
INEX 2010
Workshop
Pre-proceedings

Shlomo Geva, Jaap Kamps,

Ralf Schenkel, Andrew Trotman

(editors)

December 13–15, 2010

Huize Bergen, Vught, the Netherlands

http://www.inex.otago.ac.nz/

Attribution
http://creativecommons.org/licenses/by/3.0/

Copyright c©2010 remains with the author/owner(s).

The unreviewed pre-proceedings are collections of work submitted before the
December workshops. They are not peer reviewed, are not quality controlled,
and contain known errors in content and editing. The proceedings, published
after the Workshop, is the authoritative reference for the work done at INEX.

Published by: IR Publications, Amsterdam. ISBN 978-90-814485-4-3.

Preface

Welcome to the 9th workshop of the Initiative for the Evaluation of XML Re-
trieval (INEX)!

Now, in its ninth year, INEX is an established evaluation forum for XML
information retrieval (IR), with over 100 organizations worldwide registered and
over 50 groups participating actively in at least one of the tracks. INEX aims to
provide an infrastructure, in the form of a large structured test collection and
appropriate scoring methods, for the evaluation of focused retrieval systems.

XML IR plays an increasingly important role in many information access
systems (e.g. digital libraries, web, intranet) where content is more and more a
mixture of text, multimedia, and metadata, formatted according to the adopted
W3C standard for information repositories, the so-called eXtensible Markup
Language (XML). The ultimate goal of such systems is to provide the right
content to their end-users. However, while many of today’s information access
systems still treat documents as single large (text) blocks, XML offers the oppor-
tunity to exploit the internal structure of documents in order to allow for more
precise access, thus providing more specific answers to user requests. Providing
effective access to XML-based content is therefore a key issue for the success of
these systems.

INEX 2010 was an exciting year for INEX in which a number of new tracks
started. In total nine research tracks were included, which studied different as-
pects of focused information access:

Ad hoc Track The main track of INEX 2010 will be investigating the effec-
tiveness of XML-IR and Passage Retrieval for highly focused retrieval by
restricting result length to “snippets” or discounting for reading effort, us-
ing Wikipedia as a corpus.

Book Track Investigating techniques to support users in reading, searching,
and navigating full texts of digitized books.

Data Centric Track Investigating Focused Retrieval over a strongly struc-
tured collection of IMDb documents.

Interactive Track (iTrack) Investigating the behavior of users when interact-
ing with XML documents, as well as developing retrieval approaches which
are effective in user-based environments, working on large set of Amazon
data (including formal descriptions and user-generated data).

Link-the-Wiki Track Investigating link discovery in the Te Ara encyclopedia.
Question Answering (QA@INEX) Track Investigating technology for ac-

cessing semi-structured data can be used to address real-world focused in-
formation needs formulated as natural language questions.

Relevance Feedback Track Investigate the utility of XML markup and pas-
sage retrieval in Relevance Feedback evaluation, with submission in the form
of a executable computer program rather than a list of search result.

IV

Web Service Discovery Investigate techniques for discovery of Web services
based on searching service descriptions provided in WSDL.

XML-Mining Track Investigating structured document mining, especially the
classification and clustering of semi-structured documents.

The aim of the INEX 2010 workshop is to bring together researchers in
the field of XML IR who participated in the INEX 2010 campaign. During the
past year participating organizations contributed to the building of a large-scale
XML test collection by creating topics, performing retrieval runs and providing
relevance assessments. The workshop concludes the results of this large-scale
effort, summarizes and addresses encountered issues and devises a work plan for
the future evaluation of XML retrieval systems.

All INEX tracks start from having available suitable text collections. We
gratefully acknowledge the data made available by: Amazon and LibraryThing
(Interactive Track), New Zealand Ministry for Culture and Heritage (Te Ara,
Link-the-Wiki Track), Microsoft Research (Book Track), the Internet Movie
Database (Data Centric Track), and the Wikimedia Foundation (Adhoc, Rel-
evance Feedback, and XML-Mining Track).

Finally, INEX is run for, but especially by, the participants. It is a result of
tracks and tasks suggested by participants, topics created by particants, systems
built by participants, and relevance judgments provided by participants. So the
main thank you goes each of these individuals!

December 2010 Shlomo Geva
Jaap Kamps

Ralf Schenkel
Andrew Trotman

Organization

Steering Committee

Charlie Clarke (University of Waterloo)
Norbert Fuhr (University of Duisburg-Essen)
Shlomo Geva (Queensland University of Technology)
Jaap Kamps (University of Amsterdam)
Mounia Lalmas (University of Glasgow)
Stephen Robertson (Microsoft Research Cambridge)
Andrew Trotman (University of Otago)
Arjen P. de Vries (CWI)
Ellen Voorhees (NIST)

Chairs

Shlomo Geva (Queensland University of Technology)
Jaap Kamps (University of Amsterdam)
Ralf Schenkel (Max-Planck-Institut für Informatik)
Andrew Trotman (University of Otago)

Track Organizers

Ad Hoc

Paavo Arvola (University of Tampere)
Shlomo Geva (Queensland University of Technology)
Jaap Kamps (University of Amsterdam)
Ralf Schenkel (Max-Planck-Institut für Informatik)
Andrew Trotman (University of Otago)

Book

Antoine Doucet (University of Caen)
Gabriella Kazai (Microsoft Research Limited)
Marijn Koolen (University of Amsterdam)
Monica Landoni (University of Strathclyde)

Data Centric

Qiuyue Wang (Renmin University of China)
Andrew Trotman (University of Otago)

VI

Interactive (iTrack)

Thomas Beckers (University of Duisburg-Essen)
Norbert Fuhr (University of Duisburg-Essen)
Ragnar Nordlie (Oslo University College)
Nils Pharo (Oslo University College)

Link-the-Wiki

Shlomo Geva (Queensland University of Technology)
Andrew Trotman (University of Otago)

Question Answering (QA)

Veronique Moriceau (LIMSI-CNRS, University Paris-Sud 11)
Eric SanJuan (University of Avignon)
Xavier Tannier (LIMSI-CNRS, University Paris-Sud 11)

Relevance Feedback

Timothy Chappell (Queensland University of Technology)
Shlomo Geva (Queensland University of Technology)

Web Service Discovery

James Thom (RMIT University)
Chen Wu (Curtin University of Technology)

XML-Mining

Chris De Vries (Queensland University of Technology)
Sangeetha Kutty (Queensland University of Technology)
Richi Nayak (Queensland University of Technology)
Andrea Tagarelli (University of Calabria)

Table of Contents

Front matter.

Preface . iii

Organization . v

Table of Contents . vii

Ad hoc Track.

Overview of the INEX 2010 Ad Hoc Track . 11
Paavo Arvola, Shlomo Geva, Jaap Kamps, Ralf Schenkel, Andrew Trot-
man, Johanna Vainio

When is in-Context Retrieval Beneficial? . 41
Paavo Arvola, Johanna Vainio

ENSM-SE and UJM at INEX 2010: Scoring with Proximity and Tags
Weights . 50

Michel Beigbeder, Mathias Géry, Christine Largeron, Howard Seck

LIP6 at INEX’10 : OWPC for Ad Hoc track . 55
David Buffoni, Nicolas Usunier, Patrick Gallinari

UMD at INEX 2010 . 64
Carolyn Crouch, Donald Crouch

A Result Reconstruction Method for Effective XML Fragment Search
at INEX 2010 . 65

Atsushi Keyaki, Kenji Hatano, Jun Miyazaki

Searching the Wikipedia with public online search engines 77
Miro Lehtonen

Extended Language Models for XML Element Retrieval 82
Rongmei Li, Theo P. van der Weide

Book Track.

Overview of the INEX 2010 Book Track: At the Mercy of Crowdsourcing 89
Gabriella Kazai, Marijn Koolen, Antoine Doucet, Monica Landoni

The Book Structure Extraction Competition with the Resurgence
software for part and chapter detection . 100

Emmanuel Giguet, Nadine Lucas

VIII

University of Amsterdam at INEX 2010: Ad Hoc and Book Tracks 107
Jaap Kamps, Marijn Koolen

Combining Page Scores for XML Book Retrieval . 116
Ray Larson

OUC’s participation in the 2010 INEX Book Track . 125
Michael Preminger, Ragnar Nordlie

Data Centric Track.

Overview of the INEX 2010 Data Centric Track . 128
Andrew Trotman, Qiuyue Wang

Automatically Generating Structured Queries in XML Keyword Search . . 138
Felipe Hummel, Altigran da Silva, Mirella Moro, Alberto Laender

Inferring Query Pattern for XML Keyword Retrieval 150
Qiushi Li, Qiuyue Wang, Shan Wang

BUAP: A First Approach to the Data-Centric track of INEX 2010 159
Darnes Vilariño Ayala, David Pinto, Carlos Balderas, Mireya Tovar

UPF at INEX 2010: Towards Query-type based Focused Retrieval 169
Georgina Ramirez

Interactive Track.

The INEX 2010 Interactive Track: an overview . 175
Nils Pharo, Thomas Beckers, Ragnar Nordlie, Norbert Fuhr

Using Eye-Tracking for the Evaluation of Interactive Information Retrieval 185
Thomas Beckers, Dennis Korbar

Link the Wiki Track.

Overview of the INEX 2010 Link the Wiki Track . 189
Andrew Trotman, David Alexander

University of Otago at INEX 2010 . 190
Xiang-Fei Jia, David Alexander, Vaughn Wood, Andrew Trotman

Question Answering Track.

