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Preface

Welcome to the 8th workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX)!

Now, in its eighth year, INEX is an established evaluation forum for XML
information retrieval (IR), with over 100 organizations worldwide registered and
over 50 groups participating actively in at least one of the tracks. INEX aims to
provide an infrastructure, in the form of a large structured test collection and
appropriate scoring methods, for the evaluation of focused retrieval systems.

XML IR plays an increasingly important role in many information access
systems (e.g. digital libraries, web, intranet) where content is more and more a
mixture of text, multimedia, and metadata, formatted according to the adopted
W3C standard for information repositories, the so-called eXtensible Markup
Language (XML). The ultimate goal of such systems is to provide the right
content to their end-users. However, while many of today’s information access
systems still treat documents as single large (text) blocks, XML offers the oppor-
tunity to exploit the internal structure of documents in order to allow for more
precise access, thus providing more specific answers to user requests. Providing
effective access to XML-based content is therefore a key issue for the success of
these systems.

INEX 2009 was an exciting year for INEX in which a new collection was
introduced that is again based on a the Wikipedia but is over 4 times larger, with
longer articles and additional semantic annotations. In total eight research tracks
were included, which studied different aspects of focused information access:

Ad hoc Track The main track of INEX 2009 is investigating the effectiveness
of XML-IR and Passage Retrieval for four ad hoc retrieval tasks (Thorough,
Focused, Relevant in Context, Best in Context).

Book Track Investigating information access to, and IR techniques for search-
ing full texts of digitized books.

Efficiency Track Investigating both the effectiveness and efficiency of XML
ranked retrieval approaches on real data and real queries.

Entity Ranking Track Investigating entity retrieval rather than text retrieval:
1) Entity Ranking, 2) Entity List Completion.

Interactive Track Investigating the behavior of users when interacting with
XML documents, as well as develop retrieval approaches which are effective
in user-based environments.

Question Answering Track Investigating technology for accessing structured
documents that can be used to address real-world focused information needs
formulated as natural language questions.

Link the Wiki Track Investigating link discovery between Wikipedia docu-
ments, both at the file level and at the element level.

XML Mining Track Investigating structured document mining, especially the
classification and clustering of structured documents.



IV

The aim of the INEX 2009 workshop is to bring together researchers in
the field of XML IR who participated in the INEX 2009 campaign. During the
past year participating organizations contributed to the building of a large-scale
XML test collection by creating topics, performing retrieval runs and providing
relevance assessments. The workshop concludes the results of this large-scale
effort, summarizes and addresses encountered issues and devises a work plan for
the future evaluation of XML retrieval systems.

All INEX tracks start from having available suitable text collections. We
gratefully acknowledge the data made available by: Amazon (Interactive Track),
New Zealand Ministry for Culture and Heritage (Te Ara, Link-the-Wiki Track),
Microsoft (Book Track), Wikipedia, and to Ralf Schenkel of the Max-Planck
Institute for the conversion of the Wikipedia.

INEX has outgrown its previous home at Schloss Dagstuhl and is held in Bris-
bane, Australia. Thanks to Richi Nayak and the QUT team for preserving the
unique atmosphere of INEX—a setting where informal interaction and discus-
sion occurs naturally and frequently—in the unique location of the Woodlands
of Marburg. Thanks to HCSNet, the Australian Research Council’s Research
Network in Human Communication Science, for sponsoring the invited talks. Fi-
nally, INEX is run for, but especially by, the participants. It is a result of tracks
and tasks suggested by participants, topics created by particants, systems built
by participants, and relevance judgments provided by participants. So the main
thank you goes each of these individuals!

December 2009 Shlomo Geva
Jaap Kamps

Andrew Trotman
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Is There Something Quantum-like about the
Human Mental Lexicon?

Peter Bruza

Faculty of Science and Technology
Queensland University of Technology, Australia

p.bruza@qut.edu.au

Abstract. This talk proceeds from the premise that IR should engage in
a more substantial dialogue with cognitive science. After all, how users
decide relevance, or how they chose terms to modify a query are pro-
cesses rooted in human cognition. Recently, there has been a growing
literature applying quantum theory (QT) to model cognitive phenom-
ena ranging from human memory to decision making. Two aspects will
be highlighted. The first will show how concept combinations can be
modelled in a way analogous to quantum entangled twin-state photons.
Details will be presented of cognitive experiments to test for the presence
of “entanglement” in cognition via an analysis of bi-ambiguous concept
combinations. The second aspect of the talk will show how quantum
inference effects currently being used to fit models of human decision
making may be applied to model interference between different dimen-
sions of relevance.
The underlying theme behind this talk is QT can potentially provide
the theoretical basis of new genre of information processing models more
aligned with human cognition.

Acknowledgments This research is supported in part by the Australian Re-
search Council Discovery grant DP0773341.
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Supporting for Real-World Tasks:
Producing Summaries of Scientific Articles

Tailored to the Citation Context

Cécile Paris

Information and Communication Technology (ICT) Centre
CSIRO, Australia

Cecile.Paris@csiro.au

Abstract. The amount of scientific material available electronically is
forever increasing. This makes reading the published literature, whether
to stay up-to-date on a topic or to get up to speed on a new topic, a di
cult task. Yet, this is an activity in which all researchers must be engaged
on a regular basis. Based on a user requirements analysis, we developed a
new research tool, called the Citation-Sensitive In-Browser Summariser
(CSIBS), which supports researchers in this browsing task. CSIBS en-
ables readers to obtain information about a citation at the point at which
they encounter it. This information is aimed at enabling the reader to
determine whether or not to invest the time in exploring the cited article
further, thus alleviating information overload. CSIBS builds a summary
of the cited document, bringing together meta-data about the document
and a citation-sensitive preview that exploits the citation context to re-
trieve the sentences from the cited document that are relevant at this
point. In this talk, I will briefly present our user requirements analysis,
then describe the system and, finally, discuss the observations from an
initial pilot study. We found that CSIBS facilitates the relevancy judg-
ment task, by increasing the users’ self-reported confidence in making
such judgements.
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Semantic Document Processing using Wikipedia
as a Knowledge Base

Ian H. Witten

Department of Computer Science
University of Waikato, New Zealand

ihw@cs.waikato.ac.nz

Abstract. Wikipedia is a goldmine of information; not just for its many
readers, but also for the growing community of researchers who recog-
nize it as a resource of exceptional scale and utility. It represents a vast
investment of manual effort and judgment: a huge, constantly evolving
tapestry of concepts and relations that is being applied to a host of tasks.
This talk will introduce the process of ”wikification”; that is, automat-
ically and judiciously augmenting a plain-text document with pertinent
hyperlinks to Wikipedia articles – as though the document were itself
a Wikipedia article. This amounts to a new semantic representation of
text in terms of the salient concepts it mentions, where ”concept” is
equated to ”Wikipedia article.” Wikification is a useful process in itself,
adding value to plain text documents. More importantly, it supports new
methods of document processing.
I first describe how Wikipedia can be used to determine semantic related-
ness, and then introduce a new, high-performance method of wikification
that exploits Wikipedia’s 60 M internal hyperlinks for relational informa-
tion and their anchor texts as lexical information, using simple machine
learning. I go on to discuss applications to knowledge-based information
retrieval, topic indexing, document tagging, and document clustering.
Some of these perform at human levels. For example, on CiteULike data,
automatically extracted tags are competitive with tag sets assigned by
the best human taggers, according to a measure of consistency with other
human taggers.
Although this work is based on English it involves no syntactic pars-
ing, and the techniques are largely language independent. The talk will
include live demos.
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Overview of the INEX 2009 Ad Hoc Track

Shlomo Geva1, Jaap Kamps2, Miro Lethonen3,
Ralf Schenkel4, James A. Thom5, and Andrew Trotman6

1 Queensland University of Technology, Brisbane, Australia
s.geva@qut.edu.au

2 University of Amsterdam, Amsterdam, The Netherlands
kamps@uva.nl

3 University of Helsinki, Helsinki, Finland
miro.lehtonen@helsinki.fi

4 Max-Planck-Institut für Informatik, Saarbrücken, Germany
schenkel@mpi-sb.mpg.de

5 RMIT University, Melbourne, Australia
james.thom@rmit.edu.au

6 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

Abstract. This paper gives an overview of the INEX 2009 Ad Hoc
Track. The main goals of the Ad Hoc Track were three-fold. The first
goal was to investigate the impact of the collection scale and markup,
by using a new collection that is again based on a the Wikipedia but is
over 4 times larger, with longer articles and additional semantic anno-
tations. For this reason the Ad Hoc track tasks stayed unchanged, and
the Thorough Task of INEX 2002–2006 returns. The second goal was to
study the impact of more verbose queries on retrieval effectiveness, by
using the available markup as structural constraints—now using both
the Wikipedia’s layout-based markup, as well as the enriched semantic
markup—and by the use of phrases. The third goal was to compare dif-
ferent result granularities by allowing systems to retrieve XML elements,
ranges of XML elements, or arbitrary passages of text. This investigates
the value of the internal document structure (as provided by the XML
mark-up) for retrieving relevant information. The INEX 2009 Ad Hoc
Track featured four tasks: For the Thorough Task a ranked-list of re-
sults (elements or passages) by estimated relevance was needed. For the
Focused Task a ranked-list of non-overlapping results (elements or pas-
sages) was needed. For the Relevant in Context Task non-overlapping
results (elements or passages) were returned grouped by the article from
which they came. For the Best in Context Task a single starting point
(element start tag or passage start) for each article was needed. We dis-
cuss the setup of the track, the results for the four tasks, and examine
the relative effectiveness of element and passage retrieval. This is exam-
ined in the context of content only (CO, or Keyword) search as well as
content and structure (CAS, or structured) search. In addition, we look
at the effectiveness of systems using a reference run with a solid article
ranking, and of systems using the phrase query. Finally, we look at the
ability of focused retrieval techniques to rank articles.
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1 Introduction

This paper gives an overview of the INEX 2009 Ad Hoc Track. There are three
main research questions underlying the Ad Hoc Track. The first main research
question is the impact of the new collection—four times the size, with longer
articles, and additional semantic markup—on focused retrieval. That is, what is
the impact of collection size? What is the impact of document length, and hence
the complexity of the XML structure in the DOM tree? The second main research
question is the impact of more verbose queries—using either the XML structure,
or using multi-word phrases. That is, what is the impact of semantic annotation
on both the submitted queries, and their retrieval effectiveness? What is the
impact of explicitly annotated multi-word phrases? The third main research
question is that of the value of the internal document structure (mark-up) for
retrieving relevant information. That is, does the document structure help to
identify where the relevant information is within a document?

To study the value of the document structure through direct comparison of
element and passage retrieval approaches, the retrieval results were liberalized
to arbitrary passages. Every XML element is, of course, also a passage of text.
At INEX 2008, a simple passage retrieval format was introduced using file-offset-
length (FOL) triplets, that allow for standard passage retrieval systems to work
on content-only versions of the collection. That is, the offset and length are
calculated over the text of the article, ignoring all mark-up. The evaluation
measures are based directly on the highlighted passages, or arbitrary best-entry
points, as identified by the assessors. As a result it is possible to fairly compare
systems retrieving elements, ranges of elements, or arbitrary passages. These
changes address earlier requests to liberalize the retrieval format to ranges of
elements [1] and to arbitrary passages of text [11].

The INEX 2009 Ad Hoc Track featured four tasks:

1. For the Thorough Task a ranked-list of results (elements or passages) by
estimated relevance must be returned. It is evaluated by mean average in-
terpolated precision relative to the highlighted (or believed relevant) text
retrieved.

2. For the Focused Task a ranked-list of non-overlapping results (elements or
passages) must be returned. It is evaluated at early precision relative to the
highlighted (or believed relevant) text retrieved.

3. For the Relevant in Context Task non-overlapping results (elements or pas-
sages) must be returned, these are grouped by document. It is evaluated by
mean average generalized precision where the generalized score per article is
based on the retrieved highlighted text.

4. For the Best in Context Task a single starting point (element’s starting tag
or passage offset) per article must be returned. It is also evaluated by mean
average generalized precision but with the generalized score (per article)
based on the distance to the assessor’s best-entry point.

We discuss the results for the four tasks, giving results for the top 10 participating
groups and discussing their best scoring approaches in detail. We also examine
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the relative effectiveness of element and passage runs, and with content only
(CO) queries and content and structure (CAS) queries.

The rest of the paper is organized as follows. First, Section 2 describes the
INEX 2009 ad hoc retrieval tasks and measures. Section 3 details the collec-
tion, topics, and assessments of the INEX 2009 Ad Hoc Track. In Section 4, we
report the results for the Thorough Task (Section 4.2); the Focused Task (Sec-
tion 4.3); the Relevant in Context Task (Section 4.4); and the Best in Context
Task (Section 4.5). Section 5 details particular types of runs (such as element
versus passage, using phrases or using the reference run), and on particular sub-
sets of the topics (such as topics with a non-trivial CAS query). Section 6 looks
at the article retrieval aspects of the submissions, treating any article with high-
lighted text as relevant. Finally, in Section 7, we discuss our findings and draw
some conclusions.

2 Ad Hoc Retrieval Track

In this section, we briefly summarize the ad hoc retrieval tasks and the sub-
mission format (especially how elements and passages are identified). We also
summarize the measures used for evaluation.

2.1 Tasks

Thorough Task The core system’s task underlying most XML retrieval strate-
gies is the ability to estimate the relevance of potentially retrievable elements
or passages in the collection. Hence, the Thorough Task simply asks systems to
return elements or passages ranked by their relevance to the topic of request.
Since the retrieved results are meant for further processing (either by a dedi-
cated interface, or by other tools) there are no display-related assumptions nor
user-related assumptions underlying the task.

Focused Task The scenario underlying the Focused Task is the return, to the
user, of a ranked list of elements or passages for their topic of request. The
Focused Task requires systems to find the most focused results that satisfy an
information need, without returning “overlapping” elements (shorter is preferred
in the case of equally relevant elements). Since ancestors elements and longer
passages are always relevant (to a greater or lesser extent) it is a challenge to
chose the correct granularity.

The task has a number of assumptions:

Display the results are presented to the user as a ranked-list of results.
Users view the results top-down, one-by-one.

18



Relevant in Context Task The scenario underlying the Relevant in Context
Task is the return of a ranked list of articles and within those articles the rel-
evant information (captured by a set of non-overlapping elements or passages).
A relevant article will likely contain relevant information that could be spread
across different elements. The task requires systems to find a set of results that
corresponds well to all relevant information in each relevant article. The task
has a number of assumptions:

Display results will be grouped per article, in their original document order,
access will be provided through further navigational means, such as a docu-
ment heat-map or table of contents.

Users consider the article to be the most natural retrieval unit, and prefer an
overview of relevance within this context.

Best in Context Task The scenario underlying the Best in Context Task is the
return of a ranked list of articles and the identification of a best-entry-point from
which a user should start reading each article in order to satisfy the information
need. Even an article completely devoted to the topic of request will only have
one best starting point from which to read (even if that is the beginning of the
article). The task has a number of assumptions:

Display a single result per article.
Users consider articles to be natural unit of retrieval, but prefer to be guided

to the best point from which to start reading the most relevant content.

2.2 Submission Format

Since XML retrieval approaches may return arbitrary results from within docu-
ments, a way to identify these nodes is needed. At INEX 2009, we allowed the
submission of three types of results: XML elements, file-offset-length (FOL) text
passages, and ranges of XML elements. The submission format for all tasks is a
variant of the familiar TREC format extended with two additional fields.

topic Q0 file rank rsv run id column 7 column 8

Here:

– The first column is the topic number.
– The second column (the query number within that topic) is currently unused

and should always be Q0.
– The third column is the file name (without .xml) from which a result is

retrieved, which is identical to the ¡id¿ of the Wikipedia
– The fourth column is the rank the document is retrieved.
– The fifth column shows the retrieval status value (RSV) or score that gen-

erated the ranking.
– The sixth column is called the ”run tag” identifying the group and for the

method used.

19



Element Results XML element results are identified by means of a file name
and an element (node) path specification. File names in the Wikipedia collection
are unique, and (with the .xml extension removed) identical to the 〈id〉 of the
Wikipedia document. That is, file 9996.xml contains the article as the target
document from the Wikipedia collection with 〈id〉 9996.

Element paths are given in XPath, but only fully specified paths are allowed.
The next example identifies the first “article” element, then within that, the
first “body” element, then the first “section” element, and finally within that
the first “p” element.

/article[1]/body[1]/section[1]/p[1]

Importantly, XPath counts elements from 1 and counts element types. For ex-
ample if a section had a title and two paragraphs then their paths would be:
title[1], p[1] and p[2].

A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3 and the element path in column 7.
Column 8 will not be used. Example:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1]

1 Q0 9996 2 0.9998 I09UniXRun1 /article[1]/bdy[1]/sec[2]

1 Q0 9996 3 0.9997 I09UniXRun1 /article[1]/bdy[1]/sec[3]/p[1]

Here the results are from 9996 and select the first section, the second section,
and the first paragraph of the third section.

FOL passages Passage results can be given in File-Offset-Length (FOL) for-
mat, where offset and length are calculated in characters with respect to the
textual content (ignoring all tags) of the XML file. A special text-only version of
the collection is provided to facilitate the use of passage retrieval systems. File
offsets start counting a 0 (zero).

A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3 and an offset in column 7 and a length
in column 8. The following example is effectively equivalent to the example ele-
ment result above:

1 Q0 9996 1 0.9999 I09UniXRun1 465 3426

1 Q0 9996 2 0.9998 I09UniXRun1 3892 960

1 Q0 9996 3 0.9997 I09UniXRun1 4865 496

The results are from article 9996, and the first section starts at the 466th char-
acter (so 465 characters beyond the first character which has offset 0), and has
a length of 3,426 characters.

Ranges of Elements To support ranges of elements, elemental passages can
be specified by their containing elements. We only allow elemental paths (ending
in an element, not a text-node in the DOM tree) plus an optional offset.
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A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3, its start at the element path in column
7, and its end at the element path in column 8. Example:

1 Q0 9996 1 0.9999 I09UniRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[1]

Here the result is again the first section from 9996. Note that the seventh column
will refer to the beginning of an element (or its first content), and the eighth
column will refer to the ending of an element (or its last content). Note that this
format is very convenient for specifying ranges of elements, e.g., the first three
sections:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[3]

2.3 Evaluation Measures

We briefly summarize the main measures used for the Ad Hoc Track. Since
INEX 2007, we allow the retrieval of arbitrary passages of text matching the
judges ability to regard any passage of text as relevant. Unfortunately this simple
change has necessitated the deprecation of element-based metrics used in prior
INEX campaigns because the “natural” retrieval unit is no longer an element,
so elements cannot be used as the basis of measure. We note that properly
evaluating the effectiveness in XML-IR remains an ongoing research question at
INEX.

The INEX 2009 measures are solely based on the retrieval of highlighted
text. We simplify all INEX tasks to highlighted text retrieval and assume that
systems will try to return all, and only, highlighted text. We then compare the
characters of text retrieved by a search engine to the number and location of
characters of text identified as relevant by the assessor. For best in context we
use the distance between the best entry point in the run to that identified by an
assessor.

Thorough Task Precision is measured as the fraction of retrieved text that
was highlighted. Recall is measured as the fraction of all highlighted text that
has been retrieved. Text seen before is automatically discounted. The notion of
rank is relatively fluid for passages so we use an interpolated precision measure
which calculates interpolated precision scores at selected recall levels. Since we
are most interested in overall performance, the main measure is mean average
interpolated precision (MAiP), calculated over over 101 standard recall points
(0.00, 0.01, 0.02, ..., 1.00). We also present interpolated precision at early recall
points (iP[0.00], iP[0.01], iP[0.05], and iP[0.10]),

Focused Task As above, precision is measured as the fraction of retrieved text
that was highlighted and recall is measured as the fraction of all highlighted
text that has been retrieved. We use an interpolated precision measure which
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calculates interpolated precision scores at selected recall levels. Since we are
most interested in what happens in the first retrieved results, the main measure
is interpolated precision at 1% recall (iP[0.01]). We also present interpolated
precision at other early recall points, and (mean average) interpolated precision
over 101 standard recall points (0.00, 0.01, 0.02, ..., 1.00) as an overall measure.

Relevant in Context Task The evaluation of the Relevant in Context Task is
based on the measures of generalized precision and recall [7] over articles, where
the per document score reflects how well the retrieved text matches the relevant
text in the document. Specifically, the per document score is the harmonic mean
of precision and recall in terms of the fractions of retrieved and highlighted text
in the document. We use an Fβ score with β = 1/4 making precision four times
as important as recall. We are most interested in overall performances, so the
main measure is mean average generalized precision (MAgP). We also present
the generalized precision scores at early ranks (5, 10, 25, 50).

Best in Context Task The evaluation of the Best in Context Task is based on
the measures of generalized precision and recall where the per document score
reflects how well the retrieved entry point matches the best entry point in the
document. Specifically, the per document score is a linear discounting function
of the distance d (measured in characters)

n − d(x, b)
n

for d < n and 0 otherwise. We use n = 500 which is roughly the number of
characters corresponding to the visible part of the document on a screen. We are
most interested in overall performance, and the main measure is mean average
generalized precision (MAgP). We also show the generalized precision scores at
early ranks (5, 10, 25, 50).

For further details on the INEX measures, we refer to [6]

3 Ad Hoc Test Collection

In this section, we discuss the corpus, topics, and relevance assessments used in
the Ad Hoc Track.

3.1 Corpus

Starting in 2009, INEX uses a new document collection based on the Wikipedia.
The original Wiki syntax has been converted into XML, using both general
tags of the layout structure (like article, section, paragraph, title, list and item),
typographical tags (like bold, emphatic), and frequently occurring link-tags. The
annotation is enhanced with semantic markup of articles and outgoing links,
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<article xmlns:xlink="http://www.w3.org/1999/xlink">

<holder confidence="0.9511911446218017" wordnetid="103525454">

<entity confidence="0.9511911446218017" wordnetid="100001740">

<musical_organization confidence="0.8" wordnetid="108246613">

<artist confidence="0.9511911446218017" wordnetid="109812338">

<group confidence="0.8" wordnetid="100031264">

<header>

<title>Queen (band)</title>

<id>42010</id>

...

</header>

<bdy>

...

<songwriter wordnetid="110624540" confidence="0.9173553029164789">

<person wordnetid="100007846" confidence="0.9508927676800064">

<manufacturer wordnetid="110292316" confidence="0.9173553029164789">

<musician wordnetid="110340312" confidence="0.9173553029164789">

<singer wordnetid="110599806" confidence="0.9173553029164789">

<artist wordnetid="109812338" confidence="0.9508927676800064">

<link xlink:type="simple" xlink:href="../068/42068.xml">

Freddie Mercury</link></artist>

</singer>

</musician>

</manufacturer>

</person>

</songwriter>

...

</bdy>

</group>

</artist>

</musical_organization>

</entity>

</holder>

</article>

Fig. 1. INEX 2009 Ad Hoc Track document 42010.xml (in part).

based on the semantic knowledge base YAGO, explicitly labeling more than
5,800 classes of entities like persons, movies, cities, and many more. For a more
technical description of a preliminary version of this collection, see [10].

The collection was created from the October 8, 2008 dump of the English
Wikipedia articles and incorporates semantic annotations from the 2008-w40-
2 version of YAGO. It contains 2,666,190 Wikipedia articles and has a total
uncompressed size of 50.7 Gb. There are 101,917,424 XML elements of at least
50 characters (excluding white-space).

Figure 1 shows part of a document in the corpus. The whole article has been
encapsulated with tags, such as the 〈group〉 tag added to the Queen page.

This allows us to find particular article types easily, e.g., instead of a query
requesting articles about Freddie Mercury:
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<topic id="2009114" ct_no="310">

<title>self-portrait</title>

<castitle>//painter//figure[about(.//caption, self-portrait)]</castitle>

<phrasetitle>"self portrait"</phrasetitle>

<description>Find self-portraits of painters.</description>

<narrative>

I am studying how painters visually depict themselves in their

work. Relevant document components are images of works of art, in

combination with sufficient explanation (i.e., a reference to the

artist and the fact that the artist him/herself is depicted in the

work of art). Also textual descriptions of these works, if

sufficiently detailed, can be relevant. Document components

discussing the portrayal of artists in general are not relevant, as

are artists that figure in painters of other artists.

</narrative>

</topic>

Fig. 2. INEX 2009 Ad Hoc Track topic 2009114.

//article[about(., Freddie Mercury)]

we can specifically ask about a group about Freddie Mercury:

//group[about(., Freddie Mercury)]

which will return pages of (pop) groups mentioning Freddy Mercury. In fact, also
all internal Wikipedia links have been annotated with the tags assigned to the
page they link to, e.g., in the example about the link to Freddie Mercury gets
the 〈singer〉 tag assigned. We can also use these tags to identify pages where
certain types of links occur, and further refine the query as:

//group[about(.//singer, Freddie Mercury)]

The exact NEXI query format used to express the structural hints will be ex-
plained below.

3.2 Topics

The ad hoc topics were created by participants following precise instructions.
Candidate topics contained a short CO (keyword) query, an optional structured
CAS query, a phrase title, a one line description of the search request, and nar-
rative with a details of the topic of request and the task context in which the in-
formation need arose. For candidate topics without a 〈castitle〉 field, a default
CAS-query was added based on the CO-query: //*[about(., "CO-query")].
Figure 2 presents an example of an ad hoc topic. Based on the submitted can-
didate topics, 115 topics were selected for use in the INEX 2009 Ad Hoc Track
as topic numbers 2009001–2009115.

Each topic contains

title A short explanation of the information need using simple keywords, also
known as the content only (CO) query. It serves as a summary of the content
of the user’s information need.
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castitle A short explanation of the information need, specifying any structural
requirements, also known as the content and structure (CAS) query. The
castitle is optional but the majority of topics should include one.

phrasetitle A more verbose explanation of the information need given as a
series of phrases, just as the 〈title〉 is given as a series of keywords.

description A brief description of the information need written in natural lan-
guage, typically one or two sentences.

narrative A detailed explanation of the information need and the description of
what makes an element relevant or not. The 〈narrative〉 should explain not
only what information is being sought, but also the context and motivation
of the information need, i.e., why the information is being sought and what
work-task it might help to solve. Assessments will be made on compliance
to the narrative alone; it is therefore important that this description is clear
and precise.

The 〈castitle〉 contains the CAS query, an XPath expressions of the form:
A[B] or A[B]C[D] where A and C are navigational XPath expressions using only the
descendant axis. B and D are predicates using functions for text; the arithmetic
operators <, <=, >, and >= for numbers; or the connectives and and or. For
text, the about function has (nearly) the same syntax as the XPath function
contains. Usage is restricted to the form about(.path, query) where path is empty
or contains only tag-names and descendant axis; and query is an IR query having
the same syntax as the CO titles (i.e. query terms). The about function denotes
that the content of the element located by the path is about the information
need expressed in the query. As with the title, the castitle is only a hint to the
search engine and does not have definite semantics.

The purpose of the phrasetitle field is to explicate the order and grouping
of the query terms in the title. The absence of a phrasetitle implies the absence
of a phrase, e.g. a query with independent words. The title and phrasetitle to-
gether make the “phrase query” for phrase-aware search. Some topics come with
quotations marks in the title, in which case the phrasetitle is at least partially
redundant. However, we have made sure that the phrasetitle does not introduce
words other than those in the title and that the identified phrases are encap-
sulated in quotation marks. This setting helps us study whether systems can
improve their performance when given explicit phrases as opposed to individual
words as implicit phrases.

3.3 Judgments

Topics were assessed by participants following precise instructions. The assessors
used the GPXrai assessment system that assists assessors in highlight relevant
text. Topic assessors were asked to mark all, and only, relevant text in a pool
of documents. After assessing an article with relevance, a separate best entry
point decision was made by the assessor. The Thorough, Focused and Relevant
in Context Tasks were evaluated against the text highlighted by the assessors,
whereas the Best in Context Task was evaluated against the best-entry-points.
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Table 1. Statistics over judged and relevant articles per topic.

total # per topic
topics number min max median mean st.dev

judged articles 68 50,725 380 766 754 746.0 49.0
articles with relevance 68 4,858 5 351 52 71.4 72.5
highlighted passages 68 7,957 5 594 75.5 117.0 121.5
highlighted characters 68 18,838,137 4,453 2,776,635 97,550.5 277,031.4 442,113.9

Number of passages per article
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Fig. 3. Distribution of passages over articles.

The relevance judgments were frozen on November 10, 2009. At this time
68 topics had been fully assessed. Moreover, some topics were judged by two
separate assessors, each without the knowledge of the other. All results in this
paper refer to the 68 topics with the judgments of the first assigned assessor,
which is typically the topic author.

– The 68 assessed topics were numbered 2009n with n: 001–006, 010–015, 020,
022, 023, 026, 028, 029, 033, 035, 036, 039–043, 046, 047, 051, 053–055,
061–071, 073, 074, 076–079, 082, 085, 087–089, 091–093, 095, 096, 104, 105,
108–113, and 115

Table 1 presents statistics of the number of judged and relevant articles, and
passages. In total 50,725 articles were judged. Relevant passages were found
in 4,858 articles. The mean number of relevant articles per topic is 71, but
the distribution is skewed with a median of 52. There were 7,957 highlighted
passages. The mean was 117 passages and the median was 76 passages per topic.1

Figure 3 presents the number of articles with the given number of passages.
The vast majority of relevant articles (3,339 out of 4,858) had only a single
highlighted passage, and the number of passages quickly tapers off.

1 Recall from above that for the Focused Task the main effectiveness measures is
precision at 1% recall. Given that the average topic has 117 relevant passages in 52
articles, the 1% recall roughly corresponds to a relevant passage retrieved—for many
systems this will be accomplished by the first or first few results.
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Table 2. Statistics over relevant articles.

total # per relevant article
topics number min max median mean st.dev

best entry point offset 68 4,858 2 86,545 311.5 2,493.2 6,481.8
first relevant character offset 68 4,858 2 86,545 295 2,463.0 6,375.6
length relevant documents 68 4,858 204 159,892 5,774.5 11,691.5 15,745.1
relevant characters 68 4,858 8 110,191 1,137 3,877.8 7,818.5
fraction highlighted text 68 4,858 0.00022 1.000 0.330 0.442 0.381
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Fig. 4. Distribution of best entry point offsets.

Assessors where requested to provide a separate best entry point (BEP) judg-
ment, for every article where they highlighted relevant text. Table 2 presents
statistics on the best entry point offset, on the first highlighted or relevant char-
acter, and on the fraction of highlighted text in relevant articles. We first look
at the BEPs. The mean BEP is well within the article with 2,493 but the dis-
tribution is very skewed with a median BEP offset of only 311. Figure 4 shows
the distribution of the character offsets of the 4,858 best entry points. It is clear
that the overwhelming majority of BEPs is at the beginning of the article.

The statistics of the first highlighted or relevant character (FRC) in Table 2
give very similar numbers as the BEP offsets: the mean offset of the first relevant
character is 2,463 but the median offset is only 295. This suggests a relation
between the BEP offset and the FRC offset. Figure 5 shows a scatter plot the
BEP and FRC offsets. Two observations present themselves. First, there is a clear
diagonal where the BEP is positioned exactly at the first highlighted character
in the article. Second, there is also a vertical line at BEP offset zero, indicating
a tendency to put the BEP at the start of the article even when the relevant
text appears later on.

Table 2 also shows statistics on the length of relevant articles. Many articles
are relatively short with a median length of 5,775 characters, the mean length
is 11,691 characters. This is considerably longer than the INEX 2008 collection,
where the relevant articles had a median length of 3,030 and a mean length of
6,793. The length of highlighted text in characters is on average 3,876 (mean
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Fig. 5. Scatter plot of best entry point offsets versus the first relevant character.

1,137), in comparison to an average length of 2,338 (mean 838) in 2008. Table 2
also show that amount of relevant text varies from almost nothing to almost
everything. The mean fraction is 0.44, and the median is 0.33, indicating that
typically over one-third of the article is relevant. This is considerably less than
the INEX 2008 collection, where over half of the text of articles was considered
relevant. Given that the majority of relevant articles contain such a large fraction
of relevant text plausibly explains that BEPs being frequently positioned on or
near the start of the article.

3.4 Questionnaires

At INEX 2009, all candidate topic authors and assessors were asked to complete a
questionnaire designed to capture the context of the topic author and the topic
of request. The candidate topic questionnaire (shown in Table 3) featured 20
questions capturing contextual data on the search request. The post-assessment
questionnaire (shown in Table 4) featured 14 questions capturing further con-
textual data on the search request, and the way the topic has been judged (a
few questions on GPXrai were added to the end).

The responses to the questionnaires show a considerable variation over topics
and topic authors in terms of topic familiarity; the type of information requested;
the expected results; the interpretation of structural information in the search
request; the meaning of a highlighted passage; and the meaning of best entry
points. There is a need for further analysis of the contextual data of the topics
in relation to the results of the INEX 2009 Ad Hoc Track.
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Table 3. Candidate Topic Questionnaire.

B1 How familiar are you with the subject matter of the topic?
B2 Would you search for this topic in real-life?
B3 Does your query differ from what you would type in a web search engine?
B4 Are you looking for very specific information?
B5 Are you interested in reading a lot of relevant information on the topic?
B6 Could the topic be satisfied by combining the information in different (parts of)

documents?
B7 Is the topic based on a seen relevant (part of a) document?
B8 Can information of equal relevance to the topic be found in several documents?
B9 Approximately how many articles in the whole collection do you expect to contain

relevant information?
B10 Approximately how many relevant document parts do you expect in the whole

collection?
B11 Could a relevant result be (check all that apply): a single sentence; a single para-

graph; a single (sub)section; a whole article
B12 Can the topic be completely satisfied by a single relevant result?
B13 Is there additional value in reading several relevant results?
B14 Is there additional value in knowing all relevant results?
B15 Would you prefer seeing: only the best results; all relevant results; don’t know
B16 Would you prefer seeing: isolated document parts; the article’s context; don’t know
B17 Do you assume perfect knowledge of the DTD?
B18 Do you assume that the structure of at least one relevant result is known?
B19 Do you assume that references to the document structure are vague and imprecise?
B20 Comments or suggestions on any of the above (optional)

Table 4. Post Assessment Questionnaire.

C1 Did you submit this topic to INEX?
C2 How familiar were you with the subject matter of the topic?
C3 How hard was it to decide whether information was relevant?
C4 Is Wikipedia an obvious source to look for information on the topic?
C5 Can a highlighted passage be (check all that apply): a single sentence; a single

paragraph; a single (sub)section; a whole article
C6 Is a single highlighted passage enough to answer the topic?
C7 Are highlighted passages still informative when presented out of context?
C8 How often does relevant information occur in an article about something else?
C9 How well does the total length of highlighted text correspond to the usefulness of

an article?
C10 Which of the following two strategies is closer to your actual highlighting:

(I) I located useful articles and highlighted the best passages and nothing more,
(II) I highlighted all text relevant according to narrative, even if this meant high-
lighting an entire article.

C11 Can a best entry point be (check all that apply): the start of a highlighted passage;
the sectioning structure containing the highlighted text; the start of the article

C12 Does the best entry point correspond to the best passage?
C13 Does the best entry point correspond to the first passage?
C14 Comments or suggestions on any of the above (optional)
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Table 5. Participants in the Ad Hoc Track.
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4 University of Otago 0 0 1 0 1 0 0 1 1 0 0 1 1
5 Queensland University of Technology 4 12 12 12 20 20 0 0 32 8 0 40 48
6 University of Amsterdam 4 2 2 2 7 3 0 0 10 0 0 10 10

10 Max-Planck-Institut Informatik 3 8 0 2 11 2 1 0 13 0 0 13 13
16 University of Frankfurt 0 2 0 0 0 2 0 0 2 0 0 2 2
22 ENSM-SE 0 4 0 0 4 0 4 0 4 0 0 4 4
25 Renmin University of China 1 3 3 2 7 2 0 0 9 0 0 9 9
29 INDIAN STATISTICAL INSTITUTE 0 2 0 0 2 0 0 0 2 0 0 2 2
36 University of Tampere 0 0 3 3 6 0 0 2 4 2 0 6 6
48 LIG 3 3 3 3 12 0 0 4 12 0 0 12 12
55 Doshisha University 0 1 0 0 0 1 0 0 1 0 0 1 1
60 Saint Etienne University 3 4 3 3 13 0 0 4 13 0 0 13 13
62 RMIT University 0 0 0 2 2 0 0 0 1 0 1 2 2
68 University Pierre et Marie Curie -

LIP6
2 2 0 0 4 0 0 0 4 0 0 4 4

72 University of Minnesota Duluth 2 3 3 1 9 0 0 0 9 0 0 9 9
78 University of Waterloo 0 4 0 0 4 0 0 0 2 0 2 4 4
92 University of Lyon3 2 2 0 2 5 1 6 0 6 0 0 6 8

167 School of Electronic Engineering and
Computer Science

3 3 1 3 10 0 0 4 10 0 0 10 12

346 University of Twente 3 2 2 2 0 9 0 4 9 0 0 9 12

Total runs 30 57 33 37 117 40 11 19 144 10 3 157 172

4 Ad Hoc Retrieval Results

In this section, we discuss, for the four ad hoc tasks, the participants and their
results.

4.1 Participation

A total of 172 runs were submitted by 19 participating groups. Table 5 lists the
participants and the number of runs they submitted, also broken down over the
tasks (Thorough, Focused, Relevant in Context, or Best in Context); the used
query (Content-Only or Content-And-Structure); whether it used the Phrase
query or Reference run; and the used result type (Element, Range of elements,
or FOL passage). Unfortunately, no less than 15 runs turned out to be invalid and
will only be evaluated with respect to their “article retrieval” value in Section 6.
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Table 6. Top 10 Participants in the Ad Hoc Track Thorough Task.

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p48-LIG-2009-thorough-3T 0.5967 0.5841 0.5444 0.5019 0.2855
p6-UAmsIN09article 0.5938 0.5880 0.5385 0.4981 0.2818
p5-BM25thorough 0.6168 0.5983 0.5360 0.4917 0.2585
p92-Lyon3LIAmanlmnt? 0.5196 0.4956 0.4761 0.4226 0.2496
p60-UJM 15494 0.5986 0.5789 0.5293 0.4813 0.2435
p346-utCASartT09 0.5461 0.5343 0.4929 0.4415 0.2350
p10-MPII-CASThBM 0.5860 0.5537 0.4821 0.4225 0.2133
p167-09RefT 0.3205 0.3199 0.2779 0.2437 0.1390
p68-I09LIP6OWATh 0.3975 0.3569 0.2468 0.1945 0.0630
p25-ruc-base-coT 0.5440 0.4583 0.3020 0.1898 0.0577

Participants were allowed to submit up to two element result-type runs per
task and up to two passage result-type runs per task (for all four tasks). In
addition, we allowed for an extra submission per task based on a reference run
containing an article-level ranking using the BM25 model. This totaled to 20 runs
per participant.2 The submissions are spread well over the ad hoc retrieval tasks
with 30 submissions for Thorough, 57 submissions for Focused, 33 submissions
for Relevant in Context, and 37 submissions for Best in Context.

4.2 Thorough Task

We now discuss the results of the Thorough Task in which a ranked-list of non-
overlapping results (elements or passages) was required. The official measure for
the task was mean average interpolated precision (MAiP). Table 6 shows the best
run of the top 10 participating groups. The first column gives the participant,
see Table 5 for the full name of group. The second to fifth column give the
interpolated precision at 0%, 1%, 5%, and 10% recall. The sixth column gives
mean average interpolated precision over 101 standard recall levels (0%, 1%, . . . ,
100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top five groups (based on official measure for the task, MAiP).

LIG Element retrieval run using the CO query. Description: Starting from 2K
elements for each of the section types (sec, ss1, ss2, ss3, ss4) according to
a multinomial language model with Dirichlet smoothing, we then interleave
these five lists according to the score. We then group these results by the
ranking of the reference run on articles, keeping within a document the
element ranking. The run is based on the reference run.

University of Amsterdam Element retrieval run using the CO query. De-
scription: A standard run on an article index, using a language model with
a standard linear length prior. The run is retrieving only articles.

2 As it turns out, one group submitted more runs than allowed: the Queensland Uni-
versity of Technology submitted 24 extra element runs. Some other groups submitted
too many runs of a certain type or task. At this moment, we have not decided on
any repercussions other than mentioning them in this footnote.
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Queensland University of Technology Element retrieval run using the CO
query. Description: Starting from a BM25 article retrieval run on an index of
terms and tags-as-terms (produced by Otago), the top 50 retrieved articles
are further processed by extracting the list of all (overlapping) elements
which contained at least one of the search terms. The list is padded with the
remaining articles, if needed.

University of Lyon3 A manual element retrieval run using the CO query. De-
scription: Using Indri with Dirichlet smoothing and combining two language
models: one of the full articles and one on the following tags: b, bdy, category,
causal agent, country, entry, group, image, it, list, location, p, person, phys-
ical entity, sec, software, table, title. Special queries are created used NLP
tools such as a summarizer and terminology extraction: the initial query
based on the topic’s phrase and CO title is expanded with related phrases
extracted from the other topic fields and from an automatic summary of
the top ranked documents by this initial query. In addition, standard query
expansion are used, skip phrases are allowed, and occurrences in the title are
extra weighted.

Saint Etienne University Element retrieval run using the CO query. Descrip-
tion: Using BM25 on an element index with element frequency statistics. The
b and k parameters were tuned on the INEX 2008 collection, leading to value
different from standard document retrieval. The resulting run is filtered for
elements from articles in the reference run, while retaining the original ele-
ment ranking. The run is based on the reference run.

Based on the information from these and other participants:

– All ten runs use retrieve element type results. Three out of ten runs retrieve
only article elements: the second ranked p6-UAmsIN09article, sixth ranked
p346-utCASartT09, and the eighth ranked p167-09RefT.

– Eight of the ten runs use the CO query, the runs ranked sixth, p346-utCASartT09,
and seventh, p10-MPII-CASThBM use the structured CAS query.

– Three runs are based on the reference run: the first ranked p48-LIG-2009-
thorough-3T, the fifth ranked p60-UJM 15494, and the eighth ranked p167-
09RefT

4.3 Focused Task

We now discuss the results of the Focused Task in which a ranked-list of non-
overlapping results (elements or passages) was required. The official measure
for the task was (mean) interpolated precision at 1% recall (iP[0.01]). Table 7
shows the best run of the top 10 participating groups. The first column gives the
participant, see Table 5 for the full name of group. The second to fifth column
give the interpolated precision at 0%, 1%, 5%, and 10% recall. The sixth column
gives mean average interpolated precision over 101 standard recall levels (0%,
1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top five groups (based on official measure for the task, iP[0.01]).
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Table 7. Top 10 Participants in the Ad Hoc Track Focused Task.

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p78-UWatFERBM25F 0.6797 0.6333 0.5006 0.4095 0.1854
p68-I09LIP6Okapi 0.6244 0.6141 0.5823 0.5290 0.3001
p10-MPII-COFoBM 0.6740 0.6134 0.5222 0.4474 0.1973
p60-UJM 15525 0.6241 0.6060 0.5742 0.4920 0.2890
p6-UamsFSsec2docbi100 0.6328 0.5997 0.5140 0.4647 0.1928
p5-BM25BOTrangeFOC 0.6049 0.5992 0.5619 0.5057 0.2912
p16-Spirix09R001 0.6081 0.5903 0.5342 0.4979 0.2865
p48-LIG-2009-focused-1F 0.5861 0.5853 0.5431 0.5055 0.2702
p22-emse2009-150? 0.6671 0.5844 0.4396 0.3699 0.1470
p25-ruc-term-coF 0.6128 0.4973 0.3307 0.2414 0.0741

University of Waterloo FOL passage retrieval run using the CO query. De-
scription: the run uses the Okapi BM25 model in Wumpus to score all
content-bearing elements such as sections and paragraphs. It uses a fielded
Okapi BM25F over two fields: a title composed of the concatenation of article
and all ancestor’s and current section titles, and a body field is the rest of
the section. Training was done at element level and an average field length
was used.

LIP6 Element retrieval run using the CO query. Description: A BM25 run with
b=0.2 and k=2.0 and retrieving 1,500 articles for the CO queries, where
negated words are removed from the query. For each document, the /article[1]
element is retrieved. The run is retrieving only articles.

Max-Planck-Institut für Informatik Element retrieval run using the CO
query. Description: Using EBM25, an XML-specific extension of BM25 us-
ing element frequencies of individual tag-term pairs, i.e., for each distinct
tag and term, we precompute an individual element frequency, capturing
the amount of tags under which the term appears in the entire collection.
A static decay factor for the TF component is used to make the scoring
function favor smaller elements rather than entire articles.

Saint Etienne University An element retrieval run using the CO query. De-
scription: Using BM25 on an standard article index. The b and k parameters
were tuned on the INEX 2008 collection. The run is retrieving only articles.

University of Amsterdam Element retrieval run using the CAS query. De-
scription: Language model run on a non-overlapping section index with top
100 reranked using a link degree prior. The link degree prior is the inde-
gree+outdegree using local links from the retrieved sections. The link degree
prior is applied to the article level, thus all sections from the same article
have the same link prior.

Based on the information from these and other participants:

– Seven runs use the CO query. Three runs, the fifth ranked p6-UamsFSsec2docbi100,
the sixth ranked p5-BM25BOTrangeFOC, and the seventh ranked p16-Spirix09R001
use the structured CAS query. The ninth run, p22-emse2009-150, uses a
manually expanded query using words from the description and narrative
fields.
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Table 8. Top 10 Participants in the Ad Hoc Track Relevant in Context Task.

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p5-BM25RangeRIC 0.3345 0.2980 0.2356 0.1786 0.1885
p4-Reference 0.3311 0.2936 0.2298 0.1716 0.1847
p6-UamsRSCMartCMdocbi100 0.3192 0.2794 0.2074 0.1660 0.1773
p48-LIG-2009-RIC-1R 0.3027 0.2604 0.2055 0.1548 0.1760
p36-utampere given30 nolinks 0.3128 0.2802 0.2101 0.1592 0.1720
p346-utCASrefR09 0.2216 0.1904 0.1457 0.1095 0.1188
p60-UJM 15502 0.2003 0.1696 0.1311 0.0998 0.1075
p167-09RefR 0.1595 0.1454 0.1358 0.1205 0.1045
p25-ruc-base-casF 0.2113 0.1946 0.1566 0.1380 0.1028
p72-umd ric 1 0.0943 0.0801 0.0574 0.0439 0.0424

– Eight runs retrieve elements as results. The top ranked p78-UWatFERBM25F
retrieves FOL passages, and the sixth ranked p5-BM25BOTrangeFOC re-
trieves ranges of elements.

– The systems at rank second, (p68-I09LIP6Okapi), fourth (p60-UJM 15525 ),
and seventh (p16-Spirix09R001 ) are retrieving only full articles.

4.4 Relevant in Context Task

We now discuss the results of the Relevant in Context Task in which non-
overlapping results (elements or passages) need to be returned grouped by the
article they came from. The task was evaluated using generalized precision where
the generalized score per article was based on the retrieved highlighted text. The
official measure for the task was mean average generalized precision (MAgP).

Table 8 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task. The first column lists the participant,
see Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).

Queensland University of Technology Run retrieving ranges of elements
using the CO query. Description: Starting from a BM25 article retrieval
run on an index of terms and tags-as-terms (produced by Otago), the top
50 retrieved articles are further processed by identifying the first and last
element in the article (in reading order) which contained any of the search
terms. The focused result was then specified as a range of two elements
(which could be one and the same). The list is padded with the remaining
articles.

University of Otago Element retrieval run using the CO query. Description:
the run uses the Okapi BM25 model on an article index, with parameters
trained on the INEX 2008 collection. The run is retrieving only articles and
is based on the reference run—in fact, it is the original reference run.
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University of Amsterdam Element retrieval run using the CO query. De-
scription: The results from section index are grouped and ranked based on
the the article ranking from the article index. The section run is reranked
using the Wikipedia categories as background models before we cut-off the
section run at 1,500 results per topic. The article run is similarly reranked
using the Wikipedia categories as background models and link degree priors
using the local incoming and outgoing links at article level.

LIG Element retrieval run using the CO query. Description: First, separate lists
of 2K elements are generated for the element types sec, ss1, ss2, ss3, and
ss4, the five lists are merged according to score. Second, an article ranking
is obtained using a mulinomial language model with Dirichlet smoothing.
Third, the element results are group using the article ranking, by retaining
with each article the reading order. Then we remove overlaps according to
the reading order.

University of Tampere Element retrieval run using the CO query. Descrip-
tion: For each document the only retrieved passage was between the first
and the last link to the top 30 documents. If there were no such links, the
whole article was returned. The run is based on the reference run.

Based on the information from these and other participants:

– The runs ranked sixth (p346-utCASrefR09 ) and ninth (p25-ruc-base-casF )
are using the CAS query. All other runs use only the CO query in the topic’s
title field.

– The top scoring run retrieves ranges of elements, all other runs retrieve
elements as results.

– Solid article ranking seems a prerequisite for good overall performance, with
second best run, p4-Reference and the eighth best run, p167-09RefR, retriev-
ing only full articles.

4.5 Best in Context Task

We now discuss the results of the Best in Context Task in which documents were
ranked on topical relevance and a single best entry point into the document was
identified. The Best in Context Task was evaluated using generalized precision
but here the generalized score per article was based on the distance to the as-
sessor’s best-entry point. The official measure for the task was mean average
generalized precision (MAgP).

Table 9 shows the top 10 participating groups (only the best run per group
is shown) in the Best in Context Task. The first column lists the participant, see
Table 5 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top five groups (based on MAgP).
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Table 9. Top 10 Participants in the Ad Hoc Track Best in Context Task.

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p5-BM25bepBIC 0.2941 0.2690 0.2119 0.1657 0.1711
p62-RMIT09titleO 0.3112 0.2757 0.2156 0.1673 0.1710
p10-MPII-COBIBM 0.2903 0.2567 0.2053 0.1598 0.1662
p48-LIG-2009-BIC-3B 0.2778 0.2564 0.1969 0.1469 0.1571
p6-UamsBAfbCMdocbi100 0.2604 0.2298 0.1676 0.1478 0.1544
p92-Lyon3LIAmanBEP? 0.2887 0.2366 0.1815 0.1482 0.1483
p36-utampere given30 nolinks 0.2141 0.1798 0.1462 0.1234 0.1207
p346-utCASrefB09 0.1993 0.1737 0.1248 0.0941 0.1056
p25-ruc-term-coB 0.1603 0.1610 0.1274 0.0976 0.1013
p167-09LrnRefB 0.1369 0.1250 0.1181 0.1049 0.0953

Queensland University of Technology Element retrieval run using the CO
query. Description: Starting from a BM25 article retrieval run on an index
of terms and tags-as-terms (produced by Otago), the top 50 retrieved arti-
cles are further processed by identifying the first element (in reading order)
containing any of the search terms. The list is padded with the remaining
articles.

RMIT University Element retrieval run using the CO query. Description: Us-
ing Zettair with Okapi BM25 on an article-level index. The BEP is assumed
to be at the start of the article. The run is retrieving only articles.

Max-Planck-Institut für Informatik Element retrieval run using the CO
query. Description: Using EBM25, an XML-specific extension of BM25 us-
ing element frequencies of individual tag-term pairs, i.e., for each distinct
tag and term, we precompute an individual element frequency, capturing
the amount of tags under which the term appears in the entire collection.
A static decay factor for the TF component is used to make the scoring
function favor smaller elements rather than entire articles, but the final run
returns the start of the article as BEP. The run is retrieving only articles.

LIG Element retrieval run using the CO query. Description: First, separate lists
of 2K elements are generated for the element types sec, ss1, ss2, ss3, and ss4,
the five lists are merged according to score. Second, an article ranking is
obtained from the reference run. Third, for each article the best scoring
element is used as the entry point. The run is based on the reference run.

University of Amsterdam Element retrieval run using the CO query. De-
scription: Article index run with standard pseudo-relevance feedback (using
Indri), reranked with Wikipedia categories as background models and link
degree priors using the local incoming and outgoing links at article level.
The run is retrieving only articles.

Based on the information from these and other participants:

– The second best run (p62-RMIT09titleO) retrieves FOL passages, all other
runs return elements as results. The FOL passage run is a degenerate case
that always puts the BEP at the start of the article.

– As for the Relevant in Context Task, we see again that solid article rank-
ing is very important. In fact, we see runs putting the BEP at the start
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Table 10. Statistical significance (t-test, one-tailed, 95%).

(a) Thorough Task (b) Focused Task
1 2 3 4 5 6 7 8 9 10

p48 - - ? - ? - ? ? ?
p6 - ? - ? - ? ? ?
p5 ? - ? - ? ? ?
p92 - - - ? ? -
p60 - - ? ? ?
p346 - ? ? ?
p10 ? ? ?
p167 - -
p68 -
p25

1 2 3 4 5 6 7 8 9 10

p78 - - - - - - - - ?
p68 - - - - - ? - ?
p10 - - - - - - ?
p60 - - - - - ?
p6 - - - - ?
p5 - - - ?
p16 - - ?
p48 - ?
p22 ?
p25

(c) Relevant in Context Task (d) Best in Context Task
1 2 3 4 5 6 7 8 9 10

p5 ? - ? ? ? ? ? ? ?
p4 - - ? ? ? ? ? ?
p6 - - ? ? ? ? ?
p48 - ? ? ? ? ?
p36 ? ? ? ? ?
p346 - - - ?
p60 - - ?
p167 - ?
p25 ?
p72

1 2 3 4 5 6 7 8 9 10

p5 - - ? ? - ? ? ? ?
p62 - ? - - ? ? ? ?
p10 - - - ? ? ? ?
p48 - - ? ? ? ?
p6 - ? ? ? ?
p92 - ? ? ?
p36 - - ?
p346 - -
p25 -
p167

of all the retrieved articles at rank two (p62-RMIT09titleO), rank three
(p10-MPII-COBIBM ), rank five (p6-UamsBAfbCMdocbi100 ), and rank ten
(p167-09LrnRefB).

– With the exception of the run ranked eight (p346-utCASrefB09 ), which used
the CAS query, all the other best runs per group use the CO query.

4.6 Significance Tests

We tested whether higher ranked systems were significantly better than lower
ranked system, using a t-test (one-tailed) at 95%. Table 10 shows, for each task,
whether it is significantly better (indicated by “?”) than lower ranked runs. For
the Thorough Task, we see that the performance (measured by MAiP) of the top
scoring run is significantly better than the runs at rank 4, 6, 8, 9, and 10. The
same holds for the second and third best run. The fourth best run is significantly
better than the runs at rank 8 and 9. The fifth, sixth, and seventh ranked runs
are all significantly better than the runs at rank 8, 9, and 10. Of the 45 possible
pairs of runs, there are 26 (or 58%) significant differences. For the Focused Task,
we see that the early precision (at 1% recall) is a rather unstable measure. All
runs are significantly better than the run at rank 10, the second best run also
is significantly better than the run at rank 8. Of the 45 possible pairs of runs,
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Table 11. Ad Hoc Track: Runs with ranges of elements or FOL passages.

(a) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p78-UWatFERBM25F 0.6797 0.6333 0.5006 0.4095 0.1854
p5-BM25BOTrangeFOC 0.6049 0.5992 0.5619 0.5057 0.2912

(b) Relevant in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP

p5-BM25RangeRIC 0.3345 0.2980 0.2356 0.1786 0.1885
p36-utampere auth 40 top30 0.2717 0.2509 0.2006 0.1583 0.1185

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP

p62-RMIT09titleO 0.3112 0.2757 0.2156 0.1673 0.1710

there are only 10 (or 22%) significant differences. Hence we should be careful
when drawing conclusions based on the Focused Task results. For the Relevant in
Context Task, we see that the top run is significantly better than ranks 2 and 4
through 10. The second best run is significantly better than ranks 5 through 10.
The third, fourth, and fifth ranked systems are significantly better than ranks
6 through 10. The sixth to ninth systems are significantly better than rank 10.
Of the 45 possible pairs of runs, there are 33 (or 73%) significant differences,
making MAgP a very discriminative measure. For the Best in Context Task, we
see that the top run is significantly better than ranks 4 and 5, and 7 through
10. The second best run is significantly better than than ranks 4 and 7 to 10.
The third, fourth, and fifth ranked runs are significantly better than than ranks
7 to 10. The seventh ranked system is better than the systems ranked 8 to 10,
and the eighth ranked system better than rank 9 10. Of the 45 possible pairs of
runs, there are 27 (or 60%) significant differences.

5 Analysis of Run and Topic Types

In this section, we will discuss relative effectiveness of element and passage re-
trieval approaches, and on the relative effectiveness of systems using the keyword
and structured queries.

5.1 Elements versus passages

We received 13 submissions using ranges of elements of FOL-passage results,
from in total 4 participating groups. We will look at the relative effectiveness of
element and passage runs.

As we saw above, in Section 4, for three tasks there were high ranking runs
using FOL passages or ranges of elements in the top 10. Table 11 shows the best
runs using ranges of elements or FOL passages for three ad hoc tasks, there were
no such submissions for the Thorough Task. As it turns out, the best focused run
retrieving FOL passages was the top ranked run in Table 7; the best relevant
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Table 12. Ad Hoc Track: Runs using the phrase query.

(a) Thorough Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p92-Lyon3LIAmanlmnt? 0.5196 0.4956 0.4761 0.4226 0.2496

(b) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p22-emse2009-150? 0.6671 0.5844 0.4396 0.3699 0.1470
p10-MPII-COArBPP 0.5563 0.5477 0.5283 0.4681 0.2566
p92-Lyon3LIAmanQE? 0.4955 0.4861 0.4668 0.4271 0.2522

(c) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP

p92-Lyon3LIAmanBEP? 0.2887 0.2366 0.1815 0.1482 0.1483

in context retrieving ranges of elements was the top scoring run in Table 8;
and the best best in context run retrieving FOL passages was the second best
run in Table 9. Given the low number of submissions using passages or ranges
of elements, this is an impressive result. However, looking at the runs in more
detail, their character is often unlike what one would expect from a “passage”
retrieval run. For Focused, p5-BM25BOTrangeFOC is an article retrieving run
using ranges of elements, based on the CAS query. For Relevant in Context, p5-
BM25RangeRIC is an article retrieving run using ranges of elements. For Best in
Context, p62-RMIT09titleO is an article run using FOL passages. Hence, this is
not sufficient evidence to warrant any conclusion on the effectiveness of passage
level results. We hope and expect that the test collection and the passage runs
will be used for further research into the relative effectiveness of element and
passage retrieval approaches.

5.2 Phrase queries

We received 10 submissions based on the phrase query. Table 12 shows the best
runs using the phrase query for three of the ad hoc tasks, there were no valid
submissions using the phrase title for Relevant in Context. The best phrase
submission for the Thorough Task did rank 5th in the overall results. The best
phrase submission for the Focused Task did rank 9th in the overall results. The
best phrase submission for the Best in Context Task did rank 6th in the overall
results.

Although few runs were submitted, the phrase title seems competitive, but
not superior to the use of the CO query. The only participant submitting both
types of runs, the Max-Planck-Institute für Informatik for the Focused Task,
had marginally better performance for the CO query run over all 68 topics, and
marginally better performance for the combined CO and Phrase title run over
the 60 topics having a proper phrase in the Phrase title field. The differences
between the query types are very small. A possible explanation for this is that all
CO query have been expanded to contain the same terms as the more verbose
phrase query. Hence the only difference is the explicit phrase markup, which
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Table 13. Ad Hoc Track: Runs using the reference run.

(a) Thorough Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p48-LIG-2009-thorough-3T 0.5967 0.5841 0.5444 0.5019 0.2855
p60-UJM 15494 0.5986 0.5789 0.5293 0.4813 0.2435
p346-utCASrefF09 0.4834 0.4525 0.4150 0.3550 0.1982
p167-09RefT 0.3205 0.3199 0.2779 0.2437 0.1390

(b) Focused Task
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p48-LIG-2009-focused-3F 0.5946 0.5822 0.5344 0.5018 0.2732
p60-UJM 15518 0.5559 0.5136 0.4003 0.3104 0.1019
p346-utCASrefF09 0.4801 0.4508 0.4139 0.3547 0.1981
p167-09LrnRefF 0.3162 0.3072 0.2512 0.2223 0.1292

(c) Relevant in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP

p4-Reference 0.3311 0.2936 0.2298 0.1716 0.1847
p48-LIG-2009-RIC-3R 0.3119 0.2790 0.2193 0.1629 0.1757
p36-utampere given30 nolinks 0.3128 0.2802 0.2101 0.1592 0.1720
p346-utCASrefR09 0.2216 0.1904 0.1457 0.1095 0.1188
p167-09RefR 0.1595 0.1454 0.1358 0.1205 0.1045
p60-UJM 15503 0.1825 0.1548 0.1196 0.0953 0.1020

(d) Best in Context Task
Participant gP[5] gP[10] gP[25] gP[50] MAgP

p48-LIG-2009-BIC-3B 0.2778 0.2564 0.1969 0.1469 0.1571
p36-utampere given30 nolinks 0.2141 0.1798 0.1462 0.1234 0.1207
p346-utCASrefB09 0.1993 0.1737 0.1248 0.0941 0.1056
p167-09LrnRefB 0.1369 0.1250 0.1181 0.1049 0.0953
p60-UJM 15508 0.1274 0.1123 0.0878 0.0735 0.0795

requires special handling by the search engines. The available test collection
with explicit phrases marked up in 60 topics is a valuable result of INEX 2009,
and it can be studied in-depth in future experiments.

5.3 Reference run

There were 19 submissions using the reference run. Table 13 shows the best runs
using the reference runs for the four ad hoc tasks. For the Thorough Task, the
best submission based on the reference run ranked first. For the Focused Task,
the best submission based on the reference run would have ranked tenth. For
the Relevant in Context Task, the best submission based on the reference run—
in fact, the actual reference run itself—ranked second. For the Best in Context
Task, the best submission based on the reference run ranked fourth. The results
show that the reference run indeed provides competitive article ranking that
forms a good basis for retrieval.

There are also considerable differences in performance of the runs based on
the same reference run. This suggests that the runs do not retrieve the exact
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Table 14. Top 10 Participants in the Ad Hoc Track: Article retrieval based on
the reference run.

Participant P5 P10 1/rank map bpref

p4-Reference 0.6147 0.5294 0.8240 0.3477 0.3333
p36-utampere given30 nolinks 0.6147 0.5294 0.8240 0.3477 0.3333
p48-LIG-2009-BIC-3B 0.6147 0.5294 0.8240 0.3463 0.3336
p60-UJM 15508 0.5324 0.4544 0.7020 0.2910 0.2925
p346-utCASrefB09 0.5441 0.4750 0.7494 0.2833 0.2768
p167-09RefT 0.3765 0.3603 0.5761 0.2443 0.2540

same set of articles. As explained later, in Section 6, we can look at the ar-
ticle rankings induced by the runs. Table 14 shows the best run of the top
10 participating groups, using the reference run. With the exception of p36-
utampere given30 nolinks the article rankings of the runs vary considerably.

5.4 CO versus CAS

We now look at the relative effectiveness of the keyword (CO) and structured
(CAS) queries. As we saw above, in Section 4, one of the best runs per group
for the Relevant in Context Task, and two of the top 10 runs for the Best in
Context Task used the CAS query.

All topics have a CAS query since artificial CAS queries of the form

//*[about(., keyword title)]

were added to topics without CAS title. Table 15 show the distribution of target
elements, with YAGO tags in emphatic. In total 81 topics had a non-trivial CAS
query.3 These CAS topics are numbered 2009n with n: 001–009, 011–013, 015–
017, 020–025, 028–032, 036, 037, 039–045, 048–053, 057, 058, 060, 061, 064–072,
074, 080, 085–096, 098, 099, 102, 105, 106, and 108–115. As it turned out, 50
of these CAS topics were assessed. The results presented here are restricted to
only these 50 CAS topics.

Table 16 lists the top 10 participants measured using just the 50 CAS top-
ics and for the Thorough Task (a and b) and the Focused Task (c and d).
For the Thorough Task the best CAS run, p5-BM25BOTthorough, would have
ranked sixth amongst the CO runs on MAiP. The two participants submitting
both CO and CAS runs had better MAiP scores for the CO runs. However,
the best CAS run has higher scores on early precision, iP[0.00] through iP[0.05]
than any of the CO submissions. For the Focused Task the best CAS run, p6-
UamsFSsec2docbi100, would have ranked fifth amongst the CO runs. Two partic-
ipants submitting both CO and CAS runs had better iP[0.01] scores for the CO
runs, one participant had a better CAS run. For Relevant in Context Task (not
shown), the best CAS run, p5-BM25BOTrangeRIC, would have ranked third
among the CO runs. One participants submitting both CO and CAS runs had
3 Note that some of the wild-card topics (using the “∗” target) in Table 15 had non-

trivial about-predicates and hence have not been regarded as trivial CAS queries.
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Table 15. CAS query target elements over all 115 topics (YAGO tags slanted).

Target Element Frequency

∗ 41
article 32
sec 9
group 5
p 4
music genre 2
vehicles 1
theory 1
song 1
revolution 1
(p|sec|person) 1
(p|sec) 1
protest 1
(person|chemist|alchemist|scientist|physicist) 1
personality 1
museum 1
link 1
image 1
home 1
food 1
figure 1
facility 1
driver 1
dog 1
director 1
(classical music|opera|orchestra|performer|singer) 1
bicycle 1
(article|sec|p) 1

better MAgP scores for a CO run, another participant had a better CAS run. For
the Best in Context Task (not shown), the best CAS run, p5-BM25BOTbepBIC,
would rank seventh among the CO runs. All three participants submitting both
CO and CAS runs had better MAgP scores for their CO runs. Overall, we see
the that teams submitting runs with both types of queries have higher scoring
CO runs, with participant 5 as a notable exception for Focused.

6 Analysis of Article Retrieval

In this section, we will look in detail at the effectiveness of Ad Hoc Track sub-
missions as article retrieval systems.

6.1 Article retrieval: Relevance Judgments

We will first look at the topics judged during INEX 2009, but now using the
judgments to derive standard document-level relevance by regarding an article
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Table 16. Ad Hoc Track CAS Topics: CO runs versus CAS runs.

(a) Thorough Task: CO runs
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p48-LIG-2009-thorough-1T 0.5781 0.5706 0.5315 0.4834 0.2729
p6-UAmsIN09article 0.5900 0.5821 0.5149 0.4613 0.2629
p92-Lyon3LIAmanlmnt? 0.5365 0.5039 0.4794 0.4330 0.2450
p5-BM25thorough 0.6273 0.6023 0.5191 0.4620 0.2389
p60-UJM 15494 0.6034 0.5766 0.5131 0.4612 0.2280
p10-MPII-COThBM 0.6436 0.5916 0.5135 0.3783 0.1909
p167-09RefT 0.3245 0.3237 0.2682 0.2392 0.1291
p68-I09LIP6OWATh 0.4146 0.3651 0.2512 0.1963 0.0608
p25-ruc-base-coT 0.5328 0.4333 0.2538 0.1653 0.0505
p72-umd thorough 3 0.4073 0.2893 0.1697 0.0999 0.0494

(b) Thorough Task: CAS runs
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p5-BM25BOTthorough 0.6460 0.6169 0.5359 0.4472 0.2279
p346-utCASartT09 0.5541 0.5381 0.4819 0.4136 0.2227
p10-MPII-CASThBM 0.5747 0.5308 0.4406 0.3627 0.1651

(c) Focused Task: CO runs
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p78-UWatFERBM25F 0.6742 0.6222 0.4905 0.3758 0.1737
p60-UJM 15525 0.6373 0.6127 0.5696 0.4585 0.2811
p10-MPII-COArBM 0.6201 0.6060 0.5387 0.4648 0.2684
p68-I09LIP6Okapi 0.6130 0.6005 0.5660 0.5064 0.2798
p5-ANTbigramsRangeFOC 0.6089 0.5936 0.5331 0.4531 0.2597
p48-LIG-2009-focused-3F 0.5971 0.5802 0.5205 0.4775 0.2583
p22-emse2009-150? 0.6453 0.5598 0.4211 0.3471 0.1371
p92-Lyon3LIAmanQE? 0.5185 0.5058 0.4815 0.4339 0.2472
p25-ruc-term-coF 0.6277 0.4955 0.2900 0.2065 0.0668
p167-09LrnRefF 0.3357 0.3234 0.2536 0.2211 0.1216

(c) Focused Task: CAS runs
Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p6-UamsFSsec2docbi100 0.6151 0.5974 0.4851 0.4230 0.1718
p16-Spirix09R001 0.6201 0.5958 0.5386 0.4920 0.2794
p5-BM25BOTrangeFOC 0.6031 0.5954 0.5470 0.4789 0.2713
p10-MPII-CASFoBM 0.5643 0.5161 0.4454 0.3634 0.1644
p25-ruc-base-casF 0.5114 0.4775 0.4077 0.3214 0.1666
p346-utCASrefF09 0.4353 0.3955 0.3477 0.2781 0.1471
p55-doshisha09f 0.1273 0.0651 0.0307 0.0227 0.0060

as relevant if some part of it is highlighted by the assessor. We derive an article
retrieval run from every submission using a first-come, first served mapping.
That is, we simply keep every first occurrence of an article (retrieved indirectly
through some element contained in it) and ignore further results from the same
article.
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Table 17. Top 10 Participants in the Ad Hoc Track: Article retrieval.

Participant P5 P10 1/rank map bpref

p6-UamsTAbi100 0.6500 0.5397 0.8555 0.3578 0.3481
p48-LIG-2009-BIC-1B 0.6059 0.5338 0.8206 0.3573 0.3510
p62-RMIT09title 0.6029 0.5279 0.8237 0.3540 0.3488
p5-BM25ArticleRIC 0.6147 0.5294 0.8240 0.3477 0.3333
p4-Reference 0.6147 0.5294 0.8240 0.3477 0.3333
p36-utampere given30 nolinks 0.6147 0.5294 0.8240 0.3477 0.3333
p68-I09LIP6OWA 0.6118 0.5147 0.8602 0.3420 0.3258
p10-MPII-COArBP 0.6353 0.5471 0.8272 0.3371 0.3458
p92-Lyon3LIAmanQE? 0.6265 0.5265 0.7413 0.3335 0.3416
p78-UWatFERBase 0.5765 0.5088 0.8093 0.3267 0.3205

We use trec eval to evaluate the mapped runs and qrels, and use mean
average precision (map) as the main measure. Since all runs are now article
retrieval runs, the differences between the tasks disappear. Moreover, runs vio-
lating the task requirements are now also considered, and we work with all 172
runs submitted to the Ad Hoc Track.

Table 17 shows the best run of the top 10 participating groups. The first
column gives the participant, see Table 5 for the full name of group. The second
and third column give the precision at ranks 5 and 10, respectively. The fourth
column gives the mean reciprocal rank. The fifth column gives mean average
precision. The sixth column gives binary preference measures (using the top R
judged non-relevant documents). No less than seven of the top 10 runs retrieve
exclusively full articles: only rank two (p48-LIG-2009-BIC-1B), rank six (p36-
utampere given30 nolinks) and rank ten (p78-UWatFERBase) retrieve elements
proper. The relative effectiveness of these article retrieval runs in terms of their
article ranking is no surprise. Furthermore, we see submissions from all four
ad hoc tasks. A run from the Thorough task at rank 1; runs from the Best in
Context task at ranks 2 and 3; runs from the Relevant in Context task at ranks
4, 5 and 6; and runs from the Focused task at ranks 7, 8, 9 and 10.

If we break-down all runs over the original tasks, shown in Table 18), we
can compare the ranking to Section 4 above. We see some runs that are familiar
from the earlier tables: five Thorough runs correspond to Table 6, four Focused
runs correspond to Table 7, six Relevant in Context runs correspond to Table 8,
and five Best in Context runs correspond to Table 9. More formally, we looked
at how the two system rankings correlate using kendall’s tau.

– Over all 30 Thorough Task submissions the system rank correlation is 0.646
between MAiP and map.

– Over all 57 Focused task submissions the system rank correlation is 0.420
between iP[0.01] and map, and 0.638 between MAiP and map.

– Over all 33 Relevant in Context submissions the system rank correlation
between MAgP and map is 0.598.

– Over all 37 Best in Context submissions the system rank correlation between
MAgP and map is 0.517.
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Table 18. Top 10 Participants in the Ad Hoc Track: Article retrieval per task.

(a)Thorough Task
Participant P5 P10 1/rank map bpref

p6-UamsTAbi100 0.6500 0.5397 0.8555 0.3578 0.3481
p48-LIG-2009-thorough-1T 0.6118 0.5191 0.8042 0.3493 0.3392
p92-Lyon3LIAmanlmnt? 0.6382 0.5279 0.7706 0.3305 0.3374
p5-BM25thorough 0.6147 0.5294 0.8240 0.3188 0.3142
p10-MPII-COThBM 0.5853 0.5206 0.8084 0.3087 0.3138
p346-utCASartT09 0.5176 0.4588 0.7138 0.2913 0.2986
p60-UJM 15486 0.5647 0.4765 0.7149 0.2797 0.2884
p68-I09LIP6OWATh 0.4735 0.4353 0.7100 0.2665 0.2745
p72-umd thorough 3 0.5382 0.4515 0.7406 0.2486 0.2674
p167-09RefT 0.3765 0.3603 0.5761 0.2443 0.2540

(b) Focused Task
Participant P5 P10 1/rank map bpref

p48-LIG-2009-focused-1F 0.6059 0.5338 0.8206 0.3569 0.3506
p5-BM25ArticleFOC 0.6147 0.5294 0.8240 0.3477 0.3333
p68-I09LIP6OWA 0.6118 0.5147 0.8602 0.3420 0.3258
p10-MPII-COArBP 0.6353 0.5471 0.8272 0.3371 0.3458
p92-Lyon3LIAmanQE? 0.6265 0.5265 0.7413 0.3335 0.3416
p78-UWatFERBase 0.5765 0.5088 0.8093 0.3267 0.3205
p60-UJM 15525 0.5824 0.4926 0.8326 0.3256 0.3169
p16-Spirix09R002 0.5206 0.4588 0.7250 0.3133 0.3149
p6-UamsFSsec2docbi100 0.5941 0.4779 0.8958 0.2985 0.2994
p346-utCASartF09 0.5176 0.4588 0.7138 0.2913 0.2986

(c) Relevant in Context Task
Participant P5 P10 1/rank map bpref

p48-LIG-2009-RIC-1R 0.6059 0.5338 0.8206 0.3569 0.3506
p6-UamsRSCMartCMdocbi100 0.6324 0.5309 0.9145 0.3523 0.3374
p5-BM25ArticleRIC 0.6147 0.5294 0.8240 0.3477 0.3333
p4-Reference 0.6147 0.5294 0.8240 0.3477 0.3333
p36-utampere given30 nolinks 0.6147 0.5294 0.8240 0.3477 0.3333
p346-utCOartR09 0.5324 0.4882 0.7448 0.3120 0.3137
p72-umd ric 2 0.5441 0.4544 0.7807 0.2708 0.2867
p167-09RefR 0.3765 0.3603 0.5761 0.2443 0.2540
p25-ruc-base-casF 0.4441 0.4176 0.6270 0.2243 0.2523
p60-UJM 15488 0.4382 0.3853 0.6043 0.2146 0.2343

(d) Best in Context Task
Participant P5 P10 1/rank map bpref

p48-LIG-2009-BIC-1B 0.6059 0.5338 0.8206 0.3573 0.3510
p62-RMIT09title 0.6029 0.5279 0.8237 0.3540 0.3488
p5-BM25AncestorBIC 0.6147 0.5294 0.8240 0.3477 0.3333
p36-utampere given30 nolinks 0.6147 0.5294 0.8240 0.3477 0.3333
p6-UamsBAfbCMdocbi100 0.6147 0.5118 0.8531 0.3361 0.3251
p10-MPII-COBIBM 0.5824 0.5191 0.8451 0.3325 0.3315
p92-Lyon3LIAmanBEP? 0.6382 0.5279 0.7706 0.3305 0.3374
p25-ruc-term-coB 0.5206 0.4779 0.7158 0.3197 0.3251
p346-utCOartB09 0.5324 0.4882 0.7448 0.3120 0.3137
p60-UJM 15508 0.5324 0.4544 0.7020 0.2910 0.292545



Overall, we see a reasonable correspondence between the rankings for the ad hoc
tasks in Section 4 and the rankings for the derived article retrieval measures. The
correlation between article retrieval and the “in context” tasks was much higher
(0.79) for the INEX 2008 collection. A likely effect of the increasing length of
(relevant) Wikipedia articles.

7 Discussion and Conclusions

In this paper we provided an overview of the INEX 2009 Ad Hoc Track that
contained four tasks: For the Thorough Task a ranked-list of results (elements or
passages) by estimated relevance was required. For the Focused Task a ranked-
list of non-overlapping results (elements or passages) was required. For the Rel-
evant in Context Task non-overlapping results (elements or passages) grouped
by the article that they belong to were required. For the Best in Context Task
a single starting point (element’s starting tag or passage offset) per article was
required. We discussed the results for the four tasks, and analysed the relative
effectiveness of element and passage runs, of runs using phrases, of runs using
the reference run, and of keyword (CO) queries and structured queries (CAS).
We also look at effectiveness in term of article retrieval.

Given the efforts put into the fair comparison of element and passage retrieval
approaches, the number submissions using FOL passages and range of elements
was disappointing. Thirteen submissions used ranges of elements or FOL passage
results, whereas 144 submissions used element results. In addition, several of the
passage or FOL submissions used exclusively full articles as results. Still the
non-element submissions were competitive with the top ranking runs for both
the Focused and Relevant in Context Tasks, and the second ranking run for
the Best in Context Task. There were too few submissions to draw any definite
conclusions, but the outcome broadly confirms earlier results using passage-based
element retrieval [3, 4].

There were also few submissions using the explicitly annotated phrases of the
phrase query: ten in total. Phrase query runs were competitive with several of
them in the overall top 10 results, but the impact of the phrases seemed marginal.
Recall, that the exact same terms were present in the CO query, and the only
difference was the phrase annotation. This is in line with earlier work. The use of
phrases in queries has been studied extensively. In early publications, the usage
of phrases and proximity operators showed improved retrieval results but rarely
anything substantial [e.g., 2]. As retrieval models became more advanced, the
usage of query operators was questioned. E.g., Mitra et al. [8] conclude that
when using a good ranking algorithm, phrases have no effect on high precision
retrieval (and sometimes a negative effect due to topic drift). Rasolofo and Savoy
[9] combine term-proximity heuristics with an Okapi model, obtaining marginal
improvements for early precision but with hardly observable impact on the MAP
scores.

There were 19 submissions using the reference run providing a solid article
ranking for further processing. These runs turned out to be competitive, with
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runs in the top 10 for all tasks. Hence the reference run was successful in helping
participants to create high quality runs. However, run based on the reference
run were not directly comparable, since participants used these runs in different
ways leading to substantially different underlying article rankings.

When examining the relative effectiveness of CO and CAS we found that for
all tasks the best scoring runs used the CO query but some CAS runs were in
the top 10 for all four tasks. Part of the explanation may be in the low number of
CAS submissions (40) in comparison with the number of CO submissions (117).
Only 50 of the 68 judged topics had a non-trivial CAS query, and the majority
of those CAS queries made only reference to particular tags and not on their
structural relations. The YAGO tags potentially expressing an information need
naturally in terms of structural constraints, were popular: 36 CAS queries used
them (21 of them judged). Over the 50 non-trivial CAS queries, most groups had
a better performing run using the CO query. A notable exception was QUT who
had better performance for CAS on the Focused Task. This is in accordance with
earlier results showing that structural hints can help promote initial precision [5].

As in earlier years, we saw that article retrieval is a reasonably effective at
XML-IR: for each of the ad hoc tasks there were three article-only runs among
the best runs of the top 10 groups. When looking at the article rankings inherent
in all Ad Hoc Track submissions, we saw that again three of the best runs of
the top 10 groups in terms of article ranking (across all three tasks) were in fact
article-only runs. This also suggests that element-level or passage-level evidence
is valuable for article retrieval. When comparing the system rankings in terms of
article retrieval with the system rankings in terms of the ad hoc retrieval tasks,
over the exact same topic set, we see a reasonable correlation. The systems with
the best performance for the ad hoc tasks, also tend to have the best article
rankings.

Finally, the Ad Hoc Track had three main research questions. The first main
research question was to study the effect of the new collection. We saw that the
collection’s size had little impact, but that the relevant articles were much longer
(a mean length 3,030 in 2008 and 5,775 in 2009, a 52% increase), leading to a
lower fraction of highlighted text per article (a mean of 58% in 2008 and 33%
in 2009). This also reduced the correlation with article retrieval, e.g., from 79%
for the “in context” tasks in 2008 to 51–58% in 2009. The second main research
question was the impact of verbose queries using phrases or structural hints.
The relatively few phase query submissions showed only marginal differences.
The CAS query runs were in general less effective than the CO query runs,
with one notable exception for the early precision measures of the Focused Task.
The second main research question was the comparative analysis of element and
passage retrieval approaches, hoping to shed light on the value of the document
structure as provided by the XML mark-up. Despite the low number of non-
element runs, we saw that some of the best performing system used FOL passages
or ranges of elements. For all main research questions, we hope and expect that
the resulting test collection will prove its value in future use. After all, the
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main aim of the INEX initiative is to create bench-mark test-collections for the
evaluation of structured retrieval approaches.
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A Appendix: Full run names

Group Run Label Task Query Results Notes

4 617 Reference RiC CO Ele Reference run Article-only
5 744 BM25AncestorBIC BiC CO Ele Article-only
5 757 BM25thorough Tho CO Ele
5 775 BM25ArticleFOC Foc CO Ele Article-only
5 781 BM25BOTrangeFOC Foc CAS Ran Article-only
5 792 ANTbigramsRangeFOC Foc CO Ran Article-only
5 796 BM25ArticleRIC RiC CO Ele Article-only
5 797 BM25RangeRIC RiC CO Ran Article-only
5 804 BM25BOTrangeRIC RiC CAS Ran Article-only
5 808 BM25BOTthorough Tho CAS Ele
5 824 BM25bepBIC BiC CO Ele Article-only
5 825 BM25BOTbepBIC BiC CAS Ele Article-only
6 634 UAmsIN09article Tho CO Ele Article-only
6 810 UamsTAbi100 Tho CO Ele Article-only
6 813 UamsFSsec2docbi100 Foc CAS Ele
6 814 UamsRSCMartCMdocbi100 RiC CO Ele
6 816 UamsBAfbCMdocbi100 BiC CO Ele Article-only
6 817 UamsBSfbCMsec2docbi100art1 BiC CAS Ele Article-only
10 618 MPII-CASFoBM Foc CAS Ele
10 619 MPII-COFoBM Foc CO Ele
10 620 MPII-CASThBM Tho CAS Ele
10 621 MPII-COThBM Tho CO Ele
10 628 MPII-COArBM Foc CO Ele Article-only
10 632 MPII-COBIBM BiC CO Ele Article-only
10 700 MPII-COArBP Foc CO Ele Article-only
10 709 MPII-COArBPP Foc CO Ele Phrases Article-only
16 872 Spirix09R001 Foc CAS Ele Article-only
16 873 Spirix09R002 Foc CAS Ele Article-only
22 672 emse2009-150 Foc CO Ele Phrases Manual
25 727 ruc-base-coT Tho CO Ele
25 737 ruc-term-coB BiC CO Ele
25 738 ruc-term-coF RiC CO Ele
25 739 ruc-term-coF Foc CO Ele
25 898 ruc-base-casF Foc CAS Ele
25 899 ruc-base-casF RiC CAS Ele
36 688 utampere given30 nolinks RiC CO Ele Reference run
36 701 utampere given30 nolinks BiC CO Ele Reference run
36 708 utampere auth 40 top30 RiC CO Ran
48 682 LIG-2009-thorough-1T Tho CO Ele
48 684 LIG-2009-thorough-3T Tho CO Ele Reference run
48 685 LIG-2009-focused-1F Foc CO Ele
48 686 LIG-2009-focused-3F Foc CO Ele Reference run
48 714 LIG-2009-RIC-1R RiC CO Ele
48 716 LIG-2009-RIC-3R RiC CO Ele Reference run
48 717 LIG-2009-BIC-1B BiC CO Ele
Continued on Next Page. . .
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Group Run Label Task Query Results Notes

48 719 LIG-2009-BIC-3B BiC CO Ele Reference run
55 836 doshisha09f Foc CAS Ele
60 819 UJM 15518 Foc CO Ele Reference run
60 820 UJM 15486 Tho CO Ele
60 822 UJM 15494 Tho CO Ele Reference run
60 827 UJM 15488 RiC CO Ele
60 828 UJM 15502 RiC CO Ele
60 829 UJM 15503 RiC CO Ele Reference run
60 830 UJM 15490 BiC CO Ele
60 832 UJM 15508 BiC CO Ele Reference run
60 868 UJM 15525 Foc CO Ele Article-only
62 895 RMIT09title BiC CO Ele Article-only
62 896 RMIT09titleO BiC CO FOL Article-only
68 679 I09LIP6Okapi Foc CO Ele Article-only
68 681 I09LIP6OWA Foc CO Ele Article-only
68 704 I09LIP6OWATh Tho CO Ele
72 666 umd ric 1 RiC CO Ele
72 667 umd ric 2 RiC CO Ele
72 870 umd thorough 3 Tho CO Ele
78 706 UWatFERBase Foc CO FOL
78 707 UWatFERBM25F Foc CO FOL
92 694 Lyon3LIAautoBEP BiC CAS Ele Phrases
92 695 Lyon3LIAmanBEP BiC CO Ele Phrases Manual Article-only
92 697 Lyon3LIAmanQE Foc CO Ele Phrases Manual Article-only
92 699 Lyon3LIAmanlmnt Tho CO Ele Phrases Manual
167 651 09RefT Tho CO Ele Reference run Article-only
167 654 09LrnRefF Foc CO Ele Reference run Article-only
167 657 09RefR RiC CO Ele Reference run Article-only
167 660 09LrnRefB BiC CO Ele Reference run Article-only
346 637 utCASartT09 Tho CAS Ele Article-only
346 638 utCASartF09 Foc CAS Ele Article-only Invalid
346 639 utCOartR09 RiC CO Ele Article-only Invalid
346 640 utCOartB09 BiC CO Ele Article-only Invalid
346 645 utCASrefF09 Tho CAS Ele Reference run
346 646 utCASrefF09 Foc CAS Ele Reference run
346 647 utCASrefR09 RiC CAS Ele Reference run
346 648 utCASrefB09 BiC CAS Ele Reference run
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Abstract.

1 Introduction

2 Data preparation

Indexing XML elements without annotation element. We didn’t stem the corpus
and we didn’t use a stop words list. Concerning queries, we use only the title
part and removing all negative terms.

2.1 Manually Assessments

The collection is new so we had to build some learning sets for our models.

Training set We assessed manually 20 randomly choosed queries from last INEX
competitions (from 2006 to 2008). We keep the same interrogation strategy as
told before as take only the title part of queries removing stop words and without
stemming step made on words.

The assessment protocol was made by pooling technique where we took top k
results of nmodels which give us a better diversity of results. So for each query we
ran three models (BM25[5] with b = 0.5 and k = 1.2, LogTF[?] and a Language
Model with an Absolute Discount smoothing function[?] with δ = 0.88). Then
for each results list returned by each model, we selected relevant documents in
the top 50 of the list.

At the end, for each relevant document we judged only relevant elements.
According to us, we considered only element which could be a member of these
XML tags : {article, title, bdy, section, p, item}. An element is described as rel-
evant when it contains any relevant text according to the query. In total, 214
documents with at least one relevant element have been assessed which gives a
total of 1285 relevant elements for 20 queries.

Validation set We need to build a validation set of queries to help us to select
the hyperparameter of our models (C in the ??). We randomly took another 20
queries from the INEX 2009 competition. For that we decided to use the reference
run given by organisers where we assessed only elements/documents in the top
50 of the list. So we stored 552 relevant elements spread in 164 documents.
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2.2 Extracted features for learning

3 Models

4 Experiments

5 Results

5.1 Focused task

5.2 Thorough Task

6 Conclusion

References

1. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. In Jordan, M.I.,
Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems.
Volume 10., The MIT Press (1998)

2. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. In: Proceedings of ICML-98, 15th International Conference
on Machine Learning. (1998)

3. Xu, J., Li, H.: AdaRank: A Boosting Algorithm for Information Retrieval. In:
SIGIR ’07: Proceedings of the 28th annual international ACM SIGIR conference.
(2007)

4. Tsai, M-F., Liu, T-Y., Qin, T., Chen, H-H., Ma, W-Y. : FRank: A Ranking Method
with Fidelity Loss. In: SIGIR ’07: Proceedings of the 28th annual international
ACM SIGIR conference. (2007)

5. Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at
TREC. In: Text REtrieval Conference. (1992) 21–30

52



Peking University at INEX 2009: Ad Hoc Track

Ning Gao1, Zhi-Hong Deng1, Yong-Qing Xiang1, and Hang Yu1

1 Key Laboratory of Machine Perception (Ministry of Education)
School of Electronic Engineering and Computer Science, Peking University

nanacream@gmail.com; zhdeng@cis.pku.edu.cn; xiangyq@cis.pku.edu.cn;

pkucthh@gmail.com

Abstract. This paper describes Peking University’ approach to the Ad Hoc Track.
In our first participation, results for all four tasks were submitted: the Best In
Context, the Focused, the Relevance In Context and the Thorough. Based on re-
trieval method Okapi BM25, we implement two different ranking methods Nor-
malBM25 and LearningBM25 according to different parameter settings. Spe-
cially, the parameters used in LearningBM25 are learnt by a new learning method
called ListBM. The evaluation result shows that LearningBM25 is able to beat
NormalBM25 in most tasks.

1 Introduction

INEX Ad Hoc Track[1] aims to evaluate performance in retrieving relevant results (e.g.
XML elements or documents) to a certain query. Based on lots of research and com-
parative experiments, Okapi BM25[2] is confirmed to be an effective ranking method. It
takes both text and structure information into consideration. Plus, evaluation results of
Ad Hoc Track show that Okapi BM25 performs better than some other frequently cited
ranking models, such as TF*IDF[3] and so on. Motivated by BM25’s excellent perfor-
mance, many participants prefer BM25 as their basic retrieval model. In INEX 2008
Ad Hoc Track, University of Waterloo[4] outperforms in all three tasks of Measured as
Focused Retrieval, known as Best in Context, Focused and Relevance in Context. The
ranking system Waterloo used is ”a biased BM25 and language modeling, in addition
to Okapi BM25”[4].

However, in Okapi BM25 formula, there are several parameters used to adjust the
proportion of element length and term frequency (tf) in the final score and they are
frequently set manually by participants. Here we note that different parameter settings
might lead to totally different evaluation results. Thus, in order to get a more rigorous,
evidence-based and data-based parameter setting, a listwise machine learning method
to learn the parameter settings is proposed. We call it listBM.

In detail, figure1 shows the architecture of our ranking system. Firstly, when user sub-
mits a query, a results recognizer will calculate the result elements by matching the
Keywords and the Inverted Index. An element is defined as a result element only if it
contains all the keywords. The output of results recognizer is a Results Set, in which
result elements are disordered. Therefore, a ranking method BM25 is introduced to sort
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these result elements according to their relevance to the query. However, according to
different parameter settings used in BM25, we implement two different ranking mod-
els NormalBM25 and LearningBM25. In NormalBM25, the parameter setting we used
is same as what Waterloo used in INEX 2008. We call this parameter setting the Ori-
gin Parameter Setting. The result list ranked by using this parameter setting is called
NormalBM25 Results. While in LearningBM25 model, the parameters are learned by
a machine learning method called ListBM, to be introduced in section 3. The result list
ranked by BM25 using this Learnt Parameter Setting is defined as LearningBM25 Re-
sults. We submit both the NormalBM25 results and the LearningBM25 results in four
tasks of INEX 2009 Ad Hoc Track. The evaluation results show that LearningBM25
results perform better than NormalBM25 results, indicating that our learning method
ListBM indeed help to improve the performance.

