by considering that the
relevance value of each document is impacted by the relevance values of related
documents.

In our proposal, we first build inter-relations between doxels, and then char-
acterize these relations using relative exhaustivity and specificity at indexing
time. We also build explicit relationships between the doxels and their container
document. These two elements are used by the matching process.

The five officially submitted runs by the LIG for the Ad Hoc track integrate
such non structural and structural links. We submitted three runs for the Fo-
cused task, and two runs for the Relevant in Context task.

The rest of this paper is organized as follows: we describe the non structural
links that were used in our experiments in part 2, the structural links used in
part 3, then the doxel space is described in detail in section 4, in which we
propose a document model using the context. Section 5 introduces our matching
in context process. Results of the INEX 2008 Ad Hoc track are presented in
Section 6.

2 Non structural context

The idea of considering non structural neighbours was proposed in [10], in order
to facilitate the exploration of the result space by selecting the relevant doxels,
and by indicating potential good neighbours to access from one doxel.

The INEX 2008 collection contains several links between documents, like
unknownlinks, languagelinks and outsidelinks for instance. We considered ex-
isting relations between doxels with the collectionlink tag, because these links
denote links inside the collection. The most important attribute for such tags
for us is xlink : href , that indicates the target of the link. The targets of such
links are only whole documents, and not documents parts. That is why we ex-
tended the initial links doxel/document by doxel to doxels links according to the
following process, by considering a collectionlink doxel c with a document target
ct:

– assume that c is composing a doxel d of type Td,
– we compute the similarity (VSM, cosine based) between d and all compo-

nents of ct of type Td,
– we keep all the components above with the matching value greater than a

threshold T,
– we generate all of these components of ct in the context of c.
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– we keep the initial link going from c to the document ct.

We do not consider the links between collectionlinks, because collectionlinks
may be too small. Initially, there are 17 013 512 collectionlinks in the INEX
2008 collection. With the process described above we generated 115 million of
non structural links.

3 Structural links

We describe now the use of the structural links as they are used in our proposal.
These links come only from the transitive closure of the compositional links
between doxels, filtered to keep only the document links. When there exists
a compositional link going from a document D to a doxel d, we generate a
structural link going from the doxel d to the document D . We generated then
28 million of structural links.

4 Doxel space

4.1 Doxel content

The representation of the content of doxel di is a vector generated from a usual
vector space model using the whole content of the doxel: di = (wi,1, ..., wi,k).
Such a representation has proved to give good results for structured document
retrieval [2]. The weighting scheme retained is a simple tf.idf , with idf based
on the whole corpus and with the following normalizations: the tf is normalized
by the max of the tf of each doxel, and the idf is log-based, according to the
document collection frequency. To avoid an unmanageable quantity of doxels,
we kept only doxels having the following tags: article, p, collectionlink, title,
section, item. The reason for using only these elements was because, except for
the collectionlinks, we assume that the text content for these doxels are not too
small. The overall number of doxels considered by us here is 29 291 417.

4.2 Characterizing non structural doxel context

To characterize the non structural relations between doxels, we propose to define
relative exhaustivity and relative specificity. These features are inspired from the
definitions of specificity and exhaustivity proposed at INEX 2005 [4], and are
supposed to define precisely the nature of the link. Consider a non compositional
relation from the doxel d1 to the doxel d2:

– The relative specificity of this relation, noted
Spe(d1, d2), denotes the extent to which d2 focuses on the topics of d1. For
instance, if d2 deals only with elements from d1, then Spe(d1, d2) should be
close to 1.
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– The relative exhaustivity of this relation, noted
Exh(d1, d2), denotes the extent to which d2 deals with all the topics of d1.
For instance, if d2 discusses all the elements of d1, then Exh(d1, d2) should
be close to 1.

The values of these features are in [0, 1]. We could think that these features
behave in an opposite way: when Spe(d1, d2) is high, then Exh(d1, d2) is low,
and vice verse.

Relative specificity and relative exhaustivity between two doxels are exten-
sions of the overlap function [5] of the index of d1 and d2: these values reflect
the amount of overlap between the source and target of the relation. We define
relative specificity and relative exhaustivity on the basis of the non normalized
doxel vectors w1,i and w2,i (respectively for d1 and d2) as follows.

We estimate values of the exhaustivity and the specificity of d1 and d2, based
on a vector where weights are tf.idf

Exh(d1, d2) =

∑
i|w2,i !=0 w2

1,i∑
i w2

1,i

(1)

Spe(d1, d2) =

∑
i|w1,i !=0 w2

2,i∑
i w2

2,i

(2)

These two values scores are in [0, 1] if we assume that no doxel is indexed by
a null vector.

5 Matching in context

As we have characterized the doxel context, the matching process should return
doxels relevant to the user’s information needs regarding both content and struc-
ture aspects, and considering the context of each relevant doxel.

We define the matching function as a linear combination of a standard match-
ing result without context, a matching result based on relative specificity and
exhaustivity, and a matching coming from the rank of the documents according
to the query processed. The relevant status value RSV (d, q) for a given doxel d
and a given query q is thus given by:

RSV (d, q) = α ∗ RSVcontent(d, q) + (1 − α) ∗ RSVcontext(d, q) (3)

+rank(RSVcontent(Doc(d), q)),

where α ∈ [0, 1] is experimentally fixed,
RSVcontent(d, q) is the score without considering the set of neighbours Vd of
d (i.e. cosine similarity),
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RSVcontext(d, q) =
∑

d′∈Vd

β ∗ Exh(d, d′) + (1 − β) ∗ Spe(d, d′)

|Vd|
RSVcontent(d

′, q)

(4)
where β ∈ [0, 1] is used to focus on exhaustivity or specificity, and

rank(RSVcontent(Doc(d), q)) the rank of the matching result for each document
of the collection. According to what is done now, the part of the fomula above
weighted by α and 1 − α is in [0, 1], so adding the ranking of the documents
induces a grouping by document of the doxels.

6 Experiments and results

The INEX 2008 Adhoc track consists of three retrieval tasks: the Focused Task,
the Relevant In Context Task, and the Best In Context Task. We submitted 3
runs for the Focused Task, and 2 runs for the Relevant In Context Task. For
all these runs, we used only the title of the INEX 2008 queries as input for
our system: we removed the words prefixed by a ’-’ character, and we did not
consider the indicators for phrase search. The size of the vocabulary we used is
210 000.

First of all, we have experimented our system with INEX 2008 collection to
tune the α and β parameters and the number of non structural neighbours used.
The best results were achieved with α = 0.5 and β = 0.0, which means that the
non structural context is as important as the context of the doxels, and that only
the exhaustivity is considered. We considered 4 non structural neighbours. For
the use of the structured context, we tested a ranking based on a Vector Space
Model (similar to what was described earlier), namely VSM, and a ranking based
on a Language Model using a Dirichlet smoothing, namely LM.

6.1 Focused Task

The INEX 2008 Focused Task is dedicated to find the most focused results that
satisfy an information need, without returning “overlapping” elements. In our
focused task, we experiment with two different rankings.

For the runs LIG-ML-FOCRIC-4OUT-05-00 and LIG-VSM-FOCRIC-4OUT-
05-00, as explained by the matching formula, the results are grouped by docu-
ment, so results are somewhat similar to RIC results (except for the ordering of
the doxels in one document).

The last run, namely, FOC-POSTLM-4OUT-05-00 is a bit different in nature:
we generated a binary value (1 for relevant document and 0 for non relevant
document) for the document matching, and we filter the doxels belonging to
relevant documents, without changing their matching value.

We present our results for the focused task in Table 1 showing precision
values at given percentages of recall, and in Figure 1 showing the generalized
precision/recall curve. These results show that runs based on the use of the
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Language Model outperform at recall values lower than 0.2 the VSM document
based context. Between recall values of 0.3 and 0.5, the VSM gives better results
than the LM. The post processing using language model document matching
does not give good results. Each of these curves drop sharply, which leads to a
MAiP low compared to other participants runs.

Table 1. Focused Task for LIG at INEX2008 Ad Hoc Track

Run precision precision precision precision
at 0.0 recall at 0.01 recall at 0.05 recall at 0.10 recall

LIG − ML − FOCRIC 0.7114 0.6665 0.521 0.4216
MAiP = 0.1441

LIG − V SM − FOCRIC 0.5555 0.5187 0.4402 0.3762
MAiP = 0.1339

FOC − POSTLM 0.4754 0.4188 0.3741 0.3035
MAiP = 0.0958

Fig. 1. Interpolated Precision/Recall - Focused Task LIG Ad Hoc

6.2 Relevant In Context Task

For the Relevant In Context Task, we take “default” focused results and re-
ordered the first 1500 doxels such that results from the same document are
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clustered together. It considers the article as the most natural unit and scores
the article with the score of its doxel having the highest RSV.

We submitted two runs :

– LIG − V SM − RIC − 4OUT − 05 − 00 : a run similar to the LIG-VSM-
FOCRIC-4OUT-05-00, except that the doxels are ordered by their appari-
tion in each document. In this run, we set λ = 0.5 and β = 0.0 and four
neighbours;

– LIG−LM−RIC−4OUT −05−00 : a run similar to the LIG-LM-FOCRIC-
4OUT-05-00, except that the doxels are ordered by their apparition in each
document. In this run, we set λ = 0.5 and β = 0.0 and four neighbours.

For the relevant in context task, our results in terms of non-interpolated gen-
eralized precision at early ranks gP [r], r ∈ {5, 10, 25, 50} and non-interpolated
Mean Average Generalized Precision MAgP are presented in Table 2, and the
interpolated Recall/Precision curve is presented in Figure 2. In these results, we
see that the use of language model document ranking for doxels retrieval always
outperforms the use of vector space based (+55% for MAgP). Similarly to our
Focused runs, our results for the Retrieval in Context drop sharply when recall
values increase, but the precision is above 62% for a recall of 0, which means
that our best approach gives accurate results for the first query results.

Table 2. Relevant In Context Task for INEX2007 Ad Hoc.

Run gP[5] gP[10] gP[25] gP[50]
LIG − V SM − RIC − 4OUT − 05 − 00 0.2444 0.2023 0.1756 0.1360

MAgP = 0.0961
LIG − LM − RIC − 4OUT − 05 − 00 0.3595 0.3069 0.2303 0.1708

MAgP = 0.1486

7 Summary and Conclusion

In the INEX 2008 Ad Hoc track, we intergrated two contexts (the four most
similar doxels in a collectionlink document target and the full document rank)
with the RSV of doxels. We submitted runs implementing our proposals for
the Focused and Relevant in Context Ad Hoc tasks. For each of these tasks,
we showed that combining content and context leads to good results, especially
when considering full document language models. One explaination is that such
models are well adapted for full documents, and using the context of doxel in
a second step is a good approach. For our second participation to INEX, our
best runs are ranked in the top 10 runs of participants systems at least in the
Focused task at iP[0.01]. However, we plan to improve our baseline to obtain
better results in the following directions:
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Fig. 2. Interpolated Recall/Precision - Relevant in Context Task LIG Ad Hoc

– In the current results, we used a vector space model for the doxels and
a language model for the full documents. We will focuse in the future on
proposing a more consistent approach that relies only on language models.

– Refining also the non structural context of the doxel has to be done, by
studying of other features that can be used to characterize the inter doxel
relationships.
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Abstract. INEX provides a platform for a variety of successful and innovative 
XML-Retrieval approaches some of which are quite effective. However, all cur-
rent solutions are centralized search engines. They do not consider distributed 
scenarios where it is not wanted or not possible to store the whole collection on 
one single machine. Such scenarios include search in large-scale collections, 
where the load of computations and storage consumption exceed the capacity of 
a single machine. Other systems consist of heterogeneous collections owned by 
different document providers. Those owners might be willing to share their 
collections but they may not want to give up full control by uploading them on 
a central server. Access control, privacy, and security are further reasons to 
distribute information among P2P systems, e.g. to avoid attacks or censorship. 
Search in distributed systems has been a research area for the last few years – in 
regard of text documents or multimedia retrieval of images and music. With 
INEX and the progress of techniques to take advantage of XML-structure, it is 
now time to investigate distributed XML-Retrieval, too! 
In this paper, we present a distributed search engine for XML-documents that is 
based on a Peer-to-Peer network. Our motivation for participating in INEX is to 
establish our system as a search engine that provides a variety of XML-
Retrieval features leading to IR quality comparable to those of centralized 
XML-Retrieval systems. Furthermore, we would like to propose to the INEX 
community the idea of extending XML-Retrieval to distributed settings.  

Keywords: Information Retrieval, Peer-to-Peer, XML Information Retrieval, 
XML-Retrieval, Distributed Search, Distributed XML-Retrieval, INEX 

1   Introduction 

Systems participating in INEX include a variety of XML-Retrieval approaches quite 
effective in terms of retrieval quality. To the best of our knowledge all current solu-
tions are centralized search engines, though. This is sufficient for the current INEX 
test collection, consisting of 659.338 Wikipedia articles in XML format for the main 
ad-hoc track. In practice, collections such as those stored in digital libraries are much 
more voluminous and do not fit on one computer. Also, search should not be limited 
to one collection only, but a search engine should have access to a wide variety of 
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collections. This can include those offered by public institutions, such as universities, 
or the private collections of willing to share them. 

Thus, distributed XML-Retrieval systems should be investigated in order to search 
large-scale or federated collections. Additionally, more powerful search engines can 
be built by pooling computers together – the load of computations and storage capac-
ity can be shared by all participating nodes. 

However, the cooperation of nodes implies communication costs which cannot be 
neglected. Distributed search engines hence have to consider efficiency as well as 
effectiveness. In terms of XML-Retrieval, a distributed search engine has to take care 
of an appropriate distribution of content information as well as structural information. 
On the other hand, structure can be used to perform distributed search more effec-
tively and more efficiently, e.g. when selecting postings during routing. 

To the best of our knowledge, none of the content-oriented XML-Retrieval solu-
tions so far considers distributed aspects. In this paper, we present the first distributed 
XML-Retrieval system that performs content-oriented search for XML-documents. 
Our system is based on a structured Peer-to-Peer (P2) system. 

P2P networks are emerging infrastructures for distributed computing where 
autonomous peers are pooled together. Other than in classical client/server systems, 
there is no central control but a high degree of self-organization, such that P2P sys-
tems are very flexible, adapt to new situations (such as joining and leaving of nodes), 
and thus may scale to theoretically unlimited numbers of participating nodes. A P2P 
network can be organized as a structured overlay network where a logical structure is 
laid on top of a physical network. Distributed hash tables (DHT) can be used to route 
messages to a peer storing an object specified by a unique identifier (ID), without 
knowing the peer’s physical address [6]. The data structure for the routing table, and 
thus the logical structure of the overlay network, depends on the DHT algorithm used. 
For example, the Chord protocol maintains a DHT ring and maps peers and keys to an 
identifier ring [8]. In general, DHT-based algorithms structure an overlay network 
such that efficient lookup of objects can be achieved.  

Among the growing amount of objects shared by P2P applications there is an in-
creasing number of XML-documents, especially since public and private institutions, 
such as museums, start to share their Digital Libraries. There are a number of search 
engines for P2P networks, for example the DHT-based systems [2] and [5]. However, 
none of these approaches supports XML-Retrieval techniques. Schema-based P2P-
networks [3], on the other hand, consider structure for the routing but existing solu-
tions (such as [1]) do not provide IR techniques for content-oriented search. 

In this paper, we propose a distributed XML-Retrieval system. It provides features 
such as allowing CAS queries, weighting different XML-elements differently, and 
element retrieval. On the one hand, this system takes advantage of XML-structure to 
perform the search for XML-documents more precise, i.e. structure is used to achieve 
a system more effective than current P2P-IR solutions. On the other hand, XML-
structure can be involved in the routing to make the search process more efficient, e.g. 
by selecting posting list and postings based on evidence from both content and struc-
ture. To demonstrate the proposed approach as an XML-Retrieval system, we partici-
pated in INEX 2008. This paper describes motivation, research questions, technical 
details, submitted runs for three tasks of the ad-hoc track, and preliminary evaluation 
results of our system. 
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2   Spirix – a P2P Search Engine for XML-Documents 

The following section presents Spirix, a search engine for P2P Information Retrieval 
(IR) of XML-documents. First, we present the architecture and system design of 
Spirix and especially focus on the techniques to extract and store structured informa-
tion during indexing. Second, we outline where and how structure can be used in the 
process of answering a given INEX query. 

2.1   System Design – How XML-Structure Is Distributed during Indexing 

The smallest object indexed by Spirix is what we denote by XTerm: a tuple consisting 
of a stemmed non-stopword term and its structure. A term’s structure is denoted as the 
path from the document root element to the term element in the XML-document tree 
expressed with XPath but without element numbers. To reduce the variety of different 
structures, we apply methods such as mapping of syntactically different but semanti-
cally similar tags, as well as stopword removal and stemming of tags. 

For each indexed collection, a temporary inverted index for all extracted XTerms is 
build locally, where the vocabulary consists of keys and where a key combines all 
XTerms with the same content but each XTerm keeps its own posting list (see figure 
1). Each posting refers to a document but its score is computed based on evidence 
from the document’s weigth (tf, idf), from its element weights, and from the peer 
assigned to the document (peerScore). Details about this impact ordering are de-
scribed in [9]. 
 

Fig. 1. Example of a key in the inverted index consisting of two XTerms. 

As part of this parsing phase, we build a temporary statistic index (document index 
and element index) by collecting the statistics for each document and for selected 
elements which are treated as independent documents. So far, only fixed tags (para-
graphs and sections) are considered as potential relevant elements. We are currently 
extending the method to elements that have been found relevant in the past or were 
specially marked by the indexing user. 

Finally, all temporary indexes are distributed over the network. For message trans-
port, we integrated a P2P protocol named SpirixDHT that has been developed to sup-
port efficient transport of messages between peers when retrieving XML-documents. 
This protocol is based on Chord and adapted to special requirements of XML-
Retrieval as described in [9]. That is, in a network of n peers, we can store and locate 
information identified by unique IDs with DHT techniques in log(n) hops. The in-
verted index is distributed by storing the posting lists on different peers. As ID that is 
hashed to assign a posting list to its according peer, we use the posting list key’s con-
tent. Therefore, all posting lists regarding to the same content are stored on the same 
peer because during routing they are most likely to be accessed together. The statistic 
index is distributed by hashing the unique ID of each document (which is calculated 
by the peer’s IP-address, its port, and the local document name, or which is created by 
storing the exact number of global documents in the DHT). To ensure that element 

apple \book\chapter   !  dok1(12.8), dok2(12.4)   
           \article\p         !  dok2(25.3), dok3(12.7), dok4(10.7) 
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statistics are stored on the same peer as their root document, the hashed IDs of 
elements are chosen to be identical with those of their root documents. 

P2P networkP2P network
Index storage component

Inverted Index                                    Statistics Index

INFORMATION  RETRIEVAL

PEER-TO-PEER

APPLICATION  

Document
index

Retrieval unit
index

Frequent
XTerm index

HDK
index

Frequent
XTerm index

HDK
index

 
Fig. 2. Parts of the distributed global indexes that are stored on each peer. 

By applying these distribution techniques, Spirix is based on global indexes (in-
verted index and statistics index) which are not stored centrally but distributed among 
all participating peers. If peers leave the network or new participants join, the indexes 
are automatically redistributed as the network organizes itself. For example, a new 
peer can take over some of the stored information that its direct neighbour has been 
responsible for. Figure 2 shows the different parts of the global indexes that are stored 
locally on each peer and that are managed by the index storage component as part of 
the IR complex on each peer. 

2.2   System Use – Where XML-Structure Is Used during Querying 

How is the distributed information used in the querying process, and especially where 
is XML-structure applied to improve performance?  

Retrieval includes routing and ranking, and consists of two steps: the first step 
serves to locate the posting lists of all query terms, to merge them, and to select 
promising postings. Second, locate the statistics for the selected postings such that the 
referenced documents and elements can be ranked. In contrast to common P2P search 
engines that perform routing and ranking solely based on content evidence, Spirix 
includes XML-structure in both steps. 

Routing: Especially for multi term queries, where posting lists have to be sent 
between peers for merging, not all postings can be selected because for large-scale 
collections with big posting lists this would significantly increase network traffic. For 
the selection of posting lists, we compute the similarity between the structural hint of 
a CAS query and the structure of an XTerm’s posting list. Only those posting lists are 
considered where the structural similarity exceeds a threshold. Furthermore, only top 
k entries from the chosen posting lists are selected. For this purpose, the postings are 
ordered by impact based on evidence from document-, element-, and peer-level but 
also based on the structural similarity of the original posting list. Hence, postings of 
XTerms that match the CAS hint closely get a higher impact factor than less similar 
ones. 

Ranking: For each selected posting, a ranking request is sent to the peer that is as-
signed to the referenced document. The relevance is then computed using an exten-
sion of the vector space model: query, document, and elements are represented as 
vectors where each component contains the weight of an XTerm. That is, the weight 
of a term is split into weights for its different structures. Second, the weight itself is 
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computed using structure: it is computed as the product of the XTerm’s content’s 
weight and the structural similarity between XTerm and CAS query term. Third, the 
XTerm’s content’s weight is computed with an adaption of BM25E [7] such that 
different elements can be weighted differently, e.g. “titles” can get higher weights 
than “links”. Last, all relevance computations are performed not only for the selected 
documents but also for their potential relevant elements (whose statistics are stored on 
the same peer for better access) to achieve more focused and specific results. Similar 
to related work, e.g. [4], we assume a strong correlation between the relevance of an 
element and its parent document. Therefore, the parent document influences the 
ranking of elements: the score of an element is computed based on the stored statistics 
and smoothed by the score of its parent document. 

q = {apple, \book}

1. Routing
request (q)

p0

p4

p7

p9

2. Ranking 
request (q,dok1)

apple, \book ! dok1(4.8), dok2(4.1)…
apple, \novel ! dok4(12.9)

2. Ranking 
request (q,dok4)

Dok4=(1,4,0,0,3,…)

Dok1=(0,1,5,1,3,…)

3. Result = {(dok1/sec,5.4)}

3.
Res

ult
= {(

do
k2

,12
.4)

,

(do
k2

/ch
ap

, 1
1.2

)}

 
Fig. 3. Retrieval process for single term query q = {apple,\book} based on SpirixDHT. 

Figure 3 displays the process of answering a query q. First, q is routed to peer p4 
which is assigned to the hash of apple and thus holds all posting lists for XTerms with 
content apple. On p4, posting lists and postings are selected according to q by taking 
into account the postings’ weights multiplied with the similarity to \book. Postings 
dok1 and dok4 are selected, and routing requests are sent to peers p7 and p9 which are 
responsible to hold the statistics of these documents and their elements. Peer p7 and 
peer p9 both receive the query, calculate results and send these back to the querying 
peer p0. 

3   Participating at INEX 2008 

3.1   INEX Tracks 

In 2008, University of Frankfurt participated in INEX for the first time. We chose two 
tracks: the ad-hoc track and the efficiency track. The participation at the efficiency 
track is described in [11]. In this chapter, we concentrate on the ad-hoc track. 
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3.2   INEX Tasks (Ad-hoc Track) 

Our main task was the focused task, but we submitted the same results –filtered by the 
according rules – to the BestInContext task (BIC) and to the RelevantInContext task 
(RIC) as well to see how Spirix performs in these tasks.  

Focused: To answer a topic, 5000 documents are chosen from the posting list of 
each query term. Note, that this is done on separate peers, i.e. before merging of 
posting lists. Their relevance plus the relevance of selected elements from these 
documents is then computed. Overlapping is filtered out by ordering the results by 
document ID and element offset. If two results have identical document IDs and one 
offset is the first part of the other one, only the result with the higher relevance is 
kept. 

RelevantInContext (RIC): After removal of overlapping elements in the same 
manner as in the Focused task, the results are sorted into groups. Each group contains 
a document and all its relevant elements. The list of groups is sorted by root document 
relevance. 

BestInContext (BIC): For this task, the overlap-filtering was modified such that 
all elements with identical document IDs were subject to the filter. Thus, only the best 
element of a document (or the document itself) survived the filter. 

3.3   University of Frankfurt Runs (Ad-hoc Track) 

We participated to demonstrate Spirix as an XML-Retrieval system. Furthermore, we 
were interested in a comparison of different methods implemented in our system. 
These include: 
! CO versus CAS: do structural hints help to improve our ranking or routing? 
! How do different ranking functions perform? 
! How do different structural similarity functions perform (ranking and routing)? 
! How does the amount of selected postings effect precision? 
! Element versus document retrieval –do we perform better by retrieving elements? 

For the official runs, we decided to compare different ranking functions, so we 
submitted the following runs: 

Table 1. Runs submitted by University of Frankfurt. 

Run Status Task Type Name 
234 Evaluated BIC Element 006: BM25e_W1, 5000 postings, architect-similarity 
235 Evaluated BIC Element 005: BM25e, 5000 postings, architect-similarity 
236 Evaluated BIC Element 004: tf*idf-variant, 5000 postings, architect-similarity 
242 Unchecked Focused Element 003: BM25E_W1, 5000 postings, architect-similarity 
243 Unchecked Focused Element 002: BM25e, 5000 postings, architect-similarity 
244 Evaluated Focused Element 001: tf*idf-variant, 5000 postings, architect-similarity 
231 Evaluated RIC Element 007: tf*idf-variant, 5000 postings, architect-similarity 
232 Evaluated RIC Element 008: BM25e, 5000 postings, architect-similarity 
233 Evaluated RIC Element 009: BM25e_W1, 5000 postings, architect-similarity 

 

For each run, 5000 postings were selected from the posting lists and the structural 
similarity function described in [10] was used. For each task, three runs were 
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submitted for three different ranking functions: a tf*idf-Baseline, a variant of BM25E, 
and a variant of BM25E with different weights for different elements. 

3.4   Tuning the System – Balance between Effectiveness and Efficiency 

As to the ad-hoc track, we aimed at high precision. Thus, for many parameters that 
influence the balance between effectiveness and efficiency, we chose values with 
respect to effectiveness. This includes for example global statistics. For early termi-
nation (selection of postings), we decided for a compromise of 5000 postings. Re-
garding storage of structural information, we used methods to shorten the structure 
length resulting in a much smaller and easier manageable index. However, this also 
reduces precision by approximately 5%. 

Global statistics: Spirix is based on a DHT which enables collecting and storing 
of global statistics. Usually, we estimate these statistics from the locally stored part of 
the distributed document index that contains randomly hashed samples from the col-
lection. This estimation technique eliminates the messages necessary for distributing 
and accessing global statistics with the cost of loosing precision depending on the 
estimations. Thus, for the INEX runs the exact global statistics were used. 

Early termination (selection of 5000 postings): Due to our system architecture, 
taking all postings from a posting list is not efficient as this leads to many ranking 
request messages. However, precision increases with the amount of selected postings 
(up to a collection specific point). Thus, the best 5000 documents were selected from 
each query term’s posting list. Note, that this is done on separate peers and thus 
without merging – we loose precision for multi term queries when good documents 
are on positions > 5000. 

4   Evaluation 

For the focused task, we achieved interpolated precision at 1% (iP[0.01]) of 27% for 
our baseline run (tf*idf variant as ranking algorithm). Our systems thus came on rank 
58 out of 61 participants in the preliminary evaluation.  

Table 2. Performance at INEX2007 (unofficially) and INEX2008, focused task. 

 INEX’07 (unofficially) INEX’08 (officially) INEX’08 (re-evaluated) 
iP[0.01] Uni Frankfurt 37% 27% 52% 
iP[0.01] best system 52% (Dalian) 68% (Waterloo) 68% (Waterloo) 
Rang 57 out of 79 58 out of 61 ca. 47 out of 61 
 

However, our runs with more sophisticated ranking methods (BM25E variants) 
were not considered in the official evaluation of INEX 2008 due to errors in the 
overlapping filter such that the runs had duplicates. After correcting this bug, we run 
the evaluation ourselves and got a precision of 51,97%. This would have meant rank 
47 of 61 participants. Figure 4 shows precision for the officially evaluated run001 
(Baseline) and for the re-evaluated run002 (BM25E-adaption) for the focused task. 
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Our precision for the BIC and RIC tasks was nearly 0, so we assume another error 
with our filtering methods as the result files themselves have been the same as sub-
mitted to the focused task. We are in the process of investigating this.  
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Fig. 4. Precision over all recall levels for run001 (baseline) and run002 (BM25E). 

Figure 5 displays iP[0.01] and average interpolated precision (AiP) for run002 for 
each single topic. The variety over the topics is as wide as possible: the precision can 
be anything between 0% and 1%. We will have to investigate why for some topics 
Spirix did not return relevant documents or only few. This will be done in comparison 
to the results of other participants to identify easy and difficult topics. 
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Fig. 5. iP[0.01] for each single topic (run002). 

5   Conclusion 

In this paper, the first distributed search engine Spirix has been proposed. It is based 
on a structured P2P system and offers a wide variety of XML-Retrieval features such 
as taking advantage of CAS queries, weighting different elements differently, and 
element retrieval. We participated in INEX 2008 to demonstrate Spirix as an XML-
Retrieval system with an IR quality comparable to centralized XML-Retrieval. Due to 
the underlying architecture of a P2P network, we have to consider efficiency issues 
and are forced to make some short cuts which inevitably decreases precision. 
University of Frankfurt participated in INEX 2008 for the first time. Unfortunately, 
the implementation of our prototype has not been finished until one week before the 
run submission deadline. Thus, most of our runs failed due to bugs in our task filters. 
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The only officially evaluated run was our baseline run where we achieved a precision 
of 27%. 

However, we have been able to fix the filters and did a re-evaluation after release 
of the new INEX 2008 tool. Our focused run now achieved iP[0.01] of 51,97 %, 
which could have been around rank 47 of 61 participants.  
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Abstract. This paper provides an overview of the INEX 2008 Book
Track, its current progress, participants, tasks, book corpus, test topics
and relevance assessment collection system, as well as some results.

1 Introduction

Through mass-digitization projects and with the use of OCR technologies, the
full texts of digitized books are becoming available on the Web and in digital
libraries [1]. Examples include the Million Book project4, the efforts of the Open
Content Alliance5 and the digitization project of Google6.

The unprecedented scale of these efforts, the unique characteristics of the
digitized material, as well as the unexplored possibilities of user interactions
make full-text book search and eBook design and development an exciting area
of research today. The growing interest in this area is reflected by the wide range
of challenges and opportunities highlighted at the BooksOnline’08 Workshop [2].

Motivated by the need to foster research in this domain, the book track was
launched in 2007 as part of the INEX initiative. INEX was chosen as a suitable
forum as searching for information in a collection of books can be seen as one
of the natural application areas of structured document retrieval (SDR), which
has been investigated at INEX since 2002. For example, in focused retrieval a
clear benefit to users is to gain direct access to parts of books (of potentially
hundreds of pages in length) that are relevant to their information need.

The overall goal of the INEX Book Track is to study book-specific relevance
ranking strategies for informational search tasks, investigate user interface issues
and user behaviour both for online and e-reader based reading and information
seeking experiences, exploiting book-specific features, such as back of book in-
dexes and table of contents provided by authors, and associated metadata like
library catalogue information.

In 2007, the track concentrated on identifying infrastructure issues, focusing
on information retrieval tasks.
4 http://www.ulib.org/
5 www.opencontentalliance.org/
6 http://books.google.com/
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In 2008, the aim was to look beyond and bring together researchers and
practitioners in Digital Libraries, Information Retrieval (IR), Human Computer
Interaction, and eBooks to explore common challenges and opportunities around
digitized book collections. Toward this goal, the track set up tasks to provide
opportunities for investigating research questions around the following broad
topics:

– IR techniques for searching full texts of digitized books, which are investi-
gated in the Book Retrieval and Page in Context tasks,

– User’s interactions with eBooks and collections of digitized books, which is
the area that the Active Reading task is aimed at exploring,

– Mechanisms to increase accessibility to the contents of digitized books, which
is the focus of the Structure Extraction task.

This paper provides an overview of the track, its current progress and results
so far. Since, at the time of writing, the Active Reading task was still running
and the relevance assessments for both of the search tasks (Book Retrieval and
Page in Context) were in the process of being collected, the evaluation results
for these are not reported here.

The paper is structured as follows. Section 2 gives a brief summary of the
participating organisations. In Section 3, we describe the corpus of books that
forms the main part of the INEX book test collection. The following three sec-
tions detail the four tasks defined in the track: Section 4 summarises the Book
Retrieval and Page in Context retrieval tasks, Section 5 reviews the Structure
Extraction task, and Section 6 discusses the Active Reading task. We close in
Section 7 with a summary and further plans.

2 Participating organisations

A total of 54 organisations registered for the track (double of last year’s 27), see
Table 1. However, only 13 of them have actually taken part actively throughout
the year (up from 9 last year). For active participants, the number of topics and
runs they submitted are also listed. In total, 19 groups downloaded the book
corpus, 11 groups contributed search topics, 2 have submitted runs to the Struc-
ture Extraction task (Microsoft Development Center Serbia, and Xerox Research
Centre Europe), 4 to the Book Retrieval task (University of Amsterdam, Uni-
versity of California Berkeley, RMIT University, and University of Waterloo), 2
to the Page in Context task (University of Amsterdam, and University of Water-
loo), and 2 are participating in the Active Reading task (University of California
Berkeley, and Kyungpook National University).

3 Book corpus

The track builds on a collection of digitized books, provided by Microsoft Live
Search and the Internet Archive (for non-commercial purposes only). It consists
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ID Organisation ID Organisation
Active participants

6 University of Amsterdam 54 Microsoft Research Cambridge
Corpus; Topics: 51, 52, 65; Runs: 3
BR, 7 PiC

Corpus; Topics: 55, 56, 57, 58, 62, 63,
64, 70

14 University of California, Berkeley 56 JustSystems Corporation
Corpus; Topics: 66, 67; Runs: 3 BR,
ART

Corpus; Topics: 53, 54, 59

30 CSIR, Wuhan University 62 RMIT University
Corpus; Topics: 36, 38, 39, 42 Corpus; Topics: 31, 37, 41, 43; Runs:

10 BR
31 Faculties of Management and 78 University of Waterloo

Information Technologies, Skopje Corpus; Topics: 32, 33, 34, 35; Runs:
Corpus; Topics: 40, 46, 47, 48 2 BR, 6 PiC

41 University of Caen 86 University of Lugano
Corpus; Topics: 60, 61 Corpus; Topics: 68, 69

43 Xerox Research Centre Europe 125 Microsoft Development Center Serbia
Corpus; Runs: 4 SE Corpus; Runs: 3 SE

52 Kyungpook National University
Corpus; Topics: 44, 45, 49, 50; ART

Passive participants (Corpus download)
4 University of Otago 17 University of Strathclyde
7 Oslo University College 42 University of Toronto
10 Max-Planck-Institut Informatik 116 University of the Aegean

Passive participants
5 Queensland University of Technology 104 UCLV
8 University College London 107 University of Sci. and Tech. of China
9 University of Helsinki 112 Hitachi, Ltd.
15 Univeristy of Iowa 115 IIT
19 University of Ca Foscari di Venezia 117 Iran
21 MPP 118 M.Tech Student

27, 76 Univeristy at Albany 127 UNICAMP
29 Indian Statistical Institute 148 UEA
32 CUHK 158 George Mason University
39 University of New South Wales 160 Universite Jean Monnet
51 Suny-Albany 161 University of California, Santa Cruz
60 Saint Etienne University 164 Isfahan University
66 University of Rostock 165 Universidad de Oriente
88 Independent 166 Drexel University
91 Auckland University of Technology 171 Chinese University of Hong Kong
93 Wuhan Institute of Technology 174 Alexandria University
96 Cairo Microsoft Innovation Center 181 COLTEC
100 Seoul National University

Total of 54 organisations

Table 1. Participating groups at the Book Track in 2008 (BR = Book Retrieval,
PiC = Page in Context, SE = Structure Extraction, ART = Active Reading
Task)
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of over 50,000 digitized out-of-copyright books from a wide range of genres,
including reference works as well as poetry. Most of the corpus is made up of
history books (mostly American history), biographies, literary studies, religious
texts and teachings. There are also encyclopedias, essays, proceedings and novels.

The OCR content of the books has been converted from the original DjVu
format to an XML format referred to as BookML, developed by the Document
Layout Team of Microsoft Development Center Serbia. BookML provides richer
structure information, including markup for table of contents entries. Most books
also have an associated metadata file (*.mrc), which contains publication (au-
thor, title, etc.) and classification information in MAchine-Readable Cataloging
(MARC) record format.

The basic XML structure of a typical book in BookML (ocrml.xml) is a
sequence of pages containing nested structures of regions, sections, lines, and
words:

<document>
<page pageNumber=‘‘I-N’’ label=‘‘PT_CHAPTER’’ [...]>
<region regionType=‘‘text’’ [...]>
<section label=SEC BODY’’ [...]>
<line [...]>
<word val=‘‘Moby’’ [...]/>
<word val=‘‘Dick’’ [...]/>
</line>
<line [...]>
<word val=‘‘Herman’’ [...]/>
<word val=‘‘Melville’’ [...]/>
</line> [...]
</section> [...]
</region> [...]
</page> [...]
</document>

BookML provides a rich set of labels indicating structure information and
additional marker elements for more complex texts, such as a table of contents.
For example, the label attribute of a section indicates the type of semantic unit
that the text contained in the section is likely to be a part of, e.g., a table of
contents (SEC TOC), a header (SEC HEADER), a footer (SEC FOOTER), or
the body of the page (SEC BODY).

The corpus was distributed on USB HDDs (at a cost of 70GBP), and a
reduced version was made available for download. The original corpus totals
400GB, while the reduced version is only 50GB (and 13GB compressed). The
reduced version was created by removing the word tags and their attributes
(coordinates, etc.) and propagating the values of the val attributes as content
into the parent line elements.
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4 Information Retrieval Tasks

Two retrieval tasks were run: 1) the Book Retrieval (BR) task and 2) the Page in
Context (PiC) task. Both these tasks build on the full corpus of over 50,000 books
described in Section 3. The test topics, which were created by the participants,
are also shared across the two tasks. This was motivated by the need to reduce
the relevance assessment workload and to allow possible comparisons across the
two tasks.

A summary of the two tasks, the test topics, and the online relevance as-
sessment system are described in the following sections. Further details and the
various submission run DTDs are available online in the track’s Tasks and Sub-
mission Guidelines7.

4.1 Book Retrieval Task

This task was set up with the goal to compare book-specific IR techniques with
standard IR methods for the retrieval of books, where (whole) books are re-
trieved. The user scenario underlying this task is that of a user searching for
books on a given topic with the intent to build a reading or reference list. The
list may be for entertainment, for research purposes, or in preparation of lec-
ture materials, etc. Books on a reading list may be purchased or borrowed from
libraries.

Participants of this task were invited to submit either single runs or pairs
of runs. A total of 10 runs could be submitted. A single run may either be the
result of generic (non-specific) or book-specific IR methods. A pair of runs had
to contain both types, where the non-specific run serves as a baseline on which
the book-specific run extends on by exploiting additional book-specific features
(e.g., back-of-book index, citation statistics, book reviews, etc.) or specifically
tuned methods.

At minimum, one automatic run (i.e., using only the topic title part of a test
topic for searching and without any human intervention) was compulsory. Each
run could contain, for each test topic, the top 1000 books (identified by its 16
character long bookId8) estimated relevant to the given topic, ranked in order
of estimated relevance.

A total of 18 runs were submitted by 4 groups (University of Amsterdam (3);
University of California, Berkeley (3); RMIT University (10); and University of
Waterloo(2)), see Table 1.

4.2 Page in Context Task

The goal of this task is to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The task is thus similar to the INEX
7 Available at http://www.inex.otago.ac.nz/tracks/books/taskresultspec.asp
8 The bookId is the name of the directory that the book files are stored in within the

corpus, e.g., A1CD363253B0F403
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ad hoc track’s Relevant in Context task, but using a significantly different col-
lection and allowing for the ranking of book parts within a book.

The user scenario underlying this task is that of a user searching for infor-
mation in a library of books on a given subject. The information sought may be
’hidden’ in some books (i.e., it forms only a minor theme of the book) or it may
be the main focus of some other books. The user expects to be pointed directly
to the relevant book parts. Following the focused retrieval paradigm, the task
of a book search system is then to identify and rank (non-overlapping) book
parts that contain relevant information and return these to the user, grouped
by books. Books needed to be ranked by decreasing order of relevance, which
may be based on best or average passage/element score or some other document
score. The book parts within a book were to be ranked in decreasing order of
relevance. Both passage and element retrieval approaches were allowed.

As in the BR task, participants could submit up to 10 runs, where one auto-
matic and one manual runs were compulsory. Each run could contain, for each
topic, a maximum of 1000 books estimated relevant to the given topic, ordered
by decreasing value of relevance. For each book, a ranked list of non-overlapping
XML elements, passages or book page results estimated relevant were to be
listed in decreasing order of relevance. A minimum of one book part had to be
returned for each book in the ranking. A submission could only contain one
type of results, i.e., only XML elements or only passages; result types cannot be
mixed.

A total of 13 runs were submitted by 2 groups (University of Amsterdam
(7); and University of Waterloo(6)), see Table 1. All PiC runs contained XML
element results (i.e., no passage based submissions were received).

4.3 Test topics

The test topics are representations of users’ informational needs, i.e, where the
user is assumed to search for information on a given subject. As last year, all
topics were limited to deal with content only aspects (i.e., no structural query
conditions).

Participants were asked to create and submit topics for which at least 2 but no
more than 20 relevant books were found during the collection exploration stage.
To aid participants in their collection exploration task, they were provided with
an online search system, called the Book Search System9 developed at Microsoft
Research Cambridge, which allowed them to search, browse and read the books
in the test corpus.

A total of 40 new topics (topics 31-70) were contributed by 11 participating
groups (see Table 1) in 2008, following the topic format described below. These
were then merged with the 30 topics created last year (topics 1-30) and used as
the test set for generating the retrieval runs. An example topic from the 2008
test collection is given in Figure 1.

9 http://www.booksearch.org.uk
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Topic Format. The topic format remained unchanged from 2007, each topic
consisting of three parts, describing the same information need, but for different
purposes and at different level of detail:

<title> represents the search query that is to be used by systems for the au-
tomatic runs. It serves as a short summary of the content of the user’s
information need.

<description> is a natural language definition of the information need.
<narrative> is a detailed and unambiguous explanation of the information need

and a description of what makes an element/passage relevant or irrelevant.
The narrative is taken as the only true and accurate interpretation of the
user need. It consists of the following two parts:
<task> is a description of the task for which information is sought, speci-

fying the context, background and motivation for the information need.
<infneed> is a detailed explanation of what information is sought and what

is considered relevant or irrelevant.

<?xml version=‘‘1.0’’ encoding=‘‘ISO-8859-1’’?>
<!DOCTYPE inex topic SYSTEM ‘‘bs-topic.dtd’’>
<inex topic track=‘‘book’’ task=‘‘book-retrieval/book-ad-hoc’’
topic id=‘‘62’’ ct no=‘‘2008-37’’>
<title> Attila the hun </title>
<description> I want to learn about Attila the Hun’s character, his way of

living and leading his men, his conquests, and rule.
</description>
<narrative>
<task> I was discussing with some friends about Attila the Hun. What I

found interesting was the difference in our perceptions of Attila: As a
great hospitable king vs. a fearsome barbarian. I want to find out more
about Attila’s character, his way of living as well as about his wars to
better understand what he and his era of ruling represents to different
nations.

</task>
<infneed> Any information on Attila’s character, his treatment of others, his

life, his family, his people’s and enemies’ view on him, his ambitions,
battles, and in general information on his ruling is relevant, and so is any
information that can shed light on how he is perceived by different nations.
Poems that paint a picture of Attila, his court and his wars are also relevant.

</infneed>
</narrative>
</inex_topic>

Fig. 1. Example topic from the 2008 test set.
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4.4 Relevance Assessments

The Book Search System, developed at Microsoft Research Cambridge, is an
online web service that allows participants to search and browse the books
in the INEX 2008 Book Track corpus. It is available publicly at http://www.
booksearch.org.uk.

The Book Search System also provides a complete relevance assessment mod-
ule, which allows users to annotate books and pages inside the books, adding for
example relevance labels. The relevance assessment system has been made avail-
able publicly as part of an online competition called the Book Explorers’ Com-
petition, where anyone interested may register and compete for prizes sponsored
by Microsoft Research. The competition involves reading and marking relevant
content inside books for which users are rewarded points. The competition is run
between Dec 1-15, 2008, and is hoped to create sufficient relevance judgements
to allow the evaluation of the submitted Book Retrieval and Page in Context
runs.

Screenshots of the assessment system are shown in Figures 2 and 3. Figure 2
shows the list of books (assessment pool) to be judged for a given topic (selected
by the user). The list was built by pooling the submitted runs (using a round
robin process) and merging additional search results from the Book Search Sys-
tem itself. On accessing a book, the book is opened in the Book Viewer window
(Figure 3). There, users can browse through the book and search inside it, or go
through the pages listed in the Assessment tab, which were extracted from the
Page in Context runs. Users can highlight text fragments on a page by drawing
a highlight-box over the page image. They can also mark a whole page or a
range of pages as relevant/irrelevant. Users are also asked to rate the relevance
of the whole book. A detailed user manual and system description is available
at http://www.booksearch.org.uk/BECRulesAndUserManual.pdf.

5 Structure Extraction Task

The goal of this task is to test and compare automatic techniques for extracting
structural information from digitized books and building a hyperlinked table of
contents (ToCs).

The task was motivated by the limitations of current digitization and OCR
technologies to produce the full text of digitized books with only minimal struc-
ture information markup: Pages and paragraphs are usually identified, but more
sophisticated structures, such as chapters, sections, etc., are currently not recog-
nised.

Participants of the task were provided a sample collection of 100 digitized
books in DjVu XML format. Unlike the BookML format of the main corpus,
the DjVu files only contain markup for the basic structural units (e.g., page,
paragraph, line, and word); no structure labels and markers are given. The books
were selected to form a representative sample of different genre and styles. In
addition to the DjVu XML files, participants were distributed the PDF of books
or their JPEG image files (one per page).
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Fig. 2. Screenshot of the relevance assessment module of the Book Search Sys-
tem: List of books in the assessment pool for a selected topic.

Fig. 3. Screenshot of the relevance assessment module of the Book Search Sys-
tem: Book Viewer window with Assessment tab listing pages to judge.
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A total of 7 runs were submitted from 2 institutions (Microsoft Development
Center Serbia (MDCS), and Xerox Research Centre Europe (XRCE)). MDCS
extracted ToCs by first recognizing the page(s) of a book that contained the
printed ToCs, whereas the XRCE relied on title detection within the body of
a book. Please refer to the corresponding papers in the proceedings for further
details.

5.1 Evaluation and Results

The ToCs generated by participants were compared to a manually built ground
truth, and evaluated using recall/precision like measures at different structural
levels (i.e., different depths in the ToC). To collect ground truth data, a structure
labeling tool was built which allowed assessors to attach labels to entries and
parts of entries in the printed ToC of a book (using the PDF file). The tool
was built by the Microsoft Development Center Serbia team and assessors were
recruited and paid for their labeling work.

For the evaluation, precision and recall were defined as follows: Precision is
the ratio of the total number of correctly recognized ToC entries and the total
number of ToC entries; Recall is the ratio of the total number of correctly rec-
ognized ToC entries and the total number of ToC entries in the ground truth.
The F-measure is then the harmonic of mean of Precision and Recall. For fur-
ther details on the evaluation measures, please see http://www.inex.otago.
ac.nz/tracks/books/INEXBookTrackSEMeasures.pdf. The ground truth and
the evaluation tool can be downloaded from http://www.inex.otago.ac.nz/
tracks/books/Results.asp#SE.

The evaluation results are given in Table 2.

RunID Participant F-measure (complete entries)
MDCS MDCS 54,29%

MDCS NAMES AND TITLES MDCS 53,41%
MDCS TITLES ONLY MDCS 24,06%
HF ToC prg Jaccard XRCE 9,62%
HF ToC prg OCR XRCE 9,47%

HF TPF ToC prg Jaccard XRCE 9,46%
HF ToC lin Jaccard XRCE 5,33%

Table 2. Summary of performance scores for the Structure Extraction task

6 Active Reading Task

The main aim of the Active Reading Task (ART) is to explore how hardware
or software tools for reading eBooks can provide support to users engaged with
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a variety of reading related activities, such as fact finding, memory tasks or
learning. The goal of the investigation is to derive user requirements and conse-
quently design recommendations for more usable tools to support active reading
practices for eBooks.

The task is motivated by the lack of common practices when it comes to con-
ducting usability studies of e-reader tools. Current user studies focus on specific
content and user groups and follow a variety of different procedures that make
comparison, reflection and better understanding of related problems difficult.
ART is hoped to turn into an ideal arena for researchers involved in such efforts
with the crucial opportunity to access a large selection of titles, representing dif-
ferent genres and appealing to a variety of potential users, as well as benefiting
from established methodology and guidelines for organising effective evaluation
experiments.

ART is based on the large evaluation experience of EBONI [3], and adopts
its evaluation framework with the aim to guide participants in organising and
running user studies whose results could then be compared.

The task is to run one or more user studies in order to test the usability of es-
tablished products (e.g., Amazon’s Kindle, iRex’s Ilaid Reader and Sony’s Read-
ers models 550 and 700) or novel e-readers by following the provided EBONI-
based procedure and focusing on INEX content. Participants may then gather
and analyse results according to the EBONI approach and submit these for
overall comparison and evaluation.

The evaluation is task-oriented in nature. Participants are able to tailor
their own evaluation experiments, inside the EBONI framework, according to
resources available to them. In order to gather user feedback, participants can
choose from a variety of methods, from low-effort online questionnaires to more
time consuming one to one interviews, and think aloud sessions.

6.1 Requirements

Participation requires access to one or more software/hardware e-readers (al-
ready on the market or in prototype version) that can be fed with a subset of
the INEX book corpus (maximum 100 books), selected based on participants’
needs and objectives. Participants are asked to involve a minimum sample of
15/20 users who would complete 3-5 growing complexity tasks and fill in a cus-
tomised version of the EBONI subjective questionnaire, usually taking no longer
than half an hour in total, allowing to gather meaningful and comparable evi-
dence. Additional user tasks and different methods for gathering feedback (e.g.,
video capture) may be added optionally. A crib sheet (see below) is provided
to participants as a tool to define the user tasks they would evaluate, providing
a narrative describing the scenario(s) of use for the books in context, including
factors affecting user performance, e.g., motivation, type of content, styles of
reading, accessibility, location and personal preferences.

ART crib sheet. A task crib sheet is a rich description of a user task that forms
the basis of a given user study based on a particular scenario in a given context.
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Thus, it aims to provide a detailed explanation of the context and motivation
of the task, and all details that form the scenario of use. It should include a
detailed explanation of how the task should be successfully performed, possible
paths to solutions and expected outcomes. Information recorded in the task crib
sheet must be clear and precise in order to unambiguously determine whether
or not users have completed a task and expected results have been achieved.
Precise recording of the task is also important for scientific repeatability. The
task crib sheet, hence, had the following parts:

– Objectives: A summary of the aims and objectives of the task from the users’
point of view, i.e. what is it that users are trying to achieve in this task. It
is expected that a variety of tasks of different complexity will be produced
by each participating group.

– Task: Description of the task
– Motivation: Description of the reasons behind running the task
– Context: Description of the context of the task in terms of time and re-

sources available, emphasis and any other additional factors that are going
to influence task performance

– Background: Describes any background knowledge required to accomplish
the task

– Completion: Describes how to assess whether the task has been completed
or not

– Success: Describes whether the task has been completed successfully.

6.2 User Studies

Participants are expected to run each of their proposed user studies with at
least 15/20 test subjects and submit their findings, including satisfaction ques-
tionnaires provided by the organizers (which may be freely extended by partici-
pants) and completed by each subject in the study.

Participants are encouraged to integrate questionnaires with interviews and
think aloud sessions when possible, and adapt questionnaires to fit into their
own research objectives whilst keeping in the remit of the active reading task.

We encourage direct collaboration with participants to help shape the tasks
according to real/existing research needs. In fact one of the participants ex-
plained how English written material was not much use for their experiments as
they were targeting Korean speaking users, so it was agreed that they would use
their own book collection while still adopting the ART evaluation framework to
ensure results were comparable at the end.

Our aim is to run a comparable but individualized set of studies, all con-
tributing to elicit user and usability issues related to eBooks and e-reading.

Since ART is still ongoing, there is no data to be presented at this point.

7 Conclusions and plans

The Book Track this year has attracted a lot of interest and has grown to double
the number of participants from 2007. However, active participation remained a
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challenge for most participants due to the high initial set up costs (e.g., building
infrastructure). Most tasks also require quite a lot of advance planning and
preparations, e.g., for setting up a user study. This, combined with the late
announcement and advertising of some of the tasks has greatly limited active
participation this year. In particular, we received lots of expressions of interest
for the Structure Extraction and the Active Reading tasks, but the deadlines
prohibited most people from taking part. We aim to address this issue in INEX
2009 by raising awareness early on in the start of the INEX year and by ensuring
continuity with the tasks established this year.

As a first step in this direction, we are proposing to run the Structure Ex-
traction task both at INEX 2009 and at ICDAR 2009 (International Conference
on Document Analysis and Recognition). This means an earlier start to the task
(January 2009) and an earlier completion (July 2009 or earlier).

Both the Book Retrieval and Page in Context tasks will be run again in 2009,
although we only expect to complete this year’s cycle by the early part of 2009.
The greatest challenge in running these tasks has been the collection of relevance
assessments. Due to the huge effort required, we decided to depart from the tra-
ditional method of relevance assessment gathering (i.e., one judge per topic), and
designed a system that aims to collect judgements from a distributed and diverse
set of users, where multiple judges can assess the same topic. Implemented as an
online game, users can contribute relevance labels for books, pages and passages
for any topic they may be interested in and for any number of books for that
topic. This way of collecting judgements is aimed to provide a more realistic
expectation on the assessors, but it also comes with its own risks. Attracting a
sufficiently large and dedicated user base is one of the risks, for example. Other
risks include the question of the quality of the collected labels due to a mixture
of expert and non-expert judges. To address the latter, we introduced a num-
ber of measures, such as requiring users to specify their familiarity with a given
topic they selected to provide judgements on, as well as allowing users to quality
check each other’s work. The first pilot test of this methodology will complete
on December 15, which will give us a better understanding of its feasibility.

We will either postpone this year’s Active Reading task to 2009 or run it
again. We found that the introduction of the ART task was a challenge for
number of reasons:

– Because of its original approach to evaluation, which is quite far away from
the classic TREC paradigm, and the relative difficulty in framing ART in a
formal way, the task organisation has suffered few delays that have affected
the availability of participants to get fully involved in it;

– User studies are per se risky and unpredictable and the idea of running a
number of those in parallel in order to compare and combine results added
an extra layer of uncertainty to the task, somehow discouraging participants
that were used to a more stochastic approach to evaluation;

– The formalisation of the procedure and protocols to be followed when run-
ning user studies was designed on purpose to be flexible and unconstructive
in order to accommodate for participants’ specific research needs. This flex-
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ibility, however, was interpreted by some as a negative feature, a lack in
details that discouraged them from taking part.

– Opening up to different communities that were not yet involved in INEX
required concentrated effort in order to advertise and raise awareness of
what INEX’s aims and objectives and in particular what ART’s goals were.
Some of this effort was simply to late for some interested parties.

The organisation of the ART task has proved a very valuable experience
that has given us the opportunity to explore different research perspective while
focusing on some of the practical aspects of the task. We believe that the effort
that has gone into setting up and advertising ART this year will be rewarded
by a more successful task next year. It has been a very enlightening experience
and has given us a better understanding of how much participants’ expectations
could contribute to success of such an initiative.
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Abstract. Scanned then OCRed documents usually lack detailed layout
and structural information. We present a book specific layout analysis
system used to extract TOC structure information from the scanned
and OCRed books. This system was used for navigation purposes by live
books search project. We provide labeling scheme for the TOC sections
of the books, high level overview for the book layout analysis system, as
well as TOC structure extraction engine. In the end we present accuracy
measurements of this system on a representative test set.