Overview of the 2010 QA Track: Preliminary results 209
Eric SanJuan, Patrice Bellot, Véronique Moriceau, Xavier Tannier

LIA at INEX 2010: Ad Hoc, Book and Question Answering Tracks 214
Romain Deveaud, Florian Boudin, Eric SanJuan, Patrice Bellot

IX

Combining TermWatch, Indri Systems at QA@INEX 2010 223
Fidelia Ibekwe, Eric SanJuan

The GIL-UNAM-3 summarizer: an experiment in the track QA@INEX’10 223
Edmundo Pavel Soriano-Morales, Alfonso Medina-Urrea, Carlos-Francisco
Méndez-Cruz, Gerardo Sierra

The Cortex automatic summarization system at the QA@INEX track 2010 228
Juan-Manuel Torres-Moreno, Michel Gagnon

Using Textual Energy (Enertex) at QA@INEX track 2010 234
Patricia Velazquez, Andrea Carneiro Linhares

The REG summarization system at QA@INEX track 2010 238
Jorge Vivaldi, Iria da Cunha, Javier Ramı́rez

Relevance Feedback Track.

Overview of the INEX 2010 Relevance Feedback Track 243
Timothy Chappell, Shlomo Geva

DCU and ISI@INEX 2010: Adhoc Data-Centric and Feedback tracks 246
Debasis Ganguly, Johannes Leveling, Gareth Jones

Combining Strategy for XML Retrieval . 260
Ning Gao, Zhihong Deng, Jia-Jian Jiang, Sheng-Long Lv, Hang Yu

Web Service Discovery Track.

Web Service Discovery Track Overview . 273
James A. Thom, Chen Wu

Semantics-based Web Service Discovery Using Information Retrieval
Techniques . 274

Jun Hou, Jinglan Zhang, Richi Nayak

A first approach to web service discovery . 286
Maŕıa Somodevilla-Garcia, Beatriz Beltran, David Pinto, Darnes Vi-
lariño Ayala

RMIT participation in Web Service Discovery Track 290
James A. Thom

XML Retrieval More Efficeint Using Double-Scoring Scheme 292
Tanakorn Wichaiwong, Chuleerat Jaruskulchai

XML Mining Track.

X

Overview of the INEX 2010 XML Mining Track: Clustering and
Classification of XML Documents . 298

Chris De Vries, Richi Nayak, Sangeetha Kutty, Shlomo Geva, Andrea
Tagarelli

An Iterative Clustering Method for the XML-Mining task of the INEX
2010 . 312

Mireya Tovar Vidal, Adrian Cruz, Blanca Vázquez, David Pinto, Darnes
Vilariño Ayala

PKU at INEX 2010 XML Mining Track . 321
Songlin Wang, Feng Liang, Jianwu Yang

Back matter.

Author Index . 335

Overview of the INEX 2010 Ad Hoc Track

Paavo Arvola1 Shlomo Geva2, Jaap Kamps3,
Ralf Schenkel4, Andrew Trotman5, and Johanna Vainio1

1 University of Tampere, Tampere, Finland
paavo.arvola@uta.fi, s.johanna.vainio@uta.fi

2 Queensland University of Technology, Brisbane, Australia
s.geva@qut.edu.au

3 University of Amsterdam, Amsterdam, The Netherlands
kamps@uva.nl

4 Max-Planck-Institut für Informatik, Saarbrücken, Germany
schenkel@mpi-sb.mpg.de

5 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

Abstract. This paper gives an overview of the INEX 2010 Ad Hoc
Track. The main goals of the Ad Hoc Track were three-fold. The first
goal was to study focused retrieval under resource restricted conditions
such as a small screen mobile device or a document summary on a hit-
list. The leads to variants of the focused retrieval tasks that address
the impact of result length/reading effort, thinking of focused retrieval
as a form of “snippet” retrieval. The second goal was to extend the ad
hoc retrieval test collection on the INEX 2009 Wikipedia Collection with
additional topics and judgments. For this reason the Ad Hoc track topics
and assessments stayed unchanged. The third goal was to examine the
trade-off between effectiveness and efficiency by continuing the Efficiency
Track as a task in the Ad Hoc Track. The INEX 2010 Ad Hoc Track
featured four tasks: the Relevant in Context Task, the Restricted Relevant
in Context Task, the Restrict Focused Task, and the Efficiency Task. We
discuss the setup of the track, and the results for the four tasks.

1 Introduction

The main novelty of the Ad Hoc Track at INEX 2010 is its focus on retrieval
under resource restricted conditions such as a small screen mobile device or a
document summary on a hit-list. Here, retrieval full articles is no option, and
we need to find the best elements/passages that convey the relevant information
in the Wikipedia pages. So one can view the retrieved elements/passages as
extensive result snippets, or as an on-the-fly document summary, that allow
searchers to directly jump to the relevant document parts.

There are three main research questions underlying the Ad Hoc Track. The
first goal is to study focused retrieval under resource restricted conditions, think-
ing of focused retrieval as a form of “snippet” retrieval. The leads to variants
of the focused retrieval tasks that address the impact of result length/reading

11

effort, either by measures that factor in reading effort or by tasks that have
restrictions on the length of results. The second goal is to extend the ad hoc
retrieval test collection on the INEX 2009 Wikipedia Collection—four times the
size, with longer articles, and additional semantic markup than the collection
used at INEX 2006–2008—with additional topics and judgments. For this rea-
son the Ad Hoc track topics and assessments stayed unchanged, and the test
collections of INEX 2009 and 2010 can be combined to form a valuable resource
for future research. The third goal is to examine the trade-off between effective-
ness and efficiency by continuing the Efficiency Track as a task in the Ad Hoc
Track. After running as a separate track for two years, the Efficiency Track was
merged into the Ad Hoc Track for 2010. For this new Efficiency Task, participants
were asked to report efficiency-oriented statistics for their Ad Hoc-style runs on
the 2010 Ad Hoc topics, enabling a systematic study of efficiency-effectiveness
trade-offs with the different systems.

To study the value of the document structure through direct comparison of
element and passage retrieval approaches, the retrieval results were liberalized
to arbitrary passages since INEX 2007. Every XML element is, of course, also a
passage of text. At INEX 2008, a simple passage retrieval format was introduced
using file-offset-length (FOL) triplets, that allow for standard passage retrieval
systems to work on content-only versions of the collection. That is, the offset
and length are calculated over the text of the article, ignoring all mark-up. The
evaluation measures are based directly on the highlighted passages, or arbitrary
best-entry points, as identified by the assessors. As a result it is possible to fairly
compare systems retrieving elements, ranges of elements, or arbitrary passages.
These changes address earlier requests to liberalize the retrieval format to ranges
of elements [3] and to arbitrary passages of text [10].

The INEX 2010 Ad Hoc Track featured four tasks:

1. The Relevant in Context Task asks for non-overlapping results (elements or
passages) grouped by the article from which they came, but is now evaluated
with an effort-based measure.

2. The Restricted Relevant in Context Task is a variant in which we restrict re-
sults to maximally 500 characters per article, directly simulating the require-
ments of resource bounded conditions such as small screen mobile devices or
summaries in a hitlist.

3. The Restrict Focused Task asks for a ranked-list of non-overlapping results
(elements or passages) when restricted to maximally 1,000 chars per topic,
simulating the summarization of all information available in the Wikipedia.

4. The Efficiency Task asks for a ranked-list of results (elements or passages)
by estimated relevance and varying length (top 15, 150, or 1,500 results per
topic), enabling a systematic study of efficiency-effectiveness trade-offs with
the different systems.

Note that the resulting test collection also supports the INEX Ad Hoc tasks from
earlier years: Thorough, Focused, and Best in Context. We discuss the results for
the four tasks, giving results for the top 10 participating groups and discussing
their best scoring approaches in detail.

12

The rest of the paper is organized as follows. First, Section 2 describes the
INEX 2010 ad hoc retrieval tasks and measures. Section 3 details the collection,
topics, and assessments of the INEX 2010 Ad Hoc Track. In Section 4, we report
the results for the Relevant in Context Task (Section 4.2); the Restricted in
Context Task (Section 4.3); the Restricted Focused Task (Section 4.4); and the
Efficiency Task (Section 4.5). Section 5 discusses the differences between the
measures that factor in result length and reading effort, and the old measures
that were based on precision and recall of highlighted text retrieval. Section 6
looks at the article retrieval aspects of the submissions, treating any article with
highlighted text as relevant. Finally, in Section 7, we discuss our findings and
draw some conclusions.

2 Ad Hoc Retrieval Track

In this section, we briefly summarize the ad hoc retrieval tasks and the sub-
mission format (especially how elements and passages are identified). We also
summarize the measures used for evaluation.

2.1 Tasks

Relevant in Context Task The scenario underlying the Relevant in Context
Task is the return of a ranked list of articles and within those articles the rel-
evant information (captured by a set of non-overlapping elements or passages).
A relevant article will likely contain relevant information that could be spread
across different elements. The task requires systems to find a set of results that
corresponds well to all relevant information in each relevant article. The task
has a number of assumptions:

Display results will be grouped per article, in their original document order,
access will be provided through further navigational means, such as a docu-
ment heat-map or table of contents.

Users consider the article to be the most natural retrieval unit, and prefer an
overview of relevance within this context.

At INEX 2010, the task is interpreted as a form of “snippet” retrieval, and the
evaluation will factor in result length/reading effort.

Restricted Relevant in Context Task The scenario underlying Restricted
Relevant in Context addresses the requirements of resource bounded conditions,
such as small screen mobile devices or summaries in a hitlist, directly by imposing
a limit of maximally 500 characters per article.

Restricted Focused Task The scenario underlying the Focused Task is the
return, to the user, of a ranked list of elements or passages for their topic of
request. The Focused Task requires systems to find the most focused results that

13

satisfy an information need, without returning “overlapping” elements (shorter
is preferred in the case of equally relevant elements). Since ancestors elements
and longer passages are always relevant (to a greater or lesser extent) it is a
challenge to chose the correct granularity.

The task has a number of assumptions:

Display the results are presented to the user as a ranked-list of results.
Users view the results top-down, one-by-one.

At INEX 2010, we interpret the task as a form of summarization of all informa-
tion available in the Wikipedia, and restrict results to exactly 1,000 chars per
topic.