In section 2, we introduce the concepts of BM25 and background of machine learn-
ing method we used. Section 3 describes our learning method ListBM. In section 4, we
show the evaluation results. Section 5 is the conclusion and future work.

Fig. 1. Architecture of Ranking System

2 Related Work

2.1 Okapi BM25

BM25 is a widely quoted ranking method. It shows excellent performance referring to
the evaluation results of INEX in the past years. For our method, to score an element
according to its relevance to a certain query, we chose BM25 as our basic ranking
model. In detail, the score is defined as follows.
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score(e,Q) =
∑
t∈Q

Wt
(k1 + 1)t f (t, e)

k1(1 − b + b len(e)
avel ) + t f (t, e)

(1)

score(e,Q) measures the relevance of element e to a certain query Q; Wt is the weight
of term t indicating the inverse term frequency(IDF) of term t in collection. t f (t, e) is
the frequency of term t appearing in element e; Nd denotes the number of files in data
collection; n(t) denotes the occurrence of term t in collection; len(e) denotes the length
of element e and avel denotes the average length of elements in whole collection. Two
parameters, k1 and b, are used to balance the weight of term frequency (tf) and element
length(len) in final score.

2.2 Learning-to-Rank Methods

Learning-to-Rank methods focus on using machine learning algorithms for better rank-
ing. Many learning-to-rank algorithms have been proposed. According to different ”in-
stance” they use, learning-to-rank methods can be classified into three categories[5]:
pointwise, pairwise and listwise.

In pointwise methods, documents are used as learning instance. The relevant score of a
document is calculated by its features such as term frequency (tf), tag name and docu-
ment links. This kind of algorithm attempts to find classification engine that can mark
document as relevant or irrelevant correctly.

Pairwise methods, such as RankBoost[6] and RankSVM[7], take document pair as learn-
ing instance. Consider two documents d1 and d2, if d1 is more relevant than d2 to a
certain query Q, then the document pair (d1, d2) is set to 1, otherwise it is set to -1.
Pairwise methods target at training a learning engine to find the best document pair
preferences.

In listwise methods, document list is taken as learning instance to train ranking engines.
To find the best ranked list is the final goal. There are several well-known listwise meth-
ods such as Listnet[5], ListMLE[8], SVM-MAP[9] and so on.

Comparative tests[10] have shown that listwise methods perform best in these three cat-
egories.

3 Learning Method ListBM

3.1 ListBM

In NormalBM model, the parameter setting used in BM25 is same as waterloo set in
INEX 2008. In LearningBM model, the parameters are learnt by a learning method
called ListBM. We use INEX 2008 data collection as the training data base.

In training, there is a set of query Q = {q1, q2, , qm}. Each query qi is associated with a
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Fig. 2. Algorithm1

ranked list of relevant documents Di = {di
1, d

i
2, , d

i
n}, where di

j denotes the j-th relevant
document to query qi. These relevant documents lists, downloaded from the website of
INEX, are used as standard results in our training. What’s more, for each query qi, we
use basic ranking method BM25 mentioned in 2.1 to get a list of search results RLi.
Results returned by BM25 are all in form of elements. The first n result elements of RLi

are recorded in Ri = {ri
1ri

2, , r
i
n}. Then each documents list Di and elements list Ri form

a ”instance”.

The loss function is defined as the ”distance” between standard results lists Di and
search results lists Ri. Therefore, the objective of learning is formalized as minimiza-
tion of the total losses with respect to the training data.

m∑
i=1

L(Di,Ri) (2)

Suppose there are two search results R, R’ and a standard result D, the definition of loss
function should meet the following two criterions:

– The loss value should be inversely proportional to the recall. If R contains more
relevant results appeared in D than R’ does, then the loss value of R should be
smaller than the loss value of R’.

– The loss value should be inversely proportional to the precision. If the relevant
content contained by R has the higher relevance degree (they appear in the top-
ranking documents in D), then the loss value of R should be lower.
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According to these two criterions, we define the loss function for a single query qi

as:

L(Di,Ri) =
mn2∑n

j=1 ranki
j

(3)

ranki
j =

{
0, if the j-th result in Ri does not appear in Di (4a)
k, if the j-th result in Ri is contained by the k-th result in Di (4b)

Where m is the number of queries in Q and n is the number of relevant documents in Di

corresponding to a certain query qi. ranki
j is divided into two parts: (1) if the j-th result

element in Ri isn’t contained by any relevant documents in Di, then ranki
j is set to 0; (2)

if the j-th result element in Ri is contained by the k-th relevant document di
k in Di, then

ranki
j is set to k.

Using the pair of standard results D and searching results R as ”instance”, L defined
above as loss function, we implement a learning method ListBM to learn the two pa-
rameters k1 and b in BM25 separately. Figure 2 describes the procedure of learning
parameter k1.

When learning k1, parameter b will be initialized to 0.8. While randomly entering an
original value of k1, the loop won’t end until the new updated k1 begin to increase the
loss value. The output is a pair of {kmin,min

∑m
i=1 L(Di,Ri)}, in which min

∑m
i=1 L(Di,Ri)

is the minimum loss value got in the process and kmin is the corresponded k1. While
learning parameter b, k1 is a content value 4 and b is updated according to the loss func-
tion. What’s more, the output will be the pair of {bmin,min

∑m
i=1 L(Di,Ri)}, in which bmin

is the better b leading to minimum loss value.

3.2 Experiments

We implemented our ranking system in C++. The data collection we use is the English
files of wiki provided by INEX 2008 Ad Hoc Track. The total size with these 659,388
files is 4.6G. In the process of reading and analyzing these XML files, we remove all
the stop word from a standard stop word list before stemming. We use 8 queries from
INEX 2008 topic pool in the training process. Totally 4800 documents are signed as
relevant results. Figure 2 and figure 3 show the learning results of k1 and b.

Figure3 illustrates the learning results of k1. In NormalBM model, the k1 is set to 4.
As is shown, in total 4800 search results, only 1572 results are relevant according to
the standard results when k1 is set to 3.277. The best set of k1 is 35 so that the relevant
results can reach up to 1704.

Figure4 shows the learning result of b. The origin set of b is 0.8 according to the pa-
rameter setting of Waterloo. Result shows that b = 0.8 is indeed the best set leading to
a better searching performance. Hence, the parameter setting of {k1, b} is set to {35, 0.8}
in LearningBM model and {4, 0.8} in NormalBM model.
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Fig. 3. learning result of k1 Fig. 4. learning result of b

4 Evaluation Results

We submit both NormalBM results and LearningBM results for all four tasks to com-
pare the performance. We get evaluation results for three of four tasks. Table 1 shows
the evaluation results of Measured as Focused Retrieval in which the search results are
elements. Table 2 describes the search performance of Measured as Document Retrieval
tasks. We can say that, in most conditions, the retrieval effectiveness of LearningBM is
better than that of NormalBM.

Table 1. evaluation results of element retrieval

Measured as Focuesd Retrieval
Best in Context Focused Through

LerningBM25 0.0953 0.3072 0.0577
NormalBM25 0.0671 0.1779 0.0521

Table 2. evaluation results of element retrieval

Measured as Document Retrieval
Best in Context Focused Through

LerningBM25 0.2382 0.2382 0.1797
NormalBM25 0.1849 0.1847 0.1689
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5 Conclusion and Future Work

We propose a new learning method ListBM to learn the parameters in ranking method
BM25. ListBM is a listwise learning method, using the data source of INEX 2008 Ad
Hoc Track as training data base. The evaluation results show that parameter setting
learnt by ListBM performs better than parameter setting set manually.

For the future work, we will continue to work on the following problems:

– The training data we used is the collection of INEX 2008 Ad Hoc Track. However,
data collection has changed a lot for INEX 2009. We will study the learning to rank
method on the new collection in the future.

– There are only 8 queries used in training. For the further study, more queries from
INEX 2009 topics pool will be searched in the learning process.

– We will propose new definition of ”distance” between the search result list and
the standard result list. Furthermore, a more reasonable loss function and a new
updating method will be introduced.
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Abstract. This paper1 presents our participation to the INEX 2009
Ad Hoc track. We have experimented the tuning of various parameters
using a ”learning” collection (i.e. INEX 2008) quite different than the
”testing” collection used for 2009 INEX Ad Hoc. Several parameters
have been studied for articles retrieval as well as for element retrieval,
especially the two main BM25 weighting function parameters : b and k1.

1 Introduction

The focused information retrieval (IR) aims at exploiting the documents struc-
ture in order to retrieve the relevant elements (parts of documents) for a user
information need. The structure can be used to emphasize some particular words
or some parts of the document: the importance of a term depends on its format-
ting (e.g. bold font, italic, etc.), and also on its position in the document (e.g.,
title terms versus text body). During our previous INEX participations, we have
developed a probabilistic model that learn a weight for XML tags, represent-
ing the tag capability to emphasize relevant text fragments [2]. One interest-
ing result is that articles retrieval based on BM25 weighting gives good results
against elements retrieval, even when considering a precision oriented measure
(i.e. iP [0.01]): 3 articles retrieval runs appear in the top-10 of the focused task
(2nd, 4th and 8th, cf. [5]), and the 3 best MAiP runs are 3 articles retrieval runs!
Thus a question comes: ”Is BM25 suitable for elements retrieval”? Indeed, we
can imagine that, BM25 being developed for articles retrieval, its adaptation to
element retrieval is a challenging problem ? This problem has been addressed
e.g. with BM25e weighting [6].

Our objectives during INEX 2009 was to answer to three questions:

– is it possible to apply our probabilistic model on this 2009 new collection ?
– is it possible to reuse the parameters tuned with INEX 2008 collection?
– is it still possible to obtain very good results with articles retrieval against

elements retrieval? (i.e. articles retrieval gives good results considering MAiP,
and elements retrieval is just slightly better considering iP [0.01]).

1 This work has been partly funded by the Web Intelligence project (région Rhône-
Alpes, cf. http://www.web-intelligence-rhone-alpes.org).
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The new INEX collection does not allow to answer the first question, because
we do not have a training collection using the same XML tags than in INEX 2009.
This paper deals with the two other questions, using the 2008 INEX collection
as a training collection. We present the experimental protocol in section 2, then
our system overview in section 3, our tuning experiments using INEX 2008 in
section 4, and finally our results in the INEX 2009 competition in section 5.

2 Experimental protocol

We have used the INEX Ad-Hoc 2008 collection as a training collection, and
the INEX 2009 collection as a test collection. INEX 2008 collection contains
659,388 XML articles extracted from the English Wikipedia in early 2006 [1]
and 70 queries. INEX 2009 collection contains 2,666,190 XML articles extracted
from the English Wikipedia on 8 october 2008 [8] and 115 queries. All the results
presented here on 2008 collection were computed using the INEX 2008 evaluation
programs: eval inex, version 1.0.

Our evaluation is based on the main INEX measures (iP [x] the precision
value at recall x, AiP the interpolated average precision, MAiP the interpolated

mean average precision and MAgP the generalized mean average precision [3]).
The main ranking of INEX competition is based on iP [0.01] instead of the overall
measure MAiP , allowing to emphasize the precision at low recall levels.

Given that every experiment is submitted to INEX in the form of a ranked
list of a maximum of 1,500 XML elements for each query, such measures favor,
in terms of recall, the experiments for which whole articles are found (thereby
providing a greater quantity of information for 1,500 documents). This is prob-
lematic in the case of Focused IR as more focused answers may be penalized
even though it is the very purpose of Focused IR to be able to return better
granulated answers (in the form of relevant elements, reduced from a whole arti-
cle). Thus, we also calculated R[1500], the recall rate for 1,500 documents, and
S[1500], the size (in Mb) of the 1,500 documents which were found.

3 System overview

Our system is based in the BM25 weighting function [7], that processes articles
aj a well as elements ej:

wji =
tfji × (k1 + 1)

k1 × ((1 − b) + (b ∗ ndl)) + tfji

× log
N − dfi + 0.5

dfi + 0.5
(1)

with:

– tfji: the frequency of ti in article aj (resp. element ej).
– N : the number of articles (resp. elements) in the collection.
– dfi: the number of articles (resp. elements) containing the term ti.
– ndl: the ratio between the length of articles aj (resp. elements ej) and the

average article (resp. element) length (i.e. its number of terms occurrences).
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– k1 and b: the classical BM25 parameters.

Parameter k1 allows to control the term frequency saturation. Parameter b

allows to set the importance of ndl, i.e. the importance of document length nor-
malization (cf. equation 1). This is particularly important in focused IR as the
length variation for elements is greater than that of articles, as each article is
fragmented into elements (we set the minimum element length at 10 words, and
the largest article contains 35,000 words).

Our system also considers some other parameters, e.g.:

– logical tags: list of XML tags which the system will consider either at in-
dexing time or during the query step (the system will therefore not be able
to return an element that does not belong to this list);

– minimum size: minimum size of documents (articles/elements) (# of terms);
– levelmax: maximum depth of documents (depth of XML tree);
– df : dfi value for each term, computed on articles (INEX 2008: max(dfi) =

659, 388); or on elements (INEX 2008: max(dfi) between 1 and 52 millions);
– stop words: using a stop words list;
– parameters concerning queries handling: andish mode, mandatory or banned

query terms (+/- operators).

4 Parameters tuning (INEX 2008)

4.1 System settings

All our runs have been obtained automatically, and using only the query terms
(i.e the title field of INEX topics). We thus do not use fields description, narrative

nor castitle.
Several parameters have been studied for articles retrieval as well as for

element retrieval. Some parameters were set after a few initial experiments, e.g.:

– logical tags (articles retrieval): article;
– logical tags (elements retrieval): article, li, row, template, cadre, normallist,

section, title, indentation1, numberlist, table, item, p, td, tr;
– minimum sizeterms: 10 terms. Some analysis on the assessments (not pre-

sented here) have shown that it is unnecessary to consider elements smaller
than 10 terms, because these small elements are either non-relevant or their
father is 100% relevant (and in this case it is better to return the father,
which is bigger and thus easier to index). Note that [4] have shown, using
former INEX 2002 collection, that an optimal value for this parameter is to
be set around 40.;

– levelmax: 1 for articles retrieval, 23 for elements retrieval;
– df : computed on articles (resp. elements) while indexing articles (resp. ele-

ments), instead of computing an overall df (e.g. at article level) used while
indexing articles as well as elements. Note that [9] compute an overall df .

– stop words: 319 words from Glasgow Information Retrieval Group2,

2 List of 319 stop words from Glasgow Information Retrieval Group:
http://www.dcs.gla.ac.uk/idom/ir resources/linguistic utils/stop words
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Two important parameters were studied more thoroughly: b et k1, using a
2D grid: b varying from 0.1 to 1, with 0.1 steps, and k1 varying from 0.2 to 3.8
with 0.2 graduations), thus a total of 380 runs (articles and elements retrieval).

4.2 INEX 2008 tuning results

Figure 1 presents the behavior of the classical IR (articles), showing the MAiP
and iP [0.01] changes according to the b (resp. k1) values. For a given b value
(resp. k1 value), the iP [0.01] and MAiP measures drawn are the ones obtained
using the optimal k1 (resp. b) values.

The best (b, k1) values for classical IR are slightly higher for MAiP ((b, k1) =
(0.6, 2.2)) than for iP[0.01] ((b, k1) = (0.4, 1.6)). These values are not far from
the classical values proposed in the literature (e.g. (0.7, 1.2).

Fig. 1. Classical IR according to b and k1

Figure 2 presents the behavior of the BM25 model in focused IR. The best
(b, k1) values are quite different for MAiP ((b, k1) = (0.1, 2.2)) than for iP[0.01]
((b, k1) = (0.5, 0.8)). The best MAiP is reached with the minimum value b = 0.1.
The length normalization of BM25 seems to be counterproductive while optimiz-
ing recall in focused IR. On the other hand, it is still useful while optimizing
precision (best value: b = 0.5). The k1 (tf saturation) seems to be less important
for focused IR: either iP[0.01] and MAiP slightly fluctuate with k1.

Fig. 2. Focused IR according to b and k1
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The results obtained with the optimal parameter configuration are presented
in table 1 according to the iP [0.01] criterion and to the MAiP criterion.

Table 1. Evaluation of 380 runs with the iP [0.01] and MAiP criterion

Run Granularity Tags b k1 iP [0.01] #doc #art R[1500] S[1500]

R1 Articles - 0.4 1.6 0.6587 1,457 1,457 0.8422 8.22
R2 Elements - 0.5 0.8 0.6738 1,463 1,257 0.4134 1.65

Run Granularity Tags b k1 MAiP #doc #art R[1500] S[1500]

R3 Articles - 0.6 2.2 0.2910 1,457 1,457 0.8216 6.15
R4 Elements - 0.1 2.2 0.2664 1,459 1,408 0.7476 5.24

5 INEX 2009 results

We present in this section the official results obtained by our system during
INEX 2009 on the new INEX 2009 collection. We submitted 17 runs: 5 runs to
the Focused task and 4 runs to the Best In Context, the Relevant In Context
and the Thorough tasks. One run on each task is based on the BM25 reference
run given by the INEX organizers.

5.1 System settings

All our runs have been obtained automatically, and using only the title field of
INEX topics. Most of the settings given in section 4.1 have been reused for our
INEX 2009 runs, except:

– logical tags (elements retrieval): article, list, p, reflist, sec, ss1, ss2, ss3, ss4,
table, template (manually chosen);

– b and k1: 0.6 and 2.2 for articles retrieval (in order to maximize MAiP );
– b and k1: 0.5 and 0.8 for elements retrieval (in order to maximize iP [0.01]);
– levelmax: 1 for articles retrieval, 100 for elements retrieval;
– df : computed on articles while indexing articles (INEX 2009: max(dfi) =

2, 666, 190) and computed on elements while indexing elements (INEX 2009:
max(dfi) = 444, 540, 453).

5.2 Results: Focused task

Table 2 presents the official results of our runs, compared to UWFERBM25F2
(Waterloo University) which was the winning run for the Focused task.

Our system gives very interesting results compared to the best INEX systems.
The classical IR achieves better results in terms of precision: iP [0.01] = 0.6060
by UJM 15525, against focused IR: 0.5136 (UJM 15518). Moreover, we think
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Table 2. Official evaluation of 57 ”Focused” task runs

Run Granularity Reference run b k1 iP [0.01] Rang

UWFERBM25F2 Element - - - 0.6333 1

UJM 15525 Article - 0.6 2.2 0.6060 6
UJM 15479 Article - 0.6 2.2 0.6054 7
UJM 15518 Element yes 0.5 0.8 0.5136 36
UJM 15484 Element - 0.5 0.8 0.4296 45

that the classical IR superiority should be confirmed by MAiP ranking. This
confirms the results obtained during INEX 2008.

It is interesting to see that the BM25 model applied on full articles (UJM 15525
and UJM 15479) outperforms our focused retrieval results (UJM 15518 and
UJM 15484) considering iP [0.1], despite the fact that BM25 parameter ndl is
designed to take into account different documents lengths and thus documents
granularities.

5.3 Relevant In Context, Best In Context and Thorough

Our BIC, RIC and Thorough runs have not been computed specifically. We have
reordered and filtered some focused runs, in order to consider the RIC, BIC and
Thorough order and coverage rules. The following tables present our results to
these tasks.

Table 3. Official evaluation of 37 ”Best In Context” task runs

Run Granularity Reference run b k1 MAgP Rang

BM25bepBIC Element - - - 0.1711 1

UJM 15490 Element UJM 15479 0.5 0.8 0.0917 28
UJM 15506 Element UJM 15479 0.5 0.8 0.0904 30
UJM 15508 Element yes 0.5 0.8 0.0795 34

Table 4. Official evaluation of 33 ”Relevant In Context” task runs

Run Granularity Reference run b k1 MAgP Rang

BM25RangeRIC Element - - - 0.1885 1

UJM 15502 Element UJM 15479 0.5 0.8 0.1075 21
UJM 15503 Element yes 0.5 0.8 0.1020 26
UJM 15488 Element UJM 15479 0.5 0.8 0.0985 27

Runs UJM 15488 and UJM 15490 have been filtered with our best article run
(UJM 15479), while UJM 15500, UJM 15502 and UJM 15506 have been filtered
and re-ranked with the same article run (UJM 15479).
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Table 5. Official evaluation of 30 ”Thorough” task runs

Run Granularity Reference run b k1 MAiP Rang

LIG-2009-thorough-3T Element - - - 0.2855 1

UJM 15494 Element yes 0.5 0.8 0.2435 9
UJM 15500 Element UJM 15479 0.5 0.8 0.2362 12
UJM 15486 Element - 0.5 0.8 0.1994 17

6 Conclusion

Our run UJM 15525 is ranked sixth of the competition according to the iP [0.01]
ranking. That means that a basic BM25 article retrieval run (classical IR) gives
better ”precision” results (iP [0.01]) than BM25 element retrieval (focused IR),
and should also give better ”recall” results (MAiP ).

These results confirm that article retrieval gives very good results against
focus retrieval (as in 2008), even considering precision (that was not the case
in 2008). However, we don’t know if it comes from BM25, which is perhaps not
suitable for elements indexing, or if it comes from a wrong parameters settings.
It is perhaps not so easy to reuse settings of parameters tuned on a different
collection. We have to experiment more deeply on 2009 collection, using the
same 2D grid for b and k1, but also varying other parameters in order to check
where the results come from.
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Abstract. In this paper, we propose a method which can obtain more
appropriate results for XML search. Since our previous approach has a
problem that large-sized XML fragments tend to have large scores in
CO topics, it is not suitable for users to return the ranked results in the
descendant order of their scores. To cope with this problem, we generate
a final search result of XML fragments by integrating smaller-sized ones
with higher scores. We apply our approach to the probabilistic scoring
model which is often used in the field of XML search area.

1 Introduction

XML (Extensible Markup Language) is one of the structured document formats,
which becomes the de facto standard data exchange format. For this reason, a
number of XML documents have recently been produced. This surely continues
even in the future, and more and more XML documents would be produced. In
this situation, information retrieval techniques on XML documents become very
important and are strongly expected.

There are so many researches on XML. Focusing on XML search, there are
two goals to retrieve XML documents. One is efficient search. In contrast to
traditional text document search, XML search needs to retrieve results from more
candidates than the traditional one does. This is because an XML document can
be treated as a set of documents surrounded by each tag. In other words, a unit
of retrieval in XML search is smaller than that in text document search. The
unit of retrieval is usually called an XML fragment. The purpose of the efficient
search is to reduce processing time, hardware requirement, etc. Several attempts
of the efficient search could obtain good results. Lowest Common Ancestor,
LCA for short [7], is one of the well-known approaches. An LCA is defined
as a sub-tree in which all query keywords are contained and its height is the
lowest. If we assume that LCAs are the best answer to a given query, the query
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can be processed efficiently. However, the problem is that LCAs are not always
considered to satisfy user’s information needs.

Recently, in addition to the efforts of efficient search, effective search which
is the other goal has actively been studied. Users want to obtain useful results
rather even if it spends more time than useless ones faster. We have previously
proposed a scoring method for effective search. In this method, we combined two
different scores: term weighting and query weighting scores. This scoring method
could bring higher precision than one we proposed before. However, we found
that the precision of CO topics is still low. In order to investigate the problem of
our past approach, we first conduct preliminary experiments, and then, propose
a new method to improve the precision of CO topics.

This paper is organized as follows. In Section 2, we explain preliminary ex-
periments in detail. In Section 3, we propose a new method based on the exper-
imental results in Section 2. Related work is introduced in Section 4, followed
by concluding remarks and future work in Section 5.

2 Preliminary Experiments

In this section, we investigate why our previous approach brought different effects
on the precision between CAS and CO topics.

First, we calculate the average text size of search results ranked by our past
scoring method for the Focused task by using several queries. In our past ap-
proach, we sum up the following three scores: TF-IPF which is an extension
of the TF-IDF term weighting technique, TF-IAF which is a scoring method
of query structure, and query content score, QCS for short, which considers
the constituent rate of the query keywords in an XML fragment. Considering
the QCS, higher score is given to a larger-sized XML fragment. The reason is
that the more an XML fragment contains kinds of query keywords, the higher
query content score becomes. This property is quite different from TF-IPF [1]
and TF-IAF [4], which rarely produce large-sized XML fragments as a search
result. Therefore, we compared the text size of the XML fragments which have
high score for each scoring method. As a result, it turned out that the size of
XML fragments is large if we consider the QCS (see Table 1). This tendency is
observed more remarkably in CO topics, though it appears both CAS and CO
topics. This is because CAS queries return only the XML fragments satisfying
their structural constraints even if large XML fragments have higher score. On
the other hand, it is possible that such large fragments become a search result of
CO queries which do not have structural constraints. Therefore, it is considered
that the text size of XML fragments becomes larger for CO queries. Of course,
the XML fragments with large text size might have higher score even in CAS
topics if they meet structural constraints. We suppose that the precision becomes
higher if we can exclude the XML fragments which have large text size but low
score. In order to explore this hypothesis in detail, we conduct some experiments
to show the precision in Relevant in Context and Best in Context tasks for CAS,
CO, and their mixed queries. The summary of the results is shown as follows.
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– In Focused task which retrieves a set of the best single relevant XML frag-
ment from one document to a given query, CAS was more effective than
CO.

– In Relevant in Context task which is allowed to retrieve multiple relevant
XML fragments from one document, CO is more effective than CAS.

– In Best in Context task which extracts the closer start point to a relevant
fragment, CO is more effective than CAS. This tendency was observed more
clearly than Relevance in Context task.

From these results, it turns out that our past approach shows higher precision
in Relevant in Context task than the Focused one for CO topics. As discussed
earlier, the possibility that the retrieved XML fragments have extremely large
text size increases. On the other hand, the precision of CAS topics is compara-
tively low. Hence, it is not always true that retrieving XML fragments with large
text size results in low precision.

We first obtain relevant XML fragments to a given query by using our past
scoring method, called a ranked result. Then, we reconfigure them to present the
best Answer XML Fragments, which are a final search result. Each Answer XML
Fragment is a list of tree-structured relevant XML fragments in a document,
which is constructed by integrating the score of the ranked result, instead of
directly calculating the score of Answer XML Fragments. This is because XML
fragments in a document are often indirectly dependent each other. Therefore,
it is not suitable to directly calculate the score of XML fragments. As we see,
this approach is to improve the precision in Relevant in Context and Best in
Context tasks. We explain further detailed our methodology in the next section.

TF-IPF TF-IAF QCS

All 1.00 1.00 1.39

CAS 1.00 1.00 1.36

CO 1.00 1.00 1.45
Table 1. Comparison of text size

3 Generating Answer XML Fragments

In this section, we explain our method in detail.
In order to determine a search result, we perform the following two steps. The

first step scores each XML fragment and produces ranked results, which makes
use of our past approach of XML fragment search. The second step generates
Answer XML Fragments as a final search result, after the ranked XML fragments
acquired in the first step are grouped by their document ID and reconfigured.
The overview of our method is shown in Fig.3.

We explain the second step in more detail. XML search systems usually
calculate scores for fragments, which are regarded as independent each other
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DocID NodeID Score …1 1000 j .887 …2 2000 c .864 …3 1000 i .816 …4 3000 d .755 …5 2000 b .716 …6 1000 d .702 …

Ranked results

...

Querying Database with SQLSELECT DocID, NodeID, Score, …FROM …WHERE …

m 1000         k .322       …
n

.

Search result

root nodeelement nodetext node
a

2 4
5 6 83 109

7

DocID: 1000
. . . 100b de f

g hi jk
z

1c

6 8 109
7hi jk2 43de f

Fig. 1. Processing flow of our method

even in a XML document. Therefore, the document IDs in the ranked results
are usually interleaved. Since the objective of our approach is not to show the
ranked fragments judged as relevant in the descendant order of their scores but
to present ideal fragments as Answer XML Fragments, we arrange the ranked
fragments so that they are grouped by document ID. We explain its procedure
to generate Answer XML Fragments by using an example shown in Fig.3.

In order to generate a final search result, the ranked fragments grouped by
document ID and sorted in the descendant order of the scores are inserted into
an Answer XML Fragment as long as the size of the Answer XML Fragment is
less than a threshold, called Extraction Limit, or EL for short. The EL which is
defined as the following expression is utilized so that the text size of fragments
does not become too large.

EL = α · textsize(root) (1)

Note that α is an indicator how much ratio an XML document has relevant
fragments. We set α to 1

3 in the example. Since textsize(root) is identical to the
text size of the XML document, which is 300 in this case, EL is 100.

We also define connecting cost, CCost, as the distance between the node
to be inserted and its nearest node in an Answer XML Fragment, where the
distance is path length between two nodes. If the connecting cost is less than a
threshold, called Connection Limit (CL), two nodes are joined. The reason why
we join nodes is that relevant fragments can often exist around the ones with
high score to a given query. Though these ones do not always have higher score,
joining nodes might be able to find such relevant fragments which could not be
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NodeID Score Test sizej .887 40i .816 10d .702 25k .322 15h .256 70b .207 40a .194 300c .155 15

Answer = {8, 9, 10}
8 109

jk
Answer = {6, 8, 9, 10}

6 8 109
7hi jkAnswer = {6, 7, 8, 9, 10}

6 8 109
7hi jk

a

2 4
5 6 83 109

7b de f
g hi jk 2 4 6 83 109

7b de f
hi jk1c

Answer = {2, 3, 4, 6, 7, 8, 9, 10} Answer = {2, 3, 4, 6, 7, 8, 9, 10}

Fig. 2. Generating an Answer XML Fragment

explored before. The CL is a threshold to decide if the distance between two
nodes is short enough, that is, whether two nodes are closely related each other
or not.

For example, in Fig.3, the node with the highest score, j, can first be inserted
into an Answer XML Fragment. This is because the total text size of the text
nodes in the Answer XML Fragment, {8, 9, 10}, is 40, which is less than EL.
Next, the node with the second highest score, i, is inserted into the Answer XML
Fragment. Though the text nodes in the Answer XML Fragment become {6, 8,
9, 10}, the total size, i.e., 50, is still less than EL.

At this time, if node i is the nearest from a node in the already inserted into
the Answer XML Fragment (node j in this case) and the CCost of node i is
less than CL, then these two nodes are joined. If we suppose that CL is 3, the
connecting cost, CCost(i, j), is 2, because there is a path from node i to node
j by way of node h. Therefore, we can join nodes i and j. As a result, the root
node of the Answer XML Fragment becomes node h, which includes text nodes
{6, 7, 8, 9, 10} and its total text size becomes 70.

After that, node d is inserted into the Answer XML Fragment, because the to-
tal text size (95) is still less than EL even if node d is added. Though CCost(c, h)
is 3, no join is performed because the total text size exceeds EL if node d is
joined. We skip the insertion of nodes k and h, because they have already been
added to the Answer XML Fragment. The following insertions of nodes b, a, and
c are not performed because the text size is over EL. Hence, we finally obtain
the Answer XML Fragment whose root nodes are d and h.
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Note that it frequently occurs that a node has only one internal node as a
child in the INEX test collection that we use for evaluation, like the fragments
on the left and in the middle of Fig.3. Therefore, we calculate CCost only when
a node has one or more text nodes in its descendant.

1a 1c
2b 2d e 2f1

2),(),(),( === feCCostdcCCostbaCCost
Fig. 3. Connecting Cost

When a final search result is actually returned, the ranked results which
can be integrated together are merged as Answer XML Fragments as much as
possible 4. When the number of the ranked fragments being obtained is small,
the parameters EL and CL should be smaller. As the ranked fragments are
being produced, these parameters should be increased to obtain more number of
relevant fragments. In this way, upper ranked results are extracted so that the
precision of a final result becomes higher, while lower ranked ones are obtained
for higher recall.

4 Related Work

As briefly explained in Section 1, finding LCAs in XML documents is often uti-
lized for searching results related to user’s queries in XML search. Since the
concept of the LCA is very intuitive, it has widely been adopted in the research
field of XML keyword search. For the initial period of time, many researchers
proposed methods for efficient searching LCAs in XML documents such as SLCA
(Smallest Lowest Common Ancestor) [8], VLCA (Valuable Lowest Common An-
cestor) [5]，and MCT (Minimum Connectiong Tree) [2]. Their contribution was
efficient query processing for searching LCAs in XML documents; however, LCA
and its extension cannot achieve high precision search, and are not effective in
XML search [4]. Therefore, there are also other researches for searching XML
fragments based on the concept of LCA.

MLCA (Meaningful LCA) [6] is one of the most famous approach for search-
ing XML fragments whose leaf nodes are closely related each other. The concept
of MLCA is very similar to that of the LCA; however, the leaf nodes matching

4 The INEX evaluation tool accepts only top 1500 results. Therefore, this step needs
only to reduce the number of results.
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query keywords are meaningfully related in the case of MLCA while ones are not
related in the case of LCA. eXtract [3] can also extract another versions of LCA
to process MLCA for presenting an appropriate searching paper, we proposed a
method to generate relevant searching results from the ranked XML fragments
obtained by using our previously proposed technique.

5 Conclusion

In this paper, in order to solve the problem that large-sized XML fragments
tend to obtain large scores in our past approach, we proposed a new method
which generates Answer XML Fragments as a search result, which also uses our
past scoring scheme. During generating a search result, we used two parameters:
EL which restricts the size of fragments extracted, and CL which determines
whether related two fragments should be joined or not.

5.1 Future Work

In the future, we need to verify the potential power of our proposed method
through some experiments. More precisely, we will compare the precisions of TF-
IAF and Answer XML Fragment based approaches. We also need to compare
the average size of the fragments in a set of Answer XML Fragments and the
ones grouped by each document ID by using TF-IAF to show how much we can
reduce the size of result fragments.

The proposed method is supposed to require additional processing cost to
reconfigure ranked fragments. Therefore, efficient query processing, which is also
taken into account for our previous work, is also one of the important issues to
be solved.
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Abstract. We present in this paper experiments on the Wikipedia col-
lection used in the INEX 2009 evaluation campaign with an information
retrieval method based on proximity. The idea of the method is to assign
to each position in the document a fuzzy proximity value depending on
its closeness to the surrounding keywords. These proximity values can
then be summed on any range of text – including any passage or any
element – and after normalization this sum is used as the relevance score
for the extent.

1 Introduction

Within the context of structured documents, the idea of adhoc retrieval
is a generalization of what it is in the flat document context: searching a
static set of documents using a new set of topics, and returning arbitrary
XML elements or passages instead of whole documents. In Focused Re-
trieval as stated in the INEX evaluation campaigns, the returned parts
or elements of documents in response to a user query must not overlap.
For the full document retrieval task, with all the popular models the
documents and the queries are represented by bags of words. The ranking
scores are computed by adding the contributions of the different query
terms to the score of one document.
With the bag of words representation the positions of words in the docu-
ments are not used for scoring. While the absolute position of terms does
not seem to be significant for scoring, we can have some intuition that the
relative positions of the query terms could be relevant. For instance with
a query with the two words roman and architecture, one occurrence
of each of these terms in a document gives the same contribution to the
score either these two occurrences are close or not in a document. Taking
into account the relative positions at least involves that two query terms
does appear in a document so that the proximity component does not
score to zero.
Section 2 is devoted to a brief state of the art of techniques and models
used in flat information retrieval to model the proximity of query term
occurrences in the score of documents. Then our scoring model for flat
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documents, its extension for hierarchically structured documents and the
use of semantic tags are presented in section 3. Experiments with this
model are detailed in section 5.
There is few usage of proximity in information retrieval.

2 A brief state of the art of proximity usage

One of the first use of term position appeared within implementations
of the boolean model with the NEAR operator. But there are two main
problems with such operators, the first one is that the semantics of these
operators is not clean and it leads to some inconsistency problems as
it was noticed by [1]. The second one is that they are stuck to boolan
retrieval: documents verify or not the query and there is no ranking.
As suggested by the example query with the two terms roman and
architecture, there are relationships between the use of proximity and
indexing/ranking with phrases. Thus one highly tested idea is to discover
phrases in the corpus and then to index the documents with both these
phrases and the usual single terms. The conclusion [2] is that this method
does not improve retrieval effectiveness except for low quality retrieval
methods.
In the phrase discovery works, phrases are only looked for with adjacent
words and only some of them are then retained for both indexation and
scoring. To relax this constraint about phrases a proposition is to com-
pute the score of a document as the sum of two scores [3], the first one is
the usual Okapi BM25 score, and the second one is the proximity score.
Later reinvestigated [4], the conclusion was that proximity use is more
useful as documents are longer and as the collection is larger.
Another idea to take into account the term proximity with the Okapi
BM25 framework circumvents the problem of coherence between word
scoring and relaxed phrase scoring [5, 6].
As a synthesis of all these experiments we can derive a conclusion that it
is better to consider several terms of the query in the proximity consider-
ation. A second intuition is that their co-occurrence must be considered
in a relaxed way by accepting that a quite large number of other words
could intermix with the query terms. This second conclusion was also
formulated by [7]. She experimented a quite simple method with a usual
vectorial ranking but the results were then filtered through a conjunctive
filter which impose that all the query terms occur in a returned docu-
ment and in a more strict version that they occur in a passage shorter
than 100 to 300 words.
To take into account proximity as phrase relaxation with a continuous
paradigm two ideas were experimented. The first one was developped for
the TREC 1995 campaign by two independant teams [8, 9]. Intervals that
contain all the query terms are searched. Each selected interval receives
a score, higher as the interval is shorter. [10] later experimented their
method and concluded that it is quite beneficial for short queries and for
the first recall levels.
The last idea is based on the influence that each query term occurrence
exercises on its neighbouring [11]. Each position in the text receives an
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influence from the occurrences of the query terms, and all these influences
are added. Then either the maximum or the summation of this function
is the score of the document. This influence idea was reused in a boolean
framework, mostly used in a conjunctive way[12]. This last method is
developped in the next section as it is the basis for the model used in
the structured context.

3 Fuzzy proximity model

3.1 Fuzzy proximity model for flat documents

As in any other information retrieval model, the textual documents are
represented with the terms that occur in them. In the sequel, we will call
T the set of terms appearing in the collection.

We want to represent each document with the positions of the term
occurrences. This can easily be achieved by representing a document d
with a finite sequence over N, the set of positive integers. We will also
call d this sequence:

d : N → T
x 7→ d(x)

and d(x) is the term that appears at position x in the document d. With
this notation d−1(t) is the set of positions where the term t occurs in
the document d, and in a positional inverted file this set is sorted and
represented by the list of postings for the term t in the document d.

A collection is a set of documents. Figure 1 displays an example of a
collection of four documents (d0 to d3) where only two different elements
of T , A and B, are showed. In this example, we have for instance: d3(2) =
A, d3(3) = A, and d−1

3 (A) = {2, 3}.

d0 A B
0 1 2 3 4 5 6 7 8 9 10 11 12 13

d1 A B
0 1 2 3 4 5 6 7 8 9 10 11 12 13

d2 B
0 1 2 3 4 5

d3 A A
0 1 2 3 4

Fig. 1. Example of a collection C, A and B are some elements of T .

Fuzzy proximity to a term Instead of trying to define a proximity
measure between the query terms by taking into account the position of
the term occurences as it is done for instance by the length of intervals
containing all the query terms, our approach defines a proximity to the
query at each position in the document.
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Thus the first step is to define a (fuzzy) proximity between a position
in the text and one term. Formally, given some t ∈ T , we define µdt : Z→
[0, 1] with

µdt (x) = max
i∈d−1(t)

„
max

„
k − |x− i|

k
, 0

««
,

where k is some integral parameter which controls to which extent one
term occurence spreads its influence. The function µdt reaches its max-
imum (the value 1) where the term t appears and it decreases with a
constant slope down to zero on each sides of this maximum. In other
terms, this function has a triangular shape at each occurence of the term
t. Fig. 2.a shows (µdA)d∈C and (µdB)d∈C for the collection C shown in
Fig. 1, with k set to 4.

a) (µdA)d∈C (plain lines) and (µdB)d∈C (dotted lines)
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Fig. 2. Different (µdq)d∈C for the collection C of Fig. 1 with k = 4.

This function can be interpreted as the membership degree of a text
position x in the document d to a fuzzy set P (d, t).

Fuzzy proximity to a query We will now generalize the fuzzy
proximity to a term to a fuzzy proximity to a query. Again it is a local
proximity as it is defined for each position in the document. We use
boolean queries, which thus can be represented as trees. The leaves of
these trees are the terms that appear in the query, and the internal nodes
are boolean operators: AND, OR and NOT.
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The functions µdt defined in the previous section are associated to the
leaves of the query tree. Considering a conjunctive node with two terms
A and B, we want to measure for each position how close it is from both
terms. This can easily be achieved by using a formula for computing the
degree of membership of an intersection in the fuzzy set theory. They
are known as t-norms. In our experiments we used the minimum t-norm:
>min(a, b) = min(a, b). For a disjunctive node, we used the complemen-
tary co-norm µdq1orq2 = max(µdq1 , µ

d
q2) Finally for a complement node,

we define µdnotq = 1− µdq .
Thus with these definitions µdq is defined for every boolean query q. In the
implementation, these formulas are recursively applied with a post-order
tree traversal. The result is the function at the root of the tree, which we
call local fuzzy proximity to the query. This function can be interpreted
as the membership degree of the text positions in the document d to the
fuzzy set P (d, q). With a purely conjunctive query, this function have
higher values as all the query terms are close to a given position.

Fig. 2.b (resp. Fig. 2.c) plots µdA orB (resp. µdA andB) for the documents
of the collection C of Fig. 1. Note that the function µd1

A andB is uniformly
zero, though the document d1 contains both the terms A and B because
their occurences are not close enough.

Score of documents and passages With the local proximity µdq
defined in the previous section it is easy to define a global proximity
of any range of positions, either for a full document or for any passage
between the positions x1 and x2 with

X

x1≤x≤x2

µdq(x)

To take into account the specificity of the range to the query we then
normalize this score by the length of the passage, and finally the score
of a passage p between the positions x1 and x2 is

s(q, p) =

P
x1≤x≤x2

µdq(x)

x2 − x1 + 1
.

3.2 Fuzzy proximity model for structured documents

Given the proximity model presented in the previous section, we will
now deal with its extension to the structured case. We just deal with the
hierarchical aspect of structure. In this hierarchy, the components are
the nested sections and their titles. So, we have to model the influence
of an occurrence of a query term by taking into account in which type of
elements it appears in, either in a section-like element or in a title-like
element.

For a term occurrence which appears in a section-like element, the basis
is the same as in flat text: A decreasing value in regards to the distance
to the occurrence. We add another constraint, the influence is limited to
the section in which the occurrence appears.
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For term occurrences which appear in title-like elements their influence is
extended to the full content of the element and recursively to the elements
contained in it. Here the assumption is that the title is descriptive of the
content of the section it entitles. In the proximity paradigm, any title
term in a title-like element should be close to any term occurence in the
corresponding section. So our choice is that the influence of a title term
is set to the maximum value (value 1) over the whole section.
For a single terme some of term influence area (triangles) can overlap
and should giving the “mountain” aspect in the document representation.
Truncated triangles can also be viewed, which indicates that the influence
of an occurrence of the term has been limited to the boundaries of the
section-like element it belongs to. Finally, rectangles can be seen where an
occurrence appears in a title-like element and the influence was uniformly
extended to the whole bounding section-like element.
Once the proximity function is computed for a document at the root of
the query tree, to answer to the focused task we have to select some ele-
ments or some passages and compute their relevance value. The last step
consists in choosing some of them so that the non overlapping constraint
is verified. Then for a given document an iterative algorithm is applied
to the section-like elements. Those elements that are relevant (i.e. their
relevance score is not zero) are sorted according to their score in decreas-
ing order. The top element is selected and inserted in the output list. All
its descendant and all the elements that belongs to its path to the docu-
ment tree root are disabled in order to avoid overlapping elements in the
output. Then the next element with the highest score and not disabled
is chosen and we repeat the process until all the elements are disabled.
When all the documents have been processed, the output list is sorted
by decreasing relevance score.

3.3 Fuzzy proximity model with semantic tags

In the INEX 2009 Wikipedia collection, the documents are annotated
with the 2008-w40-2 version of YAGO.This collection includes semantic
annotations for articles and outgoing links, based on the WordNet con-
cepts YAGO assigns to Wikipedia articles. YAGO explicitly labs more
than 5800 classes of entities like persons, cities, movies and many more.
The proximity model for structured documents presented previously was
extended to take these semantic tags into account. The terms contained
in the name of a semantic tag are taken into account and the text inside
the semantic tag also. The terms contained in the name of a semantic
tag are added to the article text (within a new tag <t>).
A new operator <> is introduced that helps using the semantic tags for
the desambiguisation of queries. It takes two operands, the first one is
a semantic tag (or a list of semantic tags linked by the OR operator)
and the second operand is a term (or a combination of terms linked by
operators like AND or OR). It works nearly like the AND operator ex-
plained previously, but the second operand is considered only if it is in
the context of the first operand. This means that the occurrences terms
(or the combination of occurrences terms) forming the second operand
is considered only if it appears inside the semantic tag (or one of the
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semantic tags) forming the first operand. The notation used for a query
op1 <> op2 is <op1> op2 for more convenience. For example, let us con-
sider the query ST <> A that we choose to note like this <ST> A, where
ST is a semantic tag and A a term. For a given document, all the occur-
rences of A not appearing in a semantic tag ST are not considered. If an
occurrence of A appears inside the semantic tag ST, then it is taken into
account as previously : a decreasing value in regards to the distance to
the occurrence is computed, the influence of the occurrence term A for
this query is limited to the semantic tag ST.
For the semantic tags names with many terms, (e.g. :<ethnic group>),
all the terms must appear in the first operand of a query, otherwise it
will not be considered. e.g. : semantic tag <ethnic group>, a query like
group <> BigBand (written <group> BigBand for more convenience) will
be scored zero. There is two query examples above.

Query 1

((ST1 OR ST2)<> A) noted

<ST1 | ST2> A is equivalent to

<ST1>A) OR (<ST2>A)

Query 2

<ST1 | ST2> (A AND (B OR C))$ is equivalent to

((<ST1>(A AND B)) OR (<ST1>(A AND C)) OR

(<ST2>(A AND B)) OR (<ST2>(A AND C)))

4 Document collection transformations

4.1 The semantic tags names transformations

Among the tags provided in the INEX 2009 Wikipedia collection, many
needed some transformations to be usable in queries. The first transfor-
mations made was the character conversion ( to e, to O, etc.). Some
tags contain some string showing it was generated from an URL (http,
www, etc.) theses strings were removed from the tags. The characters like
, and the numbers were replaced by the space character, many spaces

characters were replaced by one and all the spaces characters at the be-
ginning or at the end of a tag were removed. Here are some examples
of initial tags and their transformations : fictional character becomes
fictional character

4.2 The semantic tags names adding to document text

The YAGO tool adds some semantic information, for example, ”Mickey
3D” can be taggged as a <musical group band>. For each semantic
tag, we add in the text the content of the tag. For the previous ex-
ample, the text indexed is ”¡musical group band¿ Mickey 3D musi-
cal group band”. For several queries, we take into account the possi-
bility to take profit of these tags with (1) the tag itself and (2) the
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content from the tag. For example, the query about roman architec-
ture can be extended to ("roman architecture" | "roman building"

| "roman architect") | <architect | architecture

| architectural> roman

5 Experimentation results and conclusion

For the INEX 2009 campaign, we submit runs given in figure 3. Experi-
mental runs are based on variation of three parameters :

– Length of k. The parameter k controls the influence area of a term.
The measure unit of k is a number of term. We choose k = 200 to
match to the length of a paragraph and k = 1000 to match to the
length of a section or a whole document.

– Stemmming or not. The collection is indexed with stemming and no
stemming. We build also queries with manual stemming that is to
say using lexical forms of query terms and synonyms.

– Propagation or not. The propagation technique explained in section
3.2 is used for several runs.

# iP [0.01] Institute Run features

21 0.5844 22 emse2009-150 k = 200, no stem, title propagation

25 0.5733 22 emse2009-153 k = 1000, no stem, propagation

35 0.5246 22 emse2009-151 k = 200, stemming, propagation

47 0.3360 22 emse2009-152 k = 1000, no stem, without propagation

Fig. 3. Runs submitted for focused task with proximity based method

The best run uses title propagation, no stemming and k=200. We can
note that the increment of the k value doesn’t improve the results. The
worst result is done with no stemming, no propagation and the k value
too long.

To optimize performances, we have to choose an adapted value of k.
With a hight value, the model behaviour approximates the behavior of
the boolean model ; at the opposite, with a small value, conjunctive
queries should give no result. So to retrieve and rank documents with
proximity method, we can use a middle k value which can represent the
length of a paragraph.
We haven’t enough runs to compare the stemming effect but we can note
that title propagation improves more the results than the stemming (cf.
runs 150 and 151).
By comparing run 153 and run 152, we can see the effect of propagation :
with k assign to 1000, using propagation increase the result of seventy
percent.

As attended, proximity method gives good results at the high recall
levels but compared to the other methods (see figure 4), the proximity
method has to improve global results at the other levels.
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Fig. 4. Results for focused task taken on the INEX 2009 Web site
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Abstract. We present in this paper the work of the Information Re-
trieval Modeling Group (MRIM) of the Computer Science Laboratory
of Grenoble (LIG) at the INEX 2009 Ad Hoc Track. Our aim this year
was to twofold: first study the impact of extracted noun phrases taken
in addition to words as terms, and second using forward links present
in Wikipedia to expand queries. For the retrieval, we use a language
model with Dirichlet smoothing on documents and/or doxels, and using
an Fetch and Browse approach we select rank the results. Our best runs
according to doxel evaluation get the first rank on the Thourough task,
and according to the document evaluation we get the first rank for the
Focused, Relevance in Context and Best in Context tasks.

1 Introduction

This paper describes the approach used by the MRIM/LIG research team for
the Ad Hoc Track of the INEX 2009 competition. Our goal here is to experiment
enrichment of documents and queries in two directions: first, using the annotation
provided by Ralph Schenker and his collegues [4] we expand the vocabulary
to annotated noun phrases, and second, using forward pages extracted from
wikipedia (dump processed in July 2009), we expand the user’s queries. So,
the vocabulary extension comes from internal Wikipedia data (categories for
instance) and external data (Wordnet), and the forward information comes from
only internal Wikipedia data.

Our work integrates structured documents during retrieval according to a
Fetch and Browse framework [1], as retrieval is achieved in two steps: the first
one focuses on whole articles, and the second one process integrates the non-
article doxels in a way to provide focused retrieval according to the retrieved
documents parts.

First of all, we define one term: a doxel is any part of an XML document
between its opening and closing tag. We do not make any kind of difference
between a doxel describing the logical structure of the document (like a title
or a paragraph) or not, like anchors of links or words that are emphasized),
a relation between doxels may come from the structural composition of the
doxels, or from any other source. Assume that an xml document is “<A>This
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is an <B>example</B> of <C>XML</C> document</A>”. This document
contains 3 doxels: the first is delimited by the tag A, the second is delimited
by the tag B, and the third is delimited by the tag C. We also consider that a
compositional link relates A to B, and A to C. We will also depict B and C as
direct structural components of A.

The remaining of this paper is organized as follows: after commenting shortly
in section 2 related works, we describe the vocabulary expansion based on noun
phrases in part 3.Then the quary expansion according to the forward links ex-
tracted from Wikipedia are presented in section 4. Section 6 introduces our
matching process. Results of the INEX 2009 Ad Hoc track are presented in Sec-
tion 7, where we present the twelve (three for each of the four tasks) officially
submitted runs by the LIG this year. We conclude in part 8.

2 Related works

The language modeling approach to information retrieval exists from the end
of the 90s [3]. In this framework, the relevance status value of a document for
a given query is estimated by the probability of generating the query from the
document. We used last year such model in INEX 2008 competition with some
good results. Using noun phrases for information retrieval has also proven to be
effective in some contexts like medical documents [2], that is why we chose to
experiments extraction of such phrases for Inex 2009.

3 Extraction and use of noun phrases from YAWN

Here, we use the result YAWN [4] provided with the INEX 2009 collection.
However, we do not use the tags that characterize the phrases, but the words
themselves as additional terms of the vocabulary. For instance, in the document
12000.xml, the following text appears:

<music>

<composer wordnetid="109947232" confidence="0.9173553029164789">

<artist wordnetid="109812338" confidence="0.9508927676800064">

<link xlink:type="simple" xlink:href="../434/419434.xml">

Koichi Sugiyama</link></artist>

</composer>

</music>

The noun phrase surrounded by YAWN tags is the Koichi Sugiyama. In our
case, the noun phrase Koichi Sugiyama is then used as a term that will be con-
sidered in the indexing vocabulary. In fact, the terms Koichi and Sugiyama are
also indexing terms. We keep only the noun phrases that are described by YAWN
because we consider that they are trustworthy to be good indexing terms. An
inconsistency may appear, though: we noticed that all the noun phrases sur-
rouded by YAWN tags were not always tagged (for instance the phrase “Koichi
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Sugiyama” may occur in other documents without YAWN tags). That is why we
ran one pass that generates the noun phrases terms for each occurrence of the
YAWN tagged noun phrases. In the following, we refer to the initial vocabulary
(keywords only) as KBV, the phrase-based only vocabulary as Phrase, and the
union of both vocabulary as KBV+Phrase.

4 Extraction and use of Wikipedia forward links

The original wikipedia documents have also a very nice feature worth study-
ing, which is related to forwarding links. To reuse a case taken from the query
list of INEX 2009, if on Wikipedia we look for the page “VOIP”, the page is
almost empty and redirects to the page titled “Voice over Internet Protocol”.
In this case, we clearly see that some very strong semantic relationship existe
between the initial term and the meaning of the acronym. We use this point in
to consideration by storing all these forward links, and by expending the query
expressions by the terms that occur in the redirected page (i.e. the title of the
page pointed to). In this case, a query “VOIP” is then translated into “VOIP
Voice over Internet Protocol”.

So, this expansion does not impact the IR model used, but only the query
expression.

5 Indexing of Doxels

As it has been done in several appraoches in the previous years, we choose to
select doxels according to their type. In our case, we chose to consider only doxel
that contain one title to be potentially relevant for queries. The list called Ld is
then: article, ss, ss1, ss2, ss3, ss4.

We generated several indexing of the doxels using a language model that uses
a dirichlet smoothing, unsing the Zettair system. One of the indexing is achieved
according to KBV, and another one accodring to KBV+Phrase.

In our experiments, we worked on two sets of potential retrieved doxels: the
article only doxels , and the doxels of type in Ld.

We integrated also the reference run provided by the INEX Ad-Hoc track
organizers, by considering that the vocabulary is KBV, that the target doxels
are articles only and that the model used is BM25.

6 Matching

We have defined a Fetch and Browse framework that can be processed in three
steps:

– The first step generates a ranking according to a subset of doxel types,
namely SS1,
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– the second step generates a ranking according to another subset of doxel
types SS2 (where no intersection exists between SS1 and SS2). Then, the
doxels of SS2 are inserted withing the result list of step 1, according to the
inclusion of the results of the processing of SS2 in SS1. This inclusion is
called a Rerank.

– The third step, dedicated to the results expected for INEX 2009, is dedicated
to remove the overlaps in the results. Here, we always give priority on the
first results: we remove any of the doxels that overlaps an already seen doxel
in the results list.

We note one Fetch and Browse configuration, based on the fact that the first
step uses a IR model 1 to process a query on which we apply a preprocessing
like a query expansion, applied on the set SS1 on the vocabulary one, and in
the step 2 uses a IR model 2 to process a query on which we apply a prepro-
cessing 1 like a query expansion, applied on the set SS1 on the vocabulary 2;
then we fuse these results using a Rerank process, and finish by a removal of
overlaps if needed as : Remove ovelap(Rerank((query preprocessing 1, IR model
1, vocabulary 1,SS1),(query preprocessing 2, IR model 2, vocabulary 2,SS2)))

For our runs we tested in fact the different vocabularies and the use of the
forward links as query expansion.

7 Experiments and results

The INEX 2009 Adhoc track consists of four retrieval tasks: the Thourough
task, Focused Task, Relevant In Context Task, and Best In Context Task. We
submitted 3 runs for each of these tasks.

7.1 Thourough Task

For the Thourough task, we considered

– 1T : No fetch an browse here is processed, we just have a one step processing,
(none, LM, KWV, Ld), which ranks all the potential doxels according to their
rsv. This result can be considered as a baseline for our LM based approach ;

– 2T : In this run, we applied a Fetch and Browse approach: No remove overlap(
Rerankrsv( (none, LM, KWV, {article}), (none, LM, KWV, Ldr{article}))).
Here the idea is to put priority on the whole article matching, and then to
group all the documents doxels according to their rsv. Because we do not use
any overlap we use the name No remove overlap for the removal of overlaps
function.

– 3T : For our third Thourough run, the reference run is used as the Fetch step:
No remove overlap( Rerankrsv( (none, BM25, KWV, {article}),(none, LM,
KWV, Ldr{article})))

From the table 1, we see that the language model and the BM25 with fetch
and browse outperforms the other runs at recall 0.00. We notice also that the
Fetch and Browse approach with language model underperforms the simple pro-
cess of run 1T, which is not the case with the BM25 fetching.
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Table 1. Thourough Task for LIG at INEX2008 Ad Hoc Track

Run precision precision precision precision MAiP MAiP Doc.
at 0.0 recall at 0.01 recall at 0.05 recall at 0.10 recall (rank / 30) (rank / 30)

1T 0.575 0.570 0.544 0.496 0.281 (1) 0.344 (3)

2T 0.572 0.567 0.542 0.492 0.273 (4) 0.342 (4)

3T 0.582 0.569 0.535 0.493 0.281 (2) 0.333 (5)

7.2 Focused Task

The INEX 2009 Focused Task is dedicated to find the most focused results that
satisfy an information need, without returning “overlapping” elements. In our
focused task, we experiment with two different rankings.

We submitted three runs :

– 1F : This run is similar to the run 2T, but we apply the Remove overlap
operation, so the run is described by: remove overlap(Rerankrsv((none, LM,
KWV, {article}),(none, LM, KWV, Ldr{article})));

– 2F : In this second Focused run, we study the impact of using the query
expansion using the forward links of Wikipedia and the extented vocab-
ulary in the first step of the matching: remove overlap( Rerankrsv( (For-
ward links expansion, LM, KBV+Phrase, {article}), (none, LM, KWV,
Ldr{article}) ) );

– 3F : This run based on the reference run is achieved by removing the overlaps
on the run 3T: Remove overlap(Rerankrsv( (none, BM25, KWV, {article}),
(none, LM, KWV, Ldr{article}))).

Table 2. Focused Task for LIG at INEX2009 Ad Hoc Track

Run ip[0.00] ip[0.01] ip[0.05] ip[0.10] MAiP MAiP Doc.
(rank / 57) (rank / 62)

1F 0.574 0.573 (22) 0.534 0.497 0.267 0.351 (1)

2F 0.551 0.532 (31) 0.490 0.453 0.236 0.300 (33)

3F 0.581 0.568 (24) 0.525 0.493 0.269 0.341 (3)

The results obtained by using doxel based evaluation show that the use of
query expansion and noun phrases underperforms the other approaches, which
seems to indicate that the matching of documents (for the fetching) is less accu-
rate using these two expansions. The reason should come form the fact that the
query expansion is quite noisy, but we will check this hypothesis in the future.
Here again, using the language model outperforms the BM25 baseline provided,
except for the ip[0.00] measure.
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7.3 Relevant In Context Task

For the Relevant In Context task, we take “default” focused results and reordered
the first 1500 doxels such that results from the same document are clustered
together. It considers the article as the most natural unit and scores the article
with the score of its doxel having the highest RSV. The runs submitted are
similar to our Focused runs, but we apply a reranking ot the document parts
according to the reading order (the Rerankreading function), before taking care
of removing overlaping parts. We submitted three runs :

– 1R: This run is similar to the run 1F, but we apply the Rerankreading instead
of the Rerankrsv function. So the 1R run is described by: remove overlap(
Rerankreading(( none, LM, KWV, {article}), (none, LM, KWV,
Ldr{article})));

– 2R: Compared to the run 2F, we apply similar modifications than for the
1R run, leading to: remove overlap(Rerankreading((Forward links expansion,
LM, KBV+Phrase, {article}),(none, LM, KWV, Ldr{article})));

– 3R: Compared to the run 3F, we apply similar modifications than for the 1R
run, leading to: Remove overlap(Rerankreading((none, BM25, KWV, {article}),
(none, LM, KWV, Ldr{article}))).

The results are presented in table 3, and the measures for the doxel based evalu-
ations are using generalized precision where the results for the document based
evaluation is the MAiP.

Table 3. Relevant In Context Task for INEX2009 Ad Hoc.

Run gP[5] gP[10] gP[25] gP[50] MAgP MAiP Doc.
(rank / 33) (rank / 42)

1R 0.295 0.256 0.202 0.152 0.173 (12) 0.351 (1)

2R 0.189 0.171 0.135 0.105 0.091 (28) 0.168 (41)

3R 0.305 0.273 0.216 0.160 0.173 (13) 0.341 (9)

In the case of retrieval in context, event of the best MAgP value is for 1R,
the BM25 based run performs better for all the gP values presented in table 3.
Here the run 2R that uses query expansion and noun phrases obtains much lower
results.

7.4 Best In Context Task

For this task, we take “default” focused results, and we return the best doxel in
the document as best entry point by using the keep best function.

We submitted three runs :

– 1B: This run is similar to the run 1F, but we apply the keep best instead of
the remove overlap function. So the 1B run is described by: keep best(
Rerankrsv((none, LM, KWV, {article}), (none, LM, KWV, Ldr{article})));
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– 2B: Compared to the run 2F, we apply similar modifications than for the
1B run, leading to: keep best(Rerankreading((Forward links expansion, LM,
KBV+Phrase, {article}),(none, LM, KWV, Ldr{article})));

– 3B: Compared to the run 3F, we apply similar modifications than for the
1B run, leading to: keep best(Rerankreading((none, BM25, KWV, {article}),
(none, LM, KWV, Ldr{article}))).

The results are presented in table 4.

Table 4. Best In Context Task for INEX2009 Ad Hoc.

Run gP[5] gP[10] gP[25] gP[50] MAgP MAiP Doc.
(rank / 37) (rank / 38)

1B 0.244 0.226 0.182 0.139 0.154 (17) 0.351 (1)

2B 0.169 0.159 0.128 0.101 0.087 (31) 0.168 (38)

3B 0.271 0.251 0.193 0.144 0.154 (16) 0.341 (7)

Here, for the first time with our runs, the BM25 run outperforms (very
slightly: 0.1544 versus 0.1540) the language model one for the official evalua-
tion measure on doxels. Which is not the case for th document based evaluation.
Here also, our proposed expansions do not perform well.

7.5 Discussion

In this section, we concentrate on some runs with noun phrases and query ex-
pansion in a way to find out why our proposal did not work as planned, and if
there is room for improvements.

First of all, on major problem that occur with our proposal is that the query
expansion generates too many additional words to be really effective. For in-
stance, the query 2009 005, “chemists physicists scientists alchemists periodic
table elements”, is in fact translated into “chemists chemist periodic table pe-
riodic table elements periodic table chemical elements periodic table elements
periodic system periodic system elements periodic table mendeleev periodic table
table elements periodic properties natural elements element symbol list groups
periodic table elements representative element mendeleev periodic chart peroidic
table elements mendeleev table periodic table elements periodicity elements or-
ganization periodic table periodic table chemical elements fourth period periodic
table elements periodic patterns group 2a nuclear symbol”, which is a very long
query. In this expanded query periodic table is a noun phrase term. We see in this
expansion that we find the word “mendeleev”, which is a very good terme for
the query, but on the other side we see many words that are unrelated to the ini-
tial query, like “representative” “organization” “system”, “properties”, “fourth”,
and so on. So the main problem that we face here is that the expanded queries
are not narrowed enough to be really useful, leading to poor results according
to the evaluation measure during the INEX 2009 evaluation campaign.
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Things are not hopeless, though: consider the seven (i.e., 10% of the 69
INEX 2009 queries) best results obtained for our expansion based Relevance in

Context run 2R according to MAgP, we get the results presented in table 5.
There we see that potential improvement may be achieved through the use of
our proposal. The query 091, “Himalaya trekking peak”, has been translated
into “trekking peak himalaya himalayas”: in this case the query result has been
clearly improved by using the noun phrase “trekking peak” instead of using the
two words ‘trekking” and “peak”.

Table 5. Relevant In Context Task for INEX2009 Ad Hoc, query-based comparisons.

Query gP[10] AgP
R1 R2 R3 R1 R2 R3

2009 001 0.279 0.379 0.279 0.268 0.280 0.314

2009 015 0.686 0.687 0.686 0.395 0.295 0.421

2009 026 0.110 0.170 0.110 0.284 0.273 0.307

2009 029 0.736 0.926 0.636 0.369 0.439 0.287

2009 069 0.299 0.199 0.500 0.289 0.332 0.285

2009 088 0.427 0.391 0.462 0.429 0.450 0.486

2009 091 0.099 0.653 0.182 0.189 0.511 0.221

Average (relative difference) 0.377 0.487 0.408 0.318 0.369 0.332
(-22.6%) (-16.2%) (-13.8%) (-10.0%)

8 Conclusion

In the INEX 2009 Ad Hoc track, we proposed several baseline runs limiting the
results to specific types of doxels. From the official INEX 2009 measures wethe
MRIM/LIG reached the first place on 4 measures, mostly for the evaluations
based on documents. The new directions studied that we proposed are based on
vocabulary expansion using noun phrases and query expansions using forward
links extracted from Wikipedia. The results obtained using these extensions
underperformed the more crude appraoches we proposed, but we shown here
that there is great room for improvements using extracted date from Wikipedia.
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Abstract. This paper describes the work that we did at Indian Statisti-
cal Institute towards XML retrieval for INEX 2009. Since there has been
an abrupt quantum jump in INEX corpus size (from 4.6 GB with 659,388
articles to 50.7 GB with 2,666,190 articles), retrieval algorithms and sys-
tems are put to ‘stress test’ in INEX 2009 campaign. We tuned our text
retrieval system (SMART) based on the Vector Space Model (VSM) that
we have been using since INEX 2006. We managed to submit only two
VSM-based document-level retrieval runs using blind feedback for the fo-
cused task: an initial run (indsta VSMpart) over a small fraction of INEX
09 corpus, and another on full corpus (indsta VSMfb). For both the runs
we considered Content-Only(CO) retrieval, more specifically, Title and
Description fields of the INEX 09 adhoc queries (2009001-2009115). The
performance of our document-level runs is not upto the mark. However
it clearly shows us the roadmap as to what needs to be done. How to
enable our system to handle with this large corpus efficiently is our first
priority. We also need to make sure that Language Modelling (LM)-based
implementation works with INEX 09 collection, which yielded reasonably
good performance at last INEX. Also, with both VSM and LM, we need
to tune the system for effective element-level retrieval.

1 Introduction

Traditional Information Retrieval systems return whole documents in response
to queries, but the challenge in XML retrieval is to return the most relevant
parts of XML documents which meet the given information need. Since INEX
2007 [1], arbitrary passages are permitted as retrievable units, besides the usual
XML elements. A retrieved passage consists of textual content either from within
an element or spanning a range of elements. Since INEX 2007, the adhoc retrieval
task has also been classified into three sub-tasks: a) the FOCUSED task which
asks systems to return a ranked list of elements or passages to the user; b) the
RELEVANT in CONTEXT task which asks systems to return relevant elements
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or passages grouped by article; and c) the BEST in CONTEXT task which
expects systems to return articles along with one best entry point to the user.

Along with these, this year INEX sees return of the d) THOROUGH task,
where all the relevant items (either passages or elements) from a document are
retrieved. Here, overlap among the elements are permitted but they are ranked
according to relevance order.

Each of the four subtasks can be again sub-classified based on different re-
trieval approaches:

– element retrieval versus passage retrieval
– Standard keyword query or Content-Only(CO) retrieval versus structured

query or Content-And-Structure (CAS) retrieval
– Standard keyword query (CO) retrieval versus phrase query retrieval.

In the CO task, a user poses a query in free text and the retrieval system
is supposed to return the most relevant elements/passages. A CAS query can
provide explicit or implicit indications about what kind of element the user
requires along with a textual query. Thus, a CAS query contains structural hints
expressed in XPath [2] along with an about() predicate. Phrase query is a new
entity introduced in the INEX 2009 queries using explicit notation of multi-word
phrases to make the query more verbose and to see how verbose queries impact
on retrieval effectiveness.

This year we submitted two adhoc focused runs, both using a Vector Space
Model (VSM) based approach with blind feedback. VSM sees both the document
and the query as bags of words, and uses their tf-idf based weight-vectors to
measure the inner product similarity as a measure of closeness between the
document and the query. The documents are retrieved and ranked in decreasing
order of the similarity-value.

We used a modified version of the SMART system for the experiments at
INEX 2009. Since the corpus used for the adhoc track this year is huge com-
pared to the earlier INEXes ([3], [4]), the system was really put to a ‘stress test’
both in terms of robustness and time-efficiency. To make sure that at least one
retrieval run was completed within the stipulated time, one of our submissions
(indsta VSMpart) was run on a partial data (10060 documents from INEX 09
corpus). The other run (indsta VSMfb) was however on the complete corpus. For
both the runs, retrieval was at the whole-document level, using query expansion
based on blind feedback after the initial document retrieval. We considered CO
queries only using title and description fields. In the following section, we de-
scribe our general approach for the runs, and discuss results and further work
in Section 3.

2 Approach

2.1 Indexing

We first shortlisted 74 tags from previous INEX Wikipedia corpus [3] which were
reasonably frequently occurring within the corpus(least frequency 2), contain
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some useful text (at least 10 characters) and featured in the INEX 07 qrels like:
<article>, <body>, <caption>, <center>, <collectionlink>, <definitionitem>,
<defintionlist>, <div>, <em >, <figure>, <gallery>,<item>, <outsidelink>,
<p>, <section>, <wikipedialink>, etc. Documents were parsed using the libxml2
parser, and only the textual portions included within the selected tags were used
for indexing. Similarly, for the topics, we considered only the title and description
fields for indexing, and discarded the inex-topic, castitle and narrative tags. No
structural information from either the queries or the documents was used.

The extracted portions of the documents and queries were indexed using
single terms and a controlled vocabulary (or pre-defined set) of statistical phrases
following Salton’s blueprint for automatic indexing [5].

Stopwords listed in the standard stop-word list included within SMART were
removed from both documents and queries. Words were stemmed using a varia-
tion of the Lovins’ stemmer implemented within SMART. Frequently occurring
word bi-grams (loosely referred to as phrases) were also used as indexing units.
We used the N-gram Statistics Package (NSP)3 on the English Wikipedia text
corpus from INEX 2006 and selected the 100,000 most frequent word bi-grams
as the list of candidate phrases. Documents and queries were weighted using
the Lnu.ltn [6] term-weighting formula. For the initial run, we used slope = 0.2
and pivot = 120 and retrieved 1500 top-ranked XML documents for each of 115
adhoc queries (2009001 - 2009115).

Next we used blind feedback to retrieve whole documents. We applied auto-
matic query expansion following the steps given below for each query (for more
details, please see [7]).

1. For each query, collect statistics about the co-occurrence of query terms
within the set S of 1500 documents retrieved for the query by the baseline
run. Let dfS(t) be the number of documents in S that contain term t.

2. Consider the 50 top-ranked documents retrieved by the baseline run. Break
each document into overlapping 100-word windows.

3. Let {tl, . . . , tm} be the set of query terms (ordered by increasing dfS(ti))
present in a particular window. Calculate a similarity score Sim for the
window using the following formula:

Sim = idf (t1) +

m∑

i=2

idf (ti) ×
i−1

min
j=1

(1 − P (ti|tj))

where P (ti|tj) is estimated based on the statistics collected in Step 1 and is
given by

# documents in S containing words ti and tj

# documents in S containing word tj

This formula is intended to reward windows that contain multiple matching
query words. Also, while the first or “most rare” matching term contributes
its full idf (inverse document frequency) to Sim, the contribution of any

3 http://www.d.umn.edu/∼tpederse/nsp.html
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subsequent match is deprecated depending on how strongly this match was
predicted by a previous match — if a matching term is highly correlated to
a previous match, then the contribution of the new match is correspondingly
down-weighted.

4. Calculate the maximum Sim value over all windows generated from a docu-
ment. Assign to the document a new similarity equal to this maximum.

5. Rerank the top 50 documents based on the new similarity values.
6. Assuming the new set of top 20 documents to be relevant and all other

documents to be non-relevant, use Rocchio relevance feedback to expand
the query. The expansion parameters are given below:

number of words = 20

number of phrases = 5

Rocchio α = 4

Rocchio β = 4

Rocchio γ = 2.

For each topic, 1500 documents were retrieved using the expanded query.

3 Results

Our performance as reported in the INEX09 website using relevance judgements
for 68 topics are shown in Table 1 and Table 2.

Table 1. Subdocument-level (element/passage) evaluation for the FO-
CUSED, CO task

Run Id iP@0.01

indsta VSMfb 0.0078

indsta VSMpart 0.0003

Table 2. Document-level evaluation for the FOCUSED, CO task

Run Id MAP

indsta VSMfb 0.0055

indsta VSMpart 0.0000

The performance of our system is really dismal. We are working on repro-
ducing the results reported, as the data and programs used for evaluation are
really resource-hungry. Once we get the results at different recall level per query
level, we will be able to analyse the results and thus improve our performance.
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4 Conclusion

The test collection used in this INEX is really resource-hungry and puts the
models and their implementations into stress test. We approached the job very
late this year and found ourselves inadequately prepared. We therefore submit-
ted two simple runs: one using a minimal portion of corpus and another using the
whole corpus. Both the runs were at the document-level retrieval using VSM-
based approach. We could not try other approaches in terms of the retrieval
model (e.g. LM) or granularity (element/passage level) before the official sub-
mission. The results were dismal, but not unexpected. Our immediate task is
to make the evaluation program run on our system, reproduce the results re-
ported, analyse the score at per query level and try to better our performance
with proper parameter-tuning for the VSM approach, using other approaches
like LM and element-level retrieval. There is plenty of work to do, some of which
will definitely be attempted and addressed in the coming days.

References

1. INEX: Initiative for the Evaluation of XML Retrieval (2009)
http://www.inex.otago.ac.nz.

2. W3C: XPath-XML Path Language(XPath) Version 1.0
http://www.w3.org/TR/xpath.

3. Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. In Fuhr, N., Lalmas, M.,
Trotman, A., eds.: Comparative Evaluation of XML Information Retrieval Systems.
(2006) 12–19

4. Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated
wikipedia xml corpus. In: BTW. (2007) 277–291

5. Salton, G.: A Blueprint for Automatic Indexing. ACM SIGIR Forum 16(2) (Fall
1981) 22–38

6. Buckley, C., Singhal, A., Mitra, M.: Using Query Zoning and Correlation within
SMART: TREC5. In Voorhees, E., Harman, D., eds.: Proc. Fifth Text Retrieval
Conference (TREC-5), NIST Special Publication 500-238 (1997)

7. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
SIGIR 98, Melbourne, Australia, ACM (1998) 206–214

98



Universities of Avignon and Lyon 3

at INEX 2009

Eric SanJuan1 and Fidelia Ibekwe-SanJuan2

1 LIA & IUT STID, Université d’Avignon
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Abstract. Following our previous participation at INEX 2008 Ad-hoc
track, we continue to address both standard and focused retrieval tasks
based on comprehensible language models and interactive query expan-
sion (IQE). Query topics are expanded using an initial set of Multi Word
Terms (MWTs) selected from top n ranked documents. MWTs are spe-
cial text units that represent domain concepts and objects. As such, they
can better represent query topics than ordinary phrases or n-grams. In
this experiment we extract terms from article titles, narrative query field
and automatically generated summaries. We also combined the initial set
of MWTs obtained in an IQE process as well as with automatic query
expansion (AQE) using language models and smoothing mechanism. We
chose as baseline the Indri IR engine based on the language model using
Dirichlet smoothing. The experiment is carried out on all INEX 2009
Ad-hoc tasks.

1 Introduction

Previous experiments carried out within the framework of TREC [1] tended
to conclude that retrieval performance has not been enhanced by adding NLP,
especially syntactic level of processing. The problem lies in determining the level
of NLP needed, on which text units to implement it, whether to implement NLP
on both queries and documents and at what stage (whole collection or only on
an initial set of returned documents). Previous research also concluded that a
deep syntactic representation of queries and documents is not useful to achieve
a state-of-the-art performance in IR [2]. It may on the contrary degrade results.
On the other hand, performance can be boosted by better representing queries
and documents with longer phrases using shallow NLP. In some cases, even a
well-tuned n-gram approach can approximate the extraction of phrases and may
suffice to boost retrieval performance.

Up until 2004, the dominant model in IR remained the bag-of-words repre-
sentation of documents which continued to show superior performances in IR.
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However, a series of experiments carried out on several document collections over
the past years are beginning to show a different picture. Nothwithstanding the
apparent success of the bag-of-word representation in some IR tasks, it is becom-
ing clear that certain factors related mostly to query length and document genre
(general vs technical) influence the performance of IR systems. For instance, [1,
3] showed that representing queries and document by longer phrases can im-
prove systems’ performances since these text units are inherently more precise
and will better disambiguate the information need expressed in the queries than
lone words.

Furthermore, [1] concluded that the issue of whether or not to use NLP and
longer phrases would yield better results if focused on query representation rather
than on the documents themselves because no matter how rich and elaborate the
document representation, a poor representation of the information need (short
queries of 1-2 words) will ultimately lead to poor retrieval performance.

Based on these earlier findings, we investigate the issue of representing queries
with a particular type of phrase which are Multiword Terms (MWTs). MWTs is
understood here in the sense defined in computational terminology [4] as textual
denominations of concepts and objects in a specialized field. Terms are linguistic
units (words or phrases) which taken out of context, refer to existing concepts
or objects of a given field. As such, they come from a specialized terminology
or vocabulary [5]. MWTs are thus terms of length >1. MWTs, alongside noun
phrases, have the potential of disambiguating the meaning of the query terms
out of context better than single word terms or statistically-derived n-grams and
text spans. In this sense, MWTs cannot be reduced to words or word sequences
that are not linguistically and terminologically grounded. A novelty in INEX
2009 is that a new field has been added to queries with samples of relevant
MWTs.

An initial selection of MWTs from queries is used in an Interactive Query
Expansion (IQE) process to acquire more MWTs from top n-ranked documents.
The expanded set is submitted to standard IR Language Models for document
ranking. We also test expanding the query automatically (AQE) usin the query
expansion mechanism in Indri. Our approach was successfully tested on two
corpora: the TREC Enterprise track 2007 and 2008 collections, and INEX 2008
Ad-hoc track [6] but only at the document level. This year at Inex 2009 we
consider more advanced NLP approaches including automatic multi-document
summarizing. We also consider XML element retrieval.

The rest of the paper is structured as follows. Section §2 presents our language
model and its application to the IR tasks. Section §3 presents our preliminary
results on the Wikipedia collection in the INEX 2009 Ad-hoc track. Finally,
section §4 discusses the preliminary results from these experiments.
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2 Probabilistic IR Model

2.1 Language Model

Language models are widely used in NLP and IR applications [7, 8]. In the case
of IR, smoothing methods play a fundamental role [9]. We shall first describe
the probability model that we use.

Document Representation: probabilistic space and smoothing Let us
consider a finite collection D of documents, each document D being considered as
a sequence (D1, ...,D|D|) of |D| terms Di from a language L, i.e. D is an element
of L⋆, the set of all finite sequences of elements in L. Our formal framework is the
following probabilistic space (Ω,℘(Ω), P ) where Ω is the set of all occurrences
of terms from L in some document D ∈ D and P is the uniform distribution over
Ω LMs for IR rely on the estimation of the a priori probability PD(q) of finding
a term q ∈ L in a document D ∈ D. We chose the Dirichlet smoothing method
because it can be viewed as a maximum a priori (MAP) document probability
distribution. Given an integer µ, it is defined as:

PD(q) =
fq,D + µ × P (q)

|D| + µ
(1)

In the present experiment, documents can be full wikipedia articles, sections
or paragraphs. Each of them defining a different probabilistic space that we shall
combine in our runs.

Query Representation and ranking functions Like in INEX 2008, our
purpose is to test the efficiency of MWTs in standard and focused retrieval
compared to a bag-of-word model and statistically-derived phrases. For that, we
shall consider phrases (instead of single terms) and a simple way of combining
them. Given a phrase s = (s0, ..., sn) and an integer k, we formally define the
probability of finding the sequence s in the corpus with at most k insertions
of terms in the following way. For any document D and integer k, we denote
by [s]D,k the subset of Di ∈ D such that: Di = s1 and there exists n integers
i < x1, ..., xn ≤ i + n + k such that for each 1 ≤ j ≤ n we have sj = Dxj

.
We can now easily extend the definition of probabilities P and PD to phrases

s by setting P (s) = P ([s].,k) and PD(s) = PD([s]D,k). Now, to consider queries
that are set of phrases, we simply combine them using a weighted geometric mean
as in [10] for some sequence w = (w1, ..., wn) of positive reals. Unless stated oth-
erwise, we shall suppose that w = (1, ..., 1), i.e. the normal geometric mean.
Therefore, given a sequence of weighted phrases Q = {(s1, w1), ..., (sn, wn)}
as query, we shall rank documents according to the following scoring function
∆Q(D) defined by:

∆Q(D) =

n
∏

i=1

(PD(si))

wi
∑

n

j=1
wj (2)
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rank

=

n
∑

i=1

(

wi
∑n

j=1
wj

× log(PD(si))

)

(3)

This plain document ranking can easily be computed using any passage in-
formation retrieval engine. We chose for this purpose the Indri engine [11] since
it combines a language model (LM) [7] with a bayesian network approach which
can handle complex queries [10]. However, in our experiments, we use only a
very small subset of the weighting and ranking functionalities available in Indri.

2.2 Query Expansion

We propose a simple QE process starting with an approximate short query QT,S

of the form (T,S) where T = (t1, ..., tk) is an approximate document title con-
sisting of a sequence of k words, followed by a possibly empty set of phrases:
S = {S1, ..., Si} for some i ≥ 0. In our case, each Si will be a MWT.

Baseline document ranking function By default, we shall rank documents
according to

∆T,S = ∆T × ∆
|S|
i=1

Si (4)

Therefore, the larger S is, the less the title part T is taken into account.
Indeed, S consists of coherent set of MWTs found in a phrase query field or
chosen by the user. If the query can be expanded by coherent clusters of terms,
then we are no more in the situation of a vague information need and documents
should be ranked according to precise MWTs. For our baseline, we shall generally
consider S to be made of the phrases given in the query.

Interactive Multiword Term Selection The IQE process works in the fol-
lowing manner. We consider the top twenty ranked documents of ∆Q ranking.
These documents are split into sentences and a multi-document summary is pro-
duced. MWTs are then extracted from this summary based on shallow parsing
and proposed as possible query expansions. The user selects all or a subset S ′

of them. This leads to acquiring sets of synonyms, abbreviations, hypernyms,
hyponyms and associated terms with which to expand the original query terms.
The selected multiword terms S′

i are added to the initial set S to form a new
query Q′ = QT,S∪S′ leading to a new ranking ∆Q′ computed as previously in
§2.2.

We also extract MWTs from the narrative and title fields of articles.

Automatic Query expansion To compare the interactive QE (IQE) process
with an automatic one, we also experimented with the automatic query expan-
sion (AQE). In our model, it consists in the following. Let D1, ...,DK be the top
ranked documents by the initial query Q. Let C = ∪K

i=1
Di be the concatena-

tion of these K top ranked documents. Terms c occurring in D can be ranked
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according to PC(c) as defined by equation (1). We consider the set E of the N

terms {c1, ..., cN} having the highest probability PC(ci). We then consider the
new ranking function ∆′

Q defined by ∆′
Q = ∆λ

Q × ∆1−λ
E where λ ∈ [0, 1].

Unless stated otherwise we shall take K = 4, N = 50 and λ = 0.1. We now
explore in which context IQE based on MWTs is efficient. Our baseline is an
automatic document retrieval based on equation 2 in §2.1.

3 Results

We submitted four runs for the official INEX evaluation: two to the focused task
and two to the thorough task. We compare these runs to two additional ones
that were not submitted but were generated after the official results based on
the preliminary qrels released by the organizers.

Each of these runs is a combination of the following strategies:

Xml XML elements can be retrieved and not only complete documents. Each
element is evaluated in the probabilistic space of all elements sharing the
same tag. Elements are then ranked by decreasing probability. The follow-
ing elements were considered: b, bdy, category, causal agent, country, entry,
group, image, it, list, location, p, person, physical entity, sec, software, table,
title.

Doc Only full articles are retrieved.
QE Automatic Query Expansion (AQE) is used.
mwt Interactive Query Expansion (IQE) is used based on a selection of Multi

Word Terms suggested to the user by the system.
Ti Elements in documents whose title overlaps the initial query or its expansion

are favoured.

We consider the following runs:

Xml+Ti+QE (Lyon3LIAautolmnt) submitted to the thorough task.
Xml+Ti+QE+mwt (Lyon3LIAmanlmnt) submitted to the thorough task.
Doc+Ti+QE (Lyon3LIAautoQE) submitted to the focused task.
Doc+Ti+QE+mwt (Lyon3LIAmanQE) submitted to the focused task.
Doc baseline run not submitted.
Doc+mwt baseline run with IQE based on MWTs, not submitted.

Figure 1 shows the Interpolated generalized precision curves based on thor-
ough (or focus) evaluation measures.

As in the INEX 2008 corpus, it appears that QE based on MWTs can improve
document or XML element retrieval. However, it appears that AQE does not,
and this is a surprising difference with last year’s results. Contrary to our last
year’s runs, this year we used AQE in all our submitted runs because it previously
gave better results. It was therefore surprising to observe that our non submitted
baseline runs not implementing any query expansion appear to perform better
than our submitted runs implementing one form of query expansion (AQE or
IQE).
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Fig. 1. Interpolated generalized precision curves at INEX 2009.

Moreover, it appears on these baseline runs that the difference between our
automatic baseline run and the one with IQE is not statistically significant. In
fact with an Ip[0.01] of 0.56 and a MAiP of 0.28 our baseline run performs much
better than last year meanwhile the score of our MWT runs is unchanged. This
requires further experiments. The reason could be the availability this yezar in
the topics of a new query field with phrases that is used by all of our runs,
including the baseline. Thus making the input to the baseline runs somewhat
similar to the runs using MWTs.

4 Discussion

We used Indri with Dirichlet smoothing and we combined two language models,
one on the documents and one on elements.
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The results from both models are then merged together and ranked by de-
creasing probability.

For queries we used NLP tools (summarizer and terminology extraction). We
started from the topic phrase and title, then we added related Multi Word Terms
(MWT) extracted from the other topic fields and from an automatic summary
of the top ranked documents by this initial query. We also used standard Query
Expansion when applied to the document model.

Other features are the indri operators to allow insertions in the MWTs and
favoring documents in which the MWTs appear in the title.

As observed last year on the previous INEX coprus, IQE based on MWTs
still improves retrieval effectiveness. On the contrary, automatic query expansion
(AQE) using the same parameters has the reverse effect. This needs further
investigation and tests with different parameters.
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Abstract. This paper describes the participation of RMIT in the 2009
ad hoc track for INEX. We repeated experiments done in 2007 that
showed article level retrieval does surprisingly well on the Best in Context
task.

Introduction

In 2007 we questioned how useful the best in context task reflected ad hoc
retrieval [1]. Our experiments in 2007 used the Zettair1 search engine to do article
retrieval for the Focused, Relevant in Context, and Best in Context tasks; for
the Best in Context task, article level retrieval did surprisingly well. In 2009 we
report similar results for the Best in Context task on the new INEX collection
with the 2009 ad hoc topics.

Approach and Results

Zettair is an open source search engine developed at RMIT. We used a stable
released version of Zettair (version 0.9.3) which we ran on a MacBook computer
with 2.16 GHz Intel Core 2 Duo running Mac OS X version 10.5.8 with 4 MB of
L2 Cache and 2 GB memory. In the queries we used the CO titles of the topics
and two similarity measures: RMIT09title used the default similarity measure
in Zettair (a language model with Dirichlet-smoothing), and RMIT09titleO used
Okapi BM25. The best-entry-point was set at the start of the article.

As shown in the table below when evaluated with the MAgP metric the
run RMIT09title performed better than the run RMIT09titleO, whereas when
evaluated as document level runs using MAP the order of the runs was reversed.

Discussion

Once again it appears that the Best in Context task is a challenging task, as in
the vast majority of cases the best entry point for an INEX answer is very close
to the start of the article. Thus, once again, it is very difficult for systems to
identify when the best entry should be set anywhere else apart from the start of
the document.
1 http://www.seg.rmit.edu.au/zettair/
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Table 1. Results

run MAgP score MAgP rank MAP score MAP rank

RMIT09title 0.1608 12 0.3540 2
RMIT09titleO 01710 2 0.3181 22
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Abstract. With the new semantically annotated Wikipedia XML corpus, we 
attempt to investigate the following two research questions. Do the structural 
constraints in CAS queries help in retrieving an XML document collection 
containing semantically rich tags? How to exploit the semantic tag information 
to improve the CO queries as most users prefer to express the simplest forms of 
queries? In this paper, we describe and analyze the work done on comparing 
CO and CAS queries over the document collection at INEX 2009 ad hoc track, 
and we propose a method to improve the effectiveness of CO queries by 
enriching the element content representations with semantic tags. Our results 
show that the approaches of enriching XML element representations with 
semantic tags are effective in improving the early precision, while on average 
precisions, strict interpretation of CAS queries are generally superior. 

1   Introduction 

With the growth of XML, there has been increasing interest in studying structured 
document retrieval. A key characteristic that distinguishes the XML retrieval task 
from a traditional retrieval task is the existence of structural information in the former 
one. The structural information not only enables the system to retrieve the document 
fragments rather than the whole documents relevant to users’ queries, but also 
provides new dimensions to be exploited to improve the retrieval performance. 

For example, a common approach to exploit the hierarchical structure in XML 
documents is to score the leaf elements that directly contain terms and propagate the 
scores up to their ancestors. Thus the scores of elements up in the tree are calculated 
as weighted combinations of their descendants’ scores. Such a score propagation 
strategy can reflect the hierarchical level of the elements (the lower elements are 
considered as more specific than the upper elements), and also the weights can be set 
to reflect the importance of different element types. Another well-accepted idea of 
utilizing the structural information to improve the retrieval performance is to 
formulate more precise queries by specifying structural conditions in the query. For 
example, by specifying that the return element type should be movie, or John should 
be a director, the retrieval precision can be greatly improved. Structural conditions 
add more semantics into the query as discussed in [1] by specifying target information 
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type, disambiguating keywords, specifying search term context, and/or relating search 
query terms. They can be explicitly specified by the user or automatically inferred by 
the system. 

There are various structured query languages, e.g. XML fragments [2], NEXI [3], 
field-based structured query languages as that used in Lemur/Indri [4], XQuery Full-
Text [5] and etc. They differ in their expressive power on specifying structural 
constraints, from the simplest one (with only the return element type) to the most 
complex one (with the support of full-fledged XQuery). For most users, however, 
complex structured queries are hard to construct. Moreover, once such queries were 
incorrectly formulated or inferred, possibly due to the imprecise knowledge about the 
document structures or the semantic gap between the query and data, strict matching 
of these queries would greatly harm the retrieval precision instead of improving it. To 
overcome this problem, we can make the hard constraints soft by treating the 
structural conditions as “hints” rather than “constraints”. The structural hints however 
won’t help much in XML retrieval as analyzed from the previous INEX Ad hoc tracks 
[6]. We think the reasons partially lie in the document collections used in previous 
INEX tracks. Both the collection of IEEE journal articles used from INEX 2002 to 
2005 and the Wikipedia document collection used from INEX 2006 to 2008 contain 
very few semantic tags, such as movie, director, but mostly structural tags, like article, 
sec, p and etc. When expressing queries with only structural tags, the user intends to 
constrain the size of results rather than make the query semantically clearer. For 
example, when the user specifies the return element type to be a section or a 
paragraph, it has nothing to do with the topic relevance of the query. Users are in 
general bad at giving such structural hints [6]. Thus the performance improvement is 
not significant. 