Key words: book layout analysis, TOC, information extraction, TOC
navigation, ocrml, bookml

1 Introduction

Book layout analysis as described in this paper is a process of extracting struc-
tural information from scanned and OCRed books. Main purpose of this work
was to enable navigation experience for the live book search project, a clickable
TOC experience, mid 2007. More precisely, the task was to isolate TOC pages
from the rest of the book, detect TOC entries and locate the target page where
TOC entries are pointing to. In this paper we shall focus on the second part,
TOC structure extraction.

There are two aspects of the problem; first one is related to acquiring/extracting
information from raw OCR (words, lines and bounding boxes), i.e. performing
in depth analysis of TOC pages. On any TOC page there are several types of
information which we shall roughly divide in two: TOC entries and other. Each
TOC entry is a single smallest group of words with the same title target some-
where in the book (usually specified by the page number at the end of the entry).
Everything other than TOC entries we shall ignore, implying other stuff does not
yield significant information to be treated. With this defined – TOC Structure
Extraction Engine is responsible for providing following information about TOC
entries:

• Separating TOC entries from other less important content of the page
• Separating TOC entries among themselves
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2 Book Layout Analysis: TOC Engine

• Establishing TOC entry target page
• Establishing TOC entry relative significance
• Determining TOC entry internal structure

Second aspect of the problem is related to the presentation of extracted
information. For presentation purposes we have devised a labeling scheme which
supports all possible scenarios for TOC pages.

2 Labeling Scheme

At this point we shall introduce several new ideas regarding the actual labeling
of TOC pages. We have previously mentioned TOC entries in an informal way
and now we shall define TOC entry in a more rigorous manner. TOC entry is
a single referee to a target topic (part, chapter section, first line, first couple
of words in some line...) somewhere in the book. The topic cannot begin in the
middle of a line (we emphasize the case of a single word in the middle of the
target line this is not considered to be TOC entry, but rather an index entry).
In the same manner we shall disregard entries with a number of target topics
(again, we would consider this entry to be an index rather than TOC).

To illustrate the point we have prepared an example, taken from Charles
Francis Adams 1890 book ”Richard Henry Dana”, published by Houghton Boston.
We took an excerpt from the table of content of that book. In Fig. 1 below we
have presented three TOC entries. All three have the same structure; they all
consist of a chapter number (IV, V, and VI) at the beginning of the line, then
there is a title (”Round the world”, and so on), a separator (a number of dots
in each line), and finally a page number for each entry (178, 248, and 282).

Fig. 1. Example of three TOC entries

To ensure that each entry is in fact a TOC entry it is not sufficient to consider
TOC page alone, target pages need be considered as well. As an illustration we
shall observe page 178 and its content (shown in Fig. 2 below). After inspection it
is clear that the first entry from Fig. 1 indeed targets page 178, i.e. there are both
chapter number (the same as indicated in TOC entry) and chapter title (again,
the same as indicated in TOC entry). We observe that the chapter number is
of somewhat different structure than in the TOC entry on TOC page (namely,
there is keyword ”CHAPTER” in front of the actual chapter number, and the
chapter name appears in the line preceding the actual title line), nevertheless the
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Book Layout Analysis: TOC Engine 3

target page is correct. Furthermore, both the chapter number and the chapter
title are spatially separated from the rest of the text on that page (we shall refer
to the rest of the page as a body), the font, although the same type and size, it
is in all capital letters, which is yet another significant feature to further ensure
that our target page is in fact correct.

Fig. 2. Example of TOC entry target page

Given the simple example as a previous one, one can induce a minimal set
of labels needed for labeling TOC entries. The most important label is clearly a
title one, indicating a number of words that represent TOC entry title. In our
labeling scheme we refer to this label as a TOC CHAPTER TITLE. Next in line
of importance is the page number, providing information about the target page
for each entry. In our labeling scheme we refer to this label as a TOC CHAPTER
PAGE NUMBER. Then we have TOC CHAPTER NAME label, which in the
example above refers to a chapter number IV; in general TOC chapter name
label could consist of both keyword (like ”CHAPTER” or ”SECTION”) and
a number. At last there is TOC CHAPTER SEPARATOR label, which is self
explanatory.

With the most important labels defined we are left with the duty of defining
those less common/important. Again, we shall start with an example, excerpt
from the same TOC page as in the previous example is taken and shown in Fig. 3
below.

Fig. 3. Example of TOC TITLE and NONE labels
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4 Book Layout Analysis: TOC Engine

Simple visual inspection is sufficient to ensure ”CONTENTS OF VOL. II.”
should never be identified as a TOC entry, but rather as the title of the given
TOC page. That is why we label this (and similar) group of words with a TOC
TITLE label.

Another quick inspection is enough to rule out ”CHAPTER” and ”PAGE”
words in the line preceding the first TOC entry; these two are surely not TOC
entry (none of the two is targeting any title later in the book). To a viewer it
is clear that the first word (”CHAPTER”) stands for the horizontal position
of chapter numbers, while the second word (”PAGE”) stands for the horizontal
position of page numbers for each TOC entry below. These two words are not of
particular importance, especially compared to TOC entry labels, and that is why
we introduce another label for negligible text, TOC NONE label. Because none
of two words in question are actually linking to any target page, these words
are not relevant for navigation nor for the indexing purposes that is how we
validate our labeling decision. Furthermore, any other text that cannot possibly
link to a target page is labeled the same way. A good example would be a page
with severe errors in OCR, e.g. some text is recognized where no text exist.

Finally, there is one last type of less-important words that could be found on
TOC pages. Observe the example in Fig. 4 (last three entries), where the author
of the given title is specified in the same line with a chapter title, separator
and page number. This example is taken from ”Representative one-act plays”
by Barrett Harper Clark, published by Brown Boston Little in 1921. It makes
sense to distinguish a title from an author name; yet again, instead of an author
name there could be any other text, and so far we observed several patterns, e.g.
a year of publishing, a short summary of a chapter, rating, etc. All such text we
label using TOC CHAPTER ADDITION label. We may decide to further fine
sub-class addition label in the future, and use several labels instead.

Fig. 4. Example of TOC CHAPTER ADDITION labels

So far we have discussed labels for each word on TOC page, i.e. each word is
labeled using one of the proposed labels. As a short summary we shall list them
all here once more:

• TOC NONE label, for negligible text
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• TOC TITLE label
• TOC entry labels:

◦ TOC CHAPTER NAME label
◦ TOC CHAPTER TITLE label
◦ TOC CHAPTER SEPARATOR label
◦ TOC CHAPTER PAGE NUMBER label
◦ TOC CHAPTER ADDITION label

At this point we shall introduce another dimension to the labeling problem. It
is clear that labeling of individual words is not sufficient. For instance by looking
at Fig. 4 one can observe that the first two entries are somewhat different than
the others; later entries are referencing one-act plays (as indicated by the book
title), and the first two are giving preface and historical background for the
plays in the book. On further inspection it can be observed that the first two
entries have roman numerals for chapter page numbers, while the remaining TOC
entries have arabic digits. This same pattern is observed to be common for most
of the books we had access to. That is why we decided to introduce additional
label/attribute for each TOC entry, where an entry is either of introductory or
of regular type (with introductory entries being ones with roman numerals).

Third dimension of labeling problem is related to defining a TOC entry. There
are cases of TOC pages where entries are in more than one line, e.g. second entry
in Fig. 5 is in two lines (there are three entries in Fig. 5). In that and similar
cases (where entries are in two or more lines) it is necessary to introduce yet
another label for each word of each TOC entry, specifying whether any given
word is a continuation of previous entry. If any given word is not a continuation
of previous it is a beginning of a new TOC entry.

Fig. 5. Example of entry continuation

Last dimension of the labeling problem relates to establishing relative signif-
icance of each TOC entry on the TOC page. Relative significance of the entry is
represented in form of a logical depth level. Observe structure presented in Fig. 6
(excerpt taken from ”Managing and Maintaining a Microsoft Windows Server
2003 Environment for an MCSE Certified on Windows 2000” by Orin Thomas,
published by Microsoft Press, 2005), there are five TOC entries presented in three
structural/hierarchical groups, with a different relative significance assigned to
each.

The entry in the first line is at highest hierarchical level, which is in this
case indicated with keyword ”CHAPTER”, blue font color, bold characters, and
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6 Book Layout Analysis: TOC Engine

Fig. 6. Example of depth level

higher font size. Not to be forgotten, horizontal level of indentation is also a
strong feature, especially for the following entries. The second and third TOC
entries in picture 9 are one step below the level of the first one, resulting to level
2 in hierarchy. At last, TOC entries four and five are at level 3 in hierarchy.

We are now ready to summarize proposed labels for TOC page, four dimen-
sions of the labeling problem are (categorized in hierarchical order):

• Hierarchical level of an entry
◦ entry type (introductory vs. regular entries)
◦ entry depth level

• Hierarchical level of a word
◦ beginning vs. continuation of a word within an entry
◦ word labels (name, title, separator, page number, addition, negligible

text, toc page title)

3 Book Layout Engine

As previously stated, we consider raw OCR information at the input. This con-
sists of words (strings), lines (list of words in each line) and bounding boxes of
each word. Provided with this information we aim to detect and process TOC
pages. There are a few prerequisites for the TOC Structure Extraction Engine,
each of them listed below.

The first step in this process is to perform page classification and detect
TOC pages. Next step would be detection of the page numbers, e.g. assigning
each physical page of the book with unique logical page number. At last, each
TOC page is processed to detect the scope of TOC section. These three steps
are sufficient for the TOC Structure Extraction Engine to perform.

4 TOC Structure Extraction Engine

In the introduction we have specified the responsibilities of the TOC Structure
Extraction Engine. Later on while discussing the labeling scheme we have spec-
ified the means of exposing this information. Here we shall discuss the engine
itself.

It is worth noting that engine is developed on two sets of books, training and
a blind test set, to prevent specialization. At last, the results presented later in
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Book Layout Analysis: TOC Engine 7

the text are measured against representative set (a third set, with no books from
the previous two sets).

The first thing in the engine would be to distinguish between important and
negligible portion of the TOC section. As specified by the labeling scheme, there
are several possible cases of negligible text, the title of the TOC page, false
positive OCR errors (usually words instead of the pictures), and random text.
The engine is detecting each based on the pattern occurrences in the training
set.

While it is feasible to separate entries among themselves without additional
information, we have chosen to detect chapter names and chapter page numbers
first, and only then proceed to the spatial entry detection. Again, this part of
the engine is based on the pattern occurrences in the training set.

Once we have entries we can proceed to the linking, where a fuzzy search
technique is used to locate entry title on the target page. It is worth noting that
detection of page numbers (assigning each physical page of the book with unique
logical page number) comes handy here, because it provides a significant hint
where to look for the target title. Parameters of the fuzzy search are based on
the pattern occurrences in the training set.

At last, relative significance of the entries is obtained after clustering, where
each cluster represent a single level of significance. Parameters and features of
the clustering are based on the training set.

5 Representative Set

In order to measure the accuracy of the TOC engine a fairly large test set needs
to be selected due to the various layouts applied to books throughout history.
Also, topics and publishers typically have specific templates for the book and
TOC layout. Since storing large quantities of book data and performing tests on
it is a costly process, a representative set has been created.

The representative set is a subset (200 books) of a much larger test set
(180,000 books). It has 93% representativeness and gives a good picture of how
the engine will perform in real-time situations.

6 Results

In this section we shall present some results on the representative set (blind set).
Each of the four major parts of the TOC Structure Extraction are measured for
precision and recall.

We shall start with the entry internal structure (word label) engine; chap-
ter names are detected with 98.56% precision and 98.63% recall; chapter page
numbers are detected with 99.97% precision and 99.07% recall; not surprising
chapter titles and additions are detected with 99.36% precision and 99.80% re-
call. Total number of human labeled chapter page number words is 9,512, while
total number of chapter name words is 7,206. Total number of chapter title and
addition words is 52,571.
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8 Book Layout Analysis: TOC Engine

Spatial entry detection (we only consider entries which are entirely correct
in a spatial sense – all words in an entry must be correct for the entry to be
considered spatially correct) is with 92.91% precision and 95.45% recall. Total
number of human labeled entries is 9535.

Linking detection is with 91.29% precision and 93.78% recall (98.25% condi-
tional to entry being spatially correct).

Depth level 1 is detected with 80.51% precision and 84.58% recall (90.91%
conditional to entry being spatially correct).

References

1. Ye, M. and Viola, P.: Learning to Parse Hierarchical Lists and Outlines Using Con-
ditional Random Fields. In: Proceedings of the Ninth international Workshop on
Frontiers in Handwriting Recognition, pp. 154–159. IEEE Computer Society, Wash-
ington, DC (2004)

187
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Abstract. We present here XRCE participation to the Structure Extraction task of the INEX Book 
track. After briefly explaining the method used for detecting table of contents and their corresponding 
entries in the book body, we will mainly discuss the evaluation and the main issues we faced, and 
eventually  we  will  propose  improvements  for  our  method  as  well  as  for  the  evaluation 
framework/method. 

1. Introduction

We present in this paper our participation to the Structure Extraction task of the INEX Book. Our objective 
was to assess a component, a table of contents detector, presented in [1], with the minimal effort.  By 
minimal effort, we mean: the initial input (segmentation and text) was taken almost as provided. Especially, 
no preprocessing was used to improve it. But more important, no specific tuning was done with regard to 
the collection. This fact will be highlighted in the Evaluation Section, since some books do not comply with 
our assumptions about table of contents.

The rest of the article is structured as follows: we will explain the processing done for the collection. 
Then the method for detecting the Table of contents is sketched. We will explain the postprocessing and the 
different parameters used in our runs. Eventually we will discuss the results of the evaluation.

2. Pre-processing

The first  step simply consists in  reformatting the XML INEX format  into our  internal  format,  mostly 
renaming tag  names and adding some internal  attributes  (such as  unique IDs for  each tag).  This  was 
performed using XSLT technology, with some difficulty for the largest books. 

A second step consists in detecting pages headers and footers, which often introduce noisy for our table 
of contents detector (see [1]).

A heuristics has been used for run 4 in order to improve the ToC page detection based on the detected 
page headers and footers.

3. The ToC Detector

The method is detailed in [1] and in this section we will only sketch its outline.  The design of this method 
has  been  guided  by  the  interest  in  developing  a  generic  method that  uses  very  intrinsic  and  general 
properties of the object known as a table of contents. In view of the large variation in shape and content a 
ToC  may  display,  we  believe  that  a  descriptive  approach  would  be  limited  to  a  series  of  specific 
collections. Therefore, we instead chose a functional approach that relies on the functional properties that a 
ToC intrinsically respects. These properties are:

1. Contiguity: a ToC consists of a series of contiguous references to some other parts of the document 
itself;

2. Textual similarity: the reference itself and the part referred to share some level of textual similarity;
3. Ordering: the references and the referred parts appear in the same order in the document;
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4. Optional elements: a ToC entry may include (a few) elements whose role is not to refer to any other 
part of the document, e.g. decorative text;

5. No self-reference: all references refer outside the contiguous list of references forming the ToC.

Our  hypothesis  is  that  those  five  properties  are  sufficient  for  the  entire  characterization  of  a  ToC, 
independently of  the document  class  and language.  In  the Evaluation and Discussion section, we will 
discuss the cases where theses hypotheses were not valid. 

Three steps permit us to identify the area of the document containing the ToC text.  Firstly, links are 
defined between each pair of text blocks in the whole document satisfying a textual similarity criterion. 
Each link includes a source text block and a target text block. The similarity measure we currently use is 
the  ratio  of  words  shared  by  the  two blocks,  considering spaces  and  punctuation  as  word separators. 
Whenever the ratio is above a predefined threshold, the similarity threshold, a pair of symmetric links is 
created. In practice, 0.5 is a good threshold value to tolerate textual variation between the ToC and the 
document body while avoiding too many noisy links. The computation of links is quadratic to the number 
of text blocks and takes most of the total computation time. However, searching for the ToC in the N first 
and last pages of the document leads to linear complexity without loss of generality.

Secondly,  all  possible  ToC candidate  areas  are  enumerated.  A brute  force  approach  works  fine.  It 
consists in testing each text block as a possible ToC start and extending this ToC candidate further in the 
document  until  it  is  no  longer  possible  to  comply  with  the  five  properties  identified  above.  A  ToC 
candidate is then a set of contiguous text blocks, from which it is possible to select one link per block so as 
to provide an ascending order for the target text blocks.

Thirdly, we employ a scoring function to rank the candidates. The highest ranked candidate table of 
contents is then selected for further processing. Currently, the scoring function is the sum of entry weights, 
where  an  entry  weight  is  inversely  proportional  to  the  number  of  outgoing  links.  This  entry  weight 
characterizes the certainty of any of its associated links, under the assumption that the more links initiate 
from a given source text block, the less likely that any one of those links is a "true" link of a table of 
contents.

4. Post-Processing

This step mainly transforms the output of the ToC detector into the INEX format. Our component marks up 
the ToC entry and the body heading. From this information, the required page number was extracted. For 
the required title, we selected the title of the ToC entry, which, as we will see in the Evaluation section, will 
impact the evaluation.

5. The different runs

Several runs were conducted with different values for the main parameters, in particular the processing can 
be performed either at the line or paragraph level and the similarity measure can be the one described 
above, called Jaccard, or a dynamic time warping alternative (DTW). So we performed the following runs:
1. Paragraph level, Jaccard similarity: The Jaccard similarity consists in computing the ratio of the cardinal 

of the intersection to the union of normalized words of two text blocks, i.e. the paragraphs in this run.
2. Paragraph level, DTW similarity: the DTW consists in finding the best alignment of words of two blocks 

of text, the similarity between two words being established from an edit distance. The DTW similarity is 
more robust to OCR errors than the Jaccard but is computationally more intensive, usually twice more.

3. Line level, Jaccard similarity: here the considered blocks of text are the lines.
4. Paragraph Level, Jaccard similarity, with an additional heuristic to determine the ToC position.
We encountered memory issues with some of the largest documents and had to break our batches in several 
parts. Eventually we are not able to report accurately on the processing time.

Applying our standard ToC method prevented us from computing the level  of the ToC entries,  so we 
voluntarily set it to 1 for all entries despite this is clearly wrong.
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6. Evaluation and Discussion

Let us review the results of the various runs, with a particular look at the first one because the other runs 
share many identical issues with it.

6.1. Run 1: Paragraph level, Jaccard similarity

We reproduce below the result of the Inex metric.
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Table 1: Inex results for the run 1

These results appear overall quite bad. Actually, because the title matching between the run and the 
ground truth is critical to the evaluation method, any error on the title induces an error for all other criteria. 
For instance, a link with a valid destination but incorrect title will count as an error and a miss. In addition 
the conditions for title to match were quite strict, tolerating 20% of the shortest string as maximum edit 
distance with an additional condition on the first and last 5 characters. It turned out that an additional or 
missing word such as ‘Chapter’ as the beginning of the title suffices to discard entirely the title.

Under those conditions, 22% of precision at the link level with 26% correct titles, means in fact that 
among the entries with a correct title, 85% of them had a valid link. To examine this phenomenon further, 
we computed another link measure that ignores the title. We compare two links by comparing the page 
number they point to, so we consider a run output as a sequence of page numbers and compute the edit 
distance between the run and groundtruth sequences, which gives us a precision & recall measure. In other 
words, the Inex measure views an output as a unordered set of entries identified by their title, while our 
proposed complementary measure views an output as an ordered sequence of entries identified by the page 
pointed by each entry. Our measure, which we shall call ‘hyperlink’ focuses more on document navigation 
needs, and the quality of the extracted titles can be measured in a second step. Our ‘hyperlink’ measure is 
given Table 2 below.
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Table 2: ‘Hyperlink’ measure, which ignore title errors, for the run 1

This result is more conform to what we generally observe although the recall is particularly low. The 
histogram below shows an interesting aspect, where books tend to go either well or bad but more rarely in 
the middle. This behavior can be exploited thanks to automated quality assurance methods.
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Table 3: Histogram of the “hyperlink” F1 distribution, for the run 1

Now, looking in detail at the error on the first book, we found several main causes of errors and misses:
! Ground  truth  errors:  we  saw  7  wrong  additional  entries,  which  seems  to  have  been 

automatically generated from the ToC of an advert page at the end of the book (see page 640).
! Title errors: our run does not include the ‘Chapter XX” at the beginning of the title, discarding 

about 90% of the found entries.
! One error is caused by the ToC not conforming to the ordering property, our method rely upon.
! Combined OCR noise and segmentation issues, .e.g. the ToC contains ‘Chapter XX – some 

title’ while the same information is split over two paragraph in the document body. Combined 
with OCR errors, typically a ‘B’ instead of a ‘E’, the similarity threshold is not met.

Unfortunately, those problems combined with the importance of the title in the Inex measure lead to 
important measure variation, as exemplified below on the first book:
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Table 3: Variable results depending on the measure, for book #0 in run 1

With respect to the ToC level, we have observed that the distribution of entries for level 1, 2 and 3 was 
about 33%, 36% and 26% respectively. This stresses the importance of reconstructing the ToC hierarchy.

6.2. Run 2: Paragraph level, DTW similarity

The DTW similarity should better deal with OCR errors, but to our surprise the results are not better. It 
turned out that the SW extracted 1% more links (36):
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Table 4: Inex results for the run 2

Our ‘hyperlinks’ measure shows a minor improvement:
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Table 5: Hyperlink measure, which ignore title errors, for the run 2

6.3. Run 3: Line level, Jaccard similarity

Working at line level does not make much sense with the Inex evaluation method.
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Table 6: Inex results for the run 3

Our Hyperlink measure shows a loss in precision.
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Table 7: Hyperlink measure, which ignore title errors, for the run 3

6.5. Ground Truth Issues

The ground truth used for this evaluation suffers from several coherence issues:
! Should the links point to the title page of a chapter or to the actual start of its text? Compare for 

instance the documents #13 0050CA95E49A5E97 and #20 00A4141D9CC87E65.
! Should the label of the entry (chapter, section,…) or its number be part of the extracted title? 

This choice has an enormous impact on the whole evaluation because of the importance of the 
title in the measure design. The choice made for the groundtruth is not consistent across all 
books. In fact, given a book, the choice can be difficult since the body and ToC pages can differ 
on this matter.

! ToC entry segmentation for old-style ToC, shown below, the subentries should be extracted or 
not, independently of the presence of a page locator since the document body shows clearly that 
there are subsections.

Figure 1: excerpt from book #3 (0008D0D781E665AD) and #52 (0E5E2F4BC9008492) showing a chapter title as well 
as the title of the subsections. In the first case the ground truth indicates the subsections but not in the second one 
(probably because of the absence of page number?).

6.5. Evaluation Method Issues and Suggestions

Given the previous observations, we suggest some improvement for measuring the quality of the results:
! Results at the book level should be made available 
! Case normalization: the measure should be computed in a case-independent way. Indeed certain 

documents can have a title in uppercase in the ToC but in lowercase or capitalized form in the 
document body.

! In some applications, such as providing hyperlinks for navigation purpose, the quality of the 
links is more important than the exactitude of the title, provided it reads well and has some 
appropriate  meaning.  So  we  suggest  measuring  the  link  quality  independently  of  the  title 
quality. In fact, the latter should be measured as a complementary indication, e.g. computing an 
edit distance with the ground truth title.

! When the title is used as primary quality measure, a less strict title matching function should be 
used unless a sound and methodic way to determine uniformly the title has been designed.
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7. Conclusion

It is difficult to draw conclusions because of the issues found with the ground truth, and to less extent with 
the evaluation method, which we could work around. 

We have found very interesting the corpus proposed for the INEX, composed of historical documents 
with  a  large  variety  of  table  of  contents.  Many  of  them  were  challenging  because  of  the  need  for 
segmenting entries at a lower level than the paragraph level, as shown in figure 1.

Some ToC did not respect at all the properties we enforce, since some ToC entries were short sentence 
summarizing the section contents rather than reproducing some title present in the document body, e.g. 
book #3 0008D0D781E665AD. 

It would have been very useful to have a human evaluation of the results, in order to give a perspective 
different than the one underlying the ground truth preparation or quality measure design.

We are grateful  to  the  organizers  and thank them for  their  work,  despite  the numerical  results  are 
disputable in our opinion. 
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Abstract. For this year’s INEX UC Berkeley focused on the Book track
and also submitted two runs for the Adhoc Focused Element search task
and one for the Best in Context task. For all of these runs we used
the TREC2 logistic regression probabilistic model. For the Adhoc Ele-
ment runs and Best in Context runs we used the “pivot” score merging
method to combine paragraph-level searches with scores for document-
level searches.

1 Introduction

In this paper we will first discuss the algorithms and fusion operators used in our
official INEX 2008 Book Track and Heterogenous (Het) track runs. Then we will
look at how these algorithms and operators were used in the various submissions
for these tracks, and finally we will discuss problems in implementation, and
directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This section largely duplicates earlier INEX papers in describing the probabilis-
tic retrieval algorithms used for both the Adhoc and Book track in INEX this
year. Although These are the same algorithms that we have used in previous
years for INEX and in other evaluations (such as CLEF), including a blind rele-
vance feedback method used in combination with the TREC2 algorithm, we are
repeating the formal description here instead of refering to those earlier papers
alone. In addition we will again discuss the methods used to combine the results
of searches of different XML components in the collections. The algorithms and
combination methods are implemented as part of the Cheshire II XML/SGML
search engine [10, 8, 7] which also supports a number of other algorithms for dis-
tributed search and operators for merging result lists from ranked or Boolean
sub-queries.

2.1 TREC2 Logistic Regression Algorithm

Once again the principle algorithm used for our INEX runs is based on the Logis-
tic Regression (LR) algorithm originally developed at Berkeley by Cooper, et al.
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[5]. The version that we used for Adhoc tasks was the Cheshire II implementa-
tion of the “TREC2” [4, 3] that provided good Thorough retrieval performance
in the INEX 2005 evaluation [10]. As originally formulated, the LR model of
probabilistic IR attempts to estimate the probability of relevance for each docu-
ment based on a set of statistics about a document collection and a set of queries
in combination with a set of weighting coefficients for those statistics. The statis-
tics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q,D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q,D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

log O(R|C,Q) = log
p(R|C,Q)

1− p(R|C,Q)
= log

p(R|C,Q)
p(R|C,Q)

= c0 + c1 ∗
1√

|Qc| + 1

|Qc|∑

i=1

qtfi

ql + 35

+ c2 ∗
1√

|Qc| + 1

|Qc|∑

i=1

log
tfi

cl + 80

− c3 ∗
1√

|Qc| + 1

|Qc|∑

i=1

log
ctfi

Nt

+ c4 ∗ |Qc|

where C denotes a document component and Q a query, R is a relevance variable,
and

p(R|C,Q) is the probability that document component C is relevant to query
Q,

p(R|C,Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C,Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.
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Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively.
If the query terms are re-weighted (in feedback, for example), then qtfi is no
longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the relative frequency without first taking the
log over the matching terms.

The coefficients were determined by fitting the logistic regression model spec-
ified in log O(R|C,Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.2 Blind Relevance feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[12] and TREC-8 (Voorhees and Harman
1999)[13].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[6] provides a survey of relevance feedback techniques that have been used.

Obviously there are important choices to be made regarding the number of
top-ranked documents to consider, and the number of terms to extract from
those documents. For this year, having no truly comparable prior data to guide
us, we chose to use the top 10 terms from 10 top-ranked documents. The terms
were chosen by extracting the document vectors for each of the 10 and computing
the Robertson and Sparck Jones term relevance weight for each document. This
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weight is based on a contingency table where the counts of 4 different conditions
for combinations of (assumed) relevance and whether or not the term is, or is
not in a document. Table 1 shows this contingency table.

Table 1. Contingency table for term relevance weighting

Relevant Not Relevant
In doc Rt Nt −Rt Nt

Not in doc R−Rt N −Nt −R + Rt N −Nt

R N −R N

The relevance weight is calculated using the assumption that the first 10
documents are relevant and all others are not. For each term in these documents
the following weight is calculated:

wt = log
Rt

R−Rt

Nt−Rt
N−Nt−R+Rt

(1)

The 10 terms (including those that appeared in the original query) with the
highest wt are selected and added to the original query terms. For the terms
not in the original query, the new “term frequency” (qtfi in main LR equation
above) is set to 0.5. Terms that were in the original query, but are not in the
top 10 terms are left with their original qtfi. For terms in the top 10 and in the
original query the new qtfi is set to 1.5 times the original qtfi for the query.
The new query is then processed using the same TREC2 LR algorithm as shown
above and the ranked results returned as the response for that topic.

2.3 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different different components of a document. For Heterge-
neous search we used a variant of the combination operators, where MINMAX
normalization across the probability of relevance for each entry in results from
each sub-collection was calculated and the final result ranking was based on
these normalized scores.

In addition, for the Adhoc Thorough runs we used a merge/reweighting op-
erator based on the “Pivot” method described by Mass and Mandelbrod[11] to
combine the results for each type of document component considered. In our
case the new probability of relevance for a component is a weighted combination
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of the initial estimate probability of relevance for the component and the prob-
ability of relevance for the entire article for the same query terms. Formally this
is:

P (R | Q,Cnew) = (X ∗ P (R | Q,Ccomp)) + ((1−X) ∗ P (R | Q,Cart)) (2)

Where X is a pivot value between 0 and 1, and P (R | Q,Cnew), P (R |
Q,Ccomp) and P (R | Q,Cart) are the new weight, the original component weight,
and article weight for a given query. Although we found that a pivot value of
0.54 was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.4 for all of our 2008 adhoc runs, given the uncertainties of how
this approach would fare with the new database.

3 Database and Indexing Issues

We used the latest version of the Wikipedia database for this year’s Adhoc runs,
and created a number of indexes similar to those described in previous INEX
papers[9].

Table 2. Wikipedia Article-Level Indexes for INEX 2008

Name Description Contents Vector?

docno doc ID number //name@id No
names Article Title //name Yes
topic Entire Article //article Yes
topicshort Selected Content //fm/tig/atl Yes

//abs
//kwd
//st

xtnames Template names //template@name No
figure Figures //figure No
table Tables //table No
caption Image Captions //caption Yes
alltitles All Titles //title Yes
links Link Anchors //collectionlink No

//weblink
//wikipedialink

Table 2 lists the document-level (/article) indexes created for the INEX data-
base and the document elements from which the contents of those indexes were
extracted.

As noted above the Cheshire system permits parts of the document subtree
to be treated as separate documents with their own separate indexes. Tables 3
& 4 describe the XML components created for INEX and the component-level
indexes that were created for them.
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Table 3. Wikipedia Components for INEX 2006

Name Description Contents

COMPONENT SECTION Sections //section
COMPONENT PARAS Paragraphs //p | //blockquote | //indentation1|

//indentation2|//indentation3
COMPONENT FIG Figures //figure

Table 3 shows the components and the path used to define them. The first,
COMPONENT SECTION, component consists of each identified section in all of
the documents, permitting each individual section of a article to be retrieved sep-
arately. Similarly, each of the COMPONENT PARAS and COMPONENT FIG
components, respectively, treat each paragraph (with all of the alternative para-
graph elements shown in Table 3), and figure (<figure> ... </figure>) as indi-
vidual documents that can be retrieved separately from the entire document.

Table 4. Wikipedia Component Indexes for INEX 2006†Includes all subelements of
section or paragraph elements.

Component
or Index Name Description Contents Vector?

COMPONENT SECTION
sec title Section Title //section/title Yes
sec words Section Words *† Yes

COMPONENT PARAS
para words Paragraph Words *† Yes

COMPONENT FIG
fig caption Figure Caption //figure/caption No

Table 4 describes the XML component indexes created for the components de-
scribed in Table 3. These indexes make individual sections (COMPONENT SECTION)
of the INEX documents retrievable by their titles, or by any terms occurring
in the section. These are also proximity indexes, so phrase searching is sup-
ported within the indexes. Individual paragraphs (COMPONENT PARAS) are
searchable by any of the terms in the paragraph, also with proximity searching.
Individual figures (COMPONENT FIG) are indexed by their captions.

Few of these indexes and components were used during Berkeley’s simple
runs of the 2006 INEX Adhoc topics. The two official submitted Adhoc runs
and scripts used in INEX are described in the next section.

We decided to try the same methods on the Book Track data this year, but we
did not use multiple elements or components, since the goal of the main Books
Adhoc task was to retrieval entire books and not elements. We did, however
create the same indexes for the Books and MARC data that we created last
year as shown in Table 5, for the books themselves we used a single index of the
entire document content. We did not use the Entry Vocabulary Indexes used in
last year’s Book track runs.
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Table 5. MARC Indexes for INEX Book Track 2008

Name Description Contents Vector?

names All Personal and Corporate //FLD[1670]00, //FLD[1678]10, No
names //FLD[1670]11

pauthor Personal Author Names //FLD[170]00 No
title Book Titles //FLD130, //FLD245, //FLD240,

//FLD730, //FLD740, //FLD440, No
//FLD490, //FLD830

subject All Subject Headings //FLD6.. No
topic Topical Elements //FLD6.., //FLD245, //FLD240,

//FLD4.., //FLD8.., //FLD130,
//FLD730, //FLD740, //FLD500, Yes
//FLD501, //FLD502
//FLD505, //FLD520, //FLD590

lcclass Library of Congress //FLD050, //FLD950 No
Classification

doctype Material Type Code //USMARC@MATERIAL No
localnum ID Number //FLD001 No
ISBN ISBN //FLD020 No
publisher Publisher //FLD260/b No
place Place of Publication //FLD260/a No
date Date of Publication //FLD008 No
lang Language of Publication //FLD008 No

The indexes used in the MARC data are shown in Table 5. Note that the tags
represented in the “Contents” column of the table are from Cheshire’s MARC to
XML conversion, and are represented as regular expressions (i.e., square brackets
indicate a choice of a single character).

3.1 Indexing the Books XML Database

Because the structure of the Books database was derived from the OCR of
the original paper books, it is primarily focused on the page organization and
layout and not on the more common structuring elements such as “chapters”
or “sections”. Because this emphasis on page layout goes all the way down to
the individual word and its position on the page, there is a very large amount
of markup for page with content. For this year’s original version of the Books
database, there are actually NO text nodes in the entire XML tree, the words
actually present on a page are represented as attributes of an empty word tag in
the XML. The entire document in XML form is typically multiple megabytes in
size. A separate version of the Books database was made available that converted
these empty tags back into text nodes for each line in the scanned text. This
provided a significant reduction in the size of database, and made indexing much
simpler. The primary index created for the full books was the “topic” index
containing the entire book content.
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Fig. 1. Berkeley Adhoc Element Retrieval Results

We also created page-level “documents” as we did last year. As noted above
the Cheshire system permits parts of the document subtree to be treated as sep-
arate documents with their own separate indexes. Thus, paragraph-level com-
ponents were extracted from the page-sized documents. Because unique object
(page) level indentifiers are included in each object, and these identifiers are
simple extensions of the document (book) level identifier, we were able to use
the page-level identifier to determine where in a given book-level document a
particular page or paragraph occurs, and generate an appropriate XPath for it.

Indexes were created to allow searching of full page contents, and component
indexes for the full content of each of individual paragraphs on a page. Because
of the physical layout based structure used by the Books collection, paragraphs
split across pages are marked up (and therefore indexed) as two paragraphs.
Indexes were also created to permit searching by object id, allowing search for
specific individual pages, or ranges of pages.

We encountered a number of system problems dealing with the Books data-
base this year, since the numbers unique terms exceeded the capacity of the
integers used to store them in the indexes. For this year, at least, moving to
unsigned integers has provided a temporary fix for the problem but we will need
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Fig. 2. Top 10 (by group) Adhoc Retrieval Runs

to rethink how statistical summary information is handled in the future – per-
haps moving to long integers, or even floating point numbers and evaluating
the tradeoffs between precision in the statistics and index size (since moving to
Longs could double index size).

4 INEX 2008 Adhoc Track Runs

We submitted three runs this year to the Adhoc “Focused” track, two for the CO
Element search tasks, and one for the “Best in context” task. Figure 1 shows the
precision/recall curves for the two Element search runs. The better performing
run used a fusion of paragraph with full document (topic) search and had an iP at
0.01 of 0.6395. This was ranked fourteenth out of the sixty-one runs submitted,
and since many of the top-ranked runs came from the same groups, the run
appeared in the “top ten” graph on the official site (reproduced as Figure 2).
As Figure 2 shows, the run was fairly strong for precision at low recall levels,
but overall showed a lack of recall placing it much lower than the majority of
the top ten submissions at higher recall levels. We had intended this run to use
the blind feedback mechanism described above, but fail to specify it correctly.
As a result the run used only the TREC2 logistic regression algorithm and the
weighted merging described above, but with no blind feedback.

Our second “Focused” run used a fusion of paragraphs with searches on the
“name” element of the Wikipedia documents. This run, also shown in Figure 1

202



had an iP at 0.01 of 0.5410, and ranked forty-fourth out of sixty-one runs - a
much poorer showing. This run also was intended to use the blind feedback, but
did not.

As an unofficial experiment after we discovered the lack of blind feedback in
these runs, we ran the same script as for our first official run (using paragraphs
and the topic index) but correctly specified the use of blind feedback in addition
to the TREC2 Logistic Regression algorithm. This unofficial run obtained a iP
at 0.01 of 0.6586, which would have ranked tenth if it had been submitted. This
run is shown in Figure 1 as “POSTRUN” and indicates how the lack of blind
feedback in our official submissions adversely impacted the results.

Our Best in context run basically took the raw results data from the Adhoc
focused run using paragraphs and topics, and selected the top-ranked paragraphs
for each document as the “best in context”, all other elements were eliminated
from the run. The results clearly show that this is not a very effective strategy,
since our results of a MAgP of 0.0533 was ranked thirty-second out of thirty-five
runs submitted overall.

5 INEX 2008 Book Track Runs

We submitted three runs for the Book Search task of the Books track, one using
MARC data only, one using full Book contents only, and a third performing a
merge of the MARC and Book data. Evaluation was delayed for the Book track
and we do not yet have any results.

We are also participating in the “Active Reading” task of the Books track
which is still getting underway.

6 Conclusions and Future Directions

For all of the Adhoc (focused and best in context) runs that we submitted this
year, only paragraphs were used as the retrieved elements, and we did not (as in
previous years) attempt to merge the results of searches on multiple elements.
This helps to partially explain both the low recall for the Focused task and
the low score of the Best in context task. The failure to correctly specify blind
feedback in the runs also had a negative impact. However, since this is the first
year when we have managed to submit any runs for the Focused task without
them being disqualified for overlap, we can consider it a significant improvement.
We note for the future that double-checking scripts before running them, and
submitting the results is very good idea.
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Abstract. This paper describes the RMIT group’s participation in the
INEX book search track in 2008.

1 Introduction

This paper describes the participation of the RMIT group in the Initiative for
the Evaluation of XML retrieval (INEX) book search track in 2008, specifically
the book retrieval task. This is the first year that RMIT has participated in the
book search track at INEX, and we explore effectiveness of book retrieval task
by experimenting with various approaches for query construction, and indexing
and retrieving books at different granulaties.

2 Our Approach

We explore two broad categories of approaches in our runs:

1. How to construct the query from the INEX topic, and
2. Whole book retrieval compared with two different techniques for book re-

trieval based on page retrieval.

We submitted 8 runs in total, 4 of each category.

2.1 Query Construction

INEX book track topics contain different components: title, description, task,
and information need. An example is shown in Figure 1. We begin by describing
four different approaches to constructing the query from the topic:

RmitBookTitle: Use the words in the topic title.
RmitBookTitleInfneed: Use the words in the topic title and the topic infor-

mation need elements.
RmitBookTitleBoolean: Boolean “AND” is applied to all query terms in

RmitBookTitle.
RmitBookTitleInfneedManual.xml: Use all terms as in RmitBookTitle,

and add some manually selected terms from RmitBookTitleInfneed.
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<inex_topic track="bs07" task="book-ad-hoc" topic_id="20" ct_no="277">
<title>Last Supper painting da Vinci</title>

<description>
I am looking for description, critique, theories and explanations of
Leonardo d Vinci’s painting of the Last Supper.

</description>
<narrative>
<task>

I want to gather background information on the painting of da Vinci
titled Last Supper for an essay I need to write.
</task>

<infneed>
I would like to find out as much as possible about the painting.
What is known about its commissioning and delivery.
When it was painted, where? How is its topic and composition of its

characters explained. The technique used in painting it.
I am also interested in its history, how it survived the times,
where is it exhibited. I am not interested in copies of the painting.

Images are also not relevant.
</infneed>
</narrative>

</inex_topic>

Fig. 1. A sample topic

Consider the sample topic shown in Figure 1. Applying our four different
approaches results in the following query terms (after stopping and stemming):

RmitBookTitle: Last Supper paint da Vinci
RmitBookTitleInfneed: supper paint da vinci find possibl paint known com-

miss deliveri paint topic composit charact explain techniqu paint interest
histori surviv time exhibit interest copi paint imag relev

RmitBookTitleBoolean: last AND supper AND paint AND da AND vinci
RmitBookTitleInfneedManual: supper paint da vinci paint commiss deliveri

paint topic composit charact techniqu paint histori surviv time exhibit

We submitted four runs, each using one of the querying strategies described
above. The Zettair search engine1 was used to index the collection. For retrieval,
the BM25 similarity function [1] was used for document weighting and ranking
(with k1 = 1.2, b = 0.75).

In the above four runs, a book is an indexable unit. Stemming and stopping
are applied during indexing time, and to queries.

2.2 Ranking Based on Page-level Evidence

Our other four runs are variations on retrieval, using individual pages as the
indexable unit, and combining results to rank books.

1 http://www.seg.rmit.edu.au/zettair/
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Sometimes, a topic is just mentioned in passing in a book, and may not be
the main theme of the book. To rank those books that are primarily dedicated
to the topic more highly, we require a topic be mentioned on most of the book’s
pages. We therefore experimented with the following two strategies:

1. The top 3000 retrieved pages per query are merged according to the books
that they are sourced from. The books are then weighted and ranked ac-
cording to percentage of pages that are retrieved per book.

2. For each query, the top 3000 pages are retrieved and then merged according
to their originating books, based on the percentage of the maximum number
of continuous pages that are retrieved per book.

Combing those two page-level evidence ranking methods and two querying
strategies, we submitted four further runs to the track:

RmitPageMergeTitle: Query terms are the same as in RmitBookTitle,
books are ranked according to method 1;

RmitConPageMergeTitle: Query terms are the same as in RmitBookTitle,
books are ranked according to method 2;

RmitPageMergeTitleManual: Query terms are the same as in RmitBook-

TitleInfneedManual, books are ranked according to method 1;
RmitConPageMergeTitleManual: Query terms are the same as in Rmit-

BookTitleInfneedManual, books are ranked according to method 2.

3 Concluding Remarks

Since evaluation for the book retrieval task was only just starting at the time of
submission to the preproceedings, we are unable to compare the effectiveness of
the different approaches at this stage.
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Abstract. This paper presents an overview of the Efficiency Track that was
newly introduced to INEX in 2008. The new INEX Efficiency Track is intended
to provide a common forum for the evaluation of both the effectiveness and ef-
ficiency of XML ranked retrieval approaches on real data and real queries. As
opposed to the purely synthetic XMark or XBench benchmark settings that are
still prevalent in efficiency-oriented XML retrieval tasks, the Efficiency Track
continues the INEX tradition using a rich pool of manually assessed relevance
judgments for measuring retrieval effectiveness. Thus, one of the main goals is
to attract more groups from the DB community to INEX, being able to study
effectiveness/efficiency trade-offs in XML ranked retrieval for a broad audience
from both the DB and IR communities. The Efficiency Track significantly ex-
tends the Ad-Hoc Track by systematically investigating different types of queries
and retrieval scenarios, such as classic ad-hoc search, high-dimensional query ex-
pansion settings, and queries with a deeply nested structure (with all topics being
available in both the NEXI-style CO and CAS formulations, as well as in their
XPath 2.0 Full-Text counterparts).

1 General Setting

1.1 Test Collection

Just like most INEX tracks, the Efficiency Track uses the 2007 version of the INEX-
Wikipedia collection [2] (without images), an XML version of English Wikipedia arti-
cles initially introduced for INEX 2006 and slightly revised in 2007. The collection is
available for download from the INEX website http://www.inex.otago.ac.nz/ for regis-
tered participants, or directly from http://www-connex.lip6.fr/ denoyer/wikipediaXML/.
Although this 4.38 GB XML-ified Wikipedia collection is not particularly large from
a DB point-of-view, it has a rather irregular structure with many deeply nested paths,
which will be particularly challenging for traditional DB-style approaches, e.g., using
path summaries. There is no DTD available for INEX-Wikipedia.

1.2 Topic Types

One of the main goals to distinguish the Efficiency Track from traditional Ad-Hoc re-
trieval is to cover a broader range of query types than the typical NEXI-style CO or CAS
queries, which are mostly using either none or only very little structural information and
only a few keywords over the target element of the query. Thus, two natural extensions
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are to extend Ad-Hoc queries with high-dimensional query expansions and/or to in-
crease the amount of structural query conditions without sacrificing the IR aspects in
processing these queries (with topic description and narrative fields provid-
ing hints for the human assessors or allowing for more semi-automatic query expansion
settings, see Figure 1.3). The Efficiency Track focuses on the following types of of
queries (also coined “topics” in good IR tradition), each representing different retrieval
challenges:

– Type (A) Topics: 540 topics (no. 289–828) are taken over from previous Ad-hoc
Track settings used in 2006–2008, which constitute the major bulk of topics used
also for the Efficiency Track. These topics represent classic, Ad-Hoc-style, focused
passage or element retrieval (similar to the INEX Ad-Hoc Focused subtask 2006–
2008, see for example [3]), with a combination of NEXI CO and CAS queries.
Topic ids are taken over from the Ad-Hoc track as well, thus allowing us to reuse
assessments from the Ad-Hoc Track for free.

– Type (B) Topics: 21 topics (no. 829–849) are derived from interactive, feedback-
based query expansion runs, kindly provided by the Royal School Of Library And
Information Science, Denmark, investigated in the context of the INEX Interac-
tive Track 2006 [5, 6]. These CO topics are intended to simulate high-dimensional
query expansion settings with up to 112 keywords (topic no. 844), which cannot be
evaluated in a conjunctive manner and are expected to pose a major challenge to any
kind of search engine. Respective expansion runs have been submitted by RSLIS
also to the 2006 Ad-Hoc track, such that relevant results are expected to have made
it into the relevance pools of INEX 2006 Ad-Hoc track assessments as well. An
additional adhocid attribute marks the original Ad-Hoc id of the topic that it has
been derived from, such that—at least incomplete—assessments are available for
these type (B) topics.

– Type (C) Topics: 7 new topics (no. 850–856) have been developed and submitted
by Efficiency Track participants in 2008. These topics represent high-dimensional,
structure-oriented retrieval settings over a DB-style set of CAS queries, with deeply
nested structure but only a few keyword conditions. Assessments were originally
intended to get accomplished by Efficiency Track participants, as well, but were
then skipped due to their low amount and the low respective impact on result ef-
fectiveness as compared to the more than 500 Ad-Hoc topics that already come
readily assessed. The evaluation of runtimes however remains very interesting over
this structure-enhanced set of type (C) topics.

1.3 Topic Format and Assessments

Just like the original NEXI queries, type (A) queries have some full-text predicates such
as phrases (marked by quotes “”), mandatory keywords (+), and keyword negations (-).
Although participants were encouraged to use these full-text hints, they are not manda-
tory just like in other INEX tracks. Because of their high-dimensional nature, most type
(B) and (C) queries require IR-style, non-conjunctive (aka. “andish”) query evaluations
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that can either preselect the most significant query conditions or dynamically relax both
the structure- and content-related conditions at query processing time. The reuse of type
(A) and (B) lead to 308 topics for which assessments from the INEX 2006–2008 Ad-hoc
Tracks are available. An additional conversion to the new 2008 version of the INEX-
Eval tool and the (passage-based) assessments format was needed to incorporate the
2008 assessment files (QRels) and has meanwhile been made available online for down-
load from the track homepage http://www.inex.otago.ac.nz/tracks/efficiency/efficiency.asp.

<topic id="856" type="C">
<co_title>

State Parks Geology Geography +Canyon
</co_title>
<cas_title>\

//article//body[about(.//section//p, State Park) and
about(.//section//title, Geology) and
about(.//section//title, Geography)]

//figure[about(.//caption, +Canyon)]
</cas_title>
<xpath_title>

//article//body[.//section//p ftcontains "State Park" and
.//section//title ftcontains "Geology" and
.//section//title ftcontains "Geography"]

//figure[.//caption ftcontains "Canyon"]
</xpath_title>

<description>
I’m looking for state parks with sections describing
their geology and/or geography, preferably with a figure of
a canyon as target element.

</description>
<narrative>

State park pages often follow the common pattern of having
sections entitled with "Geology" or "Geography". I’m
particularly interested in those pages with a figure of a
canyon, e.g., the Grand Canyon.

</narrative>
</topic>

Fig. 1. Example type (C) topic (no. 856)

All topic titles are provided in the NEXI syntax (in both their CO and CAS formu-
lations) and (new for the Efficiency Track) in their corresponding XPath 2.0 Full-Text
specification. XPath 2.0 queries were automatically generated from the respective NEXI
CAS titles, while the CAS title itself was taken over from the CO title and wrapped into
a pseudo target element of the form //*[about(...)] whenever there was no ac-
tual CAS title available.

A “Call for Structure-Enhanced Queries” for the new type (C) queries was issued
to all registered INEX participants in early May 2008. The final set of 568 Efficiency
Track topics was released in early July 2008, with the intention to keep a relatively
tight time window between the release of the topics and the run submission deadline to
prevent people from overtuning to particular topics.
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1.4 Sub-Tasks

The Efficiency Track particularly encourages the use of top-k style query engines. The
result submission format includes options for marking runs as top-15, top-150, and
top-1500 (the latter corresponding to the traditional Ad-hoc submission format), using
either a Focused (i.e., non-overlapping), Thorough (incl. overlap), or Article re-
trieval mode (see below). Automatic runs may use either the title field, including the
NEXI CO, CAS, or XPATH titles, additional keywords from the narrative or descrip-
tion fields, as well as automatic query expansions if desired. At least one automatic and
sequential run with topics being processed one-by-one is mandatory for each participat-
ing group. Participants are invited to submit as many runs in different retrieval modes
as possible.

– Article: This is the mode that corresponds to a classical search engine setting to the
largest extent. All documents may be considered either in their plain text or XML
version. Moreover, queries can be used in both their CO and CAS (incl. XPath 2.0
Full-Text) formulation. In the Article-Only/CO combination this setting resembles
a classical IR setting with entire documents as retrieval units and plain keywords as
queries. Article-only runs are always free of overlapping results.

– Thorough: The Thorough mode represents the original element-level retrieval
mode used in INEX 2003-2005. Here, any element correctly identified as relevant
to the query will contribute to the recall of the run. This setting intentionally allows
overlapping elements to be returned, since removing overlap may mean a substan-
tial burden for different systems. We thus re-conceal the Thorough setting used in
previous INEX years with respect to efficiency aspects, such that actual query pro-
cessing runtimes can be clearly distinguished from the runtime needed to remove
overlapping results (which typically is a costly post-processing step).

– Focused: Focused (i.e., overlap-free) element- and/or passage-level retrieval typ-
ically is favorable from a user point-of-view and therefore replaced the Thorough
retrieval as primary retrieval mode in the Ad-hoc Track in 2006. Here, the reported
runtimes should include the time needed to remove overlap, which may give rise
to interesting comparisons between systems following both Thorough and Focused
retrieval strategies.

2 Run Submissions

The submission format for all Efficiency Track retrieval modes is defined by the follow-
ing DTD, depicted in Figure 2. The following paragraph provides a brief explanation of
the DTD fields:

– Each run submission must contain the following information:
• participant-id - the INEX participant id
• run-id - your run id
• task - either focused, thorough, or article
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<!ELEMENT efficiency-submission (topic-fields,
general_description,
ranking_description,
indexing_description,
caching_description,
topic+) >

<!ATTLIST efficiency-submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (article|thorough|focused) #REQUIRED
query (automatic|manual) #REQUIRED
sequential (yes|no) #REQUIRED
no_cpu CDATA #IMPLIED
ram CDATA #IMPLIED
no_nodes CDATA #IMPLIED
hardware_cost CDATA #IMPLIED
hardware_year CDATA #IMPLIED
topk (15|150|1500) #IMPLIED >
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields
co_title (yes|no) #REQUIRED
cas_title (yes|no) #REQUIRED
xpath_title (yes|no) #REQUIRED
text_predicates(yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED >

<!ELEMENT general_description (#PCDATA)>
<!ELEMENT ranking_description (#PCDATA)>
<!ELEMENT indexing_description (#PCDATA)>
<!ELEMENT caching_description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic
topic-id CDATA #REQUIRED
total_time_ms CDATA #REQUIRED
cpu_time_ms CDATA #IMPLIED
io_time_ms CDATA #IMPLIED >

<!ELEMENT result (file, path, rank?, rsv?) >
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Fig. 2. DTD for Efficiency Track run submissions

• query - either automatic or manual mode (at least one automatic mode using
exactly one of the title fields is required; in manual mode any form of manual
query expansion is allowed)

• sequential - queries being processed sequentially or in parallel (indepen-
dent of whether distribution is used)

– Furthermore, each run submission should contain some basic system and retrieval
statistics:
• no cpu - the number of CPUs (cores) in the system (sum over all nodes for a

distributed system)
• ram - the amount of RAM in the system in GB (sum over all nodes for a

distributed system)
• no nodes - the number of nodes in a cluster (only for a distributed system)
• hardware cost - estimated hardware cost (optional)
• hardware year - date of purchase of the hardware (optional)
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• topk - top-k run or not (if it is a top-k run, there may be at most k elements
per topic returned)

– Each run submission should also contain the following brief system descriptions
(keywords), if available:
• general description - a general system and run description
• ranking description - the ranking strategies used
• indexing description - the indexing structures used
• caching description - the caching hierarchies used

– Each topic element in a run submission must contain the following elements:
• topic id - the id of the topic
• total time ms - the total processing time in milliseconds: this should in-

clude the time for parsing and processing the query but does not have to con-
sider the extraction of resulting file names or element paths (needed to create
the above format for the run submission)

– Furthermore, each topic element of a run submission should contain the following
elements:
• cpu time ms - the CPU time spent on processing the query in milliseconds
• io time ms - the total I/O time spent on physical disk accesses in millisec-

onds

Providing CPU and I/O times is optional for each topic. Also, it is sufficient to pro-
vide a list of matching elements along with their path locators (as canonical XPath
expressions—see, again, the Ad-hoc Track settings [3]). Providing rank and relevance
score values rsv was also optional. In article retrieval mode, all results’ elements
paths had to be /article[1]. Moreover, the many different types of (optional) de-
scription fields are supposed to encourage participants to provide detailed descriptions
along with their run submissions.

Particularly interesting for the Efficiency Track submissions is the runtime field,
of course. This can optionally be split into cpu time and io time, the latter two
of which had not been used by any of the participants, though. So we focus on actual
wallclock running times as efficiency measure for our 2008 setting. Top-k runs with
less than 1,500 ranks have only been submitted by the Max-Planck-Institut Informatik.
Distribution has only been used by the University of Frankfurt, using a cluster with 8
nodes.

3 Metrics

To assess the quality of the retrieved results, the Efficiency Track applies the same
metrics as used in the Ad-Hoc track. Runs in Focused or Article mode were eval-
uated with the interpolated precision metric [4], using the evaluation toolkit from INEX
2008; the assessments for the topics from 2006 and 2007 have been converted to the
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new Qrel-based format. Runs in Thorough mode were evaluated with the precision-
recall metric as implemented in inex eval [1] after converting the Qrels from 2008 to
the old XML-based assessment format. In the future, the track will probably use metrics
implemented in EvalJ3.

4 Participants

An overall amount of 20 runs was submitted by 5 participating groups. The following
paragraphs provide short system descriptions submitted by the participants.

Max-Planck-Institut Informatik [10] For the INEX Efficiency Track 2008, we were
just on time to finish and (for the first time) evaluate our brand-new TopX 2.0 prototype.
Complementing our long-running effort on efficient top-k query processing on top of
a relational back-end, we now switched to a compressed object-oriented storage for
text-centric XML data with direct access to customized inverted files, along with a
complete reimplementation of the engine in C++. Core of the new engine is a multiple-
nested block-index structure that seamlessly integrates top-k-style sorted access to large
blocks stored as inverted files on disk with in-memory merge-joins for efficient score
aggregations.