Efficiency Task The efficiency task is different in its focus on the trade-off
between effectiveness and efficiency. Specifically, participants should create runs
with the top-15, top-150, and top-1500 results for the Thorough task, a system-
oriented task that has been used for many years in the Ad Hoc Track. Addi-
tionally, participants reported runtimes and I/O costs for evaluating each query
as well as general statistics about the hard- and software environment used for
generating the runs.

The core system’s task underlying most XML retrieval strategies is the abil-
ity to estimate the relevance of potentially retrievable elements or passages in
the collection. Hence, the Thorough Task simply asks systems to return ele-
ments or passages ranked by their relevance to the topic of request. Since the
retrieved results are meant for further processing (either by a dedicated inter-
face, or by other tools) there are no display-related assumptions nor user-related
assumptions underlying the task.

2.2 Submission Format

Since XML retrieval approaches may return arbitrary results from within docu-
ments, a way to identify these nodes is needed. At INEX 2010, we allowed the
submission of three types of results: XML elements, file-offset-length (FOL) text
passages, and ranges of XML elements. The submission format for all tasks is a
variant of the familiar TREC format extended with two additional fields.

topic Q0 file rank rsv run id column 7 column 8

Here:

– The first column is the topic number.
– The second column (the query number within that topic) is currently unused

and should always be Q0.
– The third column is the file name (without .xml) from which a result is

retrieved, which is identical to the 〈id〉 of the Wikipedia
– The fourth column is the rank the document is retrieved.
– The fifth column shows the retrieval status value (RSV) or score that gen-

erated the ranking.
– The sixth column is called the “run tag” identifying the group and for the

method used.

14

Element Results XML element results are identified by means of a file name
and an element (node) path specification. File names in the Wikipedia collection
are unique, and (with the .xml extension removed) identical to the 〈id〉 of the
Wikipedia document. That is, file 9996.xml contains the article as the target
document from the Wikipedia collection with 〈id〉 9996.

Element paths are given in XPath, but only fully specified paths are allowed.
The next example identifies the only (hence first) “article” element, then within
that, the first “body” element, then the first “section” element, and finally within
that the first “p” element.

/article[1]/body[1]/section[1]/p[1]

Importantly, XPath counts elements from 1 and counts element types. For ex-
ample if a section had a title and two paragraphs then their paths would be:
title[1], p[1] and p[2].

A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3 and the element path in column 7.
Column 8 will not be used. Example:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1]

1 Q0 9996 2 0.9998 I09UniXRun1 /article[1]/bdy[1]/sec[2]

1 Q0 9996 3 0.9997 I09UniXRun1 /article[1]/bdy[1]/sec[3]/p[1]

Here the results are from 9996 and select the first section, the second section,
and the first paragraph of the third section.

FOL passages Passage results can be given in File-Offset-Length (FOL) for-
mat, where offset and length are calculated in characters with respect to the
textual content (ignoring all tags) of the XML file. A special text-only version of
the collection is provided to facilitate the use of passage retrieval systems. File
offsets start counting a 0 (zero).

A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3 and an offset in column 7 and a length
in column 8. The following example is effectively equivalent to the example ele-
ment result above:

1 Q0 9996 1 0.9999 I09UniXRun1 465 3426

1 Q0 9996 2 0.9998 I09UniXRun1 3892 960

1 Q0 9996 3 0.9997 I09UniXRun1 4865 496

The results are from article 9996, and the first section starts at the 466th char-
acter (so 465 characters beyond the first character which has offset 0), and has
a length of 3,426 characters.

Ranges of Elements To support ranges of elements, elemental passages can
be specified by their containing elements. We only allow elemental paths (ending
in an element, not a text-node in the DOM tree) plus an optional offset.

15

A result element may then be identified unambiguously using the combina-
tion of its file name (or 〈id〉) in column 3, its start at the element path in column
7, and its end at the element path in column 8. Example:

1 Q0 9996 1 0.9999 I09UniRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[1]

Here the result is again the first section from 9996. Note that the seventh column
will refer to the beginning of an element (or its first content), and the eighth
column will refer to the ending of an element (or its last content). Note that this
format is very convenient for specifying ranges of elements, e.g., the first three
sections:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1] /article[1]/bdy[1]/sec[3]

2.3 Evaluation Measures

We briefly summarize the main measures used for the Ad Hoc Track. Since
INEX 2007, we allow the retrieval of arbitrary passages of text matching the
judges ability to regard any passage of text as relevant. Unfortunately this simple
change has necessitated the deprecation of element-based metrics used in prior
INEX campaigns because the “natural” retrieval unit is no longer an element,
so elements cannot be used as the basis of measure. We note that properly
evaluating the effectiveness in XML-IR remains an ongoing research question at
INEX.

The INEX 2010 measures are solely based on the retrieval of highlighted
text. We simplify all INEX tasks to highlighted text retrieval and assume that
systems will try to return all, and only, highlighted text. We then compare the
characters of text retrieved by a search engine to the number and location of
characters of text identified as relevant by the assessor. For the earlier Best in
Context Task we used the distance between the best entry point in the run to
that identified by an assessor.

Relevant in Context Task (INEX 2009) The evaluation of the Relevant
in Context Task is based on the measures of generalized precision and recall [7]
over articles, where the per document score reflects how well the retrieved text
matches the relevant text in the document. Specifically, the per document score
is the harmonic mean of precision and recall in terms of the fractions of retrieved
and highlighted text in the document. We use an Fβ score with β = 1/4 making
precision four times as important as recall:

Fβ =
(1 + β2) · Precision · Recall
(β2 · Precision) + Recall

.

We are most interested in overall performances, so the main measure is mean
average generalized precision (MAgP). We also present the generalized precision
scores at early ranks (5, 10, 25, 50).

16

Relevant in Context Task (INEX 2010) The INEX 2010 version of the
Relevant in Context Task is as before, but viewed as a form of snippet retrieval,
and uses a different per-document score that takes reading effort into account.
Specifically, the per document score is the character precision at a tolerance
to irrelevance (T2I) point. In this measure, the user is expected to read the
returned passages in document order. When result passages are read, the user is
expected to continue reading from the beginning of the document and read the
remaining parts in document order. The reading stops when the user’s tolerance
to irrelevance (i.e. the amount of irrelevant characters) is met, or all characters
of a document are read. In other words, the reading/browsing is expected to end
when the user has bypassed 300 (default) irrelevant characters. The T2I(300)
score per document is again used in the measure based on generalized precision
and recall. We are most interested in overall performances so the main measure
is mean average generalized precision (MAgP). We also present the generalized
precision scores at early ranks (5, 10, 25, 50).

Restricted Relevant in Context Task The evaluation of the Restricted Rel-
evant in Context Task is the same as of the (unrestricted) Relevant in Context
Task using T2I(300). So the main performance measure is mean average gen-
eralized precision (MAgP) based on T2I(300). We also present the generalized
precision scores at early ranks (5, 10, 25, 50).

Restricted Focused Task We are interested in giving a quick overview of
the relevant information in the whole Wikipedia. This is a variant of the Fo-
cused Task where we restrict the results to exactly 1,000 characters per topic.
Evaluation will be in terms of set-based precision over the retrieved characters
(char prec). In addition, we will report on the earlier Focused measures such as
mean average interpolated precision (MAiP), calculated over over 101 standard
recall points (0.00, 0.01, 0.02, ..., 1.00). We also present interpolated precision
at early recall points (iP[0.00], iP[0.01], iP[0.05], and iP[0.10]),

Efficiency Task Precision is measured as the fraction of retrieved text that
was highlighted. Recall is measured as the fraction of all highlighted text that
has been retrieved. The Efficiency Task is evaluated as the INEX 2009 Thorough
Task, which is basically identical to the Focused task. Since the Thorough Tasks
allows for “overlapping” results, the evaluation will automatically discount text
seen before in the ranked list. The notion of rank is relatively fluid for pas-
sages so we use an interpolated precision measure which calculates interpolated
precision scores at selected recall levels. Since we are most interested in overall
performance, the main measure is mean average interpolated precision (MAiP),
calculated over over 101 standard recall points (0.00, 0.01, 0.02, ..., 1.00). We also
present interpolated precision at early recall points (iP[0.00], iP[0.01], iP[0.05],
and iP[0.10]),

For further details on the INEX measures, we refer to [1, 6].

17

3 Ad Hoc Test Collection

In this section, we discuss the corpus, topics, and relevance assessments used in
the Ad Hoc Track.

3.1 Corpus

Starting in 2009, INEX uses a new document collection based on the Wikipedia.
The original Wiki syntax has been converted into XML, using both general
tags of the layout structure (like article, section, paragraph, title, list and item),
typographical tags (like bold, emphatic), and frequently occurring link-tags. The
annotation is enhanced with semantic markup of articles and outgoing links,
based on the semantic knowledge base YAGO, explicitly labeling more than
5,800 classes of entities like persons, movies, cities, and many more. For a more
technical description of a preliminary version of this collection, see [9].

The collection was created from the October 8, 2008 dump of the English
Wikipedia articles and incorporates semantic annotations from the 2008-w40-
2 version of YAGO. It contains 2,666,190 Wikipedia articles and has a total
uncompressed size of 50.7 Gb. There are 101,917,424 XML elements of at least
50 characters (excluding white-space).

Figure 1 shows part of a document in the corpus. The whole article has been
encapsulated with tags, such as the 〈group〉 tag added to the Queen page.

This allows us to find particular article types easily, e.g., instead of a query
requesting articles about Freddie Mercury:

//article[about(., Freddie Mercury)]

we can specifically ask about a group about Freddie Mercury:

//group[about(., Freddie Mercury)]

which will return pages of (pop) groups mentioning Freddy Mercury. In fact, also
all internal Wikipedia links have been annotated with the tags assigned to the
page they link to, e.g., in the example about the link to Freddie Mercury gets
the 〈singer〉 tag assigned. We can also use these tags to identify pages where
certain types of links occur, and further refine the query as:

//group[about(.//singer, Freddie Mercury)]

The exact NEXI query format used to express the structural hints will be ex-
plained below.