In INEX 2009, document collection is changed to a semantically annotated 
Wikipedia XML corpus [7]. In this corpus, the Wikipedia pages, as well as the links 
and templates in the pages, are annotated with semantically rich tags using the 
concepts from WordNet and etc. For Example, Fig. 1 shows an excerpt of an example 
XML document (4966980.xml) in the collection. With this new semantics-annotated 
document collection, we attempt to investigate the following research questions:  

1. Do the structural constraints in CAS queries help in retrieving such an XML 
document collection containing semantically rich tags? 

2. How to exploit the semantic tag information to improve the CO queries as 
most users prefer to express the simplest forms of queries? 

In this paper, we describe and analyze the work done on comparing CO and CAS 
queries on such a semantically annotated XML corpus, and propose to improve the 
effectiveness of CO queries by enriching element content representations with 
semantic tags. Our experimental results show that the approaches of enriching XML 
element representations with semantic tags are effective in improving the early 
precision, while on average precisions, strict interpretation of CAS queries are 
generally superior. 

The paper is organized as follows. Section 2 describes the baseline retrieval models 
for CO and CAS queries in XML retrieval used in our comparisons. In Section 3, we 
discuss the methodology for exploiting semantic tags in evaluating CO queries for 
XML retrieval. The experiment results are presented in Section 4. Finally, Section 5 
concludes the paper and describes future work. 
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<article xmlns:xlink="http://www.w3.org/1999/xlink"> 
<physical_entity confidence="0.8" wordnetid="100001930"> 

<communicator confidence="0.8" wordnetid="109610660"> 
   <person confidence="0.8" wordnetid="100007846"> 
     <causal_agent confidence="0.8" wordnetid="100007347"> 
       <writer confidence="0.8" wordnetid="110794014"> 
         <dramatist confidence="0.8" wordnetid="110030277"> 

<header> 
<title>Sam Ukala</title>  
<id>4966980</id>  
<revision> 

<timestamp>2007-08-12T14:57:18Z</timestamp> 
<contributor><username>Cydebot</username></contributor> 

</revision> 
<categories> 

<category>Nigerian dramatists and playwrights</category> 
</categories> 

</header> 
<bdy> 

<b>Sam Ukala</b> is a  
<link xlink:type="simple" xlink:href="../383/21383.xml">Nigerian</link> 

playwright, poet, short story writer, actor, theatre director and academic. He has been 
Professor of Drama and Theatre Arts at a number of Nigerian universities, including  

  <region wordnetid="108630985" confidence="0.8"> 
    <administrative_district wordnetid="108491826" confidence="0.8"> 
      <location wordnetid="100027167" confidence="0.8"> 
        <district wordnetid="108552138" confidence="0.8"> 
          <country wordnetid="108544813" confidence="0.8"> 
            <link xlink:type="simple" xlink:href="../627/2227627.xml">Edo State</link> 
          </country> 
        </district> 
      </location> 
    </administrative_district> 

</region> University and ……  
Fig. 1. An excerpt of document 4966980.xml in the semantically annotated Wikipedia 
collection. 

2   Baseline Approaches 

Language modeling is a newly developed and promising approach to information 
retrieval. It has a solid statistical foundation, and can be easily adapted to model 
various kinds of complex and special retrieval problems, such as structured document 
retrieval. In particular, mixture models [8] and hierarchical language models 
[9][10][11] are proposed to be applied in XML retrieval. We base our work on 
language modeling approaches for XML retrieval. In this section, we describe the 
baseline XML retrieval models for both CO and CAS queries compared in our 
experiments. 

We model an XML document as a node-labeled tree, where each node in the tree 
corresponds to an element in the document and the node label corresponds to the tag 
name of the element. The hierarchical structure represents the nesting relationship 
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between the elements. The content of each element can be modeled using its full 
content or weighted combination of leaf contents. The full content of an element 
consists of all the text contained in the subtree rooted at the element, while the leaf 
content of an element consists of all the text directly contained in the element. The 
weighted combination of leaf contents of an element refers to the weighted 
combination of the leaf contents of all the elements in the subtree rooted at the 
element. The full content is in fact a special case of weighted combination of leaf 
contents, where all the weights are equal to 1. In this paper, we represent the element 
content by its full content. How to set optimal weights for combining leaf contents to 
improve the retrieval performance is orthogonal to the techniques addressed in this 
pa

guage model from the 
document language model, i.e. D(θQ‖θD), as in equation (2). 

 feedback information. So we adopt the query 
lik

per, and worth further study. 
The basic idea of language modeling approaches in information retrieval is to 

estimate a language model for each document (θD) and the query (θQ), and then rank 
the document in one of the two ways: by estimating the probability of generating the 
query string with the document language model, i.e. P(Q|θD), as in equation (1), or 
by computing the Kullback-Leibler divergence of the query lan
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On the surface, the KL-divergence model appears to be quite different from the query 
likelihood method. However, it turns out that the KL-divergence model covers the 
query likelihood method as a special case when we use the empirical distribution to 
estimate the query language model, i.e. maximum-likelihood estimate. By introducing 
the concept of query language model, the KL-divergence model offers opportunities 
of leveraging feedback information to improve retrieval accuracy. This can be done 
by re-estimating the query language model with the feedback information [12]. In this 
paper, we do not consider the effect of

elihood method in our experiments. 
Thus, the entire retrieval problem is reduced to the problem of estimating document 

language models. The most direct way to estimate a language model given some 
observed text is to use the maximum likelihood estimate, assuming an underlying 
multinomial model. However, the maximum likelihood estimate assigns zero 
probability to the unseen words. This is clearly undesirable. Smoothing plays a 
critical role in language modeling approaches to avoid assigning zero probability to 
unseen words and also to improve the accuracy of estimated language models in 
general. Traditionally, most smoothing methods mainly use the global collection 
information to smooth a document language model [13][14]. Recently, corpus graph 
structures, e.g. the similarity between documents, have been exploited to provide 
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more accurate smoothing of document language models [15]. Such a local smoothing 
st

irichlet smoothing and λ 
is the interpolation parameter for Jelinek-Mercer smoothing. 

rategy has been shown to be effective. 
In XML retrieval, the element language model is usually smoothed by interpolating 

it with the global information such as the whole collection model or the language 
model specific to the element type, and further more, possibly with other related 
element language models in the tree structure, e.g. its parent, children, or even 
descendants and ancestors if the smoothing is done recursively on the tree 
[8][9][10][11]. However, according to the previous study [10][16], the recursive 
smoothing methods exploiting the hierarchical structure of the XML tree only 
improve the retrieval effectiveness slightly. Thorough experimental study on effective 
smoothing methods for XML retrieval is needed, and we leave it to our future work. 
As for the baseline approaches in this paper, we adapt the two-stage smoothing 
method proposed in [14] to XML retrieval as it was shown to be effective in our 
previous experiments [16]. In the first stage, the element language model is smoothed 
using a Dirichlet prior with the document language model as the reference model. In 
the second stage, the smoothed element language model is further interpolated with a 
query background model. With no sufficient data to estimate the query background 
model, the collection language model is assumed to be a reasonable approximation of 
the query background model. Thus, we get the estimation of each element language 
model as shown in equation (3), where tf(w,e) is the term frequency of w in the 
element e, len(e) is length of e, μ is the scale parameter for D
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2.1   CO Queries 

sed on the query likelihood as stated 
ab

he document. For the thorough task, no overlapping is removed from the 
result list. 

CO queries at INEX ad hoc track are given in the title fields of topics. We remove all 
the signs, i.e. +, -, and quotes, i.e. “” in the title field. That is, a CO query is simply a 
bag of keywords in our system, Q = {w1, w2, …, wm}. We estimate a language model 
for each element in the collection using its full content and two-stage smoothing 
method. Each element is scored independently ba

ove, and a ranked list of elements is returned. 
We submitted results to the four tasks of the ad hoc track, i.e. focused, best in 

context, relevant in context and thorough. For the first three tasks, overlap in the 
result list has to be removed. We adopt the simplest strategy of removing overlap, i.e. 
keeping only the highest ranked element on each path. For the in context tasks, all the 
elements from the same document are clustered together, and the clusters 
(corresponding to documents) are ordered by their maximum element scores. For the 
best in context task, all the elements except the max-scored element in each document 
are removed from the result list. That is, a ranked list of documents is returned for 
best in context task. The best entry point in each document is set to be the max-scored 
element in t
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2.2   CAS Queries 

In INEX ad hoc track, CAS queries are given in the castitle fields of topics. The 
queries are expressed in the NEXI query language [3]. For example, consider the CAS 
query of topic 85, 
//article[about(., operating system)]//sec[about(.//p, 
mutual exclusion)] 

which requests section components in which some paragraph is about “mutual 
exclusion” and such sections are in an article about “operating system”. There can be 
strict and vague interpretations for the structural constraints expressed in the query. 
As how to vaguely interpret the structural constraints properly remains a challenge 
problem, in this paper for the comparisons, we adopt the strict interpretation strategy 
as implemented in the Lemur/Indri system [4]. 

When evaluating the above example query, for each section that appears in an 
article, a score depending on its relevance to the query condition about(.//p, mutual 
exclusion)] is first calculated; to calculate this score, a list of relevance scores of all 
paragraphs in the section to the keyword query “mutual exclusion” are computed 
using the query likelihood method, and then the section’s score is set to be its best 
matching paragraph’s score. Finally, this score is combined (probabilistic AND) with 
the relevance score of the article containing this section to the keyword query 
“operating system” to form the final score of the section. A ranked list of sections is 
returned based on the final scores. 

As in CO queries, we ignore all the phrases and +, - signs in CAS queries. 
Removing overlaps and presenting the results as required in context tasks are handled 
in the same way as that for CO queries as described in Section 2.2. 

3   Exploiting Semantic Tags in Evaluating CO Queries 

With the semantically rich tags present in the XML document, we assume that 
providing more structural information in queries could be more effective, as discussed 
in previous studies [1]. However, most users are not willing or not good at providing 
such structural conditions in queries. Many users in general are only willing to submit 
the simplest forms of queries, i.e. keyword queries. 

To assists its users, an XML retrieval system can shift the burden of specifying 
effective structured queries from the user to the system. That is, the system 
automatically infers or generates CAS queries from the CO queries submitted by 
users [17]. This process is typically divided into three steps: first, generating all 
possible structured queries from the input unstructured query by incorporating the 
knowledge of schemas, data statistics, heuristics, user/pseudo relevance feedback and 
etc.; second, ranking the structured queries according to their likelihood of matching 
user’s intent; third, selecting the top-k queries and evaluating them. However, if the 
inferred structured queries are not intended by the user, we can not expect to get the 
right result. Another line of research work done in this direction is to infer some 
structural hints, not necessarily complete structured queries, from the input keyword 
query, such as in [18][19].  
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In this paper, we investigate the problem of how to exploit the semantic tag 
information to improve the performance of CO queries not from the point of view of 
modifying queries but from the point of view of enriching element representations 
with semantic tags. The idea is similar to that of enriching web document 
representations with aggregated anchor text [20], even though we are in different 
settings, web documents versus XML elements and aggregated anchor text versus 
semantic tags. Although enriching XML element representations with the semantic 
tags of all its related elements or even the ones from other linked documents would be 
an interesting research issue, we leave it to our future work. In this paper we 
investigated two ways of enriching element content representations with its own 
semantic tags. One is text representation and the other is new field representation. 

3.1   Text Representation 

When a user issues a keyword query, it often contains keywords matching the 
semantic tags of the relevant elements, e.g. to specify the target information type or to 
specify the context of search terms. For example, among many others, topic 5 
“chemists physicists scientists alchemists periodic table elements” is looking for 
chemists, physicists, scientists, alchemists who studied elements and the periodic table, 
and topic 36 “notting hill film actors” requests all the actors starring in the film 
“Nottting Hill”, where actor gives the target information type and film specifies the 
search context of “Notting Hill”.  

Thus, the terms in a keyword query has to match not only the text content of an 
element but also the semantic tags. The simplest way of enriching the element 
representation to match the query with both the content and semantic tags of the 
element is to propagate all the semantic tags of the element to its raw text content. 
Note that there could be more than one semantic tags added to the raw text content of 
an element. For example, in Fig. 1, the text content of the article element will be 
augmented with additional terms, article, physical_entity, communicator, person, 
causal_agent, writer, dramatist; the text content of the second link element will be 
augmented to be “region, administrative-district, location, district, country, link, Edo 
State”. 

There are altogether 32311 distinct tags in the Wikipedia collection of INEX 2009. 
Only a small portion of them (less than 0.1%) are for structural or formatting uses, e.g. 
article, sec, p, bdy, b, it, while all others are of semantic use. Among all the semantic 
tags, only about 5245 of them are from the WordNet concepts, i.e. with the 
“wordnetid” attribute in the start tag. Since most tags have semantic meanings, we did 
not differentiate them, but chose to propagate all of them to their respective elements. 

3.2   New Field Representation 

When evaluating a query, it may be helpful if we assign different weights to the case 
when a search term matches a semantic tag and to the case when it matches the raw 
text of an element. This can be achieved by the new field representation, in which all 
the semantic tags of an element are added to a new subelement of this element. The 
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new subelement is given special tag name “semantics”, which is not among the 
existing 32311 distinct tag names. 

When evaluating a CO query over the new field representation, the generative 
model for each element is first estimated using the equation (3). Next, the model for 
each element is further smoothed by interpolating it with all its children’s smoothed 
language models as shown in equation (4). This can be done non-recursively or 
recursively from the bottom up to the top of the tree as discussed in the hierarchical 
language modeling approaches [10][11]. If by non-recursive smoothing, P(w|θc’) in 
equation (4) should be changed to P(w|θc). 
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In such a model, we can set different weights for different fields. By default, all the 
fields have equal weights that are equal to 1. To stress the “semantics” field, we can 
set a higher weight on it, e.g. in our experiments, we set λsemantics to be 2. In this 
representation, the matching of terms with semantic tags and with raw text can be 
differently weighted, which may be useful. 

4   Experiments 

To compare CO and CAS queries and evaluate the methodology we proposed to 
exploit semantic tags in executing CO queries, we planed to submit four runs for each 
task at the ad hoc track of INEX 2009. These four runs, named as base_co, base_cas, 
text_co and semantics_co, correspond to the baseline CO, baseline CAS, text 
representation, and new field representation approaches respectively. Due to the limit 
of time, not all runs were successfully submitted before the deadline. We ignore the 
Thorough task as it may have similar results as the Focused task and present the 
results on the other three tasks in this section. 

4.1   Setup 

We implemented the four retrieval strategies inside the Lemur/Indri IR system [5], 
which is based on language modeling approaches. Since in this paper we intend to 
investigate whether the semantic tags in XML documents could be useful, and many 
other retrieval strategies are orthogonal to our approaches, e.g. by incorporating the 
element length priors, the proximity of keywords, contextualization and etc., we did 
not employ them in this set of experiments. We expect the retrieval performance be 
further improved by incorporating the above mentioned techniques. 

At the ad hoc track of INEX 2009, the data collection consists of 2,666,190 
semantically annotated Wikipedia XML documents. There are more than 762M 
elements and 32311 distinct tags in the collection. We indexed all the elements in the 
XML documents, and the index was built using the Krovetz stemmer and the shortest 
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list of stop words that contains only three words {“a”, “an”, “the”}. To make 
Lemur/Indri possible to index 32311 different fields, we made changes on its internal 
data structures. Among the list of 32311 tags, there are many cases that two tags only 
differ on the letter cases, e.g. “Mission” and “mission”, or a list of tags share the same 
prefix while their different suffixes form a sequence of numbers, like “country1”, 
“country2”, “country3”, “country4”, and etc. We specify some rules to conflate these 
tags when indexing the documents. For example, all the tags with capital letters are 
conflated to its small cases version, and multiple tags with same word prefix but 
different number suffixes are conflated to their shared word prefix. Thus, “country1”, 
“country2”, and etc. are all conflated to “country”. This can improve the retrieval 
performance of CAS queries when matching the tag names exactly. So this has 
similar effect as the tag equivalence strategy, but is done at the indexing time. 

The parameters in the retrieval models are set as its default values in Lemur/Indri 
system, e.g. μ and λ in equation (3) are set to be 2500 and 0.4 respectively, and we set 
the λsemantics in equation (4) to be 2 while all other λs in equation (4) are set to be 1. For 
each run, our system returns the top 1500 elements. 

The measures used in INEX 2009 are the same as that in INEX 2007. For Focused 
task, interpolated precisions at 101 recall levels, i.e. iP(i), i=0.0, 0.01, 0.02, …, 1.0, 
and mean average interpolated precision (MAiP) are computed. For In-Context tasks, 
generalized precisions and recalls at different ranks, i.e. gP[r] and gR[r], r=1, 2, 3, 5, 
10, 25, 50, and mean average generalized precision (MAgP) are computed. 

4.2 Results 

The results for the four approaches at different tasks are shown in Table 1. The results 
annotated with “*” are not official runs submitted to the INEX 2009 but were 
evaluated with the INEX 2009 assessments afterwards. Due to some implementation 
issues, we did not finish all the semantics_co runs. However, from the results of best 
in context task, we can draw similar conclusions for this approach in other tasks. It 
does not perform better than other approaches, especially the text representation 
approach. This may be due to that we did not tune the parameter λsemantics, and we 
leave it in our future work. 

Table 1. Experimental results of different retrieval strategies at INEX 2009. 

Tasks 

Runs 

Focused 
(iP[0.01]) 

Focused 
(MAiP) 

Relevant in
context 

 Relevant in
context 

(gP[10]) 

 Best in
context 

(MAgP) 

 Best in 
context 

(gP[10]) (MAgP) 

base_co 0.4322 0.0565 0.1934 0.0645 0.1465* 0.0958* 

base_cas 0.4876 0.1472 0.1946 0.1028 0.1444* 0.0971* 

text_co 0.4973 0.0741 0.2381 0.0807 0.1610 0.1013 

semantics_co - - - - 0.1484 0.0923 

From Table 1, we can make the following observations. The text representation 
approach is useful in retrieving the relevant results earlier, while the baseline CAS 
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retrieval strategy, i.e. strict interpretation of the structural constraints, performs better 
on average precisions. 

To analyze these observations more deeply, we classify the 68 assessed CAS 
queries in INEX 2009 into three categories: 

1. CAS queries with no structural constraints, i.e. identical to CO queries. For 
example, //*[about(., Bermuda Triangle)]. There are 15 of them. 

2. CAS queries with only structural tags. For example, //article[about(., Nobel 
prize)], //article[about(.,IBM)]//sec[about(., computer)], and //article[about(., 
operating system)]//sec[about(.//p, mutual exclusion)]. There are 25 of them. 

3. CAS queries with semantic tags. For example, //vehicles[about(., fastest 
speed)], //article[about(., musician)]//music_genre[about(., Jazz)], and 
//article[about(.//language, java) OR about(., sun)]//sec[about(.//language, 
java)]. There are 28 of them. 

For each class of CAS queries, we compared their results as shown in Table 2, Table 
3 and Table 4 respectively. 

Table 1. Results over the CAS queries with no structural constraints. 

Tasks 

Runs 

Focused 
(iP[0.01]) 

Focused 
(MAiP) 

Relevant in
context 

 Relevant in
context 

(gP[10]) 

 Best in
context 

(MAgP) 

 Best in 
context 

(gP[10]) (MAgP) 

base_co 0.4864 0.0718 0.2263 0.0814 0.1194* 0.0923* 

base_cas 0.4865 0.0718 0.2263 0.0814 0.1194* 0.0933* 

text_co 0.5302 0.0974 0.2818 0.1024 0.1219 0.0855 

semantics_co - - - - 0.1039 0.0752 

For the first class of CAS queries, CAS queries are identical to their CO versions. 
From Table 2, we can observe that text representation performs better than the 
baseline CO/CAS queries. 

Table 3. Results over the CAS queries with only structural tags. 

Tasks 

Runs 

Focused 
(iP[0.01]) 

Focused 
(MAiP) 

Relevant in
context 

 Relevant in
context 

(gP[10]) 

 Best in
context 

(MAgP) 

 Best in 
context 

(gP[10]) (MAgP) 

base_co 0.4170 0.0580 0.1807 0.0669 0.1629* 0.0996* 

base_cas 0.5582 0.2296 0.2054 0.1242 0.1627* 0.1099* 

text_co 0.4545 0.0771 0.2032 0.0814 0.1778 0.1099 

semantics_co - - - - 0.1675 0.1042 

For the second class of CAS queries, baseline CAS approach performs better than 
other approaches both in terms of early precisions and in terms of average precisions. 
This may be because that for querying INEX Wikipedia collection, most of time the 
whole article is relevant. CAS queries constraining the results to be articles or 
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sections would avoid returning many small subelements, thus returning more relevant 
components in the top 1500 returned elements. 

Table 4. Results over the CAS queries with semantic tags. 

Tasks 

Runs 

Focused 
(iP[0.01]) 

Focused 
(MAiP) 

Relevant in
context 

 Relevant in
context 

(gP[10]) 

 Best in
context 

(MAgP) 

 Best in 
context 

(gP[10]) (MAgP) 

base_co 0.4166 0.0648 0.1872 0.0534 0.1465* 0.0942* 

base_cas 0.4155 0.1141 0.1679 0.0951 0.1415* 0.0876* 

text_co 0.5179 0.0589 0.2459 0.0684 0.1670 0.1020 

semantics_co - - - - 0.1553 0.0908 

For the third class of queries, we can observe the same trend as on the whole query 
set. The reason why CAS queries are not always beneficial may be that if the CAS 
query is badly formed, strict matching of the query would hurt the performance 
greatly. For example, //*[about(., notting hill actors) AND about(.//category, film)] 
does not clarify that “notting hill” should occur in the “film” context and “actor” be 
the desired result element type, so the baseline CAS performance for this query is 
much worse than other approaches. Another example is //article[about(., rally 
car)]//driver[about(., female) OR about(., woman)], the user submit this query intends 
to retrieve “cars”, however the badly formulated CAS queries will return “drivers”. 
To avoid such problems, it is better for the system to approximately match the CAS 
queries and to infer some hints from user submitted CO queries instead of asking the 
user to specify these hints. It is hard for them to formulate good queries. 

5   Conclusions and Future Work 

In this paper, we did experiments over the semantically annotated Wikipedia XML 
corpus at INEX 2009 ad hoc track, attempting to investigate the two research 
questions: 

1. Do the structural constraints in CAS queries help in retrieving an XML 
document collection containing semantically rich tags? 

2. How to exploit the semantic tag information to improve the CO queries as 
most users prefer to express the simplest forms of queries? 

The results show that CAS queries are helpful in retrieving more relevant elements. 
When the query was badly formed, however, the performance could be hurt greatly. 
The simplest way of enriching element representations with semantic tags can 
improve the performance slightly, especially in terms of the early precisions. 

As our future work, we are going to study how to infer structural hints from CO 
queries and match them with data approximately. We are also interested in how to 
evaluate top-k queries with complex scoring models efficiently. 
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Abstract. This paper provides an overview of the INEX 2009 Book
Track. The main goal of the track is to evaluate approaches for support-
ing users in reading, searching, and navigating the full texts of digitized
books. The investigation is focused around four tasks: 1) the Book Re-
trieval task aims at comparing traditional and book-specific retrieval
approaches, 2) the Focused Book Search task evaluates focused retrieval
approaches for searching books, 3) the Structure Extraction task tests
automatic techniques for deriving structure from OCR and layout in-
formation, and 4) the Active Reading task aims to explore suitable user
interfaces for eBooks enabling reading, annotation, review, and summary
across multiple books. We report on the setup and status of the track.

1 Introduction

The INEX Book Track was launched in 2007, prompted by the numerous mass-
digitization projects [1], e.g., the Million Book project5, the Open Content Al-
liance6, and the Google Books Library project7. As a result of these efforts the
full texts of digitized books have become available by the thousands on the Web
and in digital libraries. The unprecedented scale of these efforts, the unique char-
acteristics of the digitized material, as well as the unexplored possibilities of user
interactions present exciting research challenges and opportunities, see e.g. [3].

The overall goal of the INEX Book Track is to promote inter-disciplinary
research investigating techniques for supporting users in reading, searching, and
navigating the full texts of digitized books and to provide a forum for the ex-
change of research ideas and contributions. Toward this goal, the track set up
tasks to provide opportunities for investigating research questions around three
broad topics:

– IR techniques for searching collections of digitized books,
5 http://www.ulib.org/
6 www.opencontentalliance.org/
7 http://books.google.com/
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– Users’ interactions with eBooks and collections of digitized books,
– Mechanisms to increase accessibility to the contents of digitized books.

Based around these main themes, four specific tasks were defined:

1. The Book Retrieval (BR) task, framed within the user task to build a reading
list for a given topic of interest, aimed at comparing traditional document
retrieval methods with domain-specific techniques exploiting book-specific
features, such as the back of book index or associated metadata, like library
catalogue information,

2. The Focused Book Search (FBS) task aimed to test the value of applying
focused retrieval approaches to books, where users expect to be pointed
directly to relevant book parts,

3. The Structure Extraction (SE) task aimed to evaluate automatic techniques
for deriving structure from OCR and layout information for building hyper-
linked table of contents, and

4. The Active Reading task (ART) aimed to explore suitable user interfaces
enabling reading, annotation, review, and summary across multiple books.

In this paper, we discuss the setup and current status of each of these tasks
at INEX 2009. First, in Section 2, we give a brief summary of the participating
organisations. In Section 3, we describe the corpus of books that forms the basis
of the test collection. The following three sections detail the four tasks: Section 4
summarises the BR and FBS tasks, Section 5 reviews the SE task, and Section 6
discusses ART. We close in Section 7 with a summary and further plans.

2 Participating Organisations

A total of 84 organisations registered for the track (up from 54 in 2008, and 27 in
2007), of which 15 took part actively throughout the year (same as in 2008, and
up from 9 in 2007), see Table 1.For the full list of participants, please refer to the
INEX web site at http://www.inex.otago.ac.nz/people/participants.asp.

In total, 7 groups contributed 16 search topics with a total of 37 aspects, 4
groups submitted runs to the Structure Extraction task, 3 to the Book Retrieval
task, and 3 groups submitted runs to the Focused Book Search task. Two groups
participated in the Active Reading task, but did not submit results.

3 The Book Corpus

The track builds on a collection of 50,239 digitized out-of-copyright books8, dig-
itized by Microsoft. The corpus is made up of books of different genre, including
history books, biographies, literary studies, religious texts and teachings, ref-
erence works, encyclopedias, essays, proceedings, novels, and poetry. 50,099 of
8 The collection, although in a different XML format, can also be found on the Internet

Archive.
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ID Organisation Topics Runs Assessed topics

6 University of Amsterdam 8, 11 2 BR, 4 FBS
7 Oslo University College 1, 2 10 BR, 10 FBS
14 University of California, Berkeley 10 BR, ART
41 University of Caen 7, 9 3 SE SE
43 Xerox Research Centre Europe 3 SE SE
52 Kyungpook National University 3, 4 ART
54 Microsoft Research Cambridge 10, 16
78 University of Waterloo 5, 6 4 FBS
86 University of Lugano 12, 13, 14, 15
125 Microsoft Development Center Serbia 1 SE
335 Fraunhofer IAIS SE
339 Universita degli Studi di Firenze SE
343 Noopsis Inc. 1 SE
471 Peking University, ICST SE

Table 1. Active participants of the INEX 2009 Book Track, contributing topics,
runs, and/or relevance assessments (BR = Book Retrieval, FBS = Focused Book
Search, SE = Structure Extraction, ART = Active Reading Task)

the books also come with an associated MAchine-Readable Cataloging (MARC)
record, which contains publication (author, title, etc.) and classification infor-
mation.

The OCR text of the books has been converted from the original DjVu for-
mat to an XML format referred to as BookML, developed by Microsoft Develop-
ment Center Serbia. BookML provides additional structure information, includ-
ing markup for table of contents entries. The basic XML structure of a typical
book in BookML (ocrml.xml file extension) is a sequence of pages containing
nested structures of regions, sections, lines, and words ([coords] represents coor-
dinate attributes, defining the position of a bounding rectangle for a region, line
or word, or the width and height of a page):

<document>

<page pageNumber=‘‘1’’ label=‘‘PT CHAPTER’’ [coords] key=‘‘0’’ id=‘‘0’’>

<region regionType=‘‘Text’’ [coords] key=‘‘0’’ id=‘‘0’’>

<section label=‘‘SEC BODY’’ key=‘‘408’’ id=‘‘0’’>

<line [coords] key=‘‘0’’ id=‘‘0’’>

<word [coords] key=‘‘0’’ id=‘‘0’’ val=‘‘Moby’’/>

<word [coords] key=‘‘1’’ id=‘‘1’’ val=‘‘Dick’’/>

</line>

<line [...]><word [...] val=‘‘Melville’’/>[...]</line>[...]

</section> [...]

</region> [...]

</page> [...]

</document>

BookML provides a set of labels (as attributes) indicating structure infor-
mation in the full text of a book and additional marker elements for more
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complex texts, such as a table of contents. For example, the label attributes
in the XML extract above indicate that a new chapter starts on page 1 (la-
bel=“PT CHAPTER”) and that the section element is part of the main body of
text on the page (label=“SEC BODY”). Other semantic units include headers
(SEC HEADER), footers (SEC FOOTER), back of book index (SEC INDEX),
table of contents (SEC TOC). A page may be labeled as a table of contents
page (PT TOC), an empty page (PT EMPTY), a back of book index page
(PT INDEX), or as a new chapter page (PT CHAPTER), etc. Marker ele-
ments provide detailed markup, e.g., for table of contents, indicating entry titles
(TOC TITLE), and page numbers (TOC CH PN), etc.

The full corpus, which totals around 400GB, was distributed on USB HDDs
(at a cost of 70GBP). In addition, a reduced version (50GB, or 13GB com-
pressed) was made available for download. The reduced version was generated
by removing the word tags and propagating the values of the val attributes as
text content into the parent (i.e., line) elements.

4 Information Retrieval Tasks

Focusing on IR challenges, two search tasks were investigated: 1) Book Retrieval
(BR), in which users search for whole books in order to build a reading list
on a given topic, and 2) Focused Book Search (FBS), in which users search
for information in books on a given topic and expect to be pointed directly
at relevant book parts. Both these tasks used the corpus of over 50,000 books
described in Section 3, and the same set of test topics (see Section 4.3).

A summary of the tasks, the test topics, and the online relevance assessment
systemare described in the following sections. The relevance assessment collec-
tion phase is not yet underway, thus evaluation results will be published only
after the INEX workshop.

4.1 The Book Retrieval (BR) Task

This task was set up with the goal to compare book-specific IR techniques with
standard IR methods for the retrieval of books, where (whole) books are returned
to the user. The user scenario underlying this task is that of a user searching
for books on a given topic with the intent to build a reading or reference list,
for example to append at the end of an article, such as a Wikipedia article. The
reading list may be for research purposes, or in preparation of lecture materials,
or for entertainment, etc.

Participants of this task were invited to submit either single runs or pairs of
runs. A total of 10 runs could be submitted, each run containing the results for
all 16 test topics. A single run could be the result of either generic (non-specific)
or book-specific IR methods. A pair of runs had to contain both types, where the
non-specific run served as a baseline, which the book-specific run extended upon
by exploiting book-specific features (e.g., back-of-book index, citation statistics,
book reviews, etc.) or specifically tuned methods. One automatic run (i.e., using
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only the topic title part of a test topic for searching and without any human
intervention) was compulsory. A run could contain, for each test topic, a max-
imum of 1000 books (identified by their 16 character long bookID9), ranked in
order of estimated relevance.

A total of 22 runs were submitted by 3 groups (2 runs by University of
Amsterdam (ID=6); 10 runs by University of California, Berkeley (ID=14); and
10 runs by Oslo University College (ID=7)), see Table 1.

4.2 The Focused Book Search (FBS) Task

The goal of this task was to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The task was thus similar to the
INEX ad hoc track’s Relevant in Context task, but using a significantly different
collection while also allowing for the ranking of book parts within a book. The
user scenario underlying this task was that of a user searching for information in
a library of books on a given subject. The information sought may be ’hidden’
in some books (i.e., it forms only a minor theme) while it may be the main focus
of some other books. In either case, the user expects to be pointed directly to
the relevant book parts. Following the focused retrieval paradigm, the task of a
focused book search system is then to identify and rank (non-overlapping) book
parts that contain relevant information and return these to the user, grouped by
the books they occur in.

Participants could submit up to 10 runs, where one automatic and one man-
ual run was compulsory. Each run could contain, for each of the 37 topic aspects,
a maximum of 1000 books estimated relevant to the given aspect, ordered by
decreasing value of relevance. For each book, a ranked list of non-overlapping
XML elements, passages, or book page results estimated relevant were to be
listed in decreasing order of relevance. A minimum of one book part had to be
returned for each book in the ranking. A submission could only contain one type
of results, i.e., only XML elements or only passages; result types could not be
mixed.

A total of 18 runs were submitted by 3 groups (4 runs by the University of
Amsterdam (ID=6); 10 runs by Oslo University College (ID=7); and 4 runs by
the University of Waterloo (ID=78)), see Table 1.

4.3 Test Topics

Topics are representations of users’ information needs and may comprise of sev-
eral aspects or sub-topics. An information need may be generic or specific. Re-
flecting this, a topic may be of varying complexity and may comprise one or
multiple aspects or sub-topics. We encouraged participants to create multiple
aspects for their topics, where aspects should be focused (narrow) with limited
number of relevant book parts (e.g., pages).

9 The bookID is the name of the directory that contains the book’s OCR file, e.g.,
A1CD363253B0F403
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Participants were encouraged to use Wikipedia at different stages when
preparing topics. The intuition behind the introduction of Wikipedia is twofold.
First, Wikipedia articles often contain a reading list of books relevant to the
general topic of the article, while they also often cite related books relevant to a
specific statement in the article. Thus, topics linked to Wikipedia articles have a
real world application. Second, we anticipated that browsing through Wikipedia
entries could provide participants with suggestions about topics and their spe-
cific aspects of interest, and at the same time provide them with insights and
relevant terminology to be used for better searches and refinements that should
lead to a better mapping between topics and collection.

Participants were asked to create and submit 2 topics, ideally with at least
2 aspects each, using an online Book Search system (see Section 4.4).

A total of 16 new topics (ID: 1-16), containing 37 aspects, were contributed
by 7 participating groups (see Table 1). An example topic is shown in Figure 1.

The collected topics were used for retrieval in the BR task, while the topic
aspects were used in the FSB task.

4.4 Relevance Assessment System

The Book Search system (http://www.booksearch.org.uk), developed at Mi-
crosoft Research Cambridge, is an online web service that allows participants to
search, browse, read, and annotate the books of the test corpus. Screenshots of
the assessment system are shown in Figures 2 and 3.

In 2008, a game called the Book Explorers’ Competition was developed to
collect relevance assessments, where assessors competed for prizes. The compe-
tition involved reading books and marking relevant content inside the books for
which assessors were rewarded points [4].

Based on what we learnt in 2008, we are modifying the game this year to
consist of two separate stages: 1) In the first stage assessors are asked to find
books relevant to the 16 topics and rank the top 10 most relevant books for each
topic, then 2) in the second stage, assessors will again compete as explorers and
reviewers, providing page level judgements for the 37 topic aspects.

We expect the assessment phase to start in mid December and conclude by
the end of January 2010. Results of the evaluation will be published soon after
the assessments have been collected.

5 The Structure Extraction (SE) Task

As in 2008, the goal of this task was to test and compare automatic techniques
for extracting structure information from digitized books and building a hyper-
linked table of contents (ToC). The task was motivated by the limitations of
current digitization and OCR technologies that produce the full text of digitized
books with only minimal structure markup: Pages and paragraphs are usually
identified, but more sophisticated structures, such as chapters, sections, etc., are
typically not recognised.
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The first round of the structure extraction task, in 2008, ran as a pilot test
and permitted to set up appropriate evaluation infrastructure, including guide-
lines, tools to generate ground truth data, evaluation measures, and a first test
set of 100 books. The second round was run both at INEX 2009 and at the Inter-
national Conference on Document Analysis and Recognition (ICDAR) 2009 [2].
This round built on the established infrastructure with an extended test set of
1,000 digitized books.

Participants of the task were provided a sample collection of 1000 digitized
books of different genre and styles in DjVu XML format. Unlike the BookML
format of the main corpus, the DjVu files only contain markup for the basic
structural units (e.g., page, paragraph, line, and word); no structure labels and
markers are available. In addition to the DjVu XML files, participants were
distributed the PDF of books.

Participants could submit up to 10 runs, each containing the generated table
of contents for the 1000 books in the test set.

A total of 8 runs were submitted by 4 groups (1 run by Microsoft Development
Center Serbia (MDCS), 3 runs by Xerox Research Centre Europe (XRCE), 1 run
by Noopsis Inc., and 3 runs by the University of Caen).

5.1 Evaluation Measures and Results

For the evaluation of the SE task, the ToCs generated by participants were com-
pared to a manually built ground-truth. This year, the annotation of a minimum
number of books was required to gain access to the combined ground-truth set.

To make the creation of the ground-truth set for 1,000 digitized books fea-
sible, we 1) developed a dedicated annotation tool, 2) made use of a baseline
annotation as starting point and employed human annotators to make correc-
tions to this, and 3) shared the workload across participants.

The annotation tool was specifically designed for this purpose and developed
at the University of Caen, see Figure 4. The tool takes as input a generated ToC
and allows annotators to manually correct any mistakes.

Performance was evaluated using recall/precision like measures at different
structural levels (i.e., different depths in the ToC). Precision was defined as the
ratio of the total number of correctly recognized ToC entries and the total num-
ber of ToC entries; and recall as the ratio of the total number of correctly recog-
nized ToC entries and the total number of ToC entries in the ground-truth. The
F-measure was then calculated as the harmonic of mean of precision and recall.
For further details on the evaluation measures, please see http://www.inex.
otago.ac.nz/tracks/books/INEXBookTrackSEMeasures.pdf. The ground-truth
and the evaluation tool can be downloaded from http://www.inex.otago.ac.
nz/tracks/books/Results.asp#SE.

The evaluation results are given in Table 2. The best performance (F =
41.51%) was obtained by the MDCS group, who extracted ToCs by first recog-
nizing the page(s) of a book that contained the printed ToC [5]. Noopsis Inc.
used a similar approach, although did not perform as well. The XRCE group
and the University of Caen relied on title detection within the body of a book.

126



ParticipantID+RunID Participant F-measure

MDCS MDCS 41.51%
XRCE-run2 XRCE 28.47%
XRCE-run1 XRCE 27.72%
XRCE-run3 XRCE 27.33%
Noopsis Noopsis 8.32%
GREYC-run1 University of Caen 0.08%
GREYC-run2 University of Caen 0.08%
GREYC-run3 University of Caen 0.08%

Table 2. Evaluation results for the SE task (complete ToC entries)

6 The Active Reading Task (ART)

The main aim of ART is to explore how hardware or software tools for reading
eBooks can provide support to users engaged with a variety of reading related
activities, such as fact finding, memory tasks, or learning. The goal of the investi-
gation is to derive user requirements and consequently design recommendations
for more usable tools to support active reading practices for eBooks. The task is
motivated by the lack of common practices when it comes to conducting usabil-
ity studies of e-reader tools. Current user studies focus on specific content and
user groups and follow a variety of different procedures that make comparison,
reflection, and better understanding of related problems difficult. ART is hoped
to turn into an ideal arena for researchers involved in such efforts with the crucial
opportunity to access a large selection of titles, representing different genres and
appealing to a variety of potential users, as well as benefiting from established
methodology and guidelines for organising effective evaluation experiments.

ART is based on the large evaluation experience of EBONI [6], and adopts
its evaluation framework with the aim to guide participants in organising and
running user studies whose results could then be compared.

The task is to run one or more user studies in order to test the usabil-
ity of established products (e.g., Amazon’s Kindle, iRex’s Ilaid Reader and
Sony’s Readers models 550 and 700) or novel e-readers by following the pro-
vided EBONI-based procedure and focusing on INEX content. Participants may
then gather and analyse results according to the EBONI approach and submit
these for overall comparison and evaluation. The evaluation is task-oriented in
nature. Participants are able to tailor their own evaluation experiments, inside
the EBONI framework, according to resources available to them. In order to
gather user feedback, participants can choose from a variety of methods, from
low-effort online questionnaires to more time consuming one to one interviews,
and think aloud sessions.
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6.1 Task Setup

Participation requires access to one or more software/hardware e-readers (al-
ready on the market or in prototype version) that can be fed with a subset of
the INEX book corpus (maximum 100 books), selected based on participants’
needs and objectives. Participants are asked to involve a minimum sample of
15/20 users to complete 3-5 growing complexity tasks and fill in a customised
version of the EBONI subjective questionnaire, usually taking no longer than
half an hour in total, allowing to gather meaningful and comparable evidence.
Additional user tasks and different methods for gathering feedback (e.g., video
capture) may be added optionally. A crib sheet is provided to participants as
a tool to define the user tasks to evaluate, providing a narrative describing the
scenario(s) of use for the books in context, including factors affecting user perfor-
mance, e.g., motivation, type of content, styles of reading, accessibility, location
and personal preferences.

Participants are encouraged to integrate questionnaires with interviews and
think aloud sessions when possible, and adapt questionnaires to fit into their
own research objectives whilst keeping in the remit of the active reading task.
We also encourage direct collaboration with participants to help shape the tasks
according to real/existing research needs.

Our aim is to run a comparable but individualized set of studies, all con-
tributing to elicit user and usability issues related to eBooks and e-reading.

The task has so far only attracted 2 groups, none of whom submitted any
results at the time of writing.

7 Conclusions and plans

The Book Track this year has attracted a lot of interest and has grown consider-
ably from last year. However, active participation remained a challenge for most
of the participants who signed up to the track. A reason for this may be the high
initial set up costs (e.g., building infrastructure to search books). Most tasks also
require advance planning and preparations, e.g., for setting up a user study. At
the same time, the Structure Extraction task run at ICDAR 2009 (International
Conference on Document Analysis and Recognition) has been met with great
interest and created a specialist community.

Our immediate plans are to commence the relevance assessment gathering
stage for the BR and FBS tasks from mid December. We aim to have the eval-
uation results published by mid February 2010.

Our plans for the longer term future are to work out ways in which the initial
participation costs can be reduced, allowing more of the ’passive’ participants
to take an active role.
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<topic id=‘‘10’’ cn no=‘‘60’’>

<task>Find relevant books and pages to cite from the Wikipedia article on

Cleopatra’s needle</task>

<title>Cleopatra needle obelisk london paris new york</title>

<description>I am looking for reference material on the obelisks known as

Cleopatra’s needle, three of which have been erected: in London,

Paris, and New York.</description>

<narrative>I am interested in the obelisks’ history in Egypt, their transportation,

their physical descriptions, and current locations. I am, however, not

interested in the language of the hieroglyphics.</narrative>

<wikipedia-title>Cleopatra’s needle</wikipedia-title>

<wikipedia-url>http://en.wikipedia.org/wiki/Cleopatra’s_Needle</wikipedia-url>

<wikipedia-text>Cleopatra’s Needle is the popular name for each of three Ancient

Egyptian obelisks [...] </wikipedia-text>

<aspect aspect id=‘‘10.1’’>

<aspect-title>Description of the London and New York pair</aspect-title>

<aspect-narrative>I am looking for detailed physical descriptions of the London and

New York obelisks as well as their history in Egypt. When and

where they were originally erected and what happened to them when

they were moved to Alexandria.</aspect-narrative>

<aspect-wikipedia-text>The pair are made of red granite, stand about 21 meters

(68 ft) high, weigh [...] </aspect-wikipedia-text>

</aspect>

<aspect aspect id=‘‘10.2’’>

<aspect-title>London needle</aspect-title>

<aspect-narrative>I am interested in details about the obelisk that was moved to

London. When and where was it moved, the story of its

transportation. Information and images of the needle and the two

sphinxes are also relevant.</aspect-narrative>

<aspect-wikipedia-text>The London needle is in the City of Westminster, on the

Victoria Embankment [...] </aspect-wikipedia-text>

</aspect>

<aspect aspect id=‘‘10.3’’>

<aspect-title>New York needle</aspect-title>

<aspect-narrative>I am looking for information and images on the obelisk that was

moved to New York. Its history, its transportation and

description of its current location.</aspect-narrative>

<aspect-wikipedia-text>The New York needle is in Central Park. In 1869, after the

opening of the Suez Canal, [...] </aspect-wikipedia-text>

</aspect>

<aspect aspect id=‘‘10.4’’>

<aspect-title>Paris needle</aspect-title>

<aspect-narrative>Information and images on the Paris needle are sought. Detailed

description of the obelisk, its history, how it is different from

the London and New York pair, its transportation and current

location are all relevant.</aspect-narrative>

<aspect-wikipedia-text>The Paris Needle (L’aiguille de Cleopatre) is in the Place

de la Concorde. The center [...] </aspect-wikipedia-text>

</aspect>

</topic>

Fig. 1. Example topic from the INEX 2009 Book Track test set.130



Fig. 2. Screenshot of the relevance assessment module of the Book Search sys-
tem: List of books in the assessment pool for a selected topic.

Fig. 3. Screenshot of the relevance assessment module of the Book Search sys-
tem: Book Viewer window with Assessment tab showing, listing pooled pages to
judge.
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Fig. 4. A screenshot of the ground-truth annotation tool. In the application win-
dow, the right-hand side displays the baseline ToC with clickable (and editable)
links. The left-hand side shows the current page and allows to navigate through
the book. The JPEG image of each visited page is downloaded from the INEX
server at www.booksearch.org.uk and is locally cached to limit bandwidth us-
age.
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Abstract. This paper reports the results of our experiments to 
produce superior (i.e., highly ranked) focused elements in re-
sponse to the Focused Task of the INEX Ad Hoc Track.  The re-
sults of these experiments, performed using the 2008 INEX col-
lection, confirm that our current methodology (described herein) 
is able to produce such elements for this collection.  Our goal for 
2009 is to apply this methodology to the new, extended 2009 
INEX collection to determine its viability in this environment. 
(These experiments are currently underway.) Our system uses our 
method for dynamic element retrieval [2], working with the semi-
structured text of Wikipedia [3], to produce a rank-ordered list of 
elements in the context of focused retrieval. It is based on the 
Vector Space Model [7]; basic functions are performed using the 
Smart experimental retrieval system [6]. Experimental results are 
reported for both the 2008 and 2009 INEX Ad Hoc Tracks.   

1.  Introduction 

In 2008, our INEX investigations centered on integrating our method-
ology for the dynamic retrieval of XML elements [2] with traditional 
article retrieval to facilitate in particular the Focused Task of the Ad 
Hoc Track.  Our goal was to produce what we refer to as good focused 
elements—i.e., elements which when evaluated were competitive with 
others in the upper ranges of the 2008 rankings.  Our best results for 
these experiments, as reported in [4], accomplished this goal but also 
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produced indications that further, significant overall improvements 
were possible with more investigation. Thus, our efforts in 2009 are di-
rected at producing not merely good but rather exceptionally good fo-
cused elements (which rank above those listed in the official rankings). 
This paper reports the results of these experiments, as performed using 
the INEX 2008 collection.  Our goal for 2009 is to produce equivalent 
results—i.e., superior focused elements--using the new, larger INEX 
2009 collection. But as our system requires tuning, this work is just get-
ting underway at the present time 
 
Dynamic element retrieval—i.e., the dynamic retrieval of elements at 
the desired degree of granularity—has been the focus of our INEX in-
vestigations for some time [2, 3]. We have shown that our method 
works well for both structured [1] and semi-structured text [3] and that 
it produces a result identical to that produced by the search of the same 
query against the corresponding all-element index [5]. In [3], we show 
that dynamic element retrieval (with terminal node expansion) produces 
a result considerably higher than that reported by the top-ranked par-
ticipant for the INEX 2006 Thorough task. However, when the task 
changed to focused retrieval, our results fell into the mid-range of par-
ticipant scores [4]. This paper (1) describes our current methodology 
for producing focused elements and (2) reports the results of experi-
ments run on the INEX 2008 collection which clearly establish that it 
produces superior focused elements in this environment.  The remain-
der of the paper is directed towards establishing whether the same 
methodology can be successfully applied in the environment of INEX 
2009—i.e., whether it is also able to produce superior focused elements 
for this much larger, scaled up version of Wikipedia. 
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Abstract. The GREYC Island team participated in the Structure Extraction 
Competition part of the INEX Book track for the first time, with the 
Resurgence software. We used a strategy primarily based on top-down 
document representation. The main idea is to use a model describing 
relationships for elements in the document structure. Chapters are represented 
and implemented by frontiers between chapters. Page is also used. The 
periphery center relationship is calculated on the entire document and reflected 
on each page. However, the strong points of the approach are that it deals with 
the entire document, not only the table of contents (ToC); it handles books 
without ToCs, and titles that are not represented in the ToC (e. g. preface) ; it is 
not dependent on lexicon, hence tolerant to OCR errors and language 
independent ; it is simple and fast.  

Introduction 

The GREYC Island team participated for the first time in the Book Structure 
Extraction Competition held at ICDAR in 2009 and part of the INEX evaluations [1]. 
The Resurgence software was modified to this end. This software was designed to 
handle various document formats, in order to process academic articles (mainly in pdf 
format) and news articles (mainly in HTML format) in various text parsing tasks [2]. 
We decided to join the INEX competition because the team was also interested in 
handling textbooks.  

The experiment was run from pdf documents to ensure the control of the entire 
process [3]. The evaluation rules were not thoroughly studied, for we wished to see if 
we were able to handle large corpora of voluminous documents, not to win a 
competition. We focused on chapter detection. 

Very few principles were tested in this experiment. The model used previously for 
articles is a periphery center dichotomy. The periphery center relationship is 
calculated on the entire document and reflected on each page. It aims at retrieving the 
page body in a page, surrounded by margins [2]. In the following we explain our 
stand and discuss the results on the INEX book corpus.  
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The Book Structure Extraction Task 

Strategy 

The strategy in Resurgence is primarily based on document positional representation, 
rather than starting from the table of contents (ToC). This means that the whole 
document is considered first. Then document constituents are considered top-down 
(by successive subdivision), with focus on the middle part (main body). The 
document is thus the unit that can be broken down ultimately to pages. The main idea 
is to use a model describing relationships for elements in the document structure. 
However, for this first experiment, we focused on chapter title detection so that the 
program detects only one level, i. e. chapter titles.  

Chapter title detection throughout the document was conducted using a four-page 
sliding window. It is used to detect chapter transitions. The underlying idea is that the 
chapter begins after a blank, at least a blank at the top of page. The half page fill rate 
is the simple cue used to decide on chapter transition. The beginning of a chapter is 
detected by one of the two patterns below, where i is the page when a chapter starts: 

- top of page i-2 and bottom of page equally filled  
- bottom of page i-1 less filled than top of page 
- top of page i less filled than bottom of page  
- top of page i+1 and bottom of page equally filled 
 
- empty page i-1 
- top of page i less filled than bottom of page  
- top of page i+1 and bottom of page equally filled 
 
Chapter title extraction is made from the first third of the beginning page. We 

applied rules that ensured that the extracted span of text contained the title. The 
beginning of the title is detected but the end was not carefully looked for. The title 
was grossly delineated by a rule allowing a number of lines containing at most 40 
words. 

Experiment 

The program detected only chapter titles. No effort was exerted to find the sub-titles. 
The three runs were not very different. 

Run 1 was based on minimal rules as stated above. 
Run 2 was the same + trim (remove white spaces at the beginning and end of the 

title) 
Run 3 was the same + trim + lower case (a rule saying that the lower-case lines 

should be pruned, when following a would-be title in higher-case). 
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Commented Results 

The entire corpus was handled. The results were equally very bad for the three runs. 
This was due to a page numbering bug where p = p-1. The intriguing value above 
zero 0,08% came from rare cases where the page contained two chapters (two poems). 

Table 1. Book Structure Extraction official evaluation 1 

  
RunID Participant F-measure (complete entries) 
MDCS 
Microsoft Development Center Serbia 

41,51% 

XRCE-run2 
Xerox Research Centre Europe 

28,47% 

XRCE-run1 
Xerox Research Centre Europe 

27,72% 

XRCE-run3  
Xerox Research Centre Europe 27,33% 
Noopsis 
Noopsis inc. 

8,32% 

 GREYC-run1 
GREYC - University of Caen, France 0,08% 
GREYC-run2 
GREYC - University of Caen, France 

0,08% 

GREYC-run3 
GREYC - University of Caen, France 

0,08% 

 

Table 2. Detailed results for GREYC  

 
 Precision Recall F-Measure 
Titles 19,83% 13,60% 13,63% 
Levels 16,48% 12,08% 11,85% 
Links 1,04% 0,14% 0,23% 
Complete entries 0,40% 0,05% 0,08% 
Entries disregarding depth 1,04% 0,14% 0,23% 
 
The results were recomputed with correction on the unfortunate page number shift 

in the INEX grid (Table 3).  

Table 3. GREYC results with page numbering correction 

  
 precision recall F-measure 
run-1  10, 41 7,41 7,66 
run-2 10,56 7,61 7,85 
run-3 11,22 7,61 8,02 

                                                             
1 http://users.info.unicaen.fr/˜doucet/StructureExtraction2009/ 
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The alternative evaluation grid suggested by [4], was applied. In table 4, for the 
GREYC result, the corrected run p= p-1 is computed under the name "GREYC-1"2.  

Table 4. Alternative evaluation 

 
 XRCE Link-based Measure 
 Links Accuracy (for valid links) 
 Precision Recall F1 Title Level 

MDCS 65.9 70.3 66.4 86.7 75.2 
XRCE-run3 69.7 65.7 64.6 74.4 68.8 
XRCE-run2 69.2 64.8 63.8 74.4 69.1 
XRCE-run1 67.1 63.0 62.0 74.6 68.9 

Noopsis 46.4 38.0 39.9 71.9 68.5 
GREYC-1 59.7 34.2 38.0 42.1 73.2 
GREYC 6.7 0.7 1.2 13.9 31.4 

 
The results still suffered from insufficient provision made for the evaluation rules. 

Notably, the title hierarchy is not represented, which impairs recall. Titles were not 
segmented on the right side, which impairs precision. However, level accuracy is 
quite encouraging. 

Corrections after official competition 

A simple corrective strategy was applied in order to better compare methods. A new 
feature boosted precision.  

In a supplementary run (run 4) the title right end is detected, by calculating the line 
height disruption. This correction results in a better precision as shown in Table 5 
(line GREYC-2) with the XRCE link-based measure. The recall rate is not improved 
because the subtitles are still not looked for.  

Table 5. Corrected run (GREYC-2) with better title extraction compared with previous results 

 
 XRCE Link-based Measure 
 Links Accuracy (for valid links) 
 Precision Recall F1 Title Level 

GREYC-2 64.3 37.1 41.1 45.1 73.1 
GREYC-1 59.7 34.2 38.0 42.1 73.2 
GREYC 6.7 0.7 1.2 13.9 31.4 

 

                                                             
22 http://users.info.unicaen.fr/~doucet/StructureExtraction2009/AlternativeResults.html 
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Discussion 

The experiment was preliminary. We were pleased to be able to handle the entire 
corpus. The results were very bad as expected. The low recall is due to the fact that 
the hierarchy of titles was not addressed as mentioned earlier. This will be addressed 
in the future.  

The experiment was conducted in two phases. The first strategy was more 
classical; it started from the page up to the chapter and relied on title “literal” 
detection. The second was the document to chapter “positional” strategy explained 
above. 

Reflections on the experiment 

Although the results are bad, they showed some strong points of the Resurgence 
program, based on relative position and differential principles. We intend to further 
explore this way. The advantages are the following. The program deals with the entire 
document, not only the table of contents; it handles books without ToCs, and titles 
that are not represented in the ToC (e. g. preface). It is dependent on typographical 
position, which is very stable in the corpus; it is not dependent on lexicon, hence 
tolerant to OCR errors and language independent. Last, it is simple and fast.  

Some examples below underline our point. They illustrate problems that were met 
in the first “literal” attempt but avoided by the “positional” solution. 

Example 1. Varying forms for the string “chapter” due to OCR errors handled by 
Resurgence 
CHAPTEK 
CHAPTEE 
CH^PTEE 
CHAP TEE 
CHA 1 TKR 
C II APT Kit 
(MI A I TKIl 
C II A P T E II 
C H A P TEH 
C H A P T E R 
C II A P T E U 
Oil A PTKR 

 
Since no expectations bear on language-dependent forms, the extracted strings are 

for example the following. A reader can detect a posteriori that this is being written in 
French (first series) or in English (second series). 
− TABLE DES MATIÈRES 
− DEUXIEME PARTIE 
− CHAPITRE 
− TROISIÈME PARTIE 
− QUATRIÈME PARTIE 
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− PREFACE 
 

− CHAPTER 
− TABLE OF CONTENTS 
− INTRODUCTION 
− APPENDIX 
 

Since no list of expected and memorized forms is used, but position instead, fairly 
common strings are extracted, such as CHAPTER or SECTION, but also uncommon 
ones, such as PSALM or SONNET. When chapters have no numbering and no prefix 
such as chapter, they are found as well, for instance a plain title “Christmas Day”.  

Resurgence did not rely on numbering of chapters: this is an important source of 
OCR errors, like in the following series. Hence they were retrieved as they were by 
our robust extractor. 
− II 
− HI 
− IV 
− V 
− VI 
 
− SECTION VI 
− SECTION VII 
− SECTION YTIT 
− SECTION IX 
 
− SKOTIOX XMI 
− SECTION XV 
− SECTION XVI 
 
− THE FIRST SERMON 
− THE SECOND SERMON 
− THE THIRD SERMON 
− THE FOURTH SERMON 
 
− CHAPTEE TWELFTH 
− CHAPTER THIRTEENTH 
− CHAPTER FOURTEENTH 

Proposals 

Concerning evaluation rules, generally speaking, it is unclear whether the groundtruth 
depends on the book or on the ToC. If the ToC is the reference, it is an error to extract 
prefaces, for instance.  

Concerning details, the reason why the beginning and end of the titles are 
overrepresented is not clear and a more straightforward edit distance for extracted 
titles should be provided.  
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It should be clear whether or when the prefix (Chapter, Section, and so on) and the 
numbering should be part of the extracted result. The groundtruth is not clear either 
on the extracted title case: sometimes the case differs in the ToC and in the actual title 
in the book.  

It would be very useful to provide results by title depth (level) as suggested by [4], 
because it seems that providing complete results for one or more level(s) would be 
more satisfying than missing some items at all levels. It is important to get coherent 
and comparable text spans for many tasks, such as indexing, or helping navigation.  

There is also a bias introduced by a semi-automatically constructed groundtruth. It 
is understood that manual annotation is still to be conducted to improve the 
groundtruth quality. We had technical difficulties to meet that requirement this 
summer, which unfortunately were not solved by the organizing committee. It might 
be a better idea to open annotation to a larger audience and for longer periods of time. 

The corpus provided for the INEX Book track was very valuable, it is the only 
available corpus offering full books and it was interesting for it provided various 
examples of layout. 
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Abstract. We present here the XRCE participation to the Structure Extraction 
task of the INEX Book track 2009. After briefly explaining the four methods 
used for detecting the book structure in the book body, we explain how we 
composed them to address the book structure task. We then discuss the Inex 
evaluation method and propose another measure together with the 
corresponding software. We then report on each individual method. Finally, we 
report on our evaluation of the results of all participants. 

1. Introduction 

We present in this paper our participation to the Structure Extraction task of the INEX 
Book 2009. Our objective was to experiment with the use of multiple unsupervised 
methods to realize the task. This article will therefore briefly describe each of them 
before focusing on the evaluation of our results as well as those of the other 
participants. We use here the metric we proposed in 2008, whose software 
implementation is now available at: 
 http://users.info.unicaen.fr/~doucet/StructureExtraction2009/AlternativeResults.html 

Most of the document conversion methods we discuss here are freely accessible at 
http://rossinante.xrce.xerox.com:8090 with inex/colorqube as login/password.  

This work is supported by the Large Scale Integrating Project SHAMAN, co-
funded under the EU 7th Framework Programme (http://shaman-ip.eu/shaman/ ). 

2. Pre-processing 

The first step simply consists in reformatting the XML INEX format into our internal 
format, mostly renaming elements and adding some attributes (such as unique IDs). 
This was performed using XSLT technology.  

A second step consists in detecting pages headers and footers, which often 
introduce noisy for our table of contents detector (see [1]). 

A third step consists in recognizing the page numbering of the document (see [3]), 
in order to associate each physical page with zero or one logical page number, the 
latter being a piece of text. This is again an unsupervised method. 

3. The Four Methods 

The first method aims at parsing the ToC page so as to segment it into entries, each 
entry being formed by a label and a reference to a page number. Our second method is 
dedicated at parsing an index page. The third method is our classical Toc detection 
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method (see [2]). The fourth method uses some characteristic page layout in the 
document body. 

None of these methods aims at determining the entry level, so it is arbitrarily set to 
1. 

3.1. Parsing the ToC Pages 

Parsing the ToC pages involves first finding them. For this purpose, we tried first 
with a simple heuristic that consists in looking for the keyword ‘contents’ in the few 
first line of each page,  under the hypothesis of the presence of one ToC, possibly split 
over consecutive pages at the beginning or end of the book. We look for a series of 
pages containing this word and tolerate a certain number of misses.  

Somehow to our own surprise, this method led to a F1, in term of ToC page 
retrieval task, in the range 90-95% over the 2008 INEX dataset. However, retrieving 
the page of the ToC of a document is not enough. 

We then need to parse the contiguous pages deemed to be the ToC. The 
segmentation in paragraph is unfortunately not adequate, since a valid paragraph may 
both correspond to multiple entries, as shown below, or to part of one entry. In the 
latter case, one could argue that the paragraph segmentation is wrong but it is so. 

 

Figure 1: excerpt from the 2008 book #3 (0008D0D781E665AD). 

We decided to use the reference to page numbers as ToC entry segmenter, as 
already mentioned in the literature [44,55]. Once the ToC is segmented, the referred 
to page is considered as the target of the entry and the entry text becomes the title. 
Here we take benefit of the recognition of the page numbering, performed in the pre-
processing step, and which associates each physical page with zero or one logical 
page number. 

3.2. Parsing the Index Pages 

In a similar way, it is possible to look for some index pages, using the ‘index’ 
keyword, and to segment it based on the appearance of a page number at the end of 
the lines. The text in-between two page numbers is deemed to be the title of some part 
of the document, starting at the indicated page number. 
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3.3. “Classical” Detection of the ToCs 

The method is detailed in [1], [2] and in this section we will only sketch its outline.  
The design of this method has been guided by the interest in developing a generic 
method that uses very intrinsic and general properties of the object known as a table 
of contents. In view of the large variation in shape and content a ToC may display, we 
believe that a descriptive approach would be limited to a series of specific collections. 
Therefore, we instead chose a functional approach that relies on the functional 
properties that a ToC intrinsically respects. These properties are: 
1. Contiguity: a ToC consists of a series of contiguous references to some other parts 

of the document itself; 
2. Textual similarity: the reference itself and the part referred to share some level of 

textual similarity; 
3. Ordering: the references and the referred parts appear in the same order in the 

document; 
4. Optional elements: a ToC entry may include (a few) elements whose role is not to 

refer to any other part of the document, e.g. decorative text; 
5. No self-reference: all references refer outside the contiguous list of references 

forming the ToC. 
Our hypothesis is that those five properties are sufficient for the entire 

characterization of a ToC, independently of the document class and language. In the 
Evaluation and Discussion section, we will discuss the cases where theses hypotheses 
were not valid.  

3.4. Trailing Page Whitespace 

Here we are exploiting a widespread convention: main book parts or chapters are 
often preceded by a page break, i.e. an incomplete page. In consequence, there is 
some extra blank space between the end of the previous and the start of the next part. 
So detecting such blank space, also called trailing page whitespace, leads to discover 
some of the parts of the book. In addition, the title must also be extracted and we 
currently rely on a heuristic to locate it in the few first lines of the page. 

We conjecture that this method has the potential for finding the top level structure 
of many books while inner structure may remain hidden to it. 

4. The Three Runs 

We combined in three different ad-hoc ways the methods described earlier and 
submitted three results. 
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4.1. First Run 

To start with, we applied the keyword heuristic, explained at the beginning of the 
section 3.1, to all books. Those with a ‘contents’ keyword were then processed as said 
in 3.1. Those without ‘contents’ but with ‘index’ were processed as said in 3.2. In 
both case, if the method failed to find resp. a ToC or an Index, the classical method 
(3.3) was then applied.  

The rationale for this process was the assumption that the presence of a ‘contents’ 
keyword indicated a ToC. Of course the found ToC might be not parsable based on 
the page number, for instance because many secondary entries have no associated 
page number. 

768 books were deemed to have a ToC indicated by a keyword ‘contents’, among 
which 722 could be segmented based on the occurrence of page numbers. This left 46 
documents for the ‘classical’ method. 

21 books had the ‘index’ keyword but not the ‘contents’, among which 16 were 
processed by the 3.2 method. This left 5 more for the ‘classical’ method, which 
eventually processed 51 books plus the 211 books with neither ‘contents’ nor ‘index’ 
in them (262 books). 

4.2. Second Run 

Our second run was an extension of the first one: if the ‘classical’ method fails to 
detect a ToC, then we apply the ‘trailing space’ method (3.4) to structure the book. 

We found that among the 262 books processed by the ‘classical’ method, 50 of 
them got no result at all, and went then trough the ‘trailing space’ method. 

4.3. Third Run 

Our third run was a variation of the previous ones. If the ‘contents’ keyword is 
found, we put the method 3.1 and 3.3 in competition by running each of them 
separately and taking the best output. The best one is supposed to be the one with the 
longest textual contents, assuming it “explains” better the ToC pages. 

For the other books, we applied the ‘index’ method if the appropriate keyword was 
found, and in last chance we ran the ‘trailing space’ method. 

5. Evaluation of XRCE results 

5.1. Inex Metric 

According to the Inex metric, the 3 runs show little difference, with a “complete 
entries” F1 measure at about 28%.  
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In more detail, let us look on the first run for instance. The title precision is at 
48.23% and the link precision is at 45.22%. This decrease is indicative of the 
proportion of entries with a valid title that also have a valid link. It means that 94% of 
the entries with a valid title, have a valid link as well, although the INEX links metric 
indicate a precision of 45.22%. In our view, this again points at a room for 
improvement of the INEX links measure. It is desirable in our view to separate the 
title quality measure from the link quality measure. 

5.2. Proposed Link Metric 

As initiated in our 2008 paper, we advocate for a complementary metric that would 
qualify the quality of the links in first intention, rather than conditionally to the title 
validity. 

Such a metric is now available as a Python software at: 
 http://www.xrce.xerox.com/Research-Development/Publications/2009-078 . 

 
It computes:  

• the precision, recall and F1 measure of the links, by considering a 
submission as a list of page breaks, ordered by the page number of the 
breaks. So it counts valid, wrong and missed links. The software actually 
can display this low-level information per book in a submission. 

• for each valid link, it computes the similarity of the proposed title with the 
ground truth one, using the INEX weighted Levenshtein distance: 

))2(),1(max(

)2,1(
1)2,1(

sweightsweight

ssvenshteinweightedLe
sssimil −=  

Averaging over all entries with a valid link gives a title accuracy measure 
for each book. 

• In the same manner, a level accuracy per book is computed by considering 
all entries with a valid link. 

• A INEX-like link measure, by matching the title of valid links against the 
ground truth. So it is similar to the INEX link apart that the link validity is 
checked before the title validity. If both are valid, the entry is valid. Our 
experiments validate the closeness of the two measures. A slight 
difference may occur if several links point to the same page. Since we do 
not look for the optimal alignment of the corresponding title, the INEX-
like measure can be lower. 

According to this metric, our 3 runs are also similar to each other, the third one 
being the better.  

The table below summarizes all these values. 
Inex - Links Proposed link measure 

% 
Prec. Rec. F1 Prec. Rec. F1 Title 

acc. 
Level 
acc. 

xrx1 45.22 41.40 42.13 67.1 63.0 62.0 74.6 68.9 
xrx2 46.39 42.47 43.15 69.2 64.8 63.8 74.4 69.1 
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xrx3 45.16 41.70 42.28 69.7 65.7 64.6 74.4 68.8 

Table 1 : XRCE results according to the Inex links measure and to the proposed measure. 

We observe that the proposed link measure indicates significantly better results, in 
the range 60-70%, which matches better our feeling when looking at the results. 

Those valid links have a textual similarity around 75% with the ground truth. This 
is why a part of them are invalided by the official INEX links measure. Again, we 
question this behavior; indeed, should the title “I Introduction” be invalidated because 
the groundtruth specifies “Chapter I Introduction”, for instance? 

Regarding the levels, the table below gives the proportion of each level in the 
groundtruth.  
Level 1 2 3 4 5 6 7 
Proportion 39% 41% 16% 4% 1% 0.1% 0.02% 

Table 1 : Proportion of each level in the groundtruth. 

Our methods set by construction all levels to 1, since we did not try to determine 
the level. We get 7166 valid levels out of 17309 valid links, which means that 41% of 
the valid links belong to level 1. So our combined method does pretty equally well on 
all levels. On the other hands, the level accuracy per book is higher on smaller books, 
this is why the micro-accuracy of 41% is much lower than the macro-accuracy of 
68.9% reported in the table 1 above (a book with few entries as the same importance 
than a larger book with many entries in the macro-accuracy measure). 

5.3. Evaluation of the Four XRCE Methods 

We will use the proposed measure in the rest of this document. 
Using the ground truth, we then evaluated separately all the four methods. We 

discarded the books 0F7A3F8A17DCDA16 (#40) and E0A9061DCCBA395A (#517) 
because of massive errors in their respective ground truth. We also decided to only 
use the ground truth data built collectively in 2009, with the hope to benefit from a 
higher quality groundtruth, thanks to the use of the nice annotation tool provided to 
us.  

This led to a ground truth of 427 books (only 98 books from 2008 were in the 2009 
ground truth). 

Inex–LIKE - Links (Proposed) link measure 
% 

Prec. Rec. F1 Prec. Rec. F1 Title 
acc. 

Level 
acc. 

ToC page 
parsing 

37.2 35.2 35.5 54.8 53.2 52.1 76.3 72.3 

Index page 
parsing 

0.0 0.0 0.0 0.5 0.3 0.2 28.5 53.7 

Classical 
ToC 

24.6 19.5 20.8 60.3 49.2 50.8 70.4 71.2 

Trailing 22.9 24.4 21.4 56.1 62.6 52.4 59.1 78.8 
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whitespace 

Table 2 : The four XRCE methods measured individually. 

The first observation is that the use of the index pages, if any, largely fails. Of 
course, on some documents, like the 491st of the ground truth, the book structuration 
would benefit from a merge of the ToC and of the index (p15-18). 

The second observation is a threshold effect on the title accuracy. It seems that an 
accuracy below ~75% importantly penalizes the Inex-like result, at almost equal F1 
(proposed) measure. Or said differently, given a certain F1 measure, a title accuracy 
below 75% seems to penalize heavily the INEX F1 measure. 

Interestingly, the combination of the 4 methods for the runs leads to a 7 points gain 
on the F1, reaching 59.3 on these 427 books. 

There is room for improvement here since by taking for each book, the max of the 
F1 of the 4 methods, the averaged F1 reaches 75% with 49% of the books over 0.9 in 
F1, and 63% over 0.8. On the other hand, 16% of the document would remain below 
0.5 in F1. This is the optimal reachable F1 one can obtain by choosing at best which 
method to trust. Such choice is however difficult to make automatically. Another 
approach could consist in mixing the results of the four methods for each book, rather 
than choosing one of them, in some way to be researched.  
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Figure 2: The histogram of the distribution of the F1 when manually choosing optimally which 
method to apply to each document. This is theoritical data. (The vertical scale indicates a 
number of documents.) 

6. Evaluation of All Participant Results 

We again use the proposed new measure to evaluate the results of all the 
participants, in term of links, titles and levels. 

This evaluation is performed using the 2009 official ground truth, which include 
527 books. For the GREYC result, we observed an unfortunate shift of +1 on all page 
numbers so we corrected their result before evaluating it under the name GREYC-1. 

 
Inex–LIKE - Links (Proposed) link measure 

% 
Prec. Rec. F1 Prec. Rec. F1 Title 

acc. 
Level 
acc. 

MDCS 52.4 54.6 52.8 65.9 70.3 66.4 86.7 75.2 
XRX3 44.1 40.8 41.4 69.7 65.7 64.6 74.4 68.8 
XRX2 45.3 41.6 42.3 69.2 64.8 63.8 74.4 69.1 
XRX1 44.2 40.6 41.3 67.1 63.0 62.0 74.6 68.9 
NOOPSIS 15.1 12.0 12.9 46.4 38.0 39.9 71.9 68.5 
GREYC-1 10.2 7.2 7.7 59.7 34.2 38.0 42.1 73.2 
GREYC 0.0 0.0 0.0 6.7 0.7 1.2 13.9 31.4 

Table 3 : The results of all participants measured using the proposed metric. 

 
 In term of F1 measure of the links, we observe two groups of result, one in the 

65% the other in the 40%. The title accuracy ranges from 87% to 42%, with again an 
important impact on the initial INEX links measure. 

As for the level accuracy, MDCS and GREYC do slightly better than the two other 
participants who simply set all level to 1, gaining about 7% in accuracy, i.e. the 
proportion a valid level among the valid links. We tend to think that it is indicative of 
a very difficult task. 

 
We now show the histogram of the link F1 per participant as well as the same 

histogram computed with the maximum F1 reached by one participant for each book. 
Such result is achievable is one knows how to choose at best for each book the result 
to choose among the 4 participants. 
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Figure 3: The histogram of the distribution of the F1 when choosing optimally which method 
to apply to each document. This is theoritical data. 

Choosing optimally the best result per document would lead to a 79% average F1, 
with 63% of the books over 0.9 in F1, and 73% over 0.8. On the other hand, 20% of 
the document would remain below 0.5 in F1.  

Unfortunately, this measure does not distinguish a non-response from a wrong 
response, since both get a 0% in precision and recall. Indeed, non-responses are 
tolerable in many applications while wrong responses are problematic. So we 
computed the number of non-responses per participant: 

GREYC=80 MDCS=101 NOOPSIS=171 XRCE=45 
It turns out that the combination “by maximization” leaves only 14 books without 

answers. It would be interesting to look in more details at those books. 
 

7. Conclusion 

We have experimented with combining multiple methods to perform the task, 
except the level determination for which we have not method in place. Our method 
for combining was ad-hoc and it provided a limited gain, ~7%, over each individual 
method. Among those methods, we have found disappointing the method for parsing 
the index pages while the method looking at trailing page whitespace is promising and 
was under-exploited.  

On the other hand, if one knows how to choose the best method for each book, a 
gain over 20% in F1 can be achieved, at a computationally modest cost. This is an 
attractive path to pursue. 
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We have also proposed another metric to evaluate the results and made it available 
in software form. We are grateful to Antoine Doucet for his support in providing us 
with the submission of all participants and for publishing those new results together 
with the evaluation software. 

Finally, we have found the task of making the ground truth quite labor intensive, 
despite the very convenient tool provided to us. This plays in favor of finding efficient 
automatic methods. 

  

References 
1. Déjean H., Meunier J.-L., Structuring Documents according to their Table of Contents. In: 

Proceedings of the 2005 ACM symposium on Document engineering, pp. 2—9. ACM, 
New York, NY, USA (2005) 

2. Déjean H., Meunier J.-L., On Tables of Contents and how to recognize them. In: 
International Journal of Document Analysis and Recognition (IJDAR), 2008. 

3. Déjean H., Meunier JL., Versatile page numbering analysis, Document Recognition and 
Retrieval XV, part of the IS&T/SPIE International Symposium on Electronic Imaging, San 
Jose, California, USA, 26-31 January 2008. DRR08 

4. Belaïd, A., Recognition of table of contents for electronic library consulting, In: 
International Journal of Document Analysis and Recognition (IJDAR), 2001. 

5. Lin, X. Detection and analysis of table of contents based on content association.  In: 
International Journal of Document Analysis and Recognition (IJDAR), 2005. 

 

152



Ranking and Fusion Approaches for XML Book
Retrieval

Ray R. Larson

School of Information
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@ischool.berkeley.edu

Abstract. For this year’s INEX UC Berkeley focused on the Book track
and all of our submissions were for that track. We tried a variety of differ-
ent approaches for our Book Track runs, the TREC2 logistic regression
probabilistic model used in previous INEX Book Track submissions as
well as various fusion approaches including use of the Okapi BM-25 al-
gorithm. No results are yet available for the track, so this paper focusses
on the approaches used in the various runs submitted.

1 Introduction

In this paper we will first discuss the algorithms and fusion operators used in our
official INEX 2008 Book Track runs. Then we will look at how these algorithms
and operators were used in combination with indexes for various parts of the book
contents in our submissions for this track, and finally we will discuss possible
directions for future research.

2 The Retrieval Algorithms and Fusion Operators

This section largely duplicates earlier INEX papers in describing the probabilis-
tic retrieval algorithms used for both the Adhoc and Book track in INEX this
year. Although These are the same algorithms that we have used in previous
years for INEX and in other evaluations (such as CLEF), including a blind rele-
vance feedback method used in combination with the TREC2 algorithm, we are
repeating the formal description here instead of refering to those earlier papers
alone. In addition we will again discuss the methods used to combine the results
of searches of different XML components in the collections. The algorithms and
combination methods are implemented as part of the Cheshire II XML/SGML
search engine [9, 8, 7] which also supports a number of other algorithms for dis-
tributed search and operators for merging result lists from ranked or Boolean
sub-queries.
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2.1 TREC2 Logistic Regression Algorithm

Once again the principle algorithm used for our INEX runs is based on the Logis-
tic Regression (LR) algorithm originally developed at Berkeley by Cooper, et al.
[5]. The version that we used for Adhoc tasks was the Cheshire II implementa-
tion of the “TREC2” [4, 3] that provided good Thorough retrieval performance
in the INEX 2005 evaluation [9]. As originally formulated, the LR model of prob-
abilistic IR attempts to estimate the probability of relevance for each document
based on a set of statistics about a document collection and a set of queries in
combination with a set of weighting coefficients for those statistics. The statis-
tics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q,D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q,D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

logO(R|C,Q) = log
p(R|C,Q)

1− p(R|C,Q)
= log

p(R|C,Q)
p(R|C,Q)

= c0 + c1 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

qtfi
ql + 35

+ c2 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

log
tfi

cl + 80

− c3 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

log
ctfi
Nt

+ c4 ∗ |Qc|

where C denotes a document component and Q a query, R is a relevance variable,
and

p(R|C,Q) is the probability that document component C is relevant to query
Q,

p(R|C,Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C,Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
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cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.

Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively.
If the query terms are re-weighted (in feedback, for example), then qtfi is no
longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the relative frequency without first taking the
log over the matching terms.

The coefficients were determined by fitting the logistic regression model spec-
ified in logO(R|C,Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.2 Blind Relevance feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[14] and TREC-8 (Voorhees and Harman
1999)[15].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[6] provides a survey of relevance feedback techniques that have been used.

Obviously there are important choices to be made regarding the number of
top-ranked documents to consider, and the number of terms to extract from
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those documents. For this year, having no truly comparable prior data to guide
us, we chose to use the top 10 terms from 10 top-ranked documents. The terms
were chosen by extracting the document vectors for each of the 10 and computing
the Robertson and Sparck Jones term relevance weight for each document. This
weight is based on a contingency table where the counts of 4 different conditions
for combinations of (assumed) relevance and whether or not the term is, or is
not in a document. Table 1 shows this contingency table.

Table 1. Contingency table for term relevance weighting

Relevant Not Relevant

In doc Rt Nt −Rt Nt
Not in doc R−Rt N −Nt −R+Rt N −Nt

R N −R N

The relevance weight is calculated using the assumption that the first 10
documents are relevant and all others are not. For each term in these documents
the following weight is calculated:

wt = log
Rt

R−Rt
Nt−Rt

N−Nt−R+Rt

(1)

The 10 terms (including those that appeared in the original query) with the
highest wt are selected and added to the original query terms. For the terms
not in the original query, the new “term frequency” (qtfi in main LR equation
above) is set to 0.5. Terms that were in the original query, but are not in the
top 10 terms are left with their original qtfi. For terms in the top 10 and in the
original query the new qtfi is set to 1.5 times the original qtfi for the query.
The new query is then processed using the same TREC2 LR algorithm as shown
above and the ranked results returned as the response for that topic.

2.3 Okapi BM-25 Algorithm

The version of the Okapi BM-25 algorithm used in these experiments is based
on the description of the algorithm in Robertson [12], and in TREC notebook
proceedings [13]. As with the LR algorithm, we have adapted the Okapi BM-25
algorithm to deal with document components :

|Qc|∑
j=1

w(1) (k1 + 1)tfj
K + tfj

(k3 + 1)qtfj
k3 + qtfj

(2)

Where (in addition to the variables already defined):

K is k1((1− b) + b · dl/avcl)
k1, b and k3 are parameters (1.5, 0.45 and 500, respectively, were used),
avcl is the average component length measured in bytes
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w(1) is the Robertson-Sparck Jones weight:

w(1) = log
( r+0.5
R−r+0.5 )

(
ntj−r+0.5

N−ntj−R−r+0.5 )

r is the number of relevant components of a given type that contain a given
term,

R is the total number of relevant components of a given type for the query.

Our current implementation uses only the a priori version (i.e., without
relevance information) of the Robertson-Sparck Jones weights, and therefore the
w(1) value is effectively just an IDF weighting. The results of searches using
our implementation of Okapi BM-25 and the LR algorithm seemed sufficiently
different to offer the kind of conditions where data fusion has been shown to
be be most effective [10], and our overlap analysis of results for each algorithm
(described in the evaluation and discussion section) has confirmed this difference
and the fit to the conditions for effective fusion of results.

2.4 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different components of a document.

For the Adhoc Focused and Best In Context runs we used a merge/reweighting
operator based on the “Pivot” method described by Mass and Mandelbrod[11]
to combine the results for each type of document component considered. In our
case the new probability of relevance for a component is a weighted combination
of the initial estimate probability of relevance for the component and the prob-
ability of relevance for the entire article for the same query terms. Formally this
is:

P (R | Q,Cnew) = (X ∗ P (R | Q,Ccomp)) + ((1−X) ∗ P (R | Q,Cart)) (3)

Where X is a pivot value between 0 and 1, and P (R | Q,Cnew), P (R |
Q,Ccomp) and P (R | Q,Cart) are the new weight, the original component weight,
and article weight for a given query. Although we found that a pivot value of
0.54 was most effective for INEX04 data and measures, we adopted the “neutral”
pivot value of 0.4 for all of our 2008 adhoc runs, given the uncertainties of how
this approach would fare with the new database.
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3 Database and Indexing Issues

For the Book Track data this year, we attempted to use multiple elements or
components that were identified in the Books markup as Tables of Contents and
Indexes as well as the full text of the book, since the goal of the main Books
Adhoc task was to retrieval entire books and not elements, the entire book was
retrieved regardless of the matching elements. We created the same indexes for
the Books and for their associated MARC data that we created last year (the
MARC fields are shown in Table 5, for the books themselves we used a single
index of the entire document content. We did not use the Entry Vocabulary
Indexes used in previous years Book track runs, since their performance was, in
general, less effective than using the full contents.

Table 2. Book-Level Indexes for the INEX Book Track 2009

Name Description Contents Vector?

topic Full content //document Yes

toc Tables of Contents //section@label=”SEC TOC” No

index Back of Book Indexes //section@label=”SEC INDEX” No

Table 2 lists the Book-level (/article) indexes created for the INEX Books
database and the document elements from which the contents of those indexes
were extracted.

Table 3. Components for INEX Book Track 2009

Name Description Contents

COMPONENT PAGE Pages //page

COMPONENT SECTION Sections //section

Cheshire system permits parts of the document subtree to be treated as
separate documents with their own separate indexes. Tables 3 & 4 describe the
XML components created for the INEX Book track and the component-level
indexes that were created for them.

Table 3 shows the components and the paths used to define them. The first,
refered to as COMPONENT PAGE, is a component that consists of each identi-
fied page of the book, while COMPONENT SECTION identifies each section of
the books, permitting each individual section or page of a book to be retrieved
separately. Because most of the areas defined in the markup as “section”s are
actually paragraphs, we treat these as if they were paragraphs for the most part.

Table 4 describes the XML component indexes created for the components
described in Table 3. These indexes make the individual sections (such as COM-
PONENT SECTION) of the INEX documents retrievable by their titles, or
by any terms occurring in the section. These are also proximity indexes, so
phrase searching is supported within the indexes. Individual paragraphs (COM-
PONENT PARAS) are searchable by any of the terms in the paragraph, also
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Table 4. Component Indexes for INEX Book Track 2009

Component
or Index Name Description Contents Vector?

COMPONENT SECTION

para words Section Words * (all) Yes

COMPONENT PAGES

page words Page Words * (all) Yes

with proximity searching. Individual figures (COMPONENT FIG) are indexed
by their captions.

Table 5. MARC Indexes for INEX Book Track 2009

Name Description Contents Vector?

names All Personal and Corporate //FLD[1670]00, //FLD[1678]10, No
names //FLD[1670]11

pauthor Personal Author Names //FLD[170]00 No

title Book Titles //FLD130, //FLD245, //FLD240,
//FLD730, //FLD740, //FLD440, No
//FLD490, //FLD830

subject All Subject Headings //FLD6.. No

topic Topical Elements //FLD6.., //FLD245, //FLD240,
//FLD4.., //FLD8.., //FLD130,
//FLD730, //FLD740, //FLD500, Yes
//FLD501, //FLD502
//FLD505, //FLD520, //FLD590

lcclass Library of Congress //FLD050, //FLD950 No
Classification

doctype Material Type Code //USMARC@MATERIAL No

localnum ID Number //FLD001 No

ISBN ISBN //FLD020 No

publisher Publisher //FLD260/b No

place Place of Publication //FLD260/a No

date Date of Publication //FLD008 No

lang Language of Publication //FLD008 No

The indexes used in the MARC data are shown in Table 5. Note that the tags
represented in the “Contents” column of the table are from Cheshire’s MARC to
XML conversion, and are represented as regular expressions (i.e., square brackets
indicate a choice of a single character). We did not use the MARC data this year
in our submitted runs.

3.1 Indexing the Books XML Database

Because the structure of the Books database was derived from the OCR of
the original paper books, it is primarily focused on the page organization and
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layout and not on the more common structuring elements such as “chapters”
or “sections”. Because this emphasis on page layout goes all the way down to
the individual word and its position on the page, there is a very large amount
of markup for page with content. For this year’s original version of the Books
database, there are actually NO text nodes in the entire XML tree, the words
actually present on a page are represented as attributes of an empty word tag in
the XML. The entire document in XML form is typically multiple megabytes in
size. A separate version of the Books database was made available that converted
these empty tags back into text nodes for each line in the scanned text. This
provided a significant reduction in the size of database, and made indexing much
simpler. The primary index created for the full books was the “topic” index
containing the entire book content.

We also created page-level “documents” as we did last year. As noted above
the Cheshire system permits parts of the document subtree to be treated as sep-
arate documents with their own separate indexes. Thus, paragraph-level com-
ponents were extracted from the page-sized documents. Because unique object
(page) level indentifiers are included in each object, and these identifiers are
simple extensions of the document (book) level identifier, we were able to use
the page-level identifier to determine where in a given book-level document a
particular page or paragraph occurs, and generate an appropriate XPath for it.

Indexes were created to allow searching of full page contents, and component
indexes for the full content of each of individual paragraphs on a page. Because
of the physical layout based structure used by the Books collection, paragraphs
split across pages are marked up (and therefore indexed) as two paragraphs.
Indexes were also created to permit searching by object id, allowing search for
specific individual pages, or ranges of pages.

The system problems encountered last year have been (temporarily) corrected
for this years submissions. Those problems were caused by the numbers of unique
terms exceeding the capacity of the integers used to store them in the indexes. For
this year, at least, moving to unsigned integers has provided a temporary fix for
the problem but we will need to rethink how statistical summary information is
handled in the future – perhaps moving to long integers, or even floating point
numbers and evaluating the tradeoffs between precision in the statistics and
index size (since moving to Longs could double index size).

4 INEX 2008 Book Track Runs

We submitted nine runs for the Book Search task of the Books track,
As Table 6 shows, a number of variations of algorithms and search elements

were tried this year. In Table 6 the first column is the run name (all official
submissions had names beginning with “BOOKS09” which has been removed
from the name), the second column is a short description of the run, since each
topic included not only a title, but one or more “aspects” each of which had an
aspect title, column four also indicates whether title only or title and aspects
combined were used in the submitted queries. The third column shows which
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Table 6. Berkeley Submissions for the INEX Book Track 2009

Name Description Algorithm Aspects?

T2FB TOPIC TITLE Uses topic index with title TREC2 No
and blind feedback +BF

T2FB TOPIC TA Uses topic index with title TREC2 Yes
and aspects with blind feedback +BF

T2 INDEX TA Uses Back of Book index TREC2 Yes
with title and aspects

T2 TOC TA Uses Table of Contents index TREC2 Yes
with title and aspects

OK TOPIC TA Uses Topic index Okapi Yes
with title and aspects BM-25

OK TOC TA Uses Tables of Contents index Okapi Yes
with title and aspects BM-25

OK INDEX TA Uses Back of Book indexes Okapi Yes
with title and aspects BM-25

FUS TA Fusion of Topic, Table of Contents, and TREC2 Yes
Back of Book Indexes - title and aspects +BF

FUS TITLE Fusion of Topic, Table of Contents, and TREC No
Back of Book Indexes - title only +BF

algorithms where used for the run, TREC2 is the TREC2 Logistic regression
algorithm described above, “BF” means that blind relevance feedback was used
in the run, and OKAPI BM-25 means that the OKAPI algorithm described
above was used.

5 Conclusions and Future Directions

The results of the Books track are not yet available, but a few observations can
be made about the runs. We suspect that the fusion of full contents with specific
table of contents matching and back of the book indexes will probably perform
best. This is because the table of contents and back of the book indexes alone
are likely to miss relevant items due to the lack of such areas in many of the
books. We hope the topic index with blind feedback will provide a good baseline
that can be enhanced by matches in tables of contents and back of book indexes.
But the actual effectiveness of fusion methods is often slightly less than a single
effective method alone. Only the provision of evaluation results will see if that
is the case for this database and collection of methods.

References

1. A. Chen. Multilingual information retrieval using english and chinese queries. In
C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, editors, Evaluation of Cross-
Language Information Retrieval Systems: Second Workshop of the Cross-Language
Evaluation Forum, CLEF-2001, Darmstadt, Germany, September 2001, pages 44–
58. Springer Computer Scinece Series LNCS 2406, 2002.

161



2. A. Chen. Cross-Language Retrieval Experiments at CLEF 2002, pages 28–48.
Springer (LNCS #2785), 2003.

3. A. Chen and F. C. Gey. Multilingual information retrieval using machine trans-
lation, relevance feedback and decompounding. Information Retrieval, 7:149–182,
2004.

4. W. S. Cooper, A. Chen, and F. C. Gey. Full Text Retrieval based on Probabilis-
tic Equations with Coefficients fitted by Logistic Regression. In Text REtrieval
Conference (TREC-2), pages 57–66, 1994.

5. W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic retrieval based on
staged logistic regression. In 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Copenhagen, Denmark,
June 21-24, pages 198–210, New York, 1992. ACM.

6. D. Harman. Relevance feedback and other query modification techniques. In
W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures &
Algorithms, pages 241–263. Prentice Hall, 1992.