University of Frankfurt [16] University of Frankfurt has developed Spirix, a Peer-to-
Peer (P2P) search engine for Information Retrieval of XML-documents. The underlying
P2P protocol is based on a Distributed Hash Table (DHT). Due to the distributed archi-
tecture of the system, efficiency aspects have to be considered in order to minimize
bandwidth consumption and communication overhead. Spirix is a top-k search engine
aiming at efficient selection of posting lists and postings by considering structural infor-
mation, e.g. taking advantage of CAS queries. As collections in P2P systems are usually
quite heterogeneous, no underlying schema is assumed but schema-mapping methods
are of interest to detect structural similarity. The runs submitted to the INEX efficiency
track compare different structure similarity functions which are then used to improve
efficiency of routing and ranking.

University of Toronto [42] Summary not yet available.

University of Twente & CWI [53] Summary not yet available.

JustSystems Corporation [56] Summary not yet available.

3 http://evalj.sourceforge.net/
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5 Results

Table 5 summarizes all run parameters as they were delivered in the runs’ headers. Ta-
ble 5 summarizes all effectiveness (iP, MAiP) and efficiency results (avg.&sum of wall-
clock runtimes in milliseconds) for the respective number of topics processed (#topics).
Tables 5–5 summarize the results by topic type for all Focused runs (with effectiveness
results only being available for type (A) and (B) topics). Figure 3 depicts detailed inter-
polated precision plots for all Focused and (the only) Article-only run(s); while Figure 4
depicts classic precision-recall plots for the Thorough runs. Figures 5–6 finally depict
the respective interpolated precision plots split by type (A) and (B) topics (type (C)
plots are skipped due to the lack of assessments).

Part.ID Run ID Task #CPU RAM #Nodes Hardw.Cost Year Top-k Cache Seq. Aut. Title Fields
10 TOPX2-Eff08-CAS-15-Focused-W Foc. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-15-Thorough-W Tho. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-150-Focused- Foc. 4 16 1 8,000 Eur 2005 150 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CAS-1500-Focused-W Foc. 4 16 1 8,000 Eur 2005 1500 OS+TopX Yes Yes CAS
10 TOPX2-Eff08-CO-15-Focused-W Foc. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-15-Thorough-W Tho. 4 16 1 8,000 Eur 2005 15 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-150-Focused-W Foc. 4 16 1 8,000 Eur 2005 150 OS+TopX Yes Yes CO
10 TOPX2-Eff08-CO-1500-Focused-W Foc. 4 16 1 8,000 Eur 2005 1500 OS+TopX Yes Yes CO
16 001-Uni Frankfurt,Strict Foc. 8 16 8 n/a n/a 1500 n/a Yes Yes CAS
16 002-Uni Frankfurt,Baseline Foc. 8 16 8 n/a n/a 1500 n/a Yes Yes CAS
16 003-Uni Frankfurt,Architect-S Foc. 8 16 8 n/a n/a 1500 n/a Yes yes CAS
16 004-Uni Frankfurt,Fine-Sim Foc. 8 16 8 n/a n/a 1500 n/a Yes Yes CAS
16 005-Uni Frankfurt,Path-Sim Foc. 8 16 8 n/a n/a 1500 n/a Yes Yes CAS
42 B2U0 full-depth-heur Foc. 1 2 1 n/a n/a 1500 Lucene Yes Yes CAS
42 B2U0 full-depth-sr Tho. 1 2 1 n/a n/a 1500 Lucene Yes Yes CAS
53 pftijah article strict Art. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CO
53 pftijah asp strict Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
53 pftijah asp vague Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
53 pftijah star strict Tho. 1 8 1 1,000 Eur 2008 1500 DBMS Yes Yes CAS
56 VSM RIP Foc. 1 2 1 1,500 USD 2004 1500 None Yes Yes CO+CAS

Table 1. Run parameters as taken from the submission headers

6 Conclusions

This paper gave an overview of the INEX 2008 Efficiency Track. We intend to continue
and expand this track in upcoming INEX years, thus hoping to increase the general
visibility of this project and to attract more people from the DB&IR fields to efficient
XML-IR settings. We also aim to establish the Efficiency Track, along with its large
body of IR-style topics and readily available assessments, as a reference benchmark for
more realistic XML-IR experiments outside the INEX community. One step towards
this direction was to introduce queries in the more common XPath 2.0 Full-Text syntax.
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Part.ID Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP AVG MS. SUM MS. #Topics
Focused

10 TOPX2-Eff08-CAS-15-Focused-W 0.4587 0.3878 0.2592 0.1918 0.0662 90.99 51,499 566
10 TOPX2-Eff08-CAS-150-Focused-W 0.4747 0.4282 0.3494 0.2915 0.1094 112.32 63,574.00 566
10 TOPX2-Eff08-CAS-1500-Focused-W 0.4824 0.4360 0.3572 0.3103 0.1241 253.42 143,436 566
10 TOPX2-Eff08-CO-15-Focused-W 0.4751 0.4123 0.2793 0.1971 0.0726 49.79 28,180 566
10 TOPX2-Eff08-CO-150-Focused-W 0.4955 0.4520 0.3674 0.3114 0.1225 85.96 48,653 566
10 TOPX2-Eff08-CO-1500-Focused-W 0.4994 0.4560 0.3749 0.3298 0.1409 239.73 135,688 566
16 001-Uni Frankfurt,Strict 0.0035 0.0035 0.0034 0.0034 0.0007 188,862.50 15,109,000 80
16 002-Uni Frankfurt,Baseline 0.1969 0.1926 0.1834 0.1724 0.0867 186,565.00 14,925,200 80
16 003-Uni Frankfurt,Architect-Sim 0.2070 0.1960 0.1812 0.1669 0.0768 326,098.75 26,087,900 80
16 004-Uni Frankfurt,Fine-Sim 0.1971 0.1927 0.1758 0.1626 0.0747 197,731.25 15,818,500 80
16 005-Uni Frankfurt,Path-Sim 0.2077 0.1983 0.1826 0.1661 0.0718 321,493.75 25,719,500 80
42 B2U0 full-depth-heur 0.4388 0.3964 0.3344 0.3013 0.1357 2,994.00 1,679,634 561
56 VSM RIP 0.4836 0.4058 0.3077 0.2553 0.0895 4,807.55 2,730,687 568

Article
53 pftijah article strict 0.4599 0.4272 0.3689 0.3346 0.1839 701.98 398,722 568

Thorough P@0.01 P@0.05 P@0.10 MAP
10 TOPX2-Eff08-CAS-15-Thorough-W 0.1811 0.0288 0.0069 0.0053 89.31 50,549 566
10 TOPX2-Eff08-CO-15-Thorough-W 0.1890 0.0357 0.0084 0.0065 70.91 40,133 566
42 B2U0 full-depth-sr 0.2196 0.0541 0.0077 0.0080 9,172.05 5,145,519 561
53 pftijah asp strict 0.2674 0.1008 0.0294 0.0136 2,306.08 1,309,854 568
53 pftijah asp vague 0.2653 0.1120 0.0357 0.0141 8,213.05 4,665,010 568
53 pftijah star strict 0.2415 0.1029 0.0471 0.0169 17,186.03 9,761,663 568

Table 2. Effectiveness/efficiency summary of all runs

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics
10 TOPX2-Eff08-CO-15-Focused-W 0.0712 18.88 10,157 538
10 TOPX2-Eff08-CO-150-Focused-W 0.1234 49.12 26,427 538
10 TOPX2-Eff08-CO-1500-Focused-W 0.1430 191.27 102,903 538
10 TOPX2-Eff08-CAS-15-Focused-W 0.0643 48.84 26,276 538
10 TOPX2-Eff08-CAS-150-Focused-W 0.1094 61.25 32,953 538
10 TOPX2-Eff08-CAS-1500-Focused-W 0.1249 165.53 89,055 538
16 001-Uni Frankfurt,Strict 0.0007 188,862.50 15,109,000 80
16 002-Uni Frankfurt,Baseline 0.0867 186,565.00 14,925,200 80
16 003-Uni Frankfurt,Architect-Sim 0.0768 326,098.75 26,087,900 80
16 004-Uni Frankfurt,Fine-Sim 0.0747 197,731.25 15,818,500 80
16 005-Uni Frankfurt,Path-Sim 0.0169 17,186.03 9,761,663 568
42 B2U0 full-depth-heur 0.1373 2,716.45 1,450,584 534
53 pftijah article strict 0.1884 604.51 326,438 540
56 VSM RIP 0.0936 4,253.85 2,297,077 540

Table 3. Summary over all 540 type (A) topics (Focused runs only)

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics
10 TOPX2-Eff08-CO-15-Focused-W 0.0915 844.67 17,738 21
10 TOPX2-Eff08-CO-150-Focused-W 0.1094 1038.90 21,817 21
10 TOPX2-Eff08-CO-1500-Focused-W 0.1125 1468.67 30,842 21
10 TOPX2-Eff08-CAS-15-Focused-W 0.0915 1044.71 21,939 21
10 TOPX2-Eff08-CAS-150-Focused-W 0.1096 1074.66 22,568 21
10 TOPX2-Eff08-CAS-1500-Focused-W 0.1124 1479.33 31,066 21
42 B2U0 full-depth-heur 0.1143 8,052.14 169,095 21
53 pftijah article strict 0.1224 3,212.52 67,463 21
56 VSM RIP 0.0329 14,583.33 306,250 21

Table 4. Summary over all 21 type (B) topics (Focused runs only)
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interpolated precision - focused - all topics
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Fig. 3. Interpolated precision plots for all Focused and Article runs

Part.ID Run ID MAiP AVG MS. SUM MS. #Topics
10 TOPX2-Eff08-CO-15-Focused-W n/a 41.00 287 7
10 TOPX2-Eff08-CO-150-Focused-W n/a 58.86 412 7
10 TOPX2-Eff08-CO-1500-Focused-W n/a 277.57 1,943 7
10 TOPX2-Eff08-CAS-15-Focused-W n/a 469.42 3,286 7
10 TOPX2-Eff08-CAS-150-Focused-W n/a 1150.14 8,051 7
10 TOPX2-Eff08-CAS-1500-Focused-W n/a 3330.71 23,315 7
42 B2U0 full-depth-heur n/a 14,629.86 102,409 7
53 pftijah article strict n/a 688.71 4,821 7
56 VSM RIP n/a 18,194.29 127,360 7

Table 5. Summary over all 7 type (C) topics (Focused runs only)
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precision-recall plot - all thorough runs
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interpolated precision - focused - only type A topics
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interpolated precision - focused - only type B topics
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Abstract.

1 Introduction

PF/Tijah is a research prototype created by the University of Twente and CWI
Amsterdam with the goal to create a flexible environment for setting up search
systems. By integrating the PathFinder (PF) XQuery system [1] with the Ti-
jah XML information retrieval system [2] it combines database and information
retrieval technology. The PF/Tijah system is part of the open source release
of MonetDB/XQuery developed in cooperation with CWI Amsterdam and the
University of Tübingen.

PF/Tijah is first of all a system for structured retrieval on XML data. Com-
pared to other open source retrieval systems it comes with a number or unique
features [3]:

– It can execute any NEXI query without limits to a predefined set of tags.
Using the same index, it can easily produce a “focused”, “thorough”, or “ar-
ticle” ranking, depending only on the specified query and retrieval options.

– The applied retrieval model, score propagation and combination operators
are set at query time, which makes PF/Tijah an ideal experimental platform.

– PF/Tijah embeds NEXI queries as functions in the XQuery language. This
way the system supports ad hoc result presentation by means of its query
language. The efficiency task submission described in the following section
demonstrates this feature. The declared function INEXPath for instance com-
putes a string that matches the desired INEX submission format.

– PF/Tijah supports text search combined with traditional database query-
ing, including for instance joins on values. The entity ranking experiments
described in this article intensively exploit this feature.

With this year’s INEX experiments, we try to demonstrate the mentioned
features of the system. All experiments were carried out with the least possible
pre- and post-processing outside PF/Tijah. Section 2 shows with the applica-
tion of the system to the INEX efficiency track, how a wide range of different
NEXI queries can be executed efficiently. Section 3 demonstrates how combined
database and retrieval queries provide a direct solution to specialized tasks like
entity ranking.
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2 Efficiency

The INEX efficiency task combines retrieval quality and performance. In order
to test the performance on a wide range of different queries, the task uses a query
set of 568 structured queries combined from other tasks and collected over the
last years. The queries vary with respect to the contained number of query terms
and structural requirements. A subset for instance represents typical relevance
feedback queries containing a considerable higher number of query terms.

The retrieval efficiency of PF/Tijah was improved in the last year with re-
spect to several aspects, which we wanted to test by our submissions. The index
structure, containment joins, and score computation had been changed [4] to
improve the execution of simple query patterns such as

//tag[about(., term query)]

PF/Tijah creates a full-text index on top of Pathfinder’s pre/post encod-
ing of XML files [5]. Instead of assigning a pre-order value to complete text-
nodes as done by the Pathfinder, the Tijah full-text index enumerates each single
term. Both the Pathfinder encoding and the separate full-text index are held in
database tables. An “inverted” table is created by clustering the table (pre-order
values) on tag- and term ID.

PF/Tijah does not use top-k query processing strategies. Neither tag-term
pairs nor scores are precalculated or indexed in order avoid redundancy on the
one hand, and to allow at query time the application of arbitrary ranking func-
tions on the other hand. The applied ranking function is specified in PF/Tijah
for each single query. Furthermore, PF/Tijah’s containment join operator re-
lies on input sorted in document order. Node sequences sorted on score order
as they are typically accessed in the top-k query processing framework do not
match this requirement. PF/Tijah does not implement any caching strategy it-
self. However, the underlying database system tries to make use of the operating
system’s caching functionalities.

2.1 Submissions

We submitted in total 4 runs, 1 “article” ranking and 3 “thorough” element
rankings. Since PF/Tijah does not support top-k query processing, all submitted
runs return the complete set of the 1500 highest ranked elements for each query.
The applied ranking function for all submissions follows the language modeling
framework for retrieval. The so-called NLLR, normalized logarithmic likelihood
ratio, compares for each query term its distribution within element and query
model. The ranking aggregates single term scores on the level of scored elements.
Query terms marked by a leading ‘-‘ to indicate that they should not occur in
relevant elements were removed from the queries, since PF/Tijah currently does
not support this feature. For the same reason, phrases were treated as normal
query terms only.

For repeatability we report here the complete XQuery that was used to pro-
duce the ranking in PF/Tijah. The XQuery below was generated for Topic 856.
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The individual queries only substitute the inside NEXI string accordingly. The
costly function call producing the required INEX path string was omitted when
running time measurements, since it does not reflect the retrieval performance
itself:

declare function INEXPath($n as node()) as xs:string
{

let $paths :=
for $a in $n/ancestor-or-self::*
where local-name($a) ne "docs"
return if (local-name($a) eq "article")

then concat(local-name($a),"[1]")
else concat(local-name($a),"[",

string(1 + count($a/preceding-sibling::*
[local-name() eq local-name($a)])),"]")

return string-join($paths, "/")
};

let $opt := <TijahOptions returnNumber="1500" ir-model="NLLR"
prior="NO_PRIOR" txtmodel_returnall="FALSE"/>

let $nexi := "//article//body[about(.//section//p, State Park) and
about(.//section//title, Geology) and
about(.//section//title, Geography)]
//figure[about(.//caption, Canyon)]"

return <topic id="856"> {
for $res at $rank in tijah:queryall($nexi, $opt)
return <result><file> {

concat("",$res/ancestor-or-self::article/name/@id)}</file>
<path>{INEXPath($res)}</path>
<rank>{$rank}</rank></result> }

</topic>

For the article ranking we automatically created NEXI queries by substitu-
tion of the placeholder ?CO-TITLE? below with the content-only (CO) field of
the query topic:

//article[about(., ?CO-TITLE?)]

The run should show how our XML retrieval system performs when used as a
standard document retrieval system.

In contrast, the “thorough” element rankings use the content-and-structure
(CAS) field of each query topic. The first “thorough” run, called star-strict,
executes the unmodified CAS query as provided in the query topic. The final
two runs perform a slight modification. Since the new PF/Tijah system is tuned
towards queries starting with a tag-name selection rather than searching in all
element nodes, we translated queries starting with the pattern

//*[about(., terms)]...
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to

//(article|section|p)[about., terms)]...

The runs based on this modification are called asp-strict and asp-vague. The
distinction between both is explained in the following.

Thinking in terms of XPath, the base of the NEXI language, the scoring pred-
icates [about(., terms)] are first of all evaluated to a boolean value, causing
those elements to pass that satisfy the query. If the predicates are translated to
a scoring operator in the algebra tree, that only assigns scores to all elements,
the predicate becomes obsolete as a filter and the side effect of the predicate
evaluation, the score assignment, has become the primary aim. This is clearly
not the only possible query interpretation. We can require that an element has
to reach a certain score threshold in order to satisfy the predicate condition.
The least strict setting of such a threshold would be to filter out all zero scored
element. In other words, the about function would assign a true value to all
elements that contain at least one of the query terms. For a query of the form

//article[about(., xml)]//p[about(.,ir)]

strict semantics will pass only those articles that match the keywords of the
first about, whereas vague semantics also considers results of paragraphs about
“ir” that are not occurring within articles about “xml”. The two submitted runs,
asp-strict and asp-vague, compare the different query interpretation with respect
to retrieval quality and performance.

2.2 Results

Test System setup The test system used for all time measurements in this ar-
ticle was an INTEL Core2 Quad machine running on 2.4 Ghz with 8 GB main
memory. The necessary index structures could hence be held in memory, but not
in the considerably smaller CPU caches. Queries were executed sequentially. For
time measurements, we omitted the generation of the INEXPath as mentioned
above and stored only node identifiers instead. We measured the full execution
of the query, including the query compilation phase.

run avg time sum time min time max time
article 0.702 399 0.327 11.814
star-strict 17.186 9762 0.324 330.495
asp-strict 2.306 1310 0.324 52.388
asp-vague 8.213 4665 0.444 1235.572

Table 1. Execution time overview in sec

Table 1 shows an overview on the execution times of the different runs. The
article ranking is obviously faster on average than the three other runs evaluating
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the CAS query. Since some CAS queries in the query set issue a simple fielded
search, it is not surprising that the minimal execution time stays almost the
same for all runs. Looking at the average and maximal execution time for a
single query, we observe, however, huge differences. Most of the time differences
can be attributed to queries that contain the pattern //* in the NEXI path.
If a posting list of a certain tagname is fetched from the inverted index, the
system guarantees the pre-order sortedness of the list, which is required for the
subsequent containment evaluation. Fetching the entire inverted index, however,
will not return a pre-order sorted element list, and therefore requires a resorting
of the entire node set. The difference becomes apparent when comparing the
execution times of the two runs star-strict and asp-strict. Even the expensive
substitute pattern selecting all article, section, and p nodes shows still a
better performance.

Evidently, the application of strict query semantics yield a better query per-
formance. The average total execution is around 4 times faster than in the case of
a vague interpretation. The early filtering on intermediary result sets especially
helps on highly structured queries. Consequently, we observe similar minimal ex-
ecution times but clear differences when looking at the highest times measured
for evaluating a single query. The differences of the two query interpretations
needs to be studied as well in terms of retrieval quality.

run MAiP iP[0.10] iP[0.5] iP[0.01]
article 0.1839 0.3346 0.3689 0.4272

MAP P@0.10 P@0.5 P@0.01
star-strict 0.0169 0.0471 0.1029 0.2415
asp-strict 0.0136 0.0294 0.1008 0.2674
asp-vague 0.0141 0.0357 0.1120 0.2653

Table 2. Retrieval quality presented in official measures

Table 2 reports the official measurements used in the efficiency track, which
differ for “article” and “thorough” run submissions. Therefore, we can only com-
pare our three “thorough” runs. The substitution of //*-queries sacrifices recall
but not early precision. The two asp runs even yield a slightly higher precision
on top of the ranked list. Comparing the strict and vague semantics we observe
as expected a better retrieval quality when applying the vague “andish” inter-
pretation. The differences, however, stay again small when looking at the top of
the retrieved list.

3 Entity Ranking

The INEX entity ranking task searches for entities rather than articles or ele-
ments with respect to a given topic. With entities we mean here unique instances
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of a given type, such as “Hamburg” and “München” being an instance of type
“German cities”. For a given query topic such as “hanseatic league” and target
entity type “German cities” a good entity retrieval system should return “Ham-
burg”, but not “München” since it is off topic, or “Novgorod” since it is not a
German city.

The target type is given as a Wikipedia category in the INEX task. Fur-
thermore, each retrieved entity needs to have its own article in the Wikipedia
collection. Obviously, this decision is only suitable for entity ranking within an
encyclopedia, where we can assume that most mentioned entities in fact have
their own entry. In consequence, a baseline ranking is achieved by a straight-
forward article ranking on the Wikipedia corpus combined with an appropriate
category filtering mechanism.

The INEX task further provides a few relevant example entities for each query
topic. The given entities can be used as relevance feedback to improve the initial
text query or to redefine the set of target categories. Another application for the
example entities comes with the list completion task. This task asks to derive
appropriate target categories automatically from the given relevant entities.

Our main aim for this year’s track participation was to express entity ranking
queries completely in the XQuery language. Hence, we wanted to show that
PF/Tijah is “out of the box” able to express and evaluate complex entity ranking
queries with a high retrieval quality. One preprocessing step, however, turned out
to be unavoidable. The INEX wikipedia corpus comes without category tagging
in the provided XML format. Instead, the categorization of all articles is provided
by separate plain text files. In order to unify all given information, we integrated
the category tagging in the XML corpus itself as shown in the following example:

<article><name id="13467">Hamburg</name>
<body>....</body>
<category id="5654">cities in germany</category>
<category id="52414">port cities</category>

</article>

Next to the title keywords, target categories, and relevant entities provided
with each search topic, we generated for each search topic an additional list of
relevant derived categories. Namely those categories assigned to the specified
relevant entities. The derived relevant categories are used as mentioned above
for refinement of the target categories as well as for the list completion task:

for $topic in doc("topics.xml")//inex topic

let $relevant entities := $topic//entity/@id

return collection("wikipedia")//

article[name/@id =

$relevant entities]//category/@id

3.1 Submissions

We submitted in total 6 runs, 4 runs for the entity ranking task, and 2 list
completion submissions. The submissions can also be divided into 3 runs based
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solely on a direct article ranking, and 3 other runs using also the scores of
adjacent articles in the link graph.

We start by describing the direct article rankings. The ranking and category
filtering is performed by a single XQuery, which is shown below. The fields fields
?QID?, ?QTERMS?, ?CATS?, ?DERIVEDCATS? were substituted according to the
given query topic:

(: part1 - retrieval :)
let $query_num := "?QID?"
let $q_terms := tijah:tokenize("?QTERMS?")
let $opt := <TijahOptions ir-model="LMS" returnNumber="1000"

collection-lambda="0.5"/>
let $nexi := concat("//article[about(.,", $q_terms, ")]")
let $tijah_id := tijah:queryall-id($nexi, $opt)
let $nodes := tijah:nodes($tijah_id)

(: part2 - determine target categories :)
let $targetcats := distinct-values(((?CATS?), (?DERIVEDCATS?)))

(: part3 - filtering and output generation :)
for $a at $rank in $nodes
let $score := if ($a//category/@id = $targetcats)

then tijah:score($tijah_id, $a)
else tijah:score($tijah_id, $a) * 0.0000001

order by $score descending
return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "ER_TEC"), " ")

The presented XQuery ranks in the first part all articles of the Wikipedia col-
lection according to the topic of the query. We applied here a standard language
modeling retrieval model with the smoothing factor set to λ = 0.5. Moreover,
the result set was limited to the top 1000 retrieved articles.

The second part determines the target categories. Whereas our first run
ER TC uses only the categories provided with the query topic, the second run
ER TEC refines the target category set by uniting the given and derived cat-
egories as shown in the query. The list completion LC TE, on the other hand,
uses only the derived but not the given categories.

The final part performs the actual filtering and required TREC-style output
generation. Notice that the applied filtering in fact only performs a reordering
and does not remove articles from the ranked list. Last year’s experiments had
clearly shown that the reordering comes with a higher recall compared to the
filtering technique.

The other 3 runs ER TC idg, ER TEC idg, LC TE idg exploit the retrieval
scores of adjacent nodes and follow otherwise a symmetrical experiment schema
with respect to the used target categories. The underlying idea behind the ex-
ploitation of link structure is adopted from other entity ranking tasks such as ex-
pert finding, where we typically find a number of topical relevant documents that
mention relevant entities, but entities do not have a textual description them-
selves. A sample cutout of such a graph is visualized in Figure 1. The edges here
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symbolize containment of entities within documents. Entities are then ranked
by a propagation of scores from adjacent documents.

Although entity ranking on the Wikipedia corpus is different since entities
are represented by their own articles and have a text description themselves, it
still often occurs the articles outside the target category carry valuable infor-
mation for the entity ranking. Recall the above given example query searching
for German cities in the hanseatic league. We will find Wikipedia entries about
the history of the hanseatic league listing and linking to all major participat-
ing cities. While such article remains outside the target category, the links to
relevant city pages are of high value for the ranking. Especially, when a city’s
description itself does not reach far enough into history. We developed last year a
ranking method matching this condition [6]. The personalized weighted indegree
measure tries to combine the article ranking itself w(e|q) with the ranking of
other Wikipedia entries w(e′|q) linking entity e:

PwIDG(e) = µw(e|q) + (1− µ)
∑

e′∈Γ (e)

w(e′|q) (1)

A corresponding indegree score computation can be expressed as well in
XQuery. The below shown query part substitutes the score computation in the
previous entity ranking example and sets the parameter µ to 0.85:

for $a at $rank in $nodes
let $in_score := sum(

for $l in $nodes//collectionlink[@*:href =
concat($a/name/@id, ".xml")]

let $source_article := exactly-one($l/ancestor::article)
return tijah:score($tijah_id, $source_article)

)
let $score := if ($a//category/@id = $targetcats)

then 0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score
else (0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score)

* 0.0000001
order by $score descending
return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "1_cirquid_ER_TEC_idg"), " ")

Fig. 1. Part of a link graph containing entities ei and other documents dj
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Notice that each link between two entities is counted separately here. We
tested before a version of the query that establishes only one link between two
entities e1 and e2 even if e1 links e2 multiple times. Initial tests on last years
data indicated, however, a higher retrieval quality for the above presented query.

3.2 Training

We trained the parameter µ on the data of last year’s entity ranking task. For
the chosen relevance propagation method a setting of µ = 0.85 showed the best
performance with respect to precision on top of the retrieved list as well as for
mean average precision:

µ 0.8 0.85 0.9 0.95
MAP 0.3373 0.3413 0.3405 0.3349
P5 0.4435 0.4435 0.4304 0.4348
P10 0.3739 0.3783 0.3717 0.3630

3.3 Results

The results will be shown in the final version of this paper, but have not been
evaluated at the time writing the notebook paper.

4 Conclusions

We demonstrated with this article the flexibility and effectiveness of the cho-
sen approach to integrate the retrieval language NEXI with the database query
language XQuery. The PF/Tijah system allows to express a wide range of INEX
experiments without changes to the system itself. Often time consuming pre- and
post-processing of data is not necessary or reduced to simple string substitutions
of query terms for each given query.

Although PF/Tijah does not apply top-k query processing techniques, it
shows a good performance on a wide range of NEXI queries. Future develop-
ments should address the currently bad supported retrieval on the entire node
set, issued by //*-queries.

The INEX entity ranking task demonstrates how standard retrieval functions
can be applied to non-standard retrieval tasks with the help of score propagation
expressed on the XQuery level. A combined DB/IR system as PF/Tijah can
demonstrate here its full advantage.
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Abstract. For the INEX Efficiency Track 2008, we were just on time to fin-
ish and (for the first time) evaluate our brand-new TopX 2.0 prototype. Comple-
menting our long-running effort on efficient top-k query processing on top of a
relational back-end, we now switched to a compressed object-oriented storage
for text-centric XML data with direct access to customized inverted files, along
with a complete reimplementation of the engine in C++. Core of the new en-
gine is a multiple-nested block-index structure that seamlessly integrates top-k-
style sorted access to large blocks stored as inverted files on disk with in-memory
merge-joins for efficient score aggregations. The main challenge in designing
this new index structure was to marry no less than three different paradigms in
search engine design: 1) sorting blocks in descending order of the maximum el-
ement score they contain for threshold-based candidate pruning and top-k-style
early termination; 2) sorting elements within each block by their id to support
efficient in-memory merge-joins; and 3) encoding both structural and content-
related information into a single, unified index structure. Our INEX 2008 ex-
periments demonstrate efficiency gains of up to a factor of 30 compared to the
previous Java/JDBC-based TopX 1.0 implementation over a relational back-end.
TopX 2.0 achieves overall runtimes of less than 51 seconds for the entire batch of
568 Efficiency Track topics in their content-and-structure (CAS) version and less
than 29 seconds for the content-only (CO) version, respectively, using a top-15,
focused (i.e., non-overlapping) retrieval mode—an average of merely 89 ms per
CAS query and 49 ms per CO query.

1 Introduction

The database group (Department 5) at the Max-Planck-Institut Informatik traditionally
is very interested in applying efficient database technology to challenging information
retrieval tasks. Our most recent XML-IR search engine, TopX [10], has meanwhile be-
come a mature and well established, default search engine for the topic development
phase in the INEX Ad-hoc Track and also serves as Webservice endpoint for the In-
teractive Track. Thus a natural step forward was to focus in more detail on efficiency
aspects in XML-IR for the new INEX 2008 Efficiency Track.

TopX is a native IR-engine for semistructured data with IR-style, non-conjunctive
(aka. “andish”) query evaluations, which is particular challenging for efficient XPath-
like query evaluations because of the huge intermediate set of candidate result elements,
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i.e., when any XML element matching any of the query conditions may be a valid result.
In this “andish” retrieval mode, the result ranking is solely driven by score aggregations,
while the query processor needs to combine both content-related and structural aspects
of so-called content-and-structure (CAS) queries into a single score per result element.
Here, high scores for some query dimensions may compensate weak (even missing)
query matches at other dimensions. Thus, the query processor may dynamically relax
query conditions if too few matches would be found in a conjunctive manner, whereas
the ranking allows for the best (i.e., top-k) matches be cut-off if too many results would
be found otherwise. These query evaluations are more difficult to evaluate than typical
DB-style conjunctive queries, as we can no longer use conjunctive merge-joins (corre-
sponding to intersections of index list objects), but we need to find efficient ways of
merging index lists in a non-conjunctive manner (corresponding to unions of index list
objects, or so-called “outer-joins” in DB terminology). Top-k-style evaluation strategies
are crucial in these XML-IR settings, not only for pruning index list accesses (i.e., phys-
ical I/O’s) but also for pruning intermediate candidate objects that need to be managed
dynamically in memory at query processing as early as possible. Pruning also the lat-
ter in-memory data structures is particularly beneficial for good runtimes if CPU-time
becomes a dominating factor, e.g., when XPath evaluations are costly, or when many
index lists already come from cache.

TopX 2.0 combines query processing techniques from our original TopX 1.0 proto-
type [11, 10] and carries over ideas for block-organized inverted index structures from
our IO-Top-k algorithm [1] to the XML case. The result is a novel, object-oriented stor-
age (albeit our index objects have a very regular structure) for text-oriented XML data,
with sequential, stream-like access to all index objects. Just like the original engine,
TopX 2.0 also supports more sophisticated cost-models for sequential and random ac-
cess scheduling along the lines of [6, 7, 10]. In the following we focus on a description
of our new index structure and its relation to the element-specific scoring model we
propose, while the non-conjunctive XPath query processor remains largely unchanged
compared to TopX 1.0 (merely using merge-joins over entire index blocks instead of
per-document hash-joins). Moreover, the TopX core engine has been refurbished in the
form of a completely reimplemented prototype in C++, with carefully designed data-
structures and our own cache management for inverted lists, also trying to keep the
caching capabilities of modern CPU’s in mind for finding appropriate data structures.

2 Scoring Model

We refer the reader to [10] for a thorough discussion of the scoring model, while we
merely aim to briefly review the most important concepts here. Our XML-specific ver-
sion of Okapi BM25 has proven to be mature and effective (and therefore remained
unchanged, compare to, e.g., [3]) during four years of INEX Ad-hoc Track participa-
tions. It allows for the exact precomputation of fine-grained scores for the major build-
ing blocks of a CAS query—tag-term pairs in our case—with specific scores for each
element-type/term combination. Computing individual weights for tag-term pairs intro-
duces a certain factor of redundancy compared to a plain per-article/term scoring model,
as each term occurrence is recursively propagated “upwards” the document tree, and its
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frequency is then aggregated with more occurrences of the same term (thus treating
each XML element in the classic IR notion of a document).

This volitional redundancy factor for materializing the scoring model (formally de-
fined below) corresponds to about the average depth of a text node in the collection,
while we aim to compensate the storage and I/O overhead through index compression,
a novel feature for TopX 2.0. With the customized compression scheme described in
Section 3, we clearly focus on good decoding performance, rather than on a maximum-
possible compression rate that would possibly put an overly high load on the CPU at
query processing time, in order to keep the overhead for the CPU low and the sequen-
tial throughput high when reading large, compressed blocks from disk. In the following,
we distinguish between content scores, i.e., scores for the tag-term pairs of a query, and
structural scores , i.e., scores assigned to additional navigational tags as they occur in
longer path conditions or branching path queries.

2.1 Content Scores

For content scores, we make use of element-specific statistics that view the full-content
of each XML element (i.e., the concatenation of all its descending text nodes in the
entire subtree) as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in node n, which is the number
of occurrences of t in the full-content of n;

2) the tag frequency, NA, of tag A, which is the number of nodes with tag A in the
entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A, which is the number
of nodes with tag A that contain t in their full-contents in the entire corpus.

The score of a tag-term pair of an element e with tag A with respect to a content con-
dition of the form //T[about(., t)] (where T either matches A or is the tag
wildcard operator ∗) is then computed by the following BM25-inspired formula:

score(e,T[about(., t)]) =
(k1 + 1) ftf(t, e)

K + ftf(t, n)
· log

(
NA − efA(t) + 0.5

efA(t) + 0.5

)

with K = k1

(
(1− b) + b

∑
t′ ftf(t′, e)

avg{
∑

t′ ftf(t′, e′) | e′ with tag A}

)

We used the default values of k1 = 1.25 and b = 0.75 as Okapi-specific tuning
parameters (see also [4] for tuning Okapi BM25 on INEX). Note that our notion of tag-
term pairs enforces a strict evaluation of the query conditions, i.e., only those elements
whose tag matches the query tag get a non-zero score.

For a query content condition with multiple terms, the score of an element satisfy-
ing the tag constraint is computed as the sum of the element’s content scores for the
corresponding content conditions, i.e.:
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score(e,//T[about(., t1 . . . tm)]) =
m∑

i=1

score(e,//T[about(., ti)])

Note that content-only (CO) queries have not been in the primary focus when defin-
ing this scoring function, but keyword conditions as sub-conditions of structural queries.
CO queries are therefore evaluated with the tag wildcard operator “*” which matches
any tag. The score for a “*”-term pair then is the same as the score for the original tag-
term pair. Hence an XML document yields as many “*”-tag matches as there a distinct
tags that also match the term condition, possibly with a different score each.

2.2 Structural Scores

Given a query with structural and content conditions, we transitively expand all struc-
tural query dependencies. For example, in the query //A//B//C[about(., t)]
an element with tag C has to be a descendant of both A and B elements (where branching
path expressions can be expressed analogously). This process yields a directed acyclic
query graph with tag-term conditions as leaves, tag conditions as inner nodes, and all
transitively expanded descendant relations as edges.

Our structural scoring model essentially counts the number of navigational (i.e., tag-
only) conditions that are completely satisfied by the structure a candidate element and
assigns a small and constant score mass c for every such tag condition that is matched.
This structural score mass is then aggregated with the content scores, again using sum-
mation. In our INEX 2008 setup, we have set c = 0.01, whereas content scores are
normalized to [0, 1]. That is, we emphasized the relative weights of content conditions
much more than in previous INEX years, where we used a structural score mass of
c = 1.0. This reflects both, effectiveness aspects for the Wikipedia collection and
the new passage-based metrics, where structural constraints in CAS queries are even
more of a mere hint than in the previous collections and years, as well as efficiency
aspects, where unmatched structural conditions can more easily be compensated by
high content-related score which leads to earlier pruning of result element with weak
content-related matches.

3 Index Structures

Just like in the original TopX 1.0 prototype, our key for efficient query evaluation is
a combined inverted index for XML full-text search that combines content-related and
structural information of tag-term pairs, as well as a smaller structure-only index that
lets us evaluate additional tag conditions of a CAS query. These two index structures
directly capture the scoring model described in the previous Section 2. For both in-
dex structures, XML elements (matching a given tag-term pair or an individual tag,
respectively) are grouped into so-called element blocks of elements that share the same
tag, term, and document id. Novel for TopX 2.0 is a second level of nesting, where
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element blocks are in turn grouped into larger, so-called document blocks, with ele-
ment blocks being sorted in ascending order of their document id within each docu-
ment block, which allows for efficient m-way merge-joins between document blocks
when evaluating multi-dimensional queries. Top-k-style index pruning is further sup-
ported by sorting the document blocks in descending order of their maximum element-
block score. By default, TopX uses a pre-/post-order/level-based labeling scheme [8,
2] to capture the structural information, which proved to be superior to, for-example,
Dataguide-based techniques over heterogeneous collections such as INEX-Wikipedia
and/or typical NEXI-style CAS queries that heavily make use of the descendant axis.
Note that we may skip the level information when using the NEXI-style descendant
axis only, and we thus focus on (pre, post, score) triplets in the following. In sum-
mary, TopX maintains two separate inverted files:

– the content index that stores, for each tag-term pair, all elements with that tag that
contain the term, including their BM25-based relevance score and their pre- and
post labels.

– the structure index that stores, for each tag, all elements with that tag, including
their pre- and post label.

Both inverted files come with disk-based dictionaries to find the offset into the file
where the entries for a tag-term pair or a tag start. Similarly to the scoring model de-
scribed earlier, the focus when designing this index structure were CAS queries (in fact,
more general XPath full-text queries with support for all 13 different XPath axes). For
INEX, CO queries can be managed as a special case of the above indexing strategy,
using a virtual “*” tag for each XML element that matches the term condition. Manag-
ing individual tag-term pairs as well as the “*”-term pairs separately within the same
inverted file as materialized block-index however requires a replication and regrouping
of all element blocks into their “*” element structure (resulting in a redundancy factor
of roughly 2). Note that the structural index may naturally be skipped if we were to
process CO queries only.

Besides these two inverted files, TopX provides additional disk-based dictionaries
(with random access by document/element id) that are needed to post-process query
results for creating the output format of INEX runs:

– the document index that stores, for each document id, document metadata such as
its file id and its complete URL (used to identify the document in an INEX run).

– the path index that stores, for each element, a canonical XPath expression of that
element within the document (used to identify the element in an INEX run).

All dictionaries are implemented as persistent hash tables that are read on-demand and
then largely cached in-memory [9]. In the following we focus on the inverted index
structures mentioned above.

3.1 Previous Relational Encoding

TopX uses tuples of the format (tag, term, docid, pre, post, score, maxscore) as basic
schema for the content index, and (docid, tag, pre, post) for the structure index, respec-
tively. Note that maxscore is the maximum score per document id docid, element id
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pre, tag, and term, which is needed to enforce a respective grouping of tuples into the
element block structure in a relational schema with sorted access in descending order of
maxscore [11]. To illustrate the redundancy that arises from a relational encoding of
this multi-attribute schema, we quickly review the previous DB schema used in TopX
1.0 that is highly redundant in two orthogonal ways: first, because of the materializa-
tion of the scoring model discussed above, with a different score for each tag and term;
and second, because of the frequent repetition of attributes (used as keys) required for
a relational encoding. Here, a denormalized schema is necessary to implement efficient
sorted (i.e., sequential) access to element blocks stored in descending order of their
maxscore in a database table. In typical DBMS’s, B+-trees are the method of choice
for such an index structure with precomputed blocks and sorted access to leaf nodes
via linked lists (pointers to other leaf blocks). Note that some DBMS’s support the use
of so-called Index-Only-Tables (IOT’s) to store the entire table directly as a B+-tree.
Assuming a simple 32-bit (i.e., 4-byte) based encoding of integers for the docid, tag,

Content!Index Structure!Index

(4+4+4+4+4+4+4)!bytes X 567,262,445!tag!term"pairs

16"GB

(4+4+4+4)!bytes X 52,561,559 tags

0.85"GB

Fig. 1. Relational encoding and rough space consumption for TopX 1.0 on INEX-Wikipedia

term, pre, post attributes and 32-bit floating-point numbers for score and maxscore,
we get a rough space consumption of 16 GB for the more than 560 million tag-term
pairs and 0.85 GB for the more than 50 million tags we extract from INEX-Wikipedia,
respectively (see also Section 5). This corresponds to an index blowup of a factor of
about 4 compared to the 4.38 GB of XML sources for this collection.

Thus, a better approach is to keep the volitional redundancy that arises from our fine-
grained scoring model but to encode this into a customized block structure that avoids
the redundancy that is due to the relational encoding. These blocks are stored directly
on disk in the spirit of a more compact object-oriented storage—however with very reg-
ular object structure. Our goal is to compress the index to a sensible extent, thus to save
CPU time by keeping the fully precomputed scoring model over tag-term-pairs (with
element-specific scores of terms), but to use moderate compression techniques to keep
the index size at least similar to the overall size of the original XML data and thus to
also spare I/O costs. We aim at highly efficient decompression techniques to spare valu-
able CPU time needed for top-k-style candidate queuing and non-conjunctive XPath
evaluations during the actual TopX query processing. Also, the maxscore attribute can
be spared altogether in an object-oriented storage.
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3.2 Content Index

TopX 2.0 maintains a single, binary inverted-file for content constraints, coined content
index, whose structure is depicted in Figure 2. Here, the content index consists of in-
dividual index lists for two example tag-term pairs //sec[about(.,‘‘XML’’)]
and //title[about(.,‘‘XML’’)], along with their respective file offsets. These
are further subdivided into histogram, document, and element blocks.
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…
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L

…
B!– Block!Separator
L!!– List!Separator

Fig. 2. Inverted and nested block structure of the content index for TopX 2.0

Index Lists. Index lists are the largest units in our index structure. For the structural
index, an index list contains all tag-term pairs of elements contained in the collection
(whereas for the content index, an index list contains all the elements’ tags that occur in
the collection). Sequential and random access to these inverted files is implemented by
two auxiliary dictionaries each (see below). The physical end of an index list is marked
by a special list separator byte L to prevent the engine from jumping into the next list
when an index list has been entirely scanned.

Element Blocks. Each element block consists of a header, which contains the docu-
ment’s id (docid), and one or more entries of (pre, post, score) triplets, where each
triplet corresponds to one element within that document that contains the tag-term pair.
For efficient evaluation of queries with structural constraints, each entry in an element
block consists not only of the element’s id (which corresponds to its pre value) and
score, but also encodes the post attribute, i.e., the entire information to locate and score
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an element within the XML document. Element block sizes are data-dependent, i.e., an
element block contains as many (pre, post, score) triplets as there are XML elements
in the document that match the term condition. The physical end of an element block is
marked by a reserved separator byte B that indicates the beginning of the next document
block.

Document Blocks. As opposed to element blocks, the size of a document block is a
configurable parameter of the system and merely needs to be chosen larger than the
size of the largest element block. The sequence of document blocks for a tag-term pair
is constructed by first computing, for each element block, the maximal score of any
element in that block. Within a document block, element blocks are then resorted by
document id, to support efficient merge joins of other element blocks with the same
document id (as opposed to the hash-joins needed in TopX 1.0). This sequence of ele-
ment blocks is grouped into document blocks of up this fixed size, and the document
blocks are then sorted by descending maximum element-block score, i.e., the maxi-
mum maxscore among all element blocks they contain. Block sizes can be chosen
generously large, typically in the order of 256–512KB, and block accesses are counted
as a single I/O operation on disk. A document block ends as soon as adding another
element block would exceed such a 256KB block boundary. The next document block
then again contains element blocks with similar maxscore sorted by descending docu-
ment id docid. The physical end of document block is marked by an additional (second)
separator byte B.

Histograms. To support probabilistic pruning techniques [12, 11, 10] and more sophis-
ticated cost models for random access scheduling [1], the inverted file can include his-
tograms that allow us to estimate, for a given tag-term pair, how many documents have
a maximal score below or above a certain value. We use fixed-width histograms with a
configurable number h of buckets. For a given tag-term pair, bucket i stores the num-
ber of documents whose maximal score is in the interval [1− i−1

h ; 1− i
h [. bounds can

be derived from h and i) for tag-term pairs with at least two document blocks, as his-
tograms are only used to decide how many blocks should be read beyond the first block.
For these tag-term pairs, the dictionary entry points to the beginning of the histogram
instead of the first document block. (As most lists fit in a single document block, most
lists do not have a histogram at their front. Lists with a histogram (for which we need
to decode the histogram first) start with the separator byte B to distinguish a histogram
block from a regular document block.

Auxiliary Access Structures. TopX maintains an additional, hash-based and persistent
dictionary [9] to store the offset, for each tag-term pair, in the above binary inverted
file, pointing to where the first document block in the inverted list for that tag-term pair
starts for sorted access (SA). The dictionary itself is addressed via random access only,
similarly to a hash-index in a DBMS, using a 64-bit hash of the tag-term condition as
key and fetching the offset from the structural index as 64-bit value. This dictionary is
usually small enough to fit mostly in main memory, allowing for a very efficient access
to the file offsets.
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A second such file-based dictionary can optionally be maintained to find the right
offset for random accesses (RA) to document blocks, using 64-bit hashes of tag-term
pair plus document id as key in this case. This dictionary returns the offset into the
binary inverted file pointing to where the corresponding document block within the
inverted list of that tag-term pair starts. Note that documents that occur in the first
document block for a tag-term pair do not have to be kept in this index as the first
block is always read with sorted access anyway and hence never is a candidate for
random accesses. This keeps this second dictionary reasonably small, since the major
amount of index lists does not exceed the first document block when the document block
sizes are chosen reasonably large (e.g., 256 KB or more). To support both sequential
and random access to both the structure and content indexes, we thus need four such
dictionaries. Without random access scheduling, TopX can deal with as little as two
compact dictionaries for accessing the inverted files.

3.3 Structure Index

TopX maintains a similar inverted file to store, for a given tag, all elements with that
tag name, along with their pre and post labels. The overall structure of this file, coined
structure index, is similar to that of the inverted file for content constraints—a sequence
of document blocks for each tag, which in turn consist of a sequence of element blocks
corresponding elements to one document each. Each element block consists of one pre-
/post-order entry for each element in the document with this tag. Note that there is no
score of these entries, as scores for structural constraints are constant and can therefore
be dropped from the index. No histogram headers are needed in this index structure for
the same reason. In contrast to the content index, element blocks are simply stored in
ascending order of document id. For processing CAS queries, structural index lookups
are merely used as “soft filters” to aggregate additional score mass if a tag condition is
matched.

For the sorted access (SA) entry points, a dictionary stores, for each tag, the offset
to the first document block in the inverted file for this tag. Analogously to the content
index, another optional dictionary can be used to also support random access (RA)
to this structural index. This stores, for each tag and document id, the offset to the
document block that contains the document’s element block, if such a block exists.

3.4 CPU-friendly Compression

Switching from a relational encoding to a more object-oriented storage already reduces
the index size down to about 8 GB—less than half the size needed for a relation schema
but still almost twice as much as for the XML source files. Fast decompression speed
and low CPU overhead is more important than a maximum-possible compression ratio
for our setting. Moreover, with the large number of different attributes we need to en-
code into our block index, we do not assume a specific distribution of numbers, e.g.,
with most numbers being small, which rules out Huffman or Unary codes. We also in-
tentionally avoid more costly compression schemes like PFor-Delta (compare to [13])
that need more than one scan over the compressed incoming byte stream (not to men-
tion dictionary-based techniques like GZip and the a-like). We thus employ different
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(simple) compression techniques for different parts of the index based on variations of
delta and variable-length encodings requiring only linear scans over the incoming byte
stream, thus touching each byte fetched from disk only exactly once.

Within each document block, there is a sequence of element blocks which are or-
dered by document id. Here, we exploit the order and store, instead of the document id
of an element block, the delta to the document id of the previous block. This value is
compressed with a variable-byte compression scheme. Within each element block, we
first sort the entries by their pre value. We can now use delta encoding for the pre val-
ues to save storage space for smaller numbers. However, many element blocks contain
just a single entry, so delta encoding alone is not sufficient. For most short documents,
values of pre and post attributes are small (i.e., they can be stored with one or two
bytes), but there may still be some values which require three bytes. We therefore en-
code these values with a variable number of bytes and use an explicit length indicator
byte to signal the number of bytes used for each entry. Scores on the other hand are
32-bit floating point numbers between 0 and 1, but storing them in this format would
be far too precise for our needs. Instead, we designate a fixed number of bytes to store
such a score and store, instead of a floating point value s, the corresponding integer
value

⌊
s · 28

⌋
(if we use a single byte), or

⌊
s · 216

⌋
if we use two bytes. These integer

values are then stored with a variable number of bytes, where the actual number of bytes
needed is again stored in the encoding byte of the entry.

To further reduce space consumption, we write each (pre, post, score) triplet within
an element block into a single code sequence, allowing us to use even less than one
byte per attribute if the numbers are small. Using a fixed precision of only 6 bits for the
score attribute and up to 13 bits for the pre and post attributes, we only need a single
length-indicator byte per triplet. If pre and post exceed 213 = 8, 196, we can switch
to two bytes per length indicator. Histogram entries are also stored as delta-encoded,
variable-length integer numbers. They can be further compressed by cutting off the
bucket sequence when only empty buckets with zero frequency follow.

3.5 Index Construction

The construction of the inverted files leverages well-known techniques from the con-
struction of inverted files in text retrieval. The construction process operates in three
different phases:

– Parsing the document collection, using a standard XML DOM parser, and gener-
ating a list of (docid, tag, term, pre, post, ftf) tuples in a temporary file, which
will later be used to create the content index. All ftf values are computed on-the-
fly when a document is parsed. At the same time, a second intermediate text file
is created with (docid, tag, pre, post) tuples; this will later be transformed into the
structure index. This step additionally fills the auxiliary document and path indexes.

– Materializing the scoring model after parsing is finished and element frequencies
efA and average element lengths are known, the first intermediate file generated in
the previous step, computes the score for each tuple and writes tuples of the form
(tag, term, docid, pre, post, depth, score) to another intermediate file. Here, the
score attribute already contains the final BM25-based content score.
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– Inverting then consists of first sorting the intermediate file generated in the previ-
ous step in (tag, term, docid) order (to keep elements from the same document
together) and then, for each coherent tag-term list, generating the document and el-
ement blocks and entries in the corresponding dictionaries. Additionally, the struc-
ture index is created by sorting the second intermediate file from the first step by
(tag, docid), materializing appropriate document and element blocks, and adding
the corresponding entries to the sorted and random access dictionaries.

4 Caching

In server mode, TopX 2.0 also comes with its own cache management, as opposed to
the previous TopX 1.0 that could only rely on the underlying system’s and DBMS’s
general caching strategies. Index lists (either top-k-style pruned index list prefixes, or
even entire lists) are decoded, and the in-memory data structures are now explicitly
kept as cache for the current and subsequent queries. Once read, they may be reused
for arbitrary amounts of queries without the need to issue repeated I/O’s to the same
lists stored on disk. If TopX 2.0 is compiled and run in a 64-bit server environment, we
may configure it to use generous amounts of memory for the cache. For our Efficiency
Track experiments, we set the maximum cache size to up to 2,048 content and structure-
related index lists, which led to maximum memory consumption of up to about 4 GB
of main memory. For the caching itself, we currently employ a simple least-frequently-
used (LFU) pruning strategy, which keeps the frequently used index lists in memory,
such that for example the entire set of structural index lists used in the benchmark
topics such as article or section quickly come completely from cache after a
few queries are issued.

5 Experiments

5.1 Index Construction and Size

Indexing the INEX Wikipedia corpus [5] consisting of 659,388 XML documents with
TopX yields about 567 million tag-term pairs and about 52 million tags (number of
indexed elements) as depicted in Table 3. The average depth of an element is 6.72 which
is a good indicator for the redundancy factor our scoring model involves. A comparison
of storage sizes for the indexes is also depicted in Figure 3, while the uncompressed
size of the corpus is 4.38 GB. We used no stemming for faster and more precise top-k
runs. Stopwords were removed for the index construction.

All experiments in this paper were conducted on a quad-core AMD Opteron 2.6
GHz with 16 GB main memory, running 64-bit version of Windows Server. Caching
was set to up to 2,048 index lists which resulted in a maximum main memory con-
sumption of about 4 GB during the benchmark execution. All runtimes were measured
over a hot system cache (i.e., after an initial execution of all queries), and then with
varying usages of the TopX 2.0 internal cache (with a C suffix of runs ids indicating
that the internal cache was cleared after each query, and with W indicating that the
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Fig. 3. Comparison of storage space needed for a relational encoding (TopX 1.0) and a more
object-oriented, compressed encoding (TopX 2.0), in GB

Content Index Structure Index
# index objects 567,262,445 (overall tag-term pairs) 52,561,559 (overall tags)
# index lists 20,810,942 (distinct tag-term pairs) 1,107 (distinct tags)
# document blocks 20,815,884 2,323
# element blocks 456,466,649 8,999,193
index size (relational, uncompressed) 16 GB 0.85 GB
index size (object-oriented, uncompressed) 8.6 GB 0.43 GB
index size (object-oriented, compressed) 3.47 GB 0.23 GB
size of dictionary (SA) 0.55 GB 176 KB
size of dictionary (RA, optional) 2.24 GB 0.27 GB

Table 1. Statistics for the content and structure indexes

cache was kept and managed in a LFU manner). Each benchmark run however started
with an empty internal cache.

The size of the RA dictionary is listed here only for completeness, as random-
access scheduling has no longer been used for the TopX 2.0 experiments. Note that
TopX 1.0 heavily relied on random access scheduling to accelerate candidate pruning
because of the relatively bad sequential throughput when using a relational back-end, as
compared to the relatively good random-access caching capabilities of most DBMS’s,
which makes random access scheduling more attractive over a relational back-end. With
plain disk-based storage, we decided to spare random accesses altogether and save the
storage-overhead needed for the random-access structures (typically leading to another
redundancy factor of 2).

Index construction (see Section 3.5) still is a rather costly process, taking about
20 hours over INEX-Wikipedia to fully materialize the above index structure from the
XML source collection—due to our heavy pre-computations but to the benefit of ex-
tremely fast query response times. With our simple yet sufficiently effective compres-
sion scheme, we achieve a compression factor of more than 2 over an uncompressed
storage, which helps us keep the index size in the same order as the original data, in
spite of materializing our highly redundant scoring model. Altogether, we obtain a fac-
tor of 4 less storage space compared to an uncompressed relational encoding.