3.2 Topics

The ad hoc topics were created by participants following precise instructions.
Candidate topics contained a short CO (keyword) query, an optional structured
CAS query, a phrase title, a one line description of the search request, and nar-
rative with a details of the topic of request and the task context in which the in-
formation need arose. For candidate topics without a 〈castitle〉 field, a default

18

<article xmlns:xlink="http://www.w3.org/1999/xlink">

<holder confidence="0.9511911446218017" wordnetid="103525454">

<entity confidence="0.9511911446218017" wordnetid="100001740">

<musical_organization confidence="0.8" wordnetid="108246613">

<artist confidence="0.9511911446218017" wordnetid="109812338">

<group confidence="0.8" wordnetid="100031264">

<header>

<title>Queen (band)</title>

<id>42010</id>

...

</header>

<bdy>

...

<songwriter wordnetid="110624540" confidence="0.9173553029164789">

<person wordnetid="100007846" confidence="0.9508927676800064">

<manufacturer wordnetid="110292316" confidence="0.9173553029164789">

<musician wordnetid="110340312" confidence="0.9173553029164789">

<singer wordnetid="110599806" confidence="0.9173553029164789">

<artist wordnetid="109812338" confidence="0.9508927676800064">

<link xlink:type="simple" xlink:href="../068/42068.xml">

Freddie Mercury</link></artist>

</singer>

</musician>

</manufacturer>

</person>

</songwriter>

...

</bdy>

</group>

</artist>

</musical_organization>

</entity>

</holder>

</article>

Fig. 1. Ad Hoc Track document 42010.xml (in part).

CAS-query was added based on the CO-query: //*[about(., "CO-query")].
Figure 2 presents an example of an ad hoc topic. Based on the submitted can-
didate topics, 107 topics were selected for use in the INEX 2010 Ad Hoc Track
as topic numbers 2010001–2010107.

Each topic contains

title A short explanation of the information need using simple keywords, also
known as the content only (CO) query. It serves as a summary of the content
of the user’s information need.

castitle A short explanation of the information need, specifying any structural
requirements, also known as the content and structure (CAS) query. The
castitle is optional but the majority of topics should include one.

19

<topic id="2010048" ct_no="371">

<title>Pacific navigators Australia explorers</title>

<castitle>

//explorer[about(., Pacific navigators Australia explorers)]

</castitle>

<phrasetitle>"Pacific navigators" "Australia explorers"</phrasetitle>

<description>

Find the navigators and explorers in the Pacific sea in search of

Australia

</description>

<narrative>

I am doing an essay on the explorers who discovered or charted

Australia. I am already aware of Tasman, Cook and La Prouse and

would like to get the full list of navigators who contributed to

the discovery of Australia. Those for who there are disputes about

their actual discovery of (parts of) Australia are still

acceptable. I am mainly interested by the captains of the ships

but other people who were on board with those navigators still

relevant (naturalists or others). I am not interested in those

who came later to settle in Australia.

</narrative>

</topic>

Fig. 2. INEX 2010 Ad Hoc Track topic 2010048.

phrasetitle A more verbose explanation of the information need given as a
series of phrases, just as the 〈title〉 is given as a series of keywords.

description A brief description of the information need written in natural lan-
guage, typically one or two sentences.

narrative A detailed explanation of the information need and the description of
what makes an element relevant or not. The 〈narrative〉 should explain not
only what information is being sought, but also the context and motivation
of the information need, i.e., why the information is being sought and what
work-task it might help to solve. Assessments will be made on compliance
to the narrative alone; it is therefore important that this description is clear
and precise.

The 〈castitle〉 contains the CAS query, an XPath expressions of the form:
A[B] or A[B]C[D] where A and C are navigational XPath expressions using only the
descendant axis. B and D are predicates using functions for text; the arithmetic
operators <, <=, >, and >= for numbers; or the connectives and and or. For
text, the about function has (nearly) the same syntax as the XPath function
contains. Usage is restricted to the form about(.path, query) where path is empty
or contains only tag-names and descendant axis; and query is an IR query having
the same syntax as the CO titles (i.e., query terms). The about function denotes
that the content of the element located by the path is about the information
need expressed in the query. As with the title, the castitle is only a hint to the
search engine and does not have definite semantics.

20

3.3 Judgments

Topics were assessed by participants following precise instructions. The assessors
used the GPXrai assessment system that assists assessors in highlight relevant
text. Topic assessors were asked to mark all, and only, relevant text in a pool of
documents. After assessing an article with relevance, a separate best entry point
decision was made by the assessor. All INEX 2010 tasks were evaluated against
the text highlighted by the assessors, but the test collection does support the
tasks of earlier years, such as the Thorough, Focused and Relevant in Context
Tasks evaluated in terms of precision/recall, as well as the Best in Context Task
evaluated against the best-entry-points.

The relevance judgments were frozen on November 3, 2010. At this time 52
topics had been fully assessed. Moreover, for 7 topics were is a second set of
judgments by another assessor. All results in this paper refer to the 52 topics
with the judgments of the first assigned assessor, which is typically the topic
author.

– The 52 assessed topics were numbered 2010n with n: 003, 004, 006, 007,
010, 014, 016–021, 023, 025–027, 030–041, 043, 045–050, 054, 056, 057, 061,
068–070, 072, 075, 079, 095–097, 100, and 105–107.

In total 39,031 articles were judged. Relevant passages were found in 5,471 arti-
cles. The mean number of relevant articles per topic is 66, and the mean number
of passages per topic is was 112.

Assessors where requested to provide a separate best entry point (BEP)
judgment, for every article where they highlighted relevant text.

3.4 Questionnaires

At INEX 2010, as in earlier years, all candidate topic authors and assessors were
asked to complete a questionnaire designed to capture the context of the topic
author and the topic of request. The candidate topic questionnaire (shown in
Table 1) featured 20 questions capturing contextual data on the search request.
The post-assessment questionnaire (shown in Table 2) featured 14 questions
capturing further contextual data on the search request, and the way the topic
has been judged (a few questions on GPXrai were added to the end).

The responses to the questionnaires show a considerable variation over topics
and topic authors in terms of topic familiarity; the type of information requested;
the expected results; the interpretation of structural information in the search
request; the meaning of a highlighted passage; and the meaning of best entry
points. There is a need for further analysis of the contextual data of the topics
in relation to the results of the INEX 2010 Ad Hoc Track.

4 Ad Hoc Retrieval Results

In this section, we discuss, for the four ad hoc tasks, the participants and their
results.

21

Table 1. Candidate Topic Questionnaire.

B1 How familiar are you with the subject matter of the topic?
B2 Would you search for this topic in real-life?
B3 Does your query differ from what you would type in a web search engine?
B4 Are you looking for very specific information?
B5 Are you interested in reading a lot of relevant information on the topic?
B6 Could the topic be satisfied by combining the information in different (parts of)

documents?
B7 Is the topic based on a seen relevant (part of a) document?
B8 Can information of equal relevance to the topic be found in several documents?
B9 Approximately how many articles in the whole collection do you expect to contain

relevant information?
B10 Approximately how many relevant document parts do you expect in the whole

collection?
B11 Could a relevant result be (check all that apply): a single sentence; a single para-

graph; a single (sub)section; a whole article
B12 Can the topic be completely satisfied by a single relevant result?
B13 Is there additional value in reading several relevant results?
B14 Is there additional value in knowing all relevant results?
B15 Would you prefer seeing: only the best results; all relevant results; don’t know
B16 Would you prefer seeing: isolated document parts; the article’s context; don’t know
B17 Do you assume perfect knowledge of the DTD?
B18 Do you assume that the structure of at least one relevant result is known?
B19 Do you assume that references to the document structure are vague and imprecise?
B20 Comments or suggestions on any of the above (optional)

Table 2. Post Assessment Questionnaire.

C1 Did you submit this topic to INEX?
C2 How familiar were you with the subject matter of the topic?
C3 How hard was it to decide whether information was relevant?
C4 Is Wikipedia an obvious source to look for information on the topic?
C5 Can a highlighted passage be (check all that apply): a single sentence; a single

paragraph; a single (sub)section; a whole article
C6 Is a single highlighted passage enough to answer the topic?
C7 Are highlighted passages still informative when presented out of context?
C8 How often does relevant information occur in an article about something else?
C9 How well does the total length of highlighted text correspond to the usefulness of

an article?
C10 Which of the following two strategies is closer to your actual highlighting:

(I) I located useful articles and highlighted the best passages and nothing more,
(II) I highlighted all text relevant according to narrative, even if this meant high-
lighting an entire article.

C11 Can a best entry point be (check all that apply): the start of a highlighted passage;
the sectioning structure containing the highlighted text; the start of the article

C12 Does the best entry point correspond to the best passage?
C13 Does the best entry point correspond to the first passage?
C14 Comments or suggestions on any of the above (optional)

22

Table 3. Participants in the Ad Hoc Track.