7. R. R. Larson. A logistic regression approach to distributed IR. In SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, August 11-15, 2002, Tampere, Finland,
pages 399–400. ACM, 2002.

8. R. R. Larson. A fusion approach to XML structured document retrieval. Informa-
tion Retrieval, 8:601–629, 2005.

9. R. R. Larson. Probabilistic retrieval, component fusion and blind feedback for XML
retrieval. In INEX 2005, pages 225–239. Springer (Lecture Notes in Computer
Science, LNCS 3977), 2006.

10. J. H. Lee. Analyses of multiple evidence combination. In SIGIR ’97: Proceedings
of the 20th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, July 27-31, 1997, Philadelphia, pages 267–276.
ACM, 1997.

11. Y. Mass and M. Mandelbrod. Component ranking and automatic query refinement
for xml retrieval. In Advances in XML Information Retrieval: Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX2004, pages
73–84. Springer (LNCS #3493), 2005.

12. S. E. Robertson and S. Walker. On relevance weights with little relevance infor-
mation. In Proceedings of the 20th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 16–24. ACM Press,
1997.

13. S. E. Robertson, S. Walker, and M. M. Hancock-Beauliee. OKAPI at TREC-7: ad
hoc, filtering, vlc and interactive track. In Text Retrieval Conference (TREC-7),
Nov. 9-1 1998 (Notebook), pages 152–164, 1998.

14. E. Voorhees and D. Harman, editors. The Seventh Text Retrieval Conference
(TREC-7). NIST, 1998.

15. E. Voorhees and D. Harman, editors. The Eighth Text Retrieval Conference
(TREC-8). NIST, 1999.

162



Twente University at INEX 2009: Ad-hoc Track

Rongmei Li

Department of Computer Science,
University of Twente, P.O.Box 217 7500AE

Enschede, The Netherlands
lir@cs.utwente.nl

Abstract. In this paper we describe the University of Twente’s par-
ticipation in the INEX 2009 ad-hoc track. We participated in all four
retrieval tasks (thorough, focused, relevant-in-context, best-in-context)
and report initial findings based on a single set of measure for all tasks.
In this first participation, we test two ideas: (1) evaluate the performance
of standard IR engines used in full document retrieval and XML element
retrieval; (2) investigate if document structure can lead to more accu-
rate and focused retrieval result. We find: 1) the full document retrieval
outperforms the XML element retrieval using simple mixture language
model; 2) the element relevance score itself can be used to remove over-
lapping element results effectively.

1 Introduction

INEX offers a framework for cross comparison among content-oriented XML
retrieval approaches given same test collections and evaluation measures. The
INEX ad-hoc track is to evaluate system performance in retrieving relevant doc-
ument components (e.g. XML elements or passages) for a given topic of request.
The relevant results should discuss the topic exhaustively and have as little
non-relevant information as possible (specific for the topic). The ad-hoc track
includes four retrieval tasks: the Thorough task, the Focused task, the Relevant
in Context task, and the Best in Context task.

The 2009 collection is the English Wikipedia with XML format. The ad-hoc
topics are created by participants to represent real life information need. Each
topic consists of five fields. The <title> field (CO query) is same as the standard
keyword query. The <castitle> field (CAS query) adds structural constraints
to the CO query by explicitly specifying where to look and what to return.
The <phrasetitle> field (Phrase query) presents explicitly marked up query
phrase. The <description> and <narrative> fields provide more information
about topical context. Especially the <narrative> field is used for relevance
assessment.

The paper documents our first participation in the INEX 2009 ad-hoc track.
Our aims are to: 1) evaluate the performance of standard IR engines (Indri search
engine) used in full document retrieval and XML element retrieval; 2) investigate
if document structure can lead to more accurate and focused retrieval result. We
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adopt the language modeling approach [1] and tailor the estimate of query term
generation from a document to an XML element according to the user request.
The retrieval results are evaluated as: 1) XML element or passage retrieval; 2)
full document retrieval.

The rest of the paper describes our experiments in the ad-hoc track. The
pre-processing and indexing are given in section 2. Section 3 explains how to
convert user query to Indri structured query. The retrieval model and strategies
are summarized in section 4. We present our results in section 5 and conclude
this paper with discussion in section 6.

2 Pre-processing and Indexing

The original English XML Wikipedia is not stopped or stemmed before indexing.
The 2009 collection has 2,666,190 documents taken on 8 October 2008. It is
annotated with the 2008-w40-2 version of YAGO ([2]).

We index mainly the queried XML fields as follows: category, actor, actress,
adversity, aircraft, alchemist, article, artifact, bdy, bicycle, caption,
catastrophe, categories, chemist, classical music, conflict, director,
dog, driver, group, facility, figure, film festival, food, home, image,
information, language, link, misfortune, mission, missions, movie, museum,
music genre, occupation, opera, orchestra, p, performer, person, personality,
physicist, politics, political party, protest, revolution, scientist, sec,
section, series, singer, site, song, st, theory, title, vehicles, village.

3 Query Formulation

We use CO queries for full article retrieval. For CAS queries, we adopt two
different strategies to formulate our Indri structured query ([3]) for retrieving
full article or XML elements respectively. The belief operator #combine is used
for all cases. Neither CO queries nor CAS queries are stemmed or stopped.

• CAS queries for full article retrieval: we extract all <castitle> terms within
“about” and XML tags that have semantic meaning as our query terms.
Boolean operators (e.g. “-”or “+”) in <castitle> are ignored. For instance,
the INEX query (id=2009009) has <castitle> as follows:

<castitle>//(p|sec)[about(.//(political party|politics),election
+victory australian labor party state council -federal)]</castitle>

After extraction, our query terms (2009009) are election, victory, australian,
labor, party, state, council, federal.

• CAS queries for XML element retrieval: we extract all <castitle> terms
within “about” and use Indri belief operators (#not) to exclude (“-”) certain
terms. At the same time, we add XML element constraints (e.g. <song>, <p>)
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and phrase constraints (e.g. “wonder girls” in 2009021) to our new Indri
queries.

4 Retrieval Model and Strategies

We use the run of full article retrieval as our baseline for both CO and CAS
queries. The retrieval model for the baseline runs is the mixture language model.
It is defined as follows:

score(D) =
l∑

i=1

[Pml(ti|θQ) · log(λPml(ti|θD) + (1− λ)Pml(ti|θC))] (1)

where l is the length of the query, Pml(ti|θQ), Pml(ti|θD), and Pml(ti|θC) are the
Maximum Likelihood (ML) estimate of query model, document model, and the
collection model.

For XML element retrieval, we compute the relevance score (score(E)) of
queried XML field (E) in regard to the given CAS query. The smoothed doc-
ument model (expressed in the log function) will compute the ML estimate of
XML element model Pml(ti|θE) and document model Pml(ti|θ′D).

We set up our language model and model parameters based on the experi-
mental results of similar tasks for INEX 2008. Here λ is considered to be 0.9.

4.1 Baselines

Baseline runs retrieve full articles for CO and CAS queries. Only #combine
operator is used. We submitted the results of CAS query for the Thorough and
the Focused tasks and the results of CO query for the Relevant in Context and
the Best in Context tasks. Due to overlapping problem, only the result for the
Thorough task (Run 637: utCASartT09) is accepted and is ranked six among
participating groups. The baseline performance indicates the performance of
Indri search engine in the setting of XML element retrieval.

4.2 Strategies for Overlapping Removal

Within the ad-hoc XML retrieval track, there are four sub-tasks:

• Thorough Task asks systems to estimate the relevance of elements in the
collection. It returns elements or passages ranked in relevance order (where
specificity is rewarded). Overlap is permitted.

• Focused Task asks systems to return a ranked list of elements or passages to
the user. Overlap is removed. If equally relevant users prefer shorter results
over longer ones.

• Relevant in Context Task asks systems to return relevant elements or
passages clustered per article to the user. For each article, it returns an
unranked set of results, covering the relevant material in the article. Overlap
is not permitted.
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• Best in Context Task asks systems to return articles with one best entry
point to the user. Overlapping is not allowed.

Because of the hierarchical structure of an XML document, sometimes a
parent element is also considered relevant if its child element is highly relevant
to a given topic. As a result, we obtain a number of overlapping elements. To
fulfill the overlap-free requirement for the Focused task, the Relevant in Context
task and the Best in Context task, we adopt the following strategies to remove
overlapping element paths based on the result of the Thorough task:

• Relevance Score: The result of the Thorough task is scanned from most
relevant to less relevant. When overlapped element path is found within
a document, the element path with lower relevance score is removed. (see
Figure 1).

Fig. 1. Example result of the Focused task (qid=2009005)

The overlap-free result is then grouped by article. For each query, the arti-
cles are ranked based on their highest relevance score. For each article, the
retrieved element paths keep the rank order of relevance (see Figure 2).

Fig. 2. Example result of the Relevant in Context task (qid=2009005)

For the Best in Context task, we choose the most relevant XML element
path of each article as our result.

• Relevance Score and Full Article Run: In addition to the relevance score
strategy, we combine our overlap-free result with the result of full article runs.
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We remove XML element paths whose article does not appear in the result
of the full article runs (see Figure 3). We adopt the same strategy for the
Reference task as well.

Fig. 3. Example result of the Reference task (qid=2009005)

5 Results

For each of the four sub-tasks, we submitted two XML element results and one
extra result for the reference task. On the whole, we had 12 submissions to the
ad-hoc track.

5.1 Full Document Retrieval

One of our goals for the ad-hoc track is to compare the performance of Indri
search engine used in full document retrieval and XML element retrieval. The
observation will be used to analyze our element language models and improve
our overlapping removal strategies. For official runs, we submitted full document
retrieval using both CO and CAS queries for four sub-tasks. Except the Thor-
ough task, our runs were disqualified because of overlapped results. The qualified
run for the Thorough task is an automatic run for CAS query (see Table 1).

Table 1. Results of full document retrieval

tasks performance metrics
iP[.00] iP[.01] iP[.05] iP[.10] MAiP

thorough 0.5461 0.5343 0.4929 0.4415 0.2350

5.2 XML Element Retrieval

For official submission, we presented our results using the strategy of Relevance
Score and Full Article Run. All qualified runs use CAS query. The result of
the Thorough task is in Table 2.

The full document retrieval outperforms the element retrieval in locating all
relevant information. Our results again agree with the observation in previous
INEX results. System wise, the given reference result has better performance.
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Table 2. Results of XML element retrieval

tasks performance metrics
iP[.00] iP[.01] iP[.05] iP[.10] MAiP

thorough (utCASeleT09) 0.4364 0.4127 0.3574 0.2972 0.1599
thorough (utCASrefF09) 0.4834 0.4525 0.4150 0.3550 0.1982

Focused Task The official results of the Focused task are in Table 3. Our run
(utCASbaseF09) successfully preserves the retrieval result of the Thorough task
(utCASeleT09) and brings slightly improvement.

Table 3. Results of XML element retrieval

tasks performance metrics
iP[.00] iP[.01] iP[.05] iP[.10] MAiP

focus (utCASbaseF09) 0.4451 0.4239 0.3824 0.3278 0.1695
focus (utCASrefF09) 0.4801 0.4508 0.4139 0.3547 0.1981

Relevant in Context Task As explained earlier, we rank documents by the
highest element score in the collection and rank element paths by their relevance
score within the document. Overlapping elements are removed as required. The
retrieval result is in Table 4.

Table 4. Results of XML element retrieval

tasks performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

relevant-in-context (utCASbaseR09) 0.1966 0.1695 0.1391 0.1054 0.1064
relevant-in-context (utCASrefR09) 0.2216 0.1904 0.1457 0.1095 0.1188

Best in Context Task This task is to identify the best entry point for accessing
the relevant information in a document. Our strategy is to return the element
path with highest relevance score in a document. The retrieval result is in Table
5.

6 Conclusion

We have limited results for the official runs. As a result, it is hard for us to draw
a conclusion with caution. The Indri search engine can provide reasonable result
of XML element retrieval. When the result of reference run is used, the result of
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Table 5. Results of XML element retrieval

tasks performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

best-in-context (utCASeleB09) 0.1795 0.1449 0.1143 0.0875 0.0852
best-in-context (utCASrefB09) 0.1993 0.1737 0.1248 0.0941 0.1056

the Thorough task is improved. This may imply that the search engine is able to
locate relevant elements within documents effectively. Its performance depends
not only on the element language model but also on the effective formulation of
Indri structured query. The step of overlapping removal is the key factor that
may harm the retrieval performance. In our case, our result (utCASbaseF09) of
the Focused task can even boost the performance.

Except using the relevance score for removing the overlapping element paths,
we may try other criteria such as the location of the element within a document.
This is especially important for the Best in Context task as users tend to read
a document from top-down.

We will present more fruitful discussion when more unofficial results are
collected for the formal version of this paper.
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OUC’s participation in the 2009 INEX Book
Track
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Abstract. In this article we describe the Oslo University College’s par-
ticipation in the INEX 2009 Book track. This year’s tasks have been
featuring complex topics, containing aspects. These lend themselves to
use in both the book retrieval and the focused retrieval tasks. The OUC
has submitted retrieval results for both tasks, focusing on using the
Wikipedia texts for query expansion, as well as utilizing chapter divi-
sion information in (a number of) the books.

1 Introduction

This years task was to try and compare book specific retrieval to generic retrieval
for both (whole) book retrieval and focused retrieval. The potential of Wikipedia
texts to improve retrieval performance was to be explored.

The most interesting part of this year’s topics, which also constitutes the
essence of this years task, is no doubt the Wikipedia text that is supplied with
each aspect. The first thing coming to mind is, of course, using the Wikipedia
texts for query expansion, which could intuitively provide a precision enhancing
device. Those texts are quite long, and the chances of zero hits using the entire
text as a query are quite significant. Query expansion needs thus be done with
caution.

Whereas a query text (even a test query) is said to originally be formulated
by the user, a Wikipedia article does not origin with the user, so that there may
be elements in the article that the user would not have endorsed, and thus are
unintentional. Used uncritically in a query, those parts may reduce experienced
retrieval performance.

A measure to counter this effect would be either using only parts of the
Wikipedia text that (chances are that) the user knowingly endorses, or to use
the topic title to process the Wikipedia text, creating a version of the latter that
is closer to the user’s original intention, while still benefitting from the useful
expansion potential the text entails.

In investigations involving book retrieval, [1] have experimented with dif-
ferent strategies of retrieval based on query length and document length. Their
conclusion has been that basing one’s book retrieval on collating results obtained
from searching in book pages as basic retrieval units (shorter documents), per-
formed better than using the book as a whole as a basic retrieval unit. Moreover,
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manually adding terms to the query improved page level (shorter document)
retrieval , but did not seem to improve retrieval of longer documents (whole
books).

We at the OUC wished to pursue this observation, and pose the following
questions:

– Can the Wikipedia page partly play the role of manually added terms would
play in a batch retrieval situation (laboratory setting)?

– In case it does, would it also benefit users in real life situations?
– What kind of treatment of the Wikipedia text would, in average, give better

retrieval?

2 A brief Analysis of a Wikipedia topic text

A Wikipedia text may be quite long. Even if we assume the text is very central
to – and a good representative of – the user’s information need, we hypothesize
that using the entire text uncritically as a query text or expansion device, would
be hazardous.

A glance at the Wikipedia texts supplied with [2] (both on topic and aspect
level) leaves the impression that the beginning of the article is quite important.
But using even the initial sentences or sections uncritically may result in poor
retrieval, or no retrieval at all.

In the beginning of a Wikipedia article, there often occurs a ”to be” (is, are,
were a.s.o) or a ”to have” (”has”, ”had” a.s.o.) inflection. The occurrence is not
necessarily in the first sentence, but relatively early in the document. The idea
is to use this occurrence as an entry point to the important part of the text1.

Our hypothesis is that on both sides of such an occurrence, one generally finds
useful words. There are also grounds to assume that the user, who hunts for book
references to this Wikipedia article the way he or she conceives its contents, has
read this part of the text and approves of it as representative before proceeding
to the rest of the article. This part may arguably be a good representative of
the text as seen by the user.

3 Extracting important terms from a Wikipedia article

A way of testing the idea mentioned above is, for each applicable Wikipedia text,
to locate the first salient occurrence of a ”to be” or ”to have” inflection (see also
footnote above), and define a window of both preceding and succeeding text
(while omitting stop-words). The length of the window may vary (See Figure 1.
the content of this window is used either as the query or is added to another
query as an expansion text.

1 On a too early occurrence, the second or third occurrence might be considered as
an alternative entry.
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Fig. 1. Using windows of varying widths around an entry word in a Wikipedia
text

4 Book-specific retrieval

One of the research objectives of this year’s book track is to compare the perfor-
mance of generic retrieval methods with more book-specific retrieval methods.

There is probably a large number of possibilities of utilizing book structure
in the collection. We have chosen to identify chapter titles with the help of the
TOC entries of the book2. In addition to the indication of being TOC sections
(or lines or words), the marker elements also have references to the page where
the referred chapter begins. The chapter names are available and can be used to
boost the chances of certain pages (title pages or inner pages of the chapter) to
be retrieved as response to queries that include these words.

We create an index for which we identify words in chapter titles, section titles
and the like, so we can enhance their significance at query time, and then try
to run the expanded queries against this index as well. In practice we identify
words constituting chapter or section titles in the TOC section of the book, find
the physical location of their respective chapter and add them, specially tagged,
to the chapter. this tagging facilitates different weighting of these words related
to the rest of the text. Different weighting strategies can then be tested.

For book retrieval it is not important where in the book the title words
increase in weight, as they will increase the chances of retrieving this book as
a response to a query featuring these words. For focused retrieval we have the
limitation that we do not have an explicit chapter partition of the book, only a
page partition. One choice of handling this is to identify all pages belonging to
a partition, and adding the title words (with enhanced weights) to the text of
each page. Within the title page (first page of the chapter) the same title words
can be given a different relative weight than for the pages inside the chapter.

2 Results may suffer due to the fact that only some 36000 of the 50000 books indeed
feature these markup attributes ”refid” and ”link” of the page and marker element
respecively

172



4

5 Runs and results

We have been running comparable experiments for book and focused retrieval,
using the same index. As the Indri system supports retrieval based on extents,
we could define an enclosing extent that would retrieve the entire book, but
where the chapter texts were weighted. In focused retrieval we could retrieve
page extents, Indri still supporting the weight boosting of chapter titles. We
placed chapter titles (enclosed in elements we named titleinfront and titleinside
respectively) in all the pages that constituted a chapter title page or a chapter
content page.

In both book retrieval and focused retrieval we have experimented with
generic as well as book specific retrieval as described above, using the code
pattern as described in table 1.

Table 1. Code pattern of run submissions to the book track

The main partition follows the line of book vs. focused retrieval, so that
parallel book and specific runs can be compared. The first row features runs
with queries involving topic titles only. The second row has runs where the
topic is composed of terms from the topic title and the Wikipedia text, and the
third row represents queries composed of the Wikipedia texts only. The hash
character is a place holder for the size of the window as described in Section 3,
where applicable. In this submission we have experimented with window sizes
of 3 and 5 for each run type (as represented by a table cell). This gives a total
of 20 runs. The choice of 3 and 5 is somewhat arbitrary, and more extensive
experimentation with different combinations will be required.

6 Conclusion

Due to technical problems, results were not available prior to the submission
deadline of the pre-proceedings. There is little doubt though, that more experi-
ments in laboratory conditions along this line of research, as well as conditions
resembling real life usage of Wikipedia combined with digitized books, will be
necessary to approach combinations that will be beneficial in real life situation.
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Abstract. This paper presents an overview of the Efficiency Track that was run
for the second time in 2009. This track is intended to provide a common forum for
the evaluation of both the effectiveness and efficiency of XML ranked retrieval
approaches onreal dataandreal queries. The Efficiency Track significantly ex-
tends the Ad-Hoc Track by systematically investigating different types of queries
and retrieval scenarios, such as classic ad-hoc search, high-dimensional query ex-
pansion settings, and queries with a deeply nested structure (with all topics being
available in both the NEXI-style CO and CAS formulations, as well as in their
XPath 2.0 Full-Text counterparts).

1 Introduction

The Efficiency Track was run for the second time in 2009, with its first incarnation at
INEX 2008 [2]. It is intended to provide a common forum for the evaluation of both
the effectiveness and efficiency of XML ranked retrieval approaches onreal dataand
real queries. The Efficiency Track significantly extends the Ad-Hoc Track by system-
atically investigating different types of queries and retrieval scenarios, such as classic
ad-hoc search, high-dimensional query expansion settings, and queries with a deeply
nested structure (with all topics being available in both the NEXI-style CO and CAS
formulations, as well as in their XPath 2.0 Full-Text counterparts).

2 General Setting

2.1 Test Collection

The Efficiency Track uses the INEX-Wikipedia collection3 that has been introduced in
2009, an XML version of English Wikipedia articles with semantic annotations. With
almost 2.7 million articles, more than a billion elements and an uncompressed size of
approximately 50 GB, this collection is a lot larger than the old Wikipedia collection
used in previous years (and for last year’s Efficiency track). The collection has an ir-
regular structure with many deeply nested paths, which turned out to be challenging for
most systems.

3 available from http://www.mpi-inf.mpg.de/departments/d5/software/inex/
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2.2 Topic Types

One of the main goals to distinguish the Efficiency Track from traditional Ad-Hoc re-
trieval is to cover a broader range of query types than the typical NEXI-style CO or
CAS queries, which are mostly using either none or only very little structural infor-
mation and only a few keywords over the target element of the query. Thus, two nat-
ural extensions are to extend Ad-Hoc queries with high-dimensional query expansions
and/or to increase the amount of structural query conditions without sacrificing the IR
aspects in processing these queries (with topicdescription andnarrative fields
providing hints for the human assessors or allowing for more semi-automatic query ex-
pansion settings, see Figure 1). The Efficiency Track focuses on the following types of
queries (also coined “topics” in good IR tradition), each representing different retrieval
challenges:

– Type (A) Topics: 115 topics (ids 2009-Eff-001—2009-Eff-115) were taken over
from the Ad-hoc Track. These topics represent classic, Ad-Hoc-style, focused pas-
sage or element retrieval, with a combination of NEXI CO and CAS queries.

– Type (B) Topics: Another 115 topics (ids 2009-Eff-116—2009-Eff-230) were gen-
erated by running Rocchio-based blind feedback on the results of the article-only
AdHoc reference run. These CO topics are intended to simulate high-dimensional
query expansion settings with up to 101 keywords, which cannot be evaluated in
a conjunctive manner and are expected to pose a major challenge to any kind of
search engine. Relevance assessments for these topics can be taken over from the
corresponding adhoc topics; a reference run (using TopX2) with the expanded top-
ics was submitted to the adhoc track to make sure that results with the expanded
topics were also present in the result pools.

– Type (C) Topics: These topics were planned to represent high-dimensional, structure-
oriented retrieval settings over a DB-style set of CAS queries, with deeply nested
structure but only a few keyword conditions. The focus of the evaluation should
have been on execution times. Unfortunately, we did not get any proposals for type
(C) topics by the track participants.

2.3 Topic Format

The Efficiency Track used an extension of the topic format of the Adhoc Track. All ad-
hoc fields were identical to the corresponding adhoc topics for type (A) topics. For the
type (B) topics, the expanded keyword queries were put into thetitle field and corre-
sponding NEXI queries were generated for thecastitle field. All topics contained
an additionalxpath title field with an XPath FullText expression that should be
equivalent to the NEXI expression in thecastitle field. This Xpath FT expression
was automatically created from the NEXI expression by replacingabout() predi-
cates with correspondingftcontains() expressions and connecting multiple key-
words within such an expression byftand . After releasing the topics it turned out that
ftand enforces a conjunctive evaluation of the predicate, which was not the original
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intension and especially for the type (B) topics would lead to many topics with empty
resultset. The topics were therefore updated and all occurrences offtand replaced by
the less strictftor .

<topic ct_no="242" id="2009-Eff-057" type="A">
<title>movie Slumdog Millionaire directed by Danny Boyle</title>
<castitle>

//movie[about(.,"Slumdog Millionaire")]//director[about(.,"Danny Boyle")]
</castitle>
<xpath_title>

//movie[. ftcontains ("Slumdog Millionaire")]
//director[. ftcontains ("Danny Boyle")]

</xpath_title>
<phrasetitle> "Slumdog Millionaire" "Danny Boyle" </phrasetitle>
<description>

Retrieve information about the movie Slumdog Millionaire
directed by Danny Boyle.

</description>
<narrative>

The relevant texts must contain information on: the movie, the awards
it has got or about the casts and crew of the movie. The criticisms of
the movie are relevant as well. The other movies directed by Danny Boyle
are not relevant here. Information about the making of the movie and
about the original novel and its author is also relevant. Passages or
elements about other movies with the name "millionaire" as a part of
them are irrelevant. Information about the game show "Who wants to be a
millionaire" or any other related game shows is irrelevant.

</narrative>
</topic>

Fig. 1.Example topic (2009-Eff-057)

2.4 Tasks

Adhoc Task. The Efficiency Track particularly encourages the use of top-k style query
engines. In the AdHoc task, participants were asked to create top-15, top-150, and top-
1500 results with their systems and to report runtimes, using the different title field,
including the NEXI CO, CAS, or XPATH titles, or additional keywords from the nar-
rative or description fields. Following the INEX AdHoc Track, runs could be sumbitted
in eitherFocused (i.e., non-overlapping),Thorough (incl. overlap), orArticle
retrieval mode:

– Article: Here, results are always at the article level, so systems may consider the
XML or the plain text version of documents. Results are always free of overlap by
definition.

– Thorough: The Thorough mode represents the original element-level retrieval
mode used in INEX 2003-2005. Here, any element identified as relevant should
be returned. Since removing overlap may mean a substantial burden for a system,
this setting intentionally allows overlapping results, so query processing times can
be clearly distinguished from the time needed to remove overlapping results.
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– Focused: Focused (i.e., overlap-free) element and/or passage retrieval typically is
favorable from a user point-of-view and therefore replaced the Thorough retrieval
as primary retrieval mode in the Ad-hoc Track in 2006. Here, the reported run-
times include the time needed to remove overlap, which may give rise to interest-
ing comparisons between systems following both Thorough and Focused retrieval
strategies.

Budget-Constrained Task. This novel task in 2009 asked participants to retrieve re-
sults within a fixed budget of runtime (one of 10ms, 100ms, 1000ms and 10000ms),
simulating interactive retrieval situations. Standard top-k algorithms cannot easily be
used with such a constraint or may return arbitrarily bad results. However, we did not
get any submissions for this task, probably because it required specific modifications to
the systems which was too much effort for the participants.

3 Run Submissions

The submission format for all Efficiency Track submissions is defined by the DTD
depicted in Figure 7, where the different fields have the following meanings:

– Eachrun submissionmustcontain the following information:
• participant-id - the INEX participant id
• run-id - your run id
• task - eitheradhoc or one of the budget-constrained tasks
• type - eitherfocused , thorough , or article
• query - either automatic or manual mode
• sequential - queries being processed sequentially or in parallel (indepen-

dent of whether distribution is used)

– Furthermore, eachrun submissionshouldcontain some basic system and retrieval
statistics:
• no cpu - the number of CPUs (cores) in the system (sum over all nodes for a

distributed system)
• ram - the amount of RAM in the system in GB (sum over all nodes for a

distributed system)
• no nodes - the number of nodes in a cluster (only for a distributed system)
• hardware cost - estimated hardware cost
• hardware year - date of purchase of the hardware
• topk - top-k run or not (if it is a top-k run, there may be at mostk elements

per topic returned)
• index size bytes - the overall index size in bytes
• indexing time sec - the indexing time in seconds to create the indexes

used for this run

– Eachrun submissionshouldalso contain the following brief system descriptions
(keywords), if available:
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• general description - a general system and run description
• ranking description - the ranking strategies used
• indexing description - the indexing structures used
• caching description - the caching hierarchies used

– Eachtopicelement in a run submissionmustcontain the following elements:
• topic id - the id of the topic
• total time ms - the total processing time in milliseconds: this should in-

clude the time for parsing and processing the query but does not have to con-
sider the extraction of resulting file names or element paths (needed to create
the above format for the run submission)

– Furthermore, eachtopic element of a run submissionshouldcontain the following
elements:
• cpu time ms - the CPU time spent on processing the query in milliseconds
• io time ms - the total I/O time spent on physical disk accesses in millisec-

onds
• io bytes - the number of I/O bytes needed for processing the query. For a

distributed system, this should contain the entire amount of bytes spent on net-
work communication.

Particularly interesting for the Efficiency Track submissions is theruntime field,
of course. This can optionally be split intocpu time andio time , which has been
done only by a single participant. We therefore focus on actual wallclock running times
as efficiency measure.

4 Metrics

To assess the quality of the retrieved results, the Efficiency Track applied the same
metrics and tools used in the Ad-Hoc track. Runs were evaluated with the interpolated
precision metric [1]. Like the Adhock Track, we are mainly interested in early precision,
so we focus on iP[0.01], but also report mean average iP values (MAiP). All runs were
first converted to the submission format of the AdHoc Track and then evaluated with
the standard tools from that track.

5 Participants

An overall amount of 68 runs was submitted by 4 participating groups using 5 different
systems. Here are short system descriptions submitted by the participants.

Max-Planck-Institut Informatik – TopX 2.0 [Part.ID 10] The TopX 2.0 system pro-
vides a compressed object-oriented storage for text-centric XML data with direct access
to customized inverted files and C++-based implementation of a structure-aware top-k
algorithm.
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Max-Planck-Institut Informatik – Proximity-Enhanced Top-K [Part.ID 10] Fol-
lowing our work on proximity-based XML retrieval at INEX 2008, we developed a
proximity-aware indexing framework at the article level that uses inverted lists for both
terms and term pairs and includes an automated pruning step that cuts the size of these
lists to a very short prefix with the highest-scoring entries. We evaluate queries through
a merge join of the corresponding term and term pair lists, yielding low CPU overhead
and fast answer times.

University of Frankfurt – Spirix [Part.ID 16] Spirix is a Peer-to-Peer (P2P) search
engine for Information Retrieval of XML documents. The underlying P2P protocol is
based on a Distributed Hash Table (DHT). Due to the distributed architecture of the sys-
tem, efficiency aspects have to be considered in order to minimize bandwidth consump-
tion and communication overhead. Spirix is a top-k search engine aiming at efficient
selection of posting lists and postings by considering structural information, e.g. taking
advantage of CAS queries. As collections in P2P systems are usually quite heteroge-
neous, no underlying schema is assumed but schema-mapping methods are of interest
to detect structural similarity.

University of Otago [Part.ID 4] We submitted whole document runs. We examined
two parameters. One was dynamic pruning of tf-ordered postings lists - this effects the
time taken to compute the BM25 score for each document. Computed rsvs were held
in an array of accumulators, and the second parameter affected the sorting of this array.
An efficient select-top-k-from-n algorithm was used, the second parameter wask.

University of Konstanz – BaseX [Part.ID 304] BaseX is a native XML database and
XPath/XQuery processor, including support for the latest XQuery Full Text recommen-
dation. As we put our main focus on efficiency and generic evaluation of all types of
XQuery requests and input documents, our scoring model is based on a classical TF/IDF
implementation. Additional scoring calculations are performed by XQFT (ftand, ftor,
ftnot) and XQuery operators (union, location steps, ...). A higher ranking is given to
those text nodes which are closer to the location steps of the input query than others.
We decided to stick with conjunctive query evaluation (using ’ftand’ instead of ’ftor’ in
the proposed topic queries), as a change to the disjunctive mode would have led to too
many changes, which could not have been reasonably implemented in the remaining
time frame. Next, we decided to not extend the proposed queries with stemming, stop
words or thesaurus options. As a consequence, many queries might return less results
than the TopX reference engine (and sometimes no results at all). To give a realistic
picture, we have included both the total time for accessing indexes as well as traversing
the inverted specified location paths in our final performance results.

6 Results

Table 1 summarizes important system parameters as they were delivered in the runs’
headers, grouping runs with similar id prefixes and settings. The majority of all runs
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was submitted for the Focused or Article subtask, only four runs were submitted for
the Thorough subtask. Tables 2 and 3 summarize the effectiveness (iP, MAiP) and ef-
ficiency (avgerage of wallclock runtimes, cpu and io times in milliseconds) results of
all submitted runs for type (A) and type (B) topics. Figure 2 shows the precision/recall
diagram for the foud Thorough runs and, as a reference, the plot for the (focused) run
Eff-20 which has the highest Thorough MAiP among all Efficiency (and in fact also
AdHoc) runs. Figures 3 and 4 depict plots that detail the efficiency (runtime) vs. effec-
tiveness (ip[0.01] and MAiP) tradeoff for all runs for the type (A) topics, Figures 5 and
6 show the same for the type (B) topics.

Part.ID Run prefix #CPU RAM #NodesHardw.Cost Year

4 Eff 8 8 1 3000 NZD 2008
10 MPI-eff 8 32 1 3000 EUR2008
10 TopX2-09 4 16 1 5000 EUR2005
16 Spirix no information
304 BaseX 2 32 no information

Table 1.Run parameters as taken from the submission headers

Regarding efficiency, average running times per topic varied from 8.8 ms to 50
seconds for the type (A) topics and from 367.4 ms to 250 seconds for the type (B) topics.
It is important to notice that absolute runtimes across systems are hardly comparable
due to differences in the hardware setup and caching. Both the Otago runs and the MPI-
prox runs clearly show that the dominant part of retrieval time is spent in IO activity,
so improving or reducing IO access could be a promising way to improve efficiency.
Most runs (with the exception of a few TopX2 runs) were article-only runs, and like last
year these runs generally yielded very good efficiency results. Only TopX2 generated
element-level results using the CAS NEXI queries, and it is evident that the additional
structure in the queries increases processing time.

Overall effectiveness results were generally comparable to the Ad-hoc Track on the
type (A) topics (which are identical to the AdHoc topics), with the best runs achieving
a MAiP value of 0.301 and interpolated (early) precision values of 0.589 at 1% recall
(iP[0.01]) and 0.517 at 10% recall (iP[0.10]), respectively. Result quality on the type (B)
topics was generally slightly worse compared to the type (A) topics, which was prob-
ably caused by the extreme query expansion used to generate them, leading to typical
problems such as topic drift. This effect is not simply caused by missing assessments:
Article-level results for type (B) topics from TopX2 were submitted to the AdHoc track
(using their original query ids), and iP[0.01] dropped from 0.6090 (rank 5) to 0.4593
(rank 42) with otherwise unchanged settings.

7 Conclusions

This paper gave an overview of the INEX 2009 Efficiency Track that provided a plat-
form for comparing retrieval efficiency of different systems.
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Part.ID Run ID T iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP avg total avg CPU avg IO k query
[ms] [ms] [ms]

Focused/Article
4 Eff-1 A 0.220 0.215 0.177 0.141 0.060 77.8 20.4 57.3 15 CO
4 Eff-2 A 0.350 0.350 0.315 0.285 0.126 77.1 20.4 56.7 15 CO
4 Eff-3 A 0.480 0.478 0.433 0.359 0.151 77.2 20.0 57.2 15 CO
4 Eff-4 A 0.549 0.540 0.500 0.443 0.184 78.1 21.0 57.1 15 CO
4 Eff-5 A 0.597 0.583 0.532 0.468 0.207 84.5 26.9 57.6 15 CO
4 Eff-6 A 0.598 0.585 0.532 0.475 0.205 101.3 43.0 58.2 15 CO
4 Eff-7 A 0.598 0.585 0.532 0.475 0.204 122.2 64.9 57.3 15 CO
4 Eff-8 A 0.220 0.215 0.177 0.142 0.060 77.7 20.4 57.3 150 CO
4 Eff-9 A 0.355 0.355 0.328 0.305 0.135 76.9 19.9 57.0 150 CO
4 Eff-10 A 0.484 0.482 0.438 0.377 0.187 77.4 20.3 57.2 150 CO
4 Eff-11 A 0.552 0.543 0.513 0.474 0.227 78.3 21.3 57.0 150 CO
4 Eff-12 A 0.600 0.588 0.553 0.510 0.273 83.8 26.9 56.9 150 CO
4 Eff-13 A 0.602 0.589 0.553 0.517 0.278 100.0 42.7 57.3 150 CO
4 Eff-14 A 0.602 0.589 0.553 0.517 0.278 122.2 64.9 57.3 150 CO
4 Eff-15 A 0.220 0.215 0.177 0.142 0.060 76.9 20.3 56.6 1500 CO
4 Eff-16 A 0.355 0.355 0.328 0.305 0.135 77.1 20.2 56.9 1500 CO
4 Eff-17 A 0.484 0.482 0.438 0.377 0.191 77.4 20.1 57.3 1500 CO
4 Eff-18 A 0.552 0.543 0.513 0.474 0.239 78.5 20.9 57.6 1500 CO
4 Eff-19 A 0.600 0.588 0.553 0.510 0.293 83.6 26.8 56.9 1500 CO
4 Eff-20 A 0.602 0.589 0.553 0.517 0.301 100.3 42.7 57.6 1500 CO
4 Eff-21 A 0.602 0.589 0.553 0.517 0.301 121.7 64.3 57.4 1500 CO
10 MPI-eff-1500-1810 A 0.566 0.553 0.532 0.464 0.248 27.1 1500 CO
10 MPI-eff-1500-1810-cold A 0.566 0.553 0.532 0.464 0.248 287.0 1500 CO
10 MPI-eff-150-610 A 0.574 0.560 0.531 0.466 0.233 13.2 150 CO
10 MPI-eff-150-610-cold A 0.574 0.560 0.531 0.466 0.233 242.5 150 CO
10 MPI-eff-15-210 A 0.575 0.559 0.511 0.400 0.177 8.8 15 CO
10 MPI-eff-15-210-cold A 0.575 0.559 0.511 0.400 0.177 216.5 15 CO
10 TopX2-09-Ar-Fo-15-Hot A 0.598 0.583 0.494 0.397 0.178 84.0 15 CO
10 TopX2-09-ArHeu-Fo-1500-HotA 0.597 0.586 0.530 0.475 0.275 301.2 1500 CO
10 TopX2-09-ArHeu-Fo-150-Hot A 0.598 0.588 0.531 0.474 0.252 87.2 150 CO
10 TopX2-09-ArHeu-Fo-15-Hot A 0.589 0.577 0.482 0.398 0.175 69.8 15 CO
10 TopX2-09-CAS-Fo-15-Cold F 0.546 0.480 0.423 0.355 0.138 467.7 15 CAS
10 TopX2-09-CAS-Fo-15-Hot F 0.545 0.493 0.418 0.350 0.137 379.2 15 CAS
10 TopX2-09-CASHeu-Fo-15-HotF 0.525 0.468 0.358 0.304 0.124 234.9 15 CAS
10 TopX2-09-CO$-Fo-15-Hot F 0.645 0.567 0.406 0.285 0.135 125.6 15 CAS
10 TopX2-09-CO-Fo-15-Hot F 0.641 0.564 0.405 0.291 0.130 338.2 15 CAS
10 TopX2-09-COHeu-Fo-15-Hot F 0.507 0.429 0.306 0.196 0.079 71.8 15 CAS
16 Spirix09RX01 A 0.621 0.599 0.551 0.499 0.269 50063.5 1500 CAS
16 Spirix09RX02 A 0.435 0.427 0.379 0.319 0.155 46820.5 150 CAS
16 Spirix09RX03 A 0.398 0.372 0.335 0.293 0.130 34663.6 150 CAS
16 Spirix09RX03 A 0.398 0.372 0.335 0.293 0.130 34663.6 150 CAS
16 Spirix09RX04 A 0.402 0.398 0.370 0.295 0.138 44191.5 150 CAS
16 Spirix09RX05 A 0.368 0.333 0.311 0.268 0.121 44352.2 150 CAS
16 Spirix09RX06 A 0.119 0.119 0.119 0.107 0.037 42878.4 150 CAS
16 Spirix09RX07 A 0.604 0.590 0.535 0.497 0.249 959.8 1500 CAS
16 Spirix09RX08 A 0.405 0.403 0.369 0.309 0.140 563.4 150 CAS
16 Spirix09RX09 A 0.354 0.352 0.334 0.283 0.124 496.2 150 CAS
16 Spirix09RX10 A 0.405 0.403 0.386 0.313 0.138 502.6 150 CAS
16 Spirix09RX11 A 0.354 0.344 0.330 0.278 0.127 483.9 150 CAS
16 Spirix09RX12 A 0.119 0.119 0.118 0.099 0.037 474.9 150 CAS
16 Spirix09RX13 A 0.604 0.590 0.535 0.497 0.249 2986.3 1500 CAS
16 Spirix09RX14 A 0.405 0.403 0.369 0.309 0.140 470.5 150 CAS
16 Spirix09RX15 A 0.354 0.352 0.334 0.283 0.124 746.5 150 CAS
16 Spirix09RX16 A 0.405 0.403 0.386 0.313 0.138 1156.6 150 CAS
16 Spirix09RX17 A 0.354 0.344 0.330 0.278 0.127 1863.0 150 CAS
16 Spirix09RX18 A 0.119 0.119 0.118 0.099 0.037 1675.5 150 CAS
16 Spirix09RX19 A 0.621 0.599 0.551 0.499 0.269 47857.1 1500 CAS
16 Spirix09RX20 A 0.435 0.427 0.379 0.319 0.155 46712.3 150 CAS
16 Spirix09RX21 A 0.398 0.372 0.335 0.293 0.130 35746.8 150 CAS
16 Spirix09RX22 A 0.402 0.398 0.370 0.295 0.138 45072.0 150 CAS
16 Spirix09RX23 A 0.368 0.333 0.311 0.268 0.121 44285.8 150 CAS
16 Spirix09RX24 A 0.119 0.119 0.119 0.107 0.037 44256.9 150 CAS

Thorough
304 2 T 0.133 0.101 0.061 0.045 0.032 11504.4 1500 XPath
304 3 T 0.133 0.101 0.061 0.045 0.032 2553.3 1500 XPath
304 4 T 0.197 0.144 0.109 0.097 0.049 2510.0 1500 XPath
304 5 T 0.209 0.160 0.123 0.107 0.054 2726.7 1500 XPath

Table 2.Effectiveness/efficiency summary of all runs for type(A) topics182



Part.ID Run ID T iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP avg total avg CPU avg IO k query
[ms] [ms] [ms]

4 Eff-1 A 0.240 0.238 0.167 0.139 0.048 380.2 32.0 348.3 15 CO
4 Eff-2 A 0.336 0.334 0.322 0.285 0.104 367.5 32.1 335.5 15 CO
4 Eff-3 A 0.350 0.342 0.326 0.293 0.119 367.4 33.4 334.0 15 CO
4 Eff-4 A 0.379 0.379 0.339 0.316 0.119 374.0 41.7 332.2 15 CO
4 Eff-5 A 0.377 0.370 0.334 0.311 0.112 418.0 89.7 328.3 15 CO
4 Eff-6 A 0.392 0.385 0.335 0.298 0.114 511.6 184.9 326.7 15 CO
4 Eff-7 A 0.390 0.383 0.334 0.299 0.112 543.0 217.0 326.0 15 CO
4 Eff-8 A 0.240 0.239 0.179 0.149 0.051 367.2 32.1 335.1 150 CO
4 Eff-9 A 0.340 0.340 0.330 0.295 0.133 367.5 32.1 335.4 150 CO
4 Eff-10 A 0.356 0.352 0.336 0.321 0.162 370.1 33.4 336.7 150 CO
4 Eff-11 A 0.385 0.385 0.350 0.340 0.161 387.6 42.0 345.6 150 CO
4 Eff-12 A 0.386 0.380 0.354 0.335 0.161 419.4 90.0 329.4 150 CO
4 Eff-13 A 0.403 0.397 0.357 0.331 0.165 512.5 185.1 327.5 150 CO
4 Eff-14 A 0.401 0.395 0.356 0.330 0.164 543.5 216.6 326.9 150 CO
4 Eff-15 A 0.240 0.239 0.179 0.149 0.051 368.3 31.8 336.5 1500 CO
4 Eff-16 A 0.340 0.340 0.330 0.296 0.135 369.5 32.3 337.1 1500 CO
4 Eff-17 A 0.356 0.352 0.336 0.321 0.167 378.7 33.3 345.5 1500 CO
4 Eff-18 A 0.385 0.385 0.350 0.341 0.168 378.2 41.8 336.4 1500 CO
4 Eff-19 A 0.386 0.381 0.354 0.335 0.169 421.8 90.1 331.7 1500 CO
4 Eff-20 A 0.403 0.397 0.357 0.331 0.175 533.3 184.9 348.4 1500 CO
4 Eff-21 A 0.401 0.395 0.356 0.330 0.174 551.8 217.5 334.3 1500 CO
10 MPI-eff-1500-1810 A 0.391 0.379 0.337 0.316 0.162 1492.3 1500 CO
10 MPI-eff-1500-1810-cold A 0.391 0.379 0.337 0.316 0.162 12979.9 1500 CO
10 MPI-eff-150-610 A 0.391 0.379 0.338 0.315 0.157 922.7 150 CO
10 MPI-eff-150-610-cold A 0.391 0.379 0.338 0.315 0.157 10235.3 150 CO
10 MPI-eff-15-210 A 0.374 0.356 0.304 0.272 0.099 604.3 15 CO
10 MPI-eff-15-210-cold A 0.374 0.356 0.304 0.272 0.099 7630.4 15 CO
10 TopX2-09-Ar-TOP15-Hot A 0.440 0.427 0.362 0.315 0.119 4163.2 15 CO
10 TopX2-09-ArHeu-TOP1500-HotA 0.443 0.434 0.381 0.358 0.206 2412.0 1500 CO
10 TopX2-09-ArHeu-TOP150-Hot A 0.443 0.433 0.381 0.358 0.193 2260.2 150 CO
10 TopX2-09-ArHeu-TOP15-Hot F 0.431 0.418 0.344 0.303 0.118 2205.4 15 CO
10 TopX2-09-CAS-TOP15-Cold F 0.442 0.428 0.363 0.316 0.119 4352.3 15 CAS
10 TopX2-09-CAS-TOP15-Hot F 0.440 0.427 0.357 0.315 0.118 4685.1 15 CAS
10 TopX2-09-CASHeu-TOP15-HotF 0.431 0.418 0.344 0.303 0.118 2293.1 15 CAS
10 TopX2-09-COHeu-TOP15-Hot F 0.364 0.329 0.221 0.175 0.066 497.8 15 CO
16 Spirix09RX13 A 0.450 0.440 0.412 0.382 0.194 4199.2 1500 CAS
16 Spirix09RX14 A 0.456 0.439 0.412 0.365 0.172 1712.1 150 CAS
16 Spirix09RX15 A 0.456 0.439 0.412 0.365 0.172 1859.6 150 CAS
16 Spirix09RX16 A 0.456 0.439 0.412 0.365 0.172 2301.6 150 CAS
16 Spirix09RX17 A 0.456 0.439 0.412 0.365 0.172 2953.0 150 CAS
16 Spirix09RX18 A 0.456 0.439 0.412 0.365 0.172 2823.9 150 CAS
16 Spirix09RX19 A 0.444 0.433 0.406 0.390 0.202 250640.3 1500 CAS
16 Spirix09RX20 A 0.484 0.464 0.421 0.383 0.181 249851.5 150 CAS
16 Spirix09RX21 A 0.456 0.439 0.412 0.365 0.172 215376.4 150 CAS
16 Spirix09RX22 A 0.456 0.439 0.412 0.365 0.172 214315.3 150 CAS
16 Spirix09RX23 A 0.456 0.439 0.412 0.365 0.172 214068.9 150 CAS
16 Spirix09RX24 A 0.456 0.439 0.412 0.365 0.172 215025.8 150 CAS

Table 3.Effectiveness/efficiency summary of all runs for type(B) topics

183



Thorough evaluation for type (A) topics
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Fig. 2.Precision/recall plots for thorough runs, type (A) topics
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iP[0.01] for type-A-topics
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iP[0.01] for type-B topics 
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<!ELEMENT efficiency-submission (topic-fields,
general_description,
ranking_description,
indexing_description,
caching_description,
topic+)>

<!ATTLIST efficiency-submission
participant-id CDATA #REQUIRED
run-id CDATA #REQUIRED
task (adhoc | budget10 | | budget100 | budget1000 | budget10000) #REQUIRED
type (focused | thorough | article) #REQUIRED
query (automatic | manual) #REQUIRED
sequential (yes|no) #REQUIRED
no_cpu CDATA #IMPLIED
ram CDATA #IMPLIED
no_nodes CDATA #IMPLIED
hardware_cost CDATA #IMPLIED
hardware_year CDATA #IMPLIED
topk (15 | 150 | 1500) #IMPLIED
index_size_bytes CDATA #IMPLIED
indexing_time_sec CDATA #IMPLIED

>
<!ELEMENT topic-fields EMPTY>
<!ATTLIST topic-fields

co_title (yes|no) #REQUIRED
cas_title (yes|no) #REQUIRED
xpath_title (yes|no) #REQUIRED
text_predicates(yes|no) #REQUIRED
description (yes|no) #REQUIRED
narrative (yes|no) #REQUIRED

>
<!ELEMENT general_description (#PCDATA)>
<!ELEMENT ranking_description (#PCDATA)>
<!ELEMENT indexing_description (#PCDATA)>
<!ELEMENT caching_description (#PCDATA)>
<!ELEMENT topic (result*)>
<!ATTLIST topic

topic-id CDATA #REQUIRED
total_time_ms CDATA #REQUIRED
cpu_time_ms CDATA #IMPLIED
io_time_ms CDATA #IMPLIED
io_bytes CDATA #IMPLIED

>
<!ELEMENT result (file, path, rank, rsv?)>
<!ELEMENT file (#PCDATA)>
<!ELEMENT path (#PCDATA)>
<!ELEMENT rank (#PCDATA)>
<!ELEMENT rsv (#PCDATA)>

Fig. 7.DTD for Efficiency Track run submissions
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Abstract. Scoring models that make use of proximity information usu-
ally improve result quality in text retrieval. Considering that index struc-
tures carrying proximity information can grow huge in size if they are
not pruned, it is helpful to tune indexes towards space requirements and
retrieval quality. This paper elaborates on our approach used for INEX
2009 to tune index structures for different choices of result size k. To allow
for comparison as to retrieval quality with non-pruned index structures,
we also depict our results from the Adhoc Track.

1 Introduction

Proximity-enhanced scoring models are known to improve result quality in text
retrieval. In the last decade a number of scoring models which integrate con-
tent and proximity scores have been proposed, among them the scoring model
by Büttcher et al. [2] which we use in a modified version. Schenkel et al. [3]
found that index structures for proximity can grow prohibitively large, if they
are not pruned. As index pruning is a lossy operation, it risks result quality
which translates into lower precision values. Therefore one should also consider
precision while cutting index sizes to tolerable levels.

2 Adhoc Track Results

The scoring model we use in INEX 2009 corresponds to the one used in INEX
2008 [1], this time retrieving article elements only. For our contribution we re-
moved all tags from the XML documents in the Official INEX 2009 collection
and worked on their textual content only. The last two runs have been submitted
to INEX 2009, the first is the non-submitted baseline:

run iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
MPII-COArBM’ 0.5483 0.5398 0.5112 0.4523 0.2392
MPII-COArBP 0.5603 0.5516(26) 0.5361 0.4692 0.2575
MPII-COArBPP 0.5563 0.5477(28) 0.5283 0.4681 0.2566

Table 1. Results for the Adhoc Track: interpolated precision at different recall levels
(ranks for iP[0.01] are in parentheses) and mean average interpolated precision
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– MPII-COArBM’: a CO run that considered the stemmed terms in the title of a
topic (including the terms in phrases, but not their sequence) except terms
in negations and stop words. We restricted the collection to the top-level
article elements and computed the 1,500 articles with the highest scoreBM25

value as described in our last year’s INEX contribution [1]. Note that this
approach corresponds to standard document-level retrieval. This run is the
actual non-submitted baseline to enable a comparison to the submitted runs
which all use proximity information.

– MPII-COArBP: a CO run which aims to retrieve the 1,500 articles with the
highest scoreBM25+scoreproximity where scoreproximity is calculated based
on all possible stemmed term pairs in the title of a topic (including the
terms in phrases, but not their sequence) except terms in negations and stop
words.

– MPII-COArBPP: a CO run which is similar to MPII-COArBP but calculates
the scoreproximity part based on a selection of stemmed term pairs. Stemmed
term pairs are selected as follows: we consider all stemmed tokens in phrases
that occur both in the phrasetitle and in the title and are no stop words. The
modified phrases in the phrasetitle are considered one at a time to combine
term pairs usable to calculate scoreproximity . If the phrasetitle is empty we
use approach MPII-COArBP.

The results in Table 1 show that computing our proximity score with a subset
of term pairs based on information taken from the phrasetitles doesn’t improve
the iP values compared to using all term pairs. As expected MPII-COArBP leads
to a slight improvement over MPII-COArBM’.

3 Efficiency Track Results

This section describes our effort in INEX 2009 to tune our index structures for
efficient query processing, taking into account the expected retrieval quality and
index size. As in [3] we use 1) text index lists (TL) which contain, for each term,
a set of docid and their BM25 scores ordered by BM25 score and 2) combined
index lists (CL) which contain, for each term pair, a set of docid, and both
proximity as well as BM25 score information ordered by descending proximity
impact. As full, non-pruned indexes will grow huge, we aim at pruning the index
structures after a fixed number of entries per list.

The final pruned index is used as input to a merge join which avoids overhead
costs of threshold algorithms such as book-keeping of candidates.

To measure retrieval quality one usually compares the retrieval results with
a set of relevance assessments. As at the time of tuning we didn’t have any
relevance assessments, for each number of results k (top-15, top-150, and top-
1500), we first built up a groundtruth as a substitute. That groundtruth consists
of the first k results obtained through processing the non-pruned BM25 and
proximity index structures. Note that this corresponds to the k highest scoring
results of MPII-COArBP.

The optimization process is supported by Hadoop, an Open Source MapAn-
dReduce framework, which distributes the evaluation and indexing workload
across a cluster of 10 server nodes in the same network.
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In our recent studies on the TREC .GOV2 collection we found that it was
reasonable to use an overlap of α=0.75 to achieve the retrieval quality of non-
pruned BM25 using pruned TLs and CLs. (Note that the overlap is computed
by the amount of overlapping documents and is not based on the number of
characters returned.)

For all list lengths l ranging between 10 and 20,000 (step size of 100) we
estimate the index size first. We restrict the processing of the query load to those
that fit the index size constraint set to 100 GB in our experiments. The shortest
list length that fulfills the overlap and the index size constraint is considered the
optimal list length lopt. We prefer short list lengths, since we process the pruned
lists in a merge join which reads the relevant index structures completely.

Table 2 shows the results of the tuned index structures for type A queries.
For performance reasons, tuning was carried out using the type A queries only,
type B queries use the same pruned indexes. MPII-eff-k depicts the optimal list
lengths for different choices of k, the average cold and warm cache running times
and interpolated precision values at different recall levels. While measuring the
cold cache running times, we have emptied the cache after each query execution,
not just after each batch. To collect the warm cache running times, in a first
round we fill the cache by processing the complete query load and measure the
running times in the second round. The difference between the cold and warm
cache running times can be considered as I/O time.

run lopt �twarm[ms] �tcold[ms] iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
MPII-eff-15 210 8.8 216.5 0.575 0.559 0.511 0.4 0.177
MPII-eff-150 610 13.2 242.5 0.574 0.56 0.531 0.466 0.233
MPII-eff-1500 1810 27.1 287.0 0.566 0.553 0.532 0.464 0.248

Table 2. Efficiency Track results, type A queries

Queries are processed using the pruned index structures which have been
reordered by docid to enable for merge join query processing. As the pruned
index is created by Hadoop and stored in a MapFile accessed by Hadoop in a
non-optimized way during query execution, we think that there’s still room for
performance improvements. It turns out that already very short list prefixes are
sufficient to lead to a result quality comparable to MPII-COArBP at early recall
levels (until iP[0.01]) and to MPII-COArBM’ at later recall levels.

run lopt �twarm[ms] �tcold[ms] iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP
MPII-eff-15 210 604.3 7,630.4 0.374 0.356 0.304 0.272 0.099
MPII-eff-150 610 922.7 10,235.3 0.391 0.379 0.338 0.315 0.157
MPII-eff-1500 1810 1,492.3 12,979.9 0.391 0.379 0.337 0.316 0.162

Table 3. Efficiency Track results, type B queries

Table 3 shows the results of the tuned index structures for type B queries.
It is clear that in our setting type B queries that consist of partly more than
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100 keywords cannot be executed as fast as type A queries. Many thousands of
possible single pair lists per query have to be fetched from harddisk first before
the evaluation can start.

4 Conclusion

This paper has presented an approach to perform index pruning in a retrieval-
quality aware manner to realize performance improvements and smaller indexes
at the same time.
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Abstract. BaseX is an early adopter of the upcoming XQuery Full
Text Recommendation. This extended abstract describes the challenges
of joining the INEX Efficiency Track using BaseX, an XML database
system. We will describe some of the problems we encountered during
the application of XQuery Full Text to the INEX topic set and discuss
the remaining comparability problem.

1 Introduction: BaseX and XQuery Full Text

The existence of more than fifty XQuery processors clearly underlines the large
interest in querying XML documents and collections. While many of the database-
driven implementations offer their own extensions to support full-text requests,
the upcoming XPath and XQuery Full Text 1.0 Recommendation [1] (XQFT)
aims to satisfy the need for a unified language extension and might attract more
developers and users from the Information Retrieval community. The recommen-
dation offers a wide range of content-based query operations, classical retrieval
tools such as Stemming and Thesaurus support, and an implementation-defined
scoring model that allows developers to adapt their database to a large vari-
ety of use cases and scenarios. BaseX is, to the best of our knowledge, the first
implementation to fully support all features of the specification. More implemen-
tations are expected to follow in the near future as soon as the recommendation
has reached its final state.

In this extended abstract, we present some aspects encountered during our par-
ticipation in the INEX Efficiency Track 2009 using our XQFT-based database
system BaseX [3, 4, 6]. Due to the complexity of the language extension, we will
focus on its NEXI related features. The first Ad-Hoc query of the INEX track is
depicted as an example:

//article[.//text() ftcontains ("Nobel" ftand "prize")]

First of all, there is a path condition //article in front of the predicate, which
demands that each node on the descendant-or-self-axis of the document root
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with an element tag article has to be taken into further considerations. Addi-
tionally, the predicate filters all descendant texts node of each article element
for the tokens "Nobel" and "prize". The existence of at least one text node
containing both tokens yields a valid result of the query. Changing the full-text
operand from conjunction to disjunction would lead to additional results con-
taining at least one of the tokens. In general, any XQFT query has at least one
input item and at least one full-text condition, and valid results always have to
satisfy both conditions. Keeping this in mind, the following observations try to
give an insight into the challenges we encountered during our participation in
INEX 09 Efficiency Track using an XQFT based engine.

2 Proceedings

First of all, we have introduced a query rewriting step to take advantage of the
internal query optimization in BaseX. In detail, we have modified the atomiza-
tion of context nodes in the given queries:

(1) //article[. ftcontains ("Nobel" ftand "prize")]
(1’) //article[.//text() contains ("Nobel" ftand "prize")]

The atomization of the the context node in the first query (1) purges element
information from the subtree of each article node and concatenates the text
nodes of its descendants. That means, in a valid result, the tokens "Nobel" and
"prize" do not necessarily have to occur in the same text node. Our rewritten
version (1’) applies the search on the specified terms on each text node, which is
contained in the subtree of each article node, and the terms are now expected
to occur in the same text node. This rewriting allows us to use the full-text index
in BaseX, which is optimized to run on single text nodes. This way, all kinds of
XQuery location paths can be traversed, independent from the structure of the
input document. The results of the rewritten queries represent a subset of the
atomized query results, and the usage of FTOr instead of FTAnd, as proposed for
the efficiency track, might lead to results similar to the original query, because
the tokens do not have to ocurre in the same text node.

A second type of query rewritings keeps the original semantics:

(1) //article[.//(sec|p) ftcontains ("mean" ftand "average" ftand
"precision" ftand "reciprocal")]
(2) //article[.//sec ftcontains ("mean" ftand "average" ftand
"precision" ftand "reciprocal") or .//p ftcontains ("mean" ftand
"average" ftand "precision" ftand "reciprocal")]

Here, the replacement of | in (1) by a union operator (2) is helpful to trigger
index-based query processing in BaseX, and results in less compact but equiv-
alent queries. This optimization step is currently not applied automatically by
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the query compiler due to some side-effects, which are not relevant for the INEX
context.

After this pre-processing step, the BaseX query optimizer performs further in-
ternal rewritings and applies the full-text index structure whenever possible and
cheap enough. Disjunct or conjunct full-text tokens within an XQFT expression
are evaluated by the index as well. A cost-based evaluation strategy is applied
on queries with several possible index requests (which is the case, e.g., if queries
have two or more full-text predicates). Details can be found in [5].

Next, we have extended our full-text index structure by including a normalized,
TF/IDF-based scoring value for each indexed token. The score is pre-computed
at database creation time and is accessible at query time without additional
computations. Individual scores values for several terms are generally calculated
by full-text operands. The XQFT operators FTAnd, FTOr and FTNot are taken
into further considerations because of their relevance in the INEX context. We
have introduced a minimum-based scoring for FTAnd, i.e., the minimum of sev-
eral score values is adopted in an FTAnd expression. For FTOr, we are using a
maximum-based scoring approach, which is similar to the FTAnd based score, and
for FTNot, the inverted score value is returned (1− score) [7]. To get XQFT and
NEXI queries semantics closer, NEXI-like scoring for FTAnd and FTOr operands
would be interesting. Axis steps performed in a query can influence score values
as well (score propagation). Due to the high heterogeneity of the INEX docu-
ments and a lack of well-known solutions, we have chosen a simple, but efficient
approach, multiplying a score value with a constant for each location step.

All BaseX query results conform to the typical structure of XQuery results.
To comply with the INEX submission format, the path for each topic result had
to be extracted out of the query results, which was realized by a simple XQuery
function:

declare namespace basex = "http :// www.basex.com";

declare function basex:sum -path ( $n as node ()? )

as xs:string {

string -join( for $a in $n/ancestor -or -self ::*

let $ssn := $a /../*[ name() = name($a)]

return concat(name($a), ’[’,

basex:index -of($ssn , $a), ’]’), ’/’)};

declare function basex:index -of (

$n as node ()* , $ntf as node() ) as xs:integer* {

for $s in (1 to count($n))

return $s[$n[$s] is $ntf ]};

The function basex:sum-path($n as node() ?) as xs:string returns the
node path from the root node to $n by traversing the document tree and caching
each element and its index.
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3 Similarities and Differences between XQuery Full Text
and NEXI

INEX, as an extension of XPath, transfers the semantics defined in the XPath
queries to the evaluation system [8]. Generally the semantic of XPath queries is
well defined by the query grammar and independent of the evaluation system.
In contrast the semantics of INEX queries is more independent and depends
mostly on the engine. Since the INEX Efficiency Track offers for each topic a
NEXI and an XQFT query, the contest attracts new XML database systems
with XQFT implementations, and leads to additional competition with estab-
lished IR systems. However, to compare performance or measure the quality of
results, semantically equivalent queries for database and information retrieval
systems are crucial.

Basically, there is a main big difference between XML database systems using
XQuery and IR systems using with NEXI. The XQuery 1.0 Recommendation
[2] guarantees that the same query returns the same result on any system that
is processing XQueries. Even if scoring is applied in the query, which is totally
implementation defined in XQFT, combined with top-k conditions, the set and
structure of the results will always be the same. But the visible results and their
ordering may change because of a scoring based ordering and the top-k condi-
tion. In contrast, NEXI engines could have a major influence on the semantics
of a query and do not provide a guarantee like that. This observation leads to
an incomparability of simple XQFT- and NEXI-based queries.

In detail, there are two major differences between the query languages:

//article[about(.//p, "information retrieval")]

Considering the query above, the strict interpretation demands that article tags
are returned as a result, and the path condition within the predicate (.//p) is
handeld as a suggestion for the information retrieval search. Even the //article
path condition can be dealt with as (only) a suggestion [8].

The example above illustrates the hint-like behavior in structural conditions in
NEXI-based queries even in the strict interpretation compared to XQuery, where
there is always a strict path condition in a query which has to be evaluated. To
get some additional freedom, the combination of different path conditions with
a logical OR could be useful, but in this case, the user has to know the structure
of the document. Alternatively, the usage of a unspecified path condition is pos-
sible, but this leads to a completely different query and many irrelevant results.

Another point is the interpretation of AND and OR in the NEXI context:

(1) //article[about(., apple) and about(., computer)]
(2) //article[about(., apple) or about(., computer)]
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The first query (1) will return article elements from documents about ”apple”
and about ”computer”, the second (2) about ”apple” or about ”computer”. The
predicate conditions, however, are only hints. Looking at the loose interpreta-
tion, the AND is interpreted as ANDish, OR as ORish. In that case the contained
Boolean operators are rather hints on how to resolve the information need [8].

The strict interpretation is close to the FTAnd and FTOr operands, but is still
semantically inequivalent, due to the hint behavior in NEXI. Next, looking at
the loose interpretation, there is no similarity to the full-text operands. To get
this hint behavior and ANDish or ORish interpretation, a scoring model is needed
which, for example, scores results having more OR disjunct search tokens higher
than results having less disjunct results. Scoring-oriented query processing is
very much dependent on the input data. A general-purpose database systems,
such as BaseX, aims to perform well in all kinds of applications. Therefore we
decided not to add INEX-specific meta information to the database and in-
dexing engine, such as a scoring priority for certain elements, etc. The scoring
model does not have any additional information about the input data, therefore
a proper solution could be the usage of individual scoring models depending on
the use case. For example, in some use cases it might be reasonable to include
structural knowledge of the document in the scoring model, in other use cases
this does not create an additional value.

In a nutshell, we believe that the semantic equivalence between the NEXI and
XQFT queries in the Efficiency Track is not given. As a consequence, NEXI- and
XQFT-based submissions might not be directly comparable at the current stage.
The semantic distance between the queries increase with their complexity, and,
to get almost semantically similar queries, the fuzziness of the NEXI operands
would have to be mapped to XQFT. This might lead to verbose XQFT queries
with numerous sub-queries and, most likely, longer evaluations times. Alterna-
tively, additional knowledge on the document structure would have to be utilized
to get equivalent results.
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Abstract. This paper presents the results of our INEX 2009 Ad-hoc and Effi-
ciency track experiments. While our scoring model remained almost unchanged
in comparison to previous years, we focused on a complete redesign of our XML
indexing component with respect to the increased need for scalability that came
with the new 2009 INEX Wikipedia collection, which is about 10 times larger
than the previous INEX collection. TopX now supports a CAS-specific distributed
index structure, with a completely parallel execution of all indexing steps, includ-
ing parsing, sampling of term statistics for our element-specific BM25 ranking
model, as well as sorting and compressing the index lists for our final inverted
block-index. Overall, TopX ranked among the top 3 systems in both the Ad-hoc
and Efficiency tracks, with a maximum value of 0.61 for iP[0.01] and 0.29 for
MAiP in focused retrieval mode at the Ad-hoc track. Our fastest runs achieved
an average runtime of 72 ms per CO query, and 235 ms per CAS query at the
Efficiency track, respectively.

1 Introduction

Indexing large XML collections for Content-And-Structure (CAS) retrieval consumes a
significant amount of time. In particular inverting (i.e., sorting) index lists produced by
the XML parser constitutes a major bottleneck in managing very large XML collections
such as the 2009 INEX Wikipedia collection, with 55 GB of XML sources and more
than 1 billion XML elements. Thus, for our 2009 INEX participation, we focused on
a complete redesign of our XML indexing component with respect to the increased
need for scalability that came with the new collection. Through distributing and further
splitting the index files into multiple smaller files for sorting, we managed to break our
overall indexing time down to less than 20 hours on a single-node system and less than
4 hours on a cluster with 16 nodes for the complete CAS index.

As TopX originally aims at CAS queries, our basic index units are inverted lists
for combined tag-term pairs, where the occurrence of each term in an XML element is
propagated “upwards” the XML tree structure and the term is bound to the tag name of
each element that contains it (see [8]). Content-Only (CO) queries are treated as CAS
queries with a virtual * tag. Term frequencies (TF) and element frequencies (EF) are
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computed for each tag-term pair in the collection individually. In summary, we used
the same XML-specific extension to BM25 (generally known as EBM25) as in last
years also for the 2009 Ad-hoc track and Efficiency tracks. For the EF component, we
precompute an individual element frequency for each distinct tag-term pair, capturing
the amount of tags under which the term appears in the entire collection. Because of the
large size of the new Wikipedia collection, we approximate these collection-wide statis-
tics by sampling over only a subset of the collection before computing the actual scores.
New for 2009 was also the introduction of a static decay factor for the TF component to
make the scoring function favor smaller elements rather than entire articles (i.e., the root
of the documents), in order to obtain more diverse results in focused element retrieval
mode (used in our two best Ad-hoc runs MPII-COFoBM and MPII-COBIBM).

2 Scoring Model

Our XML-specific extension to the popular Okapi BM25 [5] scoring model, as we first
introduced it for XML ranking in 2005 [9], remained largely unchanged also in our
2009 setup. It is very similar to later Okapi extensions in [4, 6]. Notice that regular
text retrieval with entire documents as retrieval units is just a special case of the below
ranking function, which in principle computes a separate Okapi model for each element
type individually.

Thus, for content scores, we make use of collection-wide element statistics that
consider the full-content of each XML element (i.e., the recursive concatenation of all
its descendants’ text nodes its XML subtree) as a bag of words:

1) the full-content term frequency, ftf(t, n), of term t in an element node n, which is
the number of occurrences of t in the full-content of n;

2) the tag frequency, NA, of tag A, which is the number of element nodes with tag A
in the entire corpus;

3) the element frequency, efA(t), of term t with regard to tag A, which is the number
of element nodes with tag A that contain t in their full-contents in the entire corpus.

The score of a tag-term pair of an element node n with tag name A with respect to
a content condition of the form //A[about(., t)] (in NEXI [10] syntax), where
A either matches the tag name A or is the tag wildcard *, is then computed by the
following BM25-based formula:

score(n,//T[about(., t)]) =
(k1 + 1) ftf(t, n)

K + ftf(t, n)
· log

(
NA − efA(t) + 0.5

efA(t) + 0.5

)

with K = k1

(
(1− b) + b

∑
t′ ftf(t′, n)

avg{
∑

t′ ftf(t′, n′) | n′ with tag A}

)
For 2009, we used values of k1 = 2.0 and b = 0.75 as Okapi-specific tuning parameters,
thus changing k1 from the default value of 1.25 (as often used in text retrieval) to 2.0
in comparison to 2008 (see also [1] for tuning BM25 on INEX data). Consequently,
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for an about operator with multiple terms, the score of an element satisfying this tag
constraint is computed as the sum over all the element’s content scores, i.e.:

score(n,//T[about(., t1 . . . tm)]) =
m∑

i=1

score(n,//T[about(., ti)])

Moreover, for queries with multiple support elements (like for example in the query
//A//B[about(., t)]), we assign a small and constant score mass c for each
supporting tag condition that is matched (like for the tag A in this example). This struc-
tural score mass is then aggregated with the content scores, again using summation. In
our INEX 2009 setup (just like in 2008), we have set c = 0.01. Note that our notion
of tag-term pairs enforces a strict matching of a query’s target element, while content
conditions and support elements can be relaxed (i.e., be skipped on-the-fly) by the non-
conjunctive query processor [8]. Also, content scores are normalized to [0, 1].

2.1 2009 Extensions

Decay Factor for Term Frequencies. New for 2009 was the introduction of a static
decay factor for the ftf component to make the scoring function favor smaller elements
rather than entire articles (i.e., the root of the documents), in order to obtain more di-
verse results in focused element retrieval mode. With respect to the fairly deep structure
of the new 2009 collection, we chose a relatively high decay factor of 0.925. That is, in
addition to summing up the ftf values of each tag-term pair among the children of an
XML element (recursively upwards to the root), we also multiply the ftf value from
each of the child nodes by 0.925 before propagating these values upwards.

Sampling for Element Frequencies. With very large, diverse XML collections and
very many distinct (but mostly infrequent) tag-term pairs, exact element frequencies
as needed for the ef component cannot easily be kept in memory anymore. An addi-
tional difficulty in a distributed indexing setting is that these statistics need to be shared
among peers. Therefore, we introduced a sampling phase for these combined tag-term
frequencies, which however generates approximate statistics only. During the sampling
phase, we scan (i.e., keep) only a fixed amount of tag-term statistics in memory from
the XML parser output at each of the distributed nodes in the network individually.
Tag-term pairs for which no statistics are kept in memory after this sampling phase are
smoothed by an ef value of 1 when materializing the above scoring function.

3 Distributed Indexing

Indexing an XML collection with TopX consists of a 3-pass process: 1) parsing the
XML documents (using a standard SAX parser) and hashing individual tag-term pairs
and navigational tags into a distributed file storage; 2) sampling these files for the
BM25-specific ef statistics for all tag-term pairs and materializing the BM25 model;
and 3) sorting these BM25-scored files to obtain their final inverted block structure and
compressing the blocks into a more compact binary format. While we are keeping all
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intermediate index files of steps 1 and 2 in a simple (GZip’ed) ASCII format, our final
block-index structure created in step 3 is stored in a customized (compressed) binary
format as described in [7], which can be decompressed much faster than a GZip format.

FileFile

Node1 Node2 Nodep

File[(f/p)+1]
…
File[2f/p]

File[(p‐1)(f/p)+1]
…
File[f]

File[1]
…
File[f/p]

…

…

tag$term1
tag$term3
…

tag$term2
tag$term4
…

tag$term4
tag$term5
…

…

Docs[1, …, n/p] Docs[(n/p)+1, …, 2n/p] Docs[(p‐1)/(n/p)+1, …, n]

Fig. 1. Two-level hashing of tag-term pairs onto network nodes and index files.

The basic hashing phase is illustrated in Figure 1. We are given a collection of n
XML documents yielding m distinct tag-term pairs, f files to hold our inverted index,
and p distributed nodes (e.g., a compute cluster, or peers in a network). Before we
start the actual indexing phase, the document collection is partitioned into n/p equally
sized chunks, and the chunks are distributed over the p nodes. During indexing, every
compute node is used for parsing and storing the index files at the same time, i.e.,
every node has write access to every other node in the network. Let hash(ti) be the
hash code of tag-term pair ti for all i = 1, . . . m, then (hash(ti) mod f) denotes
the file identifier where the inverted list for ti is stored. Moreover, (hash(ti) mod f
mod p) then denotes the node identifier at which the file containing ti is located. This
ensures that all tag-term pairs from the entire collection that share the same hash code
are stored on the same node and in the same index file. The reason to further partition
the index into f ≥ p files is that, on each compute node, we can sort multiple such
files concurrently in a multi-threaded fashion. Multiple smaller files can of course be
sorted more efficiently than a single large file. Thus, every index file contains at least
one but possibly more inverted lists. For our INEX 2009 indexing experiments, we used
f = 256 index files which were distributed over p = 16 nodes.

This simple two-level hashing allows for a MapReduce-like [2] but highly special-
ized form of distributed indexing. After the initial parsing and hashing phase (corre-
sponding to the Map phase in MapReduce), all files needed for materializing the above
scoring function are readily available per node, and thus the sampling and scoring can
be kept perfectly parallel (corresponding to the Reduce phase in MapReduce). Since all
nodes can operate independently in the second phase, this approach allows for a sub-
stantially more lightweight Reduce phase than in a classical MapReduce setting. The
only data structure that is finally shared across all nodes is a dictionary (see [7]) that
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maps a tag-term key from a query back to a file (including the byte-offset within that
file) as entry point to the respective inverted list in the distributed storage. Our dictio-
nary maps a 64-bit hash key computed from the combined tag-term string of ti onto a
64-bit value whose upper 8 bits encode the node id, whose middle 12 bits encode the
file id that contains the corresponding inverted list, and whose lower 44 bits encode the
byte offset within that file in order to mark the beginning of the inverted list. In this
64-bit setting, we can address up to 28 = 256 nodes with up to 212 = 4, 096 files, each
file with a maximum size of 244 = 16 Terabytes. Of course, the same hash function
needs to be used for both indexing and query processing.

This mapping step works particularly well for a CAS-based index, as it is using tag-
term pairs as keys to access the inverted lists. In particular, the resulting index files are
more uniform in length as compared to a plain (i.e., CO-style) text index because of the
much larger amount of distinct tag-term keys in the CAS case. As such, it can scale to
almost arbitrary amounts of index files and nodes in a network. Also, a similar hashing
step is performed for the inverted tag lists, which results in a distinct set of inverted files
for the navigational tag conditions as needed by TopX (see [7]). These files are less
uniform in size (due to the much lower amount of distinct tag keys in the collection),
but they are anyway much more compact and can benefit from a higher cache locality.

4 Query Processing

TopX is a top-k engine for XML with non-conjunctive XPath evaluations. It supports
dynamic top-k-style index pruning for both CO and CAS queries. In dynamic pruning,
the traversal of index list scans at query processing time can be pruned early, i.e., when
no more candidate elements can make it into the top-k list anymore. Also, since TopX
was designed as a native XML engine based on element retrieval, relevant passages are
identified based on the XML elements that embrace them.

4.1 Retrieval Modes

Article Mode. In Article mode, all CO queries (including //* queries) are rewritten
into /article CAS conditions. Thus we only return entire article elements as
target element of the query. This mode conforms to a regular document retrieval mode
with our BM25 model collapsing into a document-based scoring model (however in-
cluding the per element-level decay factor of the TF component). Article mode can
thus be seen as a simplest-possible form of focused element retrieval, as entire articles
are always guaranteed to be overlap-free.

CO Mode. In CO mode, any target element of the collection is allowed as result. CO
queries are processed by TopX equivalently to queries with //* as structural condition
and exactly one about operator with no further structural constraints as filter predicate.
The * is treated like a virtual tag name and is fully materialized into a distinct set of
corresponding *-term pairs directly at indexing time. That is, a *-term pair is always
generated in addition to any other tag-term pair, with individual TF and EF statistics
for these * tags, which roughly doubles the index size. As a new extension in our 2009
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experiments, we cut off very small elements of less than 24 terms (as a form of static
index pruning) from these CO-related index lists. At query processing time, a CO query
can be processed by directly accessing these precomputed (inverted) CO lists.

CAS Mode. In CAS mode, TopX allows for the formulation of arbitrary path queries
in the NEXI [10] or XPath 2.0 Full-Text [10] syntax. As an optimization, leading * tags
are rewritten as article tags, for CAS queries that were otherwise led by a //* step.

4.2 Optimizations

Focused, Best-In-Context, and Thorough Modes. We performed experiments with
Focused, Best-In-Context and Thorough runs. Element overlap in the Focused and Best-
In-Context retrieval modes is eliminated on-the-fly during query processing by compar-
ing the pre- and post-order labels [9] of elements already contained in the top-k list with
the pre- and post-order label of each element that is about to be inserted into the top-k
list. During query processing, this top-k list is a constantly updated queue. Thus, if an
element is a descendant of another parent element that already is in the top-k queue
and the descendant has a higher score than its parent, then the parent is removed from
the queue and the descendant is inserted; if otherwise an element is a parent of one
or more descendants in the top-k queue, and the parent has a higher score than all the
descendants, then all the descendants are removed from the top-k queue and the parent
is inserted. In Thorough retrieval mode, this overlap check is simply omitted.

Caching. Entire index lists (or their prefixes in case of dynamic top-k pruning) can
be cached by the TopX engine, and the decoded and decompressed data structures for
each index list can directly be reused by the engine for subsequent queries. Thus, when
running over a hot cache, only joins and XPath evaluations are carried out over these
cached index lists at query processing time, while physical disk accesses can be al-
most completely avoided for query conditions that were already processed in a previous
query.

5 Results

We next present the results for our Ad-hoc and Efficiency track experiments. While
indexing was performed on a distributed cluster of 16 nodes, the final runs were per-
formed on a single 3Ghz AMD Opteron Quad-Core machine with 16 GB RAM and a
RAID5 storage, with all index files being copied to the local storage.

5.1 Ad-Hoc Track

Figures 2, 3 and 4 depict the iP[x] and gP[x] plots of all runs submitted to the Ad-Hoc
track as functions of the recall x, for Focused, Best-In-Context and Thorough modes,
respectively (see also [3] for an overview of current INEX metrics). At iP[0.01] (Fo-
cused and Thorough) and gP[0.01] (Best-In-Context), the best TopX runs rank at posi-
tions 3, 3 and 7, respectively, when grouping the runs by participant id (runs denoted

203



as p10-MPII-COFoBM and p10-MPII-COBIBM). For all retrieval modes, we gen-
erally observe a high early (interpolated or generalized) precision rate (i.e., for iP[0.01]
and gP[0.01], each at a recall of 1%), which is an excellent behavior for a top-k engine.
Both our top runs used a true focused element retrieval mode, with CO queries being
rewritten into //* CAS queries, i.e., any result element type was allowed as result.
Thus our CO runs achieved higher iP[0.01] (and MAiP) values than our Article runs, as
opposed to 2009.

Fig. 2. iP[x] for top runs in Focused mode, Ad-hoc track.

5.2 Efficiency Track

Figure 5 depicts the iP[x] plots for all Focused type A runs submitted to the Effi-
ciency track. The best TopX run (TopX2-09-ArHeu-Fo-150-Hot) is highlighted.
Figures 6 and 7 depict the iP[0.01] plots of all Focused runs submitted to the Ef-
ficiency track in comparison to their runtime. Our fastest runs achieved an average
runtime for type A topics of 72 ms per CO query, and 235 ms per CAS query at
the Efficiency track, respectively (denoted as TopX2-09-ArHeu-Fo-15-Hot and
TopX2-09-CASHeu-Fo-15-Hot). TopX ranks among the top engines, with a very
good retrieval quality vs. runtime trade-off (compare also Tables 1 and 2). Our fastest
runs operated over a hot cache and employed a heuristic top-k stopping condition (de-
noted as Heu, thus terminating query evaluations after the first block of elements was
read and merged from each of the inverted lists that are related to the query (see [7]).
Unsurprisingly, our best Article runs on type A topics (70 ms) were slightly faster than
our best CO runs (72 ms), and about a factor of 3 faster than our CAS runs (235 ms),
at a comparable result quality as in the Ad-hoc track. For type B topics, containing CO
topics with partly more than 90 keywords, average runtimes were more than an order
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Fig. 3. gP[x] for top runs in Best-In-Context mode, Ad-hoc track.

of magnitude worse than for type A topics. Altogether, TopX was the only engine to
submit other than Article runs to the Efficiency track.

Part.ID Run ID Type iP[0.00] iP[0.01] iP[0.05] iP [0.10] MAiP avg total k Mode
[ms] [ms] [ms]

10 TopX2-09-Ar-Fo-15-Hot Article 0.598 0.583 0.494 0.397 0.178 84.0 15 CO
10 TopX2-09-ArHeu-Fo-1500-Hot Article 0.597 0.586 0.530 0.475 0.275 301.2 1500 CO
10 TopX2-09-ArHeu-Fo-150-Hot Article 0.598 0.588 0.531 0.474 0.252 87.2 150 CO
10 TopX2-09-ArHeu-Fo-15-Hot Article 0.589 0.577 0.482 0.398 0.175 69.8 15 CO
10 TopX2-09-CAS-Fo-15-Cold Focused 0.546 0.480 0.423 0.355 0.138 467.7 15 CAS
10 TopX2-09-CAS-Fo-15-Hot Focused 0.545 0.493 0.418 0.350 0.137 379.2 15 CAS
10 TopX2-09-CASHeu-Fo-15-Hot Focused 0.525 0.468 0.358 0.304 0.124 234.9 15 CAS
10 TopX2-09-CO$-Fo-15-Hot Focused 0.645 0.567 0.406 0.285 0.135 125.6 15 CO
10 TopX2-09-CO-Fo-15-Hot Focused 0.641 0.564 0.405 0.291 0.130 338.2 15 CO
10 TopX2-09-COHeu-Fo-15-Hot Focused 0.507 0.429 0.306 0.196 0.079 71.8 15 CO

Table 1. Summary of all TopX Efficiency runs, type A queries.

6 Conclusions

TopX was one of the few engines to consider CAS queries in the Ad-hoc track over the
new 2009 Wikipedia collection, and even the only engine in the Efficiency track that
processed CAS queries at all. In our ongoing work, we already started looking into fur-
ther XPath Full-Text operations, including phrase matching and proximity-based rank-
ing for both CO and CAS queries, as well as top-k support for more complex XQuery
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Fig. 4. iP[x] for top runs in Thorough mode, Ad-hoc track.

Part.ID Run ID Type iP[0.00] iP[0.01] iP[0.05] iP [0.10] MAiP avg total k Mode
[ms] [ms] [ms]

10 TopX2-09-Ar-TOP15-Hot Article 0.440 0.427 0.362 0.315 0.119 4163.2 15 CO
10 TopX2-09-ArHeu-TOP1500-Hot Article 0.443 0.434 0.381 0.358 0.206 2412.0 1500 CO
10 TopX2-09-ArHeu-TOP150-Hot Article 0.443 0.433 0.381 0.358 0.193 2260.2 150 CO
10 TopX2-09-ArHeu-TOP15-Hot Focused 0.431 0.418 0.344 0.303 0.118 2205.4 15 CO
10 TopX2-09-CAS-TOP15-Cold Focused 0.442 0.428 0.363 0.316 0.119 4352.3 15 CAS
10 TopX2-09-CAS-TOP15-Hot Focused 0.440 0.427 0.357 0.315 0.118 4685.1 15 CAS
10 TopX2-09-CASHeu-TOP15-Hot Focused 0.431 0.418 0.344 0.303 0.118 2293.1 15 CAS
10 TopX2-09-COHeu-TOP15-Hot Focused 0.364 0.329 0.221 0.175 0.066 497.8 15 CO

Table 2. Summary of all TopX Efficiency runs, type B queries.

constructs. Our long-term goal is to make TopX a full-fledged, open-source indexing
and search platform for the W3C XPath 2.0 and XQuery 1.0 Full-Text standards. While
we believe that our distributed indexing strategy already scales to future XML indexing
needs (with many Terabytes potential index size), making also the search process truly
distributed will be a challenging topic for future work.

References

1. C. L. A. Clarke. Controlling overlap in content-oriented XML retrieval. In R. A. Baeza-
Yates, N. Ziviani, G. Marchionini, A. Moffat, and J. Tait, editors, SIGIR, pages 314–321.
ACM, 2005.

2. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
OSDI 2004, pages 137–150, 2004.

206



0.7
iP vs. recall for all efficiency runs (type A)

MPII-TopX2-09-ArHeu-Fo-XBM25-TOP150-Hot
MPII-TopX2-09-Ar-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-ArHeu-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-ArHeu-Fo-XBM25-TOP1500-Hot
MPII-TopX2-09-CAS-Fo-XBM25-TOP15-Cold
MPII-TopX2-09-CAS-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-CASHeu-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-CO$-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-CO-Fo-XBM25-TOP15-Hot
MPII-TopX2-09-COHeu-Fo-XBM25-TOP15-Hot

0.5

0.6

MPII TopX2 09 COHeu Fo XBM25 TOP15 Hot
MPI-eff-15-210-cold
MPI-eff-15-210
MPI-eff-150-610-cold
MPI-eff-150-610
MPI-eff-1500-1810-cold
MPI-eff-1500-1810
Spirix09RX09
Spirix09RX08
Spirix09RX10

0.4

Spirix09RX11
Spirix09RX12
Spirix09RX07
Spirix09RX14
Spirix09RX15
Spirix09RX16
Spirix09RX17
Spirix09RX18
Spirix09RX13
Spirix09RX19

0.2

0.3iP
[x

]

Spirix09RX19
Spirix09RX20
Spirix09RX21
Spirix09RX22
Spirix09RX23
Spirix09RX24
Spirix09RX01
Spirix09RX02
Spirix09RX03
Spirix09RX03

0.1

Spirix09RX04
Spirix09RX05
Spirix09RX06
Eff-1
Eff-2
Eff-3
Eff-4
Eff-5
Eff-6
Eff-7

0

x

Eff 7
Eff-8
Eff-9
Eff-10
Eff-11
Eff-12
Eff-13
Eff-14
Eff-15
Eff-16

Fig. 5. iP[x] for all Efficiency runs, type A queries.

3. J. Kamps, J. Pehcevski, G. Kazai, M. Lalmas, and S. Robertson. INEX 2007 evaluation
measures. In N. Fuhr, J. Kamps, M. Lalmas, and A. Trotman, editors, INEX, volume 4862
of Lecture Notes in Computer Science, pages 24–33. Springer, 2007.

4. W. Lu, S. E. Robertson, and A. MacFarlane. Field-weighted xml retrieval based on bm25. In
N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors, INEX, volume 3977 of Lecture Notes
in Computer Science, pages 161–171. Springer, 2005.

5. S. E. Robertson, S. Walker, M. Hancock-Beaulieu, M. Gatford, and A. Payne. Okapi at
TREC-4. In TREC, 1995.

6. S. E. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple weighted
fields. In D. Grossman, L. Gravano, C. Zhai, O. Herzog, and D. A. Evans, editors, CIKM,
pages 42–49. ACM, 2004.

7. M. Theobald, M. AbuJarour, and R. Schenkel. TopX 2.0 at the INEX 2008 Efficiency Track.
In S. Geva, J. Kamps, and A. Trotman, editors, INEX, volume 5631 of Lecture Notes in
Computer Science, pages 224–236. Springer, 2008.

8. M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. Weikum. TopX: efficient and
versatile top-k query processing for semistructured data. VLDB J., 17(1):81–115, 2008.

9. M. Theobald, R. Schenkel, and G. Weikum. An efficient and versatile query engine for TopX
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Fig. 6. Runtime vs. iP[0.01] for all Efficiency runs, type A queries.
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Abstract. Building an efficient and an effective search engine is a very
challenging task. In this paper, we presents the efficiency and effective-
ness of our search engine at the INEX 2009 Efficiency and Ad Hoc Tracks.
We have developed a simple and effective pruning method for fast query
evaluation, and used a two-step process for Ad Hoc retrieval. The over-
all results from both Tracks show that our search engine perform very
competitively in terms of both efficiency and effectiveness.

1 Introduction

There are two main performance issues in Information Retrieval (IR); effective-
ness and efficiency. In the past, the research was mainly focused on effectiveness.
Only until recent years, efficiency is getting more research focus under the trend
of larger document collection size. In this paper, we present our approaches to-
wards efficient and effective IR and show our submitted results at the INEX
2009 efficiency and Ad Hoc Tracks. We have developed a simple and effective
pruning method for fast query evaluation, and used a two-step process for Ad
Hoc retrieval. The overall results from both Tracks show that our search engine
performs very competitively in terms of both efficiency and effectiveness.

In section 2, IR efficiency issues are discussed. Section 3 explains how we
achieve fast indexing and searching for large document collections. Experiments
and results are shown in Section 4 and 5. Section 6 discusses our runs in the Ad
Hoc Track. The last section provides the conclusion and future work.

2 Background

Inverted files [1,2] are the most widely used index structures in IR. The index
has two parts: a dictionary of unique terms extracted from a document collection
and a list of postings (a pair of <document number, term frequency>) for each
of the dictionary terms.

When considering efficiency issues, IR search engines are very interesting be-
cause search engines are neither purely I/O-intensive nor solely CPU-intensive.
To serve a query, I/O is needed in order to read dictionary terms as well as post-
ings lists from disk. Then postings lists are processed using a ranking function
and intermediate results are stored in accumulators. At the end, the accumula-
tors are sorted and the top results are returned. There are two obvious questions;
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(1) How do we reduce the I/O required for reading dictionary terms and posting
lists, and (2) how do we minimise the processing and sorting.

When considering effectiveness of Focused Retrieval, it is necessary to con-
sider whether to index documents, elements or passages. This leads to the ques-
tion of how effectiveness is effected by these index types — we have experimented
using document index and post processing to focus.