5.2 Summary of Runs

Table 5.2 summarizes all Efficiency Track runs, using various combinations of Focused
vs. Thorough, CO vs. CAS, as well as top-k points of k = 15, 150, 1, 500, the latter
being the original result size demanded by the Ad-Hoc track. Run names encode the
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following parameter space:
[<Engine>-<Track>-<CO/CAS>-<Top-k>-<Overlap mode>-<(W)arm/(C)old internal cache>]

Run ID iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP AVG MS. SUM MS. #Topics
Focused
TOPX2-Eff08-CO-15-Focused-W 0.4751 0.4123 0.2793 0.1971 0.0726 49.79 28,180 566
TOPX2-Eff08-CO-150-Focused-W 0.4955 0.4520 0.3674 0.3114 0.1225 85.96 48,653 566
TOPX2-Eff08-CO-1500-Focused-W 0.4994 0.4560 0.3749 0.3298 0.1409 239.73 135,688 566
TOPX2-Eff08-CAS-15-Focused-W 0.4587 0.3878 0.2592 0.1918 0.0662 90.99 51,499 566
TOPX2-Eff08-CAS-150-Focused-W 0.4747 0.4282 0.3494 0.2915 0.1094 112.32 63,574 566
TOPX2-Eff08-CAS-1500-Focused-W 0.4824 0.4360 0.3572 0.3103 0.1241 253.42 143,436 566
Thorough
TOPX2-Eff07-CO-15-Thorough-W n/a n/a n/a n/a n/a 70.91 40,133 566
TOPX2-Eff07-CAS-15-Thorough-W n/a n/a n/a n/a n/a 89.31 50,549 566
Focused (cold internal cache)
TOPX2-Eff07-CO-15-Focused-C 0.4729 0.4155 0.2795 0.1979 0.0723 51.65 29,234 566
TOPX2-Eff07-CAS-15-Focused-C 0.4554 0.3853 0.2583 0.1905 0.0655 96.22 54,461 566

Table 2. Effectiveness vs. efficiency summary of all TopX 2.0 runs

The iP and MAiP effectiveness measures reflect the 308 Ad-Hoc topics from INEX
2006–2008 for which assessments were readily available. Only 566 out of 568 topics
were processed due to a rewriting problem that led to empty results for two of the topics.
We generally observe a very good early precision at the lower recall points, which is
an excellent behavior for a top-k engine. Compared to overall results from the Ad-Hoc
Track, we however achieve lower recall at the top-1,500 compared to the best partici-
pants (also due to not using stemming and strictly evaluating the target element of CAS
queries). TopX 2.0 however shows an excellent runtime behavior of merely 49.70 ms.
average runtime per CO and 90.99 ms. average runtime per CAS query. Also, starting
each query with a cold internal cache (but warm system cache) instead of a warm in-
ternal cache consistently shows about 10 percent decrease in runtime performance for
both the CO and CAS modes.
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Fig. 4. Interpolated precision plots of all TopX 2.0 Efficiency Track runs
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5.3 Efficiency Runs By Topic Type

Tables 5.3–5.3 depict the TopX 2.0 performance summaries grouped by topic type. We
see a very good runtime result of only 18.88 ms. average processing time for CO topics
and 48.84 ms. on average per CAS query for the type (A) (i.e., classic Ad-Hoc topics)
and top-15 runs. Also, CO retrieval does not only seem to be more efficient but also
more effective than a respective CAS mode, with a maximum MAiP value of 0.14 for
CO compared to 0.12 for CAS (returning the top-1,500 elements in Focused mode). As
expected, there is a serious runtime increase for type (B) topics, with up to 112 query
dimensions, but only comparably little additional overhead for larger values of k, as
runtimes are dominated by merging the huge amount of index lists here (in fact most
top-k approaches seem to degenerate for high-dimensional queries). Type (C) topics
were very fast for the small value of k = 15 but then showed a high overhead for the
larger values of k, i.e., when returning the top-150 and top-1,500. As no assessments
were available for the 7 type (C) (structure-enhanced) topics, the respective effective-
ness fields are left blank.

Run ID MAiP AVG MS. SUM MS. #Topics
TOPX2-Eff08-CO-15-Focused-W 0.0712 18.88 10,157 538
TOPX2-Eff08-CO-150-Focused-W 0.1234 49.12 26,427 538
TOPX2-Eff08-CO-1500-Focused-W 0.1430 191.27 102,903 538
TOPX2-Eff08-CAS-15-Focused-W 0.0643 48.84 26,276 538
TOPX2-Eff08-CAS-150-Focused-W 0.1094 61.25 32,953 538
TOPX2-Eff08-CAS-1500-Focused-W 0.1249 165.53 89,055 538

Table 3. Summary of all TopX 2.0 Focused runs over 538 type (A) topics

Run ID MAiP AVG MS. SUM MS. #Topics
TOPX2-Eff08-CO-15-Focused-W 0.0915 844.67 17,738 21
TOPX2-Eff08-CO-150-Focused-W 0.1094 1038.90 21,817 21
TOPX2-Eff08-CO-1500-Focused-W 0.1125 1468.67 30,842 21
TOPX2-Eff08-CAS-15-Focused-W 0.0915 1044.71 21,939 21
TOPX2-Eff08-CAS-150-Focused-W 0.1096 1074.66 22,568 21
TOPX2-Eff08-CAS-1500-Focused-W 0.1124 1479.33 31,066 21

Table 4. Summary of all TopX 2.0 Focused runs over 21 type (B) topics

Run ID MAiP AVG MS. SUM MS. #Topics
TOPX2-Eff08-CO-15-Focused-W n/a 41.00 287 7
TOPX2-Eff08-CO-150-Focused-W n/a 58.86 412 7
TOPX2-Eff08-CO-1500-Focused-W n/a 277.57 1,943 7
TOPX2-Eff08-CAS-15-Focused-W n/a 469.42 3,286 7
TOPX2-Eff08-CAS-150-Focused-W n/a 1150.14 8,051 7
TOPX2-Eff08-CAS-1500-Focused-W n/a 3330.71 23,315 7

Table 5. Summary of all TopX 2.0 Focused runs over 7 type (C) topics

6 Conclusions and Future Work

This paper introduces our new index structure for the TopX 2.0 prototype and its ini-
tial evaluation on the INEX 2008 Efficiency Track. TopX 2.0 demonstrates a very good
allround performance, with an excellent runtime for keyword-oriented CO and typical
CAS queries and still good runtimes for very high-dimensional content (type B) and
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strucural (type C) query expansions. Overall we believe that our experiments demon-
strate the best runtimes reported in INEX so far, while we are able to show that this
performance does not have to be at the cost of retrieval effectiveness. The scoring
model and non-conjunctive query evaluation algorithms remained unchanged compared
to TopX 1.0, which also managed to achieve ranks 3 and 4 in the Focused Task of the
2008 Ad-hoc Track.

Our future work may investigate improved caching strategies, consider incremental
index updates (thus leave space in blocks, similar to DB pages), and expand into even
more features, such as incremental query expansion techniques not yet taken over from
TopX 1.0, and more XQuery constructs beyond just XPath 2.0. Just like the previous
Java-based prototype, we intend to provide an open-source release of the new C++
based TopX 2.0 soon.
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antees. In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and
K. B. Schiefer, editors, VLDB, pages 648–659. Morgan Kaufmann, 2004.

13. J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list caching in search
engines. In WWW ’08: Proceeding of the 17th international conference on World Wide Web,
pages 387–396, New York, NY, USA, 2008. ACM.

244



Recognition of Structural Similarity  
to Increase Performance 

Judith Winter1 and Nikolay Jeliazkov1 

 
1 J.W.Goethe University, Department of Computer Science, Frankfurt, Germany 

winter@tm.informatik.uni-frankfurt.de, nikolay.jeliazkov@gmail.com 

Abstract. As researchers focusing on distributed Information Retrieval (IR), we 
regard good performance not only as achieving high precision but also as 
considering efficiency issues such as the network traffic produced to answer a 
given query. Therefore, the new Efficiency Track of INEX is of high interest 
for us. We have taken the opportunity to run some of its highly structured 
queries on our top-k search engine to investigate whether we can improve 
performance by recognizing and exploiting structural similarity. We have 
analyzed different structural similarity functions and applied them to both 
ranking and routing. 

Keywords: XML Retrieval, Structural Similarity, Distributed Search, INEX, 
Efficiency, Peer-to-Peer 

1   Introduction and Motivation 

Currently, most systems participating at INEX aim at effectiveness in terms of 
precision and recall. Efficiency is rarely considered and not rewarded by the current 
INEX measures. In our group, research is focused on distributed IR solutions where 
good performance includes both effectiveness and efficiency. The new Efficiency 
Track is therefore of high interest for us, especially after the cancelation of the het-
erogeneous track. There are several practical and theoretical reasons that motivated us 
to participate in the Efficiency Track. Firstly, our system is based on a Peer-to-Peer 
(P2P) network such that we have to consider the network traffic between peers. We 
cannot send long posting lists but have to prune them which corresponds to the par-
ticular encouragement of top-k style search engines in the Efficiency Track. Secondly, 
our system exploits structural user hints to improve effectiveness in the ranking proc-
ess and to improve efficiency in the routing process. Contrary to INEX’s ad-hoc 
topics, which consist of many CO and poorly structured CAS queries, the high-
dimensional structured type-C queries of the efficiency track offer an excellent 
opportunity to test more sophisticated structural similarity functions. Thirdly, many 
ad-hoc participants tune their systems for the Wikipedia collection whereas most P2P 
systems are faced with heterogeneous collections, not based on the same schema and 
with great variety regarding content and structure. Thus, a more database-oriented 
view of INEX would be in our interest, e.g. to discuss the application of schema-
mapping methods in XML-retrieval. Finally, efficiency issues such as reducing the 
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amount of messages between peers are of major concern in P2P-IR. The opportunity 
to discuss these challenges with other participants interested in efficiency issues is 
highly appreciated, e.g. to analyze how XML-structure can help. 

This paper presents a comparison of different structural similarity functions in 
order to take advantage of richly structured CAS queries for improving effectiveness 
and efficiency. The top-k search engine Spirix [6], based on a P2P network, has been 
used for the runs. 

2   Spectrum of Structural Similarity 

There is ongoing research in the field of recognizing similarity between structures. 
Existing solutions propose different strategies and functions to calculate the similarity 
between the given structural conditions in a query and the structures found in a 
collection. According to [2], these strategies can be divided into four groups 
depending on the thoroughness they achieve in analyzing the similarity: perfect 
match, partial match, fuzzy match, and baseline (flat). In the first case, only exact 
matching structures are considered, thus only retrieving relevant documents with the 
search terms found in the exact XML context as specified by the user. In the case of 
the partial match strategies, one of the compared structures has to be a sub-sequence 
of the other and the overlapping ratio is measured. The fuzzy match type of functions 
takes into account gaps or wrong sequences of the different tags. With the baseline 
strategy the specified XML structures are ignored, thus resulting in a conventional IR 
technique and losing the possible benefits of a XML-structured documents. 

As we observe later in this paper, the perfect match strategies usually result in a 
reduced precision, because a large amount of relevant text is ignored due to slight 
differences in the structures. A comparison between the other extreme (baseline) and 
the two types of similarity functions that take structure into account (partial and fuzzy 
match) is an important research topic – can XML structure help to improve 
performance?  

We analyzed several functions as representatives of the mentioned types of strate-
gies. A formula which determines whether the query or the found structure is a sub-
sequence of the other one and then measures the overlapping ratio between them 
(partial match) is proposed in [2]. The group of the fuzzy match type of similarity 
functions performs deeper analysis of the considered structures and noticeably 
expands the flexibility and the possibility of a precise ranking of all found structures 
for a search term according to their similarity to the query structure. In order to 
achieve this, [1] defines an algebra for calculating and assessing the different 
operations and their costs for transforming an XML tree specified by the query into 
the XML tree of the found structure. [5] ignores the tree representation and handles 
the structures as sequences of tags. Nevertheless, it uses the same strategy of counting 
the costs for transforming one structure into another. It is based on the Levenstein Edit 
Distance [4], a method used to compute the similarity between two strings by 
counting the operations delete, insert and replace needed to transform one string into 
another. This method allows similar measuring of the difference between XML 
structures by considering every tag as a single character.  
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Another approach for the similarity analysis of XML structures falling in the scope 
of the fuzzy type strategies is the definition of a number of factors describing specific 
properties of the compared structures and combining them in a single function. Five 
such factors are proposed in [3], divided in two major groups - semantic and 
structural. The first group consists of the factors semantic completeness (SmCm), 
measured by the ratio between the found query tags, and the total amount of tags in 
the query structure, and semantic correctness (SmCr), measured as a function of all 
semantic similarities between the tags in the query and the target structures. Within 
the structural group, three factors are distinguished in [3]. The structural complete-
ness (StCm) represents the overall coverage of the query XML tree by the target tree - 
how many of the wanted hierarchical parent-child relationships between the tags are 
satisfied by an analogous pair in the found structure. The structural correctness (StCr) 
is computed as the complement of the amount of found but reversed hierarchical pairs 
in respect to all found pairs. The last factor, the structural cohesion (StCh), represents 
the deviation of the found XML structure from the query and is calculated by the 
complement of the ratio between the non-relevant tags and the total amount of tags in 
the target. 

3   Recognition of Structural Similarity 

Can detecting structural similarity help to improve IR performance? We analyzed 
several different types of functions, applied appropriate enhancements and evaluated 
them with the INEX measures by using the Wikipedia document collection and a 
selection of topics with structural conditions. 

We developed the following formula based on [2] as a representative of the partial 
match type of strategies: 
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sq represents the structural condition in the query and sru stands for the structure of 
the search term found in the collection. Both parameters ! and " allow for finer tuning 
of the calculated similarity value. 

We also implemented a tag dictionary that contains values for the similarity 
between known tags, thus achieving a greater flexibility for the user. For example, 
<author> and <writer> are rather similar, and a precise similarity value can be 
designated to these tags. We are considering the possibility of giving the user the 
opportunity to define such similarities himself.  

As a representative of the class of functions based on cost calculation for 
transforming the query structure into the target one, we used the method proposed in 
[5] (Sim2). We implemented and evaluated this method with a suitable normalization 
and, as above, an enhancement with a tag dictionary was also applied.  

The five similarity factors from [3] promised a deep and thorough analysis and 
representation of the different similarity aspects between two XML structures. We 
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used the arithmetic mean to compute the SmCr and measured the similarities between 
tags with methods based on [4]. We used these factors to construct combined similar-
ity functions. In order to compare these functions, we built a small but highly 
heterogeneous document collection with search terms occurring in many different 
XML contexts, resulting in a number of structures to be compared and ranked. 
Several functions were tested in the process with a number of parameters. We 
achieved the best ranking results with the following formula: 
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All similarity factors were normalized, and parameter boundaries were set as 
follows: ! + " ! 1, #1 + #2 ! 2, and #3 + #4 + #5 ! 3. This assures that the resulting 
single similarity value remains within the interval [0,1]. Parameters ! and " provide 
an opportunity to shift the weight of the similarity between the two classes of factors 
– semantic and structural. The same applies for the five parameters #i, which are 
used for further fine-tuning. After a thorough evaluation, we chose the values ! = 0.7 
and " = 0.3. All other factors were set to 1. 

We designed an appropriate index in order to support these strategies in the context 
of P2P networks. For each term, a separate posting list for each of its structures is 
stored. This allows efficient selecting of postings according to structural similarity 
between hints in CAS topics and the stored structures of a specific term. In order to 
reduce the variety of structures, several methods were tried, such as stemming of tags 
and removal of stopword tags (e.g. conversionwarnings). 

3   Evaluation 

All similarity functions were implemented as a part of our P2P-based search engine 
Spirix [6]. The hardware used was a Linux system with 8x2GHz Intel Xeon CPU and 
16GB of RAM. The retrieval time has been approximately 253 seconds per topic but 
other processes used the machine at the same time. The ranking is based on an 
adaption of BM25E. 

Of all Efficiency Track topics, we chose 80 richly structured topics from the INEX 
2007 ad-hoc track, which are part of the type-A topics in 2008, and all type-C topics 
as those are high-dimensional structured queries. However, the type-C topics were not 
assessed and have therefore not been officially evaluated. 

Our runs aimed at comparing the three proposed structural similarity functions 
with a baseline run, where no structure was used, as well as with a run where only 
perfect matches were considered. We first compared the functions when using them 
for ranking, i.e. aimed at improved effectiveness by using structural hints. Table 1 
shows preliminary evaluation with the INEX 2007 tools (focused task). Secondly, we 
applied the best performing similarity function to improve efficiency during routing 
and retrieval. 
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Table 1. Precision at different recall-levels for the compared similarity functions. 

 baseline Sim1 Sim2 Sim3 perfect match 

iP[0.00] 0,3241 0,3507 0,3534 0,3300 0,0151 

iP[0.01] 0,3134 0,3305 0,3364 0,3195 0,0151 

iP[0.05] 0,2909 0,2999 0,3001 0,2886 0,0151 

iP[0.10] 0,2771 0,2838 0,2870 0,2746 0,0099 

iP[0.30] 0,1911 0,1892 0,1760 0,1819 0,0063 

MAiP 0,1400 0,1321 0,1252 0,1278 0,0038 

 
The perfect match case resulted in very low retrieval quality, as the most relevant 

documents were disqualified in the ranking process due to slight structural 
differences. Thus, this strict handling of the structural hints specified by the user can 
only be advantageous in database-oriented approaches and is of no use in the context 
of IR. At recall-level iP[0.01], an increase in precision can be observed for every 
similarity function compared to the baseline. For higher recall-levels (above iP[0.30]), 
this advantage disappears and the baseline strategy shows a better precision than any 
other case, resulting in its higher mean average interpolated precision (MAiP). 
Nevertheless, most users are interested in early precision only – for which the use of 
similarity functions can lead to an improvement. 
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Fig. 1. Using structure to improve routing and reduce the size of posting lists. 

After improving effectiveness, we took the best performing structure function 
Sim2 and used it to investigate its effect on the routing process (this run was not sub-
mitted to the Efficiency Track but is based on the results in table 1). The postings 
(500 respective 2000 postings) were selected using BM25E for the baseline run. In 
the better performing run Sim2, the postings were selected by an impact factor pro-
portional to the product of a BM25E-based weight and the calculated structural simi-
larity. Figure 1 shows how calculating structural similarity can improve efficiency by 
helping to select the adequate postings. For example, at iP[0.01] we achieve a better 
precision (0,3580) by using Sim2, even if we select only 500 postings instead of 2000 
for the baseline. Thus, we can save more than 1500 postings. 
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Based on these observations, we are currently evaluating the effect of using 
structure for runs with #postings 4 {10, 50, 100…unlimited} to determine the point 
where additional postings increase network traffic but do not lead to further 
improvement of precision.  

4   Discussion 

In this paper, we discussed our participation at the new Efficiency Track of INEX 
2008. We have welcomed the possibility of using higher dimensioned structural hints, 
like the type-C topics, in order to retrieve more relevant and precise results, especially 
in the context of a convergence between IR-based and database-oriented approaches, 
where advantage can be taken of additional information such as XML-structure to 
achieve good performance. Thus, the newly started Efficiency Track offers new 
possibilities to continue the research in this field.  

We have presented different structural similarity functions, analyzed them, and 
showed that – for the selected structured topics – an improvement of performance 
could be achieved during ranking and routing. This evaluation is an indication that 
structural hints can help indeed. In order to confirm the generality of this observation, 
we will extend our research further. For this purpose, we will need more highly-
structured topics which should be more carefully constructed than the current ones. 
Additionally, we think that the Wikipedia collection lacks the variety of needed rich 
semantic structures. 
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Abstract. This DRAFT overview of the INEX 2008 Entity Ranking
track mainly explains the construction of the pools through sampling,
and the underlying motivation. The final version will present more details
about the various runs.

1 Introduction

Many user tasks would be simplified if search engines would support typed
search, and return entities instead of just web pages. In 2007, INEX has started
the XML Entity Ranking track (INEX-XER) to provide a forum where re-
searchers may compare and evaluate techniques for engines that return lists
of entities. In entity ranking and entity list completion, the goal is to evaluate
how well systems can rank entities in response to a query; the set of entities
to be ranked is assumed to be loosely defined by a generic category, implied
in the query itself, or by some example entities. We will continue to run both
the entity ranking and list completion tasks this year. In addition, we propose
a new entity relation search (ERS) task investigating how well systems can not
only find entities relevant to a topic but also establish correct relations between
entities.

2 INEX-XER Setup

2.1 Setup

The track uses the Wikipedia XML data, where we exploit the category meta-
data about the pages to loosely define the entity sets. The entities in such a set
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are assumed to loosely correspond to those Wikipedia pages that are labeled
with this category (or perhaps a sub-category of the given category). Obviously,
this is not perfect as many Wikipedia articles are assigned to categories in an
inconsistent fashion. Retrieval models for entity ranking should handle the situa-
tion that the category assignments to Wikipedia pages are not always consistent,
and also far from complete. The human assessor is of course not constrained by
the category assignments made in the corpus when making his or her relevance
assessments!

We expect that the data set provides a su!ciently useful collection as a
starting point for the purpose of the track. The challenge for participants is to
exploit the rich information from text, structure and links to perform the search
tasks.

2.2 Tasks

XML Entity Ranking (XER) concerns triples of type <query, category, entity>.
The category (that is entity type), specifies the type of objects to be retrieved.
The query is a free text description that attempts to capture the information
need. Entity specifies example instances of the entity type. The usual informa-
tion retrieval tasks of document and element retrieval can be viewed as special
instances of this more general retrieval problem, where the category membership
relates to a syntactic (layout) notion of text document, or XML element. Expert
finding uses the semantic notion of people as its category, where the query would
specify expertise on T for expert finding topic T. Our goal is not to evaluate
how well systems identify instances of entities within text (to some extent this
is part of the goal of the Link-the-Wiki track 4).

The motivation of the new entity relation search (ERS) task is that searchers
are not satisfied with a list of relevant entities to a query anymore, because they
would like to know more details about these entities, such as their relations
with other entities, and their attributes. One example is find museums in the
Netherlands exhibiting Van Goghs artworks, and the cities where these museums
are located. A system needs to first find a number of relevant museums, and then
establish correct correspondence between each museum and a city. We expect the
new ERS task will help explore new research areas in information retrieval with
potential connections with other research areas such as information extraction,
social network analysis, natural language processing, semantic web, and question
answering.

We divide ERS into an entity ranking phase followed by a relation search
phase. ERS concerns tuples of type <query, category, entity, relation-query,
target-category, target-entity>. The query, category, and entity are al-
ready defined in the entity ranking task. The relation-query in form of free text
describes the relation between an entity and a target entity. The target-category
specifies the type of the target entity. Target-entity specifies example instances
of the target entity type.
4 http://inex.is.informatik.uni-duisburg.de/2007/linkwiki.html

252



2.3 Topics

Participants from eleven institutions have created a small number of (partial)
entity lists with corresponding topic text. Candidate entities correspond to the
names of articles that loosely belong to categories (for example may be subcate-
gory) in the Wikipedia XML corpus. As a general guideline, the topic title should
be type explanatory, a human assessor should be able to understand from the
title what the category type needed is. Some of the topics have been extended
for the ERS pilot task.

2.4 The 2008 test collection

We received 33 runs submitted by six participants. The pools have been based
on all submitted runs, using a sampling strategy detailed in the next Section.

3 Investigation on Sampling strategies

In INEX-XER 2008 we decided to use sampling strategies for generating pools
of documents for relevance assessments. The main two reasons why we decided
to introduce sampling are to reduce the judging effort and to include into the
pools also documents from higher ranks.

The first aspect we have to analyze is how the comparative performances
of systems is affected while we perform less relevance judgements. We used the
2007 INEX-XER collection simulating the situation of performing less relevance
judgements. We compared three different sampling strategies, that is, a uniform
random sampling from the top 50 documents retrieved by the IRSs, a sampling
based on the relevance distribution among the different ranks, and a stratified
sampling with strata manually defined by looking at the distribution of relevance
from the previous year.

For the experimental comparison of the three different sampling approaches
we used the 24 ‘genuine’ INEX-XER topics from the 2007 collection. As only data
from 2007 has been used, we used the leave-one-out approach for simulating the
approach of learning from the previous year data. That is, we considered all the
topics but one as previous year data. In these topics the relevance assessments
and, therefore, the relevance distribution over the ranks is known. In the topics
not considered for learning we assume not to know the relevance assessment (that
is, a topic from the current year) and we compare the original IRSs ranking on
this topic with the one produced by the sampling. We repeat this for all the 24
topics in the collection.

3.1 Uniform Random Sampling

The first approach we decided to investigate is a Uniform Random Sampling of
retrieved documents. In order to do so, we first randomly selected some ranks
at which to take documents from the runs. Then, we considered only the as-
sessments on those documents for ranking the systems assuming that the other
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entities were not judged and, therefore, not relevant. Finally, we measured the
correlation with the original system ranking using the 24 XER topics from 2007.
The correlation values are presented in Figure 3.2.

3.2 Relevance based Random Sampling

In order to perform a sampling with a higher chance of selecting relevant docu-
ments into the pools, we used the distribution of relevance over ranks and learned
from the 2007 data the probability of finding a relevant entity at each rank (up
to 50 as the depth of 2007 pool) in the runs. We then sampled the 2008 runs
using such probability distribution. The relevance distribution in 2007 for ranks
up to 50 is displayed in Figure 3.2. In Figure 3.2 it is possible to see the curve
for all the ranks.

For evaluating this technique and comparing it with the random sampling
we proceed as follows. As 2007 was the first edition of INEX-XER, we can not
learn the relevance distribution from a previous year and test it on the following
and, of course, we can not learn the distribution and test the effectiveness on
the same data. Therefore, in our experiments the system learns the probabilities
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using all the topics but one. This distribution is used for generating a random
sample (based on such probabilities) of documents from the runs. The systems’
ranking on the remaining topic not used for learning is then computed, and it
is compared with the original ranking for that topic. This process is iterated
over all topics and the average correlation value is taken. Figure 3.2 shows the
correlation between the original system ranking and the ranking derived from
either the relevance based or the uniform random sampling.

3.3 Stratified Sampling

A third option to performing a sampling in order to construct pools for relevance
assessment is the stratified approach which aims at including in the pools a big
number of relevant results. The idea is to perform sampling within each stratum
independently of the other. In this way it is possible to sample more documents
in higher strata and less from strata which are down in the ranking. There is
then the need to optimally selecting the strata and the sampling percentage for
each strata, which is an open problem. Using stratified sampling also allows to
compute as evaluation metrics xinfAP [1] which is a better estimate of AP in
the case of incomplete assessments.

Considering the results shown in Figure 3.2, we decided to use the following
strata for the pool construction of INEX-XER 2008:

– 1,8 100%
– 9,31 70%
– 32,100 30%
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This means that we include in the pool 45 documents from each run. In order to
compare this approach with the ones presented above, we computed the correla-
tion using the strata-based sampling strategy. The result is presented in Figure
3.3.

It is possible to see that the stratified sampling with the selected parameters
performs as well as a uniform random sampling at 70% and a relevance based
sampling of 70% in terms of IRSs ranking correlation. The two 70% sampling
approaches make each run contribute 35 documents to the pool while the strati-
fied approach, by going down to rank 100 in the runs, make each run contribute
45 documents. Given that we used the 2007 collection for the experimental com-
parison we must notice that relevance assessments have been performed up to
rank 50. Therefore, several documents ranked from 51 to 100 may not have
been assessed, so they are considered not relevant in the experiments even if
they could be. If we want to fairly compare the judgement effort of the three
sampling approaches we have to count the number of documents the stratified
sampling approach make the runs contribute up to rank 50, that is 30. In this
way we can see that the stratified approach enable a lower judging effort than
the uniform random sampling and the relevance based sampling.

4 Results

No results are available yet.
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Abstract. Entity Ranking is a recently emerging search task in Infor-
mation Retrieval, where the goal is not finding documents matching the
query words, but instead finding entities which match those described in
the query.
In this paper we focus on the Wikipedia corpus interpreting it as a set of
entities and propose algorithms for finding entities based on structured
representation of entities for three different search tasks: entity ranking,
list completion, and entity relation search. The main contribution is a
methodology for indexing entities using a structured representation. Our
approach focuses on creating an index of facts about entities for the
different search tasks. More, we use the link structure information for
improving the effectiveness of search.

1 Introduction

Entity ranking (ER) is an important step over the classical document search as it
has been done so far. The goal is to find entities relevant to a query rather than
just finding documents (or passages from documents) which contain relevant
information. Ranking entities according to their relevance with respect to a given
query is important in scenarios where the information load is bigger than what
the user can handle. That is, with a correct ranking scheme the system can
present the user with only entities of interest, and avoid the user having to
analyze the entire set of retrieved entities.

As a step in this direction, we present, in this paper, our approach to ranking
entities in Wikipedia which is based on the usage of a structured representation of
entities in order to enable effective search. Conceptually, we represent an entity
as a set of attribute name / value pairs. For example an entity representing
Albert Einstein can be represented as follows:

first name Albert
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last name Einstein
born 1879-03-14
died 1955-04-18
fields physics

More, we evaluate it on the Wikipedia XML corpus provided within the INEX
2008 initiative. The main contribution of this paper is a set of methodologies
for representing entities in a structured fashion for enabling entity ranking.This
is done using different representations for the different ER search tasks, namely
entity ranking (XER), list completion (LC), and entity relation search (ERS).

The rest of the paper is organized as follows. In section 2 we describe the
general architecture of the developed retrieval systems. In section 3 we describe
the algorithms developed for the three different search tasks.

2 Architecture Overview

In this section we describe the architecture of the Entity Ranking System we
used for creating the runs submitted to INEX 2008. The architecture design
for the system used for XER runs is based on the model presented in [1]. The
first step is the creation of the inverted index out of the XML Wikipedia docu-
ment collection. Starting from the raw structured XML documents, we create a
Lucene3 index4 with one Lucene document (i.e., a vector in the Vector Space)
for each Wikipedia document. We first parse the document collection using stan-
dard Java libraries5. After this, we create an index with different fields (acting
as separate inverted indexes, which can be combined for retrieval) for the title,
text, and category of Wikipedia entities. After the creation of the inverted index,
the system is able to process the XER topics.

After the generation of the query, the fields of the index can be queried and
a ranked list of entities is retrieved merging the ranked lists coming from the
different fields. The ranking of the retrieved entities is done according to cosine
similarity with the query using the standard TFxIDF scoring function. The
methods used for retrieving results for the XER task are described in Section
3.1

3 Algorithms

3.1 Entity Ranking Task

Entity Ranking using NLP techniques on Topic Title and Description.
The first XER run that we submitted to INEX 2008 is a title-only run (i.e., it uses
only the title part of the topic). It uses a combination of NLP and IE techniques
3 http://lucene.apache.org/
4 The IR model used by Lucene is the Vector Space Model with standard cosine

similarity.
5 We used the Java 6 javax.xml.stream.* classes.
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on the user query in order to improve and adapt it for the ER search task.
The system extends the original keyword query adding also related words and
synonyms, and it adds more weight on named entities and key-concepts (e.g., the
type of result which is needed by the user) which are present in the original query
by duplicating the terms in the query. Additionally, the key-concepts which are
present in the original query are used to search in the anchor-text of the outlinks
of the pages. Finally, the match of the category information in the query and
the category information of the Wikipedia pages also influences the ranking of
the results. A detailed description of the algorithm is presented in [1]

The second ER runs that we submitted to INEX-XER is also using the
description part of the topic. In this case, the system also uses the descrip-
tion information in order to provide better results to the user. The entire title
and description are used as a long query. A TF.IDF vector is built out of it
and Wikipedia articles are ranked according to their cosine similarity to the
query. Additionally, the title and the category information in the topic is used
for searching the category information in the Wikipedia articles. This helps in
ranking first entities of the desired type. Finally, also the outgoing links of the
Wikipedia documents are used for finding relevant entities. The topic title and
the named entities present in the description are used together for searching in
the outlinks of a page. The combinations of these three searches produce the
final rank of entities.

Unsupervised Template-Less Information Extraction. We describe here-
after a first approach to generate structured queries from an unstructured doc-
ument which has not been used for the officially submitted runs. By structured
query we understand a set of attribute name / value pairs. It comprises two
steps: entity reference resolution first identify the entity or entities referenced
in the document. Those reference are then used for extracting attribute name
and values related to them from the text. Those two steps are described in the
following.

Entity Reference Resolution For building the structured query, we first have
to find references of the considered entity occurring in the Wikipedia page at
hand. It is presently done in two different fashions depending on whether the
considered page is the page representing the entity, or a page linking to the page
representing the entity.

– On a page representing the considered entity, occurrences are all set of
terms similar to the page title. The title might have two parts. The first part
is called the main title, and is present in all titles. The second part of a title
is called sub-title and is the terms in the title occurring after a separating
character like a ‘—’ or in parentheses ‘()’, ‘{}’ or ‘[]’. For example, in the
title “Napoleon (1995 film)”, the main title is “Napoleon” and the sub-title
is 1995”. In this case we consider a set of token on the page representing the
considered entity similar to the title if they consist of either only the main
title or the whole title (main plus sub).
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– On a page linking to the considered entity page, occurrences are
simply anchored text of the link.

Attribute Extraction With help of a grammatical structure parser and manually
created rules on the grammatical structure, we extract attribute names and
values representing the entity represented by a Wikipedia page. Those rules
include:

– The entity reference is a subject, the attribute name is an active verb plus
prepositions, and the attribute value is the object of the verb.

– The entity reference is an object, the attribute name is a passive verb plus
prepositions, and the attribute value is the subject of the passive verb.

Other ad-hoc rules were also created based on a training set of Wikipedia pages,
and the entity references in them. Those extracted attributes have the following
particularities compared to attributes usually found in knowledge bases:

– Attribute names are less expressive and consists mostly of verbs plus modi-
fiers or prepositions.

– Attribute values are mostly longer, and dirtier in the sense that not all the
terms of the attribute value are relevant. This is because the value consists
mostly of a whole verbal phrase.

The set of extracted information creates a repository of entity descriptions. In the
future we will investigate how to leverage this repository to improve entity search.
One possible approach would be to apply similar technique to the INEX topic
to obtain a set of attribute representing the entities sought. We then retrieve
relevant entities by performing a keyword (full-text) query on the structured
repository consisting of the attribute values of the entity thus obtained. Note
that we can also leverage the structure in the query, by taking into account that
two keywords belonging to a same attribute in the query should also appear in
the same attribute in the structured repository.

3.2 List Completion Task

In this task the information need is specified by the topic title and the type
of the desired entities is given by example entities. From the INEX topics we
can not use the category information anymore, this has to be learned from the
examples entities with the help of the Wikipedia structure.

Instinctively, one would say that if two entities are related by satisfying a
query need, they should have at least one common category. But, as Wikipedia
is a collaborative effort, entities usually belong to more than one category, de-
pending on what the authors considered appropriate. The category information
for entities is not always complete and sometimes is not entirely correct also.
Thus, from the topic example entities (usually two or three) we need to discover
which are the categories that will best satisfy the query need.

In our approach, for the example entities we extract two sets of categories
from Wikipedia. The first set, which we call main categories, consists of the direct
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categories the example entities belong to. From these categories we filter out the
ones that are too general, i.e. have a high indegree (i.e. the number of entities
that belong to that category) and we keep the ones with indegrees smaller than
1000. Each category from this set has a score computed based on the number of
entities that have the respective category. The score for a category is calculated
as ten to the power of the number of occurring entities. Furthermore, the score is
then divided by the category’s popularity, based of the indegree of the category.
The assumption is that the higher the indegree of a category is, the less specific
that category is and the entities that belong to that category do not have a
strong relation.

The second set of categories, which we called soft categories, consists of the
top 30 categories assigned to the entities that are linked to by the example
entities from the topics. The score of these categories is given by the count of
their occurrences in the linked entities. These categories are also filtered based
on the size of the indegree. These scores are then divided by the categories’
popularity score.

Finally, for our first LC run, we extract from Wikipedia the entities that
belong to the categories from these two sets, we order the entities based on their
popularity and on the score of the categories they belong to.

For our second LC run, we also used the topic title. In order to use together
title and example entities, we search the collection (indexed using the vector
space model with tf.idf weights and cosine similarity) using the title and we
re-rank the results based on the category sets found from the example entities.

3.3 Entity Relation Search Task

For the Entity Relation Search Task we have indexed the relation between en-
tities from Wikipedia in a structured fashion. We consider two entities to be
related if they co-occur in a sentence sized window. For each two co-occurring
entities we have indexed the sentences in which they appear together to define
the relation between the entities. In the 1 table we show a snippet from en-
tity relation index, with a few examples for the entities Flint River and Albert
Einstein.

The Entity Relation Search that we submitted to INEX 2008 are based on
our two XER runs. The first run is based on the title-only Entity Ranking Run.
It is using the entities retrieved for the ER run as left entities LE. Then, for
each left entity li ∈ LE a search for relevant right entities is performed. Possible
candidates are retrieved from the index: all triples containing as subject the left
entities are considered. All the right entities candidates are ranked according to
a score which is computed as the overlap between the predicate in the index and
the Entity Relation Search Title in the topic.

The second ERS run is based based on our second ER run and it is computed
as the first one.

263



Entity Predicate Entity
flint river the flint river with an area of 568

square miles is a tributary to the
tennessee river

flint river much of the 342 sq watershed
albert einstein he proposed the and also made ma-

jor contributions to the develop-
ment of and the theory provided
the foundation for the study of and
gave scientists the tools for under-
standing many features of the uni-
verse that were discovered well af-
ter einstein death

cosmological models

albert einstein he proposed the and also made ma-
jor contributions to the develop-
ment of and

theory of relativity

Table 1. Entity relation index
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Abstract. In this paper, we mainly describe our methods taken in INEX 2008 
entity-ranking task. Firstly, we discuss how to extend current expert retrieval 
models to deal with the category field in INEX entity ranking queries. Then, on 
such basis, we propose similar solutions to the former list completion task and 
the entity relation search task. 

Keywords: Entity retrieval, entity ranking, language model. 

1   Introduction 

In recent years, expert retrieval has been focused and widely discussed in various 
aspects. A few ranking models are created for this issue and have been proved to be 
effective. In contrast, the issue of entity retrieval as a general case is less discovered 
until the INEX entity-ranking task in 2007. This task has introduced a perspective of 
entity retrieval beyond expert retrieval, which involves not only more types of entities 
in practice, but also various tasks. 

One of the main foci in INEX entity-ranking task is to return entities that satisfy a 
topic with multiple fields (the INEX XER task). Typical topic fields consist of a text 
query field, which describes the entity search query using natural language, and also a 
category field specifying possible categories of relevant entities in Wikipedia and an 
example field which contains a small and incomplete list of relevant entities. Two 
mandatory runs are required for the INEX XER task: one should use the text field and 
the category field, while the other should make use of the text field and the example 
entity list (the former list completion task). 

The main difference between the INEX XER task and an expert retrieval task (such 
as the TREC expert search task) resides in the extra demands for match in entity 
categories for the former. In the expert search task, we can focus in topical demands 
of queries since the entity type is pre-defined. As a result, expert retrieval models are 
aiming at finding topical relevant entities. However, in the INEX XER task, we are 
facing candidate entities of various categories and the users’ demands for category are 
adhoc instead of pre-defined. Generally, current expert retrieval models are incapable 
of dealing with such extra demands for category. As a result, we extend current expert 
search models to incorporate such extra demands for category. 
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On such basis, the entity relation search task (ERS) task is discussed. The ERS task 
is a new task in INEX. Different from the XER task, the ERS task aims at finding 
right entity pairs with some specified relationship. We adopt a 3-step method in this 
task: firstly, topical relevant entities are retrieved using our proposed extensive model; 
then, we find for each relevant entity a list of entities have the specified relationship; 
in the end, those found entity pairs are re-ranked all together. 

The remainder of this paper is organized as follows: section 2 reviews models on 
expert search and INEX entity ranking; in section 3, we describe models of the XER 
task and the ERS task; section 4 draws a conclusion. In the pre-proceeding session of 
INEX, evaluation of models is not available and thus is not included in this paper. 

2   Related Works 

The problem of expert retrieval (finding relevant experts of a specific topic) can be 
considered as the issue of retrieving entities of some pre-defined category, i.e. people. 
Early approaches of expert retrieval usually involve empirical methods and structured 
or semi-structured resources. Since the TREC 2005 expert search task, expert retrieval 
is focused by IR researchers and a lot of models are created. Specifically, language 
modeling methods for expert search are proved to be highly effective and thus are 
widely adopted. 

Generally, language models for expert retrieval rank experts by the probability that 
the query is generated by the experts. In TREC 2005, Cao et al. [1] and Azzopardi et 
al. [2] introduce two kinds of language models for expert retrieval. These methods are 
later explained by Balog et al. [3] as candidate model (model 1) and document model 
(model 2). Fang et al. [4] also described a similar framework, but they had explicitly 
modeled on relevance and used the probability ranking principle to rank. 

Further, some detailed problems are studied under the framework. Serdyukov et al. 
[5] introduced a method to enhance performance by query modeling. Balog et al. [6] 
elaborated the estimation method of candidate-document association. Serdyukov et al. 
[7] explored the relevance propagation in expert search. Petkova et al. [8] explored 
the dependence between candidate and terms using proximity-based methods. Most 
recently, Balog et al. [9] fully considered non-local information available in the 
collection and significantly improved the performance. 

In contrast, only limited researchers studied the entity retrieval as a general case. 
Most of them noticed the problem of categories and proposed feasible solutions. For 
example, Vercoustre et al. [10] used a Jaccard coefficient between query category set 
and entity category set for ranking. Demartini et al. [11] expanded the category query 
field using YAGO, while Jamsen et al. [12] achieved category expansion using 
Wikipedia hierarchies. Zhu et al. [13] treats entities’ categories as a metadata field 
and searches entities between multi-fields. 

In this paper, we will extend current expert retrieval models to deal with the entity 
retrieval problem under the environment of the INEX entity-ranking task. 
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3   Models 

In this section, we will describe our language modeling process for entity retrieval. A 
lot of language models for expert retrieval have already been explored and testified to 
be effective, which constitute an important part of our models. For the XER task, we 
mainly discuss the problem under the settings of two mandatory runs. For the ERS 
task, we propose models using both the mandatory fields and some extra features. 

3.1   Entity Ranking Task 

The query of entity ranking can be multi-fields. In this paper, we mainly discuss the 
queries of two mandatory runs mentioned in section 1. For the first run, only the text 
query and the category field can be used. So, we can represent the query as q(qtext, 
qcat), where qtext refers to the text query, and qcat represent the category query. The 
second run is studied in the following subsection as the former list completion task. 

As a result, from a language model perspective, the problem of entity retrieval can 
be translated as: given a query q, to find the possible relevant entity e, i.e. to estimate 
p(e|q) for each entity and accordingly rank entities. Then, q(e|q) can be transformed to 
(1). Assuming each entity shares the equal probability, q(e|q) is proportional to p(q|e). 
Thus, we can use p(q|e) to rank entities. 

 
( | ) ( )( | )

( )
p q e p ep e q

p q
!

"  (1) 

Considering q consists of two parts (qtext and qcat), we can simply assume them to 
be independent and transform p(q|e) as (2). Then, we can treat p(qtext|e) and p(qcat|e) 
separately. 

 ( | ) ( , | ) ( | ) ( |text cat text cat )p q e p q q e p q e p q e" " !  (2) 

For the p(qtext|e), we adopt the expert search model 2 [3] to estimate it. Assuming e 
is independent for the generation of qtext in d, we can also use (4) as a simplification. 
Then, we estimate p(qtext|d) using text retrieval models as in (5). In (5), each query 
terms in qtext is assumed to be independent, pml(t|d) is the max likelihood estimation of 
t in d, pc(t) is the probability of t in the whole corpus, ! is a parameter which is set to 
0.5 in our runs. 

 ( | ) ( | , ) ( |text text
d D

)p q e p q d e p d e
#

" !$  (3) 

 ( | ) ( | ) ( |text text
d D

)p q e p q d p d e
#

" !$  (4) 

 % &( | ) ( | ) (1 ) ( | ) ( )
text text

text ml c
t q t q

p q d p t d p t d p t' '
# #

" " ( ! ) !* *  (5) 

267



For the p(d|e), we also adopt a general method, i.e. (6). In (6), D’ refers to a subset 
of documents that are associated with e, and a(di,e) is the association between di and e. 
In our model, a(di,e) is simply measured as the frequency of e in di. For elaborated 
methods, Balog et al. [6] had a thorough exploration. 
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As for p(qcat|e), qcat can be treated as a category set, where every single element 
category is generated independently from the entity’s labeled category set CATe. Then, 
we can estimate p(qcat|e) as (7): 
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It should be noted that in (7) we adopt the qcat as a sequence of categories, though 
it seems more reasonable to treat it as a set and estimate it in (8). But we choose (7) 
here for the following reasons: on the one hand, the category queries are not ensured 
to be accurate, thus it is also arguable to model other categories as not generated by 
CATe; on the other hand, a thorough estimation of a large amount of unseen categories 
in (8) consumes much computational resources, which is not efficient. 

For (7), we estimate each p(cati|CATe) using a maximum likelihood estimation with 
a smooth. Then p(cati|CATe) can be further divided into each categories in CATe, 
which is presented in (9). 
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In (9), p(cati) is the corpus probability of cati, which is used for smoothing. Then 
we discuss several possible circumstances for p(cati|catj) in a rule-based case: when 
cati is exactly catj, or cati is catj’s parent category, we set p(cati|catj) to 1; when cati is 
catj’s child category, we set p(cati|catj) to 1/|catj|, where |catj| is the size of the catj’s 
child category set; for other circumstances, p(cati|catj) is set to 0. 

3.2   List Completion Task 

Another mandatory run of the XER task is formerly known as the list completion task, 
which provides a list of example entities instead of the category field in retrieval. So, 
we can represent the query as q(qtext, qlc), in which qtext refers to the text query and qlc 
represents the list of example entities. We can rank each entity e according to p(q|e), 
which can also be transformed to (10) if we assume the independence between qtext 
and qlc. 
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In (10), we can also estimate p(qtext|e) in (3). Then, the problem resides in p(qlc|e), 
which can be transformed to (11). In (11), cati refers to any category labeled with 
entities in the list lc. Then, p(cati|CATe) can be estimated in (9). 
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In INEX 2008, we submit two mandatory runs for the XER task: 
(1) Run 1_CSIR_ER_TC_mandatoryRun. This run uses methods described in 3.1, 

which makes use of the title field and the category field. 
(2) Run 1_CSIR_LC_TE_mandatoryRun. This run uses methods described in 3.2, 

which makes uses of the title field and the example list. 

3.3   Entity Relation Search 

The entity relation search (ERS) task is a new task for entity ranking, which aims at 
finding entity pairs with appropriate relation. For this task, the problem can be solved 
in three steps: firstly, searching for a list of entities relevant to the topic, as stated in 
3.1 and 3.2; then, for each relevant entity e retrieved, finding a group of target entities 
that have the specified relation with e; in the end, re-rank entity pairs all together. 

As a result, the main problem is: given entity e, to find a list of target entities that 
have relation qr with e0 and match category query qcat. So, queries can be represented 
as a multi-field query q(e0, qr, qcat), in which e0 is the entity that retrieved entities are 
associated with, qr represents the relation text query, qcat represents the category of the 
target entities. Then, we can rank each entity according to p(q|e), which can also be 
transformed to (12) if we assume independence between any two parts of q. 

 0 0( | ) ( , , | ) ( | ) ( | ) ( | )r cat r catp q e p e q q e p e e p q e p q e" " ! !  (12) 

Then, we can estimate p(qr|e) as (3) and p(qcat|e) as (7). As for the p(e0|e), we can 
also adopt models similar to expert search models in estimation. By treating e0 as a 
term, we can also use (3) to estimate it. 

In INEX 2008, we submit two runs for the ERS task: 
(1) Run 1_CSIR_ERS_TC_R_TC_ERSWITHCATE. This run uses methods in 

(12), which makes use of the title field and the category field to find each e0, 
and use relation title and target entity categories to find each target entities. 

(2) Run 1_CSIR_ERS_TC_R_T_mandatoryRun. Compared with (12), this run 
only makes use of the relation title when finding target entities for each e0. 

4   Conclusion 

In this paper, we describe our methods of entity ranking and entity relation search in 
the INEX 2008 entity-ranking task. Some simple methods are discussed to understand 
the difference between expert search and entity retrieval, i.e. to deal with the demand 
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for category in entity retrieval task. Refinements of models are left as future works, 
which includes the independence assumptions and estimation methods. Besides, we 
plan to future discover methods of dealing with categorical demands under some 
more relaxed settings, for example, to use only the text query field. The estimation of 
models takes advantages of Wikipedia features, which is also one of the limitations 
and needs to be relaxed. 
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Extended Abstract

This extended abstract describes the joint participation of the Faculty of Man-
agement and Information Technologies and INRIA groups in the Initiative for the
Evaluation of XML retrieval (INEX) XML Entity Ranking (XER) track in 2008.
Of the two tasks in the INEX 2008 XER track, we submitted one run for the
entity ranking sub-task and four runs for the entity list completion sub-task. We
did not submit any runs for the entity relation search task.

Introduction

Entity ranking has recently emerged as a research field that aims at retrieving
entities as answers to a query. Many approaches to entity ranking have been pro-
posed, and the performances of most of them were evaluated by the INEX 2007
XER track [2] on the INEX Wikipedia XML test collection [3]. This resulted
in many advances to this research field; however, little attention has been put
on the impact of the different types (or classes) of topics on the entity ranking
performance.

For INEX 2008, our aim was to develop a method for topic difficulty pre-
diction in the research field of entity ranking. Our approach is based on the
generation of a topic classifier that can classify the INEX XER topics from a
number of features extracted from the topics themselves (also called a-priori
features) and possibly from a number of other features calculated at run time
(also called a-posteriori features). The main goal is to apply the topic difficulty
prediction to improve the effectiveness of our entity ranking system that was
evaluated as one of the best performing XER systems at INEX 2007 [2, 9].

Topic Difficulty Classification

The classification of topics into groups is based on how well the participant
systems in the INEX 2007 XER track answered to the topics. For each topic,
we calculate the topic difficulty using the Average Average Precision (AAP)
measure [4, 5]. AAP is the average of the average precisions of all the systems
reported for a given topic: the higher the AAP, the easier the topic.
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We define two methods for grouping topics into classes depending on the
number of groups we want to build, either two or four classes to experiment
with two different types of classes. For grouping the topics into two classes (Easy
and Difficult), we use the mean AAP metric as a splitting condition: if AAP for
a given topic is superior to the mean AAP (calculated across all topics) then
the topic is classified as Easy otherwise it is classified as Difficult. For grouping
the topics into four classes (Easy, Moderately Easy, Moderately Difficult, and
Difficult), we use the mean AAP and the standard deviation around the mean
as a splitting condition:

if AAP >= (mean AAP + stDev) then Easy topic
if AAP >= (mean AAP) and AAP < (mean AAP + stDev) then

Moderately Easy topic
if AAP >= (mean AAP - stDev) and AAP < (mean AAP) then Mod-
erately Difficult topic
if AAP < (mean AAP - stDev) then Difficult topic

The above two or four classes of INEX 2007 XER topics are then used as a
basis for evaluating our automatic feature-based topic classification algorithm.

Our XER Approach

Our approach to identifying and ranking entities combines: (1) the full-text
similarity of the entity page with the query; (2) the similarity of the page’s
categories with the categories of the entity examples; and (3) the link contexts
found in the top ranked pages returned by a search engine for the query. We
focus on the entity list completion sub-task, where a few examples of relevant
entities are provided in the topic description as a form of relevance feedback
information.

We developed an XER system that was used and evaluated as one of the
best performing systems on the INEX 2007 XER test collection [2, 9]. Our XER
system involves the following modules:

1. The topic module takes an INEX topic as input and generates the corre-
sponding full-text query and the list of entity examples.

2. The search module sends the query to a search engine3 and returns a list of
scored Wikipedia pages. The assumption is that a good entity page is a page
that answers the query.

3. The link extraction module extracts the links from a selected number of
highly ranked pages, together with the information about the paths of the
links (XML paths). The assumption is that a good entity page is a page that
is referred to by a page answering the query.

4. The linkrank module calculates a weight for a page based (among other
things) on the number of links to this page. The assumption is that a good
entity page is a page that is referred to from contexts with many occurrences

3 We used Zettair, an open source search engine: http://www.seg.rmit.edu.au/zettair/
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of the entity examples. A coarse context would be the full page that contains
the entity examples. Smaller and better contexts may be elements such as
paragraphs, lists, or tables, which may be determined either statically or dy-
namically [6]. The main drawback of the static approach is that it requires
a pre-defined list of element contexts which is totally dependent on the doc-
ument collection. The advantage is that, once defined, the list-like contexts
are easy to identify. On the other hand, the main advantage of the dynamic
approach is that it is independent of the document collection, however the
possible drawback is that narrow contexts containing only one entity exam-
ple are never identified. In this work we plan to investigate a novel dynamic
approach for determining the contexts that addresses the above issue.

5. The category similarity module calculates a weight for a page based on the
similarity of the page categories with the categories attached to the entity
examples. The assumption is that a good entity page is a page associated
with a category close to the categories of the entity examples. The category
similarity measures may utilise lexical similarity between category names [7],
or, as we plan to investigate in this work, different category weighting rules
that could be applied on the sets of categories directly attached to both the
example and the answer entities.

6. The full-text module calculates a weight for a page based on its initial search
engine score.

The global score S(t) for an answer entity page is calculated as a linear
combination of three scores, the linkrank score SL(t), the category similarity
score SC(t), and the full-text score SZ(t):

S(t) = αSL(t) + βSC(t) + (1 − α − β)SZ(t) (1)

where α and β are two parameters whose values can be tuned differently de-
pending on the entity retrieval task.

Details of the global score and the three separate scores can be found in pre-
vious publications [6, 7]. In this work we are interested in automatically adapting
the values of α and β parameters to the topic, depending on the topic class. By
predicting the optimal values for α and β parameters that correspond to each
class of topic difficulty, we aim at improving the performance score of our system
over the current best performance score that uses pre-defined static values for
the α and β parameters.

Topic Difficulty Prediction

Our methodology for predicting topic difficulty is based on generating a classifier
to classify topics in two or four classes (as described above). The classifier is built
using features extracted from the INEX XER topic definition. We use the open
source data mining software Weka [10] developed by the University of Waikato.
Weka is a collection of machine learning algorithms for data mining tasks that,
given a training set of topics, can generate a classifier from the topics and their
associated features.
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From the specific structure of the INEX XER topics we developed several
a-priori and a-posteriori features, of which we needed to choose those features
that best correlated with the topic difficulty. We generated many classifiers,
each one associated with a random subset of the 46 INEX 2007 XER topics. We
then manually analysed all the decision trees generated by Weka to identify the
features that were actually used by the generated classifiers. As a result, we could
extract nine features that correlated well with the topic difficulty prediction [8].

We tried many different mostly random combinations of training and testing
topic subsets, but we found that, because of the relatively small sizes of the
training subsets available for the INEX 2007 XER track, the precision of the
correctly classified instances was between 65% and 82%.

To improve the precision, we used a well known approach that combines
five decision trees, each generated from slightly different topic subsets. This is
known as Random Forests [1] and was used in query prediction by Yom-Tov
et al. [11]. Before implementing the combined classifier, we carefully built the
training topic subset for each individual predictor so that the included topics
were representative of different features. For the final combined classifier we also
had to build a testing topic subset that did not include any of the training topics.

The final topic difficulty prediction algorithm was built using a simple voting
system (which is the reason why we needed an odd number of classifiers). For
building a two-class classifier the voting algorithm is trivial: for a topic we get a
prediction from the five classifiers and count the number of predictions as Easy
and the number of predictions as Difficult; the majority gives the prediction for
the final classifier. For example, if the predictions from the five classifiers are
[diff, easy, easy, diff, diff], the combined prediction is Difficult. The combined
classifier resulted in a precision of 94% on our testing topic subset which was
much better than what we could achieve with a single classifier [8].

Discussion

Our objective with topic difficulty prediction was to improve the performance
of our XER system by dynamically tuning the values for system parameters
according to the predicted topic class. Specifically, for each of the INEX 2008
topics, we aim at adapting the values for the α and β system parameters in order
to improve the best overall performance score without using prediction. Of the
four runs we submitted in the entity list completion sub-task of the INEX 2008
XER track, two runs do not use prediction, while the other two use two-class
and four-class prediction.

On the INEX 2007 XER test collection, we found that two-class prediction of
topic difficulty was performing better than the baseline (our last year best run),
although the difference in performance was not statistically significant [8]. On
the other hand, the four-class prediction of topic difficulty resulted in decreased
performance compared to the baseline, which was mainly due to the fact that
the topic prediction algorithm was specifically designed for two-class rather than
for four-class prediction. These results were promising, however the small size of
the training and testing topic subsets we used in INEX 2007 did not allow for
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very conclusive evaluation. We therefore intend to use topic difficulty prediction
in our system and apply it on the INEX 2008 XER test collection. We believe
that the larger number of topics used in the INEX 2008 XER test collection will
confirm the significance of our findings and highlight the positive impact of topic
difficulty prediction on entity ranking.
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Abstract. We describe our participation in the INEX 2008 Entity Ranking and
Link-the-Wiki tracks. We provide a detailed account of the ideas underlying our
approaches to these tasks. For the Link-the-Wiki track, we also report on the
results and findings so far.