Id Participant R
el

ev
a
n
t

in
C

o
n
te

x
t

R
es

tr
ic

te
d

R
el

ev
a
n
t

in
C

o
n
te

x
t

R
es

tr
ic

te
d

F
o
cu

se
d

E
ffi

ci
en

cy

C
O

q
u
er

y

C
A

S
q
u
er

y

P
h
ra

se
q
u
er

y

R
ef

er
en

ce
ru

n

E
le

m
en

t
re

su
lt

s

R
a
n
g
e

o
f
el

em
en

ts
re

su
lt

s

F
O

L
re

su
lt

s

#
va

li
d

ru
n
s

#
su

b
m

it
te

d
ru

n
s

4 University of Otago 8 1 1 58 68 0 0 0 68 0 0 68 68
5 Queensland University of Technology 4 5 6 0 15 0 0 7 8 2 5 15 15
6 University of Amsterdam 2 2 2 0 6 0 0 0 0 0 6 6 6
9 University of Helsinki 0 0 4 0 4 0 0 0 0 0 4 4 8

22 ENSM-SE 4 0 0 0 4 0 4 2 4 0 0 4 4
25 Renmin University of China 2 0 0 0 2 0 0 0 2 0 0 2 2
29 INDIAN STATISTICAL INSTI-

TUTE
2 2 3 3 10 0 0 1 3 0 7 10 12

55 Doshisha University 3 3 3 0 0 9 0 3 9 0 0 9 9
60 Saint Etienne University 1 0 0 0 1 0 0 1 1 0 0 1 2
62 RMIT University 2 0 0 0 2 0 0 0 2 0 0 2 2
65 Radboud University Nijmegen 1 1 3 0 4 1 0 3 0 0 5 5 9
68 University Pierre et Marie Curie -

LIP6
0 0 3 3 6 0 0 2 6 0 0 6 6

72 University of Minnesota Duluth 1 1 1 0 0 3 0 0 3 0 0 3 0
78 University of Waterloo 1 1 1 0 3 0 0 0 0 0 3 3 3
98 LIA - University of Avignon 4 2 2 3 11 0 11 0 3 0 8 11 10

138 Kasetsart University 0 0 0 0 0 0 0 0 0 0 0 0 3
167 Peking University 12 9 2 17 40 0 0 0 40 0 0 40 45
557 Universitat Pompeu Fabra 0 0 3 0 3 0 0 1 0 0 3 3 9

Total runs 47 27 34 84 179 13 15 20 149 2 41 192 213

4.1 Participation

A total of 213 runs were submitted by 18 participating groups. Table 3 lists
the participants and the number of runs they submitted, also broken down over
the tasks (Relevant in Context, Restricted Relevant in Context, Restricted Fo-
cused, or Efficiency); the used query (Content-Only or Content-And-Structure);
whether it used the Phrase query or Reference run; and the used result type
(Element, Range of elements, or FOL passage). Unfortunately, no less than 21
runs turned out to be invalid.

Participants were allowed to submit up to two element result-type runs per
task and up to two passage result-type runs per task (for all four tasks). In
addition, we allowed for an extra submission per task based on a reference run
containing an article-level ranking using the BM25 model. For the efficiency task,
we allowed sets of runs with 15, 150, 1,500 results per topic. The submissions

23

Table 4. Top 10 Participants in the Ad Hoc Track Relevant in Context Task
(INEX 2010 T2I-score).

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p22-Emse303R 0.3752 0.3273 0.2343 0.1902 0.1977
p167-36p167 0.2974 0.2536 0.1921 0.1636 0.1615
p98-I10LIA1FTri 0.2734 0.2607 0.2067 0.1692 0.1588
p5-Reference 0.2736 0.2372 0.1800 0.1535 0.1521
p4-Reference 0.2684 0.2322 0.1714 0.1442 0.1436
p65-runRiCORef 0.2642 0.2310 0.1694 0.1431 0.1377
p25-ruc-2010-base2 0.2447 0.2198 0.1744 0.1359 0.1372
p62-RMIT10titleO 0.2743 0.2487 0.1880 0.1495 0.1335
p55-DUR10atcl 0.1917 0.1484 0.1163 0.0982 0.1014
p6-0 0.1798 0.1614 0.1314 0.1183 0.0695

are spread well over the ad hoc retrieval tasks with 47 submissions for Relevant
in Context, 27 submissions for Restricted Relevant in Context, 34 for Restricted
Focused, and 84 submissions for Efficiency.

4.2 Relevant in Context Task

We now discuss the results of the Relevant in Context Task in which non-
overlapping results (elements or passages) need to be returned grouped by the
article they came from. The task was evaluated using generalized precision where
the generalized score per article was based on the retrieved highlighted text, fac-
toring reading effort with T2I(300). The official measure for the task was mean
average generalized precision (MAgP).

Table 4 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task. The first column lists the participant,
see Table 3 for the full name of group. The second to fifth column list generalized
precision at 5, 10, 25, 50 retrieved articles. The sixth column lists mean average
generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top three groups (based on MAgP).

ENSM-SE An element run, using the keyword (CO) query, the phrase title
and the reference run.
Description: The method for scoring one document/element is based on the
proximity of query terms in the document [2]. In this basic method, the in-
fluence of query terms is modelized by triangular functions. For the Run
Emse303R, the height of the triangle was enlarged proportionnally to a
weight learnt with the 2009 queries and assessments [4]. In the final run
the elements and the documents are sorted with many keys. The first doc-
uments returned are those that appear both in our list and in the reference
run, then documents from our list. For each document, elements are returned
according to their score.

Peking University An element run, using the keyword (CO) query.

24

Description: Starting from a BM25 article retrieval run, then according to
the semantic query model MAXimal Lowest Common Ancestor (MAXLCA),
candidate element results are extracted. These elements are further ranked
by BM25 and Distribution Measurements.

LIA – University of Avignon A FOL run, using the keyword (CO) query,
and the phrase query.
Description: Based on advanced query expansion. We first retrieve the 10 top
documents with a baseline query. The queries of this baseline are generated
by combining the words from the 〈title〉 and 〈phrasetitle〉 fields of the
topics. The documents are ranked with a language modeling approach and
the probabilities are estimated using Dirichlet smoothing. We select the 50
most frequent unigrams, 20 most frequent 2-grams and 10 most frequent
3-grams from these 10 top-ranked documents, and we use them to expand
the baseline query, allowing term insertions within the 2-grams and 3-grams.
Finally, we retrieve the 1000 top documents with this expanded query and
we get the file offset lengths corresponding to the first ¡section¿ field of each
document.

Based on the information from these and other participants:

– The runs ranked ninth (p55-DUR10atcl) is using the CAS query. All other
runs use only the CO query in the topic’s title field.

– The first (p22-Emse303R), second (p167-36p167) and fourth (p5-Reference)
run retrieve elements; the second (p167-36p167) and tenth (p6-0) run use
FOL passages.

– Solid article ranking seems a prerequisite for good overall performance, with
fifth (p4-Reference) through ninth (p55-DUR10atcl) runs retrieving only full
articles.

4.3 Restricted Relevant in Context Task

We now discuss the results of the Restricted Relevant in Context Task in which
we allow for only 500 characters per article to be retrieved. The Restricted
Relevant in Context Task was also evaluated using generalized precision with
the generalized score per article based on T2I(300). The official measure for the
task was mean average generalized precision (MAgP).

Table 5 shows the top 10 participating groups (only the best run per group
is shown) in the Restricted Relevant in Context Task. The first column lists the
participant, see Table 3 for the full name of group. The second to fifth column
list generalized precision at 5, 10, 25, 50 retrieved articles. The sixth column lists
mean average generalized precision.

Here we briefly summarize the information available about the experiments
conducted by the top three groups (based on MAgP).

Peking University Element retrieval run using the CO query.
Description: This is a variant of the run for the Relevant in Context task.
That is, starting from a BM25 article retrieval run, then according to the

25

Table 5. Top 10 Participants in the Ad Hoc Track Restricted Relevant in Con-
text Task (INEX 2010 T2I-score).

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p167-32p167 0.2910 0.2474 0.1872 0.1595 0.1580
p98-I10LIA2FTri 0.2631 0.2503 0.1972 0.1621 0.1541
p5-Reference 0.2722 0.2362 0.1785 0.1520 0.1508
p4-Reference 0.2684 0.2322 0.1714 0.1442 0.1436
p65-runReRiCORef 0.2641 0.2313 0.1686 0.1428 0.1375
p78-UWBOOKRRIC2010 0.1111 0.1001 0.0874 0.0671 0.0650
p55-DURR10atcl 0.1555 0.1300 0.1003 0.0822 0.0600
p6-categoryscore 0.1439 0.1191 0.1053 0.0980 0.0576
p29-ISI2010 rric ro 0.1979 0.1673 0.1183 0.1008 0.0485
p72-1 0.0000 0.0000 0.0000 0.0000 0.0000

semantic query model MAXimal Lowest Common Ancestor (MAXLCA),
candidate element results are extracted. These elements are further ranked
by BM25 and Distribution Measurements. Here, the first 500 characters are
returned for each element.

LIA – University of Avignon FOL passage retrieval using the CO query and
phrases.
Description: Based on advanced query expansion. We first retrieve the 10 top
documents with a baseline query. The queries of this baseline are generated
by combining the words from the 〈title〉 and 〈phrasetitle〉 fields of the
topics. The documents are ranked with a language modeling approach and
the probabilities are estimated using Dirichlet smoothing. We select the 50
most frequent unigrams, 20 most frequent 2-grams and 10 most frequent
3-grams from these 10 top-ranked documents, and we use them to expand
the baseline query, allowing term insertions within the 2-grams and 3-grams.
Finally, we only select the 500 first characters of the first 〈section〉 field of
each document (or less if the field contains less than 500 characters).

Queensland University of Technology Element retrieval run using the CO
query, based on the reference run. Description: Starting from a BM25 article
retrieval run on an index of terms and tags-as-terms (produced by Otago),
the top 50 retrieved articles are further processed by identifying the first
element (in reading order) containing any of the search terms. The list is
padded with the remaining articles.

Based on the information from these and other participants:

– The best run (p167-32p167), the third run (p5-Reference), and the tenth
run (p72-1) retrieve elements. The fourth run (p4-Reference), seventh run
(p55-DURR10atcl), eighth run (p6-categoryscore) retrieve full articles, and
the remaining four runs retrieve FOL passages.

– With the exception of the runs ranked seventh (p55-DURR10atcl) and tenth
(p72-1), which used the CAS query, all the other best runs per group use
the CO query.

26

Table 6. Top 10 Participants in the Ad Hoc Track Restricted Focused Task.