2.1 Disk I/O

The dictionary has a small size and can be loaded into memory at startup. Due
to their large size, postings must be compressed and stored on disk. Various com-
pression algorithms have been developed, including Variable Byte, Elias gamma,
Elias delta, Golomb and Binary Interpolative. Trotman [3] concludes that Vari-
able Byte coding provides the best balance between the compression ratio and
the CPU cost for decompression. Anh & Moffat [4,5] construct word-aligned bi-
nary codes, which are effective at compression and fast at decompression. We
are experimenting with these compression algorithms.

Caching can also be used to reduce disk I/O. There are two levels of caching;
system-level and application-level. At the system-level, operating systems pro-
vides general purpose I/O caching algorithms. For example, the Linux kernel
provides several I/O caching algorithms [6]. At the application-level, caching is
more effective since the application can deploy specialised caching algorithms [7].
We are experimenting with caching approaches.

For IR search engines, there are two ways of caching at the application-level.
The first solution is to cache query results, which not only reduces disk I/O but
also avoids re-evaluation of queries. However, queries tend to have low frequency
of repetition [8]. The second is to cache raw postings lists. The challenge is to
implement a efficient replacement algorithm in order to keep the postings in
memory. We are also experimenting with caching algorithms.

Since the advent of 64-bit machine with vast amount of memory, is has be-
come feasible to load both the dictionary and the compressed postings of a
whole-document inverted file into main memory, thus eliminating all disk I/O.
For Focused Retrieval a post process of the documents can be a second step. If
the documents also fit into memory, then no I/O is needed for Focused Retrieval.
This is the approach we are taking, however our experiments in this paper were
performed without caching.

2.2 Query Pruning

The processing of postings and subsequent sorting of the accumulators can be
computationally expensive, especially when queries contain frequent terms. Fre-
quent terms appear in many documents in a collection and have low similarity
scores due to having a low Inverse Document Frequency (IDF). Processing the
postings for these terms not only takes time, but also has little impact on the
final ranking results.

210



The purpose of query pruning is to eliminating any unnecessary evaluation
while still maintaining good precision. Query pruning requires that (1) every
term is assigned a weight [9,10], (2) query terms are sorted in decreasing order
of their weights (such as IDF), (3) the postings are sorted in decreasing order of
their weights (such as TF). Partial similarity scores are obtained when some stop
condition is met. Query terms might be pruned or postings might be pruning.

Harman & Candeka [11] experimented with a static pruning algorithm in
which complete similarity scores are calculated by processing all query terms
and postings of the terms. But only a limited number of accumulators, those
above a given threshold, are sorted and returned. A dynamic pruning algorithm
developed by Buckley and Lewit [12] keeps track of the top k+1 partial similarity
scores in the set of accumulators, and stops the query evaluation when it is
impossible to alter the top-k documents.

Moffat & Zobel [13] developed two pruning algorithms; the quit algorithm is
similar to the top-k algorithm and stops processing query terms when a none-zero
number of accumulators exceeds a constant value. While the continue algorithm
continues to process query terms when the stopping condition is met, but only
updates documents already in the set of accumulators.

Persin et al. [14,15] argue that a single stopping condition is not efficient
enough to maintain fair partial similarity scores. They introduced both a global
and a local threshold. The global threshold determines if a new document should
be inserted into the set of accumulators, while the local threshold checks if ex-
isting accumulators should be updated. The global threshold is similar to the
quit algorithm, while the combination of the global and local thresholds is like
the continue algorithm. However, there are two differences; (1) the quit algo-
rithm keeps adding new documents into the set of accumulators until reaching a
stopping condition, while the global threshold algorithm adds a new document
into the set of accumulators only if the partial similarity score of the document
is above the predefined global threshold. (2) The local threshold algorithm only
updates the set of accumulators when a partial similarity score is above the
local threshold, while the continue algorithm has no condition to update the
accumulators.

Anh et al. [16] introduced impact ordering, in which the postings for a term
are ordered according to their overall contribution to the similarity scores. They
state that Persin et al. [14,15] defined term-weighting as a form of TF-IDF (the
global threshold is the IDF and the local threshold is the TF), while Anh et al.
used normalised TF-IDF. The term impact is defined as wd,t/Wd where wd,t is
the document term weight and Wd is the length of the document vector.

3 Efficiency

3.1 Indexer

Memory management is a challenge for fast indexing. Efficient management of
memory can substantially reduce indexing time. Our search engine has a memory
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management layer above the operating system. The layer pre-allocates large
chunks of memory. When the search engine requires memory, the requests are
served from the pre-allocated pool, instead of calling system memory allocation
functions. The sacrifice is that some portion of pre-allocated memory might be
wasted. The memory layer is used both in indexing and in query evaluation. As
we show in our results, only a very small portion of memory is actually wasted.

The indexer uses hashing with a collision binary tree for maintaining terms.
We tried several hashing functions including Hsieh’s super fast hashing function.
By default, the indexer uses a very simple hashing function, which only hashes
the first four characters of a term and its length by referencing a pre-defined
look-up table. A simple hashing function has less computational cost, but causes
more collisions. Collisions are handled by a simple unbalanced binary tree. We
will examine the advantages of various hashing and chaining algorithms in future
work.

Postings lists can vary substantially in length. The indexer uses various sizes
of memory blocks chained together. The initial block size is 8 bytes and the
resize factor is 1.5 for the subsequent blocks.

In order to reduce the size of the inverted file, we always use 1 to store
term frequencies. This limits term frequencies to a maximum of 255. Truncating
term frequencies could have a impact on long documents. But we assume long
documents are rare in a collection and terms with high frequencies in a document
are more likely to be common words.

As shown in Figure 1, the index file has four levels of structure. Instead of
using the pair of <document number, term frequency> for postings, we group
documents with the same term frequency together and store the term frequency
at the beginning of each group. We impact order on term frequency. The dif-
ference of document ids in each group are then stored in increasing order and
each group ends with a zero. The postings are sorted in descending order of
term frequency. This format of postings allows pruning during query evalua-
tions. Postings are compressed with Variable Byte coding.

The dictionary of terms is split into two parts. The first-level stores the first
four bytes of a term string, the length of the term string and the position to locate
the second-level structure. Terms with the same prefix (the first four bytes) are
stored in a term block in the second-level. The term block stores the statistics for
the terms, including collection frequency, document frequency, offset to locate
the postings list, the length of the postings list stored on disk, the uncompressed
length of the postings list, and the position to locate the term suffix which is
stored at the end of the term block.

At the very end of the index file, the small footer stores the location of the
first level dictionary and other values for the management of the index.

3.2 Query Evaluation

At start-up, only the the first-level dictionary is loaded into memory. To process
a query term, two disk reads have to be issued; The first reads the second-level
dictionary. Then the offset in that structure is used to locate postings, since we
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Fig. 1. The index structures

do not use caching in these experiments. The current implementation has no
disk I/O caching. We simply deploy the general purpose caching provided by
the underlying operating system.

An array is used to store the accumulators. We used fixed point arithmetic
on the accumulators because it is faster than the floating point.

We have implemented a special version of quick sort algorithm [17] for fast
sorting of the accumulators. One of the features of the algorithm is partial sort-
ing; It will return the top-k documents by partitioning and then only sorting the
top partition. Pruning accumulators using partial sorting is similar to that of
Harman & Candeka [11]. A command line option (lower-k) to our search engine
is used to specify how many top documents to return.

We have also developed a method for static pruning of postings. A command
line option (upper-K) is used to specify a value, which is the number of document
ids (in the postings list of a term) to be processed. The upper-K value is only a
hint. The search engine will always finish processing all postings with the same
TF at the Kth postings. The combined use of both the lower-k and upper-K
methods is similar to the continue algorithm.

When upper-K is specified at the command line, the whole postings list of a
term is decompressed, even though only partial postings will be processed (this is
left for future work). Moffat and Anh [13,18] have developed methods for partial
decompression for Variable Byte compressed lists. However, these methods do
not come without a cost; Extra housekeeping data must be inserted into the
postings lists, thus increasing the size of the index. Further more, there is also a
computational cost in keeping track of the housekeeping data.
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A modified BM25 is used for ranking. This variant does not result in negative
IDF values and is defined thus:

RSVd =
∑

t∈q

log

(
N

dft

)
· (k1 + 1) tftd

k1

(
(1− b) + b×

(
Ld

Lavg

))
+ tftd

Here, N is the total number of documents, and dft and tftd are the number
of documents containing the term t and the frequency of the term in document
d, and Ld and Lavg are the length of document d and the average length of
all documents. The empirical parameters k1 and b have been set to 0.9 and 0.4
respectively by training on the previous INEX Wikipedia collection.

4 Experiments

We conducted our experiments on a system with dual quad-core Intel Xeon
E5410 2.3 GHz, DDR2 PC5300 7 GB main memory, Seagate 7200 RPM 500 GB
hard drive, and running Linux with kernel version 2.6.30.

The collection used in the INEX 2009 Efficiency Track is the INEX 2009
Wikipedia collection [19]. The collection was indexed using the default parame-
ters as discussed in Section 3. No words were stopped and stemming was not used.
The indexing took about 1 hour and 16 minute. The memory layer allocated a
total memory of 5.3 GB with a utilisation of 97%. Only 160 MB of memory was
allocated but never used. Table 1 show s a summary of the document collection.

The INEX 2009 Efficiency Track used two types of topics, with both types
having 115 queries. Type A Topics are short queries and the same as the INEX
2009 Ad Hoc topics. Type B Topics are expansions of topics in Type A and in-
tended as long queries. Both topics allow focused, thorough and article query eval-
uations. Our search engine does not natively support focused retrieval yet, but
we instead use a post-process. We only evaluated the topics for article Content-
Only. We used the BM25 ranking model as discussed in previous section. The
k1 and b values were 0.9 and 0.4 respectively.

We experimented only sorting the top-k documents using the lower-k param-
eter with k = 15, 150 and 1500 as required by the Efficiency Track. Query terms
do not have to be sorted in descending order of term frequency since our pruning
method does not prune query terms. We also experimented pruning of postings
using the upper-K parameter. For each iteration of the lower-k, we specified the
upper-K of 1, 15, 150, 1500, 15000, 150000, 1500000. In total we submitted 21
runs.

The disk cache was flushed before each run. No caching mechanism was
deployed except that provided by the Linux operating system.

5 Results

Table 2 shows a summary of the runs evaluated on the Type A topics. The first
column shows the run-id. The interpolated Precision (iP) reflects the evaluations
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Collection Size 50.7 GB
Documents 2666190

Average Document Length 881 words
Unique Words 11393924
Total Worlds 2348343176
Postings Size 1.2 GB

Dictionary Size 369 MB
Table 1. Summary of INEX 2009 Wikipedia Collection

of top-k documents at points of 0%, 1%, 5% and 10%. The overall performance
is shown as Mean Average interpolated Precision (MAiP). The average run time,
consisting of the CPU and I/O, is the total time taken for the runs. The last two
columns show the lower-k and upper-K parameters. In terms of MAiP, the best
runs are Eff-21, Eff-20 and Eff-19 with a value of 0.3, 0.3 and 0.29 respectively.

Figure 2(a) shows the Precision-Recall graph of our 21 runs for Type A
topics. Except the Eff-1, Eff-8 and Eff-15 runs, all other runs achieved a very
good early precision. Bad performance of the three runs was caused by pruning
too many postings (a too small value for upper-K) regardless the number of
top-k documents retrieved.

The relationship between the MAiP measures and the lower-k and upper-K
parameters is plotted in Figure 3(a) using data from Table 2. When upper-K
has values of 150 and 1500, MAiP measures are much better than the upper-K
15. In terms of lower-k, MAiP measures approach constant at a value of 15000.

To have a better picture of the total time cost, we plotted the time costs of
all runs in Figure 4(a) using data from Table 2. Regardless of the values used
for lower-k and upper-K, the same number of postings were retrieved from disk,
thus causing all runs to have the same amount of disk I/O. The figure also shows
that the CPU usage is high when upper-K has a value greater than 1500.

We used the same measures for Type B topics. Table 3 shows the summary
of averaged measures for Type B topics. The best runs are Eff-20, Eff-21, Eff-
13 with an MAiP measure of 0.18, 0.17 and 0.17 respectively. An interesting
observation is that the best run (Eff-20) does not has the highest upper-k value.
Processing fewer postings not only saves time, but also improves precision. The
best MAiP in Type A is 0.3 while only 0.18 in Type B. We are investigating
why.

Figure 2(b) shows the Precision-Recall graph for Type B topics. The Eff-1,
Eff-8 and Eff-15 runs also achieved low precision at the early stage. All other
runs received good early precision. Figure 3(b) shows the MAiP measures using
various lower-k and upper-K values. It shows a similar pattern to that of Fig-
ure 3(a). However, good performance is seen when upper-K has a value of 150,
rather than the 15000 for Type A topics.

The time cost for Type B queries is plotted in Figure 4(b). All runs used the
same amount of time for I/O, and have different CPU cost due to various values
used for lower-k and upper-K parameter. The lower-k again has no effect on the
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CPU cost, and values of 1500 or above for upper-K causes more CPU usage. It
took a much longer time for I/O, due to more terms, when compared with I/O
cost in Type A.

As shown in both Figure 4(a) and 4(b), the runtime is dominated by the I/O.
This leads use to consider that storing the whole index in memory is important.

The submitted runs used small values for the lower-k parameter. In order to
see the impact of lower-k, we evaluated both topic sets using only lower-k with
a value of 1, 15, 150, 1500, 15000, 150000, 1500000 and 2666190. The number
2666190 is the total number of documents in the collection. As shown in Figure 5,
The time taken for sorting the accumulators increases when lower-k has a value
above 15000. The sorting times increase from 13.72 ms and 25.57 for Type A
and B topics (when lower-k is 15000) to 50.81 ms and 159.39 ms (when lower-k
is 2666190) respectively.

run-id iP[0.00] iP[0.01] iP[0.05] iP[0.01] MAiP Total time CPU I/O Lower-k Upper-K
Eff-01 0.22 0.22 0.18 0.14 0.06 77.8 20.4 57.3 15 1
Eff-02 0.35 0.35 0.32 0.29 0.13 77.1 20.4 56.7 15 15
Eff-03 0.48 0.48 0.43 0.36 0.15 77.2 20.0 57.2 15 150
Eff-04 0.55 0.54 0.5 0.44 0.18 78.1 21.0 57.1 15 1500
Eff-05 0.6 0.58 0.53 0.47 0.21 84.5 26.9 57.6 15 15000
Eff-06 0.6 0.59 0.53 0.48 0.21 101.3 43.0 58.2 15 150000
Eff-07 0.6 0.59 0.53 0.48 0.2 122.2 64.9 57.3 15 1500000
Eff-08 0.22 0.22 0.18 0.14 0.06 77.7 20.4 57.3 150 1
Eff-09 0.36 0.36 0.33 0.31 0.14 76.9 19.9 57.0 150 15
Eff-10 0.48 0.48 0.44 0.38 0.19 77.4 20.3 57.2 150 150
Eff-11 0.55 0.54 0.51 0.47 0.23 78.3 21.3 57.0 150 1500
Eff-12 0.6 0.59 0.55 0.51 0.27 83.8 26.9 56.9 150 15000
Eff-13 0.6 0.59 0.55 0.52 0.28 100.0 42.7 57.3 150 150000
Eff-14 0.6 0.59 0.55 0.52 0.28 122.2 64.9 57.3 150 1500000
Eff-15 0.22 0.22 0.18 0.14 0.06 76.9 20.3 56.6 1500 1
Eff-16 0.36 0.36 0.33 0.31 0.14 77.1 20.2 56.9 1500 15
Eff-17 0.48 0.48 0.44 0.38 0.19 77.4 20.1 57.3 1500 150
Eff-18 0.55 0.54 0.51 0.47 0.24 78.5 20.9 57.6 1500 1500
Eff-19 0.6 0.59 0.55 0.51 0.29 83.6 26.8 56.9 1500 15000
Eff-20 0.6 0.59 0.55 0.52 0.3 100.3 42.7 57.6 1500 150000
Eff-21 0.6 0.59 0.55 0.52 0.3 121.7 64.3 57.4 1500 1500000

Table 2. A summary of the runs for Type A topics

6 Ad Hoc

We also used our search engine in the ad hoc track. The whole-document re-
sults were extracted and submitted as the REFERENCE run. We then took the
reference run and ran a post-process to focus the top 50 results. Our rationale
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run-id iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP Total time CPU I/O Lower-k Upper-K
Eff-01 0.24 0.24 0.17 0.14 0.05 380.22 31.97 348.25 15 1
Eff-02 0.34 0.33 0.32 0.29 0.1 367.53 32.07 335.46 15 15
Eff-03 0.35 0.34 0.33 0.29 0.12 367.44 33.41 334.03 15 150
Eff-04 0.38 0.38 0.34 0.32 0.12 373.95 41.72 332.23 15 1500
Eff-05 0.38 0.37 0.33 0.31 0.11 418.02 89.73 328.29 15 15000
Eff-06 0.39 0.39 0.34 0.3 0.11 511.56 184.9 326.66 15 150000
Eff-07 0.39 0.38 0.33 0.3 0.11 542.98 216.97 326.02 15 1500000
Eff-08 0.24 0.24 0.18 0.15 0.05 367.21 32.08 335.13 150 1
Eff-09 0.34 0.34 0.33 0.3 0.13 367.51 32.14 335.37 150 15
Eff-10 0.36 0.35 0.34 0.32 0.16 370.12 33.43 336.69 150 150
Eff-11 0.39 0.39 0.35 0.34 0.16 387.61 41.98 345.63 150 1500
Eff-12 0.39 0.38 0.35 0.34 0.16 419.43 90.03 329.39 150 15000
Eff-13 0.4 0.4 0.36 0.33 0.17 512.54 185.07 327.47 150 150000
Eff-14 0.4 0.4 0.36 0.33 0.16 543.53 216.59 326.94 150 1500000
Eff-15 0.24 0.24 0.18 0.15 0.05 368.33 31.84 336.49 1500 1
Eff-16 0.34 0.34 0.33 0.3 0.14 369.46 32.33 337.13 1500 15
Eff-17 0.36 0.35 0.34 0.32 0.17 378.73 33.23 345.5 1500 150
Eff-18 0.39 0.39 0.35 0.34 0.17 378.19 41.77 336.42 1500 1500
Eff-19 0.39 0.38 0.35 0.34 0.17 421.83 90.11 331.72 1500 15000
Eff-20 0.4 0.4 0.36 0.33 0.18 533.32 184.88 348.44 1500 150000
Eff-21 0.4 0.4 0.36 0.33 0.17 551.8 217.52 334.28 1500 1500000

Table 3. A summary of the runs for Type B topics

is that document retrieval should rank document from mostly about a topic is
mostly not about a topic. If this is the case then focusing should be a fast and
relatively simple post process.

6.1 Query Evaluation

Three sets of runs were submitted: Those starting BM25 were based on the
reference run and generated from the topic title field (CO) using the BM25 search
engine. Those starting ANTbigram were an experiment into phrase searching
(and are not discussed here).

For structure searching (CO+S/CAS) we indexed all those tags in a docu-
ment as special terms. If the path /A/B/C were present in the document then we
indexed the document as containing tags A, B, and C. Searching for these tags
did not take into consideration the path, only the presence of the tag; that is,
/C/B/A would match /A/B/C. Ranking of tags was done with BM25 because
the special terms were treated as ordinary terms during ranking. We call this
technique Bag-Of-Tags.

Runs containing BOT in their name were generated from the CAS title using
the Bag-Of-Tags approach. All search terms and tag names from the paths were
included and the queries were ranked using BM25.

217



The post processing step was not done by the search engine — we leave that
for future work. Several different techniques were used:

1. No Focusing (ARTICLE)
2. Deepest enclosing ancestor of all search terms (ANCESTOR)
3. Enclosing element range between first and last occurrence of a search term

(RANGE/BEP)
4. All non-overlapping elements containing a search terms
5. All overlapping elements containing a search term (THOROUGH)

Runs were submitted to the BIC task (1 & 2), RIC (1-4), Focused (1-4) and
thorough (1-5) tasks.

6.2 Results

In the BIC task our run BM25bepBIC placed first. It used BM25 to rank docu-
ments and then placed the Best Entry Point at the start of the first element that
contained the first occurrence of any search term. Our second best run placed
third (RMIT placed second) and it used the ancestor approach.

In the RIC task our runs placed first through to ninth. Our best run was
BM25RangeRIC which simply trimmed all those elements from the start and end
of the document that did not contain any occurrences of the search terms. The
next most effective run was BM25AncestorRIC which chose the lowest common
ancestor of the range (and consequently more non-relevant material). Of note,
the REFERENCE run placed third – that is, whole document retrieval was very
effective.

In the Focused task all our Bag-Of-Tags (CAS) runs placed better than our
CO runs. Our best run placed ninth and used ranges, the ancestor run placed
tenth and the article run placed eleventh.

In the thorough task our best run, BM25thorough, placed sixth with the
Bag-of-Tags placing seventh. We have not concentrated on the focused track.

7 Conclusion and Future Work

In this paper, we introduced our search engine, discussed our design and im-
plementation. We also demonstrated the initial evaluation on the INEX 2009
Efficiency and Ad Hoc Tracks. Our best runs for Type A topics have MAiP
measure of 0.3 and runtime of 100 milliseconds, MAiP measure of 0.18 and run-
time of 533 milliseconds for Type B topics. Compared with the overall results
from the Efficiency Track, we believe that our results are very competitive.

Our ad hoc experiments have shown that the approach of finding relevant
documents and then post-processing is an effective way of building a Focused
Retrieval search engine for the in-Context tasks (where we placed first). They
also show that ignoring the structural hints present in a query is reasonable.

Our Focused and Thorough results were not as good as our in-Context runs
(we placed respectively fifth and third institutionally). Our experiments here
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Fig. 2. Precision-Recall plot for (a) Type A and (b) Type B topics
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Fig. 3. MAiP measures for (a) Type A and (b) Type B topics
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Fig. 5. Times taken for sorting accumulators

suggest that the Bag-of-Tags approach is effective with our BOT runs performing
better than ignoring structural hints in the Focused task and comparably to
ignoring the hints in the Focused task. In the Focused task we found that ranges
are more effective than common ancestor and (because they are better excluders
of non-relevant material). In future work we will be concentrating on increasing
our performance in these two tasks.

Of particular interest to us, our runs did not perform best when measured
as whole-document retrieval. Our focusing were, however, effective. LIG, RMIT
University, and University of Amsterdam bettered our REFERENCE run and
we are particularly interested in their approaches and how they might be applied
to whole document retrieval (so that we may better our own runs).

In the future, we will continue to work on pruning for more efficient query
evaluation. We are also interested in other techniques for improving efficiency
without loss of effectiveness, including compression, caching and multi-threading
on multi-core architectures.
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Abstract. This year, the test collection provided by INEX for evaluating results 

achieved with XML-Retrieval solutions has grown remarkably. The new 

Wikipedia collection consists of more than 50 GB (not including the images 

contained in articles), more than 2.660.000 articles and a large supply of 

semantically rich tags used for markup. On the one hand, searching such a big 

collection requires the use of much more resources such as processing power, 

RAM, and index space, in comparison to the small collections that were 

searched at INEX in previous years. Thus, it is more important than ever to 

regard efficiency issues when performing XML-Retrieval tasks on such a big 

collection. On the other hand, the rich markup of the new collection is a big 

opportunity to exploit this structure, such that a gain of efficiency while 

searching can be achieved. This paper describes our experiments submitted for 

the Efficiency Track and the Ad Hoc Track of INEX 2009 and conducts a first 

interpretation of the results that were recently released. For the Ad Hoc Track, 

we submitted runs with different ranking functions. For the submitted runs of 

the Efficiency Track, different functions to compare structural similarity of 

CAS-queries were applied. The scenario of our experiments is a distributed one: 

collection, index, and search load are split over a peer-to-peer network in order 

to gain more efficiency in terms of load balancing. We also analyzed, how the 

exploitation of the new given rich structure can be used to achieve more 

efficiency in regard to network traffic while routing in this distributed setting. 

In spite of the fact that we mainly aimed at efficiency, the official evaluation of 

our experiments resulted in a high precision in comparison to the other 

participants. We made it into the top-10 systems at the Ad Hoc Track (Rank 7 

at Focused Task). At the Efficiency Track, we gained rank 1 in terms of 

precision in both categories of topics (type A and type B). 

Keywords: XML Retrieval, Large-scale Collection, Distributed Search, INEX 
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1   Introduction and Motivation 

1.1   Motivation 

For years, it has been discussed at INEX that we need a test collection that provides 

tags with more semantic meaning than in the Wikipedia collection used at INEX from 

2006 to 2008. This year, we can finally make use of rich markup that includes a wide 

variety of tags with real semantic meaning, other than the pure structural tags such as 

paragraph and section that were used before. The new collection has also grown from 

4.6 GB to more than 50 GB. Building an index on such a large-scale collection and 

searching it now requires much more resources such as computing power, memory 

and disk space for indexing and retrieval. Splitting the resource consumption over a 

set of computers can distribute the search load and thus gain more efficiency of the 

search system.  

We have developed a distributed search engine for XML-Retrieval that is based on a 

peer-to-peer (P2P) system. That is, we use a set of autonomous and equal computers 

(= peers) that are pooled together to share resources in a self-organized manner 

without using a central control. Due to this self-organization of the system, it provides 

the potential to realize fault-tolerance and robustness. It may scale to theoretically 

unlimited numbers of participating nodes, and can bring together otherwise unused 

resources. Owners of objects such as documents often use P2P networks to share their 

collections with others without giving up full control over their documents. Many 

users do not want to store their collections on central servers where the documents 

might be object to censorship or control by an authority. They prefer to store them 

locally on their own machines such that it is the owner’s sole decision, who can 

access which documents when. Not only the ownership argument but also privacy and 

security issues are reasons for people not wanting to store their information in central 

systems. P2P networks are emerging infrastructures for distributed computing, real-

time communication, ad-hoc collaboration, and information sharing in large-scale 

distributed systems. Applications include E-Business, E-Commerce, E-Science, and 

Digital Libraries, and are used and among large, diverse, and dynamic sets of users. In 

this paper, we concentrate on the technical advantages of P2P systems: their potential 

to distribute the search load over the participating peers. 

Therefore, we distribute both the Wikipedia collection and the index built on it 

over a peer-to-peer network. On this basis, we have performed experiments that 

exploit the newly rich structure of the collection in order to achieve more 

effectiveness while ranking (Ad Hoc Track) and to achieve more efficiency while 

routing CAS-queries in the P2P network (Efficiency Track). Our results resulted in a 

high precision, e.g. we made it onto rank 7 of the Ad Hoc Track (Focused Task) and 

ranked highest in both Efficiency Track Tasks (type A and type B topics). 

1.2   Structural Similarity Functions used for Ranking and Routing 

To compare the structural similarity of the hints given by users in CAS-queries and 

the structure extracted of the indexed articles, we applied different structural 
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similarity functions. In general, there are four groups of functions that can be used 

and that differ in the thoroughness they achieve in analyzing the similarity: perfect 

match, partial match, fuzzy match, and baseline (flat).  

We developed the following formula as a representative of the partial match type 

of strategies, i.e. where one of the compared structures has to be a sub-sequence of the 

other and the overlapping ratio is measured. 
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sq represents the structural condition in the query and sru stands for the structure of 

the search term found in the collection. Both parameters α and β allow for finer tuning 

of the calculated similarity value. We also implemented a tag dictionary that contains 

values for the similarity between known tags. For example, <author> and <writer> 

are rather similar and a precise similarity value can be assigned to these tags. We are 

considering the possibility of giving the user the opportunity to define such 

similarities himself.  

The fuzzy match type of functions takes into account gaps or wrong sequences in 

the different tags. As a representative of the class of functions based on cost 

calculation for transforming the query structure into the target one, we used a method 

based on the Levenstein Edit Distance to compute the similarity between two strings 

by counting the operations delete, insert and replace needed to transform one string 

into another. This method allows similar measuring of the difference between XML 

structures by considering every tag as a single character. We implemented and 

evaluated this method with a suitable normalization and, as above, an enhancement 

with a tag dictionary was also applied (PathSim).  

Another approach for the similarity analysis of XML structures within the scope of 

fuzzy type strategies is the definition of a number of factors describing specific 

properties of the compared structures and combining them in a single function. Five 

such factors are proposed in Fehler! Verweisquelle konnte nicht gefunden werden.: 

semantic completeness (SmCm), semantic correctness (SmCr), structural complete-

ness (StCm), structural correctness (StCr), and structural cohesion (StCh). They can 

be used for a deep and thorough analysis and representation of the different similarity 

aspects between two XML structures. We used the arithmetic mean to compute the 

SmCr and measured the similarities between tags. We used these factors to construct 

combined similarity functions. In order to compare these functions, we built a small 

but highly heterogeneous document collection with search terms occurring in many 

different XML contexts, resulting in a number of structures to be compared and 

ranked. Several functions were tested in the process with a number of parameters. We 

achieved the best ranking results with the following formula: 
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(FineSim) 

All similarity factors were normalized and parameter boundaries were set such that 

the resulting single similarity value remains within the interval [0,1]. Parameters α 

and β provide an opportunity to shift the weight of the similarity between the two 
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classes of factors – semantic and structural. The five parameters ωi can be used for 

further fine-tuning. After a thorough evaluation, we chose the values α = 0.7 and β = 

0.3. All other factors were set to 1. 

The three developed functions were compared with the perfect match strategy 

where exact match of structures is measured as well as the baseline (flat), where no 

structure was taken into account (CO-run). 

3   System used for Experiments: SPIRIX, a Distributed XML-

Retrieval Solution 

3.1   SPIRIX 

For our experiments, we used SPIRIX, a P2P search engine for XML-Retrieval that is 

based on a structured P2P network (DHT). Figure 1 describes the architecture of each 

SPIRIX peer. When used for INEX experiments, the whole collection is indexed by 

one single peer. However, the information extracted by the indexing component is 

distributed over all participating peers such that each peer is responsible for storing, 

maintaining and –at querying time- providing parts of the global index. The indexed 

information consists of XTerms, which are tuples of XML structure and terms. For 

each XTerm or combination of XTerms (so called XHDKs), the according postinglist 

are distributed into the global index, using the P2P protocol SpirixDHT which is 

based on Chord. Term statistics about the indexed documents and their elements are 

also extracted and distribute in form of vectors, where each component of a vector 

represents the weight of an XTerm in a potentially relevant retrieval unit. All 

extracted information can be identified by a unique key and will be stored on the peer 

assigned to the hash value of this key. Postinglists are stored in the distributed 

inverted index, term statistics are stored in the statistics index (split into statistics for 

documents and statistics for elements). 

At querying time, topics are prepared by the local evaluation component of the 

evaluating/querying peers. For this, each topic is converted into an XTerm-format and 

split into keys (XTerms or XTerm-combinations). For each key, a message is sent 

(using SpirixDHT) to the peer assigned to this key, i.e. holding the key’s postinglist. 

From this postinglist, the best postings are selected, using a combination of ranking 

algorithms (weighting calculator), structural similarity functions (similarity 

calculator), and peer metrics (source selector and peerMetrics calculator). If the topic 

consists of several keys, the according postinglists have to be merged with each other 

by processing them in a pipelined manner: the shortest postinglist is selected, than 

sent to the peer assigned to the key with the next shortest postinglist etc. until all keys 

are processed, that is until all postings are selected. 

For each selected posting, a ranking request message is send to the peer assigned to 

the term statistics of the document or element referenced by the posting. This 

document or element will be ranked by the local ranking component, using statistics 

information of the local part of the global statistics index. The best results will be sent 

back to the evaluating peer. As for each selected posting, a ranking request message is 

sent, the number of ranked documents and elements grow with the number of selected 
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postings. The chance of finding relevant results grows, accordingly. To achieve a high 

precision, enough postings have to be selected. However, each message produces 

network traffic. In order to get a scalable, efficient system, the number of selected 

postings / sent messages has to be reduced without losing too much effectiveness. 

XML-Retrieval algorithms and structural similarity functions to judge similarity 

between CAS-queries and postinglist keys are used to select adequate postings, taking 

advantage of XML-Retrieval methods to gain more efficiency in the P2P system and 

to guarantee its scalabi

used to improve the P2P system.

How can, on the other hand,

design, especially when searching a large

First of all, the global index is split over all participating peers such that each peer has 

to take care of only a fraction of the total index. This not only reduces the disk space 

consumed but also allows for a bigger portion of the local index to be hol

of each peer. At querying time, the processing of the postinglists is performed in 

parallel on all the peers that hold 

selecting the best postings in respect to c

algorithms, the memory used 

postinglists. Also, the ranking process is performed in parallel: its load is split over all 

the peers that hold term statistics and thus get a ranking request messag

request to perform a local ranking. Hence, both the process of selecting postings and 

executing the relevance computations are performed in parallel. This is a big 

advantage when dealing with large

collection of INEX 2009.

Fig. 1. Architecture of SPIRIX
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3.2   Technical Details 

SPIRIX features element retrieval, can answer CO and CAS topics, indexes structure, 

does not support phrases, performs stemming and stopword removal, and punishes 

negative terms. 

For participation at the Ad Hoc track, we aimed at high precision. Many parameters 

that influence the balance between effectiveness and efficiency were thus set to values 

that aim at effectiveness. For instance, this includes global statistics. For the selection 

of postings, we decided for a compromise of 1500 postings respectively 150 postings. 

Global statistics: SPIRIX is based on a DHT which enables collecting and storing 

of global statistics. Usually, we estimate these statistics from the locally stored part of 

the distributed document index that contains randomly hashed samples from the 

collection. This estimation technique saves the messages necessary for distributing 

and accessing global statistics with the cost of loosing precision depending on the 

estimations. Thus, for the INEX runs the exact global statistics were used. 

Structure size in index: For each term, a separate posting list for each of its 

structures is stored. This allows efficient selecting of postings according to structural 

similarity between hints in CAS topics and the stored structure of an XTerm. To 

reduce the variety of structures, several methods were tried such as:  

♦ Stemming of tags (Snowball stemmer), 

♦ Deleting stopword tags (e.g. conversionwarnings), 

♦ Deleting of tags at specific positions to limit the structure size to 20 Bytes. 

In comparison to a full structure index, we saved 40% of the index size (without 

compression) and reduced the amount of tags per structure to 3,3 tags on average. The 

total amount of different structures was reduced to 1539. However, evaluation showed 

that we can achieve a significant improvement on early precision measures when 

using structural similarity for ranking and routing – but only with the full structure 

index. With the reduced index, there is almost no improvement (less than 1%). We 

assume that the reduction to 20 bytes retarded our similarity functions from detecting 

the correct similarity between structures. Further experiments have to be conducted to 

analyze, which of the used techniques can be used to reduce the structure variety 

without losing precision. For the experiments submitted to INEX this year, we used 

two different indexes: one without structure and one with full structure. 

Early termination (Selection of 1500 respectively 150 postings): Due to our 

system architecture, taking all postings from a posting list is not efficient as this leads 

to many ranking request messages. However, precision increases with the amount of 

selected postings (until a collection specific point). Thus, the best 1500 respectively 

150 documents were selected from each query term’s posting list. Note, that this is 

done on separate peers and thus without merging – we lose precision for multi term 

queries when good documents are on positions > 1500 respectively 150.  

Element retrieval: Retrieval results can be either whole documents (Wikipedia 

articles) or XML elements out of these documents. In the indexing, elements are 

treated as documents, that is they are indexed independently by extracting their 

statistics and storing these in the retrieval unit index. However, we believe in a strong 

correlation between the relevance of an XML element and its parent document, as 

shown in related work. Therefore, the parent document influences the retrieval of 

elements: when ranking, the score of an element is computed based on the stored 
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statistics but smoothed by the score of its parent document. In the routing process, 

only evidence of the parent document and its best retrieval unit are used for the 

decision, which documents plus their containing elements are to be ranked. 

Indexing of structure: XML-structure is considered both in the routing and in the 

ranking. It is extracted while parsing the XML-document at indexing and stored 

together with the extracted terms. 

Phrases: Phrases are not supported. Terms that appear together in a phrase are 

regarded independently. 

Text processing: Stemming and removal of stopwords are used. 

Small elements: All elements with less than 15 words are removed. 

Negative terms: Results that contain negative terms (specified by the user by 

“not” respective “-“) are still ranked. However, their relevance is reduced by the 

weight of all negative terms multiplied with a negativity factor. 

4   Submitted Runs 

Table 1. Runs submitted by University of Applied Science, Frankfurt. 

Name Task CO / 

CAS 

Ranking 

function 

Structural 

similarity 

function: 

Ranking 

Routing 

function 

Structural 

similarity 

function: 

Routing 

#Postings 

per peer 

Spirix09R001 

(#872) 

Ad Hoc: 

Focused 

CO BM25-

Adaption 

Flat - - 1500 

Spirix09R002 

(#873) 

Ad Hoc: 

Focused 

CO tf*idf-

Adaption 

Flat - - 1500 

Spirix09X01 Eff.: typeA CAS BM25 Flat BM25E Flat 1500 

Spirix09X02 Eff.: typeA CAS BM25E Flat BM25E Flat 150 

Spirix09X03 Eff.: typeA CAS BM25E PathSim BM25E PathSim 150 

Spirix09X04 Eff.: typeA CAS BM25E FineSim BM25E FineSim 150 

Spirix09X05 Eff.: typeA CAS BM25E ArchSim BM25E ArchSim 150 

Spirix09X06 Eff.: typeA CAS BM25E Strict BM25E Strict 150 

Spirix09X07 Eff.: typeA CAS BM25 Flat Baseline Flat 1500 

Spirix09X08 Eff.: typeA CAS BM25E Flat Baseline Flat 150 

Spirix09X09 Eff.: typeA CAS BM25E PathSim Baseline Flat 150 

Spirix09X10 Eff.: typeA CAS BM25E FineSim Baseline Flat 150 

Spirix09X11 Eff.: typeA CAS BM25E ArchSim Baseline Flat 150 

Spirix09X12 Eff.: typeA CAS BM25E Strict Baseline Flat 150 

Spirix09X13 Eff.: typeB CAS BM25 Flat Baseline Flat 1500 

Spirix09X14 Eff.: typeB CAS BM25E Flat BM25E Flat 150 

Spirix09X15 Eff.: typeB CAS BM25E PathSim BM25E Flat 150 

Spirix09X16 Eff.: typeB CAS BM25E FineSim BM25E Flat 150 

Spirix09X17 Eff.: typeB CAS BM25E ArchSim BM25E Flat 150 

Spirix09X18 Eff.: typeB CAS BM25E Strict BM25E Flat 150 

Spirix09X19 Eff.: typeB CAS BM25 Flat BM25E Flat 1500 

Spirix09X20 Eff.: typeB CAS BM25E Flat BM25E Flat 150 

Spirix09X21 Eff.: typeB CAS BM25E PathSim BM25E PathSim 150 

Spirix09X22 Eff.: typeB CAS BM25E FineSim BM25E FineSim 150 

Spirix09X23 Eff.: typeB CAS BM25E ArchSim BM25E ArchSim 150 

Spirix09X24 Eff.: typeB CAS BM25E Strict BM25E Strict 150 
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We submitted two runs for the Ad Hoc Track (Focused Task) to compare two 

different ranking functions without the use of structural hints, e.g. we used CO-

queries. We furthermore submitted several runs for the Efficiency Track where CO- 

and CAS-queries were applied for ranking or routing. Here, we evaluated four 

different structural similarity functions and compared the results with a run, where no 

structural similarity was taken into account (CO-run). Table 1 gives an overview of 

the submitted runs. 

5   Evaluation 

5.1   Ad Hoc Track Results 

At the Ad Hoc Track (Focused), our runs achieved 59,03% and 58,91% precision 

at recall level 1% (iP[0.01]). In the official list of the top-10 systems, we thus are on 

rank 7, with the best performing system being the University of Waterloo with 63,3% 

precision. 

 

 

Fig. 2. Rank 7 in the top-10 systems of Ad Hoc Track (Focused). 

 

Our best performing run was Spirix09R001, where an BM25-Adaption was 

applied. When analyzing the Recall-Precision graph in figure 3, it can be seen that the 

curve descends slower than that of most other participants. From what we can see at 

the official INEX webpage results, this is the case for only the best 5 systems. As so 

far only the iP[0.01] values have been released, we cannot make an exact statement 

on this but we expect that SPIRIX’ MAiP will be significantly higher than that of 

other search engines. So, SPIRIX seems to be very good in identifying the best 1% 

results but also is able to find good results on higher recall levels. 
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Fig. 3. Relatively flat Recall-Precision graph of the best performing run Spirix09R001. 

 

Figure 4 shows a comparison of both SPIRIX runs for early recall levels. Run 

Spirix09R001, where a BM25-Adaption was applied, performs only slightly better 

than Run Spirix09R002, where a Robertson TF*IDF-Adaption to the use of our 

XTerms was applied. The differences are not significant and can hardly be seen. The 

same applies for higher recall level and for MAiP. 

 

 

Fig. 4. Comparison of both SPIRIX runs (different ranking functions). 
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59,9% for the type A topics and 46,4% for the type B topics. Our notion of efficiency 

is to get a scalable system by reducing the bandwith consumed by messages between 

0,000
0,050
0,100
0,150
0,200
0,250
0,300
0,350
0,400
0,450
0,500
0,550
0,600
0,650

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

P
re
ci
si
o
n

Recall

Spirix09R001

0,45

0,47

0,49

0,51

0,53

0,55

0,57

0,59

0,61

0,63

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

P
re
ci
si
o
n

Recall

Spirix09R001 Spirix09R002

230



peers. Thus, we aimed at reducing the amount of postings to be used. All other 

participants aimed at reducing run times. SPIRIX was not developed or tuned to 

achieve fast response times. Thus, for the type A topics our run times are the slowest. 

For the type B topics, most of our runs have been in the same range of run times as 

the other participants except for the system from university of Otago, which 

performed extraordinary fast in all runs and tasks. Unfortunately, we are still the only 

distributed system. Therefore, our efforts to be efficient in terms of communication 

overhead cannot be compared with other participants. A comparison of our runs 

between themselves will be conducted in the following-up paper of the 

preproceedings as the results have only been released recently and we have not been 

able to analyse them yet. For some of the experiments, the use of structure in the 

routing process showed a clear increase of precision, e.g. when analyzing the use of 

our BM25E-Adaption in the routing, as shown in figure 5. 

 

 

Fig. 5. Run RX01 used BM25E as routing function and thus outperformed Run RX07. 

 

As shown in figure 6 and 7, our runs ranked best in terms of precision. Figure 6 

shows the precision iP[0.01] of the top runs in regard of the task where type A topics 

where queried. Our best runs, e.g. RX01, achieved 59,9% precision at this task. 

 

Fig. 6. Top runs for type A topics. 
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Figure 7 displays iP[0.01] for the top runs, this time for the type B topics. Again, 

SPIRIX performed best, e.g. with run RX20 and iP[0.01] of 46,6%. 

 

Fig. 7. Top runs for type B topics. 

5   Discussion 

Our results show, that we gained high precisions in comparison to other INEX 

participants. We are able to report a precision of 59,3% where the best performing 

system achieved 63,3%, resulting in rank 7 at the Ad Hoc Track (Focused). At the 

Efficiency track, we achieved the highest precision in both tasks, which is 59,9% for 

the type A topics and 46,4% for the type B topics. These results were achieved with a 
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to select adequate postings in the routing process. Our INEX results show, that our 
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functions, and on a peer metrics computation – work in a way, that on the one hand, 

high precisions can be achieved while on the other hand, the system scales well. 

Furthermore, the parallelisation of both the posting selection and the ranking process 

is a big advantage when dealing with large-scale collections like the new Wikipedia 

collection, e.g. by being able to process more postings in memory at the same time. 
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Abstract. In some situations search engine users would prefer to re-
trieve entities instead of just documents. Example queries include Ital-
ian Nobel prize winners, Formula 1 drivers that won the Monaco Grand
Prix, or German spoken Swiss cantons. The XML Entity Ranking (XER)
track at INEX creates a discussion forum aimed at standardizing evalua-
tion procedures for entity retrieval. This paper describes the XER tasks
and the evaluation procedure used at the XER track in 2009 as well as
summarise the approaches adopted by the participants.

1 Introduction

Many user tasks would be simplified if search engines would support typed
search, and return entities instead of ’just’ web pages. Since 2007, INEX has
organised a yearly XML Entity Ranking track (INEX-XER) to provide a forum
where researchers may compare and evaluate techniques for engines that return
lists of entities. In entity ranking (ER) and entity list completion (LC), the goal
is to evaluate how well systems can rank entities in response to a query; the set
of entities to be ranked is assumed to be loosely defined by a generic category,
implied in the query itself, or by some example entities. We continue to run
both the entity ranking and list completion tasks this year. This year we will
adopt the new document collection containing annotations with the general goal
to understand how such semantic annotations can be exploited for improving
Entity Ranking.

Entity ranking concerns triples of type <query, category, entity>. The cate-
gory (that is entity type), specifies the type of ‘objects’ to be retrieved. The query
is a free text description that attempts to capture the information need. Entity
specifies example instances of the entity type. The usual information retrieval
tasks of document and element retrieval can be viewed as special instances of
this more general retrieval problem, where the category membership relates to
a syntactic (layout) notion of ‘text document’, or ‘XML element’. Expert find-
ing uses the semantic notion of ‘people’ as its category, where the query would
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specify ‘expertise on T’ for expert finding topic T. Our goal is not to evaluate
how well systems identify instances of entities within text (to some extent this
is part of the goal of the Link-the-Wiki track).

2 INEX-XER Setup

2.1 Data

The track uses the new Wikipedia 2009 XML data based on a dump of the
Wikipedia taken on 8 October 2008 and annotated with techniques described
in [3]. Available annotations can be exploited to find relevant entities to return.
Category information about the pages loosely defines the entity sets. The entities
in such a set are assumed to loosely correspond to those Wikipedia pages that
are labeled with this category (or perhaps a sub-category of the given category).
Obviously, this is not perfect as many Wikipedia articles are assigned to cate-
gories in an inconsistent fashion. Retrieval methods should handle the situation
that the category assignments to Wikipedia pages are not always consistent,
and also far from complete. The challenge for participants is to exploit the rich
information from text, structure, links and annotations to perform the search
tasks.

2.2 Tasks

This year’s entity ranking track consists of two tasks, i.e., entity ranking (without
examples), and entity list completion (with examples). Entity list completion is
a special case of entity ranking where a few examples of relevant entities are
provided as relevance feedback information.

Entity Ranking. The motivation for the entity ranking (ER) task is to return
entities that satisfy a topic described in natural language text. Given preferred
categories, relevant entities are assumed to loosely correspond to those Wikipedia
pages that are labeled with these preferred categories (or perhaps sub-categories
of these preferred categories). Retrieval methods need to handle the situation
where the category assignments to Wikipedia pages are not always consistent,
and also far from complete. For example, given a preferred category ’art muse-
ums and galleries’, an article about a particular museum such as the ’Van Gogh
Museum’ (155508) may not be labeled by ’art museums and galleries’ but la-
beled by a sub-category of the preferred category instead, such as category ’art
museums and galleries in the Netherlands’. Therefore, when searching for “art
museums in Amsterdam”, correct answers may belong to other categories close
to this category in the Wikipedia category graph, or may not have been cate-
gorized at all by the Wikipedia contributors. The category ’art museums and
galleries is only an indication of what is expected, not a strict constraint (like in
the CAS title for the ad-hoc track).
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List Completion. List completion (LC) is a sub-task of entity ranking which
considers relevance feedback information. Instead of knowing the desired cate-
gory (entity type), the topic specifies a number of correct entities (instances)
together with the free-text context description. Results consist again of a list of
entities (Wikipedia pages). If we provide the system with the topic text and a
number of entity examples, the task of list completion refers to the problem of
completing the partial list of answers. As an example, when ranking ’Countries’
with topic text ’European countries where I can pay with Euros’, and entity
examples such as ’France’, ’Germany’, ’Spain’, then the ’Netherlands’ would be
a correct completion, but the ’United Kingdom’ would not.

2.3 Topics

Based on the topics from the previous years, we have set up a collection of
60 Entity Ranking topics, with 25 from 2007 and 35 topics form 2008. The
<categories> part is supposed to be used exclusively for the Entity Ranking
Task. The <entities> part is supposed to be used exclusively for the List Com-
pletion Task.

2.4 The 2009 test collection

The initial set of topics for the 2009 XER Track consisted of 60 topics selected
from the 2007 and 2008 editions. As the number of groups participating to the
relevance assessments in 2009 is the same as in 2008 (i.e., 6 groups) we decided
to keep the assessment effort comparable and, instead of limiting the pool size,
we decided to limit the number of topics to be assessed. In Figure 1 it is possible
to see the number of relevant entities per topic as from last year’s judgements. In
2008, we performed a selection of topics for the final set by removing those with
more than 74 and less than 7 relevant entities (see [2]). If we perform the same
cut on 2007 topics we would have 52 topics left which is a comparable number
with the 50 topics assessed in the each previous year.

Fig. 1. Number of relevant entities per topic as from last years relevance judgements
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3 Participants

At INEX-XER 2009 five groups submitted runs for both the ER and LC tasks.
We received a total of 12 ER runs and 11 LC runs. In the following we report a
short description of the approaches used as reported by the participants.

Waterloo. Our two runs for each task is based on Clarke et al.’s question an-
swering technique that uses redundancy [1]. Specifically, we obtained top scoring
passages from each article in the corpus using topic titles (for ER task) and topic
titles+examples (for LC task). For LC task, we estimated the categories of enti-
ties to return as the union of categories in the examples. Within each top scoring
passages, we located candidate terms that have a Wikipedia page that fall under
the desired categories. We ranked the candidate terms by the number of distinct
passages that contain the term.

AU-CEG (Anna University,Chennai). In our approach, we have extracted the
Entity Determining Terms (EDTs), Qualifiers and prominent n-grams from the
query. As a second step, we strategically exploit the relation between the ex-
tracted terms and the structure and connectedness of the corpus to retrieve
links which are highly probable of being entities and then use a recursive mecha-
nism for retrieving relevant documents through the Lucene Search. Our ranking
mechanism combines various approaches that make use of category information,
links, titles and WordNet information, initial description and the text of the
document.

PITT team (School of Information Sciences, University of Pittsburgh). As re-
cent studies indicate that named entities exist in queries and can be useful for
retrieval, we also notice the ubiquitous existence of entities in entity ranking
queries. Thus, we try to consider entity ranking as the task of finding entities
related to existing entities in a query. We implement two generative models,
i.e. MODEL1EDR and MODEL1EDS, both of which try to capture entity re-
lations. These two models are compared with two baseline generative models:
MODEL1D, which estimates models for each entity using Wikipedia entity doc-
uments; MODEL1E, which interpolates entity models in MODEL1D with entity
category models.

UAms (Turfdraagsterpad). We rank entities by combining a document score,
based on a language model of the document contents, with a category score,
based on the distance of the document categories to the target categories. We
extend our approach from last year by using Wordnet categories and by refining
the categories we use as target categories.

UAms (ISLA). We propose a novel probabilistic framework for entity retrieval
that explicitly models category information in a theoretically transparent man-
ner. Queries and entities are both represented as a tuple: a term-based plus a
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category-based model, both characterized by probability distributions. Rank-
ing of entities is then based on similarity to the query, measured in terms of
similarities between probability distributions.

Discussion. It is possible to notice that a general behaviour of participants this
year was to identify entity mentions in the text of Wikipedia articles, passages,
or queries. They then apply different techniques (e.g., detect entity relations,
exploit category information) to produce a ranked list of Wikipedia articles that
represents the retrieved entities.

4 Conclusions and Further Work

As remaining steps for completing the XER 2009 track the participants will
perform relevance assessments for the 52 selected topics and the evaluation of
submitted runs will be done using xInfAP [4] as effectiveness metrics. Addition-
ally, we will perform a comparative analysis of the relevance judgements done for
INEX-XER 2009 on the new dataset with the ones from past years performed
on an older version of Wikipedia.
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Abstract. We describe our participation in the INEX 2009 Entity Ranking and
Link-the-Wiki tracks. We provide a detailed account of the ideas underlying our
approaches to these tasks.

1 Introduction

This year the Intelligent Systems Lab Amsterdam at the University of Amsterdam par-
ticipated in two INEX tracks: Entity Ranking and Link-the-Wiki.

For the Entity Ranking track our main emphasis was to evaluate a recently proposed
probabilistic framework for entity retrieval that explicitly models category information
in a theoretically transparent manner [2]. Information needs and entities are represented
as a tuple: a term-based model plus a category-based model, both characterized by prob-
ability distributions over words. Ranking of entities is then based on similarity to the
query, measured in terms of similarity between probability distributions. In our partic-
ipation, our focus is on two core steps: query modeling and query model expansion.
Moreover, we seek to answer how well parameter settings trained on the 2007 and 2008
editions of the Entity Ranking track perform on this year’s setup.

In our participation in the Link-the-Wiki track our main aim was to explore the ef-
fectiveness of learning methods and learning materials for automatic generation of out-
going links. We experimented with two types of learning approaches: a classification-
based approach and a ranking-based approach. We train the classifier as well as the
ranker on two different versions of Wikipedia collections.

In this paper, we describe our participation for the tracks mentioned above, in two
largely independent sections: Section 2 is devoted to our entity ranking track partici-
pation and Section 3 is devoted to our work in the link-the-wiki track. We conclude in
Section 4.

2 Entity Ranking

In this section we present a probabilistic retrieval framework for the two tasks that
have been formulated within the Entity Ranking track. In the entity ranking task we are
given a query (q) and a set of target categories (C) and have to return entities. For list
completion we need to return entities given a query (q), a set of similar entities (E), and
(optionally also) a set of target categories (C).

238



2 The University of Amsterdam (ISLA) at INEX 2009

Balog et al. [2] recently proposed a probabilistic retrieval model for entity search, in
which term-based and category-based representations of queries and entities are effec-
tively integrated. With the exception of the formula used for weighting terms for query
expansion, we present the original approach unchanged.

The remainder of this section is organized as follows. In §2.1 we introduce our
retrieval model, followed by the discussion of entity and query models in §2.2 and §2.3,
respectively. We discuss our submitted runs in §2.4.

2.1 Modeling Entity Ranking

We rank entities e according to their probability of being relevant given the query q:
P (e|q). Instead of estimating this probability directly, we apply Bayes’ rule and rewrite
it to:

P (e|q) ∝ P (q|e) · P (e), (1)

where P (q|e) expresses the probability that query q is generated by entity e, and P (e)
is the a priori probability of e being relevant, i.e., the entity prior.

Each entity is represented as a pair: θe = (θT
e , θ

C
e ), where θT

e is a distribution over
terms and θC

e is a distribution over categories. Similarly, the query is also represented
as a pair: θq = (θT

q , θ
C
q ), which is then (optionally) refined further, resulting in an

expanded query model that is used for ranking entities.
The probability of an entity generating the query is estimated using a mixture model:

P (q|e) = λ · P (θT
q |θT

e ) + (1− λ) · P (θC
q |θC

e ), (2)

where λ controls the interpolation between the term-based and category-representations.
The estimation of P (θT

q |θT
e ) and P (θC

q |θC
e ) requires a measure of the difference be-

tween two probability distributions. Here, we opt for the Kullback-Leibler divergence—
also known as the relative entropy. The term-based similarity is estimated as follows:

P (θT
q |θT

e ) ∝ −KL(θT
q ||θT

e ) = −
∑

t

P (t|θT
q ) ·

P (t|θT
q )

P (t|θT
e )
, (3)

where the probability of a term given an entity model (P (t|θT
e )) and the probability of

a term given the query model (P (t|θT
q )) remain to be defined. Similarly, the category-

based component of the mixture in Eq. 2 is calculated as:

P (θC
q |θC

e ) ∝ −KL(θC
q ||θC

e ) = −
∑

c

P (c|θC
q ) ·

P (c|θC
q )

P (c|θC
e )
, (4)

where the probability of a category according to an entity’s model (P (c|θC
e )) and the

probability of a category according to the query model (P (c|θC
q )) remain to be defined.

2.2 Modeling Entities

Term-based representation To estimate P (t|θT
e ) we smooth the empirical entity model

with the background collection to prevent zero probabilities. We employ Bayesian
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smoothing using Dirichlet priors which has been shown to achieve superior perfor-
mance on a variety of tasks and collections [9, 6] and set:

P (t|θT
e ) =

n(t, e) + µT · P (t)∑
t n(t, e) + µT

, (5)

where n(t, e) denotes the number of times t occurs in the document,
∑

t n(t, e) is
the total number of term occurrences, i.e., the document length, and P (t) is the back-
ground model (the relative frequency of t in the collection). Since entities correspond
to Wikipedia articles, this representation of an entity is identical to constructing a
smoothed document model for each Wikipedia page, in a standard language model-
ing approach [8, 5]. Alternatively, the entity model can be expanded with terms from
related entities, i.e., entities sharing the categories or entities linking to or from the
Wikipedia page [3]. To remain focused, we do not explore this direction here.

Category-based representation Analogously to the term-based representation, we smooth
the maximum-likelihood estimate with a background model. We employ Dirichlet smooth-
ing, and use the parameter µC to avoid confusion with µT :

P (c|θC
e ) =

n(c, e) + µC · P (c)∑
c n(c, e) + µC

. (6)

In Eq. 6, n(c, e) is 1 if entity e is assigned to category c, and 0 otherwise;
∑

c n(c, e) is
the total number of categories to which e is assigned; P (c) is the background category
model and is set using a maximum-likelihood estimate:

P (c) =
∑

e n(c, e)∑
c

∑
e n(c, e)

, (7)

where
∑

c

∑
e n(c, e) is the number of category-entity assignments in the collection.

Entity priors By default, we use uniform entity priors, i.e., all pages in the collection
are equally likely to be returned. Additionally, we experiment with priors that reward
pages that are known to belong to entities; we use the 2007 and 2008 topic sets for
setting the priors.

2.3 Modeling Queries

In this subsection we introduce methods for estimating and expanding query models.
This boils down to estimating the probabilities P (t|θT

q ) and P (c|θC
q ) as discussed in

§2.1.

Term-based representation The term-based component of the baseline query model is
defined as follows:

P (t|θT
q ) = Pbl(t|θT

q ) =
n(t, q)∑
t n(t, q)

, (8)

where n(t, q) stands for the number of times term t occurs in query q.
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4 The University of Amsterdam (ISLA) at INEX 2009

The general form we use for expansion is a mixture of the baseline (subscripted
with bl) defined in Eq. 8 and an expansion (subscripted with ex):

P (t|θT
q ) = (1− λT ) · Pbl(t|θT

q ) + λT · Pex(t|θT
q ). (9)

Given a set of feedback entities FB , the expanded query model is constructed as fol-
lows:

Pex(t|θT
q ) =

PKT
(t|FB)∑

t′ PKT
(t′|FB)

, (10)

where PKT
(t|FB) is estimated as follows. First, P (t|FB) is computed according to

Eq. 11. Then, the top KT terms with the highest P (t|FB) value are taken to form
PKT

(t|FB), by redistributing the probability mass, in proportion to their corresponding
P (t|FB) values.

P (t|FB) =
1
|FB|

∑
e∈FB

s(t, e)∑
t s(t, e)

(11)

and

s(t, e) = log
n(t, e)

P (t) ·
∑

t n(t, e)
, (12)

where
∑

t n(t, e) is the total number of terms, i.e., the length of the document corre-
sponding to entity e. (This is the same as the EXP query model generation method using
example documents from [1], with the simplification that all feedback documents are
assumed to be equally important.)

The set of feedback entities, FB , is defined in two ways: for the entity ranking
task, it is the top N relevant entities according to a ranking obtained using the initial
(baseline) query. For the list completion task, the set of example entities provided with
the query are used as the feedback set (FB = E).

Category-based representation Our baseline model uses the keyword query (q) to infer
the category-component of the query model (θC

q ), by considering the top Nc most rele-
vant categories given the query; relevance of a category is estimated based on matching
between the name of the category and the query, i.e., a standard language modeling
approach on top of an index of category names.

P (c|θC
q ) = Pq(c|θC

q ) =
{
P (q|θc)/

∑
c∈C P (q|θc), if c ∈ top Nc

0, otherwise. (13)

Note that this method does not use the category information provided with the query.
To use target category information, we set n(c, q) to 1 if c is a target category, and∑

c n(c, q) to the total number of target categories provided with the topic statement.
Then, we put

Pc(c|θC
q ) =

n(c, q)∑
c n(c, q)

. (14)

To combine the two methods (categories relevant to the query and categories provided
as input), we put:

P (c|θC
q ) =

1
2
Pq(c|θC

q ) +
1
2
Pc(c|θC

q ). (15)
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(For the sake of simplicity, each model contributes half of the probability mass.)
Expansion of the category-based component is performed similarly to the term-

based case; we use a linear combination of the baseline (either Eq. 13 or Eq. 15) and
expanded components:

P (c|θC
q ) = (1− λC) · Pbl(c|θC

q ) + λC · Pex(c|θC
q ). (16)

Given a set of feedback entities FB , the expanded query model is constructed as fol-
lows:

Pex(c|θC
q ) =

PKC
(c|FB)∑

c′ PKC
(c′|FB)

, (17)

where PKC
(c|FB) is calculated similarly to the term-based case: first, P (c|FB) is cal-

culated according to Eq. 18 (where, as before, n(c, e) is 1 if e belongs to c). Then, the
topKC categories with the highest P (c|FB) value are selected, and their corresponding
probabilities are renormalized, resulting in PKC

(c|FB).

P (c|FB) =
1
|FB |

∑
e∈FB

n(c, e)∑
t n(c, e)

. (18)

The set of feedback entities is defined as before (the top N entities obtained using blind
relevance feedback for entity ranking, and the example entities E for list completion).

2.4 Runs

Parameter settings Using the 2007 and 2008 editions of the Entity Ranking track as
training material, we set the parameters of our models as follows.

– Importance of the term-based vs. the category-based component (Eq. 2): λ = 0.7
– Number of categories obtained given the query (Eq. 13): Nc = 15
– Number of feedback entities: N = 3
– Number of feedback terms (Eq. 17): KT = 35
– Weight of feedback terms (Eq. 9): λT = 0.7
– Number of feedback categories (Eq. 17): KC =∞ (not limited)
– Weight of feedback categories (Eq. 16): λC = 0.3

Entity ranking Table 1 summarizes the 4 runs we submitted for the entity ranking
task.

List completion Table 2 summarizes the 6 runs we submitted for the list completion
task.
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6 The University of Amsterdam (ISLA) at INEX 2009

RunID Baseline Expanded Priors Description
(UAmsISLA ER ...) P (t|θT

q ) P (c|θC
q ) P (t|θT

q ) P (c|θC
q )

TC ERbaseline Eq. 8 Eq. 15 - - N Baseline
TC ERfeedback Eq. 8 Eq. 15 Eq. 10 Eq. 17 N Feedback
TC ERfeedbackS Eq. 8 Eq. 15 Eq. 10 Eq. 17 N Feedback (selected topics∗)
TC ERfeedbackSP Eq. 8 Eq. 15 Eq. 10 Eq. 17 Y Priors (on top of previous run)

Table 1. Entity ranking runs. (∗Topics that were helped by blind feedback on the 2007/2008 topic
set.)

RunID Baseline Expanded Priors Description
(UAmsISLA LC ...) P (t|θT

q ) P (c|θC
q ) P (t|θT

q ) P (c|θC
q )

TE LCexpT Eq. 8 Eq. 13 Eq. 10 - N Feedback (term-based)
TE LCexpC Eq. 8 Eq. 13 - Eq. 17 N Feedback (category-based)
TE LCexpTC Eq. 8 Eq. 13 Eq. 10 Eq. 17 N Feedback (term- + category-based)
TE LCexpTCP Eq. 8 Eq. 13 Eq. 10 Eq. 17 Y Priors (on top of previous run)
TEC LCexpTCS Eq. 8 Eq. 13/15 Eq. 10 Eq. 17 N Feedback (selected topics∗)
TEC LCexpTCSP Eq. 8 Eq. 13/15 Eq. 10 Eq. 17 Y Priors (on top of previous run)
Table 2. List completion runs. (∗Topics that were helped by using example entities on the
2007/2008 topic set do not use input category information (i.e., use Eq. 13 for constructing
Pbl(c|θC

q )); the remainder of the topics use the input category information (i.e., Pbl(c|θC
q ) is

estimated using Eq. 15).)

3 Link-the-Wiki

In this section, we describe our participation in the Link-the-Wiki (LTW) track. The
aim of the LTW track is to automatically identify hyperlinks between documents. We
only participated in the task of outgoing link generation within Wikipedia (A2B). In our
experiments, we focus on exploring machine learning methods and learning material for
link detection.

The main purpose of our experiments are two-fold. First, we want to test how
our learning methods work on the LTW task, especially how the results learnt from
Wikipedia ground truth would be judged by human assessors. On top of that, since the
LTW task is defined as a ranking problem for recommendation purposes, we want to
see how a learning to rank approach works as it directly optimizes the rankings instead
of assigning binary decisions to candidate links as a classification method would do.
Second, we trained our models with different versions of Wikipedia. The two versions
used, namely Wikipedia 2008 and Wikipedia 2009, differ in the amount of articles as
well as the amount of links. Presumably, the 2009 version contains more link informa-
tion but is also more noisy in terms of missing target pages (as some pages are deleted
as time passes by). We experiment with both collections so as to see the impact of the
training material used.

243



The University of Amsterdam (ISLA) at INEX 2009 7

Learning Stage N-gram N-gram-target Target N-gram-topic Topic-target 1st-stage
Candidate targets ranking x x x
Candidate links ranking x x x x x x

Table 3. Features and their corresponding application in different learning stages.

3.1 A two-stage learning procedure

Following [7], we consider the linking task as a two stage procedure, namely candidate
target identification and link detection. First, we extract all possible n-grams in a topic
page, and train a link-detector to rank the potential target pages for each n-gram, which
we refer to as candidate target pages.

We experiment with two types of learning methods, namely classification and learn-
ing to rank. For classification, we use SVM to classify the instances in both stages, and
rank the results by the probability of an instance being positive. For our learning to rank
approach, we use RankingSVM [4] to directly optimize the ranking of an instance. In
the candidate target identification stage, we train a ranker to rank the target candidates
for each n-gram and in the link detection stage a ranker is trained to rank the n-gram
target pairs.

3.2 Features

We identify 6 types of feature for learning a preference relation between the candidate
links. Table 3 specifies in which stage each type is used and Table 4 lists the features.
Here, we discuss the motivations of using these features, as well as detail the formula-
tion of some of the features.

N-gram features The n-gram features suggest how likely a given n-gram would be
marked as an anchor text, without any other information such as its context in the topic
page, which includes its length, IDF score, number of candidate targets associated with
it, and its ALR (Anchor Likelihood Ratio) scores. IDF is calculated as

log(
|D|

|{di : ng ∈ di}Ni=1|
),

where ng is a n-gram, di is a page containing a this n-gram, andD is the total collection
of Wikipedia pages. The ALR score can be interpreted as a model selection between
two models, the anchor model and the collection model, from which a n-gram is gen-
erated. To calculate the probability of a n-gram being generated by either model, the
maximum likelihood is used. Specifically, it is calculated as

ALR(ng) =
|ng ∈ A|
|A|

· |C|
|ng ∈ C|

(19)

where A is the collection of all anchor texts in the Wikipedia collection and C is the
Wikipedia collection. A large ALR value indicates that the n-gram is more likely to
have been generated from the anchor model, i.e., this n-gram is more likely to be an
anchor text than a common word sequence from the background collection.
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N-gram - target features The n-gram - target features describe how well an n-gram
and its corresponding candidate target page are related. On the assumption that each
Wikipedia page is about a specific concept that is usually denoted by its title, the first
feature we use is the match between an n-gram and the candidate target page. The sec-
ond type of feature in this category consists of indicators of how likely a given n-gram
ng and a candidate target page ctar are linked, which is expressed by the following
two scores: RatioLink and RatioAnchor. The former is the ratio between the number of
times ng and ctar are linked and the number of times ctar is being linked as a target
page in the collection. The latter, i.e., RatioAnchor is the ratio between the number of
times ng and ctar are linked and the number of times ng is used as an anchor text in
the collection. Moreover, we adopt retrieval scores between the n-gram and the candi-
date target pages as features (n-gram as query), which is an obvious description of the
relatedness of the two:

RatioLink(ng, ctar) =
|link(ng, ctar)|
|inlink(ctar)|

(20)

RatioAnchor(ng, ctar) =
|link(ng, ctar)|
|ng ∈ A|

(21)

Target features The target features are indicators of how likely a candidate target page
alone would be linked with some anchor text in the collection. To this end we explore
features such as counts of the inlinks and outlinks within the candidate target page, as
well as the Wikipedia category information associated with it.

N-gram - topic features This type of feature describes the importance of the n-gram
within its context, i.e., topic page. One would assume that an n-gram being selected as
an anchor text should be somewhat important to the understanding of the whole topic
page as well as being content-wise related. Here, we use the TFIDF score of the n-gram
and its location within the topic page as an indication of the importance of a n-gram
within a topic page.

Topic - target features The topic-target features describe the relatedness between a
topic page and a candidate target page. One obvious feature is the similarity between
the two pages. In addition, as a candidate target page itself is about a concept, we could
measure how important is this concept, or in other words, how well is this concept being
expressed in the topic page. We measure it by using the title of the candidate target page
as query and calculate the retrieval score against the topic page.

First stage score Once the target ranking has been completed (during the first stage),
we can get the ranking score for each candidate target, as well as their ranks. In the
second stage, we select the top X candidate targets to construct the candidate links with
their corresponding n-grams, where the scores and ranks from the first stage are used as
features.

245



The University of Amsterdam (ISLA) at INEX 2009 9

3.3 The LTW Runs

We submitted 5 runs for the LTW task, as specified in Table 5.
Note that we have a heuristic run UvAdR LTWA2B 03 which does not a use learn-

ing method for link ranking, but only use RankingSVM for target identification. This
run serves as a baseline for other machine learning based approaches. The heuristics
used in this run, i.e., the ALR and IDF scores, however, are the features that are most
close to the human intuitions, where ALR represents how likely a n-gram is involved in
a link based on the observation of existing links and IDF represents the uncommonness
of a n-gram.

4 Conclusions

We have described our approaches and submissions for this year’s INEX participation.
For the Entity Ranking track, we submitted 4 runs for the entity ranking and 6

runs for the list completion tasks. Our main focus is on evaluating the effectiveness of
our recently proposed entity retrieval framework on the new Wikipedia collection. In
addition, we are interested in investigating whether parameter settings learned on prior
editions of the track carry over to this year’s setting.

As to the Link-the-Twiki track, we submitted 5 runs to the A2B outgoing links de-
tection task. Our main focus is to explore the effectiveness of applying machine learn-
ing approaches for the task. Specifically, we experiment with two types of learning
approaches, namely classification and learning to rank. On top of that, we also aim to
evaluate the learning material for the task, where we use different sets of training data
(based on different versions of Wikipedia).
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N-gram features
Length(ng) Number of words contained in the n-gram
IDF(ng) The IDF score of the n-gram
ALR(ng) The ALR score of the n-gram, as detailed in Eq. 19
#Cand(ng) Number of candidate target pages associated with the n-gram
N-gram - target features
TitleMatch(ng, ctar) Three values - 2: exact match; 1: partial match(i.e., either the title

contains the n-gram, or the n-gram contains the title); 0: not match
RatioLink(ng, ctar) Link ratio of the n-gram and the candidate target page, see Eq. 20
RatioAnchor(ng, ctar) Anchor ratio of the n-gram and the candidate target page, see Eq. 21
Ret uni(ng, ctar) Retrieval score with unigram model, i.e., BM25 with default

parameter settings
Ret dep(ng, ctar) Retrieval scores with dependency model, i.e., Markov Random Field

model as described in [? ]
Rank dep(ng, ctar) The rank of the target page with the dependency retrieval model
Target features
#Inlinks(ctar) Number of in-links contained in the candidate target page
#Outlinks(ctar) Number of out-links contained in the candidate target page
#Categories(ctar) Number of Wikipedia categories associated with the candidate target

page
Gen(ctar) Generality of the candidate target page as described in [7]
N-gram - topic features
TFIDF(ng, topic) The TFIDF score of the n-gram in the topic page
First(ng, topic) Position of first occurrence of the n-gram in the topic page,

normalized by the length of the topic page
Last(ng, topic) Position of last occurrence of the n-gram in the topic page,

normalized by the length of the topic page
Spread(ng, topic) Distance between first and last occurrence of the n-gram in the topic

page
normalized by the length of the topic page

Topic-target features
Sim(ctar, topic) Cosine similarity between the candidate target page and the topic page
Ret unigram(ctar, topic) Retrieval score using the title of the candidate target page as query

against the topic page; using BM25 as retrieval model
First stage scores
score(ng, ctar) The output of the ranker for the candidate target page given the n-gram
rank(ng, ctar) The rank of the candidate target page according to the learnt ranker
Table 4. Features used for learning the preference relation, where ng: n-grams; C: collection;
ctar: candidate target pages; topic: topic page.

RunID Description
UvAdR LTWA2B 01 Binary classification, trained on wiki08 (old and small)
UvAdR LTWA2B 02 Ranking SVM, trained on wiki08
UvAdR LTWA2B 03 A heuristic run, combine the ALR and IDF for link ranking,

ignore numbers, but using rankingSVM for target ranking
UvAdR LTWA2B 04 Binary classification, trained on wiki09
UvAdR LTWA2B 05 ranking SVM, trained on wiki09

Table 5. Submitted runs
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Abstract. This year, University of Waterloo participated in four tracks;
Ad Hoc, Book, Entity Ranking, and Link-the-Wiki tracks. In Ad Hoc
and Book tracks, we implemented a variation of Okapi BM25F [5, 15,
18,20] that gave substantial improvements over the baseline BM25 that
ranked first in the previous year [12, 13], during the training and in the
preliminary Ad Hoc-focused results. In Entity ranking track, we used
redundancy techniques [4] for question answering to retrieve entities.
In Link-the-Wiki track, we employed topic-oriented PageRank with KL
divergence in addition to the baseline described in [11]. The results of
all, but Ad Hoc track is unavailable at this time.

1 Introduction

This year, University of Waterloo participated in four tracks; Ad Hoc, Book, En-
tity Ranking, and Link-the-Wiki tracks. For all, except the newly-participating
Entity Ranking track, our goal this year is to answer the question, “how can we
improve our simple baseline approaches that used little XML structure that per-
formed better than any other systems that are more complex?” Or more bluntly,
“What is the meaning of L..., I mean, INEX?”

In INEX 2008, the simple BM25 algorithm scored best for all Ad Hoc tasks,
focused, relevant-in-context, and best-in-context [12, 13]. For Book track, even
though our BM25 approach performed poorly on book retrieval task, the same
approach for page-in-context task performed better than the (only) other partic-
ipant [12,14]. Though because of the small number of participants, it is too early
to say that our simple BM25 approach is optimal for the Book track tasks, for Ad
Hoc track, our approach has been consistently performing well for INEX 2004,
2007, and 2008 [3, 8, 13, 16]. Therefore, this year, while keeping our approaches
simple, we incorporated BM25F, BM25 with XML field extension [5, 20]. As it
turned out, our approaches, especially Ad Hoc one, were similar to those of Lu et
al. [15] and Robertson et al. [18] that use inherited information. However, our ex-
periments are on a much larger scale on a very different corpus, and the tasks are
on focused task, rather than on thorough and relevant-in-context tasks, training
are at element level as opposed to document level, we used averaged field length
as opposed to a document length, we used length normalization at field level
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as opposed to at a document level, and we used somewhat different field struc-
ture and inheritance. Most importantly, as far as we know, there is no follow-up
work on BM25F with inheritance since 2006, but we think there is a room for
improvement and especially application in tasks other than Ad Hoc tasks. As
a first step of application, we applied BM25F with inheritance in a book page
retrieval setting.

In Entity track, our main question is, “How is it different from a water-
downed version of Question Answering task?” Therefore, we used redundancy
technique for question answering [4], combined with category estimation. We
also changed a perspective, and instead of trying to retrieve documents that
represent entities as many participants did more or less [6, 22], we extracted
entities from passages and then located articles corresponding to the entities.

For Link-the-Wiki track, we saw that the simple statistical approach repro-
duces the Wikipedia as a ground truth well [9–11] but did not perform well when
compared to manual assessments. We think this is due to the fact that the simple
statistical approach does not take topicality of anchor phrase into account, and
used a modified version of topical PageRank [1, 17].

2 Ad Hoc Track

This year, we only participated in Focused task using CO queries to perform
element retrieval. From our previous years’ experience, we expect that the per-
formance of our runs in Focused task would behave very similarly in relevant-
in-context and in best-in-context tasks.

We practically submitted two runs (the other two runs had some minor
bugs but performed exactly the same), UWFERBase2 and UWFERBM25F2. Our
baseline run is UWFERBase2 that is an element retrieval using BM25 as in the
previous years [3, 8, 13, 16]. We used BM25F for another element retrieval run
UWFERBM25F2.

For both runs, the unit of retrieval is elements. For training set on INEX
2008 collection [7], we used the following elements we used from last year;

<p>, <section>, <normallist>, <article>, <body>, <td>, <numberlist>,
<tr>, <table>, <definitionlist>, <th> ,<blockquote>, <div>, <li>,
<u>.

For test set on INEX 2009 collection [21], we used the following elements
that correspond to the elements we used for training.

<p>, <sec>, <list>, <article>, <bdy>, <column>, <row>, <table>, <entry>
,<indent>, <ss1>, <ss2>,<ss3>,<ss4>,<ss5>.

For both runs, we processed queries by converting each topic title into a
disjunction of query terms without negative query terms. We located positions
of all query terms and some XML tags using Wumpus [2].
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2.1 Baseline BM25 Run

For the baseline, UWFERBase2, we scored elements using Okapi BM25 [19]. The
score of an element E using Okapi BM25 is defined as follows.

s(E) ≡
∑

t∈Q

Wt
fE,t(k + 1)

fE,t + k(1− b + b plE
avgdl )

, (1)

where Q is a set of query terms, Wt is an IDF value of the term t in the collection,
fE,t is the sum of term frequencies in an element E, plE is an element length of
E, and avgdl is an average document length in Wikipedia collection to act as a
length normalization factor.

We then sorted elements by their scores, and obtained the top elements while
removing overlaps.

We tuned our parameters to maximize iP[0.01] on INEX 2008 training set
using inex eval.jar provided from INEX. Our tuning method was repeated
fixing of one parameter and changing of another until no further change is ob-
served. The parameters k = 1.8 and b = 0.4 gave iP [0.6860] on INEX 2008
training set, and we used the same set of parameters on INEX 2009 test set.

2.2 Experimental BM25F Run

For each element we listed in Section 2, we constructed two fields, one for “title”
and another for “body”. The title field consists of concatenation of an article
title and any ancestral and current section titles. The body field contains the
rest of the text in the element. Lu et al. [15] and Robertson et al. [18], on the
other hand, had separate fields for article title and section title or current title
and ancestral titles. Our intuition was that in Wikipedia, section headings do
not normally seem to include the article title and therefore, rather vague. We do
not know whether our approach is any better or different or not.

For example, in a page titled “Salsa (dance)” 1, one of the section head-
ings is “Basic movements”. In our title field for the section, we fit “Salsa Basic
movements”. The body field contains the rest of the section but not the current
section title of “Basic movements”.

Unfortunately, because in INEX 2008 collection, we only had one-level section
headings, whereas in INEX 2009 collection, we had subsection headings, we only
considered the first level of section headings during our test.

Once we collected necessary ingredients, we applied BM25F formula for an
element e [5];

BM25F (e) =
∑

t∈q∩e

xe,t

K + xe,t
Wt ,

where q is a query term, xe,t is a weighted normalized term frequency that we
describe later, and K is a parameter, and Wt is a document-level IDF for a term

1 http://en.wikipedia.org/wiki/Salsa (dance)
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t. The weighted normalized term frequency is obtained by first performing length
normalization, on a term frequency xe,f,t of a term t of field f in an element e,

xe,f,t =
xe,f,t

1 + Bf ( le,f

lf
− 1)

,

Bf is a parameter to tune, le,f is a length of a field f in an element e, lf is an
average field length.

We then multiplied the normalized term frequency xe,f,t by field weight Wf ,

xe,t =
∑

f

Wf · xe,f,t .

Lu et al. [15] and Robertson et al. [18] use a version of BM25F without
individual field length normalization [20].

We fixed K = 1 and then trained the rest of the four parameters Btitle,
Bbody,Wtitle, and Wbody, similarly to our baseline. We created our run with
Btitle = 0.6, Bbody = 0.6,Wtitle = 4, and Wbody = 1.2 that gave ip[0.01] = 0.7131
during training.

2.3 Preliminary Results

Preliminary results showed that UWFERBM25F2 ranked first with iP [0.01] = 0.6333.
The score of the second ranked run from University Pierre et Marie Curie is
0.6141, and our other run UWFERBase2 ranked 12th with iP [0.01] = 0.5940, so
it seems that our experimental BM25F-based run not only improves the base-
line BM25 run substantially, but also seems to outperform other participants.
We speculate that if we train on INEX 2009 collection with multi-level section
headings and test on the same set, the improvement would be more prominent.

An interesting observation is that even though our BM25F run performs
excellent when evaluated at the element level, when one evaluate the same run
at the document level, the performance becomes much poorer, and poorer than
the baseline run.

The best run evaluated at the document level is LIG’s LIG-2009-focused-1F
run with MAP = 0.3569. Our baseline run ranks at 25th with MAP = 0.3267 and
our BM25F run ranks at 34th with MAP = 0.3017. Similar, but not so radical
observation applies for our 2008 focused runs. The only reason we could think so
far is that a lot of relevant elements we return come from the same documents,
therefore, when evaluating at a document level, the number of distinct documents
returned is lower, especially for BM25F run, therefore obtaining lower MAP
value.

3 Book Track

This year, we only participated in Focused Book Search task. As in the Ad Hoc
track, our objective is if BM25F-based element retrieval run has any significance

252



over the simple BM25-based element retrieval run that performed well last year.
Therefore, we submitted one run, UWBaseline (UWBaseline2 fixed minor bugs)
as a baseline BM25 element retrieval run, and another run, UWBM25F as an exper-
imental BM25F element retrieval run. Additionally, we submitted a manual run,
UWManual that is the same as UWBM25F run, except some of the query phrases
that deemed unimportant are manually deleted. We used the same parameters
obtained for UWBM25F on UWManual.

Both UWBaseline and UWBM25F runs are element retrieval run where the
unit of element is a page. This is a difference from the last year, where we
considered finer element types such as <regeon> and <section>. Most tags
such as <marker> and <regeon> did not seem useful, and <line> tag is below
the minimum unit of retrieval in the task specification. Thus it would have been
better to work on both <page> and <section> elements, but since last year’s
results were converted to a page-level result, we decided to work on page-level
element retrieval this year.

For UWBaseline run, each page is scored using Equation 1. We accidentally
scored and returned our fictious <title> elements that contained MARC record
used for our other runs, but we do not think it would affect the result much.

For UWBM25F run, we created two fields for each page; one containing the
entire MARC record, and the other containing the actual text in the page. Our
original idea was to add the title of the book to each page; however, by examining
MARC record, we thought that keywords contained in some of the records may
be useful. In the future, we would like to include only the useful information
from the records by discarding author name and publishers, and translating
LC classification code into phrases. One we obtained fields, we scored pages by
Equation 2.2

For both runs, after scoring, we sorted the books by the maximum page
scores, and within each book, we sorted pages by the scores. For training, we
returned the top 1500 book-page pairs, and used trec eval.8.1 with qrels from
INEX 2008, averaged-relevance/qrel-alltopics.txt.xpath, to maximize MAP. For
UWBaseline run, we obtained k = 200 and b = 1 with MAP = 0.0219. For
UWBM25F run, we created our run with Btitle = 0.2, Bbody = 0.6,Wtitle = 2, and
Wbody = 0.4, with a fixed K = 1 that gave MAP = 0.0356 during training. For
testing, we returned the top 1000 books regardless of the number of pages each
book contained.

4 Entity Ranking Track

This year marks our first participation in Entity Ranking track. Our objective
is to see if a factoid question answering approach can be effectively used as an
entity ranking task. Therefore, instead of searching for Wikipedia pages that
are entities that fits the topic title, we treated titles as questions, searched for
answers in passages within Wikipedia pages, and found the Wikipedia pages
that correspond to the answers.
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We use redundancy technique of Clarke et al. [4] to extract answers. The
technique first scores passages using self-information of probability that an extent
contain a query term;

∑

t∈T

log
N

ft
− |T | log l ,

where N is the corpus length and ft is a term frequency in the corpus. The
technique then retrieves top k passages and expand the passages to size w around
the center. The candidates answers are then ranked according to the number of
distinct top k passages that contain the term.

4.1 Entity Ranking Task

We submitted one entity ranking run, 1 Waterloo ER TC qap. The main differ-
ence between this run and the question answering technique of Clarke et al. [4]
is in the listing of candidate topics from the top k passages.

We first extracted all titles and the categories listed at the beginning of the
articles in the Wikipedia corpus, call it wiki titles and wiki categories respec-
tively. We also extracted topic titles and the categories from the topic file, call
them topic titles and topic categories respectively.

We collected the highest scoring passages from each article in the corpus using
topic titles according to Equation 4. We then expanded the passages around the
center to 1000 terms. Call this new set of passages passage ER.

To list the candidate terms from passage ER, we need to extract terms

1. that have corresponding Wikipedia articles
2. whose categories loosely fall under those in topic categories

Therefore, we queried wikipedia categories using topic categories as query
terms with BM25. We collected the top 10000 highest scoring Wikipedia pages
that correspond to the top 10000 categories including duplicates, retrieved from
wikipedia categories. Now the list of the candidate terms are limited to the titles
of these Wikipedia pages.

We ranked the candidate terms by the number of passages in passage ER
that contain the terms. From the list, we removed the topic titles and duplicates
to create the final submission.

4.2 List Completion Task

We submitted one run, 1 Waterloo LC TE. The major difference between 1 Waterloo ER TC qap
and Clarke et al.’s work [4] is how to estimate the categories of entities to retrieve.

We extracted all titles and the categories listed at the beginning of the ar-
ticles in the Wikipedia corpus, wiki titles and wiki categories. For each topic,
we extracted topic titles and examples, and merged each topic title with its
examples to make the final topic titles.
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Using the merged topic titles, we collected the highest scoring passages from
each article according to Equation 4. We then expanded the passages around
the center to 1000 terms. Call this new set of passages passage LC.

We estimated categories of retrieval by the union of all categories of examples
according to wiki categories. Call this new set of categories ex categories.

We queried wikipedia categories using ex categories as query terms with BM25.
We collected the top 10000 highest scoring Wikipedia pages that correspond to
the top 10000 categories with duplicates, retrieved from wikipedia categories. The
list of the candidate terms are limited to the titles of these Wikipedia pages.

As in the case of Entity Ranking task, we ranked the candidate terms by
the number of passages in passage LC that contain the terms. From the list,
we removed the topic titles, example titles, and duplicates to create the final
submission.

5 Link-the-Wiki Track

This year, our goal is to use link analysis to overcome the problem of the simple
statistical approach [11]. We mainly submitted runs for anchor-to-BEP topics,
mostly at file level, but also two runs at anchor-to-BEP level. We also submitted
one run for Link-Te-Ara-to-the-Wiki task using our baseline.

5.1 Link-the-Wiki Anchor-to-BEP File Level

We submitted five runs, UWBaseline F2FonA2B,UWKPR F2FonA2B, UWKPRFlip F2FonA2B,
UWTPR F2FonA2B, and UWKPR+ F2FonA2B.

Baseline: UWBaseline F2FonA2B Our implementation of the outgoing link dis-
covery for baseline run is the same as in INEX 2007/2008 [11,12].

After removing topic files from the Wikipedia corpus, we parsed the corpus
to obtain the following ratio, γ.

γ =
] of files that has a link from anchor a to a file d

] of files in which a appears at least once

For each topic file, we located the anchor phrases, and returned the most
frequent destination file for each of the top 250 anchor phrases by γ.

For the incoming link discovery, we scored each article in the Wikipedia
corpus using topic titles and returned the top 250 articles.

KL-PageRank: UWKPR F2FonA2B Our baseline approach does not take into
account the context of anchor phrases. For example, “United States” may be
frequently linked, but should it be linked from an unrelated topic such as “olive
oil”?

We employed PageRank [1] and topical PageRank [17] to balance the fre-
quency of linkage with topicality of the pages to topic files.
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For outgoing links, We created a link graph without topic files and then added
the links from the topic files according to the outgoing results from the baseline
run, UWBaseline F2FonA2B. We obtained PageRank values for each node in the
graph. In order to compute topical PageRank, we set the jump vector to be
uniform, except for the entry corresponding to the topic file that is set to an
arbitrary large number, 1/2. Once we obtained both PageRank g(p) and topical
PageRank values f(p) for each page p, we computed the contribution of point-
wise K-L divergence values for each page for each topic as follows:

τ(p) = f(p) log
f(p)
g(p)

.

We returned the top 250 destination files according to τ .
For incoming links, we reversed the link graph obtained from outgoing links

and using the same topical PageRank values from the outgoing links, we com-
puted the contribution of point-wise K-L divergence. We returned the top 250
files according to τ .

KPR-Flip: UWKPRFlip F2FonA2B This run tries to answer the question: Should
there be an outgoing link from a page “Yoga” to “Hatha Yoga”? But should not
there also be an incoming links from “Hatha Yoga” to “Yoga”?

Because at file level, it is unclear if there is any difference between the set
of incoming links and the set of outgoing links for a topic file, this run returned
the set of outgoing links from UWKPR F2FonA2B as incoming links and the set of
incoming links from the same run as outgoing links.

Topical PageRank-only: UWTPR F2FonA2B This run tries to answer the ques-
tion: How much of the links should come from topically related files?

Because in our UWKPR F2FonA2B run, we added point-wise K-L divergence
of Topical PageRank with PageRank values to balance topicality with popular-
ity, in this run, we returned the set of outgoing links and incoming links from
UWKPR F2FonA2B run, right after obtaining Topical PageRank, but before apply-
ing K-L divergence.

KPR Run with Filtering: UWKPR+ F2FonA2B It is natural to assume that a
file that has a link to a topic file contain the topic title within the file more
or less. Therefore, in this run, for incoming links, we filtered the result of
UWKPR F2FonA2B to include only those files that contain the topic titles.

We may think that this might also hold true for the outgoing links; an anchor
phrase must exist for a file to be considered to be a destination from the topic
files. We, however, left the outgoing links the same as in UWKPR F2FonA2B because
we were not sure if this holds true for outgoing links at a file level.
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5.2 Link-the-Wiki Anchor-to-BEP Passage Level

We submitted two runs, UWBaseline A2B and UWKPR A2B.
The baseline run UWBaseline A2B implements the file-level baseline run UWBaseline F2FonA2B

at anchor-to-BEP level. Specifically, for outgoing links, we returned the offset
and length of anchor phrases in the topic files and the BEP is set to the titles of
destination files. We restricted to return only the most frequent destination per
anchor in order to compare our results against UWKPR A2B, which is a KPR-based
run that only returns one destination file per anchor phrase. For incoming links,
both anchor phrases and destination files are set to the titles of the incoming
files and the topic files.

The KPR based run UWKPR A2B implements UWKPR F2FonA2B at anchor-to-
BEP level. For outgoing links, we performed disjunctive queries using Equation 4
into the topic files, the titles of top destination files according to the values of
K-L divergence. Once we obtained the positions of the destination titles in the
topic files, we returned those as anchor phrases with BEP being the titles of
the destination files. We only returned one destination file per anchor phrase.
For incoming links, we first screened the set of incoming files returned by K-
L divergence to only those that contain the topic titles. We then set both the
anchor phrase and BEP to be the titles of the incoming and topic files.