1 Introduction

This year the Information and Language Processing Systems (ILPS) group of the Uni-
versity of Amsterdam participated in two INEX tracks: Entity Ranking and Link-the-
Wiki. For the Entity Ranking track our main emphasis was on developing a general
language modeling framework to model the tasks at hand. The models that are devel-
oped for both task offer us plenty of opportunity to experiment with various ways of
estimating components of the models. We describe the components of the models and
the way we estimated these. Of main interest to us was the use of category information
in the various components (e.g., by estimating entity similarity in list completion), com-
bining different entity representations, and query modeling. In our participation in the
Link-the-Wiki track our main aim was to explore different features that indicate links
between Wikipedia pages, as well as to develop a generative approach to automatic link
generation. We submitted runs designed to compare the influence of different features
on link generation.

In this paper, we describe our participation for the tracks mentioned above, in two
largely independent sections: Section 2 on our entity ranking track participation and
Section 3 on our work in the link-the-wiki track. Finally, we conclude in Section 4.

2 Entity Ranking

The Enitity Ranking track of this year’s INEX features three tasks: entity ranking, list
completion, and entity relation search. In our participation, we focus on the first and
second tasks, leaving entity relation search for coming years. Both tasks (entity ranking
and list completion) are aimed at retrieving entities from a semi-structured document
collection. The document collection at hand is Wikipedia, and an entity by definition is
a Wikipedia article.

The entity ranking task aims at retrieving entities (Wikipedia pages) given a certain
topic and Wikipedia category: the goal is to identify the Wikipedia pages that are rele-
vant given the topic and fit within the given category. The list completion task is slightly
different from the previous task, and aims at adding entities of the same type to a small
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sample seed set of entities. Again, we also have the topic and category available, but
as additional information we get a list of examples: one or more entities that fulfill the
constraints.

In our participation we use a generative language modeling approach to model both
tasks, since this offers us a theoretically sound and understandable way of dealing with
the problem at hand. A large portion of this paper is directed to the modeling of entity
ranking and the estimation of the various components this model offers us. We submit-
ted a total of six runs, again with a focus on the entity ranking task (four runs).

The remainder of this section introduces the modeling of the entity ranking task
in Section 2.1, and of the list completion task in Section 2.2. Next, we discuss the
estimation of the various components of both models in Section 2.3, and we conclude
with some notes on the experimental setup and submitted runs in Sections 2.4 and 2.5,
respectively. Since evaluation results are not available at the time of writing, we skip
the results, analysis, and conclusions.

2.1 Modeling Entity Ranking

Entities are ranked by their probability of being relevant given a query q and a set of
categories C, that is P (e|q, C). We assume that q and C are conditionally independent,
moreover, it is also assumed that each of the categories c ∈ C are mutually independent.
Formally:

P (e|q, C) = P (e|q) · P (e|C) (1)

= P (e|q) ·
∏

c∈C

P (e|c).

To estimate the probability of an entity given the query, P (e|q), we apply Bayes’
rule, then drop the denominator, P (q), which is a constant for all entities, and thus, does
not influence the ranking:

P (e|q) ∝ P (q|e) · P (e). (2)

Here, P (q|e) expresses the probability that q is generated by entity e, and P (e) is the
a priori probability of an entity being relevant (independent of the query). For the sake
of simplicity, P (e) is assumed to be uniform, and is not included in the equations from
now onwards.

We infer an entity model for each entity e, such that the probability of a term given
the entity model is P (t|θe). This model is then used to predict how likely the entity
would produce query q. Each query term is assumed to be sampled identically and inde-
pendently. Thus, the query likelihood is obtained by taking the product of the individual
term probabilities across all terms in the query:

P (q|θe) =
∏

t∈q

P (t|θe)n(t,q), (3)

where n(t, q) denotes the number of times t is present in q. Putting together our choices
so far (Eqs. 1, 2, and 3) we obtain the following:

P (e|q, C) =
∏

t∈q

P (t|θe)n(t,q) ·
∏

c∈C

P (e|c). (4)
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For computational reasons, we move to the log domain, and use the following formula
for ranking entities:

log P (e|q, C) ∝
(

∑

t∈q

P (t|θq) · log P (t|θe)

)
+

∑

c∈C

log P (e|c). (5)

Note that n(t, q) has been replaced with P (t|θq), where θq is referred to as the query
model. This allows us more flexible weighting of query terms. Three important compo-
nents remain to be defined: the entity model θe, the query model θq, and the probability
of an entity given a category P (e|c). These will be introduced in the following sections.

2.2 Modeling List Completion

The list completion task is modeled similarly to the entity ranking task, with the addition
that the probability of the entity is also conditioned on a set of example entities, E.
We assume that example entities are conditionally independent from the query and the
categories, as well as mutually independent from each other. Formally:

P (e|q, C, E) = P (e|q, C) ·
∏

e′∈E

P (e|e′). (6)

Again, we perform this computation in the log domain:

log P (e|q, C, E) = log P (e|q, C) +
∑

e′∈E

log P (e|e′). (7)

The estimation of P (e|q, C) has already been discussed in Section 2.1. A new com-
ponent to be defined is the probability of an entity e given entity e′: P (e|e′). In other
words, this probability expresses the similarity of two entities.

2.3 Estimating the Components

In this section we detail how various components of the models introduced in the pre-
vious sections are estimated. Specifically, we discuss the implementation of the entity
model θe, the query model θq, the probability of an entity given a set of categories
P (e|C), and finally, the probability of an entity given another entity P (e|e′).

Entity Model The entity is represented as a multinomial probability distribution over
terms. To estimate P (t|θe) we smooth the empirical entity model with the background
collection to prevent zero probabilities:

P (t|θe) = (1− λe) · P (t|e) + λe · P (t) (8)

Since entities correspond to Wikipedia articles, this way of modeling an entity is iden-
tical to constructing a smoothed document model for each Wikipedia page. The choice
of the smoothing parameter λe is discussed in Section 2.4.
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Query Model Our baseline query model P (t|θq) is set to n(t, q)·|q|−1, where n(t, q) is
the number of occurrences of term t in query q, and |q| is the query length. Essentially,
the probability mass is distributed uniformly across query terms. Since this representa-
tion of the query is quite sparse, we would like to add more terms to the original query.
By mixing new terms and original query terms, we end up with the following equation:

P (t|θq) = (1− λq) · P (t|q̂) + λq · P (t|q), (9)

where P (t|q̂) is the probability of the term given the expanded query.
In [1] various methods are introduced for constructing expanded query models by

sampling terms from a set of example documents (complementing the textual query).
Based on the information provided with the topic statement, we have three straightfor-
ward ways of applying these methods to our current scenario, by (i) treating all entities
belonging to the target categories as examples (both for entity ranking and list comple-
tion), (ii) employ a blind-relevance feedback approach, in which we perform a baseline
run and look at the categories which are assigned to the 10 highest-ranked entities (cat-
egory feedback for entity ranking), or (iii) using the example entities (only list com-
pletion). Specifically, we use the best performing method, maximum likelihood (ML),
from [1] to estimate the expanded query model P (t|q̂).

Entity-Categories Probability The probability of an entity e given a set of target
categories C, P (e|C), is computed as follows. Let cat(e) denote the set of categories
e is assigned to. The overlap ratio between cat(e) and the set of target categories C is
used as an estimate of P (e|C):

P (e|C) =
|cat(e) ∩ C|

|C| , (10)

where |C| is the size of the set of target categories. We experiment further with this way
of estimating P (e|C), by introducing a parameter δ to control the weight of the overlap
between the two sets C and cat(e) and dropping the term in the denominator:

P (e|C) = δ · |cat(e) ∩ C|. (11)

Based on initial experiments we set δ = 6.
Further, we hypothesize that the target categories for each topic, as used in Eqs. 10

and 11, are not exhaustive. Therefore, in order to amend this set of categories, we apply
a simple expansion strategy. We leverage the hierarchical structure of the Wikipedia
categories and add the categories below each target and expanded category up to a
certain depth. Based on preliminary experiments, we set the maximum depth to three.

Entity-Entity Probability Our model for the list completion task involves the estima-
tion of the similarity between two entities. This is expressed as P (e|e′), the probability
of an entity e given another entity e′ (see Eq. 6). We estimate this probability based on
set overlap between the categories assigned to each of the entities. To this end, we em-
ploy a standard set-based similarity measure, Dice’s coefficient, calculated as follows:

P (e|e′) =
2 · |cat(e) ∩ cat(e′)|
|cat(e)| + |cat(e′)| , (12)
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where cat(e) and cat(e′) are the set of categories assigned to entities e and e′, respec-
tively.

2.4 Experimental Setup

Document Representation Besides representing the entity (Wikipedia page) by its
entire textual content (refered to as full representation), we opted for a second repre-
sentation. Assuming that most valuable information on a Wikipedia page is presented at
the beginning of the article, we select only the first paragraph of each article. This para-
graph is the new representation of the entity (refered to as paragraph representation).
For reasons of comparability, we use the full representation in almost all cases.

Document Preprocessing Document preprocessing consisted of removing stopwords
only. Besides the “standard” English stopwords, we added several Wikipedia-specific
stopwords to the stopword list (e.g. disambiguation, category, and stub).

Smoothing Parameter For the smoothing parameter λe in Eq. 8, we set λe equal to
|e|

β+|e| , where |e| is the length of the entity in number of terms. Essentially, the amount of
smoothing is proportional to the length of the entity (and is like Bayes smoothing with
a Dirichlet prior [2]). If there is very few content available in the entity then the model
of the entity is more uncertain, leading to a greater reliance on the background proba-
bilities. We set β to be the average entity length, i.e. β = 409 for the full representation
and β = 42 for the paragraph representation.

Query Modeling Parameter For the construction of the new query model (Eq. 9), we
need to set λq and decide on the number of terms in the new query. For the entity ranking
task, in which we select our expansion terms from the category feedback approach, we
set λq = 0.5 and select the 20 terms with the highest probability. For the list completion
task we set λq = 0.2 and again select the top 20 terms to be included in the new query.

2.5 Submitted Runs

The following lists our six submitted runs and the configuration used for each run (note
that all runs use the full representation, unless stated otherwise).

6 UAms ER T baseline: Our baseline run using Eq. 3.
3 UAms ER T overlap: Overlap run using Eq. 5; we estimate P (e|C) as in Eq. 11,

and use an expanded category set C up to depth three.
4 UAms ER T cat-exp: Expanded overlap run; similar to run 3 UAms ER T overlap,

except that we model the query according to Eq. 9, where expansion terms are
selected using the category feedback method. We select the top 2 categories and
use the entities within these categories as examples.
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1 UAms ER T mixture: Mixture run; we construct two runs using Eq. 5, one on the
full representation and one on the paragraph representation. Each run estimates
P (e|C) as in Eq. 11, and uses an expanded category set C up to depth three (para-
graph representation) or two (full representation). Both runs are combined using a
linear rank combination with a weight of 0.1 for the paragraph representation and
0.9 for the full representation.

The remaining two runs are used for the list completion task:

5 UAms LC T baseline: Our baseline run using Eq. 7; we model the query according
to Eq. 9 and select expansion terms from the provided example entities.

2 UAms LC T dice: Our overlap run; similar to run 5 UAms LC T baseline. We esti-
mate P (e|e′) using Eq. 12 and P (e|C) as in Eq. 11, and use an expanded category
set C up to depth two.

3 Link-the-Wiki

In this section, we describe our participation in the Link-The-Wiki (LTW) track. The
aim of the LTW track is to automatically identify hyperlinks between documents. The
2006 Wikipedia collection is used as the development and test data, which contains the
ground truth of linked documents. This year’s LTW track consists of two sub-tasks,
namely, the file-to-file (f2f) link generation task and the anchor-text to Best Entry Point
(BEP) link generation task. We participated in the f2f task and submitted three runs.
The task is formulated as follows: a set of 6600 Wikipedia articles are randomly picked
from the collection as topic pages; the participants are supposed to discover at most 250
incoming and 250 outgoing links between the topic pages and the rest of the collection.
In the following sections, we introduce our approaches for both incoming links and
outgoing links, followed by the description of the runs we submitted, as well as the
experimental settings we applied to our runs.

3.1 Outgoing Links

Our approach to identifying outgoing links can be seen as a two-step procedure: anchor
text detection (where to start a link) and target identification (which page should be
linked). Although in the f2f task, the exact position of the anchor text is not required,
the identified anchor texts strongly indicate the target pages to be linked.

Anchor Likelihood Ratio For anchor text detection, we introduce the anchor like-
lihood ratio measure (ALR) which we use to rank the n-grams in a text on being an
anchor text. Since the Wikipedia articles are well-structured and interconnected, the
existing links provide an indication of the patterns of linked pages. Mihalcea and Cso-
mai [3] proposed the link probability measure which measures the likelihood of a word
sequence being an anchor text by calculating the ratio between the number of times a
word sequence is used as an anchor text and the number of times this word sequence
occurs in the collection. The likelihood estimation is a reasonable measure and proved
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to be useful. However, the value of the likelihood is a continuous number between 0
and 1, which needs a threshold to determine wether the word sequence is an anchor text
or not. By modifying this measure, we try to model it without a magic threshold.

For a given word sequence w, we assume that it is sampled from two different un-
derlying models: the anchor model θA and the background collection model θC . For
selecting the model for generating the word sequence, we take the likelihood ratio be-
tween the two models, which is formulated as:

ALRw(θA||θC) =
P (w|θA)
P (w|θC)

(13)

Given Eq. 13, it is obvious that the larger the value of the likelihood ratio, the more
likely it is that the word sequence w is generated by the anchor model. Particularly,
when ALRw > 1, it expresses that the anchor model is preferred over the collection
model, and therefore we can obtain a non-magic threshold at ALRw = 1.

Target page identification - Title Field Evidence For target page identification, we
follow a language modeling approach. In Wikipedia, the title of a page is the main
concept of the page and is usually the same as or similar to the anchor text linked to it.
Therefore, a straightforward way of modeling this relationship would be to assume that
a given anchor text can be generated by the language models that generate the titles.
Thus the problem boils down to estimating the probability that the given anchor text A
is generated from a given title model θt by applying the Bayes’ Theorem.

P (θt|A) =
P (A|θt)P (θt)

P (A)
, (14)

where the P (θt) is assumed to be uniformly distributed and P (A) is the same for each
anchor and is usually dropped since it does not affect ranking. For estimating the prob-
ability P (A|θt), we assume each term in the anchor text to be independent and estimate
the maximum likelihood (ML) of the anchor term w generated by the title model:

P (A|θt) =
∏

w∈A

P (w|θt) (15)

To avoid zero probabilities, we smooth P (w|t) with the background collection of all
page titles CT using the Jelinek-Mercer method to obtain P (w|θt):

P (w|θt) = (1− λ) · P (w|t) + λ · P (w|CT ), (16)

where

P (w|θt) =
n(w, t)∑
w′ n(w′, t)

(17)

In this equation, n(w, t) and n(w′, t) are the number of times terms w and w′ occur in
a candidate target page’s title t.

282



8 The University of Amsterdam (ILPS) at INEX 2008

Target page identification - Topic Page Content Evidence Since most Wikipedia
pages are short, it is very likely to end up with equal probabilities for different target
candidates, especially in cases where disambiguate pages are involved. In order to solve
this disambiguation problem, we try to incorporate an additional evidence source, the
topic page content evidence. The assumption behind this is that if a candidate target
page is the real target page for the given topic page, the content of the topic page should
somehow relate to the terms in the title field of the candidate target page. Based on this
assumption, we model the problem as the probability that the language model of the
topic page θd generates the title of the candidate target page t. Similarly as before, we
apply Bayes’ Theorem to estimate the probability that a specific model θd is selected.

P (θd|t) =
P (t|θd)P (θd)

P (t)
, (18)

where P (t) is ignored for ranking, and P (θd) is assumed to be uniformly distributed.
The same ML estimate is applied to calculate P (t|θd):

P (t|θd) =
∏

w∈t

P (w|θd) (19)

Again, JM smoothing is applied to avoid zero probabilities.

3.2 Incoming Links

Our approach for identifying incoming links is quite straightforward. We experiment
with two types of methods: The first method is based on exact matching of titles. We
get the pages that contain the exact matches of the title of the topic page and select
randomly 250 pages as linked pages. In this case, we simply ignore the context of
the matched terms and assume that the existence of a link is context-independent. The
second method is a rank-based approach. In this case, we perform a retrieval run on
the candidate source pages, and use the title of the topic page as query. The top 250
pages are selected as the linked pages. Further thresholding on these 250 pages is also
explored, and we describe this later in detail in our submitted runs section.

3.3 The LTW Runs

We submitted three runs to the LTW track. Each of the runs tries to explore the different
research questions.

ltw01 : We use this run as our baseline run.
Outgoing links: We select word sequences as anchor texts whose ALR is larger than
1; use the anchor text as query on the title field of the Wikipedia collection and retrieve
target pages; use the top-ranked page as the target page.
Incoming links: We use the title of the topic page as query and retrieve the top 250
pages from the collection as the source pages that are linked to the given topic.
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ltw02 :We compare this run with ltw01. For outgoing links, we use this run to test if
re-ranking would help disambiguate the target pages. For incoming links, this run tests
how much the term linked with a topic page is related with the content of the source
page.
Outgoing links: We select anchors with ALR larger than 1; retrieve the target page
whose title matches (exact or partial) the anchor text; re-rank the target pages according
to the likelihood of the target title in the topic page (i.e., Eq. 18), and select the top-
ranked page as the target page.
Incoming link: use the topic title to find exact matches in the collection, select ran-
domly 250 pages as the incoming source page.

ltw03 : This run checks an assumption: the linked pages should be semantically close
if the links are not generated automatically by Wikipedia (i.e., country, year, etc.). This
run does not try to identify anchor text at all.
Outgoing links: We use the topic title as query to retrieve 250 candidate target pages,
rank them by cosine similarity to the topic page, and select the target pages whose
similarity is larger than 0.15.
Incoming links: We use the same strategy as that of the outgoing links, but select the
source pages whose similarity is larger than 0.026.

Here, 0.15 is the average cosine similarity between linked pages that are sampled
from the collection; 0.026 is the threshold for “exceptionally” high similarity between
two random pages. Different thresholds mean we would like outgoing links to empha-
size on precision, and incoming links to emphasize on recall.

3.4 Experimental Settings and Results

In this section, we discuss the experimental settings in generating our runs and present
the evaluation results, followed by a discussion of the initial observations.

We use the content only Wikipedia pages as input. All the XML-tags are removed
and the XML-structures of the documents are ignored in our experiments. For prepro-
cessing, we use a Porter stemmer for both topic pages and target pages without stop
words removal. All the topic pages are virtually deleted from the collection. For all
retrieval experiments, we use the Lemur toolkit 1. Smoothing parameter λ (Eq. 16) is
heuristically set to 0.1 for all experiments (i.e. the background statistics have little im-
pact).

Table 1 lists the evaluation results of the submitted runs in terms of MAP. Figure 1
shows the precision-recall plots for both incoming and outgoing links. In terms of MAP,
we see that for both outgoing links and incoming links, run ltw02 has better performance
than ltw01. For outgoing links, the re-ranking with content evidence does help improve
the performance, especially in early precision. This shows in 1(a). For incoming links,
the fact that ltw02 is better than ltw01 suggests that simple title match works better
than a rank-based method. Run ltw03 performs consistently worse than the other two
runs. However, early precision for this run is not that bad, suggesting that the similarity
between pages could be a reasonable feature.

1 http://www.lemurproject.org
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Runs MAP of outgoing links MAP of incoming links
ltw01 0.2879 0.4800
ltw02 0.3474 0.5249
ltw03 0.1041 0.3345

Table 1. Results of submitted runs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

c
is

io
n

Outgoing links

ltw01

ltw02

ltw03

(a) Precision-Recall plot for outgoing links

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

c
is

io
n

Incoming links

ltw01

ltw02

ltw03

(b) Precision-Recall plot for incoming links

Fig. 1. Precision-Recall plots for the submitted runs

4 Conclusions

We described our approaches, submissions, and initial results of this year’s INEX par-
ticipation. For the Entity Ranking track our focus was on the entity ranking and list
completion tasks, and our chief aim was to develop a general language modeling frame-
work to model these. Given the models we developed, we are left with plenty of choices
on how to estimate the various components these models offer. For most of the com-
ponents we applied simple options, that mainly make use of the category information
that is available in Wikipedia. More elaborate ways of estimating the components of
our models are left to future work and depend on the results of this year’s participation.
Results and conclusions are postponed in this paper due to the lack of evaluation results
at the time of writing.

As to the Link-the-Twiki track, we submitted three runs for the File-to-File task
designed to examine different features for file-level link generation. For outgoing links
we based our runs on a two-step procedure: anchor text detection and target page iden-
tification. For anchor text detection, we use the anchor likelihood ratio (ALR), and for
target identification, we apply a language modeling approach with different sources of
evidence (i.e. title field and topic page content). Results show that the title field evidence
alone is an important feature, and early precision can be improved by adding content
evidence. For incoming links, we apply two very simple methods: exact matching and
retrieval using the title of the topic page. We also submitted a run that tests if simple
similarity between pages is sufficient as an indication of a link. The result shows that
this is a reasonable feature, but on its own it is not powerful enough for link detection.
Future work focuses on exploring more robust ways to model these features.
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Abstract. In the paper we present the organization of the INEX 2008 
interactive track. We introduce the methods used for data collection and the 
tasks performed by participants. Data collection is not yet completed thus it will 
be presented in more detail in the final proceedings. 

Introduction 

The INEX interactive track (iTrack) was run for the first time in 2004, repeated in 
2005 and again in 2006/2007 (due to technical problems the tasks scheduled for 2006 
were actually run in early 2007). Although there has been variations in task content 
and focus, some fundamental premises has been in force throughout: 

• a common subject recruiting procedure 
• a common set of user tasks and data collection instruments such as interview 

guides and questionnaires 
• a common logging procedure for user/system interaction 
• an understanding that collected data should be made available to all 

participants for analysis 
 
This has ensured that through a manageable effort, participant institutions have had 

access to a rich and comparable set of data on user background and user behaviour, of 
sufficient size and level of detail to allow both qualitative and quantitative analysis. 
This has already been the source of a number of papers and conference presentations. 

In 2008, we wanted to preserve as much of the "common effort" quality of the 
previous years as possible. We invited the participants to participate in a minimum 
experimental effort using the system and data provided and described below.  Within 
the framework of the track, participants could then design their own investigations 
under certain constraints, such as: 

• The collection of documents was the same as the one used for the INEX ad 
hoc retrieval task, i.e., in 2008 the Wikipedia collection.  

• The IR system developed for the 2006 track was made available for the 
participants to use, either alone or in comparison with participants’ own 
system(s). 
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• Each participating site was responsible for recruiting a minimum of 8 (but 
preferably more) test persons to participate in the study as searchers.  

• The participants should make their data available to all participating groups, 
and describe their collection process and experimental procedure so that the 
data can be interpretable for others.  

In all, 7 institutions stated that they were interested in taking part in the 2008 
iTrack experiments: 

 
• Renmin University of China 
• Kyungpook National University 
• University at Albany, State University of New York  
• University of Otago  
• Microsoft Research  
• University of Amsterdam  
• Oslo University College 

Tasks 

For the 2008 iTrack we decided to design the experiment with two categories of 
tasks, from each of which the searcher should select one task. The original intention 
was to also give the searchers the opportunity to perform one self-generated task, but 
it was unfortunately not possible to implement this in the IR system. The two 
categories of tasks consist of fact-findings tasks (category 1) and research tasks 
(category 2). The tasks were generated to represent information needs that we believe 
are typical for Wikipedia-users. In addition we wanted the task to be complex enough 
not to be solvable from one individual article. In order to decrease learning effect, the 
order of task categories performed by searchers was rotated. 

The fact-finding tasks: 

1. As a frequent traveler and visitor of many airports around the world you are 
keen on finding out which is the largest airport. You also want to know the 
criteria used for defining large airports.  

2. The "Seven summits" are the highest mountains on each of the seven 
continents. Climbing all of them is regarded as a mountaineering challenge. 
You would like to know which of these summits were first climbed 
successfully.  

3. In the recent Olympics there was a controversy over the age of some of the 
female gymnasts. You want to know what the minimum age for Olympic 
competitors in gymnastics.  
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The research tasks  

1. You are writing a term paper about political processes in the United States 
and Europe, and want to focus on the differences in the presidential elections 
of France and the United States.  Find material that describes the procedure 
of selecting the candidates for presidential elections in the two countries.  

2. Every year there are several ranking lists over the best universities in the 
world. These lists are seldom similar. You are writing an article discussing 
and comparing the different ranking systems and need information about the 
different lists and what criteria and factors they use in their ranking.  

3. You have followed the news coverage of the conflict between Russia and 
Georgia over South Ossetia. You are interested in the historic background 
for the conflict and would like to find as much information about it as 
possible. In particular you are interested in material comparing this conflict 
with the parallel border conflict between Georgia and Abkhazia. 

System design 

The system used is a java-based retrieval system built within the Daffodil 
framework [1], which resides on a server at and is maintained by the University of 
Duisburg. The search system interface is quite similar to the one used in Task A of the 
2005 and 2006 tracks. 

The system returns elements of varying granularity based on the hierarchical 
document structure. The elements are grouped by document in the result list and up to 
three high ranking elements are shown per document. When a searcher chooses to 
examine a document the system shows the entire full text of the document with 
background highlighting for high ranking elements. In addition to this it shows a 
Table of Contents drawn from the XML formatting. To help searchers select query 
terms a box appears showing terms related to the current query, using mouse-over 
searchers can view the top-three contexts of the related terms. The searchers can also 
right-click on related terms to retrieve the top-ten contexts. 

Document corpus 

The document corpus used is the same as the one used in the 2006 itrack. It 
consists of more than 650,000 articles formatted in XML. In all, the corpus contains 
4,6 GB of encyclopedia articles extracted from Wikipedia1.  

                                                           
1 For more information see Denoyier & Gallinari’s SIGIR Forum article at 

http://www.acm.org/sigs/sigir/forum/2006J/2006j_sigirforum_denoyer.pdf  
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Online questionnaires 

Before the experiment, the searcher is given a pre-experiment questionnaire, which 
collects demographics questions such as searcher’s age, education and searching 
experience. Each search task is preceded with a pre-task questionnaire, which collects 
searcher’s perceptions of the search task. After each task, the searcher is asked to fill 
out a post-task questionnaire. The post-task questionnaire contains questions to learn 
about the searchers use of and their opinion on various features of the system. The 
experiment is closed with a post-experiment questionnaire, which asks searcher’s 
general opinion of the search system. The questionnaires data are logged in a 
database. 

Relevance assessments 

The system was designed to have searchers assess the relevance of each item they 
looked at. These could be the full article or article elements. We have chosen to use 
the relevance scale used in the 2006 interactive track. This is based on work by 
Pehcevski [2] and it balances the need for information on the granularity of retrieved 
elements, the degree of relevance and is fairly simple and easy to visualize [3]. The 
searchers were not forced to perform relevance judgments, but in the instructions they 
were told to “select an assessment for each viewed piece of information with regards 
to how you consider it to be of help in solving the task.” 

Logging 

All search sessions are logged and saved to a database. The logs register the events 
in the session, the actions performed by the searcher as well as the responses from the 
system. 

 

Data analysis 

At the time of writing data collection was still going on and we expect to give a 
summary of the data collected at the workshop in Dagstuhl. 
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Abstract. In this paper, we discuss our participation to the INEX 2008 Link-
the-Wiki track. We utilized a sliding window based algorithm to extract the 
frequent terms and phrases. Using the extracted phrases and term as descriptive 
vectors, the anchors and links are recognized efficiently. Results show that we 
were able to find the relevant links successfully.  

 

1   Introduction  

With the information boom on the internet, there are many encyclopaedia-like 
websites gathering and sharing knowledge. One of the leading website is Wikipedia, 
which is a repository written and contributed by peer anonymous internet users. With 
the rich articles and features in Wikipedia, the INEX organization collected the 
documents and articles into INEX Wikipedia corpus, which is presented in XML 
format. The corpus is large in size and useful for various ranges of information 
retrieval and data mining / text mining researches. 

One of the research tracks organized by INEX is Link-the-Wik, which was 
introduced on 2006 [1]. The objective of this track is to automatically discover the 
hyperlinks among Wikipedia web pages.  

This Link-the-Wiki track offers many interesting challenges. One of them is related 
to the size and nature of the Wikipedia data corpus. This corpus has more than 
659,000 documents. The file size is more than 5GB in XML files. The challenge 
includes performance on large dataset, handling high dimensional, complex and 
noise-full data source. 

This research utilises frequent phrases for link discovery. Firstly, this research 
attempts to reduce the size, complexity and dimensionality of the dataset by extracting 
the descriptive and frequent terms and phrases from the corpus.  Secondly, this 
research discovers the hyperlinks between Web pages, according to the extracted 
frequent phrases and terms.  
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This report is going to discuss the sproposed approach and the four stages of this 
research. In the Data Pre-Processing section, data cleaning step including stop-words 
removal and stemming will be reviewed. In the Frequent Phrase Extraction section, 
the extracting algorithm will be introduced and explained. The rationale of both 
incoming and outgoing links will be discussed in the Links Discovery section. The 
Experiments and Discussion section will look at the results of these experiments. The 
last section of this paper is the Conclusions and Future Work, which summaries this 
research and offers some future extensions and applications of this research. 

2   Overview of the Proposed Approach 

Figure 1 illustrates the proposed approach undertaken in this research. It includes 
four main stages including data preparation, frequent phrase recognition, link 
discovery and validation. 

INEX Dataset Data Preparation 

 
Frequent Phrase 

Recognition 
  

  

  

  

 

 
INEX Contest 

 
 

Validation 

Link 
Discovery 

 

 

 
Fig. 1. The proposed approach 
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2.1 Data Preparation 

In the first stage of this approach, data cleaning, transformation and preparation are 
performed. The Wikipedia documents in the INEX corpus require a series of data 
cleaning process to get them ready for data mining.  

All the 659,000 documents of the Wikipedia corpus are incorporated into a 
relational database. By gathering all the documents into data tables in a database, all 
the Wikipedia articles will be well aligned. Relational databases, such as Microsoft 
SQL Server, Oracle and MySQL are appropriate selections to reside the data.  

 
After the articles have been arranged into database, the following pre-processing 

would be ideally performed and take the advantages of database. By running loops on 
the data records to handle each document, data parsing, word stemming and stop-
words removal will be accomplished at this stage. 

 

2.2 Frequent Phrase Recognition 

Initial data preparation steps including stop-word removal and stemming are able 
to eliminate a certain amount of noise and reduce the size of the corpus.. However, 
the database is still very large in size. In order to further reduce the size and 
complexity, the second stage in this research employs an algorithm to recognise and 
extract the frequent phrases. A frequent phrase extraction algorithm has been 
developed to access the database, to extract the frequent phrases from each single 
document and to store the extracted phrases into database again for each document. In 
other words, this frequent phrase recognition step is to extract the descriptive phrases 
as vectors from the individual documents. It is hoped that after this step, database size 
and article complexity would be remarkably decreased. 

 

2.3 Link Discovery 

With each document stored as frequent terms and phrases, the link discovery step 
becomes straightforward. Each orphan document is processed to recognize the 
appropriate anchors according to the existing frequent phrases. Moreover, the links of 
the recognized anchors are filtered and selected according to the frequent phrases 
present in database for each document. 

 

3   Data Pre-processing:  

Similar to a data mining task, data pre-processing is the first step of the proposed 
approach. In this research, all data is organized into a database. The first pre-
processing step was to eliminate the XML tags from the input XML document and 
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transfer it into a plain text article. In addition, any word which is less than and equals 
to 3 characters was deleted during parsing.  

 
The next step is stop-word removal. There were some difficulties encountered in 

using the standard and common stop-word lists to identify the stop-words. These lists 
cover a wide range; as a result, some of the meanings were lost or changed after the 
stop-words removal. For example, the word “new” is covered in these lists. For some 
articles which have the phrase “New York”, it became only “York” with the removal 
of the word “New”. Apparently, “New York” is totally different from “York”. The 
solution to this problem was to manually review the list of stop-words. If a keyword 
that can be a part of a meaningful phrase should be excluded from the stop-words list.  

 
The last step of data pre-processing is to stem the words. This research employed a 

well-known stemming algorithm by Porter M.F. [2]. The Porter Stemmer algorithm 
can remove the suffix from words in English. It is widely employed in information 
retrieval and text mining researches and applications.  
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Fig. 2. Article size before and after pre-processing 

As shown in figure 2, the article size was effectively reduced by pro-processing. 
After pro-processing, the distribution of article size was drift to left and distributed 
more evenly than before pre-processing. The average size of articles was reduced 
almost 40% after pre-processing as shown in table 1. It was average 389 words in a 
document before pro-processing. It has condensed to average 234 words in a 
document.  
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Table 1. The average article size befor and after pre-processing 

*  Before After Reduced 

Average Article Size 389 234 39.8% 
 
 
 

4   Frequent Phrase Extraction 

 
A sliding-window based algorithm is used to extract the frequent phrases from 

each single document. This algorithm recognizes and extracts the frequent terms and 
phrases from each document independently in the corpus. 

 
Let D be the set of documents in the Wikipedia corpus. D At this point we assume 

that each document is independent from each other.  

D  =  { d1, d2, d3, ………, dn } (1) 

 
Considering each document independently, a set of frequent phrases from each 

document is extracted. Frequent phrases are extracted from a document at the level of 
sentences and paragraphs. Figure 3 shows the process of frequent phrase extraction in 
which a document is modeled as a set of sentences. The algorithm applies a window 
on a number of words (several window sizes are used during the experiments). Using 
the moving window, 1-term, 2-terms to n-terms frequent phrases are extracted 
(several n-sizes are used in experiments). Output of this algorithm is a set of 1-term to 
n-terms frequent phrases which belongs to that particular document. 

 
d1  {p11…..p1q}    d1 
 
 
dn  {pnt…..pnm}    dn 

Extraction(d1) ∈

Extraction (dn) ∈  
Fig. 3. The inputs and outputs of frequent phrase extraction 

 
 
 

296



5   Link Discovery 

The link discovery task was to recognize the anchors in a set of orphan documents 
and the appropriate incoming and outgoing links to these orphan documents via these 
anchors. An incoming link is the link that from the relevant documents in Wikipedia 
documents link to this orphan document. In contract, an outgoing link is a link which 
anchors in this orphan document and refers to a relevant document. We utilized the 
extracted frequent phrases to recognize the anchors and identify both in-coming and 
out-going links.  

  

term1 term2 

       term3 

 

  term4 

 

          term5 

 term6     term7 

Orphan Document 

term 2 =  
{d4, d7, d8} 

d1 = {P11,..P1n} 

d2= {P21,..P2m} 
d3= {P31,..P3o} 
d4= {P41,..P4p} 
d5= {P51,..P5q} 
d6= {P61,..P6r} 
d7= {P71,..P7s} 
d8= {P81,..P8t} 
 

term 5 =  
{d5, d6} 

Extracted 
Frequent Phrases 

 
Fig. 4. The link discovery design with extracted frequent phrases. 

 
The link discovery was designed by exploiting the extracted frequent phrases as 

shown in figure 4. Each orphan document is scanned for a common term or phrase 
identified in the corpus. Each term (or combinations of the terms in the window) of an 
orphan document is matched with the extracted frequent phrases. If a term (or phrase) 
is matched with a frequent phrase, the link can be created by tracking back to the 
original document. The sections below explain the detail process of identifying 
outgoing and incoming links.     

 

5.1 Outgoing Links 

 
The first task in identifying outgoing links of an orphan document is to recognize 

the anchors in the document which are phrases. A phrase is composed of multiple 
single terms and is a set of element terms. Consider the following example. Assume 
that the orphan document has an anchor that is “Australian Open Tennis 
Championship”.  This 4-terms phrase, P1, is a set of 4 elements, including t1= 
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“Australian”, t2= “Open”, t3= “Tennis” and t4 is “Championship”. The first challenge 
of outgoing link discovery is how to identify “Australian Open Tennis 
Championship” as an anchor phrase present in the orphan document. 

 

P1 = {t1, t2, t3, t4} = {“Australian”, “Open”,  “Tennis”, “Championship”} (2) 

 
Let us first consider the outgoing link discovery without the assistance of the 

Frequent Phrase List. The link discovery algorithm considers t1 (“Australian”) 
individually and search the link for t1. As shown in figure 5 (left part), the program 
can only pick up t1 (“Australian”), t2 (“Open”), t3 (“Tennis”) and t4 
(“Championship”) individually. Without the Frequent Phrase List, all these terms are 
independent from each other and there exist no relationship among them. 

 

Without the 

frequent phrase list 

Orphan Doc : Dm 

 t1  t2  t3  t4 

pick up terms  

individually 

     tg  th 

Orphan Doc : Dm 

 t1  t2  t3  t4 

pick up the 

combinations of 

terms as 

phrases 

     tg  th 

 
Frequent Phrase 

List 

t1 t2 t3 t4 P1 

tg th Pn  

 
Fig. 5. Comparing with / without the assistance of frequent phrase list. 

In contrast, with the assistance of extracted frequent phrases, the procedure 
recognizes the anchors {t1, t2, t3, t4} as a single phrase. As shown in figure 5 (right 
part), {t1, t2, t3, t4} (“Australian Open Tennis Championship”) in the orphan document 
Dm is recognized according to P1 in Frequent Phrase List. In this example, tg and th 
would also be identified as a phrase Pn. In other w rods, the relationships among the 
individual terms are identified and stored in the Frequent Phrase List. In this practice, 
the procedure achieved a simulation of natural language, and recognizes phrase 
anchors. 

 
After the anchors have been recognized, the next task is locating the documents 

which contain information about this anchor. For example, the articles containing 
information about previous winners of “Australian Open Tennis Championship” 
would be a good candidate. By exploiting the Frequent Phrase List, this link discovery 
procedure executes a series of queries against the documents which contain the query 
phrase. 
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Fig. 6. Finding the outgoing links for anchor P1 

 
As shown in figure 6, the link discovery procedure first obtains the query phrase 

(anchor) P1, and filters the list of documents. In this example, there are 3 documents 
returned by this query, including Du, Dv, Dy. For example, if P1 is the “Australian 
Open Tennis Championship” and the Du may be an article regarding the “The history 
of Australian Open Tennis Championship”. 

 
With the sufficient information from previous steps, the phrases anchors would be 

recognized and the links for those anchors would be identified.  

5.2 Incoming Links 

The incoming link discovery uses the same concept as outgoing link discovery, but 
the direction is reversed. The first task is identifying anchors in the orphan document. 
The frequent n-terms phrases are extracted from the orphan document. As shown in 
figure 7, the frequent phrases, P1, P2 , P3 and P4 are extracted and viewed as 
descriptive vectors of this particular document Dm. The descriptive vectors are 
describing the topics of this orphan document. For instance, the possible frequent 
phrases from Dm are “Australian Open Tennis Championship”, “Melbourne Park”, 
“hard court”, “Grand Slam”. The combination of these frequent phrases represents 
and describes this orphan document to some extent. 
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Fig. 7. Finding the incoming links for document Dm 

The next step of incoming link discovery is to scan through the Wikipedia corpus 
and find out the articles which have information about the Australian Open Tennis 
Championship. These articles become the incoming links to this orphan document.  In 
figure 7 for example, P1 (“Australian Open Tennis Championship”) is one of the 
descriptive vectors of document Dm. The last step of creating an incoming link is to 
store the information of incoming document ID {Du, Dv, Dy} to the orphan document 
Dm. 

 

5.3 Links Discovered 

After completing the link discovery procedures of incoming links and outgoing 
links, this research recognized sufficient and high quality links. 

Table 2. The quantity of links discovered 

Discovered Links Minima Average Maxima 
Overall CD* CE%* &&CC*

Small docs (less than 500 words) CD* &&&* &E$*

Medium docs (500 ~ 2000 words) E!* C!"* /DC*

Large docs (more than 2000 words) C!C* $C&* &&CC*
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Fig. 8. The quantity of links discovered 

As shown in table 2 and figure 8, the average of links discovered from small, 
medium and large documents are 111, 302 and 631, respectively.  The INEX Link-
the-Wiki contest can accept up to 250 incoming and 50 outgoing links for each 
orphan document. These illustration shows that the use of frequent phrases in 
identifying incoming and outgoing links are able to locate the sufficient quantity of 
links discovered. 

6   Experiments and Discussion 

Frequent n-terms phrases were extracted from the Wikipedia corpus to represent 
the original documents. The dimensionality and size was apparently reduced by the 
frequent phrase extraction. The original Wikipedia corpus was more than 5GB, while 
the total file size of extracted phrases was only 1.2GB. Table 3 gives some instances 
of recognised frequent phrases with frequency. Please note that the words are 
stemmed as the outcome of Port Stemmer [2]. 
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Table 3. Some instances of the extracted frequent phrases 

Doc ID Freq Phrase Category 
Doc 1 7 europ 1 
Doc 1 9 violin 1 
Doc 1 4 music instrument 2 
Doc 1 6 standard pitch 2 
Doc 1 12 finger position 2 
Doc 1 4 violin mak techniques 3 
Doc 1 5 beethoven violin concerto concert 4 
Doc 1 6 correct violin string tun 4 
Doc 1 3 tradit itali cremona stradivari pattern. 5 
 
Table 4 shows that when the article size (word count) was increased, the average 

frequency of extracted phrase in that particular document was also raised as well. This 
shows that the extracted phrases were sufficient enough to describe the original 
document. 

 

Table 4. The average frequency of every phrase 

Document Size (Word Count) Average Frequency 
Less than 200 3 

Between 200 and 400 words 8 

Between 400 and 700 words 16 

Between 700 and 1000 words 29 

Between 1000 and 3000 words 62 

More than 3000 words 214 

 
By investigating the extracted Frequent Phrase List, some interesting observations 

were made. For example, as shown in table 5 and figure 9, the comparison between 
total phrases and unique phrases revealed the nature of English language. When 
looking at the 1-term phrases (single terms), the unique words are approximate 
270,000 words. In other words, a dictionary with about 270,000 words would explain 
almost everything in this world. However, the 2-terms and 3-terms phrases may be 
more accurate to describe the meanings in English. Because the draw of 2-terms and 
3-terms phrases seems going to a centralized trend, it reveals the nature of English 
that 2-terms and 3-terms phrases are the most descriptive and representative. 
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Table 5. The comparison between total phrases and unique phrases 

*  1-term 2-terms 3-terms 4-terms 5-terms 

Total Phrases    6,410,434    3,782,563    2,504,056    1,100,244   410,025 

Unique Phrases       270,826    2,127,492    2,023,640       948,361   359,144 
 
 

K
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#L!!!L!!!

/L!!!L!!!

$L!!!L!!!

DL!!!L!!!

&K+(2H "K+(2H CK+(2H #K+(2H /K+(2H
M1+-9*N,2-)()

O.7P=(*N,2-)()
 

Fig. 9. The comparison between total phrases and unique phrases 

 

7   Conclusions and Future Work 

After conducting a series of experiments, results were found to support the 
hypothesis and assumptions made in the research. For example, the complexity and 
dimensions were effectively reduced by extracting the frequent phrases. The 
descriptive information collected from frequent phrases was sufficient to undertake 
the Link-The-Wiki link discovery tasks.  

 
There are some possible future extensions of this research. From the perspective of  

text mining, the recognition of frequent phrases is a difficult issue.  
 
On the other hand, hyperlink is a particular feature of hypertext and web pages. 

The hyperlinks discovered in the research were almost as meaningful as manually 
maintained. In the future researches, the precision of automatic link discovery would 
be improved. As a result, the generic link discovery method would benefit the huge 
amount of websites.  

303



References  

[3-11] 
 

1. Trotman, A., Geva, S.: Passage Retrieval and other XML-Retrieval Tasks. 
Proceedings of SIGIR 2006 Workshop on XML Element Retrieval Methodology, 
Seattle, Washington, USA (2006) 48-50 

2. Porter, M.F.: An algorithm for suffix stripping. Automated Library and 
Information Systems 14 (1980) 130-137 

3. Kostoff, R.N., Tshiteya, R., Pfeil, K.M., Humenik, J.A.: Electrochemical power 
text mining using bibliometrics and database tomography. Journal of Power 
Sources 110 (2002) 163-176 

4. Myat, N.N., Hla, K.H.S.: A Combined Approach of Formal Concept Analysis 
And Text Mining For Concept Based Document Clustering. IEEE/WIC/ACM 
International Conference on Web Intelligence 2005 (2005) 4 

5. Girju, R., Badulescu, A., Moldovan, D.: Learning semantic constraints for the 
automatic discovery of part-whole relations. 2003 Conference of the North 
American Chapter of the Association for Computational Linguistics on Human 
Language Technology - Volume 1. Association for Computational Linguistics, 
Edmonton, Canada (2003) 

6. Hideo, J., Mark, S.: Retrieving descriptive phrases from large amounts of free 
text. 9th international conference on Information and knowledge management. 
ACM, McLean, Virginia, United States (2000) 

7. Parisut, J., Worapoj, K.: Dimensionality reduction of features for text 
categorization. 3rd conference on IASTED International Conference: Advances in 
Computer Science and Technology. ACTA Press, Phuket, Thailand (2007) 

8. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. 8th ACM 
SIGKDD international conference on Knowledge discovery and data mining. 
ACM, Edmonton, Alberta, Canada (2002) 

9. Yanjun, L., Soon, M.C.: Text document clustering based on frequent word 
sequences. 14th ACM international conference on Information and knowledge 
management. ACM, Bremen, Germany (2005) 293-294 

10. Shen, D., Chen, Z., Yang, Q.Z., H., Zhang, B., Lu, Y., Ma, W.: Web-page 
classification through summarization.: Research and development in information 
retrieval, Sheffield: 27th ACM Int. SIGIR Conference. (2004) 242-249 

11. Lei, Z., Debbie, Z., Simeon, J.S., John, D.: Weighted kernel model for text 
categorization. 5th Australasian conference on Data mining and analystics - 
Volume 61. Australian Computer Society, Inc., Sydney, Australia (2006) 

 
 

304



CMIC@INEX2008:  LinktheWiki Track 

Kareem Darwish1 
 

1 Cairo Microsoft Innovation Center,  
Bldg B115, Smart Village 

Km. 28 Cairo/Alexandria Desert Rd. 
Abu Rawash, Egypt 
kareemd@microsoft.com 

 

Abstract.  This  paper  describes  the  runs  that  I  submitted  to  the  INEX  2008 
LinktheWiki  track.    I  participated  in  the  incoming  FiletoFile  and  the 
outgoing AnchortoBEP  tasks.    For  the  FiletoFile  task  I  used  a  generic  IR 
engine and constructed queries based on the title, keywords, and keyphrases of 
the  Wikipedia  article.    My  runs  performed  well  for  this  task  achieving  the 
highest precision  for  low recall  levels.   For  the AnchortoBEP  task,  I used  a 
keyphrase  extraction  engine  developed  inhouse  and  I  filtered  the  keyphrases 
using  existing  Wikipedia  titles.    Unfortunately,  my  runs  performed  poorly 
compared  to  those of other groups.    I suspect  that  this was the result of using 
many phrases that were not central to articles as anchors. 

Keywords: Document Linking, keyphrase extraction. 

1   Introduction 

This  paper  presents  the  experiments  I  conducted  at  the Cairo Microsoft  Innovation 
Center  (CMIC)  for  the  INEX  LinktheWiki  track.    I  participated  in  the  outgoing 
AnchortoBEP (A2B) and the incoming FiletoFile (F2F) tasks only.  For the A2B 
task, the task was reduced to an AnchortoFile task by setting all the best entry points 
to 0.   The  focus  for  the A2B  task was on  the  identification of  possible  anchors  via 
performing  keyphrase  extraction  on  the  text  of  the  orphan  pages.    The  keyphrase 
extraction algorithm that I used attempted to find all possible phrases, but neglected to 
determine if the keyphrases are central to the page.  Such a determination of centrality 
is crucial for identifying good anchors.  For the F2F task, I used generic information 
retrieval techniques without any special processing for Wikipedia articles. 
This  paper  is  organized  as  follows:    Section  2  presents  my  keyphrase  extraction 
technique and survey existing techniques; section 3 presents my methodology for the 
A2B and F2F tasks and reports on the results; and Section 4 concludes the paper. 
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2   Keyphrase Extraction 

Identifying  a  word  sequence  consisting  of  one  or  more  words  that  represents  a 
valuable  concept  in  text  is  an  important  NLP  problem.    Such  valuable  concepts, 
which are henceforth referred to as keyphrases, are often called keywords (if they are 
single  words),  collocations  and  multiword  expressions,  and  are  assumed  to  obey 
“semantic noncompositionality, syntactic nonmodifiability, and nonsubstitutability 
of  components  by  semantically  similar  words”  [2,  4].    Conventionally,  keyphrases 
represent the central concepts in an article, and hence, a sequence of words can be a 
keyphrase in one article and not in another.  Another application is identifying salient 
words  or  phrases  that  can  serve  as  hypertext  to  link  from  one  article  to  another.  
Depending on  the desired  level of  linking, a sequence of words may not have  to be 
central  to  the  article,  which  was  my  target  of  the  work  presented  in  this  paper.  
Perhaps  the  fundamental  difference  between  the  two aforementioned  applications  is 
that  the  first  is  concerned with  the  top n  valuable word  sequences  and  the  other  is 
concerned with “all” such word sequences.   
Subsections  2.1  and  2.2  describe  related  work  on  keyphrase  extraction  and  my 

keyphrase extraction algorithm respectively. 

2.1   Related Work  

Much effort has gone in defining what keyphrases and there variants are [2, 4].  There 
are  many  approaches  to  keyphrase  extraction  including  approaches  that  use  phrase 
occurrence counts and part of speech patterns and word collocations, in which words 
that  cooccur  with  a mean  distance  that  has  low  variance  [4].    Other  approach  are 
based on supervised learning in which a classifier is trained on features such as phrase 
location  in  a  text  segment,  a  phrase  term  frequency  and  document  frequency  [6].  
Another approach is based on constructing a directed graph where the nodes represent 
tokens from a reference corpus and weighted links between nodes indicating the count 
of subsequent occurrences in text.  After constructing the graph, graph walks over the 
highest  weighted  links  are  used  to  extract  keyphrases  [3].    The  list  of  approaches 
listed  above  is  by  no  means  exhaustive,  but  provides  a  flavor  of  the  most  popular 
approaches. 
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2.2   Keyphrase Extraction System 

I developed a keyphrase extraction technique that uses supervised machine learning in 
which a support vector machine (SVM) classifier is trained on the following features: 

1.  The probability of sequence occurrence.  Keyphrases are expected to have a 
high  probability  of  occurrence.    The  probability  is  computed  using  a 
language model that is trained on a reference corpus.  For this work, I trained 
the language model on the LinktheWiki Wikipedia corpus. 

2.  The unigram occurrence probability of  head  and  tail words.   Head  and  tail 
words are typically expected to be valuable words, which would indicate that 
they have a low occurrence probability.  The probability is computed using a 
language model that is trained on LinktheWiki corpus. 

3.  The  sequence  probability  of  words  between  head  and  tail  words.  These 
words  are  assumed  to  connect  between  the  head  and  tail words  and  hence 
should have high probability of occurrence.  For example, for the keyphrase 
“Department of Energy” the connect sequence is just “of” and is expected to 
be a common sequence.  Again the probability is computed using a language 
model that is trained on the LinktheWiki corpus. 

4.  The probability of PartofSpeech  (POS) sequence being a keyphrase.   The 
probability  is  computed using  a  language model  that  is  trained on  a  list  of 
POS tagged keyphrases.  The POS tagging was done using an inhouse POS 
tagger. 

5.  The percentage of digits. 

6.  The percentage of words with upper case letters. 

7.  The percentage of words that are a part of noun phrase chunk. The chunking 
was done using an inhouse chunker. 

8.  The number of words in a sequence. 

My  keyphrase  extractor  can  be  tuned  to  be  recall  or  precision  oriented.    For  the 
submitted  runs,  I  tuned  the  system  to  be  more  precision  oriented,  because  a  user 
would  generally  be  willing  to  tolerate  missing  hyperlinks  but  would  generally  not 
tolerate incorrectly assigned hyperlinks.  My system achieves 40% recall when tuned 
to be approximately 99% precise, as measured on a reference corpus.   An important 
feature that was omitted is a feature that measures the importance of the sequence in 
the article.  Such a feature can be the term frequency of the term, some combination 
of the term frequency and inverse document frequency, or some other feature such as 
the binomial log likelihood ratio [1].  
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3   Approach to LinktheWiki and Results 

For  the  F2F  task,  I  used  the  Indri  search  toolkit  for  indexing  and  searching  the 
Wikipedia  articles.  I  used  Indri  with  stopword  removal  and  no  stemming  or  blind 
relevance feedback. Indri combines inference network model with language modeling 
[5].  I submitted two runs, namely CMIC_F2F_01 and CMIC_F2F_02.   I used three 
items  to  construct  queries,  namely  the  titles  of Wikipedia  articles  (with  the  phrase 
operator if a title was longer than 1 word), the keyphrases extracted from the articles, 
and  the  top  20  terms  from  each  article  as  ranked  by  term  frequency  only.    For 
CMIC_F2F_01 run, I constructed the queries from the titles and the keyphrases.  As 
for the CMIC_F2F_02 run, I constructed the queries using titles, keyphrases, and top 
20  terms.    The  resultant  mean  average  precision  for  the  CMIC_F2F_01  and 
CMIC_F2F_02 runs was 0.46 and 0.51 respectively.  I suspect that adding more than 
20  top  terms,  perhaps  the  entire  content  of  the  article,  would  have  produced  better 
results.    It  is  also  noteworthy  that  CMIC_F2F_02  achieved  the  highest  precision 
among all the submitted runs for low recall levels (recall < 0.25), which suggests that 
my approach is more precision oriented and more suitable for generating a good small 
list of suggestions. 
For  the A2B  task,  I  submitted  one  run,  namely CMIC_LTW_01.    For  the  run,  I 

extracted the keyphrases in the orphan article and I filtered the keyphrases using the 
titles of the articles in Wikipedia articles that I was allowed to link to.  The filtering 
involved allowing a keyphrase to match any title that was either an exact match or one 
that  subsumes  the  keyphrase  completely.    For  example,  in  article  100011  entitled 
Otago, the keyphrase “Firth of Clyde” was linked to the article 144233 entitled “Firth 
of  Clyde”,  and  the  keyphrase  “Free  Church  of  Scotland”  was  allowed  to  link  to 
articles  554606  and  909535  entitled  “Free  Church  of  Scotland”  and  “Free 
Presbyterian  Church  of  Scotland”  respectively.    Unfortunately,  my  results  were 
dismal  with  a  mean  average  precision  of  0.05.    I  suspect  that  my  runs  performed 
poorly  because  many  of  the  keyphrases  that  were  chosen  to  be  anchors  were  not 
central to the articles and were hence deemed irrelevant by assessors. 

4   Conclusion 

 
This paper presented the CMIC runs to the INEX LinktheWiki track.  I did well in 
the F2F task, but dismally in  the A2B task.   For the F2F, using generic information 
retrieval techniques in combination with keyphrase and key word extraction produced 
acceptable results with a mean average precision of 0.51, which is a little over 10% 
less than the best submission to the track (QUT9_GPXF2FnameInOut – mean average 
precision of 0.57).  Further, my best submission achieved the highest precision levels, 
compared to all the other submissions, for low levels of recall (recall < 0.25).  This is 
desirable  because  one  would  want  to  link  an  orphan Wikipedia  article  to  a  small 
number  of  articles  and  precision  for  those  articles  needs  to  be  as  high  as  possible.  
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Perhaps better selection of keyphrases and using more keywords from the documents 
could have resulted in better results and warrants further investigation.   
For  the  A2B  task,  my  runs  lagged  significantly,  mostly  because  I  over  generated 
anchors,  many  of  them  were  not  central  to  the  articles.    My  keyphrase  extraction 
algorithm needs to be modified to account for the centrality of the extracted keyphrase 
to  articles.    This  can  be  achieved  by  retraining my  classifier  using  an  extra  feature 
such  as  term  frequency,  inverse  document  frequency,  binomial  log  ratio,  or  some 
other measure of centrality.   
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Abstract. This paper describes the Link-the-Wiki submission of Lycos
Europe. We try to learn suitable anchor texts by looking at the anchor
texts the Wikipedia authors used. Disambiguation is done by using tex-
tual similarity and also by checking whether a set of link targets “makes
sense” together.