Participant char prec iP[.01] iP[.05] iP[.10] MAiP

p68-LIP6-OWPCparentFo 0.4125 0.1012 0.0385 0.0000 0.0076
p55-DURF10SIXF? 0.3884 0.1822 0.0382 0.0000 0.0088
p9-yahRFT 0.3435 0.1186 0.0273 0.0000 0.0069
p98-LIAenertexTopic 0.3434 0.1500 0.0000 0.0000 0.0077
p167-40p167 0.3370 0.1105 0.0384 0.0000 0.0067
p65-runFocCORef 0.3361 0.0964 0.0435 0.0000 0.0067
p5-Reference 0.3199 0.1170 0.0431 0.0000 0.0070
p557-UPFpLM45co 0.3066 0.1129 0.0264 0.0000 0.0070
p4-Reference 0.3036 0.0951 0.0429 0.0000 0.0063
p29-ISI2010 rfcs ref 0.2451 0.1528 0.0192 0.0000 0.0072

4.4 Restricted Focused Task

We now discuss the results of the Restricted Focused Task in which a ranked-list
of non-overlapping results (elements or passages) was required, totalling maxi-
mally 1,000 characters per topic.

The official measure for the task was the set-based character precision over
the 1,000 characters retrieved (runs were restricted or padded to retrieve exactly
1,000 characters if needed). Table 6 shows the best run of the top 10 participat-
ing groups. The first column gives the participant, see Table 3 for the full name
of group. The second column gives the character-based precision over 1,000 char-
acters retrieved, the third to fifth column give the interpolated precision at 1%,
5%, and 10% recall. The sixth column gives mean average interpolated precision
over 101 standard recall levels (0%, 1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top three groups (based on official measure for the task,
char prec).

LIP6 An element retrieval run using the CO query.
Description: A learning to rank run that is retrieving elements for the CO
queries (negated words are removed and words are not stemmed). We limit
the domain of elements to the tag-types: {sec, ss, ss1, ss2, ss3, ss4, p}.

Doshisha University A manual element retrieval run, using the CAS query.
Description: We used the result reconstruction method from earlier years.
In this method, we aim to extract more relevant fragments without irrele-
vant parts to return appropriate granular fragments as search results. We
considered: 1) which granular fragments are more appropriate in overlapped
fragments, and 2) what size is more suitable for search results. Our method
combines neighbor relevant fragments to satisfy these views, by using the
initial fragments obtained by a well-known scoring technique: BM25E as a
basic scoring method for scoring each fragment, and ITF (inverse tag fre-
quency) instead of IPF (inverse path frequency) because there are a number
of tags in the test collection.

University of Helsinki A passage retrieval run using the CO query.

27

Table 7. Participants in the Ad Hoc Track Efficiency Task.

Participant iP[.00] iP[.01] iP[.05] iP[.10] MAiP

p167-18P167 0.4561 0.4432 0.4215 0.3936 0.2354
p4-OTAGO-2010-10topk-18 0.4425 0.4272 0.4033 0.3697 0.2304
p68-LIP6-OWPCRefRunTh 0.4790 0.4651 0.4343 0.3985 0.2196
p29-ISI2010 thorough.1500 0.2931 0.2930 0.2480 0.2145 0.0846
p98-I10LIA4FBas 0.5234 0.4215 0.2500 0.1677 0.0417

Description: The result list for each topic consists of a total of 1,000 char-
acters from the beginning of the top two articles as ranked by the Yahoo!
search-engine. Retrieving the passages from the beginning of the article is
based on the assumption that the best entry point is in the beginning of the
article. Because Yahoo! does not suggest any other entry point to the article,
retrieving the beginning of the article is also what Yahoo! provides to users.
Only the title field of the topic was used in the query.

Based on the information from these and other participants:

– Nine runs use the CO query. Only the second run (p55-DURF10SIXF) is a
manual run using the CAS query.

– Only the ninth ranked system, (p4-Reference), retrieves full articles. The
three runs ranked first (p68-LIP6-OWPCparentFo), second (p55-DURF10SIXF?),
and fifth (p167-40p167), and seventh (p5-Reference), retrieve elements. The
remaining five runs retrieve FOL passages.

4.5 Efficiency Task

We now discuss the results of the Efficiency Task focusing on efficiency rather
than effectiveness, and especially the trade-off between efficiency and effective-
ness. Participants were asked to submit ranked-lists of 15 results, or 150 results,
or 1,500 results per topic. The official measure for the task was mean average
interpolated precision (MAiP). Table 7 shows the best run of the participating
groups. The first column gives the participant, see Table 3 for the full name of
group. The second to fifth column give the interpolated precision at 0%, 1%,
5%, and 10% recall. The sixth column gives mean average interpolated precision
over 101 standard recall levels (0%, 1%, . . . , 100%).

Here we briefly summarize what is currently known about the experiments
conducted by the top three groups (based on official measure for the task, MAiP).

Peking University An element retrieval run using the CO query.
Description: This is again a variant of the runs for (Restricted) Relevant
in Context. That is, starting from a BM25 article retrieval run, then ac-
cording to the semantic query model MAXimal Lowest Common Ancestor
(MAXLCA), candidate element results are extracted. These elements are
further ranked by BM25 and Distribution Measurements. Here, the param-
eters in ranking functions are tuned by a learning method.

28

iP[0.01]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 10 100 1000 10000

runtime (ms)

iP
[0

.0
1

]

Peking University

Otago top-15

Otago top-150

Otago top-1500

MAiP

0

0.05

0.1

0.15

0.2

0.25

1 10 100 1000 10000

runtime (ms)

M
A

iP

Peking University Otago top-15

Otago top-150 Otago top-1500

Fig. 3. Trade-off between Effectiveness and Efficiency: iP[0.01] (top) and MAiP
(bottom).

University of Otago An article retrieval run using the CO query.
Description: The goal of the Otago runs was sub-millisecond per query. This
was achieved using three techniques: impact ordered indexes, static pruning,
and the use of a top-k ranking algorithm. Run p4-OTAGO-2010-10topk-18
scored the best in precision because it did the least pruning and least top-k
restriction. It used BM25 and index-time S-stripper stemming. The fastest
runs were, indeed, sub-millisecond, but at a reduced precision.

LIP6 An article retrieval run using the CO query.
Description: A learning to rank run that is retrieving top 1,500 documents
for the CO queries (negated words are removed and words are not stemmed).
For each document, the /article[1] element is retrieved.

Figure 3 shows the effectiveness, in terms of either iP[0.01] or MAiP, against
the run-time efficiency. There is a vague diagonal trend—the best scoring runs

29

Table 8. Statistical significance (t-test, one-tailed, 95%).

(a) Relevant in Context Task (b) Restricted Relevant in Context Task
1 2 3 4 5 6 7 8 9 10

p22 ? ? ? ? ? ? ? ? ?
p167 - ? ? ? ? ? ? ?
p98 - - ? ? ? ? ?
p5 ? ? ? ? ? ?
p4 ? - - ? ?
p65 - - ? ?
p25 - ? ?
p62 ? ?
p55 -
p6

1 2 3 4 5 6 7 8 9 10

p167 - ? ? ? ? ? ? ? ?
p98 - - - ? ? ? ? ?
p5 ? ? ? ? ? ? ?
p4 ? ? ? ? ? ?
p65 ? ? ? ? ?
p78 - - ? ?
p55 - - ?
p6 - ?
p29 ?
p72

(c) Restricted Focused Task (d) Efficiency Task
1 2 3 4 5 6 7 8 9 10

p68 - - - - - ? ? ? ?
p55 - - - - - - - ?
p9 - - - - - - ?
p98 - - - - - ?
p167 - - - - ?
p65 - - - -
p5 - - -
p557 - -
p4 -
p29

1 2 3 4 5

p167 - - ? ?
p4 - ? ?
p68 ? ?
p29 ?
p98

tend to be the least efficient—but the trend is weak at best. Only the University
of Otago submitted provided a large set of runs with all details. The MAiP scores
tend to improve with longer runs, other things being equal this is no surprise.
For the iP[0.01] scores, this is hardly the case.

Based on the information from these and other participants:

– The top scoring run (p167-18P167) uses elements, the fifth run (p98-I10LIA4FBas)
uses FOL passages, and the other three runs retrieve articles.

– All runs use the CO query.

4.6 Significance Tests

We tested whether higher ranked systems were significantly better than lower
ranked system, using a t-test (one-tailed) at 95%. Table 8 shows, for each task,
whether it is significantly better (indicated by “?”) than lower ranked runs. For
the Relevant in Context Task, we see that the top run is significantly better
than ranks 2 through 10. The second best run is significantly better than ranks
4 through 10. The third run better than ranks 6–10, the fourth run better than
ranks 5-10, the fifth run better than runs 6 and 9–10, the sixth through eighth
run better than runs 9–10. Of the 45 possible pairs of runs, there are 36 (or

30

Table 9. Top 10 Participants in the Ad Hoc Track Relevant in Context Task
(INEX 2009 F-score).

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p22-Emse301R 0.3467 0.3034 0.2396 0.1928 0.1970
p167-21p167 0.3231 0.2729 0.2107 0.1767 0.1726
p4-Reference 0.3217 0.2715 0.2095 0.1751 0.1710
p25-ruc-2010-base2 0.2761 0.2627 0.2128 0.1686 0.1671
p65-runRiCORef 0.3190 0.2700 0.2078 0.1735 0.1623
p62-RMIT10title 0.2869 0.2585 0.1958 0.1573 0.1541
p98-I10LIA1FTri 0.2230 0.2048 0.1725 0.1421 0.1298
p55-DUR10atcl 0.2031 0.1663 0.1339 0.1096 0.1122
p29-ISI2010 ric ro 0.2082 0.1874 0.1429 0.1250 0.0693
p5-Reference 0.0978 0.0879 0.0698 0.0640 0.0634

80%) significant differences, making MAgP a very discriminative measure. For
the Restricted Relevant in Context Task, we see that the top run is significantly
better than ranks 2 through 10. The second best run is significantly better than
ranks 6 through 10. The third run better than ranks 4–10, the fourth run better
than ranks 5–10, the fifth run better than runs 6–10, the sixth run better than
9–10, and the seventh through ninth run better than runs 10. Of the 45 possible
pairs of runs, there are again 36 (or 80%) significant differences, confirming that
MAgP is a very discriminative measure. For the Restricted Focused Task, we
see that character precision at 1,000 characters is a rather unstable measure.
The best run is significantly better than runs 7–10, and the runs ranked 2–5
and significantly better than the run ranked 10. Of the 45 possible pairs of runs,
there are only 8 (or 18%) significant differences. Hence we should be careful
when drawing conclusions based on the Focused Task results. For the Efficiency
Task, we see that the performance (measured by MAiP) of the top scoring run
is significantly better than the runs at rank 4 and 5. The same holds for the
second and third best run. The fourth best run is significantly better than the
run at rank 5. Of the 10 possible pairs of runs, there are 7 (or 70%) significant
differences.