5.3 Link-Te-Ara-to-the-Wiki

We only submitted one baseline run at Anchor-to-BEP level, Teara Baseline A2B.
Due to resource constraints, we only computed γ for those anchor phrases that
occurred in more than 100 documents in Wikipedia corpus. Once we have a list
of anchor phrases-destination pairs, we queried those phrases in TeAra corpus.
As is the case with our other Anchor-to-BEP runs, we only returned the most
frequent destination per anchor phrase.

6 Conclusions

This year, we continued to participate in Adhoc, Book, and Link-the-Wiki tracks.
We also participated for the first time, Entity Ranking track. Our theme for the
three continuing tracks is how to improve over our simple baseline that performed
well from the previous years. For Ad Hoc track, we implemented BM25F with
title and text fields. The preliminary results showed that it gives a noticable
improvements over the baseline as well as over the other participants’ runs. For
Book track, we took the same BM25F idea, but used MARC record as a title
field and a page as a body field. The performance of the run during the training
indicates that this approach is also promising over the baseline BM25 approach.
In Link-the-Wiki track, we considered topicality of links that were missing from
our simple statistical baseline algorithm through Topical PageRank and KL-
divergence. For Entity Ranking track, instead of searching directly for Wikipedia
pages, we looked for answers in passages and then ranked those entities that
appear in the passages according to the frequency.
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Future work includes finding an effective way of applying BM25F in XML
corpus, as well as using extra-book information to fill in the fields.

References

1. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.
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Abstract. In this paper we describe our participation in INEX 2009 in
the Ad Hoc Track, the Book Track, and the Entity Ranking Track. In
the Ad Hoc track we investigate focused link evidence, using only links
from retrieved sections. The new collection is not only annotated with
Wikipedia categories, but also with YAGO/WordNet categories. We ex-
plore how we can use both types of category information, in the Ad Hoc
Track as well as in the Entity Ranking Track. Results in the Ad Hoc
Track show Wikipedia categories are more effective than WordNet cate-
gories, and Wikipedia categories in combination with relevance feedback
lead to the best results.

1 Introduction

In this paper, we describe our participation in the INEX 2009 Ad Hoc, Book,
and Entity Ranking Tracks. Our aims for this year were to familiarize ourselves
with the new Wikipedia collection, to continue the work from previous years,
and to explore the opportunities of using category information, which can be in
the form of Wikipedia’s categories, or the enriched YAGO/WordNet categories.

The rest of the paper is organized as follows. First, Section 2 describes the
collection and the indexes we use. Then, in Section 3, we report our runs and
results for the Ad Hoc Track. Section 4 briefly discusses our Book Track ex-
periments. In Section 5, we present our approach to the Entity Ranking Track.
Finally, in Section 6, we discuss our findings and draw preliminary conclusions.

2 Indexing the Wikipedia Collection

In this section we describe the index that is used for our runs in the adhoc and
the entity ranking track, as well as the category structure of the collection. The
collection is based, again, on the Wikipedia but substantially larger and with
longer articles. The original Wiki-syntax is transformed into XML, and each
article is annotated using “semantic” categories based on YAGO/Wikipedia.
We used Indri [14] for indexing and retrieval.
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2.1 Indexing

Our indexing approach is based on our earlier work [1, 3, 5, 11, 12, 13].

– Section index : We used the <section> element to cut up each article in
sections and indexed each section as a retrievable unit. Some articles have a
leading paragraph not contained in any <section> element. These leading
paragraphs, contained in <p> elements are also indexed as retrievable units.
The resulting index contains no overlapping elements.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

For all indexes, stop-words were removed, and terms were stemmed using the
Krovetz stemmer. Queries are processed similar to the documents. In the ad hoc
track we use either the CO query or the CAS query, and remove query operators
(if present) from the CO query and the about-functions in the CAS query.

2.2 Category Structure

A new feature in the new Wikipedia collection is the assignment of WordNet la-
bels to documents [10]. The WordNet categories are derived from Wikipedia cate-
gories, but are designed to be conceptual. Categories for administrative purposes,
such as ‘Article with unsourced statements’, categories yielding non-conceptual
information, such as ‘1979 births’ and categories that indicate merely thematic
vicinity, such as ‘Physics’, are not used for the generation of WordNet labels, but
are excluded by hand and some shallow linguistic parsing of the category names.
WordNet concepts are matched with category names and the category is linked
to the most common concept among the WordNet concepts. It is claimed this
simple heuristic yields the correct link in the overwhelming majority of cases.

A second method which is used to generate WordNet labels, is based on the
basis of information in lists. For example, If all links but one in a list point to
pages belonging to a certain category, this category is also assigned to the page
that was not labelled with this category. This is likely to improve the consistency
of annotation, since annotation in Wikipedia is largely a manual effort.

3 Ad Hoc Track

For the INEX 2009 Ad Hoc Track we aim to investigate:

– Focused link evidence. Use local link degrees as evidence of topical relevance.
Instead of looking at all local links between the top 100 retrieved articles,
we consider only the links occurring in the retrieved elements. A link from
article A to article B occurring in a section of article A that is not retrieved is
ignored. This link evidence is more focused on the search topic and possibly
leads to less infiltration.
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– Wikipedia and WordNet categories. The new INEX Wikipedia collection has
markup in the form of YAGO elements including WordNet categories. Most
Wikipedia articles are manually categorised by the Wikipedia contributors.
The category structure can be used to generate category models to promote
articles that belong to categories that best match the query. We aim to
directly compare the effectiveness of category models based on the Wikipedia
and WordNet categorisations for improving retrieval effectiveness.

We will first describe our approach and the official runs, and finally per task, we
present and discuss our results.

3.1 Approach

We have four baseline runs based on the indexes described in the previous section:

Article : run on the article index with linear length prior and linear smoothing
λ = 0.15.

Section : run on the section index with linear length prior and linear smoothing
λ = 0.15.

Article RF : run on the article index with blind relevance feedback, using 50
terms from the top 10 results.

Section RF : run on the section index with blind relevance feedback, using 50
terms from the top 10 results.

All our official runs for all four tasks are based on these runs. To improve these
baselines, we explore the following options.

Category distance : We determine two target categories for a query based on
the top 20 results. We select the two most frequent categories to which the
top 20 results are assigned and compute a category distance score using par-
simonious language models of each category. This technique was successfully
employed on the INEX 2007 Ad hoc topics by Kaptein et al. [7]. In the new
collection, there are two sets of category labels. One based on the Wikipedia
category structure and one based on the WordNet category labels.

CAS filter : For the CAS queries we extracted from the CAS title all semantic
target elements, identified all returned results that contain a target element
in the xpath and ranked them before all other results by adding a constant
c to the score per matching target element. Other than that, we keep the
ranking in tact. A result that matches two target elements gets 2c added
to its score, while a result matching one target element gets 1c added to
its score. In this way, results matching n target elements are ranked above
results matching n − 1 target elements. This is somewhat similar to co-
ordination level ranking of content-only queries. Syntactic target elements
like <article>, <sec>, <p> and <category> are ignored.

Link degrees : Both incoming and outgoing link degrees are useful evidence
in identifying topical relevance [4, 9]. We use the combined indegree(d) +
outdegree(d) as a document “prior” probability Plink(d). This is easy to
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incorporate in a standard language model. Of course, local link evidence is
not query-independent, so Plink(d) is not an actual prior probability. We
note that for runs where we combine the article or section text score with
a category distance score, we get a different score distribution. With these
runs we use the link evidence more carefully by taking the log of the link
degree as Plink(d).

Focused Link degrees : We also constructed a focused local link graph based
on the retrieved elements of the top 100 articles. Instead of using all links
between the top 100 articles, we only use the outgoing links from sections
that are retrieved for a given topic. The main idea behind this is that link
anchors appearing closer to the query terms are more closely related to the
search topic. Thus, if for an article ai in the top 100 articles only section
sj is retrieved, we use only the links appearing in section sj that point to
other articles in the top 100. This local link graph is more focused on the
search topic, and potentially suffers less from infiltration of important but
off-topic articles. Once the focused local link graph is constructed, we count
the number of incoming + outgoing links as the focused link prior Pfoclink(d).

Article ranking : based on [3], we use the article ranking of an article index run
and group the elements returned by a section index run as focused results.

Cut-off(n) : When we group returned elements per article for the Relevant in
Context task, we can choose to group all returned elements of an article, or
only the top ranked elements. Of course, further down the results list we find
less relevant elements, so grouping them with higher ranked elements from
the same article might actually hurt precision. We set a cut-off at rank n to
group only the top returned elements by article.

3.2 Runs

Combining the methods described in the previous section with our baseline runs
leads to the following official runs.

For the Thorough Task, we submitted two runs:

UamsTAdbi100 : an article index run with relevance feedback. The top 100
results are re-ranked using the link degree prior Plink(d). This run was sub-
mitted to the Thorough task.

UamsTSdbi100 : a section index run with relevance feedback. We cut off the
results list at rank and re-rank the focused results of the top 100 articles
using the link prior Plink(d). This run was submitted to the Thorough task.

For the Focused Task, we submitted two runs:

UamsFSdbi100CAS : a section index run combined with the Wikipedia cat-
egory distance scores. The results of the top 100 articles are re-ranked using
the link degree prior. Finally, the CAS filter is applied to boost results with
target elements in the xpath. This run was submitted to the Focused task.

UamsFSs2dbi100CAS : a section index run combined with the Wikipedia
category distance scores. The results of the top 100 articles are re-ranked
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using the focused link degree prior Pfoclink(d). Finally, the CAS filter is
applied to boost results with target elements in the xpath. This run was
submitted to the Focused task.

For the Relevant in Context Task, we submitted two runs:

UamsRSCMACMdbi100 : For the article ranking we used the article text
score combined with the manual category distance score as a baseline and
re-ranked the top 100 articles with the log of the local link prior Plink(d).
The returned elements are the top results of a combination of the section
text score and the manual category distance score, grouped per article. This
run was submitted to the Relevant in Context task.

UamsRSCWACWdbi100 : For the article ranking we used the article text
score combined with the WordNet category distance score as a baseline and
re-ranked the top 100 with the log of the local link prior Plink(d). The
returned elements are the top results of a combination of the section text
score and the wordnet category distance score, grouped per article. This run
was submitted to the Relevant in Context task.

For the Best in Context Task, we submitted two runs:

UamsBAfbCMdbi100 : an article index run with relevance feedback com-
bined with the Wikipedia category distance scores, using the local link prior
Plink(d) to re-rank the top 100 articles. The Best-Entry-Point is the start of
the article. This run was submitted to the Best in Context task.

UamsBAfbCMdbi100 : a section index run with relevance feedback combined
with the Wikipedia category distance scores, using the focused local link
prior Pfoclink(d) to re-rank the top 100 articles. Finally, the CAS filter is
applied to boost results with target elements in the xpath. The Best-Entry-
Point is the start of the article. This run was submitted to the Best in
Context task.

3.3 Thorough Task

Results of the Thorough Task can be found in Table 1. We make the following
observations:

– Standard relevance feedback improves upon the baseline. The Wikipedia
category distances are even more effective. The WordNet category distances
are somewhat less effective, but still lead to improvement for MAiP.

– Combining relevance feedback with the WordNet categories hurts perfor-
mance, whereas combining feedback with the Wikipedia categories improves
MAiP. However, for early precision, the Wikipedia categories without feed-
back perform better.

– The link prior has a negative impact on performance of article level runs.
The official run UamsTAdbi100 is based on the Article RF run, but with the
top 100 articles re-ranked using the local link prior.
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Table 1: Results for the Ad Hoc Track Thorough Task (runs labeled “UAms”
are official submissions)

Run id MAiP iP[0.00] iP[0.01] iP[0.05] iP[0.10]

UamsTAdbi100 0.2676 0.5350 0.5239 0.4968 0.4712
UamsTSdbi100 0.2139 0.5022 0.4915 0.4639 0.4400

Article 0.2814 0.5938 0.5880 0.5385 0.4981
Article RF 0.2967 0.6082 0.5948 0.5552 0.5033
Article + Cat(Wiki) 0.2991 0.6156 0.6150 0.5804 0.5218
Article + Cat(WordNet) 0.2841 0.5600 0.5499 0.5203 0.4950
Article RF + Cat(Wiki) 0.3011 0.6006 0.5932 0.5607 0.5177
Article RF + Cat(WordNet) 0.2777 0.5490 0.5421 0.5167 0.4908
(Article + CAT (Wiki)) · Plink(d) 0.2637 0.5568 0.5563 0.4934 0.4662
(Article + CAT (WordNet)) · Plink(d) 0.2573 0.5345 0.5302 0.4924 0.4567

Section 0.1403 0.5525 0.4948 0.4155 0.3594
Section RF 0.1493 0.5761 0.5092 0.4296 0.3623
Section + Cat(Wiki) 0.1760 0.6147 0.5667 0.5012 0.4334
Section + Cat(WordNet) 0.1533 0.5474 0.4982 0.4506 0.3831
Section RF + Cat(Wiki) 0.1813 0.5819 0.5415 0.4752 0.4186
Section RF + Cat(WordNet) 0.1533 0.5356 0.4794 0.4201 0.3737

Table 2: Results for the Ad Hoc Track Focused Task (runs labeled “UAms” are
official submissions)

Run id MAiP iP[0.00] iP[0.01] iP[0.05] iP[0.10]

UamsFSdbi100CAS 0.1726 0.5567 0.5296 0.4703 0.4235
UamsFSs2dbi100CAS 0.1928 0.6328 0.5997 0.5140 0.4647

Section 0.1403 0.5525 0.4948 0.4155 0.3594
Section RF 0.1493 0.5761 0.5092 0.4296 0.3623
Section + Cat(Wiki) 0.1760 0.6147 0.5667 0.5012 0.4334
Section RF + Cat(Wiki) 0.1813 0.5819 0.5415 0.4752 0.4186

Article + Cat(Wiki) 0.2991 0.6156 0.6150 0.5804 0.5218
Article RF + Cat(Wiki) 0.3011 0.6006 0.5932 0.5607 0.5177

UamsRSCMACMdbi100 0.2096 0.6284 0.6250 0.5363 0.4733
UamsRSCWACWdbi100 0.2132 0.6122 0.5980 0.5317 0.4782

– On the section level run it leads to improvement. The official run UamsTS-
dbi100 is based on the Section RF run, but with the results of the top 100
articles re-ranked using the local link prior. Here, the link prior increases
MAiP from 0.1493 to 0.2139.

– Section index runs miss too much relevant information. They perform much
worse than the article index runs.

3.4 Focused Task

We have no overlapping elements in our indexes, so no overlap filtering is done.
Table 2 shows the results for the Focused Task. We make the following observa-
tions:
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Table 3: Results for the Ad Hoc Track Relevant in Context Task (runs labeled
“UAms” are official submissions)

Run id MAgP gP[5] gP[10] gP[25] gP[50]

UamsRSCMACMdbi100 0.1771 0.3192 0.2794 0.2073 0.1658
UamsRSCWACWdbi100 0.1678 0.3010 0.2537 0.2009 0.1591

Article 0.1775 0.3150 0.2773 0.2109 0.1621
Article RF 0.1880 0.3498 0.2956 0.2230 0.1666
Article + Cat(Wiki) 0.1888 0.3393 0.2869 0.2271 0.1724
Article + Cat(WordNet) 0.1799 0.2984 0.2702 0.2199 0.1680
Article RF + Cat(Wiki) 0.1950 0.3528 0.2979 0.2257 0.1730
Article RF + Cat(WordNet) 0.1792 0.3200 0.2702 0.2180 0.1638

– The runs shown are the same as those for the Thorough task. Since the
measures used are also the same, the results are also the same. The Wikipedia
categories are very effective in improving performance of both the article and
section index runs.

– The official Focused runs UamsFSdbi100CAS and UamsFSs2dbi100CAS are
the link prior and focused link prior versions of the Section + Cat(Wiki)
run. Both runs are also CAS filtered. The document level link degrees hurt
performance, while the focused link degrees improve performance.

– The Article + Cat(Wiki) run has a slightly lower iP[0.00] than the official
UamsFSs2dbi100CAS, but a somewhat higher iP[0.01]. The section index is
less effective for the Focused task than the article index.

– For comparison, we also show the official Relevant in Context run Uam-
sRSCMACMdbi100, which uses the same result elements as the Section
+ Cat(Wiki) run, but groups them per article and uses the (Article +
Cat(Wiki)) · Plink(d) run for the article ranking. This improves the pre-
cision at iP[0.01]. The combination of the section run and the article run
gives the best performance.

3.5 Relevant in Context Task

For the Relevant in Context Task, we group result per article. Table 3 shows the
results for the Relevant in Context Task. We make the following observations:

– A simple article level run is just as effective for the Relevant in Context task
as the much more complex official runs, which uses the Article+Cat(Wiki) ·
log(Plink(d)) run for the article ranking, and the Section + Cat(Wiki) run
for the top 1500 sections.

– Both relevance feedback and category distance improve upon the baseline
article run. Combining relevance feedback with the Wikipedia category dis-
tance gives the best results.

– The WordNet categories again hurt performance of the relevance feedback
run.
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Table 4: Results for the Ad Hoc Track Best in Context Task (runs labeled
“UAms” are official submissions)

Run id MAgP gP[5] gP[10] gP[25] gP[50]

UamsBAfbCMdbi100 0.1543 0.2604 0.2298 0.1676 0.1478
UamsBSfbCMs2dbi100CASart1 0.1175 0.2193 0.1838 0.1492 0.1278
UamsTAdbi100 0.1601 0.2946 0.2374 0.1817 0.1444

Article 0.1620 0.2853 0.2550 0.1913 0.1515
Article RF 0.1685 0.3203 0.2645 0.2004 0.1506
Article + Cat(Wiki) 0.1740 0.2994 0.2537 0.2069 0.1601
Article + Cat(WordNet) 0.1670 0.2713 0.2438 0.2020 0.1592
Article RF + Cat(Wiki) 0.1753 0.3091 0.2625 0.2001 0.1564
Article RF + Cat(WordNet) 0.1646 0.2857 0.2506 0.1995 0.1542

3.6 Best in Context Task

The aim of the Best in Context task is to return a single result per article, which
gives best access to the relevant elements. Table 4 shows the results for the Best
in Context Task. We make the following observations:

– Same patterns. Relevance feedback helps, so do Wikipedia and WordNet
categories. Wikipedia categories are more effective than relevance feedback,
WordNet categories are less effective. Wikipedia categories combined with
relevance feedback gives further improvements, WordNet combined with
feedback gives worse performance than feedback alone. Links hurt perfor-
mance. Finally, the section index is much less effective than the article index.

4 Book Track

In the INEX 2009 Book Track we participated in the Book Retrieval and Focused
Book Search tasks. Continuing our efforts of last year, we aim to find the appro-
priate level of granularity for Focused Book Search. The BookML markup has
XML elements on the page level. In the assessments of last year, relevant pas-
sages often cover multiple pages [8]. With larger relevant passages, query terms
might be spread over multiple pages, making it hard for a page level retrieval
model to assess the relevance of individual pages.

Can we better locate relevant passages by considering larger book parts as
retrievable units? One simple option is to divide the whole book in sequences
of n pages. Another approach would be to use the logical structure of a book
to determine the retrievable units. The INEX Book corpus has no explicit XML
elements for the various logical units of the books, so as a first approach we
divide each book in sequences of pages.

Book index : each whole book is indexed as a retrievable unit.
Page index : each individual page is indexed as a retrievable unit.
5-Page index : each sequence of 5 pages is indexed as a retrievable unit. That

is, pages 1-5, 6-10, etc., are treated as text units.
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We submitted six runs in total: two for the Book Retrieval (BR) task and
four for the Focused Book Search (FBS) task. The 2009 topics consist an overall
topic statement and one or multiple sub-topics. In total, there are 16 topics and
37 sub-topics. The BR runs are based on the 16 overall topics. The FBS runs
are based on the 37 sub-topics.

Book : a standard Book index run. Up to 1000 results are returned per topic.
Book RF : a Book index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.
Page : a standard Page index run.
Page RF : a Page index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.
5-page : a standard 5-Page index run.
5-Page RF : a 5-Page index run with Relevance Feedback (RF). The initial

queries are expanded with 50 terms from the top 10 results.

At the time of writing, no relevance assessments have been made. Therefore
we cannot yet provide any evaluation results.

5 Entity Ranking

In this section, we describe our approach to the Entity Ranking Track. Our
goals for participation in the entity ranking track are to refine last year’s entity
ranking method, which proved to be quite effective, and to explore the oppor-
tunities of the new Wikipedia collection. The most effective part of our entity
ranking approach last year was combining the documents score with a category
score, where the category score represents the distance between the document
categories and the target categories. We do not use any link information, since
last year this only lead to minor improvements [6].

5.1 Category information

For each target category we estimate the distances to the categories assigned to
the answer entity. The distance between two categories is estimated according
to the category titles. Last year we also experimented with a binary distance,
and a distance between category contents, but we found the distance estimated
using category titles the most efficient and at the same time effective method.

To estimate title distance, we need to calculate the probability of a term
occurring in a category title. To avoid a division by zero, we smooth the proba-
bilities of a term occurring in a category title with the background collection:

P (t1, ..., tn|C) =
∑n

i=1
λP (ti|C) + (1 − λ)P (ti|D)

where C is the category title and D is the entire wikipedia document collection,
which is used to estimate background probabilities. We estimate P (t|C) with a
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parsimonious model [2] that uses an iterative EM algorithm as follows:

E-step: et = tft,C · αP (t|C)
αP (t|C) + (1 − α)P (t|D)

M-step: P (t|C) =
et∑
t et

, i.e. normalize the model

The initial probability P (t|C) is estimated using maximum likelihood estimation.
We use KL-divergence to calculate distances, and calculate a category score that
is high when the distance is small as follows:

Scat(Cd|Ct) = −DKL(Cd|Ct) = −
∑

t∈D

(
P (t|Ct) ∗ log

(
P (t|Ct)
P (t|Cd)

))
where d is a document, i.e. an answer entity, Ct is a target category and Cd a
category assigned to a document. The score for an answer entity in relation to
a target category S(d|Ct) is the highest score, or shortest distance from any of
the document categories to the target category.

For each target category we take only the shortest distance from any answer
entity category to a target category. So if one of the categories of the document
is exactly the target category, the distance and also the category score for that
target category is 0, no matter what other categories are assigned to the docu-
ment. Finally, the score for an answer entity in relation to a query topic S(d|QT )
is the sum of the scores of all target categories:

Scat(d|QT ) =
∑

Ct∈QT
argmax

Cd∈d
S(Cd|Ct)

A new feature in the new Wikipedia collection is the assignment of YAGO/-
WordNet categories to documents as described in Section 2.2. These WordNet
categories have some interesting properties for entity ranking. The WordNet
categories are designed to be conceptual, and by exploiting list information,
pages should be more consistently annotated. In our official runs we have made
several combinations of Wikipedia and WordNet categories.

5.2 Pseudo-Relevant Target Categories

Last year we found a discrepancy between the target categories assigned manu-
ally to the topics, and the categories assigned to the answer entities. The target
categories are often more general, and can be found higher in the Wikipedia
category hierarchy. For example, topic 102 with title ‘Existential films and nov-
els’ has as target categories ‘films’ and ‘novels,’ but none of the example entities
belong directly to one of these categories. Instead, they belong to lower level cat-
egories such as ‘1938 novels,’ ‘Philosophical novels,’ ‘Novels by Jean-Paul Sartre’
and ‘Existentialist works’ for the example entity ‘Nausea (Book).’ In this case
the estimated category distance to the target category ‘novels’ will be small,
because the term ‘novels’ occurs in the document category titles, but this is not
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Table 5: Target Categories

olympic classes
dinghy sailing

Neil Gaiman novels chess world champi-
ons

Assigned dinghies novels chess grandmasters
world chess champions

PR dinghies comics by Neil Gaiman chess grandmasters
sailing fantasy novels world chess champions

Wikipedia dinghies fantasy novels chess grandmasters
sailing at the olympics novels by Neil Gaiman chess writers
boat types living people

world chess champion
russian writers
russian chess players
russian chess writers
1975 births
soviet chess players
people from Saint Pe-
tersburg

Wordnet specification writing entity
types literary composition player

novel champion
written communication grandmaster
fiction writer

chess player
person
soviet writers

always the case. In addition to the manually assigned target categories, we have
therefore created a set of pseudo-relevant target categories. From our baseline
run we take the top n results, and assign k pseudo-relevant target categories if
they occur at least 2 times as a document category in the top n results. Since we
had no training data available we did a manual inspection of the results to de-
termine the parameter settings, which are n = 20 and k = 2 in our official runs.
For the entity ranking task we submitted different combinations of the baseline
document score, the category score based on the assigned target categories, and
the category score based on the pseudo-relevant target categories. For the list
completion task, we follow a similar procedure to assign target categories, but
instead of using pseudo-relevant results, we use the categories of the example en-
tities. All categories that occur at least twice in the example entities are assigned
as target categories.

5.3 Results

Since the runs are not officially evaluated yet, in this section we will only look
at the categories assigned by the different methods. In Table 5 we show a few
example topics together with the categories as assigned (“Assigned”) by each
method. As expected the pseudo-relevant target categories (“PR”) are more
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specific than the manually assigned target categories. The number of common
Wikipedia categories in the example entities (“Wikipedia”) can in fact be quite
long. More categories is in itself not a problem, but also non relevant categories
such as ‘1975 births’ and ‘russian writers’ and very general categories such as
’living people’ are added as target categories. Finally, the WordNet categories
(“WordNet”) contain less detail than the Wikipedia categories. Some general
concepts such as ‘entity’ are included. With these kind of categories, a higher
recall but smaller precision is expected.

6 Conclusion

In this paper we discussed our participation in the INEX 2009 Ad Hoc, Book, and
the Entity Ranking Tracks. For the Ad Hoc Track we can conclude focused link
evidence outperforms local link evidence on the article level for the Focused Task.
Focused link evidence leads to high early precision. Using category information
in the form of Wikipedia categories turns out to be very effective, and more
valuable than WordNet category information. Since there are no results yet for
the Entity Ranking Track and the Book Track, we cannot draw any conclusions
about them here.
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Abstract. This paper presents our approach for INEX 2009 Entity Ranking 

track which consists of two subtasks viz. Entity Ranking and List Completion.  

Retrieving the correct entities according to the user query is a three-step process 

viz. extracting required information from the query and the provided category 

information, extracting the relevant documents and ranking the retrieved 

documents making use of the structure available in the Wikipedia Corpus. We 

have extracted the Entity Determining Terms (EDTs), Qualifiers and prominent 

n-grams from the query, strategically exploited the relation between the 

extracted terms and the structure and connectedness of the corpus to retrieve 

links which are highly probable of being entities and then used a recursive 

mechanism for retrieving relevant documents through the Lucene Search. Our 

ranking mechanism combines various approaches that make use of category 

information, links, titles and WordNet information, initial description and the 

text of the document. 

Keywords: Entity Ranking, List Completion, Entity Determining Terms 

(EDTs), Qualifiers, Prominent n-grams, Wikipedia tags. 

1 Introduction 

Search Engines are widely used to retrieve relevant information from the World Wide 

Web. However, the task of identifying the necessary information from the relevant 

documents is left to the user. Research on Question Answering (QA) addresses this 

problem by analyzing the documents and locating the information according to the 

user‟s need. Text Retrieval Conference (TREC) pioneered this research through the 

Question Answering track [1] and promotes three types of Questions viz. factoid, list 

and complex questions.  TREC‟s Enterprise track [2] has a task similar to Entity 
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Ranking called Expert Search where a set of expert names (people) are to be 

identified for a given topic. 

Entity Ranking track and List completion task [3] started in 2007 as part of the 

INEX are aimed at exploring methodologies for retrieving relevant list of documents 

corresponding to entities (answers) using the Wikipedia XML corpus. In the Entity 

Ranking task, the query and the category are provided and we are required to retrieve 

all the entities that match them. In the List Completion task, the query and a few 

sample entities are given and the remaining entities should be extracted and ranked. 

The challenge lies in handling different XML tags to filter the exact entities from the 

set of all related documents and to rank them. The XML corpus consists of 2,666,190 

articles collected from Wikipedia. The two subtasks are Entity Ranking (ER) and List 

Completion (LC). Figure 1 shows an example INEX Entity Ranking topic from INEX 

2009. 

<inex_topic topic_id="139”> 

<title> Films directed by Akira Kurosawa </title> 

<description> find the list of movies directed by Akira Kurosawa 

</description> 

<narrative>The expected answers are movies directed by the Japanese 

 director Akira Kurosawa 

</narrative> 

<categories> 

<category>japanese films </category> 

<entities> 

<entity id="477031">Sanshiro Sugata </entity> 

<entity id="187603">Rashomon (film) </entity> 

<entity id="75984">Ran (film) </entity></entities> 

</inex_topic> 

Fig. 1. A sample topic from INEX 2009‟s ER track. 

Here, the category “japanese films” and the title “Films directed by Akira 

Kurosawa” can be used to identify the relevant entities in the Entity Ranking task 

whereas, the title and the example entities “Sanshiro Sugata”, Rashomon (film) and 

Ran (film) can be used for the List Completion task.   

The articles in the Wikipedia corpus are well-organized in such a way that each 

article starts with an overview which we call Initial Descriptions (IDES) and contains 

several paragraphs of relevant information labeled with subtitles along with many 

links to other Wikipedia articles and concludes with references. The documents 

containing related information are grouped into categories and each document may 

fall under one or more such categories. In addition, the Wikipedia 2009 corpus 

contains WordNet tags for titles and links indicating the genre under which the article 

falls.  

Our approach stresses on the importance of extracting the Entity Determining 

Terms (EDTs), Qualifiers and Prominent n-grams in arriving at a clear distinction 

between entities and non-entities. We use Lucene to find the initial set of relevant 
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documents and then use a recursive expansion mechanism so as to arrive at a set that 

encompasses nearly all the relevant documents. For ranking the retrieved documents 

we have combined various approaches that rely on the category matching, title 

keyword matching, WordNet confidence factor and synonyms, expansion of links 

present at relevant positions and paragraph expansion.   

In Section 2 Related Work is explained. Section 3 describes our approach and 

Section 4 shows the results that we have submitted and Section 5 concludes the paper. 

2 Related Work 

Using the Part-of-Speech (POS) information for finding the focus of the question 

given by TREC is explored [4]. Here the authors used the predefined patterns to find 

the question types. Using Named Entity Recognition (NER) for query processing in 

List Question Answering is shown [5]. The authors classified the web pages into four 

categories Viz. collection page, topic page, relevant page and irrelevant page. 

The information available from Wikipedia can be used for building a Named-Entity 

recognition system, which is shown in [6]. In this paper, authors have shown how 

category labels can be extracted from Wikipedia. Ranking sentences by giving 

importance to the proper names is discussed in [7]. Assigning different weights for 

WordNet synonyms and stemmed terms to improve the ranking is also explored. 

Wikipedia article names can be used to form effective queries and the effectiveness of 

the Initial Descriptions (IDES) is also explored [8]. The role of Wikipedia categories 

in ranking the entities is shown [9].The use of Lucene as an efficient information 

retrieval engine is demonstrated in several Question Answering systems such as in 

[10]. 

3 Our Approach 

Discovering entities by simply expanding all links of the top „n‟ documents 

retrieved by Lucene Search would be a rather rudimentary way to discover entities. 

The structure of the given document needs to be thoroughly understood to discover 

heuristics as to what to search in which part of the document. For example, links 

present in a paragraph named as “Movies” are more probable of being entities than 

the links in a paragraph named “Early Life” for the query given in Figure 1. Similarly, 

if an XML page which has the same title as that given in the query is found, almost all 

links in the page have good candidature of being entities. Close examination of the 

structure of the pages may reveal that many such nuances could be found. Further, 

once all possible candidates for entities have been listed, further heuristics like 

category information and the WordNet confidence information could be used to rank 

the documents as entities. However, in order to mine for the clues scattered in the 

corpus and to frame heuristics, the right terms need to be searched at the right 

locations. This in turn, implies that the required terms need to be correctly segregated 

into the relevant term groups. This is exactly the approach that this paper proposes. 
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Further, in order to achieve a good precision, we make use of several ranking 

heuristics. To increase our recall, the entire procedure is made recursive to extract 

more entities from the available set of entities. 

In our proposed approach we try to accomplish both the tasks of Entity Ranking 

and List Completion by doing the following steps: 

1) Query Processing. 

2) Extracting relevant documents. 

3) Filtering actual entities. 

4) Entity Ranking 

3.1 Query Processing 

The main difference between the classical document retrieval task and Entity 

Ranking task is that the former returns all documents containing relevant information 

whereas the latter should return only documents that are entities eliminating all other 

documents. Hence, in order to distinguish between documents that are entities from 

those that are not, we extract the Entity Determining terms (EDTs). For the ER track, 

the categories and the words in the query that are synonymous to the category terms 

are taken as EDTs. Apart from these, the synonyms of the available terms taken from 

WordNet are also considered as EDTs. The rationale behind this is the fact that the 

category terms signify the actual hypernym of entities that are expected which helps 

in distinguishing the entities from other documents. In the LC task, since the category 

information is not provided an intersection of the categories of the example entities 

will yield the probable set of EDTs. However, to verify their correctness we need to 

check if they are synonymous with the terms in the query.  

 

For the example given in fig. 1 the EDTs would be 
1) “Japanese films” - category information given 

2) “films” - synonymous word present in the query. 

3) “movies” - WordNet synonym 

 

Though the EDTs help us to determine whether a document is a possible entity or 

not, more information is required to determine whether the entity document meets the 

description specified in the query. In this example, the EDTs specify that the entity 

should be a Japanese film or a movie in general, but do not indicate anywhere that it 

should be directed by Akiro Kurosawa. We call such terms that describe the entities 

as Qualifiers. From the query, we remove the stop words and EDTs and take all the 

remaining terms as Qualifiers and we stem the required terms. These qualifiers are 

used for filtering and ranking of the entities. For the example given in Fig. 1 the 

Qualifiers would be “Akiro Kurasawa” and “direct”. 

 

In natural language, a group of terms together may give a separate meaning when 

compared with the meaning of each of the terms individually. Such combinations of 

terms are called n-grams, where „n‟ represents the number of terms in the meaningful 

unit. We call these n-grams as Meaningful n-grams. Meaningful n-grams in the topic, 
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if identified properly, effectively improve the relevance of the initial set of documents 

retrieved. Each of the articles in Wikipedia discusses about a particular topic and has 

a name associated with it. The list that we have made use in our approach is the 

expanded list comprising of Wikipedia article names and WordNet synonyms which 

we call “Wiki Names List”. The topic given is checked against the list and 

Meaningful n-grams are identified. However, all the Meaningful n-grams in the topic 

are not equally important. We used the Part-of-Speech (POS) information1 and the 

articles corresponding to them to find the prominent n-grams. The articles on these 

prominent n-grams have the highest probability of having the links to the possible 

entities and can be used in entity extraction and ranking. In our example, the 

prominent n-gram would be “Akiro Kurosawa”. 

3.2 Extracting Relevant Documents 

We used Lucene to index the Wikipedia corpus. Once the query processing is 

done, we retrieve the top „n‟ documents using the given query as such, to extract the 

initial set of relevant documents. Though this initial set may contain a few entities, it 

may not encompass the set of all entities. In order to overcome this problem, we make 

use of a combination of heuristics viz. Initial Category Expansion, Prominent n-gram 

expansion, Title Query match, Document category expansion and Paragraph 

expansion. All these techniques rely on the document titles, category information, 

proximity information and the prominent n-grams. 

 

In the Initial Category Expansion technique, we make use of the categories given 

for the ER task and the intersection of categories of the sample entities for the LC task 

and perform a category search that extracts all the documents that fall under these 

categories. The rationale behind this is that the category information provides an exact 

match of the set of entities required. However, not all entities come under these 

categories and hence we go in for the other techniques also. 

 

As explained earlier, the articles with the prominent n-grams as their title have a 

high probability of containing links to the actual entities. Hence, all the links in such 

documents are added to the list of relevant documents. However, we need to verify if 

the documents thus obtained are actual entities or not, which is taken care of in step 

3.3. 
 

In certain cases, the query itself occurs as the title of a document. For example:  
Q63 Hugo awarded best novels. In this case there is a document with the title of 

“Hugo Award for best novels”. Hence, the entries in the possible entities list is 

checked for such exact title query matches. If such a match exists, then the links in 

that document are added to the list of possible entities. 

 

                                                        
1 http://web.media.mit.edu/~hugo/montytagger 
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The initial category given in the query may not encompass all the entities and we 

need some means of getting all the related categories. For this we make use of the 

EDTs and Qualifiers and look for their presence in the category information provided 

in the list of documents already extracted. The document categories that have one or 

more EDTs and qualifiers are also expanded as in Initial category expansion and the 

extracted documents are added to the relevant document list. 

 
In the List Completion task apart from the above methods, we make use of the 

paragraph expansion technique which is similar to a proximity search where the 

paragraph size determines the window size. Each of the retrieved documents is 

checked for paragraphs that contain all the sample entities listed along with the 

qualifiers. This implies that the paragraph has a high probability of containing the 

other entities too and so all the links in that paragraph are added to the relevant 

documents list. 

  

These techniques when applied recursively to the set of relevant documents 

extracted at each step help in greatly increasing the recall, where the increase 

percentage is proportional to the number of levels up to which recursion is allowed. 

The precision does not get affected by increasing the level of recursion because the 

next step employs techniques using the EDTs and WordNet information to filter the 

actual entities alone. The only constraint to increasing the level of recursion would be 

the processing time.  An optimum value should be chosen taking into consideration 

the processing time and the recall required. 

3.3 Filtering Actual Entities 

 Though the previous step populates the list with all the possible entities one has to 

verify if each of them is an entity or just an article related to entities, because the 

prominent n-gram expansion and title query match expansion techniques may yield 

links that are not real entities. The document‟s categories and its WordNet tags are the 

two main features that enable the distinction of an entity from a non-entity. We follow 

two mechanisms to separate out the actual entities namely Category verification and 

WordNet verification. In category verification, each of the documents obtained as a 

result of the previous step is taken and the document‟s categories are explored to 

check for the presence of one or more EDTs. Similarly, in WordNet verification, each 

of the documents is checked for the presence of EDTs in the WordNet tags. If any one 

of the above tests is true then the document is added to the Final Entity List, otherwise 

it is considered as a non-entity and discarded. 

3.4 Entity Ranking 

The previous step yields the set of actual entities. However, they have to be ranked 

according to the actual degree of relevance to the query. This ranking of the retrieved 

documents is done using the WordNet tags, category terms and the locality of query 

terms in the paragraphs.  
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The INEX 2009 Wikipedia corpus contains the WordNet tags added to the titles 

and links in the document. The WordNet tag contains the WordNet id, WordNet term 

and the precision percentage which indicated how related the WordNet term is to the 

word that is tagged. We consider the WordNet terms of the title of the document 

alone for ranking purposes and count for the number of EDTs that are present in the 

WordNet tags. The WordNet fitness is assigned a value proportional to this count 

after scaling. 

 

To enhance the ranking further, we have used the category information available 

for the articles in Wikipedia. Each Wikipedia article falls under a few categories. 

Apart from checking for the presence of EDTs in the categories we look for the 

number of qualifier terms present in the categories. The ratio of the maximum number 

of qualifiers present in a document category to the total number of qualifiers is taken 

as the category fitness. 

 

Category Fitness =  

 

In addition, for the List Completion task, we used the categories of the given 

example entities as reference set (Ee). This set is compared against the set of 

categories the retrieved document belongs (Re). The ratio of the match is used to find 

the similarity between the retrieved entity and the example entities. This is added to 

the category fitness score. 

 

  

Category Match Score =                         (2)   

 

Apart from these, we used a third technique similar to a proximity search where 

each paragraph in a document is checked for the presence of EDTs and qualifiers. 

Depending upon the number of qualifiers present the paragraph fitness is increased. If 

the paragraph being considered is the initial description paragraph then a greater 

weight is assigned since the relevancy of information in the IDES is greater when 

compared to the other paragraphs. This is same as the proximity search except that the 

window size is not fixed but depends upon the size of the paragraph. 

The final rank is taken as the sum of the WordNet fitness, category fitness and the 

paragraph fitness and the entities are ranked based on this score. 

4 Evaluation 

INEX 2009 topics are selected from the previous editions INEX ER track. A sample 

Entity Ranking and List Completion results retrieved by our approach for the topic in 

Figure 1 are shown below. 
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Entity Ranking: 

 

139 0 WP1624660 Dersu Uzala (1975 film) 

139 0 WP1942885 Madadayo 

139 0 WP235331 Red Beard 

139 0 WP2553318 Scandal (1950 film) 

139 0 WP477031 Sanshiro Sugata 

139 0 WP6716962 After the Rain (film) 

139 0 WP180241 Sanjuro 

139 0 WP187603 Rashomon (film) 

 

 

List Completion 

 

139 0 WP1624660 Dersu Uzala (1975 film) 

139 0 WP235331 Red Beard 

139 0 WP2553318 Scandal (1950 film) 

139 0 WP31371 Seven Samurai 

139 0 WP477031 Sanshiro Sugata 

139 0 WP180241 Sanjuro 

139 0 WP187603 Rashomon (film) 

139 0 WP75984 Ran (film) 

5 Conclusion 

 The method we have deployed relies heavily on Entity Determining terms, 

qualifiers and the prominent n-grams. But since the category hierarchy is not specified 

the scope of expanding the EDTs is reduced. However, the WordNet tagging 

introduced in the 2009 Wikipedia corpus provides a better distinction between entities 

and non-entities. Though our method provides better accuracy and recall in majority 

of the queries for those that have some form of reference to time periods as in 

“movies shot after 1999” it fails. Better results for such queries can be obtained by 

introducing NLP techniques to semantically process such queries. 
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Abstract. In the paper we present the organization of the INEX 2009 

interactive track. For this year’s experiments the iTrack collects data on user 

search behavior in a collection consisting of book metadata taken from the 

bookstore Amazon and the social cataloguing application LibraryThing. Thus 

the data are more structured than in previous years’ experiments, consisting of 

traditional bibliographic metadata, user-generated tags and reviews and 

promotional texts and reviews from publishers and professional reviewers. 

Through monitoring searches based on three different task types the experiment 

aims at studying how users interact with highly structured data. We describe the 

methods used for data collection and the tasks performed by the participants.  

1   Introduction 

The INEX interactive track (iTrack) is a cooperative research effort run as part of 

the INEX Initiative for the Evaluation of XML retrieval [1].  The overall goal of 

INEX is to experiment with the potential of using XML to retrieve relevant parts of 

documents.  In recent years, this has been done through the provision of a test 

collection of XML-marked Wikipedia articles. The main body of work within the 

INEX community has been the development and testing of retrieval algorithms.  

Interactive information retrieval (IIR) [2] aims at investigating the relationship 

between end users of information retrieval systems and the systems they use. This aim 

is approached partly through the development and testing of interactive features in the 

IR systems and partly through research on user behavior in IR systems. In the INEX 

iTrack the focus over the years has been on how end users react to and exploit the 

potential of IR systems that facilitate the access to parts of documents in addition to 

the full documents.  

The INEX interactive track (iTrack) was run for the first time in 2004 [3], repeated 

in 2005 [4], in 2006/2007 [5] (due to technical problems the tasks scheduled for 2006 

were actually run in early 2007), and in 2008 [15]. Although there has been variations 

in task content and focus, some fundamental premises has been in force throughout: 

 a common subject recruiting procedure 
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 a common set of user tasks and data collection instruments such as interview 

guides and questionnaires 

 a common logging procedure for user/system interaction 

 an understanding that collected data should be made available to all 

participants for analysis 

 

This has ensured that through a manageable effort, participant institutions have had 

access to a rich and comparable set of data on user background and user behavior, of 

sufficient size and level of detail to allow both qualitative and quantitative analysis. 

This has already been the source of a number of papers and conference presentations 

([6], [7], [8], [9], [10], [11], [12]). 

In 2009, it was felt that although the "common effort" quality of the previous years 

was valuable and still held potential as an efficient way of collecting user behavior 

data, the Wikipedia collection had exhausted its potential as a source for studies of 

user interaction with XML-coded documents. We decided to base the experiments on 

a new data collection with richer structure and more semantic markup than has 

previously been available. A crawl of 2 million records from the book database of the 

online bookseller Amazon.com was consolidated with corresponding bibliographic 

records from the cooperative book cataloguing tool LibraryThing.   The records 

present book descriptions on a number of levels: formalized author, title and publisher 

data; subject descriptions and user tags; book cover images; full text reviews and 

content descriptions.  The data base was intended to enable investigation of research 

questions concerning, for instance 

 What is the basis for judgments on relevance in a richly structured and 

diverse material?  What fields / how much descriptive text do users make use 

of  / chose to see to be able to judge relevance? 

 How do users understand and make use of structure (e.g. representing 

different levels of description, from highly formalized bibliographic data to 

free text with varying degrees of authority) in their search development? 

 How do users construct and change their queries during search (sources of 

terms, use and understanding of tags, query development strategies ..)? 

2   Tasks 

For the 2009 iTrack the experiment was designed with two categories of tasks 

constructed by the track organizers, from each of which the searchers were instructed 

to select one of three alternative search topics. In addition the searchers were invited 

to perform one semi-self-generated task. The two categories of tasks were intended to 

reflect the most common purposes a searcher would have for visiting a database of 

primarily bibliographic data, a broad, explorative task and a narrower, more specific, 

purpose-driven task.  The self-selected task was intended to force the searcher to 

make a more quality-driven task than the two others.   The tasks provided were as 

follows: 
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The broad tasks 

These task are designed to investigate thematic exploration which will give us data 

on query development, metadata type preference and navigation patterns. 

1. You are considering to start studying sociology. In order to prepare for  

the course you would like to get acquainted with some good and recent  

introductory texts within the field as well as some of its classics. 

2. You are interested in taking a course on environmental friendly energy.  

In order to prepare for the course you would like to get acquainted with  

some good introductory texts on the field.  

3. You are considering to start studying existentialism. In order to  

prepare for the course you would like to get acquainted with some good  

introductory texts within the field as well as some of its classics.  

The narrow tasks 

These tasks represent relatively narrow topical queries where the purpose is to 

allow us to study the basis for relevance decisions and compare the searchers' 

preference of different document representations. 

1. Find trustworthy books discussing the conspiracy theories which  

developed after the 9/11 terrorist attacks in New York. 

2. Find books which present documentation of the specific health and/or  

beauty effects of consuming olive oil.  

3. The Kabbalah is an esoteric religious tradition which has inspired works of 

fiction.  Find novels where the plot is inspired by the Kabbalah, and  a 

factual treatment of the origins and development of this tradition.  

The semi self-selected task 

For one of the courses you are currently attending, you need an additional textbook. 

You have only money for one book (assuming they all have about the same price). 

You are free to select the course topic yourself.  

 

3   Participating groups 

Due to unfortunate delays in the preparation of the experimental system, the 

experiments were launched only a week before the deadline of this paper.  Five 
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groups of experimenters have so far expressed intent of participation, with a deadline 

for completion of experiments on January 31, 2010. 

4   Research design 

4.1 Search system 

 

The experiments are conducted on a java-based retrieval system built within the 

Daffodil framework [14], which resides on a server at and is maintained by the 

University of Duisburg. The basis of the search system is the same as have been used 

for previous iTracks, but the interface has been modified extensively to accommodate 

the new data set, and a set of new functionalities have been developed. 

Figure 1 shows the interface of the system. The main features available to the user 

are 

- When a search term is entered, the searcher can choose to search on 

“content”, “reviews”, or both together.  “Content” searches all the 

“formalized” text connected to each book – title, keywords, publisher’s 

description etc.  “Reviews”  searches the text of any user reviews of the 

book.  In both cases the search index bases result rankings on term 

occurrence.  In addition, there is field-based search available on author, 

title or publication year. 

- The system can order the search results according to “relevance” (which 

books the system considers to be most relevant to your search terms), 

“year” (publication year of the book), or “average rating” (in the cases 

where people have rated the quality of the books). 

- The system will show results twenty titles at a time, with features to 

assist in moving further forwards or backwards in the result list.  

- A double click on an item in the result list will show the book details in 

the “Details” window.  If the book has been reviewed, the reviews can 

be seen by clicking the “Reviews” tab at the bottom of this window. 

- The relevance of any which is examined should be determined, as 
“Relevant”, “Partially relevant” or “Not relevant”, by clicking markers 

at the bottom of the screen.  Any book decided to constitute part of the 

answer to the search task should be moved to a result basket by clicking 

the “Add to basket” button next to the relevance buttons.   

- When the first search term has been entered, the system will use the task 

window to suggest search terms which might be relevant to the task.  A 

double click on a term in this list will move it to the search term 

window. 

- A “Query history” button in the middle of the screen displays the search 

terms used so far in the search session. 

- A line of yellow dots above an item in the result list is used to indicate 
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the system’s estimate of how closely related to the query the item is 

considered to be. 

 

 

 
 

4.2   Document corpus 

The document corpus consists of records from the book database of the online 

bookseller Amazon.com, consolidated with corresponding bibliographic records from 

the cooperative book cataloguing tool LibraryThing.   The XML-coded records 

present book descriptions on a number of levels: formalized author, title and other 

bibliographic data; controlled subject descriptions and user-provided tags; book cover 

images; full text reviews and publisher-supplied content descriptions. 
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4.3   Online questionnaires 

During the course of the experiment, searchers are issued brief online 

questionnaires to support the analysis of the log data. Before the search tasks are 

introduced, the searchers are given a pre-experiment questionnaire, with demographic 

questions such as searchers’ age, education and experience in information searching 

in general and  in searching and buying books online. Each search task is preceded 

with a pre-task questionnaire, which concerns searchers’ perceptions of the difficulty 

of the search task, their familiarity with the topic etc. After each task, the searcher is 

asked to fill out a post-task questionnaire. The intention of the post-task questionnaire 

is to learn about the searchers’ use of and their opinion on various features of the 

search system, in relation to the just completed task. The experiment closes with a 

post-experiment questionnaire, which elicits the searchers’ general opinion of the 

search system. 

4.4   Relevance assessments 

The users’ task is partly to indicate the relevance of any item in the result list found 

sufficiently interesting for them to view in detail, partly to collect a result set which 

they consider to constitute an answer to their task.  A three-part relevance scale of 

“relevant”, “partly relevant” and “not relevant” is used.  

4.5   Logging 

All search sessions are logged and saved to a database. The logs register and time 

stamp the events in the session and the actions performed by the searcher, as well as 

the responses from the system.  In addition to system logs, participating institutions 

will to a large extent log additional data through eye-tracking, screen image capture 

etc. 

5   Experimental Procedure 

Each experiment is performed following the standard procedure outlined below. 

Steps 7 to 10 were repeated for each of the three tasks performed by the searcher.  

 

1. Experimenter briefs the searcher, and explains format of study. The searcher 

reads and signs the Consent Form. 

2. The experimenter logs the searchers into the experimental system. Tutorial 

of the system is given with a training task provided by the system.  The 

experimenter hands out and explains the system features document.  

3. Any questions answered by the experimenter. 

4. The experimenter administers the pre-experiment questionnaire. 
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5. Topic descriptions for the first task category administered, and a topic 

selected.  

6. Pre-task questionnaire administered. 

7. Task begins by clicking the link to the search system. Maximum duration 

for a search is 15 minutes, at which point the system issues a “timeout” 

warning. Task ended by clicking the “Finish task” button. 

8. Post-task questionnaire administered. 

9. Steps 5-8 repeated for the second and third task. 

10. Post-experiment questionnaire administered. 

6   Data analysis and conclusions 

 

As the experiment phase has recently started, results will be reported in the final 

version of this track report. 
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Abstract. In the third year of the Link the Wiki track, the focus has been 

shifted to anchor-to-BEP link discovery. There are two collections, Wikipedia 

and Te Ara, used in 2009 for respective tasks. For the link the wiki tasks, 5000 

file-to-file topics were randomly selected while 33 anchor-to-BEP topics were 

nominated by the participants. The Te Ara tasks are adopted for the first time 

and the participants are encouraged to discover all anchor-to-BEP links for the 

entire collection. A validation tool for pre-examining the link discovery results 

was distributed. This helps participants verify that the offset of the anchor text 

is specified correctly. The assessment tool was revised to improve efficiency. 

Both file-to-file and anchor-to-BEP runs are evaluated against Wikipedia 

ground-truth. Focus-based evaluation was undertaken using a new metric. 

Evaluation results are presented. 

Keywords: Wikipedia, Link Discovery, File-to-File, Anchor-to-BEP, 

Assessment, Evaluation. 

1   Introduction 

The Link the Wiki task was [1] run  for the first time in 2007 [2]. It aims at providing 

an independent evaluation forum for discussing approaches of anchor-to-BEP link 

discovery in the Wikipedia. The participants are encouraged to utilize different 

technologies (e.g. data mining, NLP, information retrieval, etc.) to resolve the issue of 

anchor-to-BEP link discovery. The goal is to rank relevant anchors and links to a best 

entry point in the target document.  

In 2007, the file-to-file runs were evaluated against the Wikipedia whilst the 

anchor-to-BEP was announced as a task in 2008 [3]. Highly accurate approaches to 

file-to-file link discovery were described, in comparisons with the Wikipedia ground 

truth. In 2009, several improvements have been made to the anchor-to-BEP 

evaluation, including the tools, assessment methods and metrics. Apart from the 

Wikipedia collection, the Te Ara encyclopedia is introduced and the tasks, Link Te 

Ara and Link Te Ara to Wiki, are set up for the first time. 

The platform for the evaluation of anchor-to-BEP link discovery consists of a set 

of resources, including link discovery rules, document collections, qrels, metrics and 

assistant tools. The participants are encouraged to explore the content in the 
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Wikipedia collection by using different technologies. The experiment focuseson 

approaches to link discovery. The goal of link discovery is to construct a high quality 

link graph by generating a comprehensive set of anchors and links to/from each 

document. For instance, in order to improve the Te Ara encyclopedia, links to 

contents inside the encyclopedia, and to/from the Wikipedia, are added, thereby 

extending the Te Ara knowledge base with the Wikipedia. This type of application 

could be used in various scenarios, such as education, library and mobile knowledge 

discovery. 

Six groups from different organizations participated in the 2009 tasks. 16 runs 

were received for the file-to-file task while 13 runs for the anchor-to-BEP task and 8 

runs for the F2F on A2B task were submitted. Two groups were also involved in the 

Te Ara tasks with 7 runs contributed. All link the wiki runs were evaluated against the 

Wikipedia ground truth. All anchor-to-BEP runs were additionally evaluated in 

different ways such as anchor-to-file and anchor-to-BEP. The former qrels can be 

produced from the Wikipedia ground truth while the later is done through the manual 

assessment. A set of evaluation results have been produced and a brief discussion is 

also presented.  

2   Document Collection 

Two collections, the Wikipedia and the TeAra, were used in the Link the Wiki track 

in 2009. The Wikipedia corpus is a 2,666,190 article dump of the Wikipedia. This 

collection is much larger than the one used in 2008. For file-to-file link discovery, 

5000 articles were randomly selected, but filtered by certain criteria such as the 

document size and the number of anchors (i.e. links). This can have the quality 

control of the documents used in the task. For anchor-to-BEP link discovery, 33 

topics were nominated by the participants and topics would be assessed by their 

nominators. 

Apart from the Wikipedia collection, the Te Ara Encyclopedia was introduced and 

used in the Link the Wiki track for the first time. Its size is around 50 MB without 

images. Currently there is no link in the collection and some of documents are still 

small. Two tasks are designated for the Te Ara collection. Link-Te-Ara is to discover 

anchor texts and link them to best entry points within the collection. Link-Te-Ara-to-

Wiki is designated to link the anchor text from a Te Ara topic to best entry points in 

the Wikipedia document. 

3   Task Specification 

3.1   Tasks 

The task was specified as twofold: the identification of links from the orphan into the 

document collection; and the identification of links from the collection into the 

orphan. 
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File-to-File link discovery for the Wikipedia collection: This task can be described 

as a special case of the anchor-to-BEP task, which decrease the complexity and offers 

an entry level for newcomers. Documents within the Wikipedia collection are used. 

Up to 250 outgoing links and up to 250 incoming links might be specified per topic. 

Missing topics would be regarded as having a score of zero for the purpose of 

computing system performance. Anchor-to-BEP link discovery: This task represents 

the main goal of the Link the Wiki track. Researchers are encouraged to discover the 

link discovery approaches, produce a reliable qrel and participate in the forum for 

discussing solution to link discovery issues. Documents in the Wikipedia and Te Ara 

collections are adopted. Only 50 topics and up to 5 BEPs per anchor should be 

specified for each topic. Anchors and links last would not be taken into account for 

performance evaluation. Alongside, at most, 250 incoming links can be specified in 

the case of Link-the-Wiki. Each incoming links must be from a different document. 

Only outgoing links are needed for the Te Ara tasks because the entire documents are 

used. 

3.2   Submission 

Each submission run must specify the task (i.e. LTW_F2F, LTW_A2B, LTAra_A2B 

and LTAraTW_A2B) performed. The description section in the submission format is 

important for the classification of different link discovery approaches from the same 

participant. A sample format in the case of the Wikipedia is presented below. 

 
<outgoing> 

   <anchor name=”Luminiferous aether” offset=”1688” length=”19”> 

      <tobep offset=”2038”>123456</tobep> 

      <tobep offset=”971”>359</tobep> 

      …  

   </anchor> 

   …  

</outgoing> 

<incoming> 

   <bep offset=”2038”> 

      < fromanchor offset=”799” length=”9” file=”654321”>radiation</fromanchor> 

      < fromanchor offset=”1019” length=”10” file=”3162088”>medication</fromanchor> 

      … 

   </bep> 

   … 

</incoming> 

Fig. 1. Sample Submission Format 

An anchor link is specified in four parts; the document file name, the start position 

of the anchor (i.e. Offset), the Length of the anchor text and the anchor text itself. The 

first three define the FOL of the anchor link while the last factor is used to verify the 

anchor is specified correctly by the OL. The offset specified the anchor starting byte 

position within the corresponding text-only document, and the anchor length is 

specified in bytes. The document name could be a unique number in the Wikipedia, or 

a unique name in the Te Ara collection. A destination link could be specified in two 

parts: a unique file name and a best entry point (BEP). It is the best starting point of 

the content that can well describe the context of the corresponding anchor text. 
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3.3   Restriction of Linking 

An anchor, indicated by a combination of Offset and Length, must appear only 

once in a topic - although it may have multiple distinct BEPs. An anchor-text in one 

document can be linked to several destinations (BEPs) in other distinct documents. It 

means that the same set of Offset and Length should not appear more than once and 

hence there is no duplicated anchor for a given topic. For the evaluation purpose, only 

first 5 links within the instances of the same anchor are taken. Document title can also 

be an anchor, but like any other anchor it can be linked to at most 5 destinations. This 

intends to encourage the discovery of the most suitable anchor for the topic. The title 

text could appear anywhere in the document. However, the assessors might accept 

only one set of offset and length regarding to that particular anchor text. As a 

consequence, other instances of this anchor text would not be taken for evaluation; 

even the relevant links are connected. In the case of anchor-to-BEP evaluation, the 

same target document can be linked from different anchor texts once it has been 

indicated as relevant. On the contrary, the duplicated links will be truncated and not 

used for file-level evaluation. 

The number of anchors and its BEP links is highly restricted. Only first 50 anchors 

and first 5 BEPs per anchor may be taken for the evaluation purpose. Both anchors 

and BEPs within each anchor must be ranked and listed in decreasing order of 

relevance. By contrast, there is no anchor and BEP indicated in file level link 

discovery but 250 outgoing and 250 incoming file-level links may be specified. 

3.4   Assistant Program 

In order to facilitate the production of the offset for each anchor and BEP, several 

tools have been developed and distributed to participants. A Java program, 

XML2FOL, was built to generate a list of all the element nodes offsets and lengths for 

a given XML document. Another Java program, XML2TXT, was also prepared for the 

participants to convert the XML document into the text-only content. Apart from the 

tools, a text-only version of the collection was also provided so the offset could be 

computed by counting the characters from the beginning of the document. These two 

programs could be embedded into the participant’s link discovery system as a parser 

of indicating term position. 

The validation tool was developed and delivered to the participants for validating 

the generated runs. The anchors are highlighted in the left screen while the right 

screen shows the link content with a best entry point on it and a table recording the 

hierarchical structure of anchor-links for the given topic. The participants can click on 

a link in the table to check the particular anchor-link result. This tool intends to bring 

up what the link discovery application should look like and facilitate to revise the 

results. 
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Fig. 2. The Validation Tool 

4   Preparation of qrels 

There are two types of qrels for evaluation. One is the Wikipedia ground truth, the 

other one is generated from the participants’ runs. The Wikipedia ground truth is 

produced from the existing anchors and links in the Wikipedia collection. This is the 

easiest way to automated evaluation. However, according to the experiment last year, 

the comparison of performance between submission runs by using Wikipedia ground 

truth is unsound. Some Wikipedia links are topically-obsolete or redundantly 

assigned. Most of anchors are linked to the documents with the same name. The 

relevant portions of the document content have not been further discovered. All 

relevant contents that are not in the Wikipedia are also considered non-relevant for the 

evaluation. As a consequence, the evaluation result might appear biased. However, 

evaluation based on the Wikipedia ground-truth does measure performance relative to 

what is present, and so it is reasonable to believe it is useful. The general idea is to 

experiment how easy the existing technology can achieve to produce the similar 

anchors and links in the Wikipedia. 

Apart from the file-to-file ground truth, the Wikipedia is also able to generate the 

anchor-to-file (i.e. offset is zero) ground truth. Although the Wikipedia does contain 

anchor-to-BEP links, in practice they are rarely used. In order to experiment the 

anchor-to-BEP technology, a special pooling procedure has been applied to collect all 

anchors and links from participants’ runs. The pool was assessed to completion. 

Discovered 

Anchor 

BEP 

Anchor-link structure table 
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5   Assessment and Evaluation 

5.1   Manual Assessment 

The pool for each topic was generated by the following three parts: Anchor-to-BEP 

(A2B) link discovery submission, the file-to-file link discovery on A2B (F2FonA2B) 

topics and anchor-to-file ground truth. In the case of F2FonA2B, the anchor was set 

as the topic title and linked to the beginning of the target document. The anchor-to-

file set from the Wikipedia presents a one-to-one relation and the BEP was set at the 

position zero. The duplicated links were removed to prevent from multiple-assess. 

This procedure performs an exhausted collection of anchors and links.  

Since the offset sometimes could hardly be specified preciously and anchor terms 

might be indicated in different ways (e.g. Information, Technology and Information 

Technology are all possible anchor terms), overlapped anchor texts were merged as a 

so-called pool anchor. A pool anchor might contains more than one anchors generated 

from different submission runs. Therefore, the anchor texts showing on the screen 

might not definitely be the anchors returned by the participants; instead it might be a 

combined text term that involved several anchor texts and respective links. In order to 

prevent from merging unallied anchor texts, the pooling program adjusts the offset to 

separate pool anchors. Anchors pooling is also to allow the evaluation being tolerant 

of certain deviation for anchor text location. 

5.2   Assessment Tool 

As the assessment is laborious and time consuming, several attempts have been made 

on improving the efficiency.  

 

Fig. 3. The Assessment Tool 

     Completed with at least one relevant link 

     Completed with all non-relevant links 

     Currently selected anchor 

     Uncompleted 

Double-left clicks to insert a BEP icon 

Single-left click to make the link relevant 

Single-right click to make the link non-relevant 

Single-right click to make the anchor and its 

entire links non-relevant 
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Firstly, the anchor text could be made non-relevant by mouse right-click, it could save 

time to assess even hundred links. On the link pane, only a single right or left click is 

necessary to judge the relevance in the case of incoming links. Moving the mouse 

cursor is not even necessary. According to the survey carried out after the assessment, 

a lack of related anchor texts highlighted in the incoming document could be a major 

obstacle of efficiency. Sometimes it is difficult to identify whether the incoming 

document is relevant to the topic content or not. Indicating the BEP in the target 

document is also a difficult task to achieve without any supplemental information 

(e.g. system’s discovered BEP). Highlighting anchor texts or related phrases on the 

document seems necessary. For instance, a sub-title or a paragraph teeming with the 

linking anchor text (or related phrases) could be a best start point for reading from.  

Each topic contains around 1000 anchor links and 900 incoming links. An average 

around 4 hours was spent to finish a topic. 

5.3   Metrics 

As with all metrics, it is important to first define the use-case of the application. The 

assumption at INEX is that link-discovery is a recommendation tasks. The system 

produces a ranked list of anchors and for each a set of recommended target/BEP pairs. 

The list should also be comprehensive because it is not clear that the document author 

can know a priori which links will be relevant to a reader of the document. That is, 

link discovery is a recall oriented task. The Mean Average Precision based metrics are 

very good at taking rank into account and are recall oriented. A good metric for link 

discovery should, consequently, be based on MAP. The difficulty is computing the 

relevance of a single result in the results list. For evaluation purposes it is assumed 

that if the target is relevant and the anchor overlaps a relevant anchor then the anchor 

is relevant; fanchor(i) = 1. 

The assessor might have assessed any number of documents as relevant to the 

given anchor. If the target of the anchor is in the list of relevant document then it is 

considered relevant; fdoc(i) = 1. The contribution of the links’ BEP is a function of 

distance from the assessor’s BEP [4]: 

������� � 	
 � 0.9 � ���, ��
    �� 0 � ���, �� � 
0.1                     �� ���, �� � 
 � 
Where ���, �� is the distance between submission BEP and result BEP in 

character. Therefore, the score of ������� varies between 0.1 (i.e. d is greater than n) 

and 1 (i.e. the submission and result BEPs are exactly matched). The score of 0.1 is 

reserved for the right target document with an indicated BEP not in range of n. n 

typically is set up as 1000 (characters). The score of a result in the results is then: 

� � ������� !���� � "∑ "�$ �% ��� � ����% ���&'()* &+% , 
Where m is the number of returned links for the anchor and mi is the number of 

relevant links for the anchor in the assessments. As the result list is restricted to 5 

296



targets per anchor mi is capped at 5 for evaluation. A perfect run can thus score a 

MAP of 1. 

5.4   Evaluation 

A portable (Java) evaluation tool, LtwEval, was developed for evaluation purposes. It 

is GUI based and provides numerous evaluation metrics including: precision, recall, 

MAP, and precision@R. Different runs can be evaluated and compared to each other.  

Interpolated-Precision/Recall graphs can be generated for sets of run. New 

functionality has been added to allow the manipulation of the graphs, which increase 

the usability of the tool. 

For the file-to-file evaluation (i.e. F2F and F2FonA2B), the number of outgoing 

and incoming links have been restricted by 250. Links beyond this number were 

truncated. The total number of relevant links is based on the ground truth, but at last 

250 to make sure the measurement of Recall is meaningful. For the anchor-to-BEP 

evaluation against ground-truth, the first 50 anchors for each topic were taken and the 

first link from each anchor was collected. As a result, there were 50 outgoing links per 

topic, used for evaluation. By contrast, first 250 incoming links were taken to do the 

evaluation since the discovery of BEP in the topic document is not that obvious. Most 

incoming links belong to the same BEP. Therefore, in the INEX use case of link 

discovery it is important to rank the discovered links for presentation to the page 

author. This use case was modeled in the manual assessment where assessors did 

exactly this. In a realistic link discovery setting the user is unlikely to trudge through 

hundreds of recommended anchors, so the best anchors should be presented first. The 

link discovery system must also balance extensive linking against link quality.  

7   Results and Discussion 

The Queensland University of Technology (i.e. QUT) submitted 6 runs for the file-

to-file (F2F) task, 4 runs for the anchor-to-BEP (A2B) task and 1 run for the 

F2FonA2B task. University of Waterloo contributed 2 runs on the A2B task and 5 run 

for the F2FonA2B task. University of Amsterdam had 5 runs for the A2B task. 

University of Otago submitted 1 runs for the F2F task, 2 runs for the A2B task and 2 

runs for the F2FonA2B task. University of Wollongong submitted 4 runs for the F2F 

task. Technische Universität Darmstadt contributed 4 runs on the F2F task. Apart 

from the Link the Wiki tasks, QUT also participated in the Link the Te Ara and Link 

Te Ara to Wiki tasks by submitting 1 run each. Technische Universität Darmstadt also 

contributed 5 runs on the Link the Te Ara task. These runs were generated by the 

anchor-to-BEP link discovery technology. 
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Fig. 4. 5000 F2F Topics Outgoing link discovery evaluated against Wikipedia Ground Truth 

 
Fig. 5. 5000 F2F Topics Incoming link discovery evaluated against Wikipedia Ground Truth 

 
Fig. 6. F2F on A2B Topics Outgoing links evaluated against Wikipedia Ground Truth 
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Fig. 7. F2F on A2B Topics Incoming links evaluated against Wikipedia Ground Truth 

 
Fig. 8. 33 A2B Topics Outgoing links evaluated against Wikipedia Ground Truth 

 
Fig. 9. 33 A2B Topics Incoming links evaluated against Wikipedia Ground Truth 
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Fig. 10. 33 A2B Topics Outgoing links evaluated against Manual Assessment Set 

 
Fig. 10. 33 A2F Topics Outgoing links evaluated against Manual Assessment Set 

 

The University of Waterloo (UW) had two approaches, one baseline and the other 

link-based, to undertake the experiment. For baseline, UW made statistics on the 

frequency phrases. These phrases were located in the topic files and the most frequent 

links were returned. For incoming links, we scored the corpus using topic titles as 

query terms and returned the top documents. The link-based approach computes 

PageRank and Topical PageRank values for each file in the corpus for each topic, and 

returned the top scoring pages according to the contribution of K-L divergence. For 

incoming links, UW reversed the graph to get new PageRank values and returned the 

top pages according to the contribution of K-L divergence with the new PageRank 

values and the old Topical PageRank values.  

The Queensland University of Technology (QUT) used the statistical link 

information of Wikipedia corpus to calculate the probability of anchors and their 

corresponding target documents for a list of sortable outgoing links. A hybrid 

approach that combines the results of link analysis method and title matching 

algorithm for the prediction of potential outgoing links was also undertaken. For the 

incoming links, the top ranking search results with topic title as the query terms 
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retrieved from a BM25 ranking search engine were chosen as source documents that 

can be linked to the topics. In finding the BEPs for either outgoing or incoming links, 

we tried two different methods: one is that BEP is the position of phrase in target 

document where the terms of anchor, either the entire words or part of which, appear; 

the other one is that BEP is the beginning of a text block which has similar terms 

features with that of the passage which is extracted from the surrounding text of 

anchor in source document. 

8   Conclusion and Outlook 

This is the third year of the Link the Wiki track at INEX. According to the file-to-file 

experiment, producing Wikipedia links could be achieved by current approaches. In 

2009, the focus has been shifted to the anchor-to-BEP link discovery and several 

changes have been made to improve the evaluation procedure. Assistant tools were 

prepared to self-examine the status of submission. An online questionnaire was set up 

to gather the suggestions and ideas of the assessment. Based on this outcome, an 

interview will be involved at the workshop to classify the need of the evaluation. 

Further experiments will be undertaken on the anchor-to-BEP runs. The submission 

would be evaluated on anchor-to-file, file-to-BEP and anchor-to-BEP level to test the 

usability of approaches provided. This aims to classify the performance of each 

approach on the contribution of linking for the given topic. The Te Ara collection is 

introduced for the first time at INEX to bring up the new concept of cross collection 

link discovery. Through the focus link discovery, the Wikipedia content could be 

fully explored. Anchors indicated for the given document could be linked to the most 

relevant content in the Wikipedia. Every piece of content discovered in the Wikipedia 

can be used to provide links from anchors in the document from other collections. 

Going through this process, a well defined knowledge network can be constructed. 

Based on participants’ comments and ideas via survey, customization can be made, 

and the enhancement of evaluation procedure and efficiency is expected. According 

to the experiment, the contribution of each approach can be classified and future 

direction of anchor-to-BEP link discovery can be possibly pointed out. 
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Abstract. This paper explains how a recent development in an area of machine
learning, namely, Self-Organizing Maps (SOM) can be used for the generation of
links between referenced or otherwise interlinked documents. These new genera-
tion of SOM models are capable of projecting generic graph structured data onto
a fixed sized display space. Such a mechanism is normally used for dimension
reduction, visualization, or clustering purposes. This paper shows that the SOM
training algorithm “inadvertently” encodes relations that exist between the atomic
elements in a graph. If the nodes in the graph represent documents, and the links
in the graph represent the reference (or hyperlink) structure of the documents,
then it is possible to obtain a set of links for a test document whose link structure
is unknown. It will be shown that the proposed approach is scalable in that links
can be extracted in linear time. It will also be shown that the proposed approach
is capable of predicting the pages which would be linked to a new document, and
is capable of predicting the links to other documents from a given test document.
The approach is applied to web pages from Wikipedia, a relatively large XML
text database consisting of many referenced documents.

1 Introduction
Self-Organizing Maps are a popular unsupervised machine learning approach for the
clustering and projection of high dimensional data vectors [1]. Recent developments ex-
tended the algorithms’ ability to encode and cluster graph structured data. The method-
ology has been applied successfully to a clustering tasks involving documents retrieved
from Wikipedia as part of a participation in the INEX (Initiatives for the Evaluation of
XML retrieval) document mining competition.

Graph data structures allow the representation of almost any kind of learning prob-
lems. A graph consists of a set of nodes and a set of binary relations called links. A link
connects any two nodes in a graph if these nodes are related to each other in some way.
If the relationship is directed, then this is represented by a directed link. Otherwise it is
undirected. With directed links, the source node is called a parent and the destination
node is called a child. With undirected links, each node connected by a link to a given
node is called a neighbour. A node with n children and m parents is said to have an
out-degree of n and an in-degree ofm. A node with k neighbors is said to have a degree
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of k. A node can be labelled by a numeric vector so as to provide a description of the
properties of the associated object. Sequences are a special case of graphs in which the
maximum in-degree and maximum out-degree is one. Traditional data vectors are also
a special type of graphs for which there exists no link between the nodes (all nodes are
independent). Thus, any approach capable of dealing with graphs can also deal with
data sequences and vectors.

Many problems are appropriately represented by a graph data structure. For ex-
ample, Chemical Molecules are naturally represented as a graph in which the nodes
represent the atoms, and the (undirected) links represent the atomic binding between
two atoms. This paper addresses another domain which is appropriately represented by
a directed graph: Web pages. Web pages can contain hyperlinks which point from a
given web page to another one. Thus, this defines a directed graph in which the web
documents are represented by a node in the graph, and the hyperlinks are the directed
links in the graph. A data label associated with each node in the graph can add a de-
scription of the content of a document. For example, the well-known Bag of Words
approach would summarize the content of a document in vectorial form.

There has been much activities in recent years on approaches that can process graph
structured information. Some of the most successful approaches were developed in the
area of machine learning. This success stems from the fact that the approaches are
scalable to real world data mining tasks. Moreover, some of these approaches have
been proven to be capable of solving any given problem involving graphs optimally [2].

This paper describes the latest of the unsupervised machine learning approaches,
and shows that the method can also be used for the purpose of link prediction. Link
prediction has particularly important practical applications in the World Wide Web
(WWW) domain. For example, a central algorithm in the search engine Google, known
as PageRank, relies on link analysis for the purpose of ranking a set of linked docu-
ments. PageRank produces a large value for pages with many parents and few children.
A known weakness of PageRank is that it neglects pages which have been newly added
to the Web. Such new pages do not have any parents by default (as they are not ref-
erenced by other web pages due to their newness in the WWW), and hence would
be ranked lowly. This in turn causes Google not to rate new pages highly producing
an effect known as “the-rich-get-richer” effect or “the-poor-stay-poor” effect. Another
problem with the Web domain is that it is unregulated. Anyone can add a new docu-
ment containing any hyperlink and any number of hyperlinks. This is often exploited
by companies and individuals which create link-farms designed at increasing the rank
of a target page. These examples highlight the need for algorithms capable of predict-
ing links between any two documents in the Web. Such algorithms can then be used to
automatically suggest parent nodes which should link to a newly created document, and
can be used to verify whether existing links are valid 4.

This paper is organized as follows: Section 2 describes the Probability Measure
Graph SOM model, and how it can be used to predict links in a hyperlinked domain.
Section 3 applies the proposed approach to a relatively large real world problem on link
predictions. Conclusions are drawn in Section 4.

4 Links which exist for the sole purpose of increasing a rank of a given page are said to be spam
links or invalid, otherwise the link is said to be valid.
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2 The approach
The SOM is a well-known algorithm in unsupervised learning [1] of data vectors. The
SOM is a topological preserving map, in that data which is close to one another in the
high dimensional feature space will remain close in the low dimensional display space.
In its most basic form, we consider a two-dimensional display space being discretized
into an N ×M grid [1]. Each grid point i, j has an associated m dimensional codebook
vector ci,j . Thus, there are N ×M of these m dimensional codebook vectors. These
are initialized randomly. The input vectors to the SOM are also m dimensional ones.
The SOM is trained in two steps:

– Competition: A given input vector is compared with each of the m dimensional
codebook vectors in the N ×M grid by using the Euclidean distance measure. The
best matching codebook cik,jk is said to be the winner.

– Parameter adjustment: The elements of codebook cik,jk and all its neighbors are
pulled closer to the elements of the input vector as follows:

∆ci,j = α(t)f(∆i,{ik,jk})(ci,j − u) (1)

where u denotes the input vector, α is a learning rate which decreases steadily
towards 0, and ∆i,{ik,jk} is the neighborhood of the winning vector cik,jk , and
f(·) is a nonlinear function, often chosen to be a Gaussian function.

These two steps are repeated for each input vector in a training set, and for a given
number of cycles. When the algorithm converges, the elements of the two dimensional
grid N ×M encapsulate the set of high dimensional input vectors u.

The SOM is trained on vectorial information under the assumption that the input
vectors are independent. The algorithm needs to be modified if there is a dependency
defined on the input vectors. Such dependencies are normally represented as a graph
structure. A first approach to process trees was made with the introduction of a SOM
for Structured Data (SOM-SD) [3]. A tree is a special class of graphs which is a rooted,
directed, acyclic graph. In this case, the issue is how to encode the graph structure. One
way in which this can be obtained is to consider each node in the graph as independent
and can be modelled using a SOM. As this is a tree structure consisting of directed
links, it makes sense to process the data from the leaf nodes to the root node. The issue
is then how to connect the SOM model for each node with others (as there is no obvious
way in which this can be performed). A simple minded approach would be to consider
the winning node in the SOM model of each node, and then to somehow connect it to
the parent node 5. The winning vector of the SOM model of the node represents the
outcome of the SOM model of the node. Hence it makes sense to use this vector and to
somehow connect it to the parent node (the node in which it has a directed connection
to). One way in which this can be performed is through a concatenation of the input
and the vectors associated with the winning nodes (the children of the current node).
If we assume that there are only a fixed number of incoming links from the children
nodes, then for nodes which have lesser number of incoming children links, the input

5 Since we are processing the tree from leaf nodes first towards the root node, the links from a
particular node is pointing towards the parents rather than the child.
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vector can be suitably augmented with zeros. Thus as far as the current parent node
is concerned, the input is a fixed sized vector, and hence the standard SOM training
algorithm can be applied; the only variation is that we will need to weigh the relative
importance of the input vector to the node, and the vectors associated with the children
nodes. This algorithm produced quite good results when processing tree structured data.

One way in which this approach can be extended to the un-directed graphs, cyclic
graphs is to consider each node as modelled by a “state”. This is a vector which en-
capsulates the past information which is processed by the node. Thus for un-directed
graphs, or cyclic graphs what it means is that there are both parents and children which
a given node is required to consider when processing information. If we assume that the
parents and the children nodes are presented by “states”, then their values are available
when we process the current node. This trick then allows us to process the data in an
un-directed graph or a cyclic graph using the standard SOM training algorithm; again
the only difference is that we will need to worry about the relative weights among the
input vector to the current node, and the vectors associated with states in the parent
and children nodes of the current node. Again these algorithms were found to perform
satisfactorily.

The recently introduced Probability Measure Graph SOM (PM-GraphSOM), the
latest version of SOM-SD algorithms, addresses the question on how cyclic depen-
dencies can be encoded by a SOM. To achieve this, the PMGraphSOM modifies the
interpretation of the state vector. We associate with each node a state which describes
the activation of the SOM for this node. In the context of using self organizing map, we
may consider the state as the location of the winning node in theN×M display map. In
this case, for the current node, if we assume in the display map, there are additional in-
puts from the antecedent (parent) nodes, and the descendant (child) nodes, the locations
of these additional inputs are the coordinates of the winning nodes in these antecedent
nodes and descendant nodes, together with the associated winning vectors [4]. A weak-
ness of this method is that the Euclidean distance measure does not make a distinction
as whether any change of a mapping during the update step has been to a nearby loca-
tion or to a location far away on the map. To counter this behavior it has been proposed
to soft code the mappings of neighbors to account for the probabilities of any changes
in the mapping of nodes. In other words, instead of hard coding the mappings of nodes
to be either 1 if there is a mapping at a given location, or 0 if there is no mapping at
a given location, we encode the likelihood of a mapping in a subsequent iteration with
a probability value. We note that due to the effects of the training algorithm it is most
likely that the mapping of a node will be unchanged at the next iteration. But since all
vectors associated with the grid points in the display map are updated, and since those
vectors which are close to a winning entry (as measured by Euclidean distance) are up-
dated more strongly (controlled by the Gaussian function), and, hence, it is more likely
that any change of a mapping will be to a nearby location rather than to a location far
away from the last update. These likelihoods are directly influenced by the neighbor-
hood function and its spread. Hence, one can incorporate the likelihood of a mapping
in subsequent iterations as follows:

Mi =
e
− ‖{i1,j1}−{ik,jk}‖

2

2σ(t)2

√
2πσ(t)

, (2)
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where σ(t) decreases with time t towards zero, and {ik, jk} are the coordinates of the
winning vector, while {i1, j1} are the coordinates of the vector in the display space.
The computation is cumulative for all the i-th node’s neighbors. Note that the term

1√
2πσ(t)

normalizes the states such that
∑
iMi ≈ 1.0. It can be observed that this

approach accounts for the fact that during the early stages of the training process it is
likely that mappings can change significantly, whereas towards the end of the training
process, as σ(t)→ 0, the state vectors become more and more similar to the hard coding
method. This approach helps to improve the stability of the GraphSOM significantly,
which allows the setting of large learning rates, and reduces the required training time
significantly while providing an overall improvement in the clustering performance.
This is referred to as the probability mapping GraphSOM (PMGraphSOM) [5].

We note that the PMGraphSOM updates the codebook vectors in the direction of
data vectors. We note further that the input vectors contain state information which rep-
resents the dependencies on other nodes in the graph. Hence, an idea was born to derive
the links to a new node from the state component of the the best matching codebook
vector. In other words, given a PMGraphSOM which has been trained on a Web graph,
and given a new document whose links are not yet known, we can find the best matching
codebook vector for this document and obtain the most likely link structure by “reverse
engineering” the part of the codebook which represents the state vector.

As a comparison, and as an alternative approach to obtaining links for a new docu-
ment, we can furthermore consider the following property of the PMGraphSOM: during
training, a best matching codebook has been obtained for each of the nodes in a graph.
Since each codebook is activated by a number of nodes, and hence, these codebooks
are said to be a representation of these nodes. Due to the topology preserving ability
of the PMGraphSOM, it can be said that all nodes which activated the same codebook
are most closely related to each other in terms of content and hyperlinks. Let us now
compute a winning codebook for a new document, it makes much sense that this new
document shares greatest similarity with all nodes from the training dataset which acti-
vated the same codebook. Hence, we can propose a link structure for this new document
based on the links contained in the documents which were mapped at the same location.

In the following, we will apply both concepts to predict links for a set of test docu-
ments within the Web domain of Wikipedia.

3 Experiments

Given a new Wikipedia document, the file-to-file link discovery task is to analyze the
text and recommend a set of up to 250 incoming and 250 outgoing links from one
document to other documents in the collection.

Documents from the INEX 2009 Wikipedia collection are used for this task. This
collection contains 2, 666, 190 articles; it is a dump of the Wikipedia taken on 8 October
2008. It is annotated with the 2008-w40-2 version of YAGO. It is 50.7GB in size.

A set of 5000 existing Wikipedia documents, randomly selected from the collection,
are used as the test set for the file-to-file link discovery task. Since the topics are not
truly orphaned documents (as there are orphaned documents which contain no incoming
or outgoing links, a situation similar to the newly introduced documents onto the Web),
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we must delete these orphaned files from the collection to simulate the situation of
genuinely introducing new documents into the Web.

This task has specific restrictions about the use of link-based information. It was
recommended that the link information be processed so that all links pointing to and
coming from the documents in the test set are discarded. This is in fact conducted as
recommended. The 5000 documents in the test set were also removed from the training
set, as is the common practice for machine learning tasks. This results in a training set
consisting of 2, 661, 190 documents.

The whole INEX 2009 Wikipedia collection is represented as a directed graph
where each node is a web page. Each page is then represented by a state vector en-
coding both its contextual and link structural information.

Before the data can be trained by PMGraphSOM, decisions need to be taken re-
garding the selection of features to be used as node labels for each document. It was
important to select a feature which could represent each document, but such features do
not contain any link information, as otherwise the testing process would not be able to
use the same feature as node labels to represent the test data. Some analysis revealed
that the category information of each document could be used as a representative fea-
ture. However, the category extraction process identified 8, 918, 924 categories in total,
within which there are 362, 251 unique categories. The maximum number of categories
in a document reached 2, 022, but there are also 118, 209 documents with no associated
category information at all.

The un-processed category information as node labels would prevent the training
process from being completed within a reasonable amount of time; therefore, some
dimension reduction is required. Singular Value Decomposition (SVD) was considered
for a dimension reduction step. However, SVD requires the building of a 2, 661, 190
x 362, 251 matrix which is far too large for the capacity of computers which we had
available for this project. Hence, another approach to dimension reduction was taken.
This second approach utilizes a well known Multi-Layer Perceptron (MLP) algorithm
to assist in dimension reduction. The MLP algorithm is generally applied to neural
network architectures which consist of an input layer, followed by one or more hidden
layers of neurons, and then an output layer of neurons, where all neurons in a layer are
fully connected to all neurons in the next layer. To utilize MLP for dimension reduction
we use an architecture known as the “Auto-associative Memory” (AAM) architecture.
In an AAM, both the input and output dimension are the number of unique categories
(362, 251), and the dimension of the single hidden layer will be the dimension which we
would like to reduce to. Using this configuration, the number of neurons (dimension) in
the hidden layer is less than the dimension of the input layer, so the encoding process
in the hidden layer is, in a sense, compressing the information from the input. Then the
connection between the single hidden layer neurons and the output layer neurons can
be seen as uncompressing the information back to the original dimension. For training
purposes, the input data is also used as the target, so that the MLP can learn a mapping
which loses the least amount of information through the compression (hidden) layer of
an auto-associative memory. It is known that an MLP trained in this fashion results in a
dimension reduction which is qualitatively equivalent to those obtained by using SVD
algorithm but without the need of having to store a large matrix in memory.
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Table 1. Statistics of the training set’s link structure

Max Min Standard dev. Number of documents
with no link

Out-degree 5295 0 92.96 36, 978
In-degree 549, 658 0 476.18 304, 518

Table 2. Statistics of the test set’s link structure

Total Max Min Mean Std dev. Number of documents
with no link

Out-degree 461, 741 245 1 92.35 46.05 0
In-degree 311, 423 3095 0 62.28 131.50 372

After the node labels are reduced to a more manageable dimension (here we use
16) using the MLP technique as indicated, attention was shifted to the incorporation of
link structures within the training set. PMGraphSOM is capable of incorporating link
information to assist in the training process, therefore the link structure of the training
set after the required pre-processing could be used for training purposes. Some analyses
of the links reveal that the number of links from the 2, 661, 190 training documents total
136, 304, 216, this equates to a mean of approximately 51.22 links per page. These links
are unlikely to be distributed equally, therefore, separate analysis of the out-links and in-
links were also carried out. The statistical results can be found in Table 1. The standard
deviation indicates that the number of in-links varies much more than the number of
out-links. This property is important since it implies that the dataset is unbalanced with
respect to the incomming and outgoing links.

Such unbalances in the training dataset are known to potentially cause problems
with any machine learning approach.

Although the link structure of the test set will not be used during training, some
analyses were carried out to investigate whether the test set is comparable to the training
set. This is especially important for machine learning tasks, as a training dataset, which
is representative of the testing dataset, will be able to provide more accurate results for
the documents the network has not encountered previously, which is the test set in this
case. The statistics of the link structure for the testing dataset are included in Table 2.

As can be observed from comparing the statistical information of the link structure,
the training dataset and the testing dataset have a number of significant differences.

– The number of documents with no links - It can be observed that a little more
than 1% of documents in the training set have no out-links. Based on this ratio,
approximately 50 documents in the testing dataset are expected to have no out-
links, but the testing dataset contains no such type of documents. The in-link also
has a similar problem: with the training dataset containing approximately 11% of
documents with no link, in comparison with 7% in the testing dataset.

– A higher number of links in the testing dataset - The average number of out-links
and in-links per document in the testing dataset are consistently higher than the
51.22 links per page average in the training set.
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These differences suggest that the testing dataset is not a random sampling from the
problem domain, but rather a subset selected by some (unknown) criteria. Again, this
can impose some added challenges to a machine learning approach.

3.1 Learning for link discovery
We learn patterns of the Wikipedia links by feeding the training set to a PMGraphSOM.
After training, all Wikipedia pages will be mapped onto a 2-dimensional display map
space where pages with similar contextual content and link structure will be mapped
onto the same codebook or onto nearby codebooks. Based on this property of the SOM
training algorithm, we claim to be able to discover links for the 5, 000 testing pages by
inferring from the codebooks of a trained map.

We will use two approaches to infer from the trained map. The first approach maps
the test data onto the trained map by comparing the model label of the test documents
with that of each of the codebook. The best mapping is the one which has the least
Euclidean distance. Then, after the best matching codebook is identified, the state vector
component of the winning codebook vector, which comprises of in-link and out-link
information, is investigated. This provides information about the likeliness of an in-link
or out-link to be mapped at each codebook. Based on this, we were able to identify the
codebooks which the child or parent documents are most likely to be mapped, and then
identify the documents mapped in the most likely codebook as the proposed links. We
refer to this as codebook-based link inference.

The second approach also performs a mapping of the test data onto the trained map
by finding the best matching codebook. Then, we identify the set of training documents
which were mapped onto the same codebook, as these documents are likely to have
similar contextual content as the test document. The links from all the corresponding
training documents are then collected as the proposed links for the task. We refer to this
as content-based link inference.

Each of these two approaches can produce an arbitrary number of links which is
only limited by the size of the map (for the codebook-based approach), or by the existing
link structure of the training set (for the content-based approach). These inferred links
are then to be ranked in descending order from the most likely link to the least likely
link. Then we will truncate the list of links to the maximum allowable 250 for both, the
in-links as well as the out-links. Note that the computed rank values will also play an
important role in the evaluation of the results.

Three ranking algorithms were considered for this task. The first is based on the
energy flow of a page.This is calculated by accumulating scores when a page receives
in-links, but distributing scores when a page contains out-links. The list of proposed out-
links for each of the documents in the test set are ordered according to their associated
scores. The reverse of accumulating scores from the out-links, and distributing scores
to the in-links, is used to order the list of proposed in-links for each test document.

The second ranking algorithm is based on frequency. For example, if many of the
training documents indicate that a link is a likely in-link or out-link, then it has a higher
frequency of being proposed, and therefore will be ranked higher.

The third ranking algorithm is based on the Euclidean distance of the test docu-
ment and the training documents. This ensures that the training documents with more
contextual feature similarity are ranked higher.
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Table 3. Statistics of the test set’s link structure

Submission ID Map size µ1 µ2 µ3 Trained map
01 - - - - -
02 20x40 0.999 0.0005 0.0005 Figure 1
03 10x30 1.0 0.0 0.0 Figure 2
04 20x40 0.991 0.0045 0.0045 Figure 3
05 20x40 0.991 0.0045 0.0045 Figure 3

As mentioned previously, there are two approaches of obtaining an estimation of the
local link structure: Firstly by analyzing the state vector of the codebooks in the SOM,
and secondly, through association with training patterns. We have submitted results
for each of these two approaches. We also investigated the impact of three ranking
mechanisms which aim at obtaining the most likely links first.