1 Introduction

In this paper, we describe the Link-the-Wiki submission of Lycos Europe. Details
about INEX and the Link-the-Wiki track are given elsewhere in these proceed-
ings, so we do not repeat them here. In the following, we use new text to refer
to the text which should be linked (conceptually, this is a text entered by a user
of the platform without any links; the aim of the system is to support the user
to find suitable links). We use anchor text or anchor to refer to the link label,
that is, the clickable part of the text that links to a target page.

Our approach to the Link-the-Wiki task is based on that described by Itakura
and Clarke [2]: All existing anchor texts from the training collection are indexed
along with their link targets, and the new text is scanned for these anchor texts
to find links.

The main difference is that we try to select the best-matching target dy-
namically whereas Itakura and Clarke use a static mapping from anchor text to
target – the target is always the page most frequently referenced by the anchor.
For example, in a text about computers, the anchor Apple is more likely to refer
to the page Apple Computers than to the page Apple Records. We use heuristics
based on text similarity and link structure to determine which of the potential
targets is the most likely real target.

Finding outgoing links is done in the following steps:

1. The potential anchor texts are identified. The chosen anchor texts do not
overlap, and each anchor text has one or more potential targets associated
with it.

2. For each potential anchor text, a ranking of the potential targets in the
context of the new text is performed. Furthermore, general statistical infor-
mation obtained at indexing time – like absolute frequency – is used.
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Our main focus is finding outgoing links, as opposed to finding incoming
links from existing documents to the newly-added content. Outgoing links are
determined in two main steps that will be described in the following sections:

1. Finding the parts of the texts that should serve as links to other documents
(anchor texts).

2. Finding the correct target pages for the anchor texts in case of ambiguities.

The second point means that even if a given anchor text is known to refer to
some other document, it is not necessarily known to which article it refers.

2 Preparations for Finding Outgoing Links

This section describes how potential anchor texts are found in the new text and
also what index structures are needed to support this.

2.1 Finding Potential Anchor Texts

The first step toward identifying links in a new document is to find potential
anchors; this is done by searching for occurrences of the training anchors in the
new text. We give preference to longer anchor texts: For example, in the example
text from figure 1a, we have the sequence Mac OS X v10.2. Potential anchors
include Mac, Mac OS, and Mac OS X v10.2 ; here, the last one is the longest
anchor text, so it is selected. In case of overlapping anchor texts, the anchor
occurring earlier is selected.

Apple bundled a similar program, Sherlock 3 , with Mac OS X v10.2 .
(a) Input text.

[[Apple]] bundled a similar program, [[Sherlock 3]] , with [[Mac OS X v10.2]] .
(b) Selected anchors.

Apple: Apple Computer, APPLE, Apple Records, Apple (album),
Apple II family, Malus, Apple Store (retail),
Apple (super mario), Yabluko, Apple I

Sherlock 3: Sherlock 3
Mac OS X v10.2: Mac OS X v10.2

(c) Possible targets of the selected anchors

[[Apple Computers|Apple]] bundled a similar program, [[Sherlock 3]] , with
[[Mac OS X v10.2]] .

(d) Final linked text, with the Apple anchor directed to Apple computers.

Fig. 1: Processing of an input text from the Wikipedia article Karelia Watson.
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Using word boundaries as implemented in the Java regex package for anchor
detection does not work for two reasons:

– Due to the idiosyncrasies of the INEX Wikipedia collection, spurious spaces
are inserted or removed around markup, even in the middle of words, so
word boundaries cannot be trusted.

– Anchors may only partly cover a given word; this is bad style, but there
are instances where child as part of children is linked to the corresponding
article. For other languages like German, compound words can be formed
without spaces, so this might happen more frequently.

Although the second case is rare – especially in the English version of Wikipedia
used for INEX –, the first reason is sufficient to justify the decision not to analyze
word boundaries.

The result of this stage is a collection of non-overlapping anchor texts that
might be turned into links. Based on the training data set, we know for each
anchor set the possible target pages as well as the absolute frequency of references
to a certain target page under the given name. We now have to develop a ranking
of the targets for every potential anchor.

2.2 Reducing the Size of the Anchor Index

Our approach requires statistics about the existing links in the training collec-
tion. We examine every link in the collection and store the anchor text along
with the target page’s ID. Then, we count the number of occurrences for each
anchor text/target page pair to see how often a given anchor text is used to refer
to the given page.

This information is sufficient input for our approach, but to both keep the
index size small and remove spurious entries, we remove all anchor text/target
page pairs with one of the following properties:

– The length of the anchor text is less than 5 or greater than 60. Very long
anchors include anchors like Best Writing, Story and Screenplay Based on
Factual Material or Material Not Previously Published or Produced ; they
mostly refer to very specific page titles that are unlikely to occur in normal
text. Short anchors are removed because they are usually ambiguous and
they can lead to false positives.

– The anchor text refers to ten or more different pages. This implies that the
anchor text is very general like, for example, her father.

– The anchor text occurs less than five times in the collection.

The numbers used were chosen in a rather ad-hoc fashion; further research
is required to determine whether these numbers are good (or even whether the
filtering is needed at all). We will test this once the results and evaluation tools
are available.
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3 Link Target Disambiguation

In many cases, anchor texts refer to only one possible target, like Sherlock 3
in the example in figure 1c. However, the anchor text Apple from the same
example shows that there is not always a one-to-one mapping of anchor texts to
target pages, so the link detector has to make a choice. Furthermore, it may be
necessary to remove spurious anchors.

One obvious problem is that anchor texts are frequently only sensible in the
context in which they occur; for example, the anchor text “her father” refers
to different persons depending on who “her” refers to. Since low-level informa-
tion about the document frequency of terms is not available in our setup, we
could not use Itakura and Clarke’s formula for selecting anchors to index, so we
implemented the simple heuristics from section 2.2.

The remainder of this section is based on the following values that influence
the choice of which targets to use for a given anchor:

1. The rank of this target for this anchor, based on the total number of refer-
ences;

2. the rank of the target page when doing a full-text search for the new article’s
title; and

3. the rank of the target page when doing a full-text search for the new article’s
full text (optional).

We chose to use a linear combination of these factors to obtain the final rank
of a target.

3.1 Analysis of Anchor/Link Frequency

In absence of any other information, the link finder can still look at the prior
probability of a given anchor text referring to a given target. This information
can be obtained by analyzing the frequencies of the different target pages for
a certain anchor text. For example, in the INEX collection, the anchor Apple
refers to Apple Computer 399 times, to APPLE 83 times and to Apple Records
65 times, so in absence of any further information, Apple Computer is most likely
the correct target.

3.2 Analysis of the Target Text

Simply using the frequency of targets in the training collection, however, does not
take into account the context provided by the new document: for example, the
text of the document should already give a strong indication whether the article
is about computers or music. Thus, a straightforward approach is to calculate
the textual similarity of the new text and the possible targets; if the new text
and a target have a high similarity, it is likely that they are about the same
general topic (like computers or music).

In our implementation, we implement this by doing a single full-text search
for the complete new text respectively its title on an index that comprises the
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Table 1: Target distribution of the anchor Apple (case sensitive).
Rank Count Target page

1 399 Apple Computer
2 83 APPLE
3 65 Apple Records
4 7 Apple (album)
5 2 Apple II family
6 2 Malus
7 1 Apple Store (retail)
7 1 Apple (super mario)
7 1 Yabluko
7 1 Apple I

full texts of all articles in the test collection. This results in a single ranked list
of articles that are somehow related to the new text; for every anchor text that
is found in the new text, the highest-ranked article from this list is chosen.

3.3 Analysis of the Link Structure

According to our observation, it is likely that the documents that are linked from
the same source document are connected. This is because these pages typically
share a main topic, so if two topics are mentioned (or pages are referenced)
on the same source page, these topics are more likely to be connected than two
randomly chosen topics. We can exploit this to find the correct link target among
a set of candidates; for every such set, we determine how many links to the target
pages for the other anchor texts exist. The more links exist, the more likely the
target is to be the correct link target for this anchor.

Figure 2 demonstrates that the pages linked from a single page tend to be
heavily connected. We can see that APPLE is not connected to the pages that
are actually referenced from the source page at all and that Apple Records only
has one link, whereas Apple Computer has many links in this cluster of pages.

The link analysis will not work properly if there is a very low number of
targets (or, more generally, if the potential targets are mostly unconnected). In
this case, the link finder should select potential targets even if they are isolated.
The exact mechanism and threshold for this are the subject of future research.

3.4 Combination of these Approaches

Of course, it is possible to not only use these approaches in combination, but also
to combine the evidence to obtain better quality. Since each of the approaches
can be used to find a ranked list of possible targets for a given anchor text, we
chose to use a weighted combination of the different ranks as the basis for the
final decision. Given the example rankings from table 2, and the weights w1 = 1
(anchor/link frequency), w2 = 5 (text similarity), and w3 = 2 (link analysis)
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Java programming language

Sun Microsystems

Objective-C

Operating system

2002

2001

Apple Computer

Mac OS X

Cocoa (API)Apple Macintosh Mac OS X v10.2

Sherlock 3

Apple Records

APPLE

Fig. 2: The link network for pages linked from the page Karelia Watson. Our
focus is on the shaded items, which are potential targets for the anchor text
apple. The Apple Records and APPLE pages (in rectangles) are not linked from
this page, but shown here for demonstration.
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results in a final value of 12 for Apple Computer, of 13 for Apple Records, and
of 24 for Apple I. Thus, in this case, the link target Apple Computers has the
lowest combined rank and is selected as the final target. (Note that a higher
weight value decreases the influence of the corresponding factor.)

Table 2: Example for combining the different aspects of target rankings.
Target Anchor/link freq. Text sim. Link analysis

Apple Computer 1 2 1
Apple Records 2 1 3
Apple I 3 3 2

Since we did not finish the implementation of link-based target disambigua-
tion in time, we only submitted runs using anchor/link frequency and text sim-
ilarity. For text similarity, we search the full text of all articles for occurrences
of the title of the new page to be linked. From a quality point of view, it would
probably be better to search for the complete body text of the new article – oth-
erwise we implicitly assume that the concept is already mentioned in the existing
articles, although it does not have an article of its own. Unfortunately, the cost
for doing this was prohibitive on our setup, so we had to settle for searching for
the titles only. We used the different combinations of text similarity–anchor/link
frequency weight, from equal weights for both (run LycosA2B-1-1), a weight of 5
for one and 1 for the other (runs LycosA2B-1-5 and LycosA2B-5-1). Furthermore,
we submitted runs using only one of the two factors (runs LycosA2B-0-1 and
LycosA2B-1-0).

At the time of writing, no results or evaluation tools are available, so we
cannot say which of these approaches works best. We plan to also evaluate
additional runs using the link-based target disambiguation once the assessments
and evaluation tools become available.

3.5 Limitations

One base limitation of our work is that we assume that the collection already
contains a large number of related articles. As Huang et al. [1] note, this assump-
tion does not hold for a batch upload of related articles where links between the
articles are at least as important as links to or from the collection. Another
potential problem is that the anchor texts that have been used by the authors
might not be meaningful (for example, “click here”).

We believe, however, that the approach can work well in the right circum-
stances. We plan to use it on a community platform about German history,
with the anchors from the German Wikipedia as a training set. The results from
preliminary tests are quite promising.
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4 Finding Incoming Links

Our current implementation for finding incoming links is simplistic: we simply
search for the new document’s title in the full-text index to determine a ranked
list of candidate sources. (Note that no phrase search if performed, so in effect
the results may contain pages where the terms from the title occur out of order.)
Next, the title of the new document is searched for in each candidate’s text,
and the first occurrence is added to the list of links, ordered by the search rank.
Finally, all pages where the title is not found – this may happen if the title
comprises several words – are added to the end of the list.

5 Future Work

Our submission should be regarded as a first attempt at the problem; in par-
ticular, resolving ambiguities and avoiding the “discovery” of general terms like
“father” as links is still unsolved. In future work, we plan to address this by
taking more factors into account.
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Abstract. Automatically linking Wikipedia pages is done mostly by
two strategies: (i) a content based strategy based on word similarities or
(ii) a structural similarity exploiting link characteristics. In our approach
we focus on a content based strategy by finding anchors using the title of
candidate Wikipedia pages and resolving matching links by taking the
context of the link anchor, i.e. its surrounding text, into account. Best-
entry-points are estimated on a combination of title and content based
similarity. Our goal was to evaluate syntactic title matching properties
and the influence of the context around anchors for disambiguation and
best-entry-point detection. Results show, that the whole Wikipedia page
provides the best context for resolving links and that simple inverse docu-
ment frequency based scoring of anchor texts is also capable of achieving
high accuracy.

Key words: INEX, Link-the-Wiki, content based approach, similarity
analysis

1 Introduction

This paper outlines the approach taken by the Know-Center Graz in the Link-
the-Wiki Track of INEX 2008. While the task itself is outlined in detail in a
previous chapter, we restrict ourselves to illustrate our approach and to discuss
properties found to be relevant. Our approach has been evaluated on the 659,413
Wikipedia pages, wherefrom every link from or to a page in the test set as well
as all pages of the test set itself have been excluded. In the following we refer
to the corpus without the test set as the Wikipedia corpus. The two runs are
distinguished as file-to-file run, having 6.600 test documents and anchor-to-bep
run having 50 topics. A wiki page having all links removed from, is called an
orphan page.
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Basically we restricted ourselves to use standard retrieval techniques combined
with efficient string matching technique as used in information extraction frame-
works like GATE [2]. As shown in last years runs [6] and in related work from
Wu and Weld [8] using such content based approaches yields reliable results.
This fact and the applicability of standard IR and IE tools served as motivation
for the presented work.

In our approach we identified the following steps for identifying links between
Wikipedia pages:

1. Source Document Identification: In a first step the source of a link has to be
determined. While the orphan wiki page determines the link source for out-
links, in-link detection requires efficient search strategies for fast detection of
source document candidates. Based on results from INEX 07, our approach
utilizes searching for Wikipedia titles in order to determine source document
candidates for in-links.

2. Anchor Identification and Ranking : The second step includes detection of the
anchor position in the source document. We identify anchors by annotating
source documents on the word level using a gazetteer list. The list is created
from titles and/or anchor texts of links in the Wikipedia corpus. Each link is
assigned a score based on the similarity of the surrounding text, called anchor
context in the following, with the target page in the Wikipedia corpus. We
use different document decomposition strategies for determining the anchor
context based on the assumption that they influence the quality of the score.

3. Target Document Identification: The third step includes detection of the link
target. Gazetteer matching already provides a list of target documents for
each anchor. However, anchors may overlap. For example “United States of
America” may have two overlapping links, one for “United States” and one
for “United States of America”. Those overlapping links have to be resolved
here. Furthermore, in the file-to-file linking runs links have to be merged
since they have to be provided on the document instead of the anchor level.

4. Best-Entry-Point Identification: As a last step the best-entry-points in the
target document have to be identified. Again we focused on using the anchor
context and calculate the similarity between the anchor context and docu-
ment parts in the target document. The target document parts have been
again identified using different decomposition strategies. In addition, if a tar-
get document part contains the title or parts of the title of the source page,
we increased the similarity significantly. Thus, document parts containing
the title are preferred as best-entry-point.

Our work aims to provide answers on issues like syntactic matching (i.e. on
the word level like case sensitivity, part-of-speech tags, title matching vs. title
and anchors etc.), influence of document decomposition strategies (i.e. sentences,
automatically generated topics and document) on determining the anchor con-
text as well as scoring strategies for removing high frequent, noisy links like for
example “The” or “Are”. Since we use standard information retrieval and infor-
mation extraction technology our approach may be easily put into practice; a
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valuable aspect for industries. We hope that our approach provides contrast to
other approaches and shed light into automatic linking strategies for Wikipedia
as well as its use in practical settings.

2 Document Indexing

The Wikipedia corpus itself is indexed using the open source search engine
Lucene [5], with standard stop word removal. For each Wikipedia page the title
and all anchors of links pointing to this page are extracted and stored for us-
age as gazetteer list. A finite state machine (FSM) is filled from this gazetteer.
Transitions between states of the FSM are words occurring in a gazetteer entry,
while states are distinguished into final states or intermediate states. Final states
contain the URL of the Wikipedia page and if upon matching such a final state
is reached, an annotation pointing to the particular Wikipedia page is added. In
this way gazetteer matching allows us to annotate word sequences with hyper-
links for a large number of possible link targets at reasonable speed.

Orphan pages are preprocessed using the OpenNLP toolkit [1], whereby pre-
processing includes tokenization, sentence detection and part-of-speech tagging.
In a last step, the FSM is applied to annotate possible links. For resolving the
context of an anchor we are relying on either the complete document, the sen-
tence an anchor occurs in as well as a automatically detected, topical coherent
block of sentences around the anchor. This automatic topic segmentation of a
page is done using the well known C99 segmentation algorithm [3] and sentences
are obtained by the sentence detection algorithm.

3 Linking Strategies

For a given orphan page do, our system determines a set of n possible in-links
I = {< l1, s1 > . . . < ln, sn >} and a set of m possible out-links O = {< l1, s1 >
. . . < lm, sm >}. Each out-link/in-link is assigned a score si determining the
confidence of the system in generating such a link. One link is - as defined in
the LTW result set specification - a quadruple lh =< sh, th, sph, bh > where for
link lh sh denotes the source page, th the target page, sph the span determining
start and end of the link in the source document and bh the best-entry-point in
the target document.

In the following we present how the different properties have been determined
and thereby differentiate between out-link and in-link generation. While both
follow the same principle approach there are slight implementation differences
for keeping link generation computational feasible.

3.1 Out-link Generation

Out-link generation starts with preprocessing the orphan document do as out-
lined in section 2. Gazetteer matching returns the set of possible out-links O,
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whereby for each link li we know its source si, its target ti and its span spi. For
each link we determine the anchor context, defined as the text surrounding the
link source. In our experiments we distinguish between sentence, automatically
detected topics and the complete document as anchor context. All nouns of the
anchor context are extracted and fed into the retrieval backend as Boolean OR
query. To speed up this potentially large OR query we restrict the result set to
pages pointed to by all links in the anchor context simply by adding all link
target identifiers (i.e. the filename of the page) as AND query part. Thus, for all
links having a span sp in the current anchor context we are receiving a score s.
In particular the query is formulated as

(ID = t1 OR . . . OR ID = tn) AND (w1 OR w2 . . . OR wk)

with {w1 . . . wk} as the nouns of the anchor context and tk as unique identifier
for the kth link target and ”ID = “ specifying the search on the metadata field
containing the unique identifiers of a Wikipedia page. Formally, the score (named
anchor context score in the following) returned is obtained from standard Lucene
ranking as

si = coordw,i ∗ norm(w) ∗
∑

t∈w

√
tft,i ∗ idf2

t

norm(i)
(1)

where

– tft,i is the frequency of term t in document i
– idft = 1 + log #D

#Dt+1 is the inverse document frequency with #D as the
number of documents in the corpus and #Dt the number of documents
containing term t

– norm(w) is the norm of the query calculated as
√∑

k idf2
k

– norm(i) is the length norm of document i, namely the number of terms
contained in document i

– and coordw,i is a overlapping factor increasing the score the higher the num-
ber of overlapping terms between query and documents are.

The Lucene scoring equation has been proven as reliable heuristic for full text
searching. It can be seen as an heuristic version of a cosine similarity between
anchor context and target document with emphasize towards the number of
overlapping words. This assumption is quite naturally for resolving the context
of a key. For example “tree” in computer science will occur more frequently with
terms describing data structures than the “tree” in nature. Thus, depending on
the position of a link in the document we receive different scores. For linking on
the word-level resp. for the best-entry-point task, links are ranked according to
their score and the best n = 50 links are taken as candidates.

An alternative determination for the score is based on the observation that
some pages have very common titles. Such pages are for example “The”, “Are”.
For removing such high frequent anchors we simply took the inverse document
frequency of the anchor text as scoring scheme. The rational is that noisy, high
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frequent links occur in nearly every document and therefore provide no additional
information independent whether they are a true links or not. In particular the
score, named anchor IDF in the following, is calculated as

si = log
#D

#Da
+ 1

where #D is the number of wiki pages in the corpus and #Da the number of
wiki pages containing the anchor text of the link.

For the file-to-file task links pointing to the same target t but having different
spans sp are merged. We distinguish three different merging strategies, namely
the highest score of the link, the average score of the link or simply by counting
the number of links to a target t.

Our approach raises several questions to analyze. For gazetteer matching we
focused on a very high recall by allowing fuzzy matching strategies, assuming
that we can disambiguate them efficiently in the following step. In particular the
question is how much noise added by the gazetteer can be resolved afterwards.
Therefore we considered the following properties upon gazetteer matching:

– Case sensitive vs. case insensitive matching may impact different link cat-
egories. Named entities like persons, technical abbreviations (e.g. AJAX,
R) may be perfectly identified by case sensitive matching, while case in-
sensitive matching prefers more general concepts like web applications etc.
Considering this parameter may outline differences between the different link
categories.

– Filtering gazetteer entries based on identified part-of-speech: Some titles
contain numbers or particular syntactic elements like brackets. Filtering
gazetteer entries based on their part-of-speech should allow making matching
considering those cases by removing non nouns.

– Filling the gazetteer list using page titles only or titles and anchors of a link
raises questions towards how much information is added by anchors of links
in the Wikipedia corpus and how noisy it is. From a statistical point of view
we obtain around 1.7 million gazetteer entries by taking titles and anchors
into account, achieving a very high recall. Our question herein is whether
the anchor text is capable to disambiguate those additional entries or not.

– Selecting longest common sequence matching links from overlapping anchors:
Through gazetteer matching the span sp of links may overlap. Our hypothesis
here is that the longer the sequence of words, the more specific a link is.
Therefore, those more specific links should be chosen.

The core question in the following disambiguation step is how to determine
the anchor context. We investigate three different levels, namely sentence, topic
(as a sequence of sentences) or the whole document. We did not assume that
the orphan document is structured in any way and thus topics are detected
automatically using the above mentioned C99 algorithm. However, analyzing
the impact of structures is up to following research. Regarding the scoring of
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an link our main interest lies in the difference between the anchor IDF scoring
scheme and the anchor context scoring scheme. In particular the question is how
much useful context information surrounds a link and whether it is worth to
consider this context information.

3.2 In-link Generation

In-link generation is in principle similar to out-link generation with the difference
that in a first step we have to determine the source document dj of a particular
link. Again we utilize title matching for doing so, but in contrast to out-link
generation the title is used as search string instead of gazetteer matching. Sim-
ilarly to out-link generation we are determining different contexts, in this case
best-entry-point contexts, to assign a score to a link. Again sentences, topics
or the whole document serves as context. Given the nouns of this context as
sequence < w1, . . . , wk > we are sending the following query to the backend:

“title” AND (w1 OR w2 . . . OR wk)

where “title” indicates a phrase query for the title of the Wikipedia page. Again
the score is calculated as outlined in equation 1.
From the result set we obtain a ranked list of possible link source candidates.
If the context is different than the whole document, merging strategies are re-
quired to merge the ranked lists of the different contexts. Similarly to out-link
generation we utilized the highest scoring source candidate, the average score
of a source candidate or a simple counting scheme. Taking the n best source
candidates is either the input for determining the best-entry-points or gives us
already the result for the file-to-file linking task.

Using more fine grained contexts than the document level follows the intuition
that a link points to a Wikipedia page because the author wants to address a
particular aspect of the relationship and not all aspects of the target page. By
considering those fine grained similarities we tried to address this aspect.

3.3 Best-Entry-Point Detection

Either in-link or out-link generation provides a list of best matching links includ-
ing target page, source page and the span of a link. In the final step, best-entry-
points are determined again based on document decomposition. Our hypothesis
is that the best-entry-point in the link target has to be similar to the anchor con-
text. Furthermore, if the title of the source page is contained in the link target,
those parts of the target document are preferred entry points. Since we obtain a
score for each entry point, results are ranked and the best five entry points are
taken as result.

In particular, similarity is calculated using a simple vector space model with
local TFIDF weighting. Given the link target t, the textual content of the target
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is preprocessed and decomposed into segments tr,1 . . . tr,k . Segments are either
sentence or topics. After filtering out all non-noun words, each segment is con-
verted into a term vector. The weight of a term is calculated according to the
TFIDF scheme, but based on the extracted segments, as:

wr,l = tfr,l ∗ log(1 +
#R

#Rl
) (2)

where wr,l is the weight of term l in segment r, tfr,l is the number of times a term
l occurs in segment r divided by all terms in segment s, #R is the number of
segments in the target document and #Rl is the number of segments containing
term l.

Similarly to the target segments, the anchor context in the source document
- denoted as a - is also converted into a term vector by filtering all non-nouns
and applying equation 2.

The ranking of best-entry-points is obtained by calculating the cosine simi-
larity between anchor context −→a and all target segments −→t r,1 . . .

−→
t r,k and rank

them accordingly. Segments containing the title of the anchor page are favored
by increasing the similarity as follows:

s(−→a ,
−→
t r,i) =





title ∈ tr,i : (1 +

−→a ·−→t r,i

‖−→a ‖∗‖−→t r,i‖
)/2

title /∈ tr,i :
−→a ·−→t r,i

‖−→a ‖∗‖−→t r,i‖

Best entry points are returned as starting point of the text segment since we
assume that a reader does not want to start reading in the middle of a sentence
or paragraph.

4 Implementation and Evaluation Details

As outlined above, Lucene [5] has been used as search backend and OpenNLP [1]
for preprocessing. All algorithms are developed in Java, including the gazetteer
component. Since our approach, at least for out-link detection, heavily relies on
gazetteer matching the question is whether a gazetteer with low runtime and low
memory resource consumption is feasible. In our FSM approach the gazetteer
with titles and anchors consisted of around 1.7 million entries and used up around
800 MB main memory. Additionally, gazetteer entries may be distributed using
distributed computing techniques like Map & Reduce [4] and thus scaling up is
possible in our approach.

Runtime behavior also satisfies interactive requirements. On a dual core lap-
top with 4GB of main memory file-to-file runs took around 64 minutes using
the more complex anchor context scoring - that is around 1.7 documents per
second. After finding the link candidates, best-entry-point matching does not
increase runtime complexity. Thus, the overall process can be seen as computa-
tional tractable and scalable.
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During the development we did internal benchmarking for file-to-file and an-
chor detection using the TREC evaluation program trec val. Those results differ
strongly from the released preliminary results 3 so we assume that there has
been an error in our submission format. However, both numbers are outlined in
this section. Furthermore, results will be corrected in the post-proceedings after
the release of the evaluation tool.

The runs can be differentiated in file-to-file in-link/out-link generation, out-
link anchor detection and best-entry-point detection. File-to-file runs are evalu-
ated on the 6.600 topics defined by the organizers. Out-link anchor detection and
best-entry-point detection are run on the 50 topics defined by the participants.
After the development of our algorithms we analyzed the different algorithmic
properties by taking the available ground truth of the file-to-file and anchor de-
tection runs. This allowed evaluation of all runs but the best-entry-point runs.

For out-link generation we distinguished between the title only vs. title and
anchor matching, case sensitive vs. case insensitive matching (CS), longest com-
mon sequence (LCS) matching, different document segmentation level (DSL) as
well as the two different ranking schemes, namely the anchor IDF and the anchor
context score. Results of the internal runs including the official map of selected
runs for file-to-file out-link generation are depicted in table 1, for anchor gener-
ation in the best-entry-point run in table 2. Figure 1 compares our out-link runs
to the best runs of the other LTW track participants.

Table 1. Results for Out-link Generation File-to-File

Title Only LCS CS Scoring Segmentation MAPintern MAPofficial

true false false anchor context document 0.548 0.1129
true true false anchor IDF NA 0.5038 0.1407
true false true anchor context document 0.471 NA
true true true anchor IDF NA 0.4508 NA
false true true anchor IDF NA 0.4392 NA
true false true anchor context topic 0.4258 NA
false true false anchor IDF NA 0.4215 NA
false false true anchor context document 0.3827 NA
false false true anchor context topic 0.3809 NA
false false true anchor IDF NA 0.3478 NA
true false true anchor context sentence 0.3369 NA

Overall our findings for out-link generation can be summarized as follows:

– Gazetteer Matching : Using only nouns in the matching process did not
have strong impact in our experiments and therefore detailed results have

3 Preliminary results on file-to-file and anchor linking released on 28th of November
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Table 2. Results for anchor out-link generation

Title Only LCS CS Scoring Segmentation MAPofficial

true false false anchor context document 0.2370
true false false anchor context topic 0.2039
true true false anchor IDF NA 0.2044

Fig. 1. Precision-Recall curve of our outlink file-to-file runs (left) and anchor-to-bep
runs (right) compared to the best runs of other participants.

been omitted here. Taking only the longest common sequence of overlap-
ping matches has an impact on the anchor TFIDF scheme but not on an-
chor context scoring. Our assumption is, that anchor context scoring is able
to disambiguate overlapping matches while this is not the case for anchor
TFIDF. Overall, case insensitive matching yields to better results than case
insensitive matching.

– Document Segmentation and Scoring Schemes: Surprisingly using the whole
wiki page as context worked out to be best followed by using automatically
detected topics. Considering sentences as anchor context did not perform
well. However, all except of the document based anchor context scoring
stayed behind simple anchor IDF matching. Also, noise added by consid-
ering title & anchors during the matching step could not be resolved by
either scoring scheme yielding to the conlcusion to exclude anchor texts in
the matching step.

– Merging Strategies: Maximum and average merging seem to work well com-
pared to just counting the score. However, more runs on different parameter
variations have to be done in order to get a more concrete picture on the
influence of merging strategies.

For in-link generation different document decomposition strategies have been
analyzed. In addition we compared whether using the title as OR instead of
a phrase query increases or decreases accuracy. Anchors are again identified
by matching the title of the orphan page. Title matching has been done case
insensitive. Results for file-to-file runs are outlined in table 3 and for anchor
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generation of in-links in table 4. Figure 2 compares our in-link runs to the best
runs of the other track participants.

Table 3. Results for in-link generation file-to-file

Title as OR Query Segmentation MAPintern MAPofficial

false document 0.6355 0.5300
false sentence 0.5938 0.5369
false no context 0.5938 NA
true document 0.5066 NA
true sentence 0.4088 NA
true no context 0.4088 NA

Table 4. Results for in-link anchor generation

Document Segmentation MAPofficial

Document 0.1685
Sentence 0.1663

Topic 0,1391
No context 0,1386

Results show that again using the whole document as context yields the best
results, while sentences or topics as context perform similar to only searching
for titles. Making an OR query out of the title did worsen results significantly.

After the release of the evaluation tool we plan to evaluate the differences
between our internal and the official runs and evaluate best-entry-point results.
Furthermore, some parameter combinations have not been evaluated till now and
by using significance testing we plan to test the influence of different parameter
combinations as well as take a more detailed look into the influence of particular
parameters onto specific topics.

5 Conclusion

Based on the usage of standard IR and IE technology our results seem to be
promising. However, numbers presented here have to be taken with care since
internal benchmarks differ from official results and we assume that there are
errors in our submission format. Besides this, the preliminary results point out
that simple scoring strategies like our anchor IDF yield to reliable results while
not being able to disambiguate the context of links as good as taking the whole
document as anchor context into account. Regarding the context of a link our
experiments showed that taking the whole page as context turns out to be best
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Fig. 2. Precision-Recall curve of our in-link file-to-file runs (left) and anchor-to-bep
runs (right) compared to the best runs of other participants.

suited for outlink as well as for in-link detection. Although results look promis-
ing title matching and the subsequent scoring scheme seem to be too tightly
coupled. For example without filtering out overlapping title matches by taking
only the longest common sequence anchor TFIDF performs worse.

Such interwoven parameters are an indication for the need to decouple the
different linking steps and the use of machine learning approaches in each step.
Using machine learning seems to be very promising as shown in very recent work
[7]. Also, we completely ignored the pre-given structure of Wikipedia pages like
section and paragraphs. Maybe those structures allow a better definition of an-
chor contexts and best-entry-point contexts.

We think that two important aspects should be covered by the Link-the-
Wiki track next year. One is the automatic labeling of the link types between
Wikipedia pages. For example the page Berlin linking to Germany marks a
part-of relationship while a link between Berlin and Capital marks a is-a rela-
tionship. Developing methods for automatically identifying such relationships for
Wikipedia links may have a huge practical but also theoretical impact in boosting
new technology like semantic wikis. The second possible extension regards link-
ing to documents outside the Wikipedia, i.e. determining external links. Again
we think there is a practical impact and yielding to new search paradigms with
Wikipedia in its core.
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Abstract. The University of Otago submitted three element runs and three 
passage runs to the Relevance-in-Context task of the ad hoc track. The best 
Otago run was a whole-document run placing 7th. The best Otago passage run 
placed 13th while the best Otago element run placed 31st. There were a total of 
40 runs submitted to the task. The ad hoc result reinforced our prior belief that 
passages are better answers than elements and that the most important aspect of 
the focused retrieval is the identification of relevant documents. Six runs were 
submitted to the Link-the-Wiki track. At time of writing the results had not 
been published. 

1. Introduction 

Otago participated in the Relevance-in-Context task of the ad hoc track submitting six 
runs, three passage and three element runs. The passage runs compared the Otago 
2007 algorithm to a previous algorithm examined by Otago, the Kullback-Leibler 
model, and to whole document retrieval. The result suggest that whole document is 
better than passage retrieval and that there is little difference between the other two 
algorithms. 

Otago also participated in the Link-the-Wiki track, preferring a variant of the 
Itakura & Clarke algorithm for outgoing links, and searching for the orphan title for 
documents that should link to the orphan. At the time of writing the results for the 
track had not been published. 

2. Wikisearching  

2.1. Passages 

2.1.1. The Otago 2007 Algorithm 
The approach taken by Otago at INEX 2007 [1] was two step. First, relevant 
documents were identified using BM25. Second, all the occurrences of all the search 
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terms with a document were identified (stemming with Porter’s algorithm) and a fixed 
sized window of 300 words placed on the centroid. The centroid was defined as the 
mean of the term locations within the document, or alternatively the mean of those 
within one standard deviation of the true mean. 

2.1.2. The Kullback-Leibler Algorithm 
In earlier experiments at Otago, Huang et al. [2] examined techniques for identifying 
relevant passages within a relevant document and converting those into elements by 
taking the smallest element that fully enclosed the passage. Of the passage selection 
methods examined, the Kullback-Leibler model was the most effective: 
 

!"#$%&' ()*#+%$',-./ 01#+%$'1#+%2'3
456

 

 
where W is a window within a document, D, and t is a search term of query, Q, and 
  

7#+%8' ( 9:; < =>?
%$% < @  

and 
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where tfD is the number of occurrences of t in D and |D| is the length of document D 
(and likewise for tfW with respect to the window, W). 

Several strategies for choosing the window were examined. The sliding non-
overlapping window of size 400 words was shown to be effective on the INEX IEEE 
document collection (measured with MAep and iMAep).  

Itakura and Clarke [3] suggest that methods of identifying elements from passages 
are not as effective as methods of identifying elements directly. This is, in part, 
because the conversion from a passage to an element usually involves increasing the 
size of the passage and this extra text is expected to be non-relevant (by the passage 
retrieval algorithm). That is, the conversion from a passage to an element is unlikely 
to affect recall but is likely to decrease precision. If this is the case then the prior 
reported result of Huang et al. is understated and a comparison of Kullback-Leibler to 
Otago 2007 is necessary to progress our work.  

2.2. Elements 

2.2.1. The Beigbeder Algorithm 
Beigbeder [4] proposes a method of scoring elements based on fuzzy proximity. If a 
document contains one occurrence of one search term, then the fuzzy proximity (fp) 
to term occurrence t, for location p is 
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If the document contains more than one term occurrence of the same term then the 

fuzzy proximity is defined as the fuzzy proximity to the closest term occurrence (that 
is, max(fp) with respect to that term). If the document contains multiple search terms 
then the fuzzy proximity is defined as the minimum fuzzy proximity to all search 
terms. 

The fuzzy score of an element in a document is computed as the sum of fuzzy 
proximity scores for each term in the element, normalized by the length of the 
element. However, as the documents are hierarchically structured, if a search term 
occurs in the title of a section then the fuzzy proximity of a term in the element to the 
search term in the title is defined as 1. 

2.2.2. Small Improvements 
Beigbeder’s algorithm treats all terms as equal whereas it is usual for scoring 
algorithms to weight terms differently. The algorithm is thus extended to include 
some aspect of the strength of a search term (IDF). The IDF weighted fuzzy 
proximity, fp’ is given by 
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the variant of IDF chosen is 
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where N is the number of documents in the collection and n is the number of 
documents in which the term occurs. 

Problematically, if a search term is missing from the document then the fuzzy 
proximity to that term is always zero and so no part of the document is considered 
relevant (due to the min() function). Using the sum of fuzzy proximity weights in 
place of the minimum overcomes this problem. 

The Beigbeder algorithms is of general interest as it is a method of identifying 
relevant elements as a function of term proximity, and can be extended to identify 
relevant passages. A comparison of the original Beigbeder algorithm and the Otago 
variant; as well as to the Otago passage runs will help answer the question of whether 
passages or elements are the best result to the Relevance-in-Context task. 

2.3. Documents 

At INEX 2007 an RMIT University ad hoc submission demonstrated that a full-
document run could be more effective at focused retrieval than a focused run [5]. 
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Geva and Winters1 suggest this is because the F measure of recall and precision pre-
selects choosing whole documents as 100% recall within a document can be easily 
realized. Whole document runs were, therefore, submitted for comparison to the 
focused retrieval runs. 

2.4. Otago ad hoc 2008 Runs and Results 

Three runs were submitted to the Relevance-in-Context passage task. In all cases 
documents were identified using BM25 (k1=1.2, k3=7.0, b=0.75) and then one passage 
was identified for each document in the top 1500 documents. The rank order of the 
final results was BM25. Stemming was not used. 

 
WHOLEDOC_PASSAGE: The whole document was returned as the passage. 
 
DYLAN_200: A fixed sized window of 200 words was placed on the centroid of the 
search terms within the document. The standard deviation method was used to 
compute the centroid. 
 
SW_KL_200: The Kullback-Leibler method with a sliding window of 200 words was 
used to identify a relevant passage. 
 
Three runs were submitted to the Relevance-in-Context element task, BM25 was used 
to identify the top 1500 documents, one element was identified, and the results re-
ranked based on the Beigbeder score. For these experiments k=200. 
 
WHOLEDOC: The whole document was returned as an element (this run is identical 
to WHOLEDOC_PASSAGE and was submitted as a sanity check). 
 
BEIGBEDER_ORIG: Elements were scored using Beigbeder’s algorithm. 
 
BEIGBEDER_IDF: Elements were scored using the IDF weighed version of 
Beigbeder’s algorithm. Due to a bug in our code we actually implemented the product 
of the sum of the IDF and fp scores in place of the sum of the product. 

2.5. Wikisearching Results 
The results are presented in Table 1 where it can be seen that WHOLEDOC and 
WHOLEDOC_PASSAGE do, indeed, score the same thus passing the sanity check. 
The passage algorithms are superior to the element algorithms with the Kullback-
Leibler approach bettering the Otago 2007 approach by a very small amount. The IDF 
enhancement to Beigbeder’s algorithm increases the precision substantially, but not 
sufficiently to better the passage runs. 

                                                           
1 Private communications 
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Table 1. Ad hoc Relevance-in-Contest task results 

Run Type MAgP 
WHOLEDOC_PASSAGE Passage 0.192 

WHOLEDOC Element 0.192 
SW_KL_200 Passage 0.183 
DYLAN_200 Passage 0.182 

BEIGBEDER_IDF Element 0.149 
BEIGBEDER_ORIG Element 0.107 

3.0 Wikilinking  

The Link-the-Wiki task, first included in INEX in 2007, requires participants to 
automatically identify hypertext links between documents in the Wikipedia. The user 
model is that of a user who creates a new Wikipedia entry and would like to link that 
entry to pre-existing entries in the Wikipedia (and vice versa). 

The production of a new article can be simulated by taking an existing Wikipedia 
document and removing all trace of it from the collection. Link identification software 
can then be applied to the collection and the orphaned document. A comparison of the 
automatically generated links to the original collection gives some measure of the 
quality of the link detection system – that is, the original links are considered to be the 
gold-standard by which systems are compared. 

Exactly this approach was taken in the INEX 2007 Link-the-Wiki track, and was 
used again for document-to-document linking in 2008. In 2008, 6600 documents 
(about 1% of the document collection) were randomly selected and orphaned for 
document-to-document link detection. 

New in 2008 is the anchor-to-BEP linking task, in which the task is to identify the 
best orphan anchor from which to link from and the best-entry-point (BEP) in the 
target document from which to link to. Unlike document-to-document linking, 
anchor-to-BEP linking requires manual assessment because the Wikipedia documents 
are typically not a priori marked-up in this way. For 2008, 50 anchor-to-BEP 
documents were suggested by task participants and were orphaned for the experiment. 
A limit of 50 anchors per document was imposed (for practical reasons) and at most 
each anchor could link to 5 locations in the Wikipedia. 

Two separate problems exist with identifying links, the identification of outgoing 
links (from the orphan to the collection) and the identification of incoming links (from 
the collection to the document). 

3.1. Outgoing Links 

Although the Otago runs in 2007 were adequate, those of Itakura & Clarke [6] were 
substantially better – effort was, therefore, spent investigating methods of improving 
their technique. It should be noted that the Itakura & Clarke algorithm relies on a pre-
existing heavily interlinked document collection (such as the Wikipedia). In the case 
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where no prior links exist in the collection the techniques of Geva [7] which were also 
successful in INEX 2007 can be used. 

3.1.1. The Itakura & Clarke Algorithm 
The Itakura & Clarke algorithm relies entirely on pre-existing links between 
documents within the document collection. Of the link types available in the 
collection, only the <collectionlink> type is utilized because the other link types do 
not link between two documents in the collection (for example, a <wikipedialink> 
links from a document in the collection to a document in the Wikipedia that is not in 
the INEX collection). 

Initially a list of all the links within the document collection is created. This is 
generated by parsing each document in the collection and extracting the anchor text of 
the link and the target document id. 

Next and from the output of the previous stage, a list of target documents is created 
for each unique anchor text in the collection. For a given anchor text in the collection, 
the most frequent target is most likely to be the correct target. 

For each anchor text / target pair a strength value (!" is constructed 
 

O ( N7
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where np is the number of documents that link from the anchor to the target and af is 
the number of documents in which the anchor text occurs.  

An orphaned document is then parsed and the first location of each anchor in the 
pre-generated list is located. For overlapping anchors (for example, “Lennon” and 
“John Lennon”) the longest possible anchor is chosen as a longer anchor is more 
likely to be correct than a short anchor. A limit of 250 anchors per document was 
enforced by the Link-the-Wiki track definition. 

3.1.2. Small Improvements 
After implementing the Itakura & Clarke algorithm verbatim a small number of 
improvements were identified. 

The algorithm defines the anchor text as all text occurring between the tags, 
converted to lowercase, and including punctuation. Anchor texts often contain 
punctuation at the end thus creating a distinction between “John Lennon” and “John 
Lennon.”. We stripped punctuation from the anchors thus conflating these two cases. 

Anchor texts beginning at the start of a sentence are capitalized for grammatical 
reasons so the algorithm converts the text into lower case. Unfortunately this results 
in a distinction between “unfinished music” and “Unfinished Music” (the two part 
experimental work by John Lennon and Yoko Ono). Geva [7] identifies the 
importance of case in link detection so the case conversion step was dropped. 

Finally, over-weighting ! for capitalized terms in the orphan will help identify 
proper noun conflicts (such as Unfinished Music). A capitalization constant, #$ is 
added to ! where terms in the orphan were found capitalized. 

Figure 1 compares the improvements to the original algorithm using the INEX 
2007 Link-the-Wiki topics. The line labeled “Waterloo” is the Itakura & Clarke run as 
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submitted. Removing punctuation (Alphanumeric) from the anchor list improves the 
algorithm, removing case folding (Case Sensitive) leads to further improvements. 
Weighting (Weighed) includes punctuation removal, case sensitivity, and weighted !, 
and was the best experimental run on the 2007 orphans. 

Figure 2 shows the effect of # on precision, a value of 0.3 is best for early 
precision, but a value of 0.1 holds the precision longer resulting in the highest mean 
average precision. 

3.1.3. Best Entry Points 
Several studies have shown the best entry point for Wikipedia documents is the start 
of the document. [1, 8]. No further investigation was performed on BEPs. 

3.1.4. Multiple Targets 
The Link-the-Wiki task specification for 2008 allowed at most 5 targets for each 
anchor point. The Itakura & Clarke algorithm was, consequently, extended so that the 
! value was computed for not just the most common target, but also for all targets of 
an anchor text. The ! values represent the probability of the target document being the 
correct target; consequently choosing the top five documents (by !) for each anchor 
text satisfies the track requirements. 

3.2. Incoming Links 

The best Otago run at INEX 2007 achieved an excellent early precision (P@5) score 
of 0.751. The experiments described in this section were conducted in an effort to 
improve the overall performance (MAP) and were conducted on the 2007 Link-the-
Wiki oprhans. 

3.2.1. The Otago 2007 Algorithm 
The algorithm for detecting incoming links relies on a simple theme extraction 
technique used to identify the semantic content of the document. 

For each unique term (excluding stop words) in the orphaned document the Otago 
2007 algorithm [1] computes the actual frequency of that term, af 

 

D: ( 9:
PQ 

 
where tf is the number of occurrences of the term in the orphan and dl is the length of 
the orphan (in terms); to the expected frequency, ef 
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where cf is the number of occurrences of the term in the collection, df is the number 
of documents containing the term and ml is the mean length of a document. Ranking 
the terms in the orphan by ratio of af to ef (st), 
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Fig. 1. Small improvements on the Itakura & Clarke algoritm (Waterloo) are 

seen when punctuation is removed (Alphanumeric), when case folding is 
removed (Case Sensitive) and when uppercase anchors are preferred over 

lowercase anchors (Weighted). 
 
 

 
Fig. 2. Effect of varying # on the precision. Small value of # (0.3) is best for early 
precision but a very small score (0.1) holds the precision higher longer (best for MAP). 
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provides a list of terms in order of occurrence relative to expected occurrence. If this 
ratio is larger than 1 the term occurs in the document more often than expected, if it is 
less than 1 it occurs less frequently than expected. The top ranked terms are 
representative themes of the document and are used to construct queries. The results 
of these queries are documents relevant to the themes of the orphan and therefore 
these documents should link to the orphan. 

3.2.2. Improvements – Multiple Searches 
For INEX 2007, queries were constructed by taking the top n terms from the st-
ordered term-list and performing a query, extracting the top n * 50 results and then 
concatenating them to the list of results until a total of 250 results were found. That is, 
for n=2, three searches were performed, the first identifying the top 100 results and 
the second identifying the next 100 results, and the last identifying the remaining 50 
results. There was no theoretic justification for this approach; it was motivated by 
time constraints. It is of note, however, that it was not an unsuccessful approach. 

By merging the results of each separate query on the rsv (in this case the BM25 
score) good targets that match other than the top theme will be placed high in the 
results list. This approach might also place documents that are good matches for non-
key themes high in the results list because of a high rsv with respect to a non-key 
term. 

To alleviate this problem the BM25 score for each search term can be weighted. 
The strength of a term with respect to the orphan has already been computed (st) and 
so that is a reasonable value to choose. 

The best Otago run at INEX 2007 used two searches of 4 terms each, producing a 
total of 250 results in the results list. Using merging and weighted merging on the 
2007 orphans the best number was 2. 

 The results are shown in Table 2. The best runs submitted to INEX 2007 (by any 
participant) achieved a score of 0.484 and is listed for comparative purposes. The best 
Otago run at INEX 2007 achieved a score of 0.339 which is better than the score 
achieved by result merging (0.319) but not as good as the 0.350 achieved by weighted 
result merging.  

Figure 3 shows the early precision scores for the same three techniques. Of 
particular interest is that although the MAP score for weighted merging is highest, the 
early precision scores of the Otago 2007 run are highest. 

Table 2. MAP scores for different approaches to multiple searches. The weighted merging 
of queries containing 2 terms each achieved a better score than the best Otago 2007 run, 

however not as good as the best run submitted by any institute. 

Run MAP 
Top INEX 2007 run 0.484 
Weighted merge 0.350 
Otago 2007 0.339 
Merged  0.319 
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Fig. 3. Early precision scores for the three merging techniques. Although the MAP of 
weighted merge is highest, the early precision of Otago 2007 is highest.  

 

 
Fig. 4. A comparison of the multiple search technique to the single search technique 
suggests that the single search technique is best.  
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3.2.3. Improvements – Single Searches 
With the multiple search technique the contribution of each separate search to the 
final precision score is unclear. It is also unclear whether or not a better approach is to 
simply perform one search with the given number of terms and to use the top 250 
results. 

Two experiments were conducted: in the first, n search terms were used and n * 50 
results were retrieved; in the second, n search terms were used but the full 250 results 
were retrieved. The first experiment computes the contribution of the first search to 
the multi-search whereas the second compares multi-searching with single-searching. 
The results were compared to the multiple search technique without merging and 
without weighting. 

Figure 4 shows the contribution of the first search is a substantial proportion of the 
final result of the multiple search approach. It also shows the superiority of the single 
search technique when the full 250 results are retrieved. The improvements decrease 
as the number of terms per query increases to 5 as the number of documents retrieved 
per query in the multiple query approach tends to the full 250. 

3.2.4. Weighted Search Terms 
The experiments examining multiple searches showed that MAP could be improved if 
the search terms were weighted by st. Improvements are therefore expected in the 
single search approach if the individual search terms in a single query are weighted. 
The weights could be taken from the st score, but we chose to learn weights using 
Genetic Algorithms [9]. 

Trotman [10] and later Robertson et al. [11] modify the term frequency component 
of BM25 to include a separate weight for each structure within a document. We use 
their approach to weight term frequencies based not on the structure, but on the 
position of the term in the query (where query terms are sorted in decreasing st score). 
The new term frequency score use in the BM25 equation, tf, is given by 
 
tf = tft * cq 
 
where tft is the true term frequency of the term in the document; and cq is a constant 
weight for a term at position q in the query, varying from 0 to 1. 

If the weight of cq is 0 then the search term will be discarded from the query. If it is 
1 then the true term frequency will be used, otherwise the influence of the term 
frequency will be linearly scaled by cq. Good values for cq are expected to decrease as 
a function of distance from the start of the query, reaching 0 when adding new terms 
creates an ambiguous query. 

Experiments were conducted to learn weights for queries of lengths between 2 and 
10 search terms2. The population size was 50, crossover rate was 0.9, mutation rate 
was 0.05, and reproduction rate was 0.05. The learning was run for 10 generation. 
Elitism was used. Many iterations of the learning were conducted and the best 
weights of the best run were recorded. 

                                                           
2 In the case of a single search term the weight has a scaling effect which does not affect the 

relative rank order of the results; and so has no effect on MAP. 
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For the best MAP score achieved for queries ranging from 2 to 10 search terms, 
Table 3 shows the weights that were learned. It can be seen that the first two terms are 
responsible for the majority of the performance.  

Figure 5 shows that weighting search terms results in an increase in precision for 
all tested cases (with the exception of a single search term). It should be noted that the 
experiments over-fit the weights to the orphan documents; unfortunately there is an 
insufficient number of orphans (in the 2007 set) to conduct a traditional learn / 
validate / evaluate experiment. 

Table 3. Best learned weights for different queriy lengths 

Search Terms Weights (from first to last term) 
2 0.96, 0.95 
3 0.99, 0.96, 0.04 
4 0.97, 0.73, 0.05, 0.06 
5 0.95, 0.83, 0.14, 0.1, 0.01 
6 0.89, 0.97, 0.44, 0.41, 0, 0.06 
7 0.8, 0.95, 0.75, 0.29, 0, 0.07, 0.25 
8 1, 0.88, 0.14, 0.05, 0, 0.22, 0.08, 0.19 
9 0.87, 0.81, 0.36, 0.26, 0, 0.22, 0.29, 0.2, 0.01 

10 0.9, 0.99, 0.77, 0.55, 0.35, 0.08, 0.19, 0.16, 0, 0.19 

Table 4. MAP scores of the runs using terms from different parts of the document 

Run MAP 
Title 0.410 
Overview 0.143 
Document 0.080 
Otago 2007 0.339 
Weighted merge 0.350 

3.2.5. Other Sources of Search Terms 
The experiments thus far suggest that the best approach is to perform a single search 
using a small number (two or three) highly representative search terms to identify 
document that should point to the orphan. The approach to identifying terms involved 
identifying document themes by simple text processing techniques. Wikipedia 
documents, however, are structured and include a title as well as a brief overview of 
the content of the document. These document structures might be used as a method of 
identifying good representative document-thematic terms, or the whole document (as 
seen by others [12]) might be used. 

The title of the Wikipedia document is held between <name> tags. These were 
processed to remove duplicate search terms and stop words, and then used as queries. 

The overview of the Wikipedia document occurs as an untitled section before the 
first titled section. It was extracted by using all text before the first <title> tag of the 
document, stop words and duplicate terms removed and used as the query. 
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The full-text of the Wikipedia document can easily by extracted by removing all 
XML tags from the document, removing stop and duplicate words, and used as the 
query. 

Figure 6 shows the effect on early recall of the different techniques. Selecting 
terms from the whole document is better than using the title which is better than the 
overview which in turn is better than the whole document. However, the result is 
somewhat different when the MAP scores are compared; Table 4 presents the MAP 
scores and it can be seen that using the title is better overall than the other approaches, 
even bettering the weighted merge approach from above. 

3.3. Otago Link-the-Wiki 2008 Runs 

Problematic and systemic with our experiments is the tradeoff of early precision with 
mean average precision. The best method to choose is dependent on the metric being 
used to score the runs. MAP was used in 2007 and we assume its use in 2008. 

3.3.1. File-to-file linking 
Three runs were submitted, each used BM25 (k1=0.421, k3=242.61, b=0.498) 
 
capConstant-SingleSearchWeighted: outgoing links were identified using the Otago 
version of Itakura & Clarke with # = 0.1. Incoming links were identified using the 
weighted merge method with 4 search terms and weights of 0.97, 0.73. 0.05 & 0.06. 
 
capConstant-TitleOnly: outgoing links were identified using the Otago version of 
Itakura & Clarke with # = 0.1. Incoming links we were identified using the title of 
the orphan. 
 
nonCap-FirstPara: outgoing links were identified using the Otago version of Itakura & 
Clarke without #. Incoming links were identified using the outline of the orphan. 

3.3.2. Anchor-to-BEP linking 
capConstant-SingleSearch-A2B: same as capConstant-SingleSearchWeighted. 

 
capConstant-TitleOnly-A2B: same as capConstant-TitleOnly. 

 
nCapConstant-WholeDocument-A2B: same as nonCap-FirstPara, but using the whole 
document for the query. 

3.4 Wikilinking Results 

At time of writing the results of the Link-the-Wiki track for 2008 had not been 
published. 

342



 
Fig. 5. Effect of weighting individual search terms in the query 

 
Fig. 6. Different sources of search terms. The title is a more effective source of terms than 
the overview which is better than the whole document. For early precision the best source 
was the approach used by Otago at INEX 2007 
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4. Conclusions 

Experiments were conducted to gain insights into effective method of searching for 
the Relevance-in-Context task. In passage retrieval the Otago 2007 algorithm was 
compared to the Kullback-Leibler model, and virtually no difference was seen in the 
performance in the 2008 topics. This suggests the simpler Otago algorithm may be an 
effective alternative algorithm, especially when efficiency is an issue. In element 
retrieval the Beigbeder algorithm was compared to an IDF weighted variant and 
substantial improvements were seen on the 2008 topics – suggesting there is further 
room for improvement on Beigbeder’s work. 