5 Analysis of Reading Effort

In this section, we will look in detail at the impact of the reading effort measures
on the effectiveness of Ad Hoc Track submissions, by comparing them to the
INEX 2009 measures based on precision and recall.

5.1 Relevant in Context

Table 9 shows the top 10 participating groups (only the best run per group is
shown) in the Relevant in Context Task evaluated using the INEX 2009 measures
based on a per article F-score. The first column lists the participant, see Table 3
for the full name of group. The second to fifth column list generalized precision at

31

Table 10. Top 10 Participants in the Ad Hoc Track Restricted Relevant in
Context Task (INEX 2009 F-score).

Participant gP[5] gP[10] gP[25] gP[50] MAgP

p5-Reference 0.1815 0.1717 0.1368 0.1206 0.1064
p98-I10LIA2FTri 0.1639 0.1571 0.1340 0.1130 0.1053
p167-27p167 0.1622 0.1570 0.1217 0.1061 0.1030
p4-Reference 0.1521 0.1469 0.1119 0.0968 0.0953
p65-runReRiCORef 0.1610 0.1508 0.1138 0.0986 0.0945
p55-DURR10atcl 0.1369 0.1102 0.0870 0.0727 0.0537
p78-UWBOOKRRIC2010 0.0760 0.0777 0.0711 0.0544 0.0497
p6-0 0.0996 0.0880 0.0816 0.0782 0.0462
p29-ISI2010 rric ro 0.1276 0.1189 0.0820 0.0759 0.0327
p72-1 0.0000 0.0000 0.0000 0.0000 0.0000

5, 10, 25, 50 retrieved articles. The sixth column lists mean average generalized
precision.

Comparing Table 9 using the F-score and Table 4 using the T2I-score, we
see some agreement. There are six runs in both tables, and some variant of the
runs. There are however, notable upsets in the system rankings:

– Over all 47 Relevant in Context submissions, the system rank correlation is
0.488 between the F-score based and the T2I-score based evaluation.

– Taking the top 10 systems based on the T2I-score, their system ranks on the
F-score have a correlation of 0.467.

– Taking the top 10 systems based on the F-score, their system ranks on the
T2I-scores have a correlation of 0.956.

The overall system rank correlation is fairly low: the reading effort measure
significantly affects the ranking. There is an interesting unbalance between the
top 10 rankings. On the one hand, systems scoring well on the F-score tend to
get very similar rankings based on the T2I-score. This makes sense since systems
with a high F-score will tend to retrieve a lot of relevant text, and hence are
to some degree immune to the T2I conditions. On the other hand, systems that
score well on the T2I-score tend to have fairly different rankings based on the
F-score. This can be explained by the high emphasis on precision of the T2I
measures, and the relative importance of recall for the F-score.

Restricted Relevant in Context Table 10 shows the top 10 participating
groups (only the best run per group is shown) in the Restricted Relevant in
Context Task evaluated using the INEX 2009 measures based on a per article
F-score. The first column lists the participant, see Table 3 for the full name
of group. The second to fifth column list generalized precision at 5, 10, 25, 50
retrieved articles. The sixth column lists mean average generalized precision.

Comparing Table 10 using the F-score and Table 5 using the T2I-score, we
see some agreement. There are eight runs in both tables, and some variant of
the runs. There are however, notable upsets in the system rankings:

32

Table 11. Top 10 Participants in the Ad Hoc Track: Article retrieval.

Participant P5 P10 1/rank map bpref

p22-Emse301R 0.6962 0.6423 0.8506 0.4294 0.4257
p167-38P167 0.7115 0.6173 0.8371 0.3909 0.3863
p25-ruc-2010-base2 0.6077 0.5846 0.7970 0.3885 0.3985
p98-I10LIA2FTri 0.6192 0.5827 0.7469 0.3845 0.3866
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p62-RMIT10title 0.6346 0.5712 0.8087 0.3653 0.3683
p68-LIP6-OWPCRefRunTh 0.6115 0.5673 0.7765 0.3310 0.3480
p78-UWBOOKRRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382

– Over all 27 Restricted Relevant in Context submissions, the system rank
correlation is 0.761 between the F-score based and the T2I-score based eval-
uation.

– Taking the top 10 systems based on the T2I-score, their system ranks on the
F-score have a correlation of 0.022.

– Taking the top 10 systems based on the F-score, their system ranks on the
T2I-scores have a correlation of 0.156.

The overall system rank correlation is higher than for the Relevant in Context
task above, but the system rank correlations between the top 10’s however are
substantially lower.

6 Analysis of Article Retrieval

In this section, we will look in detail at the effectiveness of Ad Hoc Track sub-
missions as article retrieval systems.

6.1 Article retrieval: Relevance Judgments

We will first look at the topics judged during INEX 2010, but now using the
judgments to derive standard document-level relevance by regarding an article
as relevant if some part of it is highlighted by the assessor. We derive an article
retrieval run from every submission using a first-come, first served mapping.
That is, we simply keep every first occurrence of an article (retrieved indirectly
through some element contained in it) and ignore further results from the same
article.

We use trec eval to evaluate the mapped runs and qrels, and use mean
average precision (map) as the main measure. Since all runs are now article
retrieval runs, the differences between the tasks disappear. Moreover, runs vio-
lating the task requirements are now also considered, and we work with all 213
runs submitted to the Ad Hoc Track.

Table 11 shows the best run of the top 10 participating groups. The first col-
umn gives the participant, see Table 3 for the full name of group. The second and

33

third column give the precision at ranks 5 and 10, respectively. The fourth col-
umn gives the mean reciprocal rank. The fifth column gives mean average preci-
sion. The sixth column gives binary preference measures (using the top R judged
non-relevant documents). No less than five of the top 10 runs retrieved exclu-
sively full articles: the three runs at rank one (p22-Emse301R), rank two (p167-
38P167), and rank six (p5-Reference) retrieved elements proper, and the two
runs at rank four (p98-I10LIA2FTri) and rank nine (p78-UWBOOKRRIC2010)
retrieved FOL passages. The relative effectiveness of these article retrieval runs
in terms of their article ranking is no surprise. Furthermore, we see submissions
from all four ad hoc tasks. Runs from the Relevant in Context task at ranks 1,
3, 7; runs from the Restricted Relevant in Context task at ranks 4, 5, 9, 10; runs
from the Restricted Focused task at ranks 6; and runs from the Efficiency task
at rank 2, 8

If we break-down all runs over the original tasks, shown in Table 12, we can
compare the ranking to Section 4 above. We see some runs that are familiar from
the earlier tables: five Relevant in Context runs correspond to Table 4, seven
Restricted in Context runs correspond to Table 5, seven Restricted Focused
runs correspond to Table 6, and five Efficiency runs correspond to Table 7. More
formally, we looked at how the two system rankings correlate using kendall’s
tau.

– Over all 47 Relevant in Context submissions the system rank correlation
between MAgP and map is 0.674.

– Over all 27 Restricted Relevant in Context submissions the system rank
correlation between MAgP and map is 0.647.

– Over all 34 Restricted Focused task submissions the system rank correlation
is 0.134 between char prec and map, and 0.194 between MAiP and map.

– Over all 84 Efficiency Task submissions the system rank correlation is 0.697
between MAiP and map.

Overall, we see a reasonable correspondence between the rankings for the ad hoc
tasks in Section 4 and the rankings for the derived article retrieval measures.
The only exception is the correlation between article retrieval and the Restricted
Focused task. This is a likely effect of the evaluation over the bag of all retrieved
text, regardless of the internal ranking.

7 Discussion and Conclusions

The Ad Hoc Track at INEX 2010 studied focused retrieval under resource re-
stricted conditions such as a small screen mobile device or a document summary
on a hit-list. Here, retrieval full articles is no option, and we need to find the best
elements/passages that convey the relevant information in the Wikipedia pages.
So one can view the retrieved elements/passages as extensive result snippets, or
as an on-the-fly document summary, that allow searchers to directly jump to the
relevant document parts.

34

Table 12. Top 10 Participants in the Ad Hoc Track: Article retrieval per task.