Unless specified otherwise, in the following, for the training of the PMGraphSOM,
we used the following training parameters:

– iterations = 3
– radius is dependent on the map size, but is most often set to 10
– learning rate = 0.9
– seed = 7,

Other parameters such as the size of the map, and the weight µ were varied as indicated
later in the paper.

Fixing the above mentioned training parameters allows other parameters to be var-
ied and tested. The parameters under investigation here are the map size and the weights
µ. We attempted a large number of combinations of map sizes and weights, the result-
ing trained maps were analyzed based on the test data performance. We selected the five
most representative results for the submission to the INEX LinkTheWiki track, and for
the visualization purposes in this paper. These submitted training tasks produced results
which were amongst the best from any of the approaches attempted.

The first submission does not have any associated information about the training
process, because it was not trained, but merely ranked. For the other submissions, train-
ing using PMgraphSOM was carried out on a computing cluster. The map size refers
to the size of the 2-dimensional map used by PMgraphSOM during training. The three
parameters µ1, µ2 and µ3 are weights, and

∑3
i=1 µi = 1. µ1 is the weight associated

with the node labels, µ2 is the weight associated with the out-links (the vectors associ-
ated with the out-links), and µ3 is the weight associated with the in-links (the vectors
associated with the in-links). A large variation of weights were used during training,
and these are the weights that produced the best performance. It can be observed that
the weights associated with the links are significantly less than the weights assigned to
node labels; this could be attributed to the differences in the dimensions. For example,
in this experimental set up, a 16 dimensional vector is used to represent the node labels,
whereas the information about the links (both in-links and out-links) is represented by
much larger vectors that are dependent on the map size. It should be noted that submis-
sions 04 and 05 are based on the same trained map, but different ranking algorithms
were applied to produce different sets of results.
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Fig. 1. The trained map of submission 02

The frequency of activation of each codebook after the training process (the trained
map) can be observed in Figures 1, 2 and 3 respectively.

3.2 Results and evaluation

The INEX challenge did not describe the evaluation mechanism that will be used to as-
sess the performance of the results. However, some evaluation mechanism is required in
order to compare the results and assess the effectiveness of the training configurations.

The evaluation mechanism used for this task includes the precision and recall mea-
sures commonly used for information retrieval experiments. Here, precision is defined
as |t∪r||r| , and recall is defined as |t∪r||t| , where t refers to the actual links contained in the
test set, and r the links proposed by us. Precision is evaluated on different granularities
to observe the performance achieved when varying the number of top ranked links con-
sidered. For example, calculating precision for the top n links for each page would be
calculated by restricting the size of t to a maximum of n. This is expected to reveal the
effectiveness of the ranking algorithms used.

The performance measured using precision and recall for the 5 submissions are
included in Table 4. Each of the submissions use a different combination of training
configuration and ranking algorithm.

Submission 01 is the best result achievable without using a trained map, but instead,
simply apply the ranking algorithm over the entire dataset, and identify the top few
ranked pages. As may be observed from Table 4 this simple procedure produces the
worst results when compared with those obtained using the training process. The best
performance using the trained data, is obtained from submission 03.
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Fig. 3. Visualization of the mappings on the trained map (submissions 04 and 05)

Another observation from Table 4 is that no matter which inference method or rank-
ing algorithm is used, the in-links proposed are less accurate than the out-links pro-
posed.
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Table 4. The performance of proposed links as predicted by our proposed algorithms

Submission ID 01 02 03 04 05
Link inference method Consider all Content-based Content-based Codebook-based Content-based
Ranking algorithm Energy flowLink frequencyLink frequency Euclid. distance Euclid. distance
Recall for out-links 0.00377 0.02942 0.03202 0.00070 0.00448
Precision@250 out-links 0.00136 0.01057 0.01817 0.00025 0.00161
Precision@100 out-links 0.00168 0.01795 0.02162 0.00002 0.00147
Precision@20 out-links 0.00040 0.03941 0.04489 0.00003 0.00268
Recall for in-links 0.00032 0.00050 0.00095 0.00010 0.00029
Precision@250 in-links 0.00008 0.00012 0.00025 0.00002 0.00007
Precision@100 in-links 0.00007 0.00008 0.00037 0.00003 0.00008
Precision@20 in-links 0.00007 0.00018 0.00107 0.00001 0.00008

4 Conclusions
Self-Organizing Maps are popularly applied to many data mining tasks for the purpose
of clustering, dimension reduction, and visualization. This paper proposes the utiliza-
tion of a recently developed self-organizing map approach, which is capable of mapping
graph structured data, for the purpose of link prediction for “orphaned” documents (the
documents which do not have any in-links or out-links yet as they are introduced newly
to the Web) in an interlinked domain, Wikipedia. The approach has been applied to a
relatively large collection of documents from Wikipedia. It was shown that the approach
provides two main alternatives to predict both, incomming and outgoing links for any
given “orphaned” document. Some indicative results were obtained by training some
relatively small maps. It was shown that the links predicted are substantially better than
a random process. Hence, it can be assumed that the accuracy of the prediction will
increase with the size of the network. The training of larger networks is left as a future
task.
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search Council through Discovery Project grant DP0774168 (2007 - 2009).
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Abstract. We present our approaches for link discovery in document
collections with or without existing links. In collections containing links,
we discover links using measures of link anchor ranking based on existing
links. In collections without links, we gather noun phrases as anchor
candidates. To discover targets, we use a measure of semantic relatedness
between texts.

1 Introduction

Links are a crucial feature of hypertext to navigate document collections, but
creating links is a daunting task. It requires a huge effort to decide which phrases
are important enough for the reader to serve as link anchor, and which documents
are good targets for that phrase. Additionally, knowledge of the best target
implies knowledge of the complete document collection, something which is hard
to achieve. Thus, automatically discovering links is an important research topic.

We distinguish two types of document collections: those already containing
links and those without any links. The information of document collections that
already contain links, e. g. which phrases are often used as links or which doc-
uments are linked to by which phrase, can be used for discovering new links.
One such document collection that contains collaboratively created links is the
Wikipedia1. It has been the subject of a lot of link discovery research [1, 4, 7,
9, 11, 14]. In document collections without links, link discovery can make use
only of the textual content of the documents, e. g. using methods of information
retrieval [2, 8].

In this paper, we aim at creating unsupervised link discovery algorithms
that work both on document collections that already contain links, as well as on
document collections that do not. To channel the research effort in link discovery,
there is the Link-the-Wiki track at INEX2, in which we participated. In this
work, we describe our contributions to the Link-the-Wiki track at INEX 2009,
and qualitatively discuss the results.

In the next section, we formally define the task of link discovery and describe
related work. In Section 3, we give a brief overview of the tasks in the Link-
the-Wiki track, and describe the two document collections used in the track.

1 http://www.wikipedia.org
2 http://www.inex.otago.ac.nz
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In Sections 4 and 5, we detail our link discovery approaches and our results
qualitatively. Quantitative results will only be available after INEX 2009.

2 Link Discovery in Document Collections

We distinguish between two types of links in document collections, as shown in
Figure 1.

Document-level links relate a source to a target document.
Anchor-level links connect a specific phrase in the source document to a tar-

get document. Within the target document, a concrete entry point may be
specified, e. g. section headings or paragraphs. They can be represented as
character offset in the document.

Formally defined, let D be the document collection. The goal of link discovery
is to connect a source document s ∈ D to a target document t ∈ D by means
of hyperlinks. Such links are denoted by l(s, t) and called document-level links.
From the perspective of a single document d ∈ D, outgoing links are links that
have d as source, l(d, t), and incoming links have d as target, l(s, d).

anchor-level

Anchor Phrase

Source Target

document-level

 Document Collection 

Entry PointLink Types

incoming

outgoing

Fig. 1. Link Types in Document Collections

Additionally, we distinguish
links more fine-grained: Links
that originate from a specific
anchor phrase p in s and link
to a target document t are de-
noted by l(sp, t). Links from a
document s to a certain en-
try point e in t are denoted
by l(s, te). Link from p in s to
e in t, the most specific links,
are denoted by l(sp, te). We
call both l(sp, t) and l(sp, te)
anchor-level links.

Finally, we define Dp as the set of documents containing a phrase p and
Dl(sp,te) as the set of documents containing the link l(sp, te) where both p and
e could be omitted. Documents that do not contain any links at all are called
orphans.

2.1 Anchor-Level Link Discovery

Discovering anchor-level links comprises two tasks: anchor discovery and target
discovery. Figure 2 shows a categorization of the first task, Figure 3 of the second
one. Anchor phrases that are relevant to the reader of the document, and thus
should be connected to further information, need to be identified. In the target
discovery step, the best matching target is retrieved. However, if there is no valid
target in the collection, the link might be rejected.
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Anchor Discovery Anchor discovery is done in two steps: identifying anchor
candidates, followed by ranking the candidates. Potential anchor candidates
are:

– N-Grams: term groups of length N, used by Geva [7].
– Noun phrases (NPs): groups of determiners, prepositions, adjectives and

nouns, e. g “the president of a country” or “natural language processing”.
– Document or section titles extracted from the document structure.

In document collections containing links there is another source of anchor candi-
dates, namely the phrases that have already been used as a link anchor in some
document.

Anchor Discovery

Anchor Candidates

No Links

Terms, NPs,
N-grams

Links

Titles,
Anchors

Anchor Ranking

No Links

Term
distribution

Links

Probability,
Association

Fig. 2. Discovering Anchors

A measure to rank
anchors that does not
rely on an existing link
structure but on the
distribution of terms is
tf.idf, which is used by
Csomai and Mihalcea
[4]. It can be used to
rate both single words
and phrases consisting of
more than a single word. These multi-word phrases are assigned the same rating
as the single word with the maximum tf.idf value inside the phrase.

Ranking anchors can be improved using the information of existing links.
Thus, most of the approaches for ranking anchor-level links make heavy use of
existing links in the collection. Csomai and Mihalcea [4] propose such a measure
to rank the anchor candidates. It is called keyphraseness, motivated by the notion
that using a phrase as a link anchor is a hint that it is a keyphrase in the
document. It rates a phrase p according to the probability of p being used as
anchor in a collection. The keyphraseness of p is the number of times it was used
as link anchor in an article, divided by the total number of articles the phrase
appears in. It is calculated as follows:

keyphraseness(p) = P (anchor|p) ≈
|Dl(sp,t)|
|Dp|

(1)

Using this measure, Csomai and Mihalcea achieve an f-measure of 0.55 in dis-
covering anchors in Wikipedia.

Another measure to rank anchor candidates based on existing links was in-
troduced in the 2007 Link-the-Wiki track by Itakura and Clarke [9]. It rates a
phrase p according to the strength a link l(sp, t) anchored on p with target t is
associated with its most frequent target. Let T := {l(sp, t)|t ∈ T } be the set
of link targets of a phrase p in the existing document collection, T ⊆ D. We
will first define the association strength as(p, z) between p and a specific target
z ∈ T :

as(p, z) =
|Dl(sp,z)|∑

t∈T |Dl(sp,t)|
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This measures the strength of association of phrase p to target s. The mea-
sure introduced by Itakura and Clarke takes the maximum association strength
asmax(p) as the rating of p:

asmax(p) = max{as(p, t)|t ∈ T } (2)

This measure favors phrases with one highly probable link target. Phrases that
have multiple equally common targets will get a lower asmax-rating.

Target Discovery In document collections without links, targets can be dis-
covered using all kinds of information retrieval models, simply by searching for
the anchor phrase. Targets can either be documents or entry point in documents,
depending of the granularity of the search.

In a document collection containing links, the targets of existing links can be
used. However, some phrases are ambiguous, i. e. have different meanings, e. g.
“bank” can mean “edge of a river” or “financial institution”. In Wikipedia, such
phrases have different link targets. Csomai and Mihalcea use this information
to train a machine learning classifier to disambiguate targets, achieving an f-
measure of 0.87 on Wikipedia.

Milne and Witten [11] propose an approach that intertwines anchor and
target discovery for Wikipedia links. They train a machine learning classifier
for both anchor identification and target disambiguation. One important feature
of their target disambiguation classifier is the semantic similarity of two Wiki-
pedia articles, which is measured by comparing article links [10]. The confidence
of this disambiguation classifier is used as one of the features for identifying
anchors. Among other features for training their anchor classifier are the key-
phraseness value (see Equation 1) and the generality of the anchor phrase. Their
approach results in an overall f-measure of 0.74 for recreating Wikipedia links.

2.2 Document-Level Link Discovery

One method to discover links on the document level is to generalize anchor-level
links. There are also methods that work directly on the document level. They
can roughly be classified as shown in Figure 3.

Target Discovery

No Links

Information
Retrieval

Links

Analogy

Fig. 3. Discovering Targets

Unlinked Document Collections Allan [2]
uses vector-based information retrieval to discover
targets, using the document text as query. Green
[8] tries to improve link discovery by using a se-
mantic relatedness measure based on WordNet [5]
and lexical chains. In his evaluation, the measure
is compared to links created by vector-space meth-
ods like Allan’s above, but without significant im-
provements. Chen et al. [3] propose to link docu-
ments that have a high number of overlapping frequent phrases, which achieved
the best result in discovering incoming links at INEX 2008.
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A measure to calculate the semantic relatedness between text was introduced
by Gabrilovich and Markovitch [6], the Explicit Semantic Analysis (ESA). It can
be used to identify similar pages as targets. ESA uses the text of all Wikipedia
articles to construct a vector representation of a term, and the semantic relat-
edness of two terms can then be computed as the cosine of their corresponding
vectors. ESA can be modified to work on different corpora, e. g. Wiktionary3

[15].

Linked Document Collections provide additional knowledge based on the
assumption that similar pages should have similar links. Adafre and de Rijke
[1] employ a two step process: first they identify topically related pages using
vector-space search. The second step is to add links that are missing in the
source document, but exist in related documents. West et al. [14] discover missing
links in documents by reducing the dimensions of an article-link matrix. They
argue that the error introduced when reconstructing the original matrix from
the dimension-reduced one is a good measure of which links are missing in an
article. In their evaluation, they show that humans judge their links better than
the ones created by the Milne and Witten [11] approach described above.

3 INEX Link-the-Wiki

We participated in the INEX 2009 Link-The-Wiki track, an international link
discovery competition. We participated in two tasks:

Link-the-Wiki Discover incoming and outgoing document-level links for 5000
orphans (existing Wikipedia articles with links removed). Formally, given a
document d, the task is discovering links l(d, ·) and l(·, d).

Link-Te-Ara Discover outgoing anchor-level links for all Te Ara articles. For-
mally, given a document d, the task is discovering links l(dp, te) from phrases
p in d to entry points e in target document t.

Our main interest in this challenge is to research unsupervised methods of dis-
covering links in document collections. The Wikipedia is a good collection to
test methods that rely on an existing, well-gardened link structure, whereas the
Te Ara — without any links at all — serves for testing methods that have to
rely on the textual content alone.

3.1 Wikipedia

Wikipedia is a large-scale, general-purpose encyclopedia. The articles are collab-
oratively created by a very active community, and the community also maintains
a very dense and well-gardened link structure connecting the articles.

3 http://www.wiktionary.org
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For the INEX challenge, an XML dump of the English Wikipedia was pro-
vided4. It comprises 2,666,190 individual encyclopedia articles that have been
converted from wiki syntax to semantically enriched, well-formed XML doc-
uments [12]. Structural elements like sections, paragraphs, etc. are preserved.
The annotated XML data accounts for 50.7 GB in size.

3.2 Te Ara

Contrary to Wikipedia, which is covering general knowledge, the Te Ara Ency-
clopedia of New Zealand5 solely focuses on topics related to matters and facts of
New Zealand. The texts are authored by local experts of the Ministry of Culture
and Heritage6.

For the challenge, an XML dump of the Te Ara Encyclopedia was provided.
It is a lot smaller than Wikipedia, comprising only 438 handpicked articles,
containing a total of 3180 XML files (due to each individual article usually
comprising more than one file).

The structure of Te Ara’s XML files differs from the Wikipedia collection.
Each article is not represented by a single self-contained file, but rather consists
of a main file along with one or more resource description documents for multi-
media content. Same as the Wikipedia dump, structural elements like headings
or paragraphs are annotated in the textual parts of the files. The main difference
to the Wikipedia collection is that Te Ara texts do not include any reference links
to related articles other than links to resources.

The main file is comprised of a metadata header, an article abstract, and
followed by a numbered list of subentries. Subentry, though, is misleading in
this case: It actually addresses a certain part of the article and is intended for
being rendered on a separate web page. Each subentry encloses an internal index
number, a title element and a body section. Any resources—like photos along
with their titles and descriptions—are described in separate XML files which are
named according to the subentry index they refer to.

4 Link-the-Wiki: Wikipedia Document-Level Links

4.1 Discovering Outgoing Links

To discover outgoing links, we first identify potential anchors, followed by an ap-
propriate target for each anchor, making use of the existing link structure. We
combine the keyphraseness and asmax measure to rank anchor candidates, and
expect this to improve the ranking quality, as the measures are quite comple-
mentary: keyphraseness prefers phrases that are often used as anchor, and asmax

prefers phrases that have one highly probable link target. To disambiguate be-
tween potential targets, we use the ESA semantic relatedness measure based on

4 Snapshot taken on Oct 8, 2008
5 http://www.teara.govt.nz
6 http://www.mch.govt.nz
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UKP LTWF2F Anchor Ranking Target Ranking

Experiment ID Keyphraseness asmax TF.IDF Frequency ESA

out k esa • •
out s esa • •
out sk esa • • •
out sk freq • • •
out tfidf freq • •
Table 1. Configurations for Discovering Outgoing Document-Level Links in Wikipedia

Wiktionary [15], to capture the article relatedness on a conceptual level. As the
measure is based on general knowledge provided by a knowledge base (in this
case Wiktionary), we do not need to train it for a specific document collection.

Experiment Configurations We run different combinations of candidate and
target identification in each experiment to discover outgoing document-level links
in Wikipedia, Table 1 gives an overview. For each orphan, we perform the fol-
lowing steps:

1. Preprocessing: Tokenize, lemmatize7, and remove stop-words.
2. Annotate anchor candidates: Each word or phrase in the orphan arti-

cle that corresponds to a Wikipedia article title (minus the disambiguation
string, denoted as the part in braces in the title) or has been used as link
anchor in Wikipedia at least five times (like in [4]).

3. Merge anchor candidates: Overlapping anchor candidates are merged,
removing all anchors that are fully contained in another candidate.

4. Rank anchor candidates: Using keyphraseness (denoted as k in the run
id), asmax (s in the run id), the arithmetic mean of keyphraseness and asmax

(sk in the run id), or tf.idf, denoted as tfidf.
5. Identify targets: Potential targets are all link targets of the phrase in the

existing collection.
6. Rank targets: Take the most frequent target in the collection, denoted as

freq, or compare the orphan text to all potential target texts using ESA,
denoted as esa.

7. Generalize to document level: Take the highest ranked link target of the
highest ranked anchors, until 250 distinct targets have been accumulated.

4.2 Discovering Incoming Links

To discover incoming links, we run two experiments. In the run with the id
UKP LTWF2F in lucene, we execute a full-text search for the article title (with-
out the disambiguation string) using the standard Lucene8 retrieval model, and

7 Using the TreeTagger [13]
8 http://lucene.apache.org
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take the top 250 results as sources of incoming links. In our second experiment,
UKP LTWF2F in esa, we re-rank the top 2000 search results returned by the
Lucene search using ESA, taking into account the semantic relatedness between
the orphan and potential source. Due to the size of Wikipedia and the com-
putational effort needed to do ESA comparison, we could not use ESA for the
complete retrieval process.

4.3 Qualitative Results

The heuristic of using the most frequent link target for a given anchor works fine
for many link anchors, but lacks the ability to adapt to a given context. This
is why we used an ESA ranking model which also includes context information
as described in Section 2.2. Consider, for example, the Wikipedia article about
Bülent Arınç, a Turkish politician. In the article text he is said to be born in a
city called Bursa in Turkey. The most frequent target for this phrase is the article
Bursa Province, not the city with the very same name. ESA, on the contrary,
identifies the correct target.

Infrequently, both models identify inadequate documents as potential tar-
gets. For example, the word track in context of a Silverstone Formula One race
is linked to an article about track cycling, a bicycle racing sport, instead of
Silverstone Circuit, both by using the most frequent target and using ESA.

In some cases, ESA even performs worse than the baseline. A sample sen-
tence is “As such, it is used for cervical cancer screening in gynecology.”—with
the underlined word being our link candidate. The baseline approach links to
Screening (Medicine) which is the correct target. ESA provides a higher value to
the Halftone article instead, which describes a graphics reproduction technique.

In conclusion, ESA seems to work as expected to disambiguate targets, but
not in all cases. The context for ESA comparisons is the whole article where
the anchor appears, which might be too much — this will be subject to further
research.

5 Link-Te-Ara: Discovering Anchor-Level Links

In this task, the goal is to create links for the complete collection. Outgoing
links for all documents include incoming links, so we do not need to distinguish
anymore. In Wikipedia we gathered anchor candidates using existing links. To
make up for the smaller number of candidates — because of missing links in Te
Ara — we also use noun phrases as anchor candidates. We use ESA as measure
to discover good link targets, which is expected to improve discovery in cases
where bag-of-word approaches fail because of the vocabulary gap.

5.1 Experiment Configurations

We run different combinations of anchor identification and target ranking to
discover anchor-based links, Table 2 gives an overview. For each document in
the Te Ara collection, we do the following:
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UKP LTAraA2B Anchor Candidates Target Identification Target Ranking

Experiment ID Titles Noun Phrases Titles Full Text Lucene ESA

c esa • • •
nc esa • • •
cnc esa • • • •
cnc lucene • • • •
cnc lucene full • • • •

Table 2. Configurations for Discovering Anchor-Level links in Te Ara

1. Preprocessing: Tokenize, PoS tag and noun chunk9, and remove stop-
words.

2. Annotate anchor candidates: Document and section titles (denoted as c
in the run id), noun phrases in the document (denoted as nc), or a combina-
tion of both (denoted as cnc) are anchor candidates. All XML title elements
in Table 2 are taken as titles to annotate. The annotation is restricted to the
content XML elements in Table 2, on the premise that anchors should only
appear in the content parts of a document.

3. Merge anchor candidates: Overlapping anchor candidates are merged,
removing all anchors that are wholly contained in another candidate.

4. Rank anchor candidates using tf.idf.
5. Remove superfluous anchors: Take the best 50 or 6% of the number of

terms in the document, whichever is less. The Link-Te-Ara task limits the
anchor links to a maximum of 50, and for shorter documents, we limit this
number even more (in accordance with [4]).

6. Target identification: Search for each anchor phrase, either in the titles
(see XML elements in Table 2), or in the complete documents. When search-
ing in titles only, the title’s position is the entry point, when searching in
complete documents, the entry-point is set to 0.

7. Target ranking: Using the Lucene10 retrieval model (denoted as lucene
for title-search, lucene full for document-search), or using ESA to compare
anchor phrases to all titles (denoted as esa). We take the top 5 results as
targets.

5.2 Qualitative Results

Anchor Identification A snippet of the results of our Te Ara anchor identifi-
cation is shown in Figure 4, the first paragraph of the article Wine.

All annotated phrases, except licensing, are good anchor candidates. The
noun phrases are more precise, though, describing more specific concepts. Whereas
the titles only allow for the identification of the term industry, the noun phrase

9 Using the TreeTagger [13]
10 http://lucene.apache.org
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Type Elements Namespace

Title

/Entry/Name | //SubEntry/Name enz.govt.nz/Entry
//EnglishName enz.govt.nz/Resources
//TopicBox/Heading enz.govt.nz/SubEntrySectionElements
//h3 w3.org/1999/xhtml

Content
//p | //li | //blockquote w3.org/1999/xhtml
//Text enz.govt.nz/Entry

Table 3. Title and Content XML Elements in Te Ara

Sauvignon blanc, with its grassy smell, put New Zealand wine in the interna-
tional spotlight in the 1980s. Since then, wine exports have boomed, with pinot
noir another big hit. But for many years, tough licensing laws and New Zealan-
ders’ taste for fortified wines limited the wine industry .

Fig. 4. Comparison of noun phrases (nc) to extracted candidates (c) in the abstract of
the article “Wine”

is in this case more apt to the topic of the overall article: the wine industry. In
the experimental configuration where we use both types of candidates, only the
noun phrase remains. This is because anchor candidates are merged, and the
longer phrase is preferred. Licensing is ranked too low by tf.idf, and not anno-
tated as anchor in the combined run, showing that combining both candidates
can improve the result.

Identifying good anchors is important in itself, but even if the anchors seem
to be a good fit, we still have to take into account that each anchor needs a valid
target. The term “fortified wine” in the example of Figure 4 seems reasonable,
because it is an important concept and it would be a good idea to provide further
information about it. In the Te Ara, though, no definition for the term is available
— it is a good example were linking to a general encyclopedia like Wikipedia
would make sense. An approach to improve this might be to use terminology
extraction algorithms for ranking the candidates, as they focus on term domain
specificity, and not only importance. This will be subject to further research.

Target Identification We will now discuss all three methods exemplarily using
the anchor “invasive species” taken from the Biosecurity article. When executing
a full-text Lucene search for the query “invasive species”, the Marine invaders
article is the first target, which discusses invasive species from the seas. It is rel-
evant to the anchor, and although does not cover the generic concept of invasive
species but rather a special case, it includes a perfect definition of the generic
concept of “invasive species”. The other targets are also relevant.

Restricting the search to titles only, the second target includes the section
“Introduced and invasive species” in the Marine invaders article, a perfect defi-
nition for the term. The last target, “Endemic species” in the article Butterflies
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& moths, though, is unrelated to the “invasive” part of the query. Here, a prob-
lem of vector-space based search becomes evident — partial matches of the title
are often misleading, even though the heads of the noun phrases match.

The last target identification method, semantic information retrieval, has
“More new species?” in the Acclimatization article as target, which is specifically
about the problem of invasive species, and thus very relevant as background
information. The rest of the results are only related to a part of the query,
namely “species”, and not relevant. Semantic information retrieval suffers from
the same problems as the Lucene search restricted to titles, as detailed above.

To conclude, we can say that full-text search works to get relevant article
targets, but the results are sometimes too broad. Restricting the search to titles
remedies this, but the restriction introduces more results that are irrelevant to
the anchor text query. Semantic information retrieval does not seem to improve
this lack of context, but we have to wait for the results of the evaluation before
we draw any final conclusions. For future experiments, one could try to run ESA
with more contextual information, e. g. the text following the headings, and use
the Wikipedia index instead of the Wiktionary one.

6 Summary

In this paper, we presented our experimental runs at the Link-the-Wiki track
at INEX 2009. We participated in two of the tasks: Discovering document-level
links in Wikipedia orphans and discovering anchor-level links in the Te Ara.
For Wikipedia, we combined keyphraseness and maximum association strength
for anchor ranking with Explicit Semantic Analysis for target disambiguation.
In Te Ara, which in contrast to Wikipedia contains no links, we used natural
language processing to identify anchor candidates. For identifying entry points,
we restricted the search to the article and section titles, using Lucene and Explicit
Semantic Analysis to rank them. We concluded with a qualitative discussion of
our results, as the evaluation results were not available at the time of writing
this paper.
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Abstract. In this paper we describe our approaches taken in the Link-the-Wiki 

track. We submitted runs for all three Link-the-Wiki tasks: Link-the-Wiki, 
Link-Te-Ara, and Link-Te-Ara-to-the-Wiki. To generate outgoing links for 
each task, our link discovery system employs the top ranking algorithms from 
previous LTW tracks and a hybrid method derived from them. For incoming 
links, we used traditional information retrieval strategy on the Wikipedia XML 
collection. The official results for the INEX 2009 Link-the-Wiki track show 
encouraging performance of our system.  

Keywords: Wikipedia, Link Discovery, Best Entry Point. 

1   Introduction 

We submitted runs for all Link-The-Wiki tasks: Link-the-Wiki, Link-Te-Ara, and 
Link-Te-Ara-to-the-Wiki. The Link-the-Wiki task requires the identification of 

incoming links and outgoing links at both file-to-file and anchor-to-bep levels; the 

Link-Te-Ara requires the identification of anchor-to-bep outgoing links for all 

documents in the Te Ara Encyclopedia; and the Link-Te-Ara-to-the-Wiki requires the 

identification of anchors in Te Ara pages and their corresponding BEPs in the 

Wikipedia corpus. 

The algorithms we used to generate the outgoing links for each task are based on 

the top-ranking link generation algorithms from previous years: Itakura’s algorithm; 

and Geva’s algorithm. For the incoming links, we used the topic title as a query to a 

search engine and took the top ranked results. 

To place BEPs, we tried two different approaches: one was to place the BEP at the 
location of the anchor phrase in the target document (where the entire phrase, or part 

of it, appears); the other was to set the BEP to the beginning of the text block which 

contains terms similar to those of the text surrounding the anchor in the source 

document. 
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2   Link-The-Wiki Track 

Regardless of the task the procedure for automated link discovery is the same and 

includes the following steps: identifying anchors, recommending a group of outgoing 

and incoming links, and locating BEPs for these links.  

2.1   Anchor Identification 

Anchor identification is the first step in link discovery. Identifying anchors can be 

done using two methods: best match; and partial match. 
After an anchor is identified, a link, a→d, can be created.  In this case a is an 

anchor and d is a corresponding target document.  

2.2   Link Recommendation 

2.2.1   Outgoing Links 

Good algorithms for recommending outgoing links were seen at the first INEX Link-

the-Wiki track in 2007 [1]. This year we employed the top two ranking algorithms 

from that (and subsequent) Link-the-Wiki tracks: Itakura’s link mining (ICLM) 

algorithm [2] and Geva’s page name matching (GPNM) algorithm [3].  The INEX 

2009 document collection is, however, a much larger collection than the previous 

collection. 

The ICLM algorithm relies on the pre-existing link graph in the Wikipedia. The 

anchor text (a) target document (d) pairs are all extracted from the collection.  The 
document frequency of each anchor text is then computed.  The algorithm proceeds 

by finding all anchor texts that exist within the orphaned topic document and ranking 

those on an anchor weight, : 
 

   (1) 

 

The GPNM algorithm generates a table containing the title and the id of each 
document in the collection. A sliding window with size varying from 1 to 12 terms is 

then run over the orphan topic document looking for titles from the table.  These are 

ranked on target document title length; longer anchors having higher scores.  

In an attempt to improve the performance of both algorithms we combined them 

into one.  First, two sorted lists of outgoing links are created separately using the two 

algorithms. Links are assigned a score using following method: 

 

    (2) 

 

Where Score(L) is the score for link L, ScoreS(L) is the score from the GPNM 

algorithm and ScoreK(L) is a normalized ICLM : 
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     (3) 

 

Where max( ) is the highest  value of any link in the GPNM list; min( ) is the 

lowest  value of any link in the list; N is length of the longest anchor in the list, and 

m is the number of terms in L. 
Finally, links are ranked on Score(L).  Either ScoreS(L) or ScoreK(L) might be zero 

if the anchor link only appears in one of the lists. Scores for links in both lists are 

boosted.  The first 250 (for F2F) or 50 (for A2B) links of the list are selected as the 

links to return. 

2.2.2   Incoming Links 

Finding incoming links for a topic document is performed by retrieving the first 250 

pages returned from a BM25 search engine.  The orphaned document’s title was used 

as the query terms. 

2.3   BEP Location 

Best entry points (BEPs) play an important role in providing readers direct access to 

relevant document passages [4].  However, deciding where the BEP should be is a 
difficult focused retrieval problem.  

Our first approach to find the BEP is to find the first location of the anchor terms. 

There are two scenarios:  

 If there is an exact match for the anchor in the destination page, the BEP is 

the offset of the first occurrence. 

 If there is no exact match, then we use the location of the first term from the 

anchor text.  If that cannot be found then we move on to the second term, 

and so in until a term is found.  If no term is found then the start of the 

document is used. 

Our second approach was a technique similar to that used in image matching. 

Given two images, the more features in those images that match, the more certain we 

can be that the two images depict similar objects. BEP finding can be treated as a 
feature finding problem. First, a text window of length 200 characters surrounding the 

anchor in the source document is used for creating a source text template.  Terms are 

identified and Porter stemmed. These terms are the features. Next, a sliding window 

of the same length is passed over the target document, and features are extracted 

similarly. A score is calculated for the window by counting the number of matching 

features (stemmed terms). The window is moved forward 100 characters at a time and 

the score calculation for matched features is repeated. The beginning of the text block 

with the highest score is chosen as the BEP.  
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3   Link-the-Wiki Experiments 

3.1 Link-the-Wiki Runs 

Table 1.  Link-the-Wiki runs. 

Run name  

QUT_LTW_F2F_SEA_BASELINE01  
QUT_LTW_F2F_SEA_BASELINE02  
QUT_LTW_F2F_SEA_BASELINE03 (unofficial)  
QUT_LTW_F2F_SEA_01(disqualified)  
QUT_LTW_F2F_SEA_02  
QUT_LTW_F2F_SEA_04 (unofficial) 

QUT_LTW_F2FonA2B_SEA_03(unofficial) 
QUT_LTW_A2B_SEA_BASELINE01 
QUT_LTW_A2B_SEA_BASELINE02 
QUT_LTW_A2B_SEA_01 
QUT_LTW_A2B_SEA_02 

 

 

We submitted runs in this task at both levels: file-to-file (F2F) and anchor-to-bep 

(A2B). All the baseline runs (with BASELINE0X suffix) were created using the 

ICLM algorithm; and the other runs (with SEA_0X suffix) were generated using our 

new algorithm that combines ICLM and The GPNM algorithms.  

The link table from ICLM algorithm included links in all pages including the 

orphan document (before it was orphaned) and so the link information in the orphan 

was removed from the table when calculating  scores.  In order to determine the 
impact of this necessary correction we submitted runs without the correction ("01" 

suffix).  These runs are “cheating”.  All other runs are correctly orphaned.  

 

Table 2.  Link-Te-Ara runs. 

Run name  

QUT_LTAra_A2B_SEA_BASELINE01  
QUT_LTAra_A2B_SEA_BASELINE02  

 

The baseline runs for Link-Te-Ara task were generated using the GPNM algorithm. 

The Te Ara document format is very different from that of the Wikipedia corpus. In a 
Te Ara page, there is no unique tag for the page title. For example, there may be only 

one <Name> tag, or many <*Name> tags.  

A name to document pairing table for these name tags was created. The difference 

between Link-Te-Ara BASELINE01 and BASELINE02 lies in BEP identification: 

BASELINE01 uses the term matching technique for BEP identification; while 

BASELINE02 uses the text template matching technique. 
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Table 3.  Link-Te-Ara-to-Wiki runs. 

Run name  

QUT_LTAraTW_A2B_SEA_BASELINE01  

 

We only submitted only one run for Link-Te-Ara-to-Wiki task. This run was 

created using ICLM algorithm. 

Separately, we submitted two further unsuccessful runs. The first was the ICLM 

algorithms: OTAGO_LINKPROBABILITY_A2B. The second was a modified ICLM 

that was generated by taking a proxy log of university of Otago student Wikipedia use 

and augmenting  with a weight based on the number of times the link was clicked by 
a user: OTAGO_LINKPROBABILITYANDCLICKRATE_V1_A2B. 

In this second run the new  ( ) was computed thus: 
 

 

 

Unfortunately this second experiment was unsuccessful due to implementation 

issues.  We will further this line of investigation in future work. 

3.2    Link-the-Wiki Results 

Since there are (at time of writing) no manual assessments or ground-true for the 

Link-Te-Ara task and the Link-Te-Ara-to-Wiki task, only the results from Link-the-

Wiki task are discussed in this section. 

The evaluation results for outgoing links on the file-to-file and anchor-to-bep 

topics are presented in figures 1 and 2 respectively. The results for incoming links are 

presented in figures 3 and 4. The results shown in these four figures are against the 

automatic assessments (links in the topic documents before orphaning). The results of 

our unofficial runs are included for comparison. 
Among our runs which are correctly orphaned the best ones, marked as black 

curves shown in all the plots, indicate encouraging performance of our system.  

Figure 1 demonstrates that our run QUT_LTW_F2F_SEA_BASELINE02 has the 

highest score (for the correctly orphaned topic) run.  However, run 

QUT_LTW_F2F_SEA_02 using the new algorithm has lower accuracy than the 

baseline runs have, even though still higher than others.  

In figure 2 our system is out-performed by Waterloo’s run in submissions for 50 

outgoing links in file-to-file level on 33 topics for anchor-to-bep task.  

Figure 5 presents the precision-recall curves for the unofficial runs of three 

different systems. The curve with the highest accuracy is from the Otago’s system 

with the implementation using the ICLM algorithm. This figure indicates there might 
be a faulty in implementing ICLM algorithm in our system, since our run 

QUT_LTW_F2FonA2B_SEA_03 achieves lowest accuracy in terms of precision and 

recall comparing with others. 
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Fig. 1. Link-the-Wiki automatic outgoing F2F assessment on 5000 F2F topics. 

 

 

 
Fig. 2. Link-the-Wiki automatic outgoing F2F assessment on 33 A2B topics. 
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Fig. 3. Link-the-Wiki automatic incoming F2F assessment on 5000 F2F topics. 

 

 

 
Fig. 4. Link-the-Wiki automatic incoming F2F assessment on 33 A2B topics. 
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Fig. 5. Unofficial automatic outgoing F2F assessment on 33 A2B topics. 

 

4   Conclusions and Future Work 

In our link discovery system, we implemented the ICLM algorithm proposed in the 

first LTW track, and a new method that combines both ICLM and GPNM algorithms 

to generate outgoing links. Our results from the official evaluation of outgoing and 

incoming links show reasonable good performance of our system. Using traditional 

information retrieval technique on Wikipedia XML collection for creating incoming 

links is every effective. 
The new hybrid method for recommending outgoing links doesn’t work as well as 

the original ICLM algorithm. Finding out the reason for the degraded performance of 

the hybrid approach could be treated as our remaining task for next round of Link-the-

Wiki evaluations in 2010. 
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Abstract. QA@INEX aims to evaluate a complex question-answering
task. In such a task, the set of questions is composed of factoid, precise
questions that expect short answers, as well as more complex questions
that can be answered by several sentences or by an aggregation of texts
from different documents. Question-answering, XML/passage retrieval
and automatic summarization are combined in order to get closer to real
information needs.

1 Introduction

The INEX 2009 QA@INEX track aims to compare the performance of QA,
XML/passage retrieval and automatic summarization systems on an encyclo-
pedic resource (Wikipedia). The track considers two types of questions: factual
questions which require a single precise answer to be found in the corpus if it
exists and more complex questions whose answers require the aggregation of
several passages. For example, this is the case for questions expecting an answer
composed of several items. Current evaluation campaigns artificially restrict list
of questions to items present in the same sentence. The reason is that traditional
QA systems are not designed to merge answers from different sources, and that
human assessment would be made quite harder without this restriction. However,
this corresponds to an important user need in several manners:

– Compiling different elements scattered in the collection into a single list of
items;

– Finding several valid answers to a single question (“Who is Nicolas Sarkozy?”
leads to “French president”, “former french interior minister”, “Carla Bruni’s
husband”, etc.);

– Gathering different answers with different restrictions: temporal (“Who is
the French president?”: “Jacques Chirac” from 1995 to 2007, “Nicolas Sarkozy”
from 2007), spatial or others.

This is also the case of more complex questions that have not been studied
in details so far: see [1], [2, 3] for why questions and [4] for opinion questions).

334



Questions concerning procedures (in short, “how” questions), reasons (“why”)
or opinions can hardly find a complete answer in a single part of a document. For
example, concerning opinion questions, a QA system should be able to locate
opinions in documents and to produce or generate a synthetic ”answer” in a
suitable way.

A extended range of evaluation methods are used to compare QA vs focused
IR when a short answers is required (§2) and QA vs summarization systems by
extraction on aggregated answers (§3).

2 Short answers

Short parts of text (one or a very few words) are the usual way to answer
questions in so-called question-answering systems. Mostly, answers are named
entities (person, date, number... answering to factual questions) or short nominal
phrases, often representing a definition (Who was Kurt Cobain? → the leader of

Nirvana; What is Linux? → an operating system).
The results are presented as a ranked-list of answers together with an expla-

nation passage or element involving the answer. Therefore participants need to
provide:

– A small ordered set (10) of non overlapping XML elements or passages that
contains a possible answer to the question.

– For each element or passage, the position of the answer in the passage. They
are evaluated by computing their distance to the answer.

This evaluation methodology differs from traditional QA campaigns, where
a short answer must be provided besides the supporting passage. This is a major
difference in terms of metrics used to rank the participating systems.

In traditional campaigns, an important technical issue for QA system is the
boundaries of the short answer in the passage. In the quite simple question Who

is Javier Solana?, the following passage would be relevant:
Javier Solana, the Secretary General of NATO, has just announced that the

bombing of Yugoslavia may start as soon as the next few hours.

A system answering only “the Secretary General” (skipping “of NATO”) as
a short answer would be penalized for its incomplete (or inexact) answer.

However, this metric does not correspond to a real user need. In a end-
user QA application, the obvious way to exhibit the answer is to point directly
towards it into the supporting text. In this situation, the user does not need
a perfect segmentation of the answer, but rather a good entry point inside the
text. He/she is able to estimate the full answer by him/herself, by reading the
text surrounding the entry point.

For this reason, we suggest to assess a good answer not through the full/incomplete
paradigm, but rather by the distance between the indicated answer entry point
and the real one.

This new way to evaluate QA systems has an interesting side effect: it allows
focused IR systems to participate in this task using the same evaluation, even if
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they are unable to extract a short answer or if they have very basic techniques to
do so. These systems may simply provide the most relevant and short extracted
passages they retrieve, and set an entry point wherever they can in this text.
This makes then possible the junction between QA, XML retrieval and other
focused IR systems.

3 Long answers

INEX has a thorough experience in evaluating focused retrieval systems, however
the QA the “long answer” subtask is new in this context.

Following the first edition of Text Analysis Conference (TAC)3, that brings
together QA and automatic summarization, the idea here is to propose a com-
mon task that can be processed by three different kind of systems: QA systems
providing list of answers, automatic summarization systems by extraction and
focused IR systems.

In this QA task, answers have to be built by aggregation of several passages
from different documents on the Wikipedia. The questions themselves can be the
same as in the short answer task. Let us consider again the previous example
“Who is the leader of Nirvana”. The difference with the short answer task is that
here we require a short readable abstract of all the information in the Wikipedia
related to this question. In this example, the abstract could not only involve
references to iconic leader singer of this pop music group, but also on the group
itself, on the other members that assumed part of the leadership and that heavily
influenced the music style. Passages that explain the terms of the question can
also be relevant, by example, why and who decided to take the name of Nirvana
for this band.

The maximal length of the abstract being fixed, the systems have to make
a selection of the most relevant information. Standard QA systems can produce
a list of answers with their support passages. Focused IR systems can return
the list of the most relevant XML elements. Note that in this task, IR systems
that only retrieve entire documents are strongly handicapped, except if they are
combined with automatic summarization systems that builds an abstract of the
most relevant documents.

Two main qualities of the resulting abstracts need to be evaluated: readability
and informative content.

The readability and coherence is evaluated according to “the last point of
interest” in the answer which is the counterpart of the “best entry point” in INEX
ad-hoc task. It requires a human evaluation where the assessor indicates where
he misses the point of the answers because of highly incoherent grammatical
structures, unsolved anaphora, or redundant passages.

The informative content of the answer has to be evaluated according to the
way they overlap with relevant passages that will be assessed by participants as
in the INEX ad-hoc task. For that we plan to apply recent results on automatic

3 http://www.nist.gov/tac/publications/2008/
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summary evaluation based on the source text. Given a list of relevant passages,
these passages can be whole Wikipedia articles, we intend to compare the word
distributions in these passages with the word distribution in the long answer
following the experiment in [5] done on TAC 2008 automatic summarization
evaluation data. This allows to directly evaluate summaries based on a selection
of relevant passages without requiring reference summaries written by experts
as in TAC. Indeed, such manual summaries based on such large corpus as the
Wikipedia would be very difficult to produce. Therefore, this long answer task
is a first tentative of evaluating summarization tools on large data.

Given a set R of relevant passages and a text T , let us denote by pX(w) the
probability of finding a word w from the Wikipedia in X ∈ {R, T }. We use stan-
dard Dirichlet smoothing with default µ = 2500 to estimate these probabilities
over the whole corpus.

The two metrics of distributional similarity that we implemented in a perl
program are the following. The perl program applies these metrics after stem-
ming of the words and relies on an Indri index to estimate a priori probabilities.

– Kullback Leibler divergence:

KL(pT , pR) =
∑

w∈R∪T

pT (w) × log
2

pT (w)

pR(w)

– Jensen Shannon divergence:

JS(pT , pR) =
1

2
(KL(pT , pT∪R) + KL(pR, pT∪R))

Since all answers have to be extracted from the same INEX corpus, we can use
smoothing methods that allow to avoid null probabilities. Therefore KL is well
founded. JS allows to reduce the impact of smoothing parameters since it is
always defined. In [5] this is the metric that obtained the best correlation scores
with ROUGE semi automatic evaluations of abstracts used in DUC and TAC.
However, since we can compute these probabilities by taking the INEX corpus
as referential for the probabilistic space, KL metric should also perform well in
this track.

We also implemented the standard cosine distance.

4 Status of the track and time line

We intend to run this track over two years (2009 - 2010). The track is open to
new participant teams.

2009 has been devoted to fix the tasks and the overall evaluation methodology
based on the corpus, topics and qrels from INEX 2009 ad-hoc track. A first list of
questions have been released for test. They all deal with 2009 INEX topics. Hence
answers should be part of ad-hoc relevant passages. The process of annotating
correct answers among passages is on going by organizers and actual participants.
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Based on that we intend to release the software to automatically evaluate content
selection for this first set of questions. Results from baseline systems proposed by
actual participants will be also released. The track is still open to the submission
of baseline runs and each participant is invited to submit at least one. In order
to facilitate submissions from Focused IR systems, a perl program that converts
a run in INEX ad-hoc submission FOL format into QA format is available.

This will allow to fix in accordance with participants all parameters to be
used in metrics to evaluate answers content. In particular, the results of KL

and JL metrics for all submitted baseline systems will be available for different
smoothing parameters.

In 2010, we shall use the same corpus but participants will be invited to sub-
mit a new set of questions on the wikipedia. These questions will not necessarily
be related to ad-hoc topics. An additional set of questions on ad-hoc topics will
be also proposed by organizers. Once released this 2010 set of questions, partic-
ipants will have a short time period to submit the results by their systems. This
period will be set in accordance with participants. Runs from baseline systems
will be also added. Informative content and linguistic quality of answers will be
evaluated by participants and organizers based on a short questionnaire.

5 Conclusion

QA@INEX is offering an evaluation framework combining QA, passage retrieval
and automatic summarizing by passage extraction. Its main features are the use
of the Wikipedia as referential, its proximity with INEX ad-hoc task and the
introduction of new evaluation metrics.
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Abstract. We describe here the XML Mining Track at INEX 2009.
This track was launched for exploring two main ideas: �rst identifying
key problems for mining semi-structured documents and new challenges
of this emerging �eld and second studying and assessing the potential of
machine learning techniques for dealing with generic Machine Learning
(ML) tasks in the structured domain i.e. classi�cation and clustering of
semi structured documents. This year, the track focuses on the super-
vised classi�cation of XML documents using links between documents.
We consider a corpus of about 55,000 wikipedia pages with the associated
hyperlinks. The participants have developed models using the content in-
formation, the internal structure information of the XML documents and
also the link information between documents.

1 Introduction

The XML Document Mining track1 was launched for exploring two main ideas:
�rst identifying key problems for mining semi-structured documents and new
challenges of this emerging �eld and second studying and assessing the potential
of machine learning techniques for dealing with generic Machine Learning (ML)
tasks in the structured domain i.e. classi�cation and clustering of semi structured
documents.

This track has run for �ve editions during INEX 2005, 2006, 2007, 2008 and
2009. The four �rst editions have been summarized in [1], [2] and [3] and we
focus here on the 2009 edition.

Among the many open problems for handling structured data, the track fo-
cuses on the semi-supervised classi�cation task where documents are organized
in graph2. The goal of the track was therefore to explore algorithmic, theo-
retical and practical issues regarding the classi�cation of interdependent XML
documents. We describe here the characterics of the corpus provided to the par-
ticipants, and brie�y present the results obtained by the di�erent teams. The
methods used are described in the participants papers and will be summarized
in the �nal paper.

1 http://xmlmining.lip6.fr
2 Note that one other INEX 2009 track focuses on the unsupervised clustering problem.
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2 Categorization/Clustering of a graph of XML
Documents organized

Dealing with XML document collections is a particularly challenging task for ML
and IR. XML documents are de�ned by their logical structure and their content
(hence the name semi-structured data). Moreover, in a large majority of cases
(Web collections for example), XML documents collections are also structured by
links between documents (hyperlinks for example). These links can be of di�erent
types and correspond to di�erent informations: for example, one collection can
provide hierarchical links, hyperlinks, citations, ..... Most models developed in
the �eld of XML categorization simultaneously use the content information and
the internal structure of XML documents (see [1] and [2] for a list of models)
but they rarely use the external structure of the collection i.e the links between
documents. Some methods using both content and links have been proposed in
[3].

The XML Classi�cation Track focuses on the problem of learning to classify
documents organized in a graph of documents. Unlike the 2008 track, we consider
here the problem of Multiple labels classi�cation where a document belongs to
one or many di�erent categories. This task considers a tansductive context where,
during the training phase, the whole graph of documents is known but the labels
of only a part of them are given to the participants (Figure 1).

Training set Final labeling

Fig. 1. The supervised classi�cation task. Colors/Shapes correspond to categories, cir-
cle/white nodes are unlabeled nodes. Note that in this track, documents may belong
to many categories.
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3 Corpus

The corpus provided is a subset of the INEX 2009 Corpus [?]. We have extracted
a set of 54,889 documents and the links between these documents. These links
corresponds to the links provided by the authors of the Wikipedia articles. The
documents have been transformed into TF-IDF vectors by the organizers. The
corpus thus corresponds to a set of 54,889 vectors of dimension 186,723. The
documents belong to 39 categories that correspond to 39 Wikipedia portals. We
have provided the labels of 20 % of the documents. The corpus is composed of
4,554,203 directed links that correspond to hyperlinks between the documents
of the corpus. Each document is concerned by 84.1 links on average.

Number of documents 54,889
Number of training documents 11,028
Number of test documents 43,861
Number of categories 39
Number of links 4,554,203
Number of distinct words 186,723

3.1 Evaluation Measures

In order to evaluate the submissions of the participants, we have used di�erent
measures:

� The �rst set of measures are computed over each category and then averaged
over the categories (using a micro or a macro average):
• Accuracy (ACC) corresponds to the classi�cation error. Note that a sys-
tem that returns zero relevant category for each document has a quite
good accuracy.

• F1 score (F1) corresponds to the classical F1 measure and measures the
ability of a system to �nd the relevant categories.

� The second set of measures are computed over each document and then
averaged over the documents.
• Average precision (APR) corresponds to the Average Precision computed
over the list of categories returned for each document. It measures the
ability of a system to rank correctly the relevant categories. This measure
is based on a ranking score of each category for each document.

4 Participants and Submissions

Five di�erent teams have participated to the track. They have submitted di�er-
ent runs and we present here only the best results obtained by each team.

Comments on the methods and the results will be added in the �nal paper,
after the INEX workshop.
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Team Micro ACC Macro ACC Micro F1 Macro F1 APR

University of Wollongong 92.5 94.6 51.2 47.9 68

University of Peking 94.7 96.2 51.8 48 70.2

XEROX Research Center 96.3 97.4 60 57.1 67.8

University of Saint Etienne 96.2 97.4 56.4 53 68.5

University of Granada 67.8 75.4 26.2 25.3 72.9

5 Conclusion

We have presented the XML Mining Classi�cation Track at INEX 2009. This
track concerns the multiple labels classi�cation task in a graph of documents.
The results submitted by the participants show the e�ectivness of the methods
proposed. These methods will be described in the �nal paper.
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Abstract. This report explains the objectives, datasets, tasks and evaluation 
criteria of the clustering task held in INEX 2009. The report also describes the 
approaches and results obtained by the different participants. 
 
Keywords:  Clustering, XML document mining, INEX, Wikipedia, Structure 
and content. 

1 Introduction 

  In the last decade, we have observed a proliferation of approaches for clustering 
XML documents based on their structure and content. There have been many 
approaches developed for diverse application domains. Many applications require 
data objects to be grouped by similarity of content, tags, paths, structure and 
semantics. The clustering task in INEX 2009 evaluates clustering approaches in the 
context of XML information retrieval.  

  INEX 2009 included two tasks in the XML Mining track namely classification and 
clustering. The task set in the clustering task requires the participants to group the 
documents into clusters without any knowledge of cluster labels using an 
unsupervised learning algorithm. On the other hand, the classification task requires 
the participants to label the documents in the dataset into known classes using a 
supervised learning algorithm and a training set. This report gives the details of 
clustering task.  

The INEX 2009 clustering task is different from the previous years due to its 
incorporation of a different evaluation strategy. The clustering task explicitly tests the 
Jardine and van Rijsbergen cluster hypothesis (1971), which states that documents 
that cluster together have a similar relevance to a given query. It uses manual query 
assessments from the INEX Ad Hoc track.   If the cluster hypothesis holds true, and if 
suitable clustering can be achieved, then a clustering solution will minimise the 
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number of clusters that need to be searched to satisfy any given query. There are 
important practical reasons for performing collection selection on a very large corpus. 
If only a small fraction of clusters (hence documents) need to be searched, then the 
throughput of an information retrieval system will be greatly improved.  

INEX 2009 clustering task provides an evaluation forum to measure the performance 
of clustering methods for collection selection on a huge scale test collection 
(consisting of a set of documents, their labels, a set of information needs (queries), 
and the answers to those information needs).  

2 Corpus 

The INEX XML Wikipedia collection is used as a dataset in this task. This English 
Wikipedia collection, marked-up version of the Wikipedia documents, 60 Gigabytes 
in size contains around 2.7 million documents in XML format. The mark-up includes, 
for instance, explicit tagging of named entities.  In order to enable participation with 
minimal overheads in data-preparation the collection was pre-processed to provide 
various representations of the documents.  For instance, a bag-of-words representation 
of terms and frequent phrases in a document, frequencies of various XML structures 
in the form of trees, links, named entities, etc.  These various collection 
representations made this task a lightweight task that required the participants to 
submit the clustering solutions only without worrying about pro-processing this huge 
data collection.  
 
Some statistics about the dataset are as follows. There are a total of 1,970,515 terms 
after stemming, stopping, and eliminating terms that occur in a single document for 
this collection of 2,666,190 documents. There are 1,900,075 unique terms that appear 
more than once enclosed in entity tags. There are 5213 unique entity tags in the 
collection. There are a total of 110,766,016 links in the collection. Each link is 
unique. 
 
A subset of collection containing about 50,000 documents (of the entire INEX 2009 
corpus) was also used in the task to evaluate the categories labels results only, for 
teams that were unable to process such a large data collection. There are a total of 
348,552 categories for all 2.7 million documents. These categories are derived by 
using the YAGO ontology. The YAGO categories appear to follow a power law 
distribution.  
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3 Tasks and Evaluation Measures 

The task in this track was to utilize unsupervised classification techniques to group 
the documents into clusters. Participants were asked to submit multiple clustering 
solutions containing different numbers of clusters such as 100, 500, 1000, 2500, 5000 
and 10000.  
 
The clustering solutions are evaluated by two means. Firstly, we utilise the classes-to-
clusters evaluation which assumes that the classification of the documents in a sample 
is known (i.e., each document has a class label). Then any clustering of these 
documents can be evaluated with respect to this predefined classification. It is 
important to note that the class labels are not used in the process of clustering, but 
only for the purpose of evaluation of the clustering results.  
 
The standard criterion of purity is use to determine the quality of clusters. These 
evaluation results were provided online and ongoing, starting from mid-October. 
Entropy and F-Score were not used in evaluation. The reason behind was that a 
document in the corpus maps to more than one category. Due to multi labels that a 
document can have, it was possible to obtain higher value of Entropy and F-Score 
than the ideal solution.  
 
Purity measures the extent to which each cluster contains documents primarily from 
one class. Each cluster is assigned with the class label of the majority of documents in 
it. Then the error is computed as the proportion of documents with different class and 
cluster labels. Inversely, the accuracy is the proportion of documents with the same 
class and cluster label. Purity is measured as the ratio of Number of documents with 
the majority label in cluster to Number of documents in cluster. The macro and micro 
purity of entire clustering solution is obtained as a weighted sum of the individual 
cluster purity. In general, larger the value of purity, better the clustering solution is.  

 
 

Purity (k) =             
    

 

Micro-Purity=
    

 

Macro-Purity=   ∑
   

 

 
The clustering solutions are also evaluated to determine the quality of cluster relative 
to the optimal collection selection goal, given a set of queries.  Better clustering 
solutions in this context will tend to (on average) group together relevant results for 
(previously unseen) ad-hoc queries.  Real Ad-hoc retrieval queries and their manual 
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assessment results are utilised in this evaluation.  This novel approach evaluates the 
clustering solutions relative to a very specific objective - clustering a large document 
collection in an optimal manner in order to satisfy queries while minimising the 
search space. The Normalised Cumulative Gain is used to calculate the score of the 
best possible collection selection according to a given clustering solution. Better the 
score when the query result set contains more cohesive clusters. 

The normalized cumulative gain (nCG) for a given topic t is given by, 

nCG(t)=
                

      
 

For a given topic, the relevant documents present in each of the clusters are 
represented in a vector sorted in descending order. Then the cumulated gain for the 
vector is calculated which is then normalized on the ideal gain vector. 

The mean and the standard deviation of the nCG score over all the topics are then 
calculated. 

Mean nCG=     ∑
    

 

A total of 69 topics were used to evaluate the quality of clusters generated on the full 
set of collection of about 2.7 million documents. A total of  52 topics were used to 
evaluate the quality of clusters generated on the subset of collection of about 50,000 
documents. A total number of 4859 documents were found relevant by the manual 
assessors for the 69 topics. An average number of 71 documents were found relevant 
for a given topic by manual assessors. The nCG value varies from 0 to 1 and for a 
given topic if the cluster returned contained only one relevant document then it was 
removed as the nCG value will be infinity.  

4 Participants and Submissions 

A total of six research teams have participated in the INEX 2009 clustering task. Two 
of them submitted the results for the subset data only. We briefly summarised the 
approaches employed by the participants. 
 
4.1 Bilkent Web Databases Research Group  (BilWeb) 

The research team used Cover-Coefficient Based Clustering Methodology (C3M) to 
cluster the XML documents. C3M is a single-pass partitioning type clustering 
algorithm which measures the probability of selecting a document given a term that 
has been selected from another document. They cluster the XML documents into a 
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given number of clusters (for several values like 1000, 10000, etc.) using C3M 
method. As another approach, they adapted term-centric and document-centric index 
pruning techniques from the literature to obtain more compact representations of the 
documents. They cluster documents with these reduced representations for various 
pruning levels, again using C3M algorithm. Their findings show that the clustering 
quality, in terms of a number of INEX evaluation measures, do not vary much even 
when a considerable amount of the document content (i.e., around 30%) is pruned. All 
of the experiments are executed on the subset of INEX 2009 corpus including 50K 
documents. 

4.2 De Vries and Geva 

The Random Indexing (RI) K-tree has been used to cluster the entire 2,666,190 XML 
documents in the INEX 2009 Wikipedia collection. Clusters were created as close as 
possible to the 100, 500, 1000, 5000 and 10000 clusters required for evaluation. The 
RI K-tree produces clusters in an unsupervised manner where the exact number of 
clusters can not be precisely controlled. It is determined by the tree order and the 
randomized seeding process of k-means used to perform splits in the tree. The 
algorithm produces clusters of many sizes in a single pass. The desired clustering 
granularity is selected by choosing a particular level in the tree. Random Indexing 
(RI) is an efficient dimensionality reduction technique that projects points in a high 
dimensional space onto a randomly selected lower dimensional space. It is able to 
preserve the topology of the points.  In the context of document representation, 
topology preserving dimensionality reduction is preserving document meaning – or at 
least this is the conjecture which we test here.  The RI projection produces dense 
document vectors that work well with the K-tree algorithm.Document structure has 
been represented by using a bag of words and a bag of tags representation derived 
from the semantic markup in the INEX 2009 collection. The bag of words is made up 
of term frequencies contained within any entity tags in the collection. The term 
frequencies were weighted with BM25 where K1 = 2 and b = 0.75. The bag of tags 
representation is made up in an analogous manner of XML entity tag frequencies. The 
tag frequencies were not weighted. 

4.3 Pinto et al (BUAP, MEXICO) 
 
The employed approach was quite simple and focused on high scalability. The team 
used a modified version of the Star clustering method [1] which automatically obtains 
the number of clusters. This method has been used in a number of papers dealing with 
clustering of documents[2-4]. In each iteration, this clustering method brings together 
all those items whose similarity value is higher than a given threshold T, which is 
typically assumed to be the similarity average of the whole document collection and, 
therefore, the clustering method "discover" the number of clusters by its own. The run 
we submitted to the INEX clustering task split the complete document collection into 
small subsets which are clustered with the above mentioned clustering method. Each 
cluster C_i obtained is then represented by a vector V_i calculated on the basis of the 
cluster members. In an iterative process, we cluster the V_i representative vectors 
until the similarity threshold is too low to bring together items in the clusters. 
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4.4 Kutty and Nayak 

A Multi-Feature model (MFM) built using the common structural features and the 
corresponding content features of the XML documents has been used to cluster the 
subset XML Wikipedia collection. Each XML document in the INEX Wikipedia 
corpus is parsed and modeled as a rooted labeled ordered document tree. Each 
document tree contains nodes which represent the tag names. A frequent subtree 
mining algorithm is then applied to extract the common structural features from these 
document trees in the corpus. The common subtrees were used to extract the 
corresponding content and then represented in MFM. Due to the large size of the 
dataset and the presence of a number of structural features, MFM built is also very 
large and hence random projection techniques were applied to project the points to 
lower dimensional space. Decomposition techniques such as Higher-order Singular 
Value Decomposition, Tucker decompositions are then applied on the reduced sized 
MFM. The decomposition factors are then used to derive clustering solution. The 
term frequencies in the MFM model were weighted with TF-IDF. There were 100 and 
500 clusters created for evaluation. 

5 Conclusion 

The clustering task in INEX 2009 brought together researchers from Information 
Retrieval, Data Mining, Machine Learning and XML fields.  It allowed participants to 
evaluate clustering methods against a real use case and with significant volumes of 
data.  The task was designed to facilitate participation with minimal effort by 
providing not only raw data, but also pre-processed data which can be easily used by 
existing clustering software.  
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Abstract. In this paper, we first employ Cover-Coefficient Based Clustering 
Methodology (C3M) for clustering XML documents. Next, we apply index 
pruning techniques from the literature to reduce the size of the document 
vectors. Our experiments show that for certain cases, it is possible to prune up 
to 70% of the collection (or, more specifically, underlying document vectors) 
and still generate a clustering structure that yields the same quality with that of 
the original collection, in terms of a set of evaluation metrics. 

1   Introduction 

As the number and size of XML collections increase rapidly, there occurs the need to 
manage these collections efficiently and effectively. While there is still an ongoing 
research in this area, INEX XML Mining Track fulfills the need for an evaluation 
platform to compare the performance of several clustering methods on the same set of 
data. Within the Clustering task of XML Mining Track of INEX campaign, clustering 
methods are evaluated according to cluster quality measures on a real-world 
Wikipedia collection. 

To this end, in the last few workshops, many different approaches are proposed 
which use structural, content-based and link-based features of XML documents. In 
INEX 2008, Kutty et al. [9] use both structure and content to cluster XML documents. 
They reduce the dimensionality of the content features by using only the content in 
frequent subtrees of an XML document. In another work, Zhang et al. [11] make use 
of the hyperlink structure between XML documents through an extension of a 
machine learning method based on the Self Organizing Maps for graphs. De Vries et 
al. [8] use K-Trees to cluster XML documents so that they can obtain clusters in good 
quality with a low complexity method. Lastly, Tran et al. [10] construct a latent 
semantic kernel to measure the similarity between content of the XML documents. 
However, before constructing the kernel, they apply a dimension reduction method 
based on the common structural information of XML documents to make the 
construction process less expensive. In all of these work mentioned above, not only 
the quality of the clusters but the efficiency of the clustering process is also taken into 
account.  

In this paper, we propose an approach which reduces the dimension of the 
underlying document vectors without change or with a slight change in the quality of 
the output clustering structure. More specifically, we use a partitioning type clustering 
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algorithm, so-called Cover-Coefficient Based Clustering Methodology (C3M) [6], 
along with some index pruning techniques for clustering XML documents.  

2   Approach 

2.1 Baseline Clustering with C3M Algorithm 

In this work, we use the well-known Cover-Coefficient Based Clustering 
Methodology (C3M) [6] to cluster the XML documents. C3M is a single-pass 
partitioning type clustering algorithm which is shown to have good information 
retrieval performance with flat documents (e.g., see [5]). The algorithm operates on 
documents represented by vector space model. Using this model, a document 
collection can be abstracted by a document-term matrix, D; of size m by n whose 
individual entries, dij (1<i<m; 1<j<n), indicate the number of occurrences of term j (tj) 
in document i (di). In C3M, the document-term matrix1 D is mapped into an m by m 
cover-coefficient (C) matrix which captures the relationships among the documents of 
a database. The diagonal entries of C are used to find the number of clusters, denoted 
as nc; and the selection of cluster seeds. During the construction of clusters, the 
relationships between a nonseed document (di) and a seed document (dj) is determined 
by calculating the cij entry of C; where cij indicates the extent to which di is covered 
by dj. 

A major strength of C3M is that for a given dataset, the algorithm itself can 
determine the number of clusters, i.e., there is no need for specifying the number of 
clusters, as in some other algorithms.  However, for the purposes of this track, we 
cluster the XML documents into a given number of clusters (for several values like 
1000, 10000, etc.) using C3M method, as required. In this paper, we simply use the 
content of XML documents for clustering. Our preliminary experiments that also take 
the link structure into account did not yield better results than just using the content. 
Nevertheless; our work in this direction is still under progress. 
 
2.2 Employing Pruning Strategies for Clustering 

From the previous works, it is known that static index pruning techniques can reduce 
the size of an index (and the underlying collection) while providing comparative 
effectiveness performance with that of the unpruned case [2, 3, 4, 7].  In a more recent 
study, we show that such pruning techniques can also be adapted for pruning the 
element-index for an XML collection [1].  Here, with the aim of both improving the 
quality of clusters and reducing the dataset dimensions for clustering, we apply static 
pruning techniques on XML documents. We adapt two well-known pruning 
techniques, namely, term-centric [7] and document-centric pruning [4] from the 
literature to obtain more compact representations of the documents. Then, we cluster 
documents with these reduced representations for various pruning levels, again using 

                                                           
1 Note that, in practice, the document-term matrix only includes non-zero term 

occurrences for each document. 
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C3M algorithm. The pruning strategies we employ in this work can be summarized as 
follows: 

 
• Document-centric pruning: This technique is essentially intended to reduce the 

size of an inverted index by discarding unimportant terms from each 
document. In the original study, a term’s importance for a document is 
determined by that term’s contribution to the document’s Kullback-Leibler 
divergence (KLD) from the entire collection [4]. In a more recent work [2], we 
show that using the contribution of a term to the retrieval score of a document 
(by using a function like BM25) also performs quite well. In this paper, we 
again follow this practice and for each term that appears in a given document, 
we compute that term’s BM25 score for this document. Then, those terms that 
have the lowest scores are pruned, according to the required pruning level. 
Once the pruned documents are obtained at a given pruning level, 
corresponding document vectors are generated to be fed to the C3M clustering 
algorithm. 

 
• Term-centric pruning: This method operates on an inverted index, so we start 

with creating an index for our collection. Next, we apply term-centric pruning 
at different pruning levels, and once the pruned index files are obtained, we 
convert them to the document vectors to be given to the clustering algorithm2. 
In a nutshell, the term-centric pruning strategy works as follows [7]. For each 
term t, the postings in t’s posting list are sorted according to their score with 
respect to a ranking function, which is BM25 in our case. Next, the kth highest 
score in the list, zt, is determined and all postings that have scores less than zt * 
ε are removed, where ε specifies the pruning level. In this paper, we skip this 
last step, i.e. ε-based tuning, and simply remove the lowest scoring postings of 
a list for a given pruning percentage.  

3   Experiments 

In this paper, we use a subset of the INEX 2009 XML Wikipedia collection provided 
by XML Mining Track. This subset contains 54575 documents and takes 270 MB.  

As the baseline, we form clusters by applying C3M algorithm to XML documents 
represented with the bag of words representation of terms, as provided by the track 
organizers. For several different number of output clusters, namely 100, 500, 1000, 
2500, 5000 and 10000, we obtain the clusters and evaluate them at the online 
evaluation website of this track. The website reports micro purity, macro purity, micro 
entropy, macro entropy, normalized mutual information (NMI), micro F1 score and 
macro F1 score for a given clustering structure. The results are provided in Table 1. 
Note that, for almost all evaluation measures, higher number of clusters (i.e., 5000 or  

                                                           
2 It is possible to avoid converting the index to the document vectors by slightly 

modifying the input requirements of the clustering algorithm. Anyway, we did not 
spend much effort in this direction as this conversion stage, which is nothing but an 
inversion of the inverted index, can also be realized in an efficient manner.  
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Table 1. Effectiveness figures of the baseline C3M clustering for different number of clusters. 
Best results for each measure are shown in bold. 

 

No. of 
clusters     

Micro 
Entropy 

Macro 
Entropy 

Micro 
F1 

Macro 
F1 

Micro 
Purity 

Macro 
Purity NMI 

100 9.8317 8.5835 0.0027 0.0002 0.1152 0.1343 0.2912 
500 8.1088 7.0836 0.0071 0.0016 0.1528 0.1777 0.4179 
1000 7.2514 6.2830 0.0111 0.0041 0.1861 0.2147 0.4735 
2500 6.1242 5.1329 0.0224 0.0132 0.2487 0.3031 0.5393 
5000 5.2457 4.2256 0.0387 0.0298 0.3265 0.4160 0.5858 

10000 4.9959 4.0081 0.0332 0.0162 0.4004 0.5416 0.6829 

Table 2. Effectiveness comparison of clustering structures based on TCP and DCP at various 
pruning levels. Number of clusters is 10000. Prune (%) field denotes the percentage of pruning. 

Best results for each measure are shown in bold. 

Pruning 
Strategy 

Prune 
(%) 

Micro 
Entropy 

Macro 
Entropy 

Micro 
F1 

Macro 
F1 

Micro 
Purity 

Macro 
Purity NMI 

No Prune 0% 4.9959 4.0082 0.0332 0.0162 0.4004 0.5416 0.6829 
DCP 30% 4.9874 4.0222 0.0334 0.0160 0.4028 0.5400 0.6835 
TCP 30% 4.9740 4.0611 0.0324 0.0156 0.3914 0.5229 0.6835 
DCP 50% 4.9780 4.0465 0.0331 0.0156 0.4019 0.5375 0.6840 
TCP 50% 4.9674 4.0946 0.0319 0.0151 0.3870 0.5141 0.6837 
DCP 70% 4.9464 4.0937 0.0329 0.0150 0.4016 0.5302 0.6853 
TCP 70% 4.9780 4.1345 0.0311 0.0142 0.3776 0.5042 0.6834 
DCP 90% 4.8723 4.2689 0.0308 0.0125 0.3783 0.4768 0.6884 
TCP 90% 5.0387 4.1604 0.0302 0.0136 0.3639 0.5073 0.6817 

 
 
10000) yields better performance. We suspect that this might be caused by the fact 
that the collection we have used in our experiments includes too many categories. 
Thus, as a future work, we plan to obtain results with the larger collection and some 
alternative evaluation measures. 

Next, we experiment with the clusters produced by the pruning-based approaches. 
For each pruning technique, namely, TCP and DCP, we obtain the document vectors 
at four different pruning levels, i.e., 30%, 50%, 70% and 90%. Note that, a document 
vector includes term id and number of occurrences for each term in a document, 
stored in the binary format (i.e., as a transpose of an inverted index). In Table 2, we 
provide results for 10000 clusters, for which case C3M baseline yielded the best 
performance, as discussed above. Our findings reveal that up to 70% pruning with 
DCP, quality of the clusters is still comparable to or even superior than the 
corresponding baseline case, in terms of the INEX evaluation measures. 

Regarding the comparison of pruning strategies, clusters obtained with DCP yield 
better results than those obtained with TCP up to 70% pruning for all of the measures 
except micro entropy. For the pruning levels higher than 70%, DCP and TCP give 
better results interchangeably for different measures. In [1], we observed a similar 
behavior regarding the retrieval effectiveness of indexes pruned with TCP and DCP.  

From Table 2 we also deduce that DCP-based clustering at 30% pruning level 
produce the best results for most of the evaluation measures in comparison to the  
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Table 3. Effectiveness figures of DCP at 30% pruning for different number of clusters. 

No. of 
clusters    

Micro 
Entropy 

Macro 
Entropy 

Micro 
F1 

Macro 
F1 

Micro 
Purity 

Macro 
Purity NMI 

100 10.9671 9.5800 0.0013 0.0001 0.1021 0.1265 0.3428 
500 8.9949 7.9655 0.0037 0.0002 0.1347 0.1539 0.4759 

1000 8.0647 7.1004 0.0056 0.0005 0.1641 0.1917 0.5308 
2500 6.8442 5.9143 0.0110 0.0021 0.2234 0.2737 0.5970 
5000 5.9200 4.9626 0.0193 0.0060 0.2986 0.3854 0.6423 
10000 4.9874 4.0221 0.0334 0.0160 0.4028 0.5400 0.6835 

 
other pruning-based clusters. For this best-performing case, namely DCP at 30% 
pruning, we also provide performance findings with varying number of clusters (see 
Table 3). The results show that, as in the baseline case, the cluster quality improves 
with increasing number of clusters. Furthermore, the DCP-based clusters are inferior 
to the corresponding baseline clustering up to 10000 clusters, but they provide almost 
the same performance for the 10000 clusters case. 

4   Conclusion 

In this paper, we employ the well-known C3M algorithm for clustering XML 
documents. Furthermore, we use index pruning techniques from the literature to 
reduce the size of the document vectors on which C3M operates. Our findings reveal 
that, for a high number of clusters, the quality of the clusters produced by the C3M 
algorithm does not degrade when up to 70% of the index (and, equivalently, the 
document vectors) is pruned.  

Our future work involves repeating our experiments with larger datasets and 
additional evaluation metrics. Furthermore, we plan to extend the pruning strategies to 
exploit the structure of the XML documents in addition to content.  
 
Acknowledgments. This work is supported by TÜBİTAK under the grant number 
108E008. 
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Abstract. We address the problem of categorizing a large set of linked docu-
ments with important content and structure aspects, in particular, from the Wikipedia
collection proposed at the INEX 2009 XML Mining challenge. We analyse the
network of collection pages and turn it into valuable features for the classification.
We combine the content-based and link-based features of pages to trains to build
a transductive categorizer for the unlabeled pages. In the multi-label setting, we
review a number of existing techniques and propose a new one. We report evalu-
ation results obtained with a variety of learing methods on the training set of the
Wikipedia corpus.

1 Introduction

The objective of the INEX 2009 XML Mining challenge is to develop machine learning
methods for structured data mining and to evaluate these methods for XML document
mining tasks. The challenge proposes several datasets coming from different XML col-
lections and covering a variety of classification and clustering tasks.

In this work, we address the problem of categorizing a very large set of linked XML
documents with important content and structural aspects, for example, from Wikipedia
online encyclopedia. We cope with the case where there is a small number of labeled
pages and a much larger number of unlabeled ones. For example, when categorizing
Web pages, some pages have been labeled manually and a huge amount of unlabeled
pages is easily retrieved by crawling the Web. The semi-supervised approach to learning
is motivated by the high cost of labeling data and the low cost for collecting unlabeled
data. Withing XML Mining challenge 2009, the Wikipedia categorization challenge
has been indeed set in the semi-supervised mode, where only 20% of page labels are
available at the training step.

Wikipedia is a free multilingual encyclopedia project supported by the non-profit Wi-
kipedia foundation 1. In April 2008, Wikipedia accounted for 10 million articles which
have been written collaboratively by volunteers around the world, and almost all of its
articles can be edited by anyone who can access the Wikipedia website. Launched in
2001, it is currently the largest and most popular general reference work on the Inter-
net. Automated analysis, mining and categorization of Wikipedia pages can serve to

1 http://www.wikipedia.org.
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improve its internal structure as well as to enable its integration as an external resource
in different applications.

Any Wikipedia page is created, revised and maintained according to certain policies
and guidelines [11]. Its edition follows certain rules for organizing the content and
structuring it in the form of sections, abstract, table of content, citations, links to relevant
pages, etc.. In the following, we distinguish between different aspects of a Wikipedia
page. First, its content is given by the set of words occured in the page. Second, we are
interested the set of links in the page reffering to other pages. In some cases, we might
be interested in the page XML/HTML structure, given by the set of tags, attributes and
their values in the page [4]. These elements control the presentation of the page content
to the viewer. Finally, we are very interested in extracting the page metadata given
in the page Infobox. Unfortunately, only a small part of the Wikipedia pages include
infoboxes [16].

2 INEX 2009 collection

The training corpus for the INEX 2009 XML Mining track is composed of three fol-
lowing files 2 :

– A category file that gives the set of documents considered in this track and the
categories of the training documents.

– A link file that gives the links between the documents.
– A content file that corresponds to normalized tf-idf vectors computed by the orga-

nizers over this collection.

We note a small mismatch between the category, tf-idf and link data. The category
data includes 54,889 pages, while the tf-idf values and links are available for 54,572
and 54,451 of them, respectively. On the other hand, the graph of 4,554,203 links cor-
responds to one very large connected component in the Wikipedia corpus.

Similarly, the training set with the category annotations is composed of 11,028 ele-
ments, tfi-df vectors are given for 10,968 of them and links are provided for 10,992.

Figure 1).a plots the link structure of the graph 3. Two distributions of outcoming
and incoming links in pages in the corpus are shown in Figure 1).b; both distributions
are close to fitting the power distribution law.

Unlike the previous editions, INEX 2009 XML Mining classification challenge op-
erates a multi-label setting. The multi-category annotations are available for 20% of
data (11,028 pages). The annotations correspond to one of the 39 Wikipedia portals.
Frequencies of categories occurring in the training set are reported in Figure 2).a. one
leading category (Portal:Trains) can be easily recognized as well as 7-8 core cat-
egories. Other categories are less frequent, they form a long tail of the plot. Figure 3)
represents the matrix of co-occurences for all categories in the training set.

Due to the multi-label setting, each page may be annotated with one or more cate-
gories. Figure 2).b presents the length distribution in the category sets. On average, one
page has 1.46 labels.

2 The files can be downloaded from http://www-connex.lip6.fr/ de-
noyer/inex2009/corpus train.tar.gz.

3 The LGL package has been used for the component plotting.
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Fig. 1. INEX 2009 collection analysis. a) The link structure as one connected component. b)
Fan-in and fan-out link distribution.

3 Page representation

The most obvious level of representation is the textual content. We include the contents
of body and subject fields in a bag-of-words representation, that has proven to be well
suited for classification. The idea is to construct a vector where each feature represents
a word in the lexicon and the feature values express some weight.

3.1 Text representation

The tf-idf data is the textual representation of the corpora documents. The document
frequency df of a word w is the number of documents it occurs in, the term frequency
tf is the number of word occurences in a document d, N is the number of documents.
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Fig. 2. INEX 2009 collection analysis. a) Category frequencies. b) Length frequencies.

For the experiments, we consider three different text representations: binary, frequency
and tf-idf values, defined as follows:

binary(w,d) =
{

1 if w occurs in d
0 otherwise

frequency(w,d) = tf

tf-idf(w,d) = tf · log(N/df).

The feature set based on a bag-of-words representation are high-dimensional (around
180,000) and the feature vectors are very sparse. This makes it particularly suited for
the SVM classification with a linear kernel [8], because only a small number of the
words actually occur in each respective document.

3.2 Graph features

Graph structures induced by links or communications between some instances have
received a lot of attention in scientific literature and have proven to be useful in diverse
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Fig. 3. INEX 2009 collection analysis. Category occurences.

fields like sociology, biology, engineering, computer science and epidemiology [10].
With the advent of techniques to handle large graphs and the emergence of huge, real-
life linked structures on the internet, structure in link-based data has become a subject
of intensive research.

The structure of a large linked collection, like Wikipedia is not homogeneous. It
has been shown that certain properties of nodes in a graph can serve very well to auto-
matically detect their particular role [12]. We adopt and report below several groups of
commonly used features to represent key properties of nodes in a network [2, 12].

We represent the Wikipedia linked structure as a directed graph G = 〈V,E〉, where
V contains N nodes and E includes M edges. The first feature represents the immediate
characteristics of a node in the network:

1. the number of incoming and outcoming links and their sum, m(v) = in(v) +
out(v).

In hypertext classification two features, that represent the authority that is assigned
to nodes by its peers, have proven to be very valuable. Nodes with a high number of
incoming edges from hubs are considered to be authorities, nodes linking to a large
number of authorities are hubs [9].

2. hub score h(v) is given by v-th element of the principal eigenvector of AAT where
A is the adjacency matrix corresponding to graph G;

3. authority score a(h) is given by v-th element of the principal eigenvector of AT A.

The next group is a set of different centrality measures to model the position of
the page in the network. These depend on a undirected version G′ = 〈V,E′〉 of graph
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G. We calculate the shortest paths in G′ using a Matlab library for working with large
graphs [7]. We obtain the distance dst from node s to t and the number σst of paths
from s to t. The number of paths from s to t via v is denoted as σst(v):

4. mean centrality: CM (v) = n∑
s∈V

dvs
;

5. degree centrality: deg(v) = |s| : (v, s) ∈ E;
6. betweenness centrality: CB(v) =

∑
s 6=v 6=t

σst(v)
σst

;
7. closeness centrality: CC(v) = 1

maxt d(v,t) ;
8. stress centrality: CS(v) =

∑
s 6=v 6=t σst(v).

One more feature characterizes the connectedness in the direct neighborhood of
node v:

9. clustering coefficient: CC(v) = 2|(s,t)|
(deg(v)(deg(v)−1)) :

(v, s),(v, t), (s, t) ∈ E′.

The final group calculates all cliques in the graph using a Matlab implementation
of [3]. It includes three following features:

10. the number clq(v) of cliques the node v is in;
11. a raw clique score where each clique in clq(v) of size n is given a weight 2n−1,

CSR(v) =
∑

q∈clq(v) 2size(q)−1;
12. a weighted clique score where each clique is weighted by the sum of activities of

its members,
CSw(v) =

∑
q∈clq(v)

2size(q)−1
∑
w∈q

m(w).

All scores are scaled to a value in [0, 1] range, where 1 indicates a higher importance.
Once all network features for all nodes in the graph, we can proceed by combining them
with the text representation following one of fusion strategies. One is the feature fusion
that enriches the tf-idf representation of pages with their network features. Another is
the model fusion which assumes training a classifier with network features only and
them combine its predictions with those of the text-based classifier.

4 Multilabel classification

Single-label classification is concerned with learning from a set of examples xi ∈ X
that are associated with a single label y from a set of k disjoint labels Y . Cases k = 2
and k > 2 are known as binary and multi-class classification. In multilabel classifi-
cation, example xi are associated with a set of labels from Y . We will present sets as
binary vectors yi = (y1, . . . , yk), where yi ∈ {0, 1}.

Most techniques for multi-label classification follow either the transformation or
adaptation approach, see [14] for the review on multilabel learning. Like in the multi-
class setting, there is no method performing well in all cases. When working with the
INEX09 XML Mining Challenge dataset, we tested a number of different multilabel
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techniques, discovered their complementarity, and tried to combine them in a robust
manner.

There exists a number of multilabel techniques [15, 6, 13, 14]. Below we consider
some of them as base classifiers:

One-against-all (1AA) is the most common approach to multi-label classification. It
transforms the problem in k binary problems and train k independent classifiers
hi, each deciding to label a given x with yi; then some ranking or thresholding
schemes are used. This technique is easy to implement, it is fast but makes a strong
assumption of independence among y ∈ Y .

Length-based One-against-all (L-1AA) is a modification of the 1AA guided by the
length prediction [13]. It trains additionally a length predictor hl on the {xi, |yi|}
training set where |y| is the numbers of 1’s in y. It assumes a probabilistic setting
for all hi. hl first predicts length l for a given x, then it is labeled with yi having top l
scores. The L-1AA often improves the 1AA performance and is scalable. However,
it is very sensitive to the performance of hl, it still assumes independence of y ∈ Y .

Unique multi-class (UMC) takes each label set y present in T as a unique label. It is
easy to implement. Yet, it often results in the exponential number of unique labels,
with very few examples per label; no generalization to label sets not observed in
the training set.

Latent variables in Y discovers the relevant groups (topics) among y and can be re-
placed the groups of by topic. The technique requires apriori the number of y-topics
and often incurs important loss when decoding from topics to labels.

Latent variables in (x,y) is aimed at discovering topics in the (X, Y ) space [17]. La-
tent semantic indexing (LSI) is a well-known unsupervised approach for dimen-
sionality reduction in information retrieval. However if the output information (i.e.
category labels) is available, it is often beneficial to derive the indexing not only
based on the inputs but also on the target values in the training data set. This is
of particular importance in applications with multiple labels, in which each docu-
ment can belong to several categories simultaneously. It develops the multi-label
informed latent semantic indexing (MLSI) algorithm which preserves the infor-
mation of inputs and meanwhile captures the correlations between the multiple
outputs. The recovered ”latent semantics” thus incorporate the human-annotated
category information and can be used to greatly improve the prediction accuracy.
The main disadvantage of this technique is a limited scalability.

5 Evaluation

When preparing our submission to the challenge, we run a set of preliminary experi-
ments using 5-fold cross validation on the core training set which the pages having both
text-based and link-based features. We evaluated the performance of each tested method
using the average Micro-F1, Macro-F1 and Exact Match measures. In the experiments
we tested different components of the learning system as follows:

Feature set : three possibilities include the tf-idf feature set, the graph feature set and
their fusion.
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Basic learning method : among different options, we considered the libsvm with lin-
ear and other standard kernels, and semi-supervised learning with the transductive
SVM we tested in the 2008 evaluations [4].

Multilabel method : four possibilities include one-against-all method and its length-
based extension, unique multi-class and Y -latent variables.

Table 5 reports the most important results of the preliminary tests. Beyond the three
components reported above, we run a number of tests were to test other components and
techniques, including the feature selection, classification fusion, etc. However, none of
them improved the performance, and their results are not included in the table.

Feature set Method Multi-label Avg Exact Match Avg Micro-F1 Avg Macro-F1
Tf-idf Linear C-SVM 1AA 56.66 58.43 54.44

Linear C-SVM L-1AA 56.69 58.12 54.61
Linear C-SVM UMC 56.81 58.54 54.60
Linear C-SVM Y -latent 52.17 58.63 53.32

Graph Linear C-SVM 1AA 35.34 41.71 39.56
Linear C-SVM L-1AA 37.01 40.33 38.98
Sigmoid C-SVM UMC 37.41 40.63 38.38

Tf-idf+Graph Linear C-SVM 1AA 57.34 60.76 56.79
Linear C-SVM L-1AA 57.84 61.13 57.13
Linear C-SVM UMC 58.10 61.24 57.36
SSL-TSVM L-1AA 51.73 52.25 51.27
SSL-TSVM UMC 51.11 52.19 51.51

Table 1. Preliminary evaluation results for different methods and feature sets.

5.1 Final submissions and evaluation

We have analysed the results of the preliminary tests in order to organize our submis-
sions to the XML Mining classification track. Our submissions take on the most per-
formant preliminary tests, they combine the fusion of tf-idf and graph features with the
linear C-SVM and the L-1AA and UMC multilabel strategies. We applied an additional
treatment to cope with the partial mismatch between category, link and tf-idf data. The
test part of the category data include hundreds of pages missing either tf-idf or link
data. To predict categories for these pages in the test set, we generated the classification
models using an available features only.

The final track evaluation results are reported in Figure 4. The plot tracks all seven
measures for all research teams which participated in the challenge. As the figure shows,
our submissions (labeled ’Xerox’) came out first according to the four following mea-
sure: Micro-F1 and Macro-F1, Micro-Acc and Macro-Acc. The final performance re-
sults are comparable to the results of the preliminary tests.
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Fig. 4. Track evaluation results.

6 Conclusion

We presented our submission to the INEX 2009 XML Mining track that addresses the
multilabel classification of the Wikipedia corpus. We reported a number of complemen-
tary techniques which allowed us to make a number of steady improvements over the
baseline classification model. An analysis of the page network of allowed us to iden-
tify and extract a number of features valuable for the classification. Then we tested
different fusion methods to combine the content-based and link-based features. We fi-
nally implemented and tested a number of alternative multilabel techniques in order to
determine which one performs best on the evaluation corpus. We reported preliminary
results obtained with different combinations on the training set of the Wikipedia corpus.
We also included the final evaluation results which confirm the top performance of our
submission according to four core measures, Micro-F1 and Macro-F1, Micro-Acc and
Macro-Acc.
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Abstract. This paper describes the approach taken to the clustering

task at INEX 2009 by a group at the Queensland University of Technol-

ogy.

1 Introduction

The goal of the clustering task this year is to evaluate clustering as a means
to perform collection selection. This involves minimising the spread of relevant
results for adhoc queries over a clustering solution. The solution must also max-
imise the number of clusters while minimising the spread of relevant results.
This is because the goal of collection selection is to distribute the collection over
multiple machines. The more clusters that can be found, the more machines
documents can be placed on without data redundancy.

The Random Indexing (RI) K-tree has been used to cluster the collection as
it provides a scalable approach to clustering large collections at multiple gran-
ularities. The latest Wikipedia collection has included semantic markup mined
by YAGO. This structure has been used via two simple approaches.

2 Random Indexing K-tree

The Random Indexing (RI) K-tree has been used to cluster the entire 2,666,190
XML documents in the INEX 2009 Wikipedia collection. Clusters were created
as close as possible to the 100, 500, 1000, 5000 and 10000 clusters required for
evaluation. The RI K-tree produces clusters in an unsupervised manner where
the exact number of clusters can not be precisely controlled. It is determined
by the tree order and the randomized seeding process. The algorithm produces
clusters of many sizes in a single pass. The desired clustering granularity is
selected by choosing a particular level in the tree.

Random Indexing (RI) is an efficient dimensionality reduction technique that
projects points in a high dimensional space onto a randomly selected lower di-
mensional space. It is able to preserve the topology of the points. In the context
of document representation, topology preserving dimensionality reduction is pre-
serving document meaning or at least this is the conjecture which we test here.
The RI projection produces dense document vectors that work well with the
K-tree algorithm.
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3 Run-time performance

The performance of RI K-tree has been measured when operating in main mem-
ory. The concern is with the performance of the clustering algorithm. Efficiency
was not taken into account when indexing or loading the final representation
into memory.

The RI operations took a total of 1860 seconds for the entity text represen-
tation. The randomly selected lower dimensional space had 1000 dimensions.

The run time of the K-tree algorithm varies between 1200 and 1500 seconds
depending on the tree order selected between 15 and 50. This includes the process
of reinserting all vectors to their nearest neighbour leaves upon completion of the
tree building process. This produces clustering at many different granularities
at once. Table 1 lists the different sized clusters found by a tree of order 40.