In the Link-the-Wiki task the Itakura & Clarke algorithm was used for outgoing 
links. It was extended by removing punctuation from the anchors, and adding case 
sensitivity weighting. For incoming links an analysis of the Otago 2007 algorithm 
suggested that the method of just using the orphan title was effective. At time of 
writing the results for the Link-the-Wiki track had not been released. 
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Abstract. In this year’s Link-the-Wiki track, we totally submitted 4 runs, 2 for 
the file-to-file task and 2 for the anchor-2-best entry point task. For the 
incoming link detection, we use p(d|t), the probability for the given topic file 
generate a document, to judge which documents are proper link sources for the 
given topic. For the outgoing link detection, in the file-to-file task, we simply 
use the document title matching strategy but with some proper reorder. In the 
anchor-to-best entry point task, we use p(d|a,t), the probability for the given 
topic file and an anchor name generate a document, to select anchors and link 
targets for a given topic. 

1   Introduction 

This is the first time for the Center for Studies of Information Resources to participate 
in the INEX Link-the-Wiki track. We totally submit 4 runs, 2 for the file-to-file task 
and 2 for the anchor-to-best entry point task. The difference of each 2 runs lies in the 
incoming link detection approach. 

For the incoming link detection, we express it as p(d|t), the probability for the 
given topic file generate a document. Run 1 takes topic file title as t, and the other run 
takes the content of the topic file as t. The same incoming link detection method is 
used in the 2 sub tasks. 

For the outgoing link detection, in the file-to-file task, we firstly identify all of the 
candidate anchors by matching each line of the topic file with all the document titles 
of the Wikipedia collection. Then order them by their incoming link number, and 
finally select the top 250 anchors. In the anchor-to-best entry point task, we express it 
as p(d|a,t), the probability for the given topic file and an anchor name generate a 
document. The anchors are selected by a window-based technique, we select the top 
50 anchors with the highest p(d|a,t) as final results. 

The rest of this paper is structured as followed. Firstly, in section 2, we will briefly 
introduce the lately related work about link discovery in Wikipedia. Then, we will 
discuss our experiment setup in section 3. Our detail approaches will be introduced in 
section 4 and the evaluation results and a brief analyze will be presented in section 5, 
and finally we will summarize our work and discuss about the future work in section 
6. 
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2 Related Work 

Link-the-Wiki track was started last year. Only 4 participants submitted result last 
year: the Queensland University of Technology, the University of Waterloo, the 
University of Otago, and the University of Amsterdam [1]. 

After the INEX Link-the-Wiki track, the Queensland University of Technology 
and the University of Amsterdam had carried out a much deeper research.  

As the track organizer, the Queensland University of Technology firstly 
summarized all the related work that have been done in INEX 2007’s Link-the-Wiki 
track [1]. And then they improved their approaches used in INEX 2007, especially for 
the outgoing link found task, while in INEX 2007, their outgoing links were identified 
by running a window over the topic text and looking for matching page names in the 
collection [1], however, this time, they reordered those candidate anchors by some 
principles. For example, numbers and single terms have much less probability as an 
anchor [2]. They got a much better result when doing experiments with INEX 2007’s 
topics. 

In [3], the University of Amsterdam focused on outgoing links and investigated 
link density, and especially repeated occurrences of links with the same anchor text 
and destination. They used link density/anchor distance and repeated candidate links 
to assist link discovery, and performance was improved when using INEX 2007’s 
topics as experiment topics. However, in [4], the University of Amsterdam mainly 
focused on finding out if Wikipedia’s link structure can be exploited to improve ad-
hoc information retrieval. After analyzed the relation between Wikipedia links and the 
relevance of pages, they experimented based on the test collection of INEX 2006 and 
found that Wikipedia’s link structure really can help improve the effectiveness of ad-
hoc retrieval. 

Beyond the INEX, there are also lots of related research work has been done about 
automatic link generation. In [1, 2 and 3], the authors have summarized these related 
work, most of them are research about either automatic link generation in the World 
Wide Web or link detection and usage in Wikipedia. For details please refer to [1, 2, 
and 3]. 

3   Experiment Setup 

3.1   Pre-process 

In the pre-process stage, we mainly aimed at extracting useful information which may 
be helpful in the following experiment. After removed all the topic files, including 
6600 for the file to file task and 50 for the anchor to best entry point task, we parsed 
the remaining xml documents and extracted nearly all the links. The links in the 
Wikipedia corpus mainly consist of 4 kinds: collection link, Wikipedia link, outside 
link and unknown link, as table 1 shows. 
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Table 1.  The four main kinds of links of the Wikipedia corpus. 

Link Type Number Percentage 
Collection Link 17019137 77.4% 
Wikipedia Link 176022 0.8% 
Outside Link 858994 3.9% 
Unknown Link 39310068 17.9% 

 
Collection link is like: 

<collectionlink  
xmlns:xlink="http://www.w3.org/1999/xlink"  
xlink:type="simple"  
xlink:href="21139.xml"> 
North America 
</collectionlink> 
Collection link is link between documents of Wikipedia corpus; about 77.4% of the 

links are collection link. In the pre-process stage, we mainly extracted information 
from collection link, including the third attribute--xlink:href, whose value is the 
target file of it, and the anchor name, in the above example it is “North America”. 

Collection link is very useful for analyzing the relationship between Wikipedia 
pages. 

The other 3 kinds of links: wikipedia link, outside link and unknown link takes 
about 0.8%, 3.9% and 17.9% respectively. Wikipedia link likes in page anchors; 
outside link links to outside pages, mostly web pages outside the wikipedia website; 
unknown link is those should have been a useful link, but without proper target yet. 
For these 3 kinds of links, we only extracted the anchor name of the link. We haven’t 
found any useful information in their attributes. 

In all the extracted information, all the anchor names can be candidate anchor for 
the anchor-to-best entry point task. In our following experiment we use another way 
to get candidate anchors. However, the attributes of collection link are very useful. 
For every document in the wikipedia corpus, we find all the names of the anchors 
which link to the document, the article ids of the anchors, the article titles of the 
anchors, and save these information into separate text files. 

3.2   Index and Retrieval Model 

In the experiment, we use Lucene[5] and Lucene-Ex[6] as our search system. Lucene-
Ex is an extended edition of Lucene supporting language model and some frequently 
used smoothing. So, there are two retrieval models in the experiment: the default 
similarity measure in Lucene, vector space model and language model. 

Nick Craswell, David Hawking and Stephen Robertson once proved that: if we 
take the incoming anchor names as a short expression of the current document and 
append it to the document content, when retrieving related documents, the retrieval 
effect will be greatly improved [7]. So, in our experiment we append those incoming 
link anchor names to the topic file content when indexing. 

For the index of the file-to-file task, we indexed the following fields: 
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(article id, incoming anchor names, content, content and incoming anchor names) 
Where incoming anchor names is the sequential connection string of all the 

incoming link anchor names of the topic file, each separated by a full stop.  
For the index of the anchor-to-best entry point task, we indexed the following 

fields:  
(article id, title, incoming anchor names, content, content and incoming anchor 

names) 
The difference between the file-to-file index and the anchor-to-best entry point 

index is that we take incoming anchor names as a separate field in the indexing for the 
latter.  

4   Our Approaches 

Link the wiki track has two sub tasks: file-to-file task and anchor-to-best entry point 
task. The anchor-to-best entry point task needs to find the anchor for link and the best 
entry point of the link target file. The following will introduce the approaches we take 
in the two sub tasks. 

4.1   File-to-File Task 

The file-to-file task needs to find 250 outgoings and 50 incomings for each topic of 
the 6600 topics. We submitted 2 runs: LTW_F2F_1 and LTW_F2F_2. The two runs 
differ from each other just in that their incomings are generated by different 
approaches. We used the same method to find outgoings. 

4.1.1 Outgoing 
Outgoing links of file level are generated by author mostly because a certain term in 
the current topic is just another file’s title. So, we suppose that if a title of a document 
is in the current topic file, then there should be a link from the current topic file to the 
document. Additionally, we not only investigate the title of the document, but also all 
those different incoming anchor texts of the document, which are extracted in the pre-
processing and can be taken as a somewhat transform of the title of the document. 

After finding all those candidate outgoings, we order them by their probability as 
an outgoing. In the pre-process stage, the number of incoming links of each document 
has been calculated as shows in table 2. We take those who have more incoming links 
as having a greater possibility as outgoing links for a given topic. It means that we 
order those candidate documents by the number of incoming links they already have. 

Table 2.  Incoming links of the Wikipedia corpus. 

Number of incoming links Number of documents Percentage 
0 43554 6.61% 
1-49 574108 87.07% 
50-99 21401 3.25% 
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100-199 10801 1.64% 
200-299 3565 0.54% 
300-499 2749 0.42% 
!500  3210 0.49% 

4.1.2 Incoming 
We assume that if two documents are about similar themes, then they can link to each 
other. So, we use p(d|t), the probability of a topic file generating a document, to judge 
whether a document is appropriate as an incoming link. 

When calculating p(d|t), we use two different approaches. For run1 we use Lucene-
Ex as search engine and language model as retrieval model; and for run2 we use 
Lucene and its default vector space model. Considering the speed of the Lucene-Ex 
retrieval system, we actually use the topic title as query and search the “content” field 
of the index. However, in run2, we use the main content of the topic file as query and 
search the “content” field of the index. The main content of the topic is generated by 
parsing the topic content and extract those typical terms. 

4.2 Anchors to Best Entry Point Task 

The anchor-to-best entry point task needs to find 50 anchors and 5 target file per 
anchor, totally 250 outgoings, and 50 incomings. 

We submitted 2 runs: LTW_A2BEP_1 and LTW_A2BEP_2. The two runs differ 
from each other just in that their incomings are generated by different approaches. 

4.2.1 Outgoing 
Comparing with the file-to-file task, the anchor-to-best entry point task needs to 
determine the anchor of the link. We assume that if an anchor should link to a 
document just when the anchor and the topic file both relevant to the document. So, 
we express it as p(d|a,t), the probability of a specified anchor and topic file generating 
the document. P(d|a,t) can be calculated as follows: 

( | , ) ( | )* ( | )p d a t p d a p d t"                    (1) 
Firstly, we choose those candidate anchors. After parse the topic file, exclude those 

words less than 5 letters, and tokenize the rest words, we use a window method to 
determine the candidate anchors. The size of the window differs from 1 to 7. There 
are more than 3000 candidate anchors for most topic files. 

Secondly, for every candidate anchor, we calculate p(d|a). This process includes 3 
steps. (1)Determine whether there are documents just named as the candidate anchor. 
If the candidate anchor is exactly the same as the topic or one of the incoming anchor 
names of the document, then assign 1 to p(d|a). (2) Use the candidate anchor as query 
to search “incoming anchor names” field of the index and get the top 50 documents. If 
there are less than 50 documents then do step 3. (3) Use the candidate anchor as query 
to search “content” field and get the top documents to make up for totally 50 
documents. 
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Thirdly, we calculate p(d|t) and p(d|a,t). In this process, we use the main content of 
the topic file as query to search the “content and incoming anchor names” field. Then, 
we can calculate p(d|a,t). 

At last, we order all anchors by the score of the candidate anchors, choose the top 
50 anchors and then order these chosen anchors by their offset. The score of a 
candidate anchor can be calculated by either the highest target files’ score of the 
anchor or the sum of the top 5 target files’ score. In our runs, we use the former 
method. For anchors with the same offset, it means that they are overlapped, so we 
choose the anchor has the highest score. If they have the same score, then we choose 
the longest anchor. 

Until now, we have found 50 anchors and each anchor with at most 5 target file 
links. The best entry point of the anchor in the target file is decided as follows: take 
the target file as a string, if the index of the anchor is not 0, then assign the index to 
the best entry point, or just assign it as 0. 

4.2.2 Incoming 
The approach use in finding incoming is the same as we use in finding incoming for 
the file to file task. Similarly, for run 1 we use Lucene-Ex as search engine and 
language model as retrieval model; and Lucene is used in run2. 

However, in this task, we not only need to find the target file, but also the offset 
and length of the link anchor, and the best entry point in the topic file. We set all the 
best entry point of the topic file as 0. For the offset and length of the link anchor, we 
simply calculate the index of the topic title in the target link file and its length. 

5   Result and Discussion 

The primary evaluation result is as table 3. The detailed evaluation results hasn’t 
released yet. 

Table 3. The evaluation result of link the wiki track 

Run ID Type MAP 
CSIR_LTW_F2F_1 incoming 0.164555592 
CSIR_LTW_F2F_2 incoming 0.294029531 
CSIR_LTW_F2F outgoing 0.008195767 
CSIR_LTW_A2BEP_1 incoming 0.124536794100866 
CSIR_LTW_A2BEP_2 incoming 0.157729743721682 
CSIR_LTW_A2BEP outgoing 0.0215233317243304 

For finding incoming, we used two different approaches to calculate p(d|t). The 
evaluation result reveals that when using the main content of the topic file as query is 
better than just using the title of the topic file. 

For finding outgoings of the file-to-file task, we have ignored the fact that those 
document which have lots of incomings are mostly those talking about countries, 
places, years or lists. Though they have lots of incomings, we shouldn’t take this as a 
sign of having a greater possibility as outgoing links for a given topic. 
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For finding outgoings of the anchor-to-best entry point task, we haven’t anticipate 
this result. And currently, we haven’t figure out the reason. 

6 Conclusion and Future Work 

In this year’s Link-the-Wiki track, we submitted 2 runs for each of the sub-task. For 
the incoming link detection, we expressed it as p(d|t), the probability for the given 
topic file generate a document. For the outgoing links of the file-to-file task, we 
simply used the document title matching strategy, and for the outgoing links of the 
anchor-to-best entry point task, we expressed it as p(d|a,t), the probability for the 
given topic file and an anchor name generate a document. 

From the primary evaluation result, we find that there are many problems in our 
approaches. In the future, we would try to study the research findings of automatic 
link generation in the 1990s, and some related research work about measures of the 
similarity between Wikipedia pages, and see if we can get some inspiration from 
these research findings when doing with the Link-the-Wiki track. 
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Abstract. We address the problem of categorizing a large set of linked docu-
ments with important content and structure aspects, for example, from Wikipedia
collection proposed at the INEX XML Mining track. We cope with the case where
there is a small number of labeled pages and a very large number of unlabeled
ones. Due to the sparsity of the link based structure of Wikipedia, we apply the
spectral and graph-based techniques developed in the semi-supervised machine
learning. We use the content and structure views of Wikipedia collection to build
a transductive categorizer for the unlabeled pages. We report evaluation results
obtained with the label propagation function which ensures a good scalability on
sparse graphs.

1 Introduction

The objective of the INEX 2008 XML Mining challenge is to develop machine learning
methods for structured data mining and to evaluate these methods for XML document
mining tasks. The challenge proposes several datasets coming from different XML col-
lections and covering a variety of classification and clustering tasks.

In this work, we address the problem of categorizing a very large set of linked XML
documents with important content and structural aspects, for example, from Wikipedia
online encyclopedia. We cope with the case where there is a small number of labeled
pages and a much larger number of unlabeled ones. For example, when categorizing
Web pages, some pages have been labeled manually and a huge amount of unlabeled
pages is easily retrieved by crawling the Web. The semi-supervised approach to learning
is motivated by the high cost of labeling data and the low cost for collecting unlabeled
data. Withing XML Mining challenge 2008, the Wikipedia categorization challenge
has been indeed set in the semi-supervised mode, where only 10% of page labels are
available at the training step.

Wikipedia is a free multilingual encyclopedia project supported by the non-profit Wi-
kipedia foundation 1. In April 2008, Wikipedia accounted for 10 million articles which
have been written collaboratively by volunteers around the world, and almost all of its
articles can be edited by anyone who can access the Wikipedia website. Launched in
2001, it is currently the largest and most popular general reference work on the Inter-
net. Automated analysis, mining and categorization of Wikipedia pages can serve to

1 http://www.wikipedia.org.

352



improve its internal structure as well as to enable its integration as an external resource
in different applications.

Any Wikipedia page is created, revised and maintained according to certain policies
and guidelines [2]. Its edition follows certain rules for organizing the content and struc-
turing it in the form of sections, abstract, table of content, citations, links to relevant
pages, etc.. In the following, we distinguish between four different aspects (or views)
of a Wikipedia page:

Content - the set of words occured in the page.
Structure - the set of HTML/XML tags, attributes and their values in the page. These

elements control the presentation of the page content to the viewer. In the extended
version, we may consider some combinations of elements of the page structure, like
the root-to-leaf paths or their fragments.

Links - the set of hyperlinks in the page.
Metadata - all the information present in the page Infobox, including the template,

its attributes and values. Unlike the content and structure, not all pages present
infoboxes [4].

We use these alternative views to generate a transductive categorizer for the Wiki-
pedia collection. One categorizer representing the content view is based on the text of
page. Another categorizer represents the structural view, it is based on the structure and
Infobox characteristics of the page.

Thanks to the semi-supervised setting of the challenge, we test the graph-based
semi-supervised methods which construct the similarity graph W = (wij) and apply
a function propagating labels from labeled nodes to unlabeled ones. We first build the
content categorizer, with weights wij being the textual similarity between two pages.
We then build the structure categorizer, where weights wij are obtained from the struc-
ture and Infobox similarity between the pages. Finally, we linearly combine the two
categorizers to get the optimal performance.

2 Graph-based semi-supervised learning

In the semi-supervised setting, we dispose labeled and unlabeled elements. In the graph-
based approach [5, 6] to linked documents, one node in the graph represents one page.
We assume a weighted graph G having n nodes indexed from 1 to n. We associate with
graph G a symmetric weight matrix W where all weights are non-negative (wij > 0),
and weight wij represents the similarity between nodes i and j in G. If wij = 0, there
is no edge between nodes i and j.

We assume that the first l training nodes have labels, y1, y2, . . . , yl, where yi are
from the category label set C, and the remaining u = n − l nodes are unlabeled.
The goal is to predict the labels yl+1, . . . , yn by exploiting the structure of graph G.
According to the smoothness assumption, a label of an unlabeled node is likely to be
similar to the labels of its neighboring nodes. A more strongly connected neighbor node
will more significantly affect the node.

Assume the category set C includes c different labels. We define the binary label
vector Yi for node i as Yi = {yij |yij = 1 if j = yi, 0 otherwise}. We equally introduce
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the category prediction vector Ŷi for node i. All such vectors for n nodes define a
n× c-dimensional score matrix Ŷ = (Ŷ1, . . . , Ŷn). At the learning step, we determine
Ŷ using all the available information. At the prediction step, the category labels are
predicted by thresholding the score vectors Ŷl+1, . . . , Ŷn.

The graph-based methods assume the following:

1. the score Ŷi should be close to the given label vectors Yi in training nodes, and
2. the score Ŷi should not be too different from the scores of neigbour nodes.

There exist a number of different graph-based methods [6]; we test some of them
and report on one called the label expansion [5]. According to this approach, at each
step, node i in graph G receives a contribution from its neighbors j weighted by the
normalized weight wij , and an additional small contribution given by its initial value.
This process can be expressed iteratively using the graph Laplacian matrix L = D−W ,
where D = diag(di), di =

∑
j wij . The normalized Laplacian L = D−1/2LD−1/2 =

I − D−1/2WD−1/2 can be used instead of L to get a similar result. The process is
detailed in Algorithm 1 below.

Algorithm 1 Label expansion
Require: Symmetric matrix W, wij ≥ 0 (and wii := 0)
Require: Labels yi for xi, i = 1, . . . , l
Ensure: Labels for xl+1, . . . , xn

1: Compute the diagonal degree matrix D by dii :=
∑

j
wij

2: Compute the normalized graph Laplacian L := I −D−1/2WD−1/2

3: Initialize Ŷ (0) := (Y1, . . . , Yl,0,0, . . . ,0), where Yi = {yik|yik = 1 if k = yi, 0
otherwise}

4: Choose a parameter α ∈ [0, 1)
5: while not converged to Ŷ (∞) yet do
6: Iterate Ŷ (t+1) := αLŶ (t) + (1− α)Ŷ (0)

7: end while
8: Label xi by argmaxj Ŷ

(∞)
i

It has been proved that Algorithm 1 always converges [5]. Indeed, the iteration
equation can be represented as follows

Ŷ (t+1) = (αL)t+1Ŷ (0) + (1− α)
t∑

i=0

(αL)iŶ (0). (1)

Matrix L is a normalized Laplacian, its eigenvalues are known to be in [-1, 1] range.
Since α < 1, eigenvalues of αL are in (-1,1) range. Therefore, when t→∞, (αL)t →
0.

Using the matrix decomposition, we have
∑∞

i=0(αL)i → (I − αL)−1, so that we
obtain the following convergence

Ŷ (t) → Ŷ (∞) = (1− α)(I − αL)−1Ŷ (0). (2)
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The convergence rate of the algorithm depends on specific properties of matrix W ,
in particular, the eigenvalues of its Laplacian L. In the worst case, the convergence takes
O(kn2) time, where k is the number of neighbors of a point in the graph.

On the other hand, the score matrix Ŷ can be obtained by solving a large sparse
linear system (I −αL)Ŷ = (1−α)Y (0). This numerical problem has been intensively
studied [3], and efficient algorithms, whose computational time is nearly linear in the
number of non-zero entries in the coefficient matrix. Therefore, the computation gets
faster as the Laplacian matrix gets sparser.

2.1 Category mass regularization

Algorithm 1 generates a c-dimensional vector Ŷi for each unlabeled node i, where c is
the number of categories and each element ŷij between 0 and 1 gives a score for cat-
egory j. To obtain the category for i, Algorithm 1 takes the category with the highest
value, argmaxj ŷij . Such a rule works well when categories are well balanced. How-
ever, in real-world data categories are often unbalanced and the categorization resulting
from Algorithm 1 may not reflect the prior category distribution.

To solve this problem, we perform the category mass normalization, similarly to [7].
It rescales categories in such a way that their respective weights over unlabeled exam-
ples match the prior category distribution estimated from labeled examples.

Category mass normalization is performed in the following way. First, let pj de-
note the prior probability of category j estimated from the labeled examples: pj =
1
l

∑l
i=1 yij . Second, the mass of category j as given by the average of estimated weights

of j over unlabeled examples, mj = 1
u

∑n
i=l+1 ŷij . Then the category mass normaliza-

tion consists in scaling each category j by the factor vj = pj

mj
. In other words, instead

of the decision function argmaxj ŷij , we categorize node i in the category given by
argmaxj vj ŷij . The goal is to make the scaled masses match the prior category distri-
bution, i.e. after normalization we have that for all j

pj =
vjmj∑c
i=1 vimi

.

Generally, such a scaling gives a better categorization performance when there are
enough labeled data to accurately estimate the category distribution, and when the un-
labeled data come from the same distribution. Moreover, if there is an m such that each
category mass is mj = mpj , i.e., the masses already reflect the prior category distribu-
tion, then the mass normalization step has no effect, since wj = 1

m for all j.

2.2 Graph construction

The label expansion algorithm starts with a graph G and associated weighted matrix W .
To build the graph G for the Wikipedia collection, we first reuse its link structure by
transforming directed links into undirected ones. We analyze the number of incoming
and outcoming links for all pages in the Wikipedia collection. Figure 1 shows the In-Out
frequencies for the corpus; note the log scale set for all dimensions.
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In the undirected graph, we remove self-links as required by Algorithm 1. We then
remove links between nodes with high wij having different labels in order to fits the
smoothness condition. It turns out that the link graph is not totally connected. Figure 2
plots the link graph with the help of the Large Graph Layout package2. The graph in-
cludes one connected component and about 160 small components covering less than
1% of collection. The right plot in Figure 2 additionally projects the category informa-
tion on the link graph, where each category is shown by a particular color.

We also look for an approach of building graph G for Wikipedia collection different
its link structure. The standard approach [5] is to build the k-NN (Nearest Neighbors)
graph by taking the top k weights wij for each node. Unfortunately, the exhaustive
k-NN procedure is infeasible for the Wikipedia corpus. So we build a graph G′ by
modifying G with randomly sampling of node pairs from Wikipedia and selecting the
top k=100 ones per node. Note using the content or structure similarity will produce
different versions of G′. In the evaluation section, we report results of tests run on both
G and G′ graphs.

Fig. 1. Wikipedia nodes: In-Out frequencies.

Content matrix To generate a content weighted matrix W , we extract descriptor xi

for node i in the graph by using ”bag-of-words” model and the tf-idf values, (term
frequency-inverted document frequency) as xij = tfij · idfi, where

– tfij is the term frequency given by ni,j∑
k

nk,j
, where nij is the number of occurrences

of the term in document dj , and the denominator is the number of occurrences of
all terms in document dj .

2 http://bioinformatics.icmb.utexas.edu/lgl/.
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Fig. 2. Wikipedia corpus: the link graph plotted with LGL package.

– idfi is the inverted document frequency log n
|{dj :ti∈dj}| , where n is the total number

of documents and |{dj : ti ∈ dj}| is the number of documents where the term ti
occurs.

The tf-idf weighting scheme is often used in the vector space model together with
cosine similarity to determine the similarity between two documents.

Layout matrix In the structure graph, node descriptors xi are generated following the
”bag-of-tags” approach which is similar to bag-of-words used in the content graph.
Instead of words, it uses elements of the page structure. In the HTML formatted pages,
the presentation is guided by instruction encoded by HTML tags, attributes and their
values. The HTML structure forms a nested structure. The “bag-of-tags“ model might
have different instantiations, below we report some of them, where the terms form one
of the following sets:

1. set of tag names, like (table) or (font),
2. set of descendant tag pairs, like (table,span) or (tr,td),
3. set of root-to-leaf paths in HTML page, like (html,body,table,tr,td),
4. tag+attribute pairs, like (table, font),
5. tag+attribute+attribute value triples, like (table,font,times).

For any of these sets, we extract descriptors xi for node i according to the conven-
tional tf-idf weights. We build the weighted matrix W using the structure similarity
between pages evaluated with ”bag-of-tags“ model and one of the listed tag sets.

Similarity measures Once we have obtained description vectors xi for all nodes in
graph G, we can get the weighted matrix W by measuring a similarity between two
nodes i and j in G. Two possible measures are the following:
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1. The Gaussian (RBF) kernel of width σ:

wij = exp

(
− ||xi − xj ||2

2σ2

)
,

where the width σ is evaluated from the variance of the descriptors xi.
2. The cosine function:

wij =
xi · xj

||xi|| ||xj ||
.

3 Evaluation

The collection used in the INEX XML Mining challenge is composed of n=114,366
pages from the Wikipedia XML Corpus3; 10% of these pages have been annotated
(l=11,437) with c=15 categories, 90% of pages (u=102,929) are unannotated. Some
global characteristics of the corpus is given in Table 1. The word set is composed of all
lexemized keywords; neither non-English words not stop were excluded.

Set Size Set Size
Text words 727,667 Tag+attribute pairs 5,772
Infobox templates 602 Root-to-leaf paths 110,099
Infobox tags 1,208 Tag+attribute+value triples 943,422
Tags 1,257 Hyperlinks 636,187

Table 1. Wikipedia collection: some global characteristics.

In all experiments, we measure the accuracy of a transductive categorizer using
10-fold cross validation on the training set (in the presence of unlabeled data). As the
baseline method, we used the semi-supervised learning with the transductive SVM [1],
with xi node descriptors being feature values. We also combine content, structure and
infobox views, by concatenating the corresponding descriptors. However, direct con-
catenation of these alternative views brings no benefit. Table 2 reports the evaluation
results.

For the label expansion method, we tested the link-based graph G and the sampling-
enriched link graph G′, with matrices Wc and Ws being generated with content or struc-
ture similarity measures, respectively. Using tag+attribute descriptors enriched with
infoboxes generates a transductive categorizer whose performance is comparable to
the content categorizer. Finally, the best performance is achieved by combining two
graphs G′ with weights wij obtained the content and structure similarity. The resulting
weighted matrix is obtained as W = αWs + (1 − α)Wc with the optimal α = 0.34
obtained by the cross validation. Table 2 reports the most important evaluation results.

3 Available from http://www-connex.lip6.fr/ denoyer/wikipediaXML/.
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TSVM Method Accuracy(%) LP Method Accuracy (%) Comment
Content 73.312 G-Content 72.104 Cosine

G′-Content 75.03 idem
Tag+Attr 72.744 G′-Tag+Attr 72.191 Gaussian, δ=1.5
Paths 59.432 G′-Paths 64.824 idem
Tag+Attr+InfoBox 72.921 G-Tag+Attr+IB 70.287 idem
Content+Tag+Attr+IB 73.127 G′-Tag+Attr+IB 74.753 idem

G′-Content + G′-TAIB 77.572 α=0.34
Table 2. Performance evaluation for different methods.

4 Conclusion

We applied the graph-based semi-supervised methods to the categorization challenge
defined on Wikipedia collection. The methods benefit from the recent advances in spec-
tral graph analysis and offer a good scalability in the case of sparse graphs. From the
series of experiments on the Wikipedia collection, we may conclude that the optimal
graph construction remains the main issue. In particular, the good choice of the graph
generator and node similarity distance is a key to get an accurate categorizer. The use
of the Wikipedia link graph offers the baseline performance, while the sampling tech-
nique brings a clear improvement. Nevertheless, its impact remains limited as the graph
smoothness requirement is satisfied only partially. To better satisfy the requirement, we
would need a smarter sampling technique and an extension of the method toward the
graph regularization and an advanced text analysis.
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Abstract. In this paper we propose a method for link-based classifica-
tion based on Bayesian networks and report the results obtained of its
application to the XML Document Mining Track of INEX’08.

1 Introduction

This is the second year that the University of Granada participates in the Docu-
ment Mining Track of the INEX Workshop. Our aim is, as in previous editions,
providing a solution to the proposed problems on the framework of Probabilistic
Graphical Models (PGMs).

The corpus given for 2008 differs slightly on the previous year one [3]. Again,
as in 2007, it is a single label corpus (a subset of the AdHoc one [2] but using
a different set of 16 categories); however, this year a file with the list of links
between XML documents has been added. We will show that those links add
relevant information for the categorization of documents.

Given that the 2008 corpus is coming from the same source (Wikipedia)
than the 2007 one, we think that it might not be worthwhile to use the structural
information of the documents for categorization, because we showed [1] that even
using some very intuitive XML document transformations to flat text documents,
classification accuracy was not improving, being worse in some of the cases.
In this year, then, we have used a more pragmatic approach, directly ignoring
structural information by simply removing XML tags from the documents.

2 Linked Files. Study on the Corpus

As it was said before, we are given a set of links between document files as ad-
ditional training information, making some explicit dependencies arise between
documents. Thus, it violates the “normal” assumption of traditional classifica-
tion methods consisting in that the documents are independent of each other.
This case of non independent documents can have different forms, and the re-
lationships among documents can be not so regularly arranged (they form a
general directed graph, not a tree nor a forest).
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Clearly, for the problem of document categorization, that intra-corpus depen-
dences could be ignored, applying “traditional” text categorization algorithms
but, as we will show afterwards, the information from linked files can be a very
valuable data.

But, how are those links supposed to help in the final process of text cat-
egorization? Obviously, not all kinds of links are equal, because they can give
different information (even none). A careful review of those different kinds of
dependencies represented by hyperlinks (regularities) is given by Yang [6], and
following her terminology we can state that we are in a “encyclopedia regularity”.
We reproduce here her definition:

One of the simplest regularities is that certain documents with a class
label only link with documents with the same class label. This regularity
can be approximately found in encyclopedia corpus, since encyclopedia
articles generally reference other articles which are topically similar.

We have plotted, in the following figure, a matrix where the rows and columns
are one of the 16 categories. Each matrix value mi,j represents the probability
that a document of class i links a document of class j, estimated from the training
document collection.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12
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As it can be seen (the matrix has a strong weight in its diagonal), documents
of one category tend to link documents of the same category.

3 Proposed method

The method proposed is an extension of a probabilistic classifier (we shall use in
the experiments the Naive Bayes classifier but other probabilistic classifiers could
also be employed) where the evidence is not only the document to classify, but
this document together with the set of linked documents. Note that, in principle,
we will try to use only information which is available in a natural way for a text
classifier. Thinking in a batch processing of the different documents belonging
to the corpus, the information easily available to a system, given a document, is
the set of documents it links (not the set of documents that link it). Otherwise,
it would be needed to have previously available a list of links between documents
(which in this case we have, but it is not very realistic, in our opinion).

Consider a document d0 which links with documents d1, . . . , dm. We shall
consider the random variables C0, C1, . . . , Cm, all of them taking values in the
set of possible category labels. Each variable Ci represents the event ”The class
of document di is”. Let ei be the evidence available concerning the possible
classification of each document di (the set of terms used to index the document
di or the class label of di). The proposed model can be graphically represented
as the Bayesian network displayed in Figure 1.

Our objective is to compute the posterior probability p(C0|e), where e is all
the available evidence concerning document d0, e = {e0, e1, . . . , em}. It can be
proven that this probability can be expressed as follows:

p(C0 = c0|e) ∝ p(C0 = c0|e0)
m∏

i=1

(
∑

ci

p(Ci = ci|c0)
p(Ci = ci|ei)
p(Ci = ci)

)
(1)

As we can observe in equation (1), the posterior probability of C0 has two
components: a part which only depends on the evidence associated to the doc-
ument d0 to be classified (p(C0 = c0|e0)) and another part related with the
information about the class labels of each one of the documents linked with d0

which can be obtained using its own local evidence (p(Ci = ci|ei)). This infor-
mation is combined with the estimated probabilities of a linked document being
of class ci given that the document linking to it is of class c0.

The posterior probabilities p(C0 = c0|e0) and p(Ci = ci|ei) can be ob-
tained using some standard probabilistic classifier, whereas the probabilities
p(Ci = ci|c0) can be estimated from the training data simply by computing
the relative frequencies of the number of times that a document of class c0 links
to a document of class ci.

Therefore, we can think of the proposed model as a method to modify the re-
sults offered by a base probabilistic classifier taking into account the information
available about the linked documents and the relationships between categories.
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e1

... ...

... ...

e0

Fig. 1. Bayesian network representing the proposed model.

4 Experimental Results

To make the values comparable with the submitted runs, we have also performed
some experiments on the test set in order to show the effectiveness (recall) of
our approach. First of all we study the two submitted runs, a baseline (flat text
classifier) and our proposal (combined with Naive Bayes):

– A classical Naive Bayes algorithm on the flat text documents: 0.67674 of
recall.

– Our proposal using the previous Naive Bayes as the base classifier: 0.68136
of recall.

Although our method improves the baseline, the results achieved are not re-
ally significant. In order to justify the value of our model, we are asking now
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ourselves which is the predicting power of our proposal, by making some addi-
tional computations in an “ideal setting”. This “ideal setting” is, for a document
being classified, to be surrounded with linked documents whose class membership
is perfectly known (and hence we can set for a linked document dk of category
ci, p(Ck = ci|ek) = 1 -the true class- and p(Ck = cj |ek) = 0 -the false categories-
∀cj #= ci). Remember that, in previous experiments, a linked file whose category
was not known should be first classified by Naive Bayes, and then that estimation
(the output probability values) was used in our model.

So, the procedure is the following: for each document to classify, look to
the linked files. For each linked file, if it is a training file, use that information
(perfect knowledge), and if it is a test file, use also its categorization information
taken from the test set labels to have our file surrounded by documents with
perfect knowledge. This “acquired” knowledge is obviously removed for the next
document classification.

In this “ideal setting” we have made two experiments: one combining näıve
Bayes with our model (like the second one of the previous two), and one which
combined a “blind classifier” (the one that gives equal probability to each cate-
gory) with our model. The first should be better than the two previous ones, and
the second one could give us an idea of the true contribution to the predictive
power of our model, despite the underlying basic classifier used.

– Our proposal in an “ideal setting” using Naive Bayes as a base classifier:
0.69515 of recall.

– Our proposal in an “ideal setting” using a “blind classifier”: 0.46500 of recall.

The first experiment provides the desired result: the recall is improved (but
not so much). The small improvement could be due, in some part, to the extreme
values given in this corpus by the Naive Bayes classifier (very close to 0 and 1).
The introduction of these values in the final formula, as the first factor in the
final posterior probability of each document, makes difficult to take into account
(in the categories of the values close to 0) the information provided by the second
factor (the combination of the information given by all the linked files), vanishing
in some cases because of the low value of the first factor.

However, the second experiment showed us that, only using linked files infor-
mation, and ignoring all content information of the document to classify, in this
“ideal setting” of knowing the true class of each linked document, our method
can reach a 0.46500 of recall. This is a value clearly high, that gives us the idea
of the predictive power of using only link information of our model.

5 Conclusions and Future Works

We have proposed a new model for classification of linked documents, based on
Bayesian networks. We have also justified the possibly good performance of the
model in an “ideal” environment, with some promising results. Regrettably, our
results in this track have been very discrete, reaching the final positions and not
improving so much the näıve Bayes baseline.
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To improve those poor results in the future, we could use a classifier (proba-
bilistic) with a better performance. Such a classifier could be a logistic regression
procedure, a higher dependence network or just a SVM with probabilistic out-
put (using Platt’s algorithm [5]). The probability assignments should also be
“softer”, in the sense that several categories should receive positive probability
(näıve Bayes tended to concentrate all the probability in one category, zeroing
the others and making the information provided by the links not useful, in some
way).

Information provided by the inlinks (links received by one file) is also useful.
A “symmetric procedure” can be defined with inlinks instead, and being tested.
If the inlinks could be available, that information could result in a better perfor-
mance. Even, a better model could be applied, using an undirected graph model
(where we do not consider the direction of the links, and the documents linking
a given document or linked by it, without distinction, are the set of neighbors
of the document). Some of those experiments will probably be included in the
final version of this paper although, as we exposed in the introduction, we do
not consider that approach to be very realistic.

As future work we would like to study this problem as a collaborative clas-
sification problem (see, for instance [4]), and try to apply this method in one
of the particular solutions (those that need a “local classifier”) that are being
given to it.
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Abstract. This paper describes the approach taken to the XML Min-
ing track at INEX 2008 by the Queensland University of Technology. We
introduce the K-tree clustering algorithm in an Information Retrieval
context by adapting it for document clustering. Many large scale prob-
lems exist in document clustering. K-tree scales well with large inputs
due to its low complexity. It offers promising results both in terms of effi-
ciency and quality. Document classification was completed using Support
Vectors Machines.
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1 Introduction

This paper describes an approach taken in the XML Mining track at INEX
2008. The track consists of two tasks, classification and clustering. Classifica-
tion requires labeling documents based on a training set of labeled documents.
Clustering requires grouping of similar documents given no other information
than the documents themselves. The corpus consisted of 114,366 documents and
636,187 document to document links. Submissions were made for both tasks
using several techniques.

We introduce K-tree in the Information Retrieval context. K-tree is a tree
structured clustering algorithm [1]. The algorithm has previously been applied
in the field of signal processing. It is particularly suitable for large collections
due to its low complexity.

Non-negative Matrix Factorization (NMF) was also used to solve the clus-
tering task. Applying NMF to document clustering was first described by Xu et.
al. at SIGIR 2003 [2].

Negentropy has been used to measure clustering performance using the labels
provided for documents. Entropy has been used by many researchers [3–5] to
measure clustering results. Negentropy differs slightly but is fundamentally the
same.

The classification task was solved using a multi-class Support Vector Machine
(SVM). Similar approaches have been taken by [6, 7].

366



In Sect. 2, document representation is discussed. Section 3 describes the ap-
proach taken to the classification task and the associated results. In Sect. 4,
evaluation of document clustering is discussed and negentropy is defined. Sec-
tion 5 introduces the K-tree algorithm in an Information Retrieval setting and
explains its use in the clustering task. In Sect. 6, NMF is discussed in relation
to the clustering task. Section 7 reviews the clustering task and discusses the
results. The document ends with a discussion of future research and a conclusion
in Sects. 8 and 9.

2 Document Representation

Several sources of information were available for documents. A subset of the
XML Wikipedia corpus [8] was selected. The documents contain content and
structure as XML markup. A link graph had been extracted and labels for 10%
of the collection were provided.

Document content was represented with TF-IDF [9] and BM25 [10]. Stop
words were removed and the remaining terms were stemmed using the Porter
algorithm [11]. The term frequencies in TF-IDF were normalized for document
length. BM25 differs from TF-IDF by having two tuning constants K1 and b. K1
changes the influence of term frequency and b changes the influence of document
length. The tuning parameters were set to the same values as used for TREC
[10], K1 = 2 and b = 0.75.

Links were represented as a vector of weighted link frequencies. This resulted
in a document to document link matrix. The row indicates the origin and the
column indicates the destination document of a link. Each row vector of the ma-
trix represents a document as a vector of link frequencies to other documents.
The motivation behind this representation is that documents with similar con-
tent will link to similar documents. For example, in the current Wikipedia both
car manufacturers BMW and Jaguar link to the Automotive Industry document.
The link frequencies were weighted in the same way as TF-IDF. Term frequencies
were simply replaced with link frequencies resulting in Link Frequency Inverse
Document Frequency (LF-IDF). Link frequencies were normalized by the total
number of links in a document.

All of the matrices were culled to reduce the dimensionality of the data. A
feature’s rank is calculated by summation of its associated column vector. Only
the top n features are left in the matrix and the rest are discarded. For TF-
IDF and BM25 the features are terms and for LF-IDF they are links to another
document. TF-IDF was culled to the top 2000 and 8000 features. BM25 and
LF-IDF were only culled to the top 8000 features.

3 Classification Task

The classification task was completed using a SVM and content and link informa-
tion. This approach allowed evaluation of the different document representations.
It allowed the most effective representation to be chosen for the clustering task.
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SVMs traditionally create a binary partition through training examples. In-
stead of splitting the data set into one versus all separation for each label,
SVMmulticlass [12] was used. This program is an instance of SVMstruct which
is a modified SVMlight to classify structured data. A mutliclass instance is the
simplest instantiation SVMstruct. More complex structured output such as trees
can be used as labels.

A SVM was trained with TF-IDF, BM25 and LF-IDF representations of the
corpus. BM25 and LF-IDF feature vectors were concatenated to train on both
content and link information simultaneously. Submissions were made only using
BM25, LF-IDF or both because BM25 out performed TF-IDF.

3.1 Classification Results

Table 1 lists the results for the classification task. They are sorted in order
of decreasing recall. The results for “Vries text only” differ from the official
results. The original submission was incorrect. The submission was corrected
and scored. Recall is simply the accuracy of predicting labels for documents
not in the training set. Concatenating the link and content representations did
not drastically improve performance. The difference between BM25 and BM25
concatenated with LF-IDF was 0.005 recall or 0.5%. However, LF-IDF performed
reasonably well by itself achieving a recall of 0.62. A reasonable explanation of
this outcome is that BM25 dominated the LF-IDF representation. Future work
should investigate means to correct this. Examples of this are normalization of
features before concatenation and re-weighting BM25 using link information.

Table 1. Classification Results Sorted by Recall

Name Recall

Expe 1 tf idf TA 0.79
Expe 5 tf idf T5 10000 0.79
Expe 3 tf idf T4 10000 0.79
Vries text and links 0.78
Vries text only 0.78
Boris inex tfidf sim 037 it3 0.74
Boris inex tfidf sim 034 it2 0.73
Boris inex tfidf1 sim 0.38.3 0.73
Expe 4 tf idf T5 100 0.72
Kaptein 2008NBscoresv02 0.7
Kaptein 2008run 0.7
Romero nave bayes 0.68
Expe 2.tf idf T4 100 0.68
Romero nave bayes links 0.68
Vries links only 0.62
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4 Document Cluster Quality

Measuring the quality of a clustering solution is difficult. This is particularly
true for documents where many high level concepts can be associated. In the
XML Mining track, clusters are compared to a known solution. Each document
has been assigned a label and therefore purity can be calculated. This makes
the evaluation practical, unlike a qualitative evaluation of clusters containing
100,000 documents.

The purity measure for the track is calculated by taking the most frequently
occurring label in each cluster. Micro purity is the mean purity weighted by
cluster size and macro is the mean. Taking the most frequently occurring label
in a cluster discards the rest of the information represented by the other labels.
Due to this fact negentropy was defined. It is the opposite of information entropy
[13]. If entropy is a measure of uncertainty associated with a random variable
then negentropy is a measure of certainty. Thus, the more labels of the same class
that occur together the better. When all labels are evenly distributed across all
clusters the lowest possible negentropy is achieved.

To define negentropy for a cluster we first need to define some variables. D

is the set of all documents in a cluster. X is the set of all possible labels. xi

is the ith label in X . n is the total number of labels in X . c is the number of
documents with label xi in D. t is the total number of documents in D. p(xi) is
the probability for label xi. H(D) is the negentropy for document cluster D. The
negentropy for a cluster falls in the range 0 ≤ H(D) ≤ 1 for any number of labels
in X . Figure 1 shows the difference between entropy and negentropy. While they
are exact opposites for a two class problem, this property does not hold for
more than two classes. Negentropy always falls between 0 and 1 because it is
normalized. Entropy is only bounded by the number of classes. As the number
of classes increases, the difference between the maximum values for negentropy
and entropy increase. Negentropy for an entire solution can be calculated in the
same manner as micro and macro purity. Macro negentropy is the mean of all
clusters and micro is the mean weighted by cluster size.

p(xi) =
c

t
(1)

H(D) = 1 +
1

log2 n

n∑

i=1
p(xi) !=0

p(xi) log2 p(xi) (2)

The difference between purity and negentropy can easily be demonstrated
with an artificial four class problem. There are six of each of the labels A, B,
C and D. For each cluster in Solution 1 purity and negentropy is 0.5. For each
cluster in Solution 2 the purity is 0.5 and the negentropy is 0.1038. Purity makes
no differentiation between the two solutions. If the goal of document clustering
is to group similar documents together then Solution 1 is clearly better because
each label occurs in two clusters instead of four. Additionally, the grouping of
labels is larger because they are split less.
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Fig. 1. Entropy Versus Negentropy
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Table 2. Solution 1

Cluster Label Counts

1 A=3, B=3
2 A=3, C=3
3 B=3, D=3
4 C=3, D=3

Table 3. Solution 2

Cluster Label Counts

1 A=3, B=1, C=1, D=1
2 B=3, C=1, D=1, A=1
3 C=3, D=1, A=1, B=1
4 D=3, A=1, B=1, C=1

Fig. 2. Solution 1

A B A C B D C D

Fig. 3. Solution 2

A B C D B C D A C D A B D A B C
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5 K-tree

The K-tree algorithm is a height balanced cluster tree. It can be downloaded from
http://sourceforge.net/projects/ktree. It is also referred to as a Tree Structured
Vector Quantizer (TSVQ). It is inspired by the B+-tree where all data records
are stored in the leaves at the lowest level in the tree and the internal nodes
form a nearest neighbour search tree. The k-means algorithm is used to perform
splits when nodes become full. The constraints placed on the tree are relaxed in
comparison to a B+-tree. This is due to the fact that vectors do not have a total
order like real numbers.

B+-tree of order m

1. All leaves are on the same level.
2. Internal nodes, except the root, contain between "m

2 # and m children.
3. Internal nodes with n children contain n − 1 keys, partitioning the children

into a search tree.
4. The root node contains between 2 and m children. If the root is also a leaf

then it can contain a minimum of 0.

K-tree of order m

1. All leaves are on the same level.
2. Internal nodes contain between 1 and m children. The root can be empty

when the tree contains no vectors.
3. Codebook vectors (cluster representatives) act as search keys.
4. Internal nodes with n children contain n keys, partitioning the children into

a nearest neighbour search tree.
5. The level immediately above the leaves form the codebook level containing

the codebook vectors.
6. Leaf nodes contain data vectors.

The leaf nodes of a K-tree contain real valued vectors. The search path in
the tree is determined by a nearest neighbour search. It follows the child node
associated with nearest vector. This follows the same recursive definition of a B+-
tree where each tree is made up of a smaller sub tree. The current implementation
of K-tree uses Euclidean distance for all measures of similarity. Future versions
will have the ability to specify any distance measure.

5.1 Building a K-tree

The K-tree is constructed dynamically as data vectors arrive. Initially the tree
contains a single empty root node at the leaf level. Vectors are inserted via a
nearest neighbour search, terminating at the leaf level. The root of an empty
tree is a leaf so the nearest neighbour search terminates immediately, placing
the vector in the root. When m+ 1 vectors arrive the root node can not contain
any more keys. It is split using k-means where k = 2 using all m + 1 vectors.
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The two centroids that result from k-means become the keys in a new parent.
New root and child nodes are constructed and each centroid is associated with a
child. The vectors associated with each centroid from k-means are placed into the
associated child. This process has created a new root for the tree. It is now two
levels deep. The root has two keys and two children, making a total of three nodes
in the tree. Now that the tree is two levels deep, the nearest neighbour search
finds the closest centroid in the root and inserts it in the associated child. When
a new vector is inserted the centroids are updated along the nearest neighbour
search path. They are weighted by the number of data vectors contained beneath
them. This process continues splitting leaves until the root node becomes full.
K-means is run on the root node containing centroids. The keys in the new root
node become centroids of centroids. As the tree grows internal and leaf nodes
are split in the same manner. The process can potentially propagate to a full
root node and cause construction of a new root. Figure 4 shows this construction
process for a K-tree of order three (m = 3).

Fig. 4. K-tree Construction

node vector child l ink k-means performed on enclosed vectors

the dashed parts represent the nearest neighbour search

level 1

level 2

level 3

root node

nodes above the leaves contain codebook vectors

leaf nodes contain the data vectors

nodes above the codebook level are clusters of clusters
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The time complexity of building a K-tree for n vectors is O(n log n). An
insertion of a single vector has the time complexity of O(log n). These properties
comes from the tree structure of the algorithm. This allows the algorithm to scale
efficiently with the number of input vectors. When a node is split, k-means is
always restricted to m +1 vectors and two centroids (k = 2). Figure 5 compares
k-means performance with K-tree where k for k-means is determined by the
number of codebook vectors. The order, m, for K-tree was 50. Each algorithm
was run on the 8000 dimension BM25 vectors from the XML mining track.

Fig. 5. K-tree Performance
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5.2 K-tree Submissions

K-tree was used to create clusters using the Wikipedia corpus. Documents were
represented as 8000 dimension BM25 weighted vectors. This representation was
used because it was most effective in the classification task. The K-tree was
constructed using the entire collection. Cluster membership was determined by
comparing each document to all centroids using cosine similarity. The track
required a submission with 15 clusters but K-tree does not produce a fixed
number of clusters. Therefore, the codebook vectors were clustered using k-
means++ where k = 15. As k-means++ uses a randomised seeding process, it
was run 20 times to find the solution with the lowest distortion. The k-means++
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algorithm [14] differs improves k-means by using the D2 weighting for seeding.
Two other submission were made representing different levels of a K-tree. A
tree of order 100 had 42 clusters in the first level and a tree of order 20 had
147 clusters in the second level. This made for a total of three submissions for
K-tree.

Negentropy was used to determine the optimal tree order. K-tree was built
using the documents in the 10% training set from the classification task. A tree
was constructed with an order of 800 and it was halved each time until the
smallest possible order was achieved. Each time negentropy was measured in
the clusters represented by the leaf nodes. As the order decreases the size of the
nodes shrinks and the purity increases. If all clusters became pure at a certain size
then decreasing the tree order further would not improve negentropy. However,
this was not the case and negentropy continued to increase as the tree order
decreased. This suggests that the representation chosen does not match perfectly
with the labels for documents. This can be seen in Fig. 6. The “left as is” line
represents the K-tree as it is built initially. The “rearranged” line represents the
K-tree when all the leaf nodes have been reinserted to their nearest neighbours
without modify the internal nodes.

Fig. 6. K-tree Negentropy
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Negentropy was calculated using the 10% training set labels provided on
clusters for the whole collection. This was used to determine which order of 10,
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20 or 35 fed into k-means++ with k = 15 was best. A tree of order 20 provided
the best negentropy.

6 Non-negative Matrix Factorization

NMF factorizes a matrix into two matrices where all the elements are ≥ 0. If V

is a n× m matrix and r is a positive integer where rmin(n, m), NMF finds two
non-negative matrices Wn×r and Hr×m such that V ≈ WH . When applying this
process to document clustering V is a term document matrix. Each column in
H represents a document and the largest value represents its cluster. Each row
in H is a cluster and each column is a document.

The projected gradient method was used to solve the NMF problem [15]. V

was a 8000× 114366 term document matrix of BM25 weighted terms. The algo-
rithm ran for a maximum of 70 iterations. It produced the W and H matrices.
Clusters membership was determined by the maximum value in the columns of
H . NMF was run with r at 15, 42 and 147 to match the submissions made with
K-tree.

7 Clustering Task

Every team submitted at least one solution with 15 clusters. This allows for a
direct comparison between different approaches. It only makes sense to compare
results where the number of clusters are the same. The K-tree performed well
according to the macro and micro purity measures in comparison to the rest of
the field. The difference in macro and micro purity for the K-tree submissions
can be explained by the uneven distribution of cluster sizes. Figure 8 shows that
many of the higher purity clusters are small. The same graphs are available for
all submissions with 15 clusters in the appendix in Fig. 9. Macro purity is simply
the average purity for all clusters. It does not take cluster size into account where
micro purity does by weighting each purity in the average by the cluster size.
Splitting the x-axis into three in Fig. 8 results in three categories of clusters.
There are very high purity clusters that are easy to find. In the middle there are
some smaller clusters that have varying purity. The larger, lower purity clusters
in the last third are hard to distinguish. Figure 7 shows clusters sorted by purity
and size. K-tree consistently found higher purity clusters than other submissions.
Even with many small high purity clusters, K-tree achieved a high micro purity
score.

The K-tree submissions were determined by the cosine similarity with the
centroids produced by K-tree. The tree has an internal ordering of cluster as
well. Future work will need to analyze the clusters that form in the tree.

8 Future Work

The work in this area falls into two categories, XML mining and K-tree. Further
work in the XML mining area involves better representation of structure. For
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Table 4. Clustering Results Sorted by Macro Purity

Name Size Macro Micro

K-tree 15 0.59 0.49
QUT LSK 1 15 0.56 0.45
NMF 15 0.54 0.47
QUT LSK 3 15 0.53 0.49
QUT LSK 2 15 0.52 0.44
QUT Entire collection 15 15 0.51 0.49
QUT LSK 4 15 0.49 0.45
Hagenbuchner 15 0.26 0.38

Table 5. Clustering Results Sorted by Micro Purity

Name Size Micro Macro

K-tree 15 0.49 0.59
QUT LSK 3 15 0.49 0.53
QUT Entire collection 15 15 0.49 0.51
NMF 15 0.47 0.54
QUT LSK 1 15 0.45 0.56
QUT LSK 4 15 0.45 0.49
QUT LSK 2 15 0.44 0.52
Hagenbuchner 15 0.38 0.26
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Fig. 7. All Submissions with 15 Clusters
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Fig. 8. K-tree Breakdown
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example, link information can be included into clustering via a modified similar-
ity measure for documents. Extra structure could be extracted from the content.
For example, all people appearing in the text could be mined and added as XML
markup. Future work with the K-tree algorithm will involve different splitting
strategies, dynamic restructuring of the tree and other methods to try improve
quality of clustering results by only a linear increase in complexity.

9 Conclusion

In this paper an approach to the XML mining track was presented, discussed
and analyzed. The K-tree algorithm was applied to document clustering for the
first time. The results show that it is well suited for the task.
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A Appendix: All Results

Table 6. Clustering Results

Name Size Micro Macro

K-tree 147 0.6 0.67
NMF 147 0.59 0.59
QUT Content from Freq struct 30 30 0.54 0.59
QUT Entire collection 30 30 0.54 0.58
NMF 42 0.54 0.57
QUT Content from Freq struct 30 using links 30 0.54 0.55
K-tree 42 0.53 0.6
QUT LSK 8 30 0.53 0.57
QUT LSK 6 30 0.53 0.57
QUT Content from Freq struct 15 using links 16 0.52 0.52
QUT LSK 7 30 0.5 0.53
QUT LSK 5 30 0.5 0.52
K-tree 15 0.49 0.59
QUT LSK 3 15 0.49 0.53
QUT Entire collection 15 15 0.49 0.51
QUT Content from Freq struct 15 16 0.48 0.49
NMF 15 0.47 0.54
Hagenbuchner 512 0.47 0.52
Hagenbuchner 512 0.46 0.54
QUT LSK 1 15 0.45 0.56
QUT LSK 4 15 0.45 0.49
QUT LSK 2 15 0.44 0.52
Hagenbuchner 15 0.38 0.26
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Fig. 9. Breakdown of Submissions with 15 Clusters
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Fig. 10. All Submissions with 42 Clusters
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Fig. 11. Breakdown of Submissions with 42 Clusters
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Fig. 12. All Submissions with 147 Clusters
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Fig. 13. Breakdown of Submissions with 147 Clusters
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Abstract. This paper1 reports our experiments carried out for the INEX
XML Mining track, consisting in developing categorization (or classifi-
cation) and clustering methods for XML documents. We represent XML
documents as vectors of index terms. For our first participation, the
purpose of our experiments is twofold: Firstly, our overall aim is to set
up a categorization text only approach that can be used as a baseline
for further work which will take into account the structure of the XML
documents. Secondly, our goal is to define two criteria based on terms
distribution for reducing the size of the index. Results of our baseline
are good and using our two criteria, we improve these results while we
slightly reduce the index term. The results are slightly worse when we
reduce sharply the index of terms.