(a) Relevant in Context Task
Participant P5 P10 1/rank map bpref

p22-Emse301R 0.6962 0.6423 0.8506 0.4294 0.4257
p25-ruc-2010-base2 0.6077 0.5846 0.7970 0.3885 0.3985
p98-I10LIA1ElTri 0.6192 0.5827 0.7469 0.3845 0.3866
p167-21p167 0.6423 0.5750 0.7774 0.3805 0.3765
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p62-RMIT10title 0.6346 0.5712 0.8087 0.3653 0.3683
p78-UWBOOKRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p557-UPFpLM45co 0.5885 0.5423 0.7623 0.3041 0.3210

(b) Restricted Relevant in Context Task
Participant P5 P10 1/rank map bpref

p98-I10LIA2FTri 0.6192 0.5827 0.7469 0.3845 0.3866
p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p167-29p167 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p78-UWBOOKRRIC2010 0.5615 0.5115 0.7281 0.3237 0.3395
p65-runReRiCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p557-UPFsecLM45co 0.5846 0.5212 0.7904 0.2684 0.2919
p9-goo100RRIC 0.6423 0.5712 0.8830 0.2180 0.2503
p6-categoryscore 0.3115 0.2981 0.4319 0.1395 0.2566
p55-DURR10atcl 0.3269 0.2769 0.4465 0.1243 0.1540

(c) Restricted Focused Task
Participant P5 P10 1/rank map bpref

p4-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p5-Reference 0.6423 0.5750 0.7774 0.3805 0.3765
p65-runFocCORef 0.5808 0.5346 0.7529 0.3177 0.3382
p98-LIAenertexDoc 0.5654 0.3192 0.7388 0.0636 0.0759
p55-DURF10SIXF? 0.4000 0.2442 0.7186 0.0531 0.0603
p557-UPFpLM45co 0.3769 0.2038 0.7308 0.0492 0.0531
p167-40p167 0.3038 0.1519 0.8462 0.0474 0.0484
p6-0 0.3154 0.3096 0.4230 0.0384 0.0591
p9-goo100RFT 0.3038 0.1519 0.8654 0.0382 0.0399
p29-ISI2010 rfcs ref 0.2577 0.1308 0.5689 0.0300 0.0346

(d) Thorough Task
Participant P5 P10 1/rank map bpref

p167-38P167 0.7115 0.6173 0.8371 0.3909 0.3863
p4-OTAGO-2010-10topk-18 0.6115 0.5654 0.7632 0.3738 0.3752
p98-I10LIA4FBas 0.6115 0.5673 0.7984 0.3648 0.3671
p68-LIP6-OWPCRefRunTh 0.6115 0.5673 0.7765 0.3310 0.3480
p29-ISI2010 thorough.1500 0.3731 0.2865 0.7294 0.0886 0.1804

35

In this paper we provided an overview of the INEX 2010 Ad Hoc Track that
contained four tasks: The Relevant in Context Task asked for non-overlapping
results (elements or passages) grouped by the article from which they came,
but evaluated with an effort-based measure. The Restricted Relevant in Context
Task is a variant in which we restricted results to maximally 500 characters per
article, directly simulating the requirements of resource bounded conditions such
as small screen mobile devices or summaries in a hitlist. The Restrict Focused
Task asked for a ranked-list of non-overlapping results (elements or passages)
restricted to maximally 1,000 chars per topic, simulating the summarization
of all information available in the Wikipedia. The Efficiency Task asked for a
ranked-list of results (elements or passages) by estimated relevance and varying
length (top 15, 150, or 1,500 results per topic), enabling a systematic study of
efficiency-effectiveness trade-offs with the different systems. We discussed the
results for the four tasks.

The Ad Hoc Track had three main research questions. The first goal was
to study focused retrieval under resource restricted conditions such as a small
screen mobile device or a document summary on a hit-list. That is, to think of
focused retrieval as a form of “snippet” retrieval. The leads to variants of the
focused retrieval tasks that address the impact of result length/reading effort,
either by measures that factor in reading effort or by tasks that have restrictions
on the length of results.

The results of the effort based measures are a welcome addition to the ear-
lier recall/precision measures. It addresses the counter-intuitive effectiveness of
article-level retrieval—given that ensuring good recall is much easier than ensur-
ing good precision [5]. As a result there are significant shifts in the effectiveness
of systems that attempt to pinpoint the exact relevant text, and are effective
enough at it. Having said that, even here locating the right articles remains a
prerequisite for obtaining good performance, and finding a set of measures that
resonate closely with the perception of the searchers remains an ongoing quest
in focused retrieval.

The second goal was to extend the ad hoc retrieval test collection on the
INEX 2009 Wikipedia Collection—four times the size, with longer articles, and
additional semantic markup—with additional topics and judgments. For this
reason the Ad Hoc track topics and assessments stayed unchanged, and the test
collections of INEX 2009 and 2010 combined form a valuable resource for future
research.

INEX 2010 added 52 topics to the test collection on the INEX Wikipedia
Corpus, making it a total of 110 topics. In addition there are seven double judged
topics. This results in an impressive test collection, with a large topic set and
highly complete judgments [8]. There are many ways of (re)using the resulting
test collection for passage retrieval, XML element retrieval, or article retrieval,
but also to piggy-back other retrieval tasks on top of the available topics and
judgments.

The third goal was to examine the trade-off between effectiveness and effi-
ciency by continuing the Efficiency Track as a task in the Ad Hoc Track. After

36

running as a separate track for two years, the Efficiency Track was merged into
the Ad Hoc Track for 2010. For this new Efficiency Task, participants were asked
to report efficiency-oriented statistics for their Ad Hoc-style runs on the 2010
Ad Hoc topics, enabling a systematic study of efficiency-effectiveness trade-offs
with the different systems.

The Efficiency task received more runs than at INEX 2009 but of a smaller
number of participants. Regarding efficiency, average running times per topic
varied from 1ms to 1.5 seconds, where the fastest runs where run on indexes
kept in memory. This is again almost an order of magnitude faster than the
fastest system from INEX 2009, and the low absolute response times clearly
demonstrate that the current Wikipedia-based collection is not large enough to
be a true challenge for current systems. Result quality was comparable to other
runs submitted to other tasks in the AdHoc Track.

For all main research questions, we hope and expect that the resulting test
collection will prove its value in future use. After all, the main aim of the INEX
initiative is to create bench-mark test-collections for the evaluation of structured
retrieval approaches.

Acknowledgments Jaap Kamps was supported by the Netherlands Organization
for Scientific Research (NWO, grants 612.066.513, 639.072.601, and 640.001.501).

Bibliography

[1] P. Arvola, J. Kekäläinen, and M. Junkkari. Expected reading effort in
focused retrieval evaluation. Information Retrieval, 13:460–484, 2010.

[2] M. Beigbeder. Focused retrieval with proximity scoring. In Proceedings of
the 2010 ACM Symposium on Applied Computing (SAC’10), pages 1755–
1759. ACM Press, New York NY, USA, 2010.

[3] C. L. A. Clarke. Range results in XML retrieval. In Proceedings of the INEX
2005 Workshop on Element Retrieval Methodology, pages 4–5, Glasgow, UK,
2005.

[4] M. Géry, C. Largeron, and F. Thollard. Integrating structure in the
probabilistic model for information retrieval. In Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intel-
ligent Agent Technology, pages 763–769. IEEE Computer Society, 2008.

[5] J. Kamps, M. Koolen, and M. Lalmas. Locating relevant text within XML
documents. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
847–849. ACM Press, New York NY, USA, 2008.

[6] J. Kamps, J. Pehcevski, G. Kazai, M. Lalmas, and S. Robertson. INEX
2007 evaluation measures. In Focused access to XML documents: 6th In-
ternational Workshop of the Initiative for the Evaluation of XML Retrieval
(INEX 2007), volume 4862 of Lecture Notes in Computer Science, pages
24–33. Springer Verlag, Heidelberg, 2008.

37

[7] J. Kekäläinen and K. Järvelin. Using graded relevance assessments in IR
evaluation. Journal of the American Society for Information Science and
Technology, 53:1120–1129, 2002.

[8] S. Pal, M. Mitra, and J. Kamps. Evaluation effort, reliability and reusability
in XML retrieval. Journal of the American Society for Information Science
and Technology, 2011.

[9] R. Schenkel, F. M. Suchanek, and G. Kasneci. YAWN: A semantically anno-
tated Wikipedia XML corpus. In 12. GI-Fachtagung für Datenbanksysteme
in Business, Technologie und Web (BTW 2007), pages 277–291, 2007.

[10] A. Trotman and S. Geva. Passage retrieval and other XML-retrieval tasks.
In Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval
Methodology, pages 43–50. University of Otago, Dunedin New Zealand, 2006.

38

A Appendix: Full run names

Group Run Label Task Query Results Notes

4 1019 Reference RiC CO Ele Article-only
4 1020 Reference RRiC CO Ele Article-only
4 1021 Reference RFoc CO Ele Article-only
4 1138 OTAGO-2010-10topk-18 Eff CO Ele Article-only
5 1205 Reference RiC CO Ele Reference run
5 1206 Reference RRiC CO Ele Reference run
5 1207 Reference RFoc CO Ele Reference run
5 1208 Reference RiC CO Ran Reference run Invalid
5 1212 Reference RRiC CO Ele Reference run
5 1213 Reference RFoc CO Ele Reference run
6 1261 0 RiC CO FOL
6 1265 categoryscore RRiC CO FOL Article-only
6 1266 0 RRiC CO FOL
6 1268 0 RFoc CO FOL
9 1287 goo100RRIC RRiC CO FOL Invalid
9 1294 goo100RFT RFoc CO FOL
9 1295 yahRFT RFoc CO FOL
22 1249 Emse301R RiC CO Ele Phrases Reference run
22 1251 Emse303R RiC CO Ele Phrases Reference run
25 1282 ruc-2010-base2 RiC CO Ele Article-only
29 1067 ISI2010 thorough.1500 Eff CO Ele Article-only
29 1073 ISI2010 rric ro RRiC CO FOL
29 1094 ISI2010 ric ro RiC CO FOL
29 1096 ISI2010 ref ric aggr RiC CO FOL Reference run Invalid
29 1098 ISI2010 rfcs ref RFoc CO FOL Reference run
55 1163 DUR10atcl RiC CAS Ele Reference run Article-only
55 1164 DURF10SIXF RFoc CAS Ele Manual
55 1169 DURR10atcl RRiC CAS Ele Reference run Article-only
60 1289 UJM 33456 RiC CO Ele Reference run
62 1290 RMIT10title RiC CO Ele Article-only
62 1291 RMIT10titleO RiC CO Ele Article-only
65 1273 runRiCORef RiC CO FOL Reference run Article-only
65 1274 runReRiCORef RRiC CO FOL Reference run
65 1275 runFocCORef RFoc CO FOL Reference run
68 1170 LIP6-OWPCparentFo RFoc CO Ele
68 1181 LIP6-OWPCRefRunTh Eff CO Ele Reference run Article-only
72 1031 1 RRiC CAS Ele
78 1024 UWBOOKRIC