Level Clusters

1 3

2 89

3 1260

4 12865

5 154934

Table 1. K-tree Clusters

4 Document Representation

Document structure has been represented by using a bag of words and a bag
of tags representation derived from the semantic markup in the INEX 2009
collection. Both are vector space representations. The bag of words is made
up of term frequencies contained within any entity tags in the collection. The
term frequencies were weighted with BM25 where K1 = 2 and b = 0.75. The
bag of tags representation is made up in an analogous manner of XML entity
tag frequencies. The tag frequencies were not weighted. Both representations
exploit the structure of the collection. The entity text does this by only selecting
certain sections of the collection based on structure. The entity tags directly
exploit structure by indexing it.

Submission were made using each of the representations separately. There
is potential for improvement when combining both of the representations as
the tags identify concepts such as scientist, acceptance and falsehood. The text
contained within these tags can help diffentiate different types of concepts.
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Abstract. This paper introduces a novel approach for processing a general class
of structured information, viz., a graph of graphs structure, in which each node of
the graph can be described by another graph, and each node in this graph, in turn,
can be described by yet another graph, up to a finite depth. This graph of graphs
description may be used as an underlying model to describe a number of natu-
rally and artificially occurring systems, e.g. nested hypertexted documents. The
approach taken is a data driven method in that it learns from a set of examples how
to classify the nodes in a graph of graphs. To the best of our knowledge, this is
the first time that a machine learning approach is enabled to deal with such struc-
tured problem domains. Experimental results on a relatively large scale real world
problem indicate that the learning is efficient. This paper presents some prelim-
inary results which show that the classification performance is already close to
those provided by the state-of-the-art ones.

1 Introduction

The emergence of neural network models capable of encoding graph structured in-
formation opened an avenue to solving machine learning problems involving graphs
without the need for a pre-processing step in “squashing” the graph structure back
into a vectorial form first. These methods are capable of encoding topological infor-
mation which is available when dealing with structured information, and have been
applied with considerable success in a number of real world problems. For example,
an MLP based approach known as Recursive Neural Networks along with the training
algorithm known as Backpropagation Through Structure (BPTS) 4 was used to solve
an image classification problem by processing a set of images represented as a set of
directed trees [2]. Similarly, recursive cascade correlation (RCC) [3, 4] was used to
solve a regression problem by discovering structure-activity relationships of chemical
molecules [5]. Another supervised machine learning method is the Graph Neural Net-
work (GNN) which was shown to be capable of solving any practically useful learning
problems involving graphs [6]. There are also unsupervised neural network methods
for the encoding of structured information. For example, the Self-Organizing Map for

4 The term introduced by [1] is somewhat misleading since BPTS is restricted to the process-
ing of trees. Hence, a more appropriate name would be the Backpropagation Through Trees
(BPTT).
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Fig. 1. An example of a graph of graphs structure: Each node in a Web graph represents a docu-
ment. The document may be represented by an XML graph [7]. The nodes in the XML graph map
represent paragraphs where the text in each paragraph may be represented by a word graph [11].

Structured Data (SOM-SD) is capable of clustering tree structured information very
efficiently, whereas the Probability Measure Graph SOM (PMGraphSOM) is able to
encode much more generic types of graphs such as labeled cyclic graphs which may
have feature directed or undirected links. These methods have been very successful in
solving practical problems and benchmarking with other algorithms. For example, the
SOM-SD and its related algorithms have won several international INEX competitions
in text mining (e.g. [7, 8]) and has set state-of-the-art performances (e.g. [9, 10]).

These existing methods are limited to processing graphs which can be represented
by labeled nodes and labeled links. The label attached to nodes and links must be a
real valued vector of fixed dimension. However, it is found that there are learning prob-
lems for which the label of a node is of a more complex structure, such as a tree or
graph. Such learning problems require the encoding of a graph structure the nodes of
which can also be graphs. This results in data featuring a graph of graphs (GoG) which
contains different graphical elements. The situation is best explained using an example
(see Figure 1): The World Wide Web consists of a collection of documents which fea-
ture a referencing method known as hyperlinks. A hyperlink defines a (directed) binary
relationship between two documents.

The collective combination of all hyperlinks produces a Web graph the nodes of
which represent the documents, and the links represent the hyperlinks. The nodes in
such a graph can be labeled to describe properties and content of the associated docu-
ment. In the case of typical Web documents, one may represent the associated document
as a graph consisting of nodes representing sections of text encapsulated by HTML for-
matted elements, and links representing the encapsulation of the HTML formatted ele-
ments [7]. The nodes of this document graph may be labeled by a word graph consisting
of nodes which may represent the word token, or a set of word tokens, and links among
the nodes indicating the relationship between two sets of word tokens [11]. Now, say, in
a particular paragraph, there is a hyperlinked document linked to it. Such hyperlinked
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document in itself can be represented by a graph. This may be represented as a graph
within a node of the parent document. This is a graph of graphs (GoG) structure. Ob-
viously there is a possibility that the hyperlinked document also contains hyperlinks to
other documents, and these documents in turn, can be represented as graphs within the
nodes in the hyperlinked document graph. We note that a GoG is generally of a hybrid
nature since the graphs at different levels encode different relationships, and describe
different atomic elements. Hence, the GoG is an embedded hybrid graph whose com-
ponents may differ significantly in properties. For example the hybrid graph depicted in
Figure 1 features a Web graph which is a directed cyclic graph, XML graphs which are
tree structured, and a word graph which may be labeled and undirected.

To the best of our knowledge, there is currently no known approach to machine
learning which can directly encode such GoG structures. This paper proposes an ap-
proach to modeling such structures, and a supervised learning algorithm is proposed
by generalizing an existing supervised machine learning method, viz. backpropagation
through structures to encode such structures. The proposed method is recursive, in that
it will process one level after the other recursively from the innermost level to the outer-
most level, and, hence, it will be able to encode GoG structures to any finite depth (e.g.
in the case of Figure 1 the depth of the GoG structure is 3).

The structure of this paper is as follows: Section 2 introduces a formal description
of the GoG structure, and proposes a data driven approach to encode such structures.
Section 3 presents experimental results, and some observations on the limitations of the
approach. Finally, Section 4 concludes this paper and provides an outlook for further
research in this area.

2 Encoding graph of graphs

In this section a formal representation of GoG will be provided. Consider the following
situation: we have a node i in a graph with a neighbourhood N 0

[i], which consists of a
number of other nodes, where the superscript 0 denotes the topmost level, the parent
document level. The nodes in the neighbourhood N 0

[i] all have connections via links to
the node i. Each node is described by a set of features, and each link is described by
yet another set of features. Each node could have an external input. If we assume that
each node is described by an entity called state then node i is described by a state x0

i ,
an n0-dimensional vector, The state of node i can be described by Equation 1:

x0
i = F0

i (u0
i , C0(x0

N[i]
),x1

i ) (1)

where u0
i is the input to node i, F0

i (·, ·, ·) is a nonlinear vector function (which may
be considered a hyperbolic tangent function, or a sigmoid function), and C0 denotes
the connections from the neighbourhood N 0

[i] and the vector x1
i into the i-th node via

connecting links. x1
i is an n1-dimensional vector denoting the state 5 of the graph which

is attached to the i-th node. In other words, here we assume an additive model, in which
the (state of the) graph attached to a node i is assumed to be an additional input to the

5 Here we abuse the notion of state x1 for simplicity sake. The state here can be the output of
the graph, or the concatenation of the individual states of the nodes in the child graph.
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node i. The state x1
i is described similarly as follows:

x1
i = F1

i (u1
i , C1(x1

N[i]
),x2

i ) (2)

where x1
i denotes the level 1 state 6, that is the state of the graph (or output of the graph)

representing the child document of the i-th node; u1
i denotes the input into the level 1

node; F1
i denotes a nonlinear vector function; C1 denotes the connections into the node

i in the child graph; and x2
i denotes the state of the child graph associated with node i

in level 1. From Eq. (1) and Eq. (2) the recursive nature of the approach becomes clear.
The recursion stops at the maximum level of encapsulation of graphs. If we assume that
there are k levels, then the k-th level will be described by the following equation:

xki = Fki (uki , Ck(xkN[i]
)) (3)

At the k-th level by assumption there will not be any inputs from the graph within
the node i. Thus k denotes the terminal level; the depth of the GoG structure. Then, a
mapping from the state space to the output space takes place as follows:

o0
i = G0

i (u0
i ,B(x0

i )), (4)

where B denotes the configuration of the state vector x0
i with the output vector o0

i .
The output can then be compared to an associated target value, and a gradient descent
method can be applied to update the system with the aim to minimize the squared
difference between network output and target values. It is noted that similar equations
to Eq. (4) can be written to provide an output to any of the k levels.

Note that Eq. (4) is suitable for node focused applications. With node focused ap-
plications, a model is required to produce an output for any node in a graph. In contrast,
graph focused applications require one output for each graph. In the literature, a graph
focused behaviour of such systems is achieved by either selecting one node (i.e. the root
node) to be representative for the graph as a whole [1, 2], or by producing a consolidated
mapping from all states [6]. The same principles can be applied here. It is important to
note that the model at any level other than level 0 are graph focused ones since the state
of the graph (as a whole) which is associated to a given node i is forwarded as an input
to node i. In contrast, the model at level 0 can be either a graph focused one or a node
focused one depending on the requirements of the underlying learning problem.

It is trivial to observe that the GoG model accepts the common graph model as a
special case. Indeed, if k = 1, this collapses to the standard graph model considered
in [6]. Since the graph model in [6] contains the time series as a special case (a tree),
and hence one may observe that the GoG model may be considered as the most general
graph model formulated to represent objects so far. An MLP can be used to compute
the states in each layer. Hence, the model consists of k MLPs which have forward (and
backward) connections to the MLP at the next level.

6 Again we abuse the notion of state here, as it can represent either the output of the child graph
associated with node i in level 0, or the concatenation of the individual states of the nodes in
the child graph.
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Once the GoG model is expressed in recursive form as shown in Eqs. (1) to (3), then
it is quite clear how the unknown parameters 7 in the model can be trained using the
standard backprop algorithm. The training algorithm can be stated as follows:

Step 0 Initialization. The parameters in the model are initialized randomly.
Step 1 From the deepest level k compute the state, and progressively compute the states

in levels k − 1, k − 2, . . . , 0.
Step 2 Compare the outputs at the topmost level 0 with those of the desired ones, and

form an error function.
Step 3 Backprop the error from the topmost level through the levels until we reach the

innermost level k and update the parameters of the model in the process.

Step 1 through to step 3 are repeated for a limited number of times, or until the sum
of squared errors is below a prescribed threshold, then the algorithm stops.

This algorithm while much more complex in terms of notations and concepts, nev-
ertheless is in the same spirit as the backprop through structure algorithm. Hence we
will call this algorithm backprop through structures, though in this case, it is the levels
that one is concerned with.

3 Experiments

The proposed approach is applied to a real world problem involving hyperlinked docu-
ments. The experiments are carried out as part of a participation at the INEX (INitiative
for the Evaluation of XML Retrieval) competition on semi-structured document mining
for the purpose of classification (the INEX 2009 competition). The dataset provided
by INEX is a collection of XML formatted documents from the online encyclopedia,
Wikipedia. The documents are interlinked via a xref or hyperlink structure. INEX has
provided a subset of Wikipedia for the classification task. The dataset consists of 54, 889
documents. A target label is available for 11, 028 of these documents. Hence, these
11, 028 documents provide a supervising signal to the training algorithm. All remain-
ing 43, 861 are the test documents. The task is to classify the 43, 861 documents for
which no target is available. The documents are interlinked. However, we found that
only 54, 121 documents contain outgoing links. The maximum out-degree (the max-
imum number of outgoing links for any one document) for this dataset is 2, 382, the
maximum in-degree is 27, 518. the dataset contains a total of 4, 554, 203 links. For sim-
plicity, we removed redundant links (if a document contains several links to the same
document, then we count only one such link). The removal of redundant links reduced
the maximum out-degree quite significantly to 969, the maximum in-degree to 15, 027,
and the total number of links to 3, 368, 504. Each document can also be described by
the features extracted.

7 Here we assume that the function Fki is characterized by a set of parameters. For example,
if the encoding mechanism is a multilayer perceptron, then the unknown parameters will be
the strengths of connections from the inputs to hidden layer neurons. In the case if we use the
outputs then the set of parameters will include the strengths of connections from the hidden
layer neurons to output neurons. For simplicity, we will assume shared weight model, i.e. all
Fki in the same level k share the same set of weights.
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The result is a graph whose nodes represent the XML documents, and the links
represent the hyperlinks. The nodes can be labeled by a combination of the following
features:

– XML tag tree: Each document is XML formatted. XML is a language which de-
scribes the structure of a document, and is naturally represented by a XML (parsing)
tree. The tree consists of nodes which represent the XML tags, and links which rep-
resent the nesting of the tags. The nodes are labeled by an identifier which uniquely
identifies the associated tag. The way to extract the XML tree from XML docu-
ments is described in [9].

– XML tag graph: Each node in the graph represents a unique tag within the docu-
ment, and edges represent the relationship between tags. We then apply a common
procedure for processing text documents called “rainbow” [12, 9] on tags 8 and
compute the information gain for each with respect to different categories. Top 100
tags with highest information gain were selected and attached to the nodes in the
tag graph as node labels.

– Concept Link graph: Concept link graph [13] is a novel text representation
scheme which encodes the contextual information of a document using a graph
of concepts. Specifically, for a document d, it is represented as a weighted, undi-
rected graph d = {N, E} where N is the set of nodes representing the concepts, and
E is the set of edges representing the strength of association among concepts. The
ConceptLink graph extraction method is described in [13].

– Term frequency vector: INEX provided a Term-Frequency vector (presumably
obtained by the well-known Bag-of-Words algorithm). The i-th element of the vec-
tor lists the number of occurrences of the i-th dictionary word. Hence, the vector
encodes the textual content of a given document.

– Rainbow classification results: The well-known Rainbow software (which imple-
ments the Bag of Word algorithm) was used to classify the test documents over all
categories. That is, for each category, we split the training dataset into two classes,
one belonging to the category, while the other does not belong to the category.
In this manner, Rainbow can produce a probability vector for each test document
against all categories.

Thus, we considered to label the nodes in the hyperlink graph by either graphs
describing the document of the associated node, by a vector describing the content of
the same document, or both.

We extracted the XML structure for each of these documents, then attached the
XML structure as a label to the associated node in the hyperlink graph. Thus, there are a
total of 54, 575 XML structures. The maximum out-degree of any of the XML structures
is 1, 006, and the total number of nodes is 42, 668, 059. The latter is equivalent to the
total number of XML tags in the dataset. We removed redundant tags by consolidating
successively repeated XML tags and obtained a somewhat reduced XML graph with
a maximum out-degree of 533. We found that only very few XML trees have an out-
degree larger than 60. Hence, we truncated the out-degree to 60 since any algorithm
driven by back-propagation discards sparse information anyway.

8 Rainbow is a text classifier based on Naive Bayes approach.
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Alternatively, we extract concept link graph from each document in the dataset, and
used them as the bottom level graphs. Concept Link Graph is generated in three main
steps [13]. First, we discover a set of concepts by clustering related words extracted
from the training documents using self-organizing maps. Secondly, given the term clus-
tering result, for each paragraph in a document, we map every existing word to a concept
to which it belongs. Then we count the occurrence of every concept paragraph by para-
graph. Given the paragraph-based occurrence statistics, we represent each document
using a concept-paragraph matrix. Finally, singular value decomposition (SVD) is ap-
plied to the concept-paragraph matrix to compute a concept-concept association matrix.
Formally speaking, given a matrix A as a concept-paragraph matrix of m concepts and
n paragraphs, decomposingA using SVD returns (UΣV )T , where U and V are unitary
matrices and Σ is a diagonal matrix with elements arranged in a descending order of
magnitudes. Given the SVD result, Σ is interpreted as the “theme” matrix, where each
of its diagonal elements represents the strength of its corresponding theme, U is the
concept-to-theme relevance matrix and V is paragraph-to-theme relevance matrix. The
concept link graph is thus obtained by computing the concept-to-concept association
matrix AAT = UΣ2V T .

The (given) term frequency vector is of dimension 186, 723 which corresponds to
the 186, 723 dictionary words found in the dataset. There is one term frequency vector
for each document, and hence, this can also be used to label the nodes in the hyperlink
graph. The term frequency vector is very sparse because not every document contains
all dictionary words. We were able to reduce the dimensionality of the term frequency
vector to 439 by building a matrix of category and feature (the term), then counted the
number of documents which belong to a category containing the feature. We retained
only those features which exhibited standard deviation of larger than 10. We also used
another approach to reduce the term frequency vector: We computed the information
gain for each word in the dataset with respect to the different classes, then five words
with the highest information gain are selected per class. We ended up with 133 unique
words, thus producing a 133 dimensional feature vector.

The classification problem is defined by 39 classes. The classes are known to rep-
resent categories to which a document belongs. This produces a 39 dimensional target
vector containing binary elements. Note that the target vector may contain several non-
zero elements. This indicates that the corresponding document can belong to several
categories. We note also that the distribution of the different categories is not balanced
(See Table 1). The largest category contains 1, 337 documents, the smallest category
contains 191 documents, and the average number of documents per category is 414.

As a result, this dataset is described by a GoG which is similar as was depicted in
Figure 1, and is consisting of two levels:

– Level 0: One graph per document, describing the structure, contents or other prop-
erties within the document.

– Level 1: One graph where documents are nodes, connected via links representing
the hyperlinks between documents.

We trained the proposed machine learning method on the resulting GoG, and var-
ied the labeling mechanisms as is illustrated in Table 2 to identify the impact of these
features on the classification performance. We also varied the number of state neurons
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Table 1. The number of documents belonging to the 39 different categories is unbalanced

History Space World War I Weather Philosophy Religion Physics
534 490 262 222 275 438 271
Video games Saints Tropical cyclones Politics Cricket Food Trains
224 299 302 386 241 200 1337
Chess Chemistry Medicine War Literature Baseball Christianity
199 191 236 963 971 286 270
Astronomy Horror Pornography Geography Nautical Catholicism Music
216 280 220 216 232 1240 351
Science Anarchism Architecture Bible Business Aviation Biography
205 349 336 380 207 595 1053
Comics Formula One American Civil War Pharmacy
522 319 329 518

and hidden layer neurons to identify the impact of the number of internal network pa-
rameters on the classification performance. We also allowed the model to use some
mechanisms based on a balanced training dataset in order to improve the results: Bal-
ance dataset (See Section 3.1) and label-to-out approach (See Section 3.2).

3.1 Balancing labeled data
The labeled data is not balanced among different categories. This is known as a desir-
able problem is machine learning due to noise tolerant abilities of such systems. In order
to suitably encode a learning problem which features classes which are much smaller
than other classes, then counter measures need to be taken so as to avoid that the net-
work dismisses small classes as noise. In order to avoid this, it is useful to balance
the distribution of train samples. Since this is a multiple categories task, the traditional
methods for balancing data is not applicable. Instead of complementing the number
of samples from smaller classes, we modified the error back-propagation algorithm by
altering the error which is propagated back during training as follows: For each train
sample, the network produced an output vector which has dimension as the number
of categories available, and each element in the vector represents the output for corre-
sponding category. Originally for each element i in the vector, the error εi = oi − ti
is computed. In order to balance train samples from category i, εi can be revised by
using number of negative samples Nn and number of positive samples Np for category
i, there are two alternative ways which have the same effect on the training algorithm:

1. Method 1: if ti = 1, then εi = (oi − ti)×Nn; if ti = 0, then εi = (oi − ti)×Np
2. Method 2: if ti = 1, then εi = (oi − ti)÷Np; if ti = 0, then εi = (oi − ti)÷Nn

3.2 Label-to-out Approach
We further considered a slight modification of the proposed algorithm, namely the ad-
dition of direct links between node label and the output layer 9. This additional layer of

9 There is evidence in the multilayer perceptron situation that a direct feedforward input to the
output can improve the overall performance of the multilayer perceptron [14]. In the case of

374



Table 2. List of all input data files used for training

ID Description
1 document-link graph. maxout=2382, maxin=27518, nodelabel=439 (reduced tfidfn vector)
2 document-link graph. maxout=2382, maxin=27518, nodelabel=133 (word counts)
3 document-link graph. maxout=969, maxin=15027, nodelabel=133
4 GoGs. Level 0: tag graphs, maxout=195, nodelabel=1 (tag id); level 1: document-link graph,

maxout=969, maxin=15027, nodelabel=encoding of level 0 tag graphs.
5 GoGs. Level 0: tag graphs, maxout=52, nodelabel=39 (tag information gain); level 1:

document-link graph, maxout=969, maxin=15027, nodelabel=encoding of level 0 tag
graphs.

6 GoGs. Level 0: tag graphs, maxout=52, nodelabel=39 (tag information gain); level 1:
document-link graph, maxout=969, maxin=15027, nodelabel=encoding of level 0 tag
graphs+133(word counts).

7 GoGs. Level 0: concept link graph, maxout=41, nodelabel=51; level 1: document-link graph,
maxout=969, maxin=15027, nodelabel=encoding of level 0 tag graphs+39 dimensional label
from classification results of rainbow for each category respectively (NaiveBayes).

8 GoGs. Level 0: concept link graph, maxout=41, nodelabel=51; level 1: document-link graph,
maxout=969, maxin=15027, nodelabel=encoding of level 0 tag graphs+39 dimensional la-
bel from classification results of rainbow for each category respectively (NaiveBayes with
logarithm normalization).

network weights allows the treatment of labels as independent vectors. The effect is a
bias input to the output layer, one for each node in the graph. Note that this approach
only affects the level 1 graph when the nodes have been produced by rainbow. By us-
ing this label-to-out approach, we anticipate that the difficulty of the training task will
become simpler to encode by the network. The assumed was confirmed by experimen-
tal results. The label-to-out approach and the GoGs of concept link graphs (shown as
experiment 7 in Table 3) allowed us to obtain the best results so far: MAP= 0.68.

3.3 Results
Training performance is evaluated according to two measures: the MAP (mean of the
average precision) with respect to the document and the Macro F1 score.

– MAP, the mean of the average precision with respect to each document. This mea-
sure is used to evaluate whether the system is capable of retrieving highly relevant
categories first. For each document i, we obtain a list of relevant categories by sort-
ing the scores in an ascending order of magnitudes, and then compute:

AvgPi =
∑N
r=1(P (r)× rel(r))

Nrelevant
(5)

MAP can be in turn computed as:

MAP =
∑
iAvgPi
n

, (6)

a direct state to output connection as suggested here, there is yet a formal proof that this will
produce improved results.
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Table 3. Results by using different training configuration

Training Configuration MAP PRF ROC ACC
mean macro micro macro micro macro micro

1 graph 6; state=20, hidden=15, outhidden=20,
output=10; rprop; seed=45

0.125 0.07 0.10 0.59 0.59 0.03 0.05

2 graph 6; state=20, hidden=15, outhidden=20,
output=10; weight control; rprop; seed=45

0.138 0.19 0.21 0.62 0.61 0.91 0.89

3 graph 6; state=15, hidden=10, outhidden=15,
output=5; weight control; seed=3

0.129 0.06 0.10 0.51 0.51 0.11 0.12

4 graph 3; state=10, hidden=8, outhidden=6, out-
put=39; balance method 1; seed=37

0.10 0.07 0.10 0.55 0.56 0.13 0.16

5 graph 3; state=30, hidden=20, outhidden=15,
output=39; balance method 1; seed=1

0.208 0.07 0.10 0.63 0.62 0.03 0.05

6 graph 3; state=10, hidden=8, outhidden=6, out-
put=39; balance method 2; seed=9

0.192 0.06 0.09 0.50 0.51 0.13 0.14

7 graph 8; state=6, hidden=8, outhidden=10, out-
put=15; jacobian control; seed=91; label-to-out

0.68 0.48 0.51 0.83 0.85 0.95 0.93

where n is the total number of documents evaluated.
– Macro F-measure score, which is the evenly weighted precision and recall rates.

For each category c, we computed:

Fc =
2× (Pc ×Rc)
Pc +Rc

(7)

then we averaged the F-measure scores for all categories and obtain the Macro
F-measure scores.

A range of network architectures and training parameters were tried on this training
task. A selection of these are given by Table 3. The main observations are as follows:

– Using label-to-out approach has improved the performance significantly. This in-
dicates that the additional bias is effective in simplifying the given learning task.
The simplification arises out of the fact that some features can influence the net-
work output directly without having to travel through the relatively deep network
architecture (the unfolded iteration network).

– Larger network is required to produce better results. The more neurons a network
features, the more parameters are available to encode a given learning problem.
The need for relatively large number of parameters indicates that given learning
problem is non-trivial.

– Weight control through a Jacobian control mechanism helped to produce better
results. This weight control mechanism can aid the training procedure by restricting
the movement of weight changes such that the size of weight adjustments remains
within a limited range. This aids the stability of the weights during the training, and
hence, can result in a general improvement in the quality of the training procedure.

A comparison with other approaches submitted by other groups to this classification
problem is given in Table 4. In this comparison, it can be seen that the proposed GoGs
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Table 4. INEX2009 XML classification task results

Submission MAP PRF ROC ACC
mean macro micro macro micro macro micro

University of Wollongong 0.681 0.479 0.513 0.829 0.849 0.947 0.925
University of Peking 0.702 0.48 0.518 0.842 0.85 0.962 0.948

Xerox Research Center 0.678 0.571 0.6 0.748 0.765 0.974 0.963
University of Saint Etienne 0.788 0.53 0.564 0.937 0.935 0.974 0.962

University of Granada 0.642 0.50 0.53 0.802 0.819 0.952 0.933

Table 5. Best classes

Category Correct Counts Total Counts Percentage
Portal:Pharmacy and Pharmacology 2490 2630 0.9468
Portal:Comics 2343 2583 0.9071
Portal:War 4193 4712 0.8899
Portal:Literature 4051 4688 0.8641
Portal:Trains 5487 6352 0.8638

approach produced a very reasonable performance. We are in fact very please by these
results since these are preliminary results on a system which is still under development.

Table 5 and Table 6 list the categories for which we obtained the best classification
result and worst classification result respectively. It can be seen that the better results are
generally be obtained for larger classes. Given that we used ways to balance the dataset,
and hence, this indicates that the smaller classes in the training set do not sufficiently
well cover the problem domain.

4 Conclusions

In this paper, we have deployed a new idea, the graph of graphs model in modeling
the connections among the linked documents in the XML dataset. This is quite a novel
idea in that it allows us to extend the idea first discussed in graph neural networks
[7] which can only be used to describe a single document. A GoG model can be used
to model the linked set of documents by considering each document as a graph, and
the linkages among the graphs are modeled as links which connecting the documents.
Using an extension of the back propagation through structure algorithm, we were able
to model the set of documents given in the training dataset as GoG models. This GoG
model when combined with two sets of mechanisms: a balanced training dataset, and a

Table 6. Worst classes

Category Correct Counts Total Counts Percentage
Portal:Pornography 477 1041 0.4582
Portal:Science 524 1101 0.4759
Portal:Nautical 570 1182 0.4822
Portal:Chess 517 1010 0.5119
Portal:Architecture 949 1777 0.534
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label-to-out approach produced very reasonable performance when compared to those
obtained by other research groups.

For future work, it is possible to vary some of the parameters in the GoG model,
especially the number of state neurons in the model. This state information captures the
past information in the training process. A larger number of state neurons will provide
a richer model for the information contained in the documents, while a small number
of state neurons will compress the information contained in the documents.

Acknowledgment: This work received financial support from the Australian Research
Council through Discovery Project grant DP0774168 (2007 - 2009).
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Abstract. This paper presents the approach used to cluster XML documents in 
the XML Mining track at INEX 2009. A Multi-feature model (MFM) is built 
using the structural features and the corresponding content features of the XML 
documents. The model is then decomposed and the decomposition factors are 
used in deriving the clustering solution. Due to the very large size of the corpus 
and the presence of multiple features, the size of the MFM was very large. 
Hence, applying decomposition technique on these large MFMs to derive 
clustering solution was computationally very expensive and hence 
dimensionality reduction techniques were applied.  
 
Keywords:  Multi-feature model, Clustering, XML document mining, INEX, 
Wikipedia, Frqeuent subtrees, Structure and content. 

1 Introduction 

The XML Mining track included two tasks namely classification and clustering. 
Classification task labels the XML documents in the collection into known categories 
using training dataset. On the other hand, clustering is an unsupervised learning and it 
groups the documents without any knowledge of categories. INEX 2009 clustering 
task consisted of two corpuses namely the entire collection and the subset collection 
with 2,666,190 and 54,575 documents respectively. There were two types of 
evaluation used, standard criteria and collection-selection. Purity, entropy, F-score 
and Normalised Mutual Information were used as the standard criteria to evaluate the 
submissions. In the collection-selection goal, the clustering solutions were evaluated 
to determine the quality of cluster relative to the optimal collection selection goal, 
given a set of queries. The required number of clusters to be submitted were 100, 500, 
1000, 2500, 5000 and 10000. 
     In this paper, we utilise a novel approach for clustering XML documents which 
involves consideration of two document input features or aspects, namely structure 
and content, for determining the similarity between them. The corpus includes both   
semantic and syntactic tags. These tags representing the structure of the XML 
documents are used to store the content. Hence, to derive meaningful clustering 
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results, it is essential to utilize both these XML document features. Most of the 
existing approaches do not focus on utilizing these two features due to increased 
computational storage and processing.  Therefore, this study not only combines the 
structural and the content features of XML documents in Multi-feature model(MFM) 
effectively but also utilises an approach that helps to reduce the dimensions for 
clustering without considerable loss in accuracy.  
     In this paper, we model the XML documents in MFM space but the dimensionality 
of these models is quite large due to the size and nature of the corpus. Hence, we 
apply dimensionality reduction using random projection. Then decompositions are 
applied on the reduced search space and clustering solutions are derived. 

2 An Overview 

As illustrated in Fig.1, there are three major phases in the approach that we have 
adopted for the INEX 2009 Document Mining Challenge corpus. The Phase-I is the 
pre-processing of XML documents to represent their structure. Each XML document 
in the INEX Wikipedia corpus is parsed and modeled as a rooted labeled ordered 
document tree. Each document tree contains nodes which represent the tag names. A 
frequent subtree mining algorithm is then applied to extract the common structural 
features from these document trees in the corpus. The content corresponding to every 
subtree in the XML document is then extracted. 
 

 

 
 
 
 

 

      
 
 
 
 
 
     In Phase-II, the structure and the content for every document is represented in the 
three-feature model – Doc X Subtree X Term, where Term represents the terms 
corresponding to the Subtree in the XML document, Doc in the given corpus. Each 
cell in the model represents the number of occurrences of the terms for the given 
subtrees in a given XML document. This model is then used in the final phase to 
compute the similarity between the XML documents for the clustering the corpus.   
 
 

Phase-II 

Multi-feature modelling and 
decomposition 

Build the 
multi-feature 
model 

Apply 
decomposition 
on the multi-
feature  model 

 
 
 
Clustering 

Phase-I 

Pre-processing and extraction of common structural 
and content information 

Extract the content 
information 
corresponding to 
the common or 
frequent subtrees 

 

XML 
documents 

Extract the 
common structural 
information in the 
form of sub-trees 

Fig. 1. Overview of the clustering method. 
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Abstract. This paper1 reports our experiments carried out for the INEX
XML Mining track 2009, consisting in developing categorization meth-
ods for multi-labeled XML documents. We represent XML documents
as vectors of indexed terms. The purpose of our experiments is twofold:
firstly we aim to compare strategies that reduce the index size using
an improved feature selection criteria CCD. Secondly, we compare a
thresholding strategy (MCut) we proposed with common RCut, PCut

strategies. While the way we reduced the index size leads to bad results,
we obtain good improvements with the MCut thresholding strategy.

1 Introduction

This paper describes the participation of Jean Monnet University at the INEX
2009 XML Mining Track. For the categorization task (or classification), given a
set of categories, a training set of preclassified documents is provided. Using this
training set, the task consists in learning the classes’ descriptions in order to be
able to classify a new document in the categories.

One main difference in the collection of documents provided in INEX 2009
relatively to INEX 2008 lies in the overlapping of the categories and in their
dependencies [1, 2]. When each document belongs to one and only one cate-
gory in INEX 2008, it can belong to several categories in INEX 2009. With the
imbalance between the categories, their overlapping poses new challenges and
gives opportunities for design machine learning algorithms more suited for XML
documents mining.

In this article, we focus on the selection of the set of classes that will label
a document for this multi-label text categorization. We explore two approaches.
The first one uses a binary classifier which considers one category against the
others. The algorithm returns two answers (yes or no) used to decide whether
the document belongs or not to this category. In that case, the selection of a
set of words characteristic of the category can be essential for improving the
performance of the algorithm. Our first contribution to Inex 2009 consists in an
improvement of the selection criteria that we have introduced in INEX 2008 and

1 This work has been partly funded by the Web Intelligence project (région Rhône-
Alpes, cf. http://www.web-intelligence-rhone-alpes.org).
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which permitted to get the best results of the competition while reducing the
index size [3]. The second approach uses a multi-label classifier which considers
simultaneously all the categories. Given a document, the classifier returns a score
(i.e. a numerical value), for each category. In the context of single label classifi-
cation in which one and only one class must be attributed to each document the
decision rule is obvious: it consists to return the class corresponding to the best
score. On the contrary, in multi-label categorization, this approach raises the
question of the number of classes that must be assigned to each document. In
this article, we propose a thresholding strategy for selection of candidate classes
and we compare it with the commonly used methods PCut and RCut [8, 5].
In the aim of introducing our notations, a brief presentation of the vector space
model (VSM [6]), used to represent the documents, is given in section 2, the
selection features criteria is defined in the following section. The thresholding
strategy for selection of candidate classes is presented in section 4. The runs and
the obtained results are detailed in sections 5 and 6.

2 Document model for categorization

2.1 Vector space model (VSM)

Vector space model, introduced by Salton and al. [6], has been widely used for
representing text documents as vectors which contain terms weights. Given a
collection D of documents, an index T = {t1, t2, ..., t|T |}, where |T | denotes the
cardinal of T , gives the list of terms (or features) encountered in the documents
of D. A document di of D is represented by a vector di = (wi,1, wi,2, ..., wi,|T |)
where wi,j is the weight of the term tj in the document di. In order to calculate
this weight, TF.IDF formula can be used.

2.2 TF: term representativeness

TF (Term Frequency), the relative frequency of term tj in a document di, is
defined by:

tfi,j =
ni,j∑
l ni,l

where ni,j is the number of occurrences of tj in document di normalized by the
number of terms in document di. The more frequent the term tj in document
di, the higher is the tfi,j .

2.3 IDF: discriminatory power of a term

IDF (Inverse Document Frequency) measures the discriminatory power of the
term tj . It is defined by:

idfj = log
|D|

|{di : tj ∈ di}|
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where |D| is the total number of documents in the corpus and |{di : tj ∈ di}|
is the number of documents in which the term tj occurs at least one time. The
less frequent the term tj in the collection of documents, the higher is the idfj .

The weight wi,j of a term tj in a document di is then obtained by combining
the two previous criteria:

wi,j = tfi,j × idfj

The more frequent the term tj is in document di and the less frequent it is
in the other documents, the higher is the weight wi,j .

3 Criteria for features selection

3.1 Category Coverage criteria (CC)

In the context of text categorization, the number of terms belonging to the index
can be exceedingly large and all these terms are not necessarily discriminant
features of the categories. It is the reason why it can be useful to select a subset
of T giving a more representative description of the documents belonging to each
category. For this purpose, we proposed in a previous work a selection features
criteria, called coverage criteria CC and based on the frequency of the documents
containing the term [3]. In observing that the higher the number of documents
of category ck containing tj , the higher is fk

j , CC is defined by:

CCk
j =

dfk
j

|ck|
∗

fk
j∑

k fk
j

CCk
j =

(fk
j )2

∑
k fk

j

where dfk
j designed the number of documents in the category ck in which

the term tj appears, and fk
j , the frequency of documents belonging to ck and

including tj :

dfk
j = |{di ∈ ck : tj ∈ di}|, k ∈ {1, ...r} (1)

fk
j =

dfk
j

|ck|
(2)

If the value of CCk
j is high, then tj is a characteristic feature of the category

ck.
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3.2 Difference Category Coverage criteria (CCD)

The previous criteria considers only the coverage of the category by one term but
it does not take into account the coverage of the other categories. The difference
of category coverage permits to overcome this drawback. Thus, the Category
Coverage Difference CCD is defined by :

CCDk
j = (CCk

j − CC k̄
j )

where

CC k̄
j =

(f k̄
j )2

fk
j + f k̄

j

with

f k̄
j =

df k̄
j

|D| − |ck|

and
df k̄

j = |{di ∈ D ∧ di /∈ ck : tj ∈ di}|, k ∈ {1, .., r}

As previously, if the value of CCDk
j is high, then tj is a characteristic feature of

the category ck.
The CC and CCD criteria can be used for multi-label text categorization by

binary classifier. For each category and consequently each classifier, they permit
to reduce the index to the set of words which are the most characteristic of this
category.

4 Thresholding strategies

When a multi-label algorithm is used in multi-label text categorization, one score
φ(di, ck) is produced by the classifier for each document-category pair (di, ck).
Given these scores, the problem consists to determine the set of classes L(di)
which must be attributed to each document di.
To solve this problem, different approaches have been proposed, which consist
in applying a threshold to the scores returned by the classifier. In RCut method,
given a document di, the scores (φ(di, ck), k = 1, .., r) are ranked and the t top
ranked classes are assigned to di. The value of the parameter t can be either
specified by the user or learned using a training set. In PCut method, given a
category ck, the scores (φ(di, ck), i = 1, .., |D|) are ranked and the nk top ranked
documents are assigned to the class with:

nk = P (ck) ∗ x ∗ r

where P (ck) is the prior probability for a document to belong to ck, r, is the
number of categories, and x is a parameter which must be estimated using an
evaluation set. A review of these methods can be found in [8, 5]
In PCut as well as in RCut, the performance of the classifier depends on the
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value of the parameter (t or x). The main advantage of the thresholding method
proposed in this article is that the threshold is automatically fixed.

This method, called M-Cut (for Maximum Cut) is based on the following
principle, explained graphically. Given a document di, the scores (φ(di, ck), k =
1, .., r) are ranked in decreasing order. The sorted list obtained is noted S =
(s(l), l = 1, .., r) where s(l) = φ(di, ck) if φ(di, ck) is the lth highest value in S.

Then, a graph of the scores in their decreasing order is drawned (i.e. s(l), l =
1, .., r in function of l). The value t retained as threshold is the middle of the
maximum gap for S. So, the clusters assigned to di are those corresponding to a
score φ(di, ck) higher than t : L(di) = {ck ∈ C/φ(di, ck) > t}.

This approach is compared with the RCut strategy in figure 1 for 2 doc-
uments, d1 on the left and d2 on the right. In RCut1 (resp. RCut2), the t
parameter is set up to 1 (resp. 2). For the document d1, the same set of classes is
affected by RCut1 and MCut, while RCut assigns one class more. In the second
case, the set of affected classes is different. while d2 belongs to 1 class (resp. 2
classes) with RCut1 (resp. RCut2) strategy, it is associated to 3 classes with
MCut strategy.

Fig. 1. Illustration comparing RCut and MCut thresholdling strategies.

5 Experiments

5.1 Collection INEX XML Mining

The XML Mining collection is composed of about 54 889 XML documents of
the Wikipedia XML Corpus. This subset of Wikipedia represents 39 categories,
each corresponding to one subject or topic. This year, the collection is multi-
label and each document belongs to at least one category. In the XML Mining
Track, the training set is composed of 20% of the collection which corresponds
to 11 028 documents. On the training set, the mean of the number of category
by document is 1.46 and 9 809 documents belong to only one category.
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5.2 Pre-processing and categorization

The first step of the categorization approach that we propose, consists in a
pre-processing of the collection. It begins by the construction of the list all the
terms (or features) encountered in the documents of the collection. This index of
1 136 737 terms is built with the LEMUR software2. The Porter Algorithm [4]
has also been applied in order to reduce different forms of a word to a common
form. It still remains a large number of irrelevant terms that could degrade the
categorization, e.g.: numbers (7277, -1224, 0d254c, etc.), terms with less than
three characters, terms that appear less than three times, or terms that appear
in almost all the documents of the training set corpus. After their deletion, the
index size is reduced to 295 721 terms on all the documents and it will be noted T .
Depending on the category ck, Tk will correspond to the index only composed of
terms that appear in documents of the category ck. In order to reduce the index
size, we also define Tk1000

as the index of the category ck composed of the most
characteristic terms of category ck according to the CCD criteria introduced in
section 3. If CCDk

1000
corresponds to the best thousandth score obtained with

the CCD criteria for the category ck, Tk1000
is composed of all terms tj for which

CCDk
j is higher than CCDk

1000
. All the indexes definitions are summarized in

the table 1.

Index Definition

T = {tj ∈ di|di ∈ D}
Tk = {tj ∈ di|di ∈ D ∧ di ∈ ck}

Tk1000
= {tj ∈ Tk ∧ CCDk

j > CCDk
1000}

Table 1. Summary of all defined indexes.

The second step is the categorization step itself. The Support Vector Ma-
chines (SVM) classifiers are used for the categorization. SVM was introduced
by Vapnik for solving two classes pattern recognition problems using Structural
Risk Minimization principal[7]. In our experiments, the SVM algorithm available
in the Liblinear library3 has been used.

In the XML Mining Track, the final score (score(di, ck)) assigned to a doc-
ument di for the category ck has to be included in [0, 1] and has to be higher
than 0.5 if this document belongs to the category ck. When the SVM is used
as a multi-label classifier (noted multi − label), it provides a score φ(di, ck) for
each pair document - category (di,ck). In that case, the final score score(di, ck)
associated to di and ck corresponds to φ(di, ck) normalized. So, the final re-
sult, given di is a set of classes ordered by relevancy. When the SVM is used
as a binary classifier (noted uni − label), it provides, given a category ck, two
scores (φk(di, ck) and φk(di, c̄k)). In that case, the score score(di, ck) equals 1

2 Lemur is available at the URL http://www.lemurproject.org
3 http://www.csie.ntu.edu.tw/ cjlin/liblinear/ - L2 loss support vector machine primal
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if φk(di, ck) > φk(di, c̄k) and equals 0 otherwise for a document di. The final
result is a set of unordered classes.

5.3 Submitted runs

Run SVM Index
Thresholding Set of

Strategy classes

lahc 1 baseline multi − label T - singleton

lahc 2 binary uni − label T - unordered

lahc 3 binary Ik uni − label Tk - unordered

lahc 4 binary Ik 1000 uni − label Tk1000
- unordered

lahc 5 max multi − label T max ordered

lahc 6 pcut multi − label T pcut ordered

lahc 7 rcut 1 multi − label T rcut1 ordered

lahc 8 rcut 2 multi − label T rcut2 ordered

Table 2. Summary of our XML Mining experiments

In the context of multi-label text categorization, our aim was to evaluate on
one hand the influence of the features selection on the performance of the binary
classifier (runs lahc 2, lahc 3, lahc 4) and on the other hand the impact of the
thresholding strategies on the multi-label classifier (runs lahc 5, lahc 6, lahc 7,
lahc 8). We have submitted 8 runs based on different indexes and thresholding
strategies, summarized in table 2. Given the SVM score φ(di, ck), the first 4 runs
uses the unordered method to compute the final score score(di, ck) and the last
4 runs the ordered one.

The first run (lahc 1) corresponds to the baseline. This run only assigns
one category for each document. This category corresponds to the highest score
provided by the multi-label SVM classifier (multi − label).

In order to evaluate the influence of the selection features on the perfor-
mances, the three next runs consider the SVM as a binary classifier (uni− label)
employing different indexes. The index T (resp. Tk, Tk1000

) is tested with the
second run (lahc 2) (resp. lahc 3, lahc 4). The binary classifier can assign no
category to a document. In that case, for lahc 3 and lahc 4 runs, the category
ck provided by the baseline run (lahc 1) is affected to the document.

The last four runs exploit the different thresholding strategies detailed in
section 4. The fifth run (lahc 5) uses the MCut (resp. PCut, RCut1 and RCut2)
strategy. The run lahc 6 exploits the PCut strategy with x equals to the number
of documents in the test set divided by the number of categories.The run lahc 7
(resp. lahc 8) applies the RCut strategy using a parameter t fixed to 1 (resp. 2).
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Participant Run
Macro Micro Macro Micro Macro Micro

MAP Mean
ACC ACC ROC ROC PRF PRF

lhc lahc 5 max 0,968 0,952 0,936 0,934 0,549 0,578 0,788 0,820
lhc lahc 7 rcut 1 0,974 0,962 0,938 0,935 0,531 0,564 0,788 0,817
lhc lahc 6 pcut 0,973 0,961 0,927 0,925 0,548 0,563 0,748 0,816
lhc lahc 8 rcut 2 0,959 0,933 0,903 0,906 0,515 0,528 0,788 0,791

xerox nxQ.3.merge.tfidf 0,975 0,964 0,753 0,767 0,579 0,605 0,678 0,774
xerox netxQ.4.plus.tfidf 0,974 0,963 0,748 0,765 0,571 0,600 0,679 0,770
xerox nxQ.4.merge 0,974 0,963 0,748 0,765 0,571 0,600 0,679 0,770
peking 3 0,963 0,948 0,842 0,850 0,480 0,519 0,702 0,767
peking 2 0,963 0,948 0,842 0,850 0,480 0,518 0,702 0,767
peking 1 0,962 0,947 0,842 0,850 0,478 0,516 0,702 0,766
granada nb with links sub 0,952 0,934 0,802 0,820 0,500 0,530 0,642 0,756
granada nb sub 0,951 0,933 0,803 0,820 0,496 0,527 0,641 0,755

lhc lahc 1 baseline 0,974 0,962 0,721 0,743 0,531 0,564 0,685 0,749
granada orgate with links sub 0,848 0,819 0,928 0,927 0,316 0,360 0,725 0,700

lhc lahc 3 binary Ik 0,967 0,950 0,619 0,629 0,334 0,355 0,407 0,642
granada orgate sub 0,754 0,678 0,925 0,922 0,253 0,263 0,730 0,632

lhc lahc 2 binary 0,971 0,958 0,600 0,613 0,289 0,323 0,393 0,626
lhc lahc 4 binary Ik 1000 0,965 0,947 0,585 0,596 0,252 0,279 0,330 0,604

wollongon bpts2.f1.r3 0,913 0,892 0,625 0,619 0,192 0,218 0,138 0,576
wollongon bptsext.f1a.r3 0,131 0,160 0,558 0,561 0,072 0,103 0,100 0,264
wollongon bptsext.f1.r3 0,038 0,055 0,632 0,623 0,071 0,102 0,208 0,253
wollongon bpts2.f1a.r3 0,038 0,055 0,598 0,599 0,071 0,102 0,125 0,244
wollongon bptsext.map.r3 0,137 0,141 0,506 0,513 0,065 0,096 0,192 0,243
wollongon bpts2.map.r3 0,115 0,123 0,511 0,510 0,070 0,101 0,129 0,238

Table 3. Summary of all XML Mining results
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6 Experimental results

All the results are summarized in table 3. We will firstly discuss results of our
baseline. Secondly we will detail the results concerning the selection features
criteria and finally those which exploit a thresholding strategy.

Baseline results (run: 1). On table 3, our baseline results are quite good
if we compare them to other participant results. As this run limits the number
of affectations, it also reduces the number of errors and that is why this is our
best run for the ACC criteria. As we only consider a binary score (unordered),
ROC and MAP criteria are not very good since they take into account the order
of returned categories. The PRF criteria, that combines precision and recall, is
not very high. That means that we should have a correct precision, but a very
low recall because this run considers only one category by document.

Features selection runs (run: 2, 3, 4). All the runs, that use thresholding
strategies, permit globally to improve the baseline results. Runs 2, 3 and 4 aim to
evaluate the influence of the index size using different binary classifiers for each
category. As we can see on table 3, all these runs are worse than our baseline
for all evaluation criteria. On average on the different evaluation criteria, run 3
is better than runs 2 and 4.

We can conclude that the index reduction is not satisfying and has to be
improved. The first idea is to come back to the strategy proposed in INEX 2008
and which consists to define a global index by union of the categories’ indexes
∪k∈CTk1000

. The second idea is to use a different number of terms depending on
the category.

Thresholding strategy runs (run: 5, 6, 7, 8). The accuracy criteria
(ACC) is in favour of runs which limit the number of affectations. Indeed, if we
use a model that assigns no category to the documents, it will obtain a Macro
ACC of 0,963. It is the reason why, our baseline run (run 1) and the rcut1
strategy, which affect only one category, obtain the best accuracy over all our
runs. In run 5, 6 and 8 several categories can be assigned to one document, and
for this reason,we observe a decrease of the accuracy. The run 8 is globally worse
than the others because two classes are systematically affected to each document
while the average number of categories by document, estimated on the training
set, is around 1.46.

On average, run 5 is the best of our runs. It is the best for the PRF criteria
and it provides the same results as runs 7 and 8 for the MAP criteria since there
is only the thresholding strategy that changes. Concerning the ROC criteria,
it is slightly worse (Macro: 0.936, Micro: 0.934) than the run 7 (Macro: 0.938,
Micro: 0.935).

7 Conclusion

In this article, we focused on the selection of the set of classes that will label
a document for the multi-label text categorization. We propose a thresholding
strategy, called MCut. The results obtained on the Inex XML Mining collection
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are encouraging. This method is compared to the commonly used approaches
RCut and PCut. Rcut1 and RCut2 give also quite good results but they have the
drawback to impose a predefined number of categories by document. Contrary
to RCut, the number of categories for each document could be different with
the PCut strategy. However, this method is not suitable if we want to know the
category of a new single document. So, MCut seems to be a good choice because
it does not make hypothesis on categories distributions and does not impose the
number of category per document.
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Abstract. The aim of this paper is to use unsupervised classification
techniques in order to group the documents of a given huge collection
into clusters. We approached this challenge by using a simple iterative
clustering algorithm (K-Star) in a recursive clustering process over sub-
sets of the complete collection.

The obtained results are good with respect to different baselines pre-
sented in the INEX 2009 clustering task.

1 Introduction

The INEX 2009 clustering task was presented with the purpose of being an eval-
uation forum for providing a platform to measure the performance of clustering
methods over a real-world and high-volume Wikipedia collection.

Clustering analysis refers to the partitioning of a data set into subsets (clus-
ters), so that the data in each subset (ideally) share some common trait, often
proximity, according to some defined distance measure [1,2,3].

Clustering methods are usually classified with respect to their underlying
algorithmic approaches: hierarchical, iterative (or partitional) and density-based
are some possible categories belonging to this taxonomy. In Figure 1 we can see
the taxonomy presented in [4].

Hierarchical algorithms find successive clusters using previously established
ones, whereas partitional algorithms determine all clusters at once. Hierarchical
algorithms can be agglomerative (“bottom-up”) or divisive (“top-down”); ag-
glomerative algorithms begin with each element as a separate cluster and merge
the obtained clusters into successively larger clusters. Divisive algorithms begin
with the whole set and proceed to divide it into successively smaller clusters.
Iterative algorithms start with some initial clusters (their number either being
unknown in advance or given a priori) and intend to successively improve the
existing cluster set by changing their “representatives” (“centers of gravity” or
“centroids”), like in K-Means [3] or by iterative node-exchanging (like in [5]).
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Fig. 1. A taxonomy of clustering methods as presented in [4] (Reproduced with
permission of the author).

In this paper we report the obtained results when the iterative K-Star method
was applied to the INEX2009 SUBSET collection. Therefore, the complete de-
scription of this clustering method is given in the following section.

2 The K-Star clustering method

K-Star [9] is a clustering method which automatically reveals the number of
clusters, unknown in advance. As the most of the clustering methods, it requires
a similarity matrix of the documents to be clustered (corpus. The algorithm
follows as shown in Figure 2.

1. It looks for the maximum value in the similarity matrix ϕ(di, dj), and constructs a
cluster (Ci) made up of the two documents this similarity value refers to. It marks
these documents (di and dj) as assigned.

2. For each unassigned document (dk)
– If ϕ(dk, di) > τ , where τ is a given threshold, then add dk to cluster Ci and

mark dk as assigned.
3. Return to Step 1

Fig. 2. The K-Star Clustering Method

In this work, we have used a canonic threshold τ defined as the average of
the values in the similarity matrix which were calculated as described in the
following section.

392



3 The similarity matrix

We assume that the complete document clustering task may be carried out by
executing at least the following three steps: (1) document representation; (2)
calculus of a similarity matrix which represents the similarity degree among
all the documents of the collection; and (3) clustering of the documents. In
particular, the construction of the similarity matrix was carried out by means
of the TF-IDF measure which is described into detail as follows.

The Term Frequency and Inverse Document Frequency (tf -idf) is a statistical
measure of weight often used in natural language processing to measure how
important a word is to a document in a corpus, using a vectorial representation.
The importance of each word increases proportionally to the number of times a
word appears in the document (frequency) but is offset by the frequency of the
word in the corpus. In this document, we will refer to the tf -idf as the complete
similarity process of using the tf -idf weight and a special similarity measure
proposed by Salton [8] for the Vector Space Model, which is based on the use of
the cosine among vectors representing the documents.

The tf component of the formula is calculated by the normalized frequency
of the term, whereas the idf is obtained by dividing the number of documents
in the corpus by the number of documents which contain the term, and then
taking the logarithm of that quotient. Given a corpus D and a document dj

(dj ∈ D), the tf -idf value for a term ti in dj is obtained by the product between
the normalized frequency of the term ti in the document dj (tfij) and the inverse
document frequency of the term in the corpus (idf(ti)) as follows:

tfij =
tf(ti, dj)

∑|dj |
k=1

tf(tk, dj)
(1)

idf(ti) = log

(

|D|

|d : ti ∈ d, d ∈ D|

)

(2)

tf -idf = tfij ∗ idf(ti) (3)

Each document can be represented by a vector where each entry corresponds
to the tf -idf value obtained by each vocabulary term of the given document.
Thus, given two documents in vectorial representation, di and dj , it is possible
to calculate the cosine of the angle between these two vectors as follows:

Cosθ(
−→
di ,

−→
dj ) =

−→
di ·

−→
dj

∥

∥

∥

−→
di

∥

∥

∥

∥

∥

∥

−→
dj

∥

∥

∥

The complete description of the implemented approach is given in the fol-
lowing section.
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4 Description of the approach

In order to be able to cluster high volumes of data, we have approached a simple
clustering technique based on partitioning of the complete document collection.
The process followed is presented in Figure 3, whereas a scheme of the same
process is given in Figure 4.

1. Eliminate all those terms whose frequency is lower than 3
2. Represent each document according to TF-IDF
3. Let D be the complete document collection
4. While Loop ≤ MAX ITERATIONS

– Split D into subsets Di made of 100 documents
– For each subset Di

• Calculate de similarity matrix Mi of Di using the cosine measure
• Apply the K-Star clustering method to Mi in order to discover k clusters

(CLoop,k)
– End For
– If (Loop > 1)

• Let CF inal,j = CLoop,j

S

C(Loop−1),j′ , where CLoop,j

T

C(Loop−1),j′ ≥ 1
– End If
– Select a representative document Rj for each cluster CLoop,j obtained
– Let D be the set of documents Rj , i.e., only those that represent each cluster

obtained
– Loop = Loop + 1

5. End While
6. Output the set of clusters CF inal

Fig. 3. Algorithm used for clustering the INEX2009 SUBSET with K-Star

The obtained results are presented and described in the following section.

5 Experimental results

The clustering task of INEX 2009 evaluated unsupervised machine learning so-
lutions against the ground truth categories by using standard evaluation criteria
such as Purity, Entropy and F-score.

Even if the complete description of the dataset used in the clustering task of
INEX 2009 will be given in the track overview paper, we may describe general
features of this corpus.

The INEX XML Wikipedia collection used in our experiments is a subset
of the complet corpus. This subset contains 54,575 documents pre-processed
in order to provide various representations of the documents. The aim of this
pre-processing was to enable the participation of different teams with minimal
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Fig. 4. Two step approach of BUAP Team at the INEX 2009 clustering task

overheads in data-preparation the collection. It was provided, for instance, a bag-
of-words representation of terms and frequent phrases in a document, frequencies
of various XML structures in the form of tags, trees, links, named entities, etc.

We approached three different representations of data: unigram stems, bi-
grams and bigram stems which were executed in order to observe the K-Star
clustering method performance.

In Tables 1 and 2 we may see the obtained results of the three BUAP ap-
proaches with respect to two baselines, one random assignment (random-54575)
and one ground truth over 73,944 and 12,803 YAGO categories, respectively. At
least one approach shows a high Micro and Macro Purity

Table 1. Purity of the INEX09 SUBSET clustering evaluation using 73,944
YAGO categories (all YAGO categories)

Run ID Description Clusters Micro Purity Macro Purity

24 random-54575 54575 1.0 1.0
11 ground truth for 73,944 YAGO categories 73944 0.9999 1.0
67 KStar method Bigrams 35569 0.6812 0.8968
65 KStar method Unigram Stems 7019 0.1894 0.6399
66 KStar method Stems Bigrams 6961 0.1883 0.6350

Tables 3 and 4 present the K-Star performance with respect to entropy. In
general the three aproaches show low entropy value.
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Table 2. Purity of the INEX09 SUBSET clustering evaluation using 12,803
YAGO categories (containing ≥ 5 documents)

Run ID Description Clusters Micro Purity Macro Purity

12 ground truth for 12,804 YAGO categories 12804 1.0 1.0
24 random-54575 54575 1.0 1.0
67 KStar method Bigrams 35569 0.6964 0.9006
65 KStar method Unigram Stems 7019 0.2076 0.6410
66 KStar method Stems Bigrams 6961 0.2074 0.6407

Table 3. Entropy of the INEX09 SUBSET clustering evaluation using 73,944
YAGO categories (all YAGO categories)

Run ID Description Clusters Micro Entropy Macro Entropy

66 KStar method Stems Bigrams 6961 0.1883 0.6350
65 KStar method Unigram Stems 7019 0.1894 0.6399
11 ground truth for 73,944 YAGO categories 73944 0.9999 1.0
67 KStar method Bigrams 35569 0.6812 0.8968
24 random-54575 54575 1.0 1.0

Table 4. Entropy of the INEX09 SUBSET clustering evaluation using 12,803
YAGO categories (containing ≥ 5 documents)

Run ID Description Clusters Micro Entropy Macro Entropy

66 KStar method Stems Bigrams 6961 0.2074 0.6407
65 KStar method Unigram Stems 7019 0.2076 0.6410
12 ground truth for 12,804 YAGO categories 12804 1.0 1.0
67 KStar method Bigrams 35569 0.6964 0.9006
24 random-54575 54575 1.0 1.0
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6 Conclusions

In this paper a recursive method based on the iterative K-Star clustering method
was proposed. The aim was to allow high scalability of the clustering algorithm.
The obtained results are preliminary shown in this paper, but they must be
analysed into detail and compared with the runs submitted by other teams in
order to validate the performance of K-Star.

We observed, however, that the implemented approach is easy of being im-
plemented and obtained good results in the INEX 2009 clustering task.
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Abstract. In this paper we propose a new methodology for link-based
document classification based on probabilistic classifiers and Bayesian
networks. We also report the results obtained of its application to the
XML Document Mining Track of INEX’09.

1 Introduction

1.1 Our participation

This is the third year that researchers from the University of Granada (specif-
ically from the Uncertainty Treatment in Artificial Intelligence research group)
participate on the XML Document Mining track of the INEX workshop. As
in previous editions, we restrict our solutions to the application of probabilis-
tic methods to these problems. To be more precise, we are looking to solve to
the problem of link-based document classification within the field of Bayesian
networks [10] (a special case of Probabilistic Graphical Models).

1.2 Problem overview

This year, the proposed problem is rather similar to the one considered in the
previous edition of the workshop [3]. A training corpus, composed of labeled
XML files is provided, and an unlabeled test corpus is left to the participants, in
order to be estimated its labeling. Also, a link file is shown, which gives specific
relations among documents (which may be in the training corpus or not). Thus,
the problem can be seen as a graph labeling problem, where each node has
textual (XML) content.

The main difference between this INEX track in 2008 and 2009 is the fact that
the training corpus is made of multilabeled documents, that is to say, a document
can belong to one or more categories. The rest of the rules are esentially the same,
although the document collection and the set of categories are also different.

As we did before, we can assume that the XML markup (the “internal struc-
ture” of the collection) is not very helpful for categorization. In fact, we did
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not find it very useful for the task in previous editions [5] (by making several
transformations from XML to flat text documents). Moreover, the organizers
have provided an indexed file of term vectors representing the documents, where
XML marks have been removed.

Like our previous participation [6], we will use explicitly the “external struc-
ture” of the collection, i.e. the link file (the graph among documents). Then, we
provided a “graphical proof” that the category of the documents linked by one
tend to be similar to the category of the own document. Several experiments in
the same direction showed us the same fact for the 2009 corpus, although we do
not reproduce them here. Apart from those experiments, the names of the cat-
egories (which are explicitly given in the training set), tend to show categories
which are probably coming from a hierarchy (for example Portal:Religion,
Portal:Christianity and Portal:Catholicism). The two known facts about
the relations are summarized here:

– In this linked corpus, due to its nature, a “hyperlink regularity” is supposed
to arise (see [15] for more details).

– There is some categories strongly related a priori, because the probable ex-
istence of a (unknown) hierarchy.

Although last year we proposed a method that captures some “fixed” re-
lations among categories, given this different problem setting and its higher
dimensionality, this year we pretend to learn those relations automatically from
data, leading to a more flexible approach.

2 Base classifiers

Two base classifiers will be used to label the graph nodes based only on their
content. These two will be the baseline, and will be combined with the Bayesian
network learnt from data with our new methodology. We will briefly describe
them, in order to make the paper more readable.

Both of the classifiers are probabilistic, i.e. given a document dj , they com-
pute the values p(ci|dj) for each category, and assign it as a degree of confidence.
The advantage of probability is that it is very well founded, and several differ-
ent probabilistic approaches can be combined together, because they are dealing
with the same measures.

Note that here we solve here the multilabel problem defining a binary clas-
sifier for each label, following the more “classical” approach to this task [12].

2.1 Multinomial naive Bayes

The model is the same used by McCallum et al. [9], adapting it to the case of
many binary problems. The naive Bayes, in its multinomial version is a very fast
and well performing method. In this model, we firstly assume that the length
of the document is independent of the category. We also assume that the term
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occurrences are independent one each other, given the category (this is the core
of the naive Bayes method).

In the multinomial version of this classifier, we see a document dj as being
drawn from a multinomial distribution of words with as many independent trials
as the length |dj | of dj .

So, given a category ci, we express the probability1 pi(ci|dj) as

pi(ci|dj) =
pi(dj |ci) pi(ci)

pi(dj)
. (1)

We can rewrite p(dj) using the law of total probability,

pi(dj) = pi(dj |ci) pi(ci) + pi(dj |ci)
(
1− pi(ci)

)
. (2)

The values pi(ci|dj) can be easily computed in terms of the prior probability
pi(ci) and the probabilities pi(dj |ci) and pi(dj |ci).

Besides, prior probabilities are estimated from document counts:

p̂i(ci) =
Ni,doc
Ndoc

(3)

where Ndoc is the number of documents in the training set and Ni,doc is the
number of documents in the training set which belong to category ci.

On the other hand, we can estimate pi(dj |ci) and pi(dj |ci) as follows (as a
multinomial distribution over the words):

pi(dj |ci) = pi(|dj |)
|dj |!∏

tk∈dj

njk!

∏
tk∈dj

pi(tk|ci)njk ,

and

pi(dj |ci) = pi(|dj |)
|dj |!∏

tk∈dj

njk!

∏
tk∈dj

pi(tk|ci)njk ,

where njk is the frequency of the term tk in the document dj .
Substituting and simplifying in equations 1 and 2 we obtain:

pi(ci|dj) =

pi(ci)
∏
tk∈dj

pi(tk|ci)njk

pi(ci)
∏
tk∈dj

pi(tk|ci)njk +
(
1− pi(ci)

) ∏
tk∈dj

pi(tk|ci)njk

.

1 With the notation pi(ci|dj) we are emphasizing that the probability distribution is
computed over a binary variable Ci, with values in {ci, ci}. So, we have a different
probability distribution over each category.
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And finally, individual term probabilities pi(tk|ci) and pi(tk|ci) are given by
the following formulae (using Laplace smoothing):

p̂i(tk|ci) =
Nik + 1
Ni• +M

, p̂i(tk|ci) =
N•k −Nik + 1
N −Ni• +M

, (4)

where Nik is the number of times the term tk appears in documents of class
ci, Ni• is the total number of words in documents of class ci (Ni• =

∑
tk
Nik),

N•k is the numbers of times that the term tk appears in the training documents
(N•k =

∑
ci
Nik), N is the total number of words in the training documents, and

M is the size of the vocabulary (the number of distinct words in the documents
of the training set).

2.2 Bayesian OR gate

The Bayesian OR gate classifier was presented in the INEX 2007 Workshop by
this group [5]. This classifier has the assumption that the relationship among
the terms and each category follows a so-called noisy-OR gate probability distri-
bution. Following the Bayesian networks notation, we express this model as one
node for the category Ci (binary variable Ci, ranging in {ci, ci}), one node for
each term Tk (binary variable Tk, with values in {tk, tk}), and arcs going from
each term node to the category nodes they appear in (i.e. they are the parents
Pa(Ci), of the category node).

In the naive Bayes model (a generative one), we are defining p(dj |ci), whereas
in the Bayesian OR gate (a discriminative model), we are computing directly
pi(ci|dj). Instead of modeling a “general” distribution of probability, p(ci|dj) is
considered to be following a “canonical model” [10] (the noisy OR gate) which
makes computations and parameter storage a feasible task.

We can define the probability distribution for this noisy OR gate in the
following way:

pi
(
ci| pa(Ci)

)
= 1 −

∏
Tk∈R(pa(Ci))

(
1− w(Tk, Ci)

)
pi
(
ci| pa(Ci)

)
= 1 − pi

(
ci| pa(Ci)

)
,

where R(pa(Ci)) = {Tk ∈ Pa(Ci) | tk ∈ pa(Ci)}, i.e. R(pa(Ci)) is the subset of
parents of Ci which are instantiated to its tk value in the configuration pa(Ci).
w(Tk, Ci) is a weight representing the probability that the occurrence of the
“cause” Tk alone (Tk being instantiated to tk and all the other parents Th in-
stantiated to th) makes the “effect” true (i.e., forces class ci to occur).

Then, given a certain document dj , we can compute the posterior probability
pi(ci|dj) instantiating to the value tk the terms that appear in the document (i.e.
pi(tk|dj) = 1), and to the value tk those terms that do not appear in dj (i.e.
pi(th|dj) = 0). The results is [4]:
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pi(ci|dj) = 1−
∏

Tk∈Pa(Ci)

(
1− w(Tk, Ci) pi(tk|dj)

)
=

∏
Tk∈Pa(Ci)∩dj

(1− w(Tk, Ci)) .

Finally, we have to give a definition for the weights w(Tk, Ci), which is almost
the same appearing in [5]:

w(Tk, Ci) =
Nik

ntiN•k

∏
h 6=k

(Ni• −Nih)N
(N −N•h)Ni•

. (5)

In this formula, Nik, N•k, Ni• and N mean the same than in previous defini-
tions made in the multinomial naive Bayes explanation, and nti is the number
of different terms occurring in documents of the class Ci. The factor nti is intro-
duced here to relax the independence assumption among terms, but some other
valid definitions for the weights (which do not use this factor) can be found in
[4] and [5].

Finally, in order to make the probabilities independent on the length of the
document, and make scores comparable, we introduce the following normaliza-
tion, which is somewhat similar to the RCut thresholding strategy [14], and we
return, as the final probability p(ci|dj):

p(ci|dj) =
pi(ci|dj)

maxck
{pk(ck|dj)}

Some experiments [4] have shown that the Bayesian OR gate classifier tends
to outperform the multinomial naive Bayes classifier, although the number of
parameters needed and the complexity are more or less the same.

3 The Bayesian network model

This section describes a new methodology that models a link-based categoriza-
tion environment using Bayesian networks. In this development, we will only
use data from incoming links, because we carried several experiments on the
corpus, and found them much more informative than outgoing ones. Anyway,
information from outgoing links (or even considering undirected links) could also
be used in this model.

3.1 Modeling link structure between documents

In this problem, we will consider two binary variables for every category i: one
is Ci (with states {ci, ci}) which models the probability of a document being (or
not) of class Ci, and the variable LCi, (with states {lci, lci}, which represents if
there is a link, or not, from documents of category i (as we stated before, we also
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could represent the existence of outgoing links to a document of category i, or
both interactions). We assume there is a global probability distribution among
all these variables, and we will model it with a Bayesian network.

To learn a model from the data, we will use the training documents, each one
as an instance whose categories (values for variables Ci) are perfectly known,
and the links from other documents. If a document is linked by another training
document of category j, we will set LCj = lcj , setting it to lcj otherwise. Note
that a training document could be linked by test documents (whose categories
are unknown). In that case, all of those test documents are ignored.

So, we could learn a Bayesian network from training data (see next section)
and, for each test document dj , we could compute p(ci|ej), where ej represents
all the evidence given by the information of documents that link this.

Thus, the question is the following: for a certain document dj , given p(ci|dj)
and p(ci|ej), how could we combine them in an easy way? We want to compute
the posterior probability p(ci|dj , ej), the probability of a category given the terms
composing the document and the evidence due to link information.

Using Bayes’ rule, and assuming that the content and the link information
are independent given the category, we get:

p(ci|dj , ej) =
p(dj , ej |ci) p(ci)

p(dj , ej)
=

p(dj |ci) p(ej |ci) p(ci)
p(dj , ej)

=
p(ci|dj) p(dj) p(ej |ci) p(ci)

p(ci) p(dj , ej)
=

p(ci|dj) p(dj) p(ci|ej) p(ej)
p(ci) p(dj , ej)

=
(
p(dj) p(ej)
p(dj , ej)

)(
p(ci|dj) p(ci|ej)

p(ci)

)
.

The first term of the product is a factor which does not depend on the
category. So, we can write the probability as:

p(ci|dj , ej) ∝
p(ci|dj) p(ci|ej)

p(ci)

And we can rewrite the first expression in this final form:

p(ci|dj , ej) =
p(ci|dj) p(ci|ej) / p(ci)

p(ci|dj) p(ci|ej) / p(ci) + p(ci|dj) p(ci|ej) / p(ci)
(6)

We must make some final comments about this equation to make it more
clear:

– As we said before, the posterior probability p(ci|dj) is the one obtained
from a binary probabilistic classifier (one of the two presented before, or any
other), which is going to be combined with the information obtained from
the link evidence.
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– The prior probability used here, p(ci), is the one computed with propagation
over the Bayesian network learnt with link information.

– Because the variables Ci are binary, it is clear that p(ci|ej) = 1 − p(ci|ej),
p(ci) = 1− p(ci) and p(ci|dj) = 1− p(ci|dj).

3.2 Learning link structure

Given the previous variable setting, from the training documents, their labels
and the link file, we can obtain a training set for the Bayesian network learning
problem, composed of vectors of binary variables Ci and LCi (one for each
training document).

We have used WEKA package [13] to learn a generic Bayesian network (not a
classifier) using a hill climbing algorithm (with the classical operators of addition,
deletion and reversal of arcs) [1], with the BDeu metric [8]. In order to reduce the
search space, we have limited the number of parents of each node to a maximum
of 3.

After the network has been learnt, we have converted it to the Elvira [7]
format. Elvira is a software developed by some Spanish researchers which has
implemented many algorithms for Bayesian networks. In this case, we have used
it to carry out the inference procedure. This is done as follows:

1. For each test document dj , we set in the Bayesian network the LCi variables
to lci or lci, depending whether dj is linked by at least one document of
category i, or not, respectively. This is the evidence coming from the links
(represented before by ej).

2. For each category variable, Ci, we compute the posterior probability p(ci|ej).
This procedure is what is called evidence propagation.

Due to the size of the problem, instead of exact inference, we have used
an approximate inference algorithm [2], firstly to compute prior probabilities of
each category in the network, p(ci), and secondly, to compute the probabilities
of each category given the link evidence ej , for each document dj in the test
set, p(ci|ej). The algorithm used is called Importance Sampling algorithm, and
is faster than other exact approaches.

4 Results

Four files were sent to the organization to participate in the Workshop. Two of
them, the baselines, were flat-text classifiers (that is to say, no link structure was
used to label the documents, only its content). The other two were the Bayesian
network model (BN) over those baselines (the link structure was added using
equation 6).
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4.1 Preliminary results

The results of the models we sent for this track are displayed in Table 4.1, where
M means the “macro” version of the measure, and µ means the “micro” one. The
performance measures computed are Accuracy (ACC), Area under Roc curve
(ROC), F1 measure (PRF) and Mean average precision by document (MAP).

MACC µACC MROC µROC MPRF µPRF MAP

N. Bayes 0.95142 0.93284 0.80260 0.81992 0.49613 0.52670 0.64097

N. Bayes + BN 0.95235 0.93386 0.80209 0.81974 0.50015 0.53029 0.64235

OR gate 0.75420 0.67806 0.92526 0.92163 0.25310 0.26268 0.72955

OR gate + BN 0.84768 0.81891 0.92810 0.92739 0.31611 0.36036 0.72508

Table 1. Preliminary results.

In both cases, the Bayesian network version of the classifier outperforms the
“flat” version, though the results on the OR gate are surprisingly poor in ACC
and PRF. This fact is due to the nature of the classifier, and to the kind of
evaluation: For the OR gate, the fact that p(ci|dj) > 0.5 holds does not mean
necessarily that dj should be labeled Ci, whereas in the naive Bayes does (this
was the criterion used by the evaluation procedure to assign categories to the
test documents).

In fact, for the OR gate classifier is not known, a priori, what is the ap-
propriate threshold τi that assigns dj to class Ci if p(ci|dj) > τi. This is not
a major problem to compute, for example, averaged break-even point measures
[12], where no hard categorization is needed. In this case, the threshold 0.5 has
been adopted, and we need to re-adapt the model to this setting in order to
perform well.

In the following section we can see how we estimated a set of thresholds
(using only training data) and how we scaled the probability values, in order to
match the evaluation criteria, dramatically improving the results.

4.2 Scaled version of the Bayesian OR gate results

To make this version of the OR gate results, we have followed this procedure:
using only training data, a classifier has been built (both in its flat and Bayesian
network versions), and evaluated using cross validation (with five folds). In each
fold, for each category, we have searched for the threshold of probability that
gives the higher F1 measure per class and, afterwards, all thresholds have been
averaged over the set of cross validation folds.

This is what is called in the literature the Scut thresholding strategy [14].
Thus, we obtain, for each category a threshold τi between 0 and 1 (different
for each of the two models). We should then to transform the results to a scale
where each category threshold is mapped to 0.5.
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So, the probabilities of the or gates are rescaled using a lineal continuous
function fi which verifies fi(0) = 0, fi(1) = 1 and fi(τi) = 0.5. The function is:

fi(x) =
{ 0.5x

τi
if x ∈ [0, τi]

1− 0.5
1−τi

(1− x) if x ∈ (τi, 1]

Then, the new probability values are computed, using the old values p(ci|dj),
as p̂(ci|dj) = fi(p(ci|dj)). Once again, we would like to recall that these new
results are only “scaled” versions of the old ones, with thresholds being computed
only using the training set. The new results are displayed in Table 4.2.

MACC µACC MROC µROC MPRF µPRF MAP

OR gate 0.92932 0.92612 0.92526 0.92163 0.45966 0.50407 0.72955

OR gate + BN 0.96607 0.95588 0.92810 0.92739 0.51729 0.55116 0.72508

Table 2. Results using thresholds.

Note that, using the scaling procedure, ROC and MAP values remains equal,
whereas PRF and ACC, on the contrary, are improved a lot, and gives results
which are much more better.

5 Conclusions and future works

Given the previous results, we can state the two following conclusions:

– The use of the Bayesian network structure for links can improve a lot a basic
“flat-text” classifier.

– Our results are fairly well situated in a middle-high point among all partic-
ipants.

The first statement is clear, particularly on the case of the OR gate classi-
fier, where some measures, like micro PRF are improved near 10%. Accuracy
is improved 3-4%, while ROC stands more or less equal. Only MAP is slightly
decreased (less than 1%). The changes on the naive Bayes classifier are more
irrelevant, but they are all positive too.

The second statement can be easily proved watching at the official table of
results. Our best model (OR + Bayesian network) performs in a medium position
for ACC, slightly better for PRF, fairly well for MAP (where only 4 models beat
us) and very well for ROC measures (the third best performing model in each
of the two versions of ROC, among all the participants).

The results could probably be improved with the usage of a better probabilis-
tic base classifier. For example, a logistic regression or some probabilistic version
of a SVM classifier (like the one proposed by Platt [11]), which are likely to have
better results than our base models (although they can be much more ineffi-
cient). We expect to carry out more experiments with different basic classifiers
for the final version of this paper.
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Abstract. Structured link vector model (SLVM) is a representation proposed 
for modeling XML documents, which was extended from the conventional 
vector space model (VSM) by incorporating document structures. In this paper, 
we describe the classification approach for XML documents based on SLVM in 
the Document Mining Challenge of INEX 2009, where the closed frequent 
subtrees as structural units are used for content extraction from the XML 
document and the Chi-square test is used for feature selection.  

Keywords: XML Document, Classification, Vector Space Model (VSM), 
Structured Link Vector Model (SLVM), Frequent Subtree. 

1. Introduction 

XML is the W3C recommended markup language for semi-structured data. Its 
structural flexibility makes it an attractive choice for representing data in application 
domains. With the rapid growth of XML documents, these arise many issues 
concerning the management of these documents effectively. Even though the tasks of 
interest are still clustering, classification and retrieval, conventional document 
analysis tools developed for unstructured documents [1] fail to take the full advantage 
of the structural properties of XML documents. 

 
To contrast with ordinary unstructured documents, XML documents represent their 

syntactic structure via (1) the use of XML elements, each marked by a user-specified 
tag, and (2) the associated schema specified in either DTD or XML Schema format. 
In addition, XML documents can be cross-linked by adding IDREF attributes to their 
elements to indicate the linkage. Thus, techniques designed for XML document 
analysis normally take into account the information embedded in both the element 
tags as well as their associated contents for better performance.  
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2. Structured Link Vector Model (SLVM): An Overview 

Structured Link Vector Model (SLVM), which forms the basis of this paper, was 
originally proposed in [2] for representing XML documents. It was extended from the 
conventional vector space model (VSM) [3] by incorporating document structures 
(represented as term-by-element matrices), referencing links (extracted based on 
IDREF attributes), as well as element similarity (represented as an element similarity 
matrix). The SLVM has been used in the Document Mining Challenge of INEX 2009 
[4]. 

2.1. Basic representation  

Vector Space Model (VSM) [3] has long been used to represent unstructured 
documents as document feature vectors which contain term occurrence statistics. This 
bag of terms approach assumes that the term occurrences are independent of each 
other. 

 
Definition 2.1 Assume that there are n distinct terms in a given set of documents D. 

Let docx denote the xth document and dx denote the document feature vector such 
that  

T
nxxxx , d, dd  d ][ )()2()1( =  

)) IDF(w,docTF(w d ixiix =)(
 

 
where TF(wi,docx) is the frequency of the term wi in docx, IDF(wi) = 

log(|D|/DF(wi)) is the inverse document frequency of wi for discounting the 
importance of the frequently appearing terms, |D| is the total number of the 
documents, and DF(wi) is the number of documents containing the term wi. 

 
Applying VSM directly to represent XML documents is not desirable as the 

document syntactic structure tagged by their XML elements will be ignored. For 
example, VSM considers two documents with an identical term appearing in, say, 
their “title” fields to be equivalent to the case with the term appearing in the “title” 
field of one document and in the “author” field of another. As the “author” field is 
semantically unrelated to the “title” field, the latter case should be considered as a 
piece of less supportive evidence for the documents to be similar when compared with 
the former case. Using merely VSM, these two cases cannot be differentiated.  

 
Structured Link Vector Model (SLVM), proposed in [2], can be considered as an 

extended version of vector space model for representing XML documents. Intuitively 
speaking, SLVM represents an XML document as an array of VSMs, each being 
specific to an XML element (specified by the <element> tag in a DTD). 

 

Definition 2.2 SLVM represents an XML document docx using a document 
feature matrix mn

x R ×∈∆ , given as 
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],,,[ )()2()1( mxxxx  ∆∆∆=∆   
 
where m is the number of distinct XML elements, n

ix R∈∆ )( is the TFIDF feature 
vector representing the ith XML element (ei), given as )IDF(w.e,docTF(w jixjjix ⋅=∆ )),(

 

for all j=1 to n, and )ixj .e,docTF(w is the frequency of the term wj in the element ei 
of docx.  

 
Definition 2.3 The normalized document feature matrix is defined as  

∑∆∆=∆
k

kixjixjix ),(),(),( /~  

where the factor caused by the varying size of the element content is discounted via 
normalization. 

 
Example 2.1 Figure 1 shows a simple XML document. Its corresponding 

document feature vector dx, document feature matrix x∆ , and normalized document 
feature matrix x∆

~  are shown in Figure 2-4 respectively. Here, we assume all the 
terms share the same IDF value equal to one. 

 
<article> 
   <title>Ontology Enabled Web Search</name> 
   <author>John</author> 
   <conference>Web Intelligence</conference> 
</article> 

Fig. 1. An XML document. 

 thisDocument  

=xd
 



























1
1
1
2
1
1  Ontology  

Enabled 
Web 
Search 
John 
Intelligence 

Fig. 2. The document feature vector for the example shown in Figure 1. 
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Fig. 3. The document feature matrix for the example in Figure 1. 
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Fig. 4. The normalized document feature matrix for the example in Figure 1. 

2.2. Similarity measures 

Using VSM, similarity between two documents docx and docy is typically computed 
as the cosine value between their corresponding document feature vectors, given as        

 

∑
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where n is the total number of terms and ||||~

xxx ddd =  denotes normalized dx. So, 
the similarity measure can also be interpreted as the inner product of the normalized 
document feature vectors. 

 
For SLVM, with the objective to model semantic relationships between XML 

elements, the corresponding document similarity can be defined with an element 
similarity matrix introduced. 

 
Definition 2.4 The SLVM-based document similarity between two XML 

documents docx and docy is defined as  
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where Me is a matrix of dimension m×m and named as the element similarity 
matrix.  

 
The matrix Me in Eq. (2) captures both the similarity between a pair of XML 

elements as well as the contribution of the pair to the overall document similarity (i.e., 
the diagonal elements of Me are not necessarily equal to one). An entry in Me being 
small means that the two corresponding XML elements should be unrelated and same 
words appearing in the two elements of two different documents will not contribute 
much to the overall similarity of them. If Me is diagonal, this implies that all the XML 
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elements are not correlated at all with each other, which obviously is not the optimal 
choice. To obtain an optimal Me for a specific type of XML data, we proposed in [5] 
to learn the matrix using pair-wise similar training data in an iterative manner. 

2.3. SVM for XML Documents Classification 

SVM was introduced by Vapnik in 1995 for solving two-class pattern recognition 
problems using the Structural Risk Minimization principle [6]. Given a training set 
containing two kinds of data (one for positive examples, the other for negative 
examples), which is linearly separable in vector space, this method finds the decision 
hyper-plane that best separated positive and negative data points in the training set. 
The problem searching the best decision hyper-plane can be solved using quadratic 
programming techniques. SVM can also extend its applicability to linearly 
nonseparable data sets by either adopting soft margin hyper-planes, or by mapping the 
original data vectors into a higher dimensional space in which the data points are 
linearly separable. Joachims [7] first applied SVM to text categorization, and 
compared its performance with other classification methods using the Reuters-21578 
corpus. His results show that SVM outperformed all the other methods tested in his 
experiments.  

 
SVM success in practice is drawn by its solid mathematical foundations which 

convey the following two salient properties: 
• Margin maximization: The classification boundary functions of SVM maximize 

the margin, which in machine learning theory, corresponds to maximizing the 
generalization performance given a set of training data.  

• Nonlinear transformation of the feature space using the kernel trick: SVM 
handle a nonlinear classification efficiently using the kernel trick which implicitly 
transforms the input space into another high dimensional feature space. 
 
The kernel ),( ji xxk  could be regarded as the similarity function between two 

data points. For linear boundary, the kernel function is 
ji xx ⋅ , a scalar product of two 

data points. The nonlinear transformation of the feature space is performed by 
replacing ),( ji xxk  with an advanced kernel, such as polynomial kernel p

i
T xx )1( +  

or RBF kernel )||||
2

1( 2
2 ixxexp −−

δ
. 

 
In SLVM, the similarity between two XML documents is defined as definition 2.4, 

so we consider the kernel ),( ji xxk  for XML documents classification based on 
SLVM as: 
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3. Frequent Subtree 

The form of SLVM studied in [2, 3, 5] is only a simplified one where only the leaf-
node elements in the DTD are incorporated without considering their positions in the 
document DOM tree and their consecutive occurrence patterns.  

In this paper, we utilize the frequent substrees as structural units to extract the 
content information from the XML documents. A series of concepts of the subtree are 
defined same as in the paper [8, 9]. 

Let D denote a database where each transaction Ds∈ is a labeled rooted 
unordered tree. For a given pattern t, which is a rooted unordered tree, we say t occurs 
in a transaction s if there exists at least one subtree of s that is isomorphic to t. The 
occurrence )(stδ of t in s is the number of distinct subtrees of s that are isomorphic to 
t. Let )(stσ = 1 if )(stδ  > 0, and 0 otherwise. We say s supports pattern t if )(stσ  
is 1 and we define the support of a pattern t as supp(t) =∑∈Ds t s)(σ . A pattern t is 

called frequent if its support is greater than or equal to a minimum support (minsup) 
specified by a user. 

We define a frequent tree t to be maximal if none of t's proper supertrees is 
frequent, and closed if none of t's proper supertrees has the same support that t has. 

In this paper, we utilize CMTreeminer [9] to mining closed frequent substrees from 
XML document collection, and the closed frequent substrees as structural units are 
utilized to extract the content information from the XML documents. 

4. Implementation and Evaluation Details 

As outlined above, we classify the XML documents based on SLVM in the Document 
Mining Challenge of INEX 2009, where the closed frequent subtrees as structural 
units are used to extract content from the XML document. 

4.1 Phase 1: Pre-processing of Structure 

In the XML document collection of the INEX 2009, a group of “Template Element” 
is mapped to the tag “<sec>”.  In order to reduce the complexity of structure, the 
element “<sec>” is normalized by replacing its sub-element “<st>”, whose meaning is 
“section title”, as its attribute. 

Each common path is replaced as a node, when any sub-path of it does not appear 
in the collection. 

4.2 Phase 2: Mining closed frequent subtrees 

We utilize CMTreeminer [9] to mining closed frequent substrees from XML 
document collection.  
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There are a great deal closed frequent substrees for the XML document collection, 
so we use the Chi-square test to select a part of substrees as useful structural units. 

4.3 Phase 3: Document Representation 

Each document is represented as a matrix based on SLVM, where the selected closed 
frequent substrees are regarded as structural unit.  

In order to deal with exception that a document do not include any the selected 
closed frequent substrees, we add the vector of the document based on VSM into the 
matrix as a column. 

In addition, the interconnectivity between the documents based on link should also 
be considered. We add the vector of all link target document’s title based on VSM 
into the matrix as a column. 

4.4 Phase 4: Training, Tuning and Testing 

The SVM algorithm in SVMTorch [10] is used for training and testing, with the 
formula (3) as kernel and the Me is set as diagonal. For the multi-class document, the 
document is set as positive example for its each class.  

In order to obtain optimal threshold, we split a part of training documents for 
tuning SVM classification threshold. 

 5. Experiment Result 

In the experiments, all the algorithms were implemented by us in C++, except the 
SVM algorithm in SVMTorch [10]. All experiments were run on a PC with a 3.0 GHz 
Intel CPU and 2GB RAM.  

In the XML Mining Track, the collection is composed of XML documents of the 
Wikipedia XML, the training set is composed of 10,969 XML documents, and the test 
set is composed of 43,606 XML documents. 

We utilize CMTreeminer [9] to mining closed frequent substrees from XML 
document collection, and select the top 10 closed frequent substrees using the Chi-
square test for each classification.  

The table 1 summarizes the experiment result. The baseline is the approach based 
on original SLVM [2, 4]. The “No_Link” approach do not use the link information, 
and the “With_link” approach use the link information. The “Term_Selection” 
approach is that the term be selected by the Chi-square test. 

 
Table 1. The experiment result. 
Approaches Macro F1 Micro F1 Mean Average precision by document 
Baseline 0.241853 0.295418 0.486702 
No_Link 0.479748 0.518635 0.7018610 
With_Link 0.505916 0.546976 0.712323 
Term_Selection 0.483367 0.525132 0.699250 
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6. Conclusion and Future Works 

In this paper, we applied SLVM to XML documents classification, where the closed 
frequent subtrees as structural units are used for content extraction from the XML 
document and the Chi-square test is used for feature selection. 

 
For future work, we are interested to study how to use link information, and 

combine the vector similarity method with graph theory methods. 
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Géry, Mathias . . . . . . . . . . . . . . . . 60, 381

Hagenbuchner, Markus . . . . . . 302, 367
Hatano, Kenji . . . . . . . . . . . . . . . . . . . . . 67
He, Jiyin . . . . . . . . . . . . . . . . . . . . . . . . .238
Hoffart, Johannes . . . . . . . . . . . . . . . . 314
Holupirek, Alexander . . . . . . . . . . . . 192
Huang, Darren . . . . . . . . . . . . . . . . . . . 290
Huete, Juan F. . . . . . . . . . . . . . . . . . . . 398

Ibekwe-SanJuan, Fidelia . . . . . . . . . . 99
Imafouo, Amelie . . . . . . . . . . . . . . . . . . 75
Iofciu, Tereza . . . . . . . . . . . . . . . . . . . . 233
Itakura, Kelly Y. . . . . . . . . . . . . . . . . .249

Jia, Xiang-Fei . . . . . . . . . . . . . . . . . . . . 209

Kamps, Jaap . . . . . . . . . . . . . . . . . 16, 260
Kaptein, Rianne . . . . . . . . . . . . . . . . . 260
Karthik, Venkatesh . . . . . . . . . . . . . . 273
Kazai, Gabriella . . . . . . . . . . . . . . . . . 120
Kc, Milly . . . . . . . . . . . . . . . . . . . . . . . . 302
Keyaki, Atsushi . . . . . . . . . . . . . . . . . . . 67
Koolen, Marijn . . . . . . . . . . . . . . 120, 260
Kutty, Sangeetha . . . . . . . . . . . .343, 379
Kühne, Gerold . . . . . . . . . . . . . . . . . . . 222

Landoni, Monica . . . . . . . . . . . . . . . . . 120
Largeron, Christine . . . . . . . . . . .60, 381
Larson, Ray . . . . . . . . . . . . . . . . . . . . . .153
Lee, Vincent . . . . . . . . . . . . . . . . . . . . . 302
Lehtonen, Miro . . . . . . . . . . . . . . . . . . . 16
Li, Qiushi . . . . . . . . . . . . . . . . . . . . . . . . 108
Li, Rongmei . . . . . . . . . . . . . . . . . . . . . 163



Li, Yuefeng . . . . . . . . . . . . . . . . . . . . . . 379
Lucas, Nadine . . . . . . . . . . . . . . . . . . . .136

Masegosa, Andrés R. . . . . . . . . . . . . . 398
Mercier, Annabelle . . . . . . . . . . . . . . . . 75
Meunier, Jean-Luc . . . . . . . . . . . . . . . 143
Mitra, Mandar . . . . . . . . . . . . . . . . . . . . 94
Miyazaki, Jun . . . . . . . . . . . . . . . . . . . . . 67
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