1 Introduction

The INEX XML Mining Track is organized in order to identify and design ma-
chine learning algorithms suited for XML documents mining. Two tasks are
proposed: clustering and categorization. Clustering is an unsupervised process
through which all the documents must be classified into clusters. The problem
is to find meaningful clusters without any prior information. Categorization (or
classification) is a supervised task for which, given a set of categories, a train-
ing set of preclassified documents is provided. Using this training set, the task
consists in learning the classes descriptions in order to be able to classify a new
document in one of the categories.

This second task is considered in this article. Moreover, even if the content
information (the text of the documents), the structural information (the XML
structure of the documents) and the links between the documents can be used
for this task, we have exploited only the textual information. Indeed, this is our
first participation to this track and our aim was to design a framework that could
be used as a baseline for further works dealing with structured documents.

More precisely, we focus on the preprocessing step, particularly the feature
selection, which is an usual step of the knowledge discovery process. On textual

1 This work is supported by the project ”Web Intelligence”, Rhône-Alpes region, cf.
http://www.web-intelligence-rhone-alpes.org
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data, this step can be essential for improving the performance of the categoriza-
tion algorithm. It exists a lot of words in the natural language, including stop
words, synonymous, etc.. These words are not equally useful for categorization.
Moreover, their distribution must also be considered. For example, words that
appear in a single document are not useful for the categorization task.

So, we need to extract from the text a subset of terms that can be used to
efficiently represent the documents in view of their categorization. In this paper,
the documents are represented according to the vector space model (VSM). Our
aim is to adapt some VSM principles, for example the measure of the discrimina-
tory power of a term, to the categorization task. We propose two criteria based
on terms distribution aiming at extracting the indexing terms from the training
set corpora. After a brief presentation of the vector space model given to intro-
duce our notations in section 2, these criteria are defined in the following section.
Our categorization approach is described in section 3 while the experiments and
the obtained results are detailed in sections 4 and 5.

2 Document model for categorization

2.1 Vector space model (VSM)

Vector space model, introduced by Salton and al. [2], has been widely used for
representing text documents as vectors which contain term weights. Given a
collection D of documents, an index T = {t1, t2, ..., t|T |}, where |T | denotes the
cardinal of T , gives the list of terms (or features) encountered in the documents
of D. A document di of D is represented by a vector di = (wi,1, wi,2, ..., wi,|T |)
where wi,j represents the weight of the term tj in the document di. In order to
calculate this weight, formula TF.IDF can be used.

2.2 TF: term representativity

TF (Term Frequency), the relative frequency of term tj in a document di, is
defined by:

tfi,j =
ni,j∑
l ni,l

where ni,j is the number of occurrences of tj in document di normalized by the
number of occurrences of all terms in document di. The more frequent the term
tj in document di, the higher is the tfi,j .

2.3 IDF: discriminatory power of a term

IDF (Inverse Document Frequency) measures the discriminatory power of the
term tj . It is defined by:

idfj = log
|D|

|{di : tj ∈ di}|
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where |D| is the total number of documents in the corpus and |{di : tj ∈ di}|
is the number of documents in which the term tj occurs at least one time. The
less frequent the term tj in the collection of documents, the higher is the idfj .

The weight wi,j of a term tj in a document di is then obtained by combining
the two previous criteria:

wi,j = tfi,j × idfj

The more frequent the term tj is in document di and the less frequent it is
in the other documents, the higher is the weight wi,j .

3 Criteria for features selection

This VSM is widely used for text mining and information retrieval, as well for
free format document like scientific articles as for semi structured document
written in markup languages like HTML or XML.

But, in the context of categorization, even for limited collections, the dimen-
sionality of the index can be exceedingly large. For example, in INEX collection,
652’876 nontrivial words have been identified. This is a real problem for cat-
egorization since the terms belonging to this bag of words are not necessarily
discriminatory features of the categories. So, we introduced two criteria (CC
and CCE) in order to select a subset of T providing a description of the doc-
uments belonging to the same category. We consider that these terms must be
very frequent in the documents of the category and, on the contrary, that they
must be infrequent in the other categories.
Let dfk

j , the number of documents in the category Ck where term tj appears,
and fk

j , the frequency of documents belonging to Ck and including tj :

dfk
j = |{di ∈ Ck : tj ∈ di}|, k ∈ {1, ...r} (1)

fk
j =

dfk
j

|Ck|
(2)

The higher the number of documents of Ck containing tj , the higher is fk
j .

On the other hand, we consider that the number of documents where the
term tj appears in all the categories except Ck, can be an indicator of the
discriminatory power of tj for the category Ck. Thus, a first criteria, noted CC
(Category Coverage), is computed as follows:

CCk
j =

(fk
j )2

dfj

If the value of CCk
j is high, then tj is a characteristic feature of the category

Ck.

The frequency fk
j considers the number of documents containing tj but it

does not take into account the number of occurrences of tj in the category. It is
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the reason why we consider also pk
j the frequency of tj in the category Ck and a

measure commonly used in information theory, called entropy, which evaluates
the purity of the categories for the term tj . In the context of text categorization,
it measures the discriminatory power of tj . Let nk

j be the number of occurrences
of tj in the documents of Ck and pk

j the corresponding frequency:

nk
j =

∑

di∈Ck

ni,j pk
j =

nk
j∑

k=1,r nk
j

The Shannon entropy Ej of the term tj is given by [3]):

Ej = −
∑

k=1,r

(pk
j ) ∗ log2(pk

j )

The entropy is minimal, equal to 0, if the term tj appears only in one category.
We consider that this term might have a good discriminatory power for the cat-
egorization task. Conversely, the entropy is maximal if tj is not a good feature
for representing the documents i.e. if tj appears in all the categories with the
same frequency.

We propose a second criteria, denoted CCE (Category Coverage Entropy),
combining fk

j (from CC) and entropy. CCE is defined by:

CCEk
j = (alpha ∗ fk

j ) + (1− alpha) ∗ (1− Ej

MaxE
)

where alpha is a parameter and MaxE is the maximal value of E. When the
term tj is characteristic of the category Ck, the value of the criteria is high.

For each category, a subset of the terms of T corresponding to the highest
values of the criterion is build. Then, the index is defined as the union of these
subsets.

4 Experiments

4.1 Collection INEX XML Mining

The collection is composed of 114,336 XML documents of the Wikipedia XML
Corpus. This subset of Wikipedia represents 21 categories, each corresponding
to one subject or topic. Each document of the collection belongs to one category.
In the XML Mining Track, the training set is composed of 10% of the collection.

4.2 Preprocessing

The first step of the categorization approach that we propose, consists in a
preprocessing of the collection. It begins by the construction of the list all the
terms (or features) encountered in the documents of the collection. This index of
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652’876 terms is build using the LEMUR software2. The Porter Algorithm [1] has
also been applied in order to reduce different forms of a word to a common form.
This operation reduces the index to 560’209 terms. However, it still remains a
large number of irrelevant elements that could degrade the categorization, e.g.:
numbers (7277, -1224, 0d254c, etc.), terms with less than three characters, terms
that appear less than three times, or terms that appear in almost all the docu-
ments of the training set corpus. The index obtained at this stage is denoted I.
In our experiments, its size is reduced to 161’609 terms on all the documents of
the collection and to 77’697 on the training set.

4.3 Features selection

However, as explained in the previous section, the terms of I are not necessarily
appropriated for the categorization task inasmuch they are not discriminatory
for the categories. This is the reason why our criteria based on entropy and
on frequency are used to select more suited features. The terms were sorted
according to CC and CCE and only those corresponding to the highest values
are retained. In our experiments, the top 100 terms by class and the top 10’000
terms by class were considered for each criteria to build four index, denoted
respectively CC100 and CC10000 using CC and CCE100 and CCE10000 using
CCE. Table 1 indicates the size of these indexes.

Table 1. Indexes sizes

Index number of words
I 77697

CC100 1051
CC10000 75181
CCE100 909

CCE10000 77580

Using one of these indexes, the content of a document is then represented by
the tf.idf vector model described in the first section.

The second step is the categorization step itself. Two usual methods of clas-
sification are used: Support Vector Machines (SVM) and k-nearest neighbors.
Only the most promising results obtained with the SVM were submitted. SVM
was introduced by Vapnik for solving two class pattern recognition problems
using Structural Risk Minimization principal[4]. In our experiments, the SVM
algorithm available in the Liblinear library3 has been used. The results provided
by this approach are presented in the next section.

2 Lemur is available at the URL http://www.lemurproject.org
3 http://www.csie.ntu.edu.tw/ cjlin/liblinear/ - L2 loss suport vector machine primal
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5 Experimental results

This work has been done with a dual purpose: firstly develop a categorization
text approach usable as a baseline for further work on XML categorization taking
into account the structure, and secondly evaluate performances of this method
using our selection features approach.

5.1 Global results

We have submitted 5 experiments using our 5 indexes presented in table 1.
The global results of XML Mining 2008 are synthesized in table 2 (participant:
LaHC).

Rank Participant Run Recall Documents
1 LaHC submission.expe 5.tf idf T5 10000.txt 0.7876 102929
2 LaHC submission.expe 3.tf idf T4 10000.txt 0.7874 102929
3 LaHC submission.expe 1.tf idf TA.txt 0.7873 102929
4 Vries Vries classification text and links.txt 0.7849 102929
5 boris boris inex.tfidf.sim.037.it3.txt 0.7379 102929
6 boris boris inex.tfidf1.sim.0.38.3.txt 0.7347 102929
7 boris boris inex.tfidf.sim.034.it2.txt 0.7309 102929
8 LaHC submission.expe 4.tf idf T5 100.txt 0.7230 102929
9 kaptein kaptein 2008NBscoresv02.txt 0.6980 102929
10 kaptein kaptein 2008run.txt 0.6978 102929
11 romero romero naive bayes links.txt 0.6813 102929
12 LaHC submission.expe 2.tf idf T4 100.txt 0.6770 102929
13 romero romero naive bayes.txt 0.6767 102929
14 Vries Vries classification links only.txt 0.6232 102929
15 Vries Vries classification text only.txt 0.2444 92647

Table 2. Summary of all XML Mining results.

5.2 Baseline results

Our baseline corresponds to the first experiment (expe 1), which was ranked 3th
with a quite good recall: 0.7873.

5.3 Selection features improves results

When we select 10000 terms for each class using CCE (expe 3) and CC (expe 5)
criteria, we reduce the size of the index to respectively 77′580 and 75′181. This
reduction is small compared to the size of the baseline index (77′697). However,
it lets us to slightly improve our baseline to 0.7874 with CCE and 0.7876 with
CC. These three runs obtained the three best results of the XML Mining chal-
lenge.
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5.4 Selection features reduces indexes

The last two submitted runs correspond to the selection of the first 100 terms
for each class using CCE (expe 2) and CC (expe 4). As presented in table 1,
the size of the index is sharply reduced to 909 terms for CCE and 1′051 for
CC. This reduction respectively correspond to 85% and 74% of the size of the
baseline index. Even if the obtained results are lower than the results obtained
with larger indexes, they are still relatively good. Indeed, the obtained recall is
0.6770 with CCE and 0.7230 with CC.

6 Conclusion

We proposed a categorization text approach for XML documents that let us
obtain a good baseline for further work. For now we just used CC and CCE
criteria as a threshold to select terms in order to build the index. For future
work, we aim to exploit the computed value of CC and CCE to improve the
categorization. Moreover, we could use the structure information of XML doc-
uments represented by the links between document to improve even more the
results.
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Abstract. This paper reports on the experiments and results of a clus-
tering approach used in the INEX 2008 Document Mining Challenge. The
clustering approach utilizes both the structure and the content informa-
tion of the XML documents in the Wikipedia collection. The content of
the XML documents is measured using the latent semantic kernel (LSK).
A well-known problem with the construction of latent semantic kernel
is the use of singular vector decomposition (SVD) method on a large
feature space which is extremely expensive, in terms of computational
as well as of memory requirements. Therefore a dimensional reduction
method based on the common structural information of the XML doc-
uments is applied to reduce the dimension of the document space for
building the latent semantic kernel. After the kernel is constructed, the
proposed clustering approach uses the kernel to measure the similarity
between each pair of document contents in the dataset. The proposed
clustering approach has shown to be effective on the Wikipedia dataset.

Key words: XML document, clustering, content, structure, LSK, fea-
ture reduction

1 Introduction

Most electronic data on the web, nowadays, is presented in the format of semi-
structured data including XML and HTML. Semi-structured data does not need
to follow a specific structure and its data is nested and heterogeneous. As the
continuous growth of the semi-structured data on the web, the need is unavoid-
able to efficiently manage these data. Along the line, data mining technique
such as clustering has been widely used to group documents based on their
common features such as their content without prior knowledge [1]. XML docu-
ment clustering has become important in applications such as database indexing,
data-warehouse, data integration and document engineering.

A number of clustering approaches have been proposed based on measuring
the similarity according to content-only information [2, 3] and based on the struc-
tural similarity [4, 5]. An efficient XML document clustering method is yet to be
developed that takes the structural and content information within documents
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2 Tien Tran, Sangeetha Kutty, and Richi Nayak

into consideration. Previous approaches [6, 7] utilize techniques such as vector
space model [8] (VSM) to represent the content of the documents for clustering.
However, the vector space model using tf-idf weighting [8] is associated with a
number of limitations [9]. Firstly, it assigns weights to terms according to term
frequency and ignores the semantic association of terms. Secondly, it does not
perform well when both the structural and content features are used to infer the
similarity of the XML documents [6].

To address the problems above, this paper proposes to use the latent se-
mantic kernel (LSK) [10] to determine the similarity between the content of the
documents for clustering. A shortcoming of LSK is its incapability to perform
with large size datasets due to the requirement of large-size matrix computa-
tion. We propose using a dimensional document reduction method to reduce the
dimensionality of the document space for LSK construction. Firstly, the XML
dataset is grouped based on the document structural information. Using the
structural groupings, the dimensional document reduction method is applied to
reduce the document dimensional space of a term-document matrix for building
the semantic kernel. The kernel is later used to group the Wikipedia dataset
based on the content of XML documents.

This paper is structured as follows. The next section explains the clustering
approach which has been used for INEX 2008 Document Mining Challenge in
more detail. Section 3 evaluates the clustering approach with experiments and
data analysis. The paper is then concluded in section 4.

2 The Clustering Approach 

XML 
Documents 

Document 
Structure 

Clustering 

SCn 

SC2 

SC1 

Latent 
Semantic 

Kernel  

Document 
Content 

Clustering 

Dimensional 
Document 
Reduction 

Cn 

C2 

C1 

Fig. 1. Overview of the XML document clustering approach.

Fig. 1 outlines the overview of the XML document clustering approach which
has been used for INEX 2008 Document Mining Challenge. The XML docu-
ment dataset is first clustered based on the structural information present in the
documents. The output of the clustering process is the groupings of the XML
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Utilizing the Structure and Data Information for XML Document Clustering 3

documents according their common structural information. Documents within
each group are used to reduce the dimensionality of the term-document matrix
without having loss of terms using a dimensional document reduction method.
The latent semantic kernel is constructed from this reduced size term-document
matrix.

Given a collection of XML documents {d1, d2, ..., dn}, an original term-document
matrix, X , of m × n can be derived, where m stands for the number of unique
terms and n stands for the number of documents in the collection. It is very com-
putational expensive (and sometimes infeasible) to construct the LSK on this
matrix. Based on the dimensional document reduction method, a modified term-
document matrix, X1, of m×n1 can be derived, where m stands for the number
of unique terms and n1 stands for the modified number of documents. When ap-
plying Singular Value Decomposition(SV D) on X1, the matrix is decomposed
into 3 matrices (equation 1), where U and V have orthonormal columns of left
and right singular vectors respectively and S is a diagonal matrix of singular
values ordered in decreasing magnitude.

X1 = USV T . (1)

The SVD model can optimally approximate matrix X1 with a smaller sample
of matrices by selecting k largest singular values and setting the rest of the values
to zero. Matrix Uk of size m × k and matrix Vk of size n1 × k may be redefined
along with k × k singular value matrix Sk (equation 2). This can approximate
the matrix X1 in a k−dimensional document space.

X̂1m×n1
= UkSkV T

k . (2)

Matrix X̂1 is known to be the matrix of rank k, which is closest in the least
squares sense to X1 [11]. Since Uk is the matrix containing the weighting of
terms in a reduced dimensional space, it can be used as a kernel for learning the
semantic between concepts. The Uk matrix becomes the semantic kernel that is
used to group the Wikipedia dataset using the content of the documents.

Example. Let us take a collection D that contains 4 XML documents
{d1, d2, d3, d4}, as shown in fig. 2; element names in the documents are shown
as embraced within brackets, where 〈R〉 is the root element and 〈Ei〉 is the
internal element or leaf element. The content of a document is denoted by T .
Table 1 shows an example of term-document matrix X . Assume that these terms
are extracted after the standard text preprocessing of stopword removal and
stemming.

2.1 Structure Matching and Clustering

The first step in the clustering approach is to determine the structural common-
ality among the input XML documents. Given a collection of XML documents
{d1, d2, ..., dn}, denoted by D, a set of distinct paths {p1, p2, ..., py}, denoted by
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Table 1. Example of an X matrix.

d1 d2 d3 d4

t1 2 1 2 2
t2 2 2 2 0
t3 2 2 2 0
t4 2 2 1 4
t5 2 0 2 0
t6 1 0 0 0
t7 2 2 2 1
t8 0 1 0 1
t9 1 1 1 0
t10 0 1 0 0

d1 d2

〈R〉 〈R〉
〈E1〉 t1, t2, t3 〈E1〉 t1, t4
〈E2〉 t4, t3, t6 〈E2〉 t3, t3
〈E3〉 t5, t4, t7 〈E3〉 t4, t7

〈E3.1〉 t5, t2, t1 〈E3.1〉 t2, t9
〈E3.2〉 t7, t9 〈E3.1〉 t2, t7, t8, t10

d3 d4

〈R〉 〈R〉
〈E1〉 t1, t2 〈E1〉 t1, t4
〈E2〉 t3, t3 〈E3〉 t4, t7
〈E3〉 t5, t4, t7 〈E3〉 t4, t8

〈E3.1〉 t5, t2, t1 〈E1〉 t1, t4
〈E3.2〉 t7, t9

Fig. 2. An Example of a collection D that contains 4 XML documents
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P , are extracted from D.

Definition 1 (Paths). A path, pi, contains element names from the root ele-
ment to the leaf element. The leaf element is an element that contains the textual
content

Definition 2 (Structure). The structure of an XML document is a collection
of paths {p1, p2, ..., pf}.

Definition 3 (Structure Modeling). The structure of a document di is mod-
elled as a vector {pi,1, pi,2, ..., pi,y} which contains the occurrences of paths, the
distinct paths extracted from dataset D, in the document. The structure of all
documents in a collection is modelled as a path-document matrix, PDy×n, where
y is the number of paths in P and n is the number of documents in D.

Example. Revisiting the example collection D in fig. 2, an example of path-
document matrix, PD, is shown in table 2.

Table 2. Example of a PD matrix.

d1 d2 d3 d4

R/E1 1 1 1 2
R/E2 1 1 1 0
R/E3/E3.1 1 2 1 0
R/E3/E3.2 1 0 1 0
R/E3 1 1 1 2

A structural clustering solution, SC, is obtained by applying a k-partitioning
clustering method [12] on the PD matrix. The number of clusters for the doc-
ument structure is equalled to the number of clusters in the final clustering
solution.

2.2 Dimensional Document Reduction

As discussed earlier that applying SV D on a large matrix X is expensive, thus,
a dimensional document reduction method is used to reduce the dimension of
the document space in X . The dimensional document reduction method uses the
structural clustering solution, SC, obtained in the previous phase. Let the struc-
tural clustering solution be a collection of clusters SC = {SC1, SC2, ..., SCi},
where (1) SCi = {d1, d2, dj}, (2) clusters are disjoint, i.e., a dj can only exist
in one SCi and (3) #SCi > #SCi + 1, where #SCi stands for the number
of documents in cluster SCi, i.e., clusters in SC are sorted in ascending order
according to the number of documents that they contain. Clusters containing
the smaller number of documents are processed before the larger clusters to re-
duce the document dimensional space. For each SCi in SC, if the number of
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documents #SCi in the cluster SCi is equalled to user-defined number of doc-
uments selected for each cluster, Ψ , then all the documents in cluster SCi are
selected for matrix X ′ construction. For each SCi in SC, if #SCi < Ψ then all
the documents in the cluster SCi are selected for matrix X ′ construction and
Ψ is adjusted for the left over clusters so that the document dimensional space
of matrix X ′ is equalled to user defined document dimensional space, n′. For all
the clusters where #SCi > Ψ , document importance of each document in the
cluster is calculated. The document importance (DI) of a document in a cluster
is measured as:

DI(dj) =

∑l
i=1

wi(dj)√∑l
i=1

(wi(dj))2
. (3)

where l is the number of distinct terms extracted from dj and wi is the weight
of a term ti in dj calculated as:

w(ti)(dj) = tfi(dj) × idfi (4)

where tfi is the ratio of the number of occurrences of a term ti in document
dj to the number of occurrences of all terms in document dj ; and, idfi is obtained
by dividing the number of all documents in SCi by the number of documents
containing ti, and then taking the logarithm of that quotient. A high weight
is yielded by a high term frequency in a given document and a low document
frequency of the term in the collection in SCi.

Documents with higher DI value are selected for kernel construction. Con-
tent of the documents with lower DI values is merged into one document, thus,
the content of the merged document becomes d′ = (d1 ∪ d2 ∪ dyi−n−1). The
number of documents to be merged is equalled to the number of documents
#SCi in cluster SCi minus the number of documents Ψ to be selected from each
cluster lesser than 1. After performing dimensional document reduction on the
structural clustering solution SC, a matrix X ′ of m×n′ is generated. A kernel is
then constructed using matrix X ′. Since the kernel is for learning the semantic
association between the terms of the documents, reducing the document dimen-
sion but keeping the original term dimension intact allows the kernel to retain
the terms of the input dataset for better semantic association.

2.3 Content Extraction and Matching

The kernel constructed in the previous phase is now utilized in determining the
similarity between the content of each pair of documents. Given a collection of
XML documents D, a set of distinct terms {t1, t2, ..., tm}, denoted by T , are
extracted from D after the pre-processing of the Wikipedia document contents.
The pre-processing of the document contents involves the removal of unimpor-
tant terms and word stemming. The removal of unimportant terms includes stop
words which are terms considered not to be important such as ’the’, ’of’, ’and’,
etc. With extensive experiments, integers and terms with length lesser than 4
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Utilizing the Structure and Data Information for XML Document Clustering 7

are not important, thus, they are also removed from the term set.

Definition 4 (Terms). A term, ti, is a keyword that appears in the text content of
the leaf element in an XML document.

Definition 5 (Content Modelling). The content of a document is modelled as a
vector {t1, t2, ..., tm} where m has the same term dimensionality feature as the seman-
tic kernel P . The presence of a term in the document is denoted by the frequency of
the term in the document.

Definition 6 (Content Matching). Given two vectors, dx and dy, the semantic
similarity of the two document contents is measured as the cosine similarity using the

kernel P ,
dT

x PP T dy

|P T dx||P T dy|

2.4 Document Clustering

Using definition 6 described in the previous section, a pair-wise document similarity
matrix can be generated by computing the similarity between each pair of document
contents. However due to the large number of the Wikipedia dataset, the generation of
the pair-wise document similarity matrix was not possible with the given memory space.
Thus in this paper, we propose using only the first 1000 best document similarities
associated with each document for the grouping of the Wikipedia dataset. With a
number experiments and analysis, it has shown that using only the first 1000 best
document similarities associated with each document for the clustering of the Wikipedia
dataset improves the accuracy of the clustering solution as all the outlier similarities
are discarded from the similarity matrix. So, instead of having a pair-wise document
similarity matrix of 114366 by 114366 (the number of documents in the Wikipedia
dataset), we have a similarity matrix of 114366 by 1000. Using the similarity matrix of
114366 by 1000, a k-partitioning clustering method [12] is used to cluster the dataset.
The clustering method performs by first divides the input dataset, using the similarity
matrix of 114366 by 1000, into two groups, and then one of these two groups is chosen
to be bisected further. The process is repeated until the number of bisections in the
process equals the number of user-defined clusters.

3 Experiments and Discussion

The experiments were performed using the Wikipedia collection containing 114366
documents from INEX 2008 document mining challenge for the clustering task. After
the pre-processing of the document contents which involved the removal of unimportant
word and word stemming, 446294 terms were extracted from the Wikipedia collection
and used for the construction of the latent semantic kernel. The document dimensional
space was reduced down to 257 using the dimensional document reduction method
then only 200k was selected for the dimension of the kernel.

The required number of clusters on the Wikipedia collection was 15 clusters. Two
evaluation methods were used to evaluate the performance of the clustering solution in
the INEX 2008 challenge: Micro F1 and Macro F1 measures. There were 4 participants
in the clustering task including our approach. Many submissions were submitted by the
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participants, table 3 only shows the best result from each participant on 15 clusters.
Hagenbuchner et al. approach, assuming to be using the structure-only information for
the grouping of the dataset, has the worse clustering solution. Chris de Vries approach
slightly outperforms Kutty et al. and our approach but not that significantly. Overall
our clustering approach performed really well on the Macro F1 measure.

Table 3. Comparing Clustering Results on Wikipedia Dataset with 15 Clusters

Approaches Micro F1 Macro F1
Hagenbuchner et al. 0.26 0.38
Kutty et al. 0.48 0.51
Chris de Vries 0.49 0.59
Our Approach 0.45 0.56

If using the structure-only clustering solution, as shown in table 4, our result and
Hagenbuchner et al. result do not vary that much in accuracy. However the structure-
only clustering solutions are much lower than the content (or with structure) clustering
solutions in table 3. This emphasizes the importance of the content when grouping the
Wikipedia dataset.

Table 4. Comparing Structure Clustering Results on Wikipedia Dataset with 15 Clus-
ters

Approaches Micro F1 Macro F1
Hagenbuchner et al. 0.26 0.38
Our Approach 0.29 0.33

Based on a number of experiments and analysis, the following can be ascertained from
our clustering approach:

– Our approach performs efficiently well even though the semantic kernel is con-
structed using the dimensional document reduction method where the term se-
mantic associations of the document contents are not fully captured with a small
document dimensional space.

– The similarity matrix of 114366 by 1000 for the grouping of the Wikipedia dataset
produced a better clustering solution than using the pair-wise similarity matrix of
114366 by 1143366 since the outlier document similarities are discarded.

– Even though the structure-only solution produced a poor clustering solution, how-
ever it has been utilized in our approach for the dimensional document reduction
method and has improved the accuracy of the clustering solution with the use of
content.

4 Conclusion

In this paper, we have proposed using a clustering approach that utilizes both the
structural and the content information for XML document clustering. First the struc-
ture is used to group the XML documents, then, a semantic kernel is built. The kernel
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is then used to cluster the content of XML documents. The results obtained from the
experiments shows that the clustering approach performs effectively on the Wikipedia
dataset.
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Abstract. Data mining on Web documents is one of the most challenging tasks
in machine learning due to the size of the Web domain, the underlying (link)
structures, and due to the fact that the data is commonly not labeled (the meaning
of data is not known a-priori). This paper considers Self-Organizing Maps (SOM)
as an approach to such application domain. The SOM approach is applied to a
data mining tasks which was made available as part of a competition on mining
XML formatted Web documents from the Wikipedia domain.
The SOM is a popular unsupervised machine learning method which allows the
projection of high dimensional data onto a low dimensional display space. Rel-
ative recent works defined and studied models of Self-Organizing Maps for the
treatment of graphs. The most recent of such works, called GraphSOM, allowed
the encoding of undirected and cyclic graphs. Problems with stability and com-
putational demand are the main disadvantage of this approach. This paper applies
the GraphSOM model to a data mining exercise involving XML formatted Web
documents. This is made possible through an extension to the GraphSOM model
which substantially improves the stability of the model, and allows for a much ac-
celerated training. This extension is based on a soft encoding of the information
needed to represent the vertices of an input graph. Experimental results versus the
original GraphSOM model demonstrate the advantages of the proposed extension
in data mining applications which require the clustering of data.

1 Introduction

Self-Organizing Maps [1] are a well established machine learning method, and are pop-
ularly applied to tasks requiring the clustering of high dimensional vectorial data into
groups, or the projection of high dimensional data vectors onto lower dimension dis-
play space. The popularity of the SOM is mainly due to the following reasons: (1)
The computational complexity of the underlying algorithms is linear, and hence, SOMs
can be applied to data mining tasks, (2) high dimensional data can be projected onto
low-dimensional (e.g. 2-dimensional) space, and hence, data can be readily displayed
on paper, a display, etc, and (3) SOMs perform a topology preserving projection, and
hence, the topology of data in the data space is largely preserved on the display space.

This paper investigates the possibility of engaging SOM to data mining tasks in-
volving graph structured data. More specifically, this paper will give an overview of
extensions to the SOM algorithm which allow the processing of graphs. We also pro-
pose a modification to an existing method which improves stability and scalability of
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the model so as to be able to apply the SOM to a clustering task involving 114, 366
XML formatted Wikipedia documents from the Web. This dataset has been made avail-
able as part of a competition on XML mining and XML clustering [2]. It is represented
as a graph containing 114, 366 nodes (each document is represented as a node). The
topology of the graph is defined by the hyperlink structure between documents. Textual
content is available for each of the documents and can be used to label the nodes.

Most approaches to machine learning are capable of processing vectorial informa-
tion, it is observed that many real world problems are more naturally presented as
sequences or graphs. For example, in speech recognition, the data is generally made
available as a temporal sequence. Often, the meaning of a given sequence is not known,
and hence, unsupervised machine learning methods are needed to deal with this type of
data. Kohonen suggests an extension of the SOM to allow the clustering of phonemes
(sub-strings of audio signals) [1].

It can be stated that all but the most exotic learning problems are are more suit-
able represented by richer structures such as trees and graphs. To give an example,
data in molecular chemistry are more appropriately represented as a graph where the
nodes represent the atoms of a molecule, and the links between nodes represent atomic
bindings. The nodes and links in such graphs may be labelled. For example, to add a
description of the type of atom, or the strength of an atomic binding. Note that vectors,
and sequences are special cases of graphs, and hence, any model capable of processing
graphs can be expected to also be able to process vectors and sequences.

The traditional approach to the processing of graphs apply a pre-processing step
in order to represent a graph structure in vectorial form such that the data can then
be processed in a conventional way. However, such pre-processing may result in the
removal of important structural relations between the atomic entities of a graph. Hence,
it is advisable to design algorithms which can deal with graph structured data directly
without requiring pre-processing.

Relatively recent developments allowed the processing of graph structured data by
a SOM such that the projection can be made from a domain of graphs to a fixed-
dimensional display space [3–6]. The pioneering work presented in [3] introduced a
SOM for Structured Data (SOMSD) which allowed the processing of labeled directed
ordered acyclic graph (more commonly regarded to as labeled trees) structured data
by individually processing the atomic components of a graph structure (the nodes, the
labels, and the links). The basic idea is to present to a SOM an input vector which is
a representation of a node from a given graph, a numeric data label which may be at-
tached to the node, and information about the mappings of the offsping of the node.
A main difference to the traditional SOM is that the input vectors are dynamic (i.e.
can change during training). This is because the mapping of the node’s offsprings can
change when the codebook vectors of the SOM are updated, and hence, the input vector
to a corresponding node changes. In practice, it has been shown that such dynamics in
the input space do not impose a stability problem to the training algorithm [3].

When processing a node, the SOM-SD requires knowledge of the mapping of the
node’s offsprings. This imposes a strict causal processing order by starting from leaf
nodes (which feature no further offsprings), and ending at the root node (which has no
further parent nodes or incoming links). In other words, the SOM-SD cannot encode
cyclic graphs, and can not differentiate identical sub-graphs which occur in different
contextual setting.
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The shortcoming of the SOM-SD was addressed through the introduction of a Con-
textual SOMSD (CSOMSD) [5] which allows the inclusion of information about both,
parent and children of a given node, and hence, allows the encoding of contextual infor-
mation about nodes in a directed graph. A problem with [5] is that the improved ability
to discriminate between identical substructures can create a substantially increased de-
mand on mapping space, and hence, the computational demand can be prohibitive for
large scale learning problems. A second problem is that the method can not process
cyclic graphs as would be required for the given XML clustering task.

A subsequent expansion proposed in [6] allows the processing of cyclic or undi-
rected graphs. The method in [6] is called the GraphSOM and was shown to be com-
putationally more efficient than a CSOMSD in large scale learning problems. In this
paper we will show that the training times of a GraphSOM remain too large for learn-
ing tasks such as the given one due to stability issues of the approach which must be
countered using small learning rates. Hence, we improved the GraphSOM algorithm
so as to improve the stability of the approach and to allow much faster training of the
method.

This paper is structured as follows: Section 2 introduces to concepts of SOM train-
ing and its extensions to the graph domain. The experimental setting and experimental
findings are presented in Section 3. Conclusions are drawn in Section 4.

2 Self-Organizing Maps for graphs
In general, Self-Organizing Maps perform a topology preserving mapping of high di-
mensional data through a projection to a low dimensional display space. For simplicity,
this paper assumes the display space to be 2−dimensional. The display space is formed
by a set of prototype units which are arranged on a regular grid. There is one proto-
type unit associated with each element on the lattice. An input to a SOM is expected
to be k-dimensional vectors, the prototype units must be of the same dimension. The
elements of the prototype units are adjusted during training by (1) obtaining the proto-
type unit which matches a given input best, and (2) adjusting the elements of the winner
units and all its neighbors. The two steps are referred to as the “competitive step” and
“cooperative step” respectively. An algorithmic description can be given as follows:

Competitive step: One sample input vector u is randomly drawn from the input data
set and its similarity to the codebook vectors is computed. When using the Eu-
clidean distance measure, the winning neuron is obtained through:

r = arg min
i
‖(u−mi)T Λ‖, (1)

where mi refers to the i−th prototype unit, the superscript T denotes the transpose
of a vector, and Λ is a k × k dimensional diagonal matrix. For the standard SOM,
all diagonal elements of Λ are equal to 1.

Cooperative step: mr itself as well as its topological neighbours are moved closer to
the input vector in the input space. The magnitude of the attraction is governed by
the learning rate α and by a neighborhood function f(∆ir), where ∆ir is the topo-
logical distance between mr and mi. Here topological distance is used to described
the distance between the neurons topologically. It is common to use the Euclidean
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distance to measure the distance topologically. The updating algorithm is given by:

∆mi = α(t)f(∆ir)(mi − u), (2)

where α is the learning rate decreasing to 0 with time t, f(.) is a neighborhood
function which controls the amount by which the codebooks are updated. Most
commonly used neighborhood function is the Gaussian function:

f(∆ir) = exp
(
−‖li − lr‖2

2σ(t)2

)
, (3)

where the spread σ is called neighborhood radius which decreases with time t, lr
and li are the coordinates of the winning neuron and the i-th neuron in the lattice
respectively.

These two steps together constitute a single training step and they are repeated a
given number of iterations. The number of iterations must be fixed prior to the com-
mencement of the training process so that the rate of convergence in the neighborhood
function, and the learning rate, can be calculated accordingly.

Note that this training procedure does not utilize any ground truth (target) informa-
tion. In other words, the algorithm does not require the availability of targets for a given
set of training data. This renders the algorithm useful to applications for which target
information is not available. Note also that the computational complexity of this algo-
rithm scales linear with the size of the training set, and hence, explains the suitability
of the method to data mining tasks.

When processing graphs, an input vector x is formed for each node in a set of graphs
through concatenation of a numerical data label u which may be associated with the
node, and the state information about the node’s offsprings or neighbors. The literature
describes two possibilities of computing the state:
1. SOM-SD approach: The state of an offspring or neighbor can be the mapping of

the offspring or the neigbor [3, 5]. In this case, the input vector for the j-th node
is xj = (uj ,ych[j]), where uj is a numerical data vector associated with the j-th
node, ych[i] is the concatenated list of coordinates of the winning neuron of all the
children of the j-th node. Since the size of vector ych[i] depends on the number
of offsprings, and since the SOM training algorithm requires constant sized input
vectors, padding with a default value is used for nodes with less than the maximum
outdegree of any graph in the training set.

2. GraphSOM approach: The state of an offspring or neighbor can be the activation
of the SOM when mapping all the node’s neighbors or offsprings [6]. In this case,
the input vector is formed through xj = (uj ,Mne[j]), where uj is defined as
before, and, Mne[j] is a m-dimensional vector containing the activation of the map
M when presented with the neighbors of node j. An element Mi of the map is
zero if none of the neighbors are mapped at the i-th neuron location, otherwise it
is the number of neighbors that were mapped at that location. This latter approach
produced fixed sized input vectors which do not require padding. Note also that the
latter approach requires knowledge of the mappings of all of a node’s neighbors.
The availability of these mappings cannot be assured when dealing with undirected
or cyclic graphs. This is overcome in [6] by utilizing the mappings from a previous
time step. The approximation is valid since convergence is guaranteed. Hence, the
GraphSOM can process undirected or cyclic graphs.
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Fig. 1. A 2-dimensional map of size 5×2 (left), and an undirected graph (right). Each hexagon is
a neuron. ID, codebook, and coordinate value for each neuron is shown. For each node, the node
number, and coordinate of best matching codebook is shown.

It can be observed that the inclusion of state information in the input vector provides
a local view of the graph structure. The iterative nature of the training algorithm ensures
that local views are propagated through the nodes in a graph, and hence, structural
information about the graph is passed on to all reachable nodes.

It can be seen that the concatenation of data label and state produces hybrid input
vectors. The diagonal matrix Λ is used to control the influence of these two components
on the mapping. The diagonal elements λ11 · · · λpp are set to µ ∈ (0; 1), all remaining
diagonal elements are set to 1 − µ, where p = |u|. Thus, the constant µ influences the
contribution of the data label, and the state component to the Euclidean distance. Note
that if |u| = |x| and µ = 1 then the algorithm reduces to Kohonen’s basic SOM training
algorithm.

After training a SOM on a set of training data it becomes then possible to produce a
mapping for input data from the same problem domain but which may not necessarily
be contained in the training dataset. The level of ability of a trained SOM to properly
map unseen data (data which are not part of the training set) is commonly referred to
as the generalization performance. The generalization performance is one of the most
important performance measures. However, in this paper, rather than computing the
generalization performance of the SOM, we will evaluate the performance on the basis
of micro purity and macro purity. This is done in order to comply with guidelines set
out by the INEX-XML mining competition.

The GraphSOM provides a mechanism for processing the given XML mining tasks.
However, we discovered a stability problem with GraphSOM which we will describe
by using an example. Consider the example shown in Figure 1. This figure shows a
SOM of size 5 × 2, and an undirected graph containing 5 nodes. For simplicity, we
assume that no data label is associated with any node in the graph. When processing
node w = 3 with a GraphSOM, then the network input is the k-dimensional vector
x3 = (0, 0, 2, 0, 0, 1, 0, 0, 0, 0). This is because two of the neighbors of node 3 are
mapped at the coordinate (1, 3) which refers to the 2-nd neuron, and the third neighbour
of node 3 is mapped at (2, 1) which refers to the 5-th neuron. The algorithm proceeds
with the execution of Eq. 1 and Eq. 2. Due to the weight changes in Eq. 2 it is possible
that the mapping of neighbors w = 0, w = 1, and w = 4 change. Assume that there
is a minor change in the mapping of node w = 0, for example, to the nearby location
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(1, 4). However, the Euclidean distance measure in Eq. 1 does not make a distinction
as whether a mapping changed to a nearby location or to a far away location; the con-
tribution to the Euclidean distance remains the same. This defects the very purpose to
achieve topology preserving properties, and can cause alternating states to occur. To
counter this behaviour it is necessary to either reduce the learning rate to a very small
value (causing long training times due to an increased demand on the iterations), or to
use a large value for µ (causing a neglect of structural information).

To counter this problem, and to account for the fact that changes in the mapping of
nodes are most likely to a location near a previous winning location, this paper suggest
to soft code the mappings of neighbors. The GraphSOM hard codes the mappings of
nodes to be either 1 if there is a mapping at a given location, or 0 if there is no map-
ping at a given location. Instead, we propose to code the likelihood of a mapping in a
subsequent iteration with a probability value. We note that due to the effects of Eq. 2 it
is most likely that the mapping of a node will be unchanged at the next iteration. But
since all neurons are updated, and since neurons which are close to a winner neuron (as
measured by Euclidean distance) are updated more strongly (controlled by the Gaussian
function), and, hence, it is more likely that any change of a mapping will be to a nearby
location than to a far away location. These likelihoods are directly influenced by the
neighborhood function and its spread. Hence, we propose to incorporate the likelihood
of a mapping in subsequent iterations as follows:

Mi = e
− ‖li−lr‖2

2∗σ(t)2 · 1
σ(t) ∗

√
2 ∗ π

,

where σ(t) decreases with time t towards zero, all other quantities are as defined before.
The computation is accumulative for all of the node’s neighbors. Note that the term

1
σ(t)∗

√
2∗π normalizes the states such that

∑
i Mi ≈ 1.0. It can be observed that this

approach accounts for the fact that during the early stages of the training process it is
likely that mappings can change significantly, whereas towards the end of the training
process, as σ(t) → 0, the state vectors become more and more similar to the hard
coding method. It will be observed in Section 3 that this approach helps to improve
the stability of the GraphSOM significantly, which allows the setting of large learning
rates, and reduces the required training time significantly while providing an overall
improvement in the clustering performance. For ease of reference, we will refer to the
proposed approach as the probability mapping GraphSOM (PM-GraphSOM).

This approach produces state vector elements which are non-zero, as compared with
the GraphSOM where the state vector can be sparse; this creates the opportunity for an
optimization of the competitive step. Since the Euclidean distance is computed through
element-wise computations on two vectors, and since we are only interested in finding
the best matching codebook, hence, the computation of the Euclidean distance can be
interrupted as soon as the partial sum exceeds a previously found minimum distance.
This was found to be very effective in practice.

3 Experiments
The experiments were conducted on a set of XML formatted documents with the task
to cluster the data. The dataset consists of 114, 366 Web documents from the Wikipedia
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Table 1. Document Counts for different classes in training dataset

Class-ID 471 49 339 252 1530 1542 10049 380 897 4347 9430 1310 5266 323 1131
Size 2945 1474 915 866 789 696 679 639 637 592 405 294 264 128 114

domain, and contains hyperlink information. The dataset produces one graph consist-
ing of 114, 366 nodes, each of which representing one document. These nodes are con-
nected based on the hyperlinks between documents. There are a total of 636, 187 di-
rected links between the documents in the dataset. The maximum number of out links
(outdegree) from a document is 1527, and on average each document has 11 neighbor-
ing documents (either linked by or link to). We conducted two sets of experiments, one
is by using link structure only, another is by combining both link structure and some
document features.

10% of the documents are labeled to indicate the desired clustering result to be
one of 15 classes. The labels are exclusively used for testing purposes, and are not
used during training. The goal of the task is to associate each document with a cluster
so that all documents within the same cluster are labeled alike. A closer look at the
distribution of patterns amongst the pattern classes revealed that the dataset is heavily
unbalanced. This is shown in Table1. For example, the table shows that the class with ID
“471” is approximately 21 times the size of class with ID “1131”. Since we engage an
unsupervised machine learning scheme, we must not use class membership information
in the pre-processing phase (i.e. to balance the dataset). We expect that this unbalance
will affect the quality of the clustering by the GraphSOM and PMGraphSOM.

XML structure, and textual content was available for each of the documents. This
allowed us to add a numerical datalabel to each of the nodes in a graph to represent some
of the features of the corresponding document. We considered four types of document
features:
XML tags:

– For each document, we extract the XML tags only.
– Compute N to be the number of unique XML tags contained in the dataset.
– Initialize an N -dimensional tag vector for each document and each element in the

vector associates to a particular tag.
– For each document we update the tag vector by counting the occurrences of the tag

within the document and assign the value of counts to the corresponding element.
– We divided documents into 16 groups, the first 15 groups are corresponding to 15

given classes, and all unlabeled documents are covered into the last group. For each
unique tag, we count how many documents within each group contained it and build
a 16xN matrix. For each row (each tag), we also compute the standard deviation of
percentages among different groups.
In order to reduce the dimension, we filter some tags according to following rules:
1. Remove tags which are not contained in any labeled documents.
2. Remove tags which are not contained in any unlabeled documents.
3. Remove tags where the standard deviation is less than a threshold.

– Use PCA (Principal Component Analysis) [7] to reduce the dimension N to n by
using first n principal components.

– Attach n-dimension tag-vector as the labels to each node.

417



There are totally 626 unique tags in this dataset, 83 of them exist in the labeled set.
After filtering, there are 14 tags remaining in the tag vector. After the application of the
PCA, we used the first three principal components for the label vector.
Document text: By following the same steps for XML tag analysis, we extract text
contents of the documents and build text vector for each document. There are 567,304
unique words, and remaining 432,904 unique words after stemming. Since this dimen-
sion of text vector is too large to be analyzed by PCA software, we filter out some words
by following similar rules defined for reducing dimension of tag vector. After PCA, the
five most important principal components are included to the label vector.
Template names: Documents in the dataset are using different templates which are
defined as parameters of the tag < template >. We extract names of templates used by
the documents and conduct statistic analysis. The results show that template information
are associated with the document classes. Some documents within same class share
similar sets of templates. We keep first four dimension of template vector after PCA.
Others: Other than tags, there are some tag-related features such as outdegree and
depth of tag-tree. Besides links between documents, there are also unknown links be-
tween document and other web resources. In order to analyze the importance of these
features for clustering task, we conduct statistic analysis, the results show that there is
no obvious indication on the relationship between these features and document classes.

Thus, in the final label vector, we combine 5-dimensional text information, 4-dimen-
sional template information and 3-dimensional tag information (12 dimensions totally).
In some experiments we used template information only by using PCA to reduce the
vector to 10 dimensions.

The performance of the system will be measured in terms of Classification per-
formance, clustering performance, macro purity, and micro purity. Macro purity, and
micro purity are defines in the usual way. Classification and clustering performance are
computed as follows:
Classification: After training, we filter out the neurons which are activated at least by
one labeled document. For each neuron we find the largest number of documents with
same class label and associate this class label to this neuron. For all nodes in the graph
we re-compute the Euclidean distance only on these activated neurons. Re-map the
node to the winning neuron and assign the label of winning neuron to this node. For
each of the labeled documents, if its original attached label matches the new label given
by the network we count it as a positive result. Then we could measure the classification
performance by computing the percentage of the number of positive results out of the
number of all labeled documents.
Clustering: This measure is to evaluate pure clustering performance. For all nodes in
the graph, we compute the Euclidean distance on all neurons on the map and get the
coordinates of the winning neurons. Then we applied K-means on these coordinates to
perform clustering. By using different values for K, we could get different numbers of
clusters. Within each cluster, we find which class of documents are majority and as-
sociate the class label to this cluster. For all labeled documents, if its original attached
label matches the label of the cluster which contains this document we count it as a pos-
itive result. The cluster performance can be indicated by the percentage of the number
of positive results out of the number of all labeled documents.
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3.1 Results

The training of the PMGraphSOM allows the adjustment of a variety of training param-
eters such as the learning rate, network size, number of training iterations, the weight
µ, and neighborhood radius σ(0). The optimal value of these parameters are problem
dependent, and are not known a-priory. Hence, trial and error was used to identify a
suitable set of training parameters. The following presents the best result obtained at
due time for the INEX-2008 mining challenge.

A general observation was that the training of PM-GraphSOMs of a useful size
required anywhere between 13 hours and 27 hours whereas the training of a GraphSOM
of similar size and with similar parameters required about 40 days (approx. one iteration
per day). The time required to train the GraphSOM is unreasonable, and hence, training
was interrupted, and the experiments focused solely on PMGraphSOM.

Here we present the maps which performed best in clustering or classification. Fig-
ure 2 shows the mapping of documents in the training set of trained map which per-
formed best in classifying the data, whereas Figure 3 shows the mapping of nodes for a
map that performed best in clustering the same data. It can be seen, that the map shown
in Figure 2 utilizes the mapping space considerably better when compared to the map
shown in Figure 3. However, there are no clear clusters formed in Figure 2. In contrast,
the map shown in Figure 3 visibly produced clusters of data belonging to the same
pattern class.

To extract the clusters from a trained SOM, we applying K-means clustering to
the mapped data of a trained PMGraphSOM. By setting K to a constant value, we can
extract exactly K clusters from a SOM. The overall clustering and classification perfor-
mance of these two maps when setting K to be either 15 or 512 are shown in Table 4.
In table Table 4, the result named “hagenbuchner-01” refers to the SOM shown in Fig-
ure 2, whereas the results named “hagenbuchner-02” and “hagenbuchner-03” refer to
the SOM shown in Figure 3. All other results refer to competitor’s approaches. There is
no published material available about the competitor’s approaches at the time of writ-
ing, and hence, we are unable to compare our approach with the approach taken by
others. Nevertheless, it can be seen that the best of our models performs reasonably
well in comparison.

We found that the main reason which held us back from producing better results
were due to the unbalanced nature of the dataset. This is illustrated by Table 2 which
presents the confusion matrix of the training set produced by the SOM in Figure 2 (best
classification performance). The values on the diagonal are the number of documents
correctly classified. The total number of documents on the diagonal is 8902 and confu-
sion rate is 28%. In comparison, Table 3 shows the confusion matrix for the SOM shown
in Figure 3 (best clustering performance). Here are totally 7140 documents on the di-
agonal and the confusion rate is 60%. It can be seen that in both confusion matrices the
worst performing classes are the smallest classes, and hence, are a main contributor to
the observed overall performance levels. In the former experiment, we used 12 dimen-
sion labels which combined text, template name and tags information of the documents
while in the later we only attached 10 dimension labels of template information. The
result shows that the combined features can better differential documents under differ-
ent classes than using less feature. Since we can not use information about the class
labels, and hence, the best approach to counter the issue may be to increase the size of
the SOM. However, due to time requirements we omitted these experiments here.
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Fig. 2. Mapping of all labeled nodes on a PMGraphSOM performing best in classifying the nodes.

Table 2. Confusion Matrix generated by using parameters where: mapsize=160x120, itera-
tion=50, grouping=20x20, σ(0)=10, µ=0.95, α(0)=0.9, label: text=5, template=4, tag=3

9430 4347 1542 897 10049 49 252 323 471 1530 339 5266 380 1131 1310 %
253 5 5 20 20 34 12 1 15 8 8 5 13 0 6 62.4691

0 400 3 31 28 68 2 0 0 17 9 9 25 0 0 67.5676
0 16 408 38 32 73 23 0 19 15 25 8 30 1 8 58.6207
0 1 3 554 30 22 6 0 3 3 3 0 10 1 1 86.9702
0 0 1 5 623 26 4 0 2 5 8 0 5 0 0 91.7526
1 5 7 80 51 1275 5 0 5 10 15 0 17 0 3 86.4993
1 20 1 47 32 57 622 0 6 34 6 8 32 0 0 71.8245
0 5 2 7 13 11 9 61 5 1 5 4 5 0 0 47.6563
4 19 8 31 38 73 20 0 2629 33 34 12 36 0 8 89.2700
0 0 1 38 30 59 5 0 1 610 6 10 27 0 2 77.3131
0 17 4 46 36 98 35 0 3 30 570 14 50 1 11 62.2951
0 0 2 17 14 30 2 0 1 1 5 175 16 0 1 66.2879
0 3 1 29 26 65 6 0 4 5 10 1 487 0 2 76.2128
2 3 6 10 6 16 7 0 4 4 6 0 5 45 0 39.4737
0 4 0 22 17 33 4 0 0 8 4 0 12 0 190 64.6259

4 Conclusions
This paper presented an unsupervised machine learning approach to the clustering of a
relatively large scale data mining tasks requiring the clustering of structured Web doc-
uments from the Wikipedia domain. It was shown that this can be achieved through
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Fig. 3. Mapping of all labeled nodes on a PMGraphSOM performing best in clustering the nodes.

Table 3. Confusion Matrix generated by using parameters where: mapsize=120x100, itera-
tion=50, grouping=10x10, σ(0)=10, µ=0.99994737, α(0)=0.9, label: template=10.

9430 4347 1542 897 10049 49 252 323 471 1530 339 5266 380 1131 1310 %
144 29 20 15 11 87 18 1 50 7 9 0 8 0 6 35.5556

1 312 37 25 26 124 12 0 13 13 17 0 7 0 5 52.7027
3 29 381 25 25 157 13 0 19 6 19 0 10 1 8 54.7414
0 9 7 245 39 266 21 0 13 5 13 2 10 2 5 38.4615
0 5 3 11 396 168 29 0 10 7 24 0 23 0 3 58.3211
1 9 11 35 66 1177 37 1 28 26 42 2 30 0 9 79.8507
0 11 10 25 38 211 445 1 9 63 20 1 26 0 6 51.3857
1 1 1 5 18 63 0 11 4 3 13 1 7 0 0 8.5938
8 18 13 33 27 225 24 1 2522 19 23 2 16 0 14 85.6367
0 5 7 26 12 206 25 0 13 475 10 0 8 0 2 60.2028
3 22 10 35 48 228 40 1 16 10 448 1 32 0 21 48.9617
0 3 3 14 18 129 17 0 2 0 6 60 12 0 0 22.7273
0 2 3 22 36 171 8 0 10 2 10 1 373 0 1 58.3725
0 3 2 12 8 44 2 0 1 1 4 0 3 34 0 29.8246
1 14 13 11 14 84 8 0 9 1 11 1 10 0 117 39.7960

a suitable extension of an existing machine learning method based on the GraphSOM
model. Experimental results produced a reasonably satisfying performance of of the ap-
proach, and revealed that the unbalanced nature of the training set are the main inhibitve
factors to this task. A challenge has also been the encoding of textual information em-
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Table 4. Results of the clustering task.

Clusters MacroF1 MicroF1 Classification Clustering
hagenbuchner-01 15 0.2586290 0.377381 77.8351 40.1
hagenbuchner-02 512 0.5369338 0.464696 50.52024 47.6
hagenbuchner-03 512 0.5154928 0.470362 50.52024 48.8
QUT Freq struct 30+links 30 0.551382 0.5440555 ? ?
QUT collection 15 15 0.5051346 0.4879729 ? ?
QUT Freq struct 30 30 0.5854711 0.5388792 ? ?
QUT LSK 7 30 0.5291029 0.5025662 ? ?
QUT LSK 3 15 0.5307000 0.4927645 ? ?
QUT LSK 1 15 0.5593612 0.4517649 ? ?
QUT LSK 2 15 0.5201315 0.4441753 ? ?
QUT LSK 8 30 0.5747859 0.5299867 ? ?
QUT LSK 6 30 0.5690985 0.5261482 ? ?
QUT LSK 4 15 0.4947789 0.4476466 ? ?
QUT LSK 5 30 0.5158845 0.5008087 ? ?
QUT Freq struct 15 15 0.4938312 0.4833562 ? ?
QUT collection 30 30 0.5766933 0.5369905 ? ?
QUT Freq struct 15+links 15 0.5158641 0.515699 ? ?

bedded within the Wikipedia documents. This was resolved by using a Bag-of-Words
approach in combination with Principal Component Analysis to extract and compress
such type of information. Work on the proposed approach is ongoing with investigations
into the effects of network size, and feature extraction on the clustering performance.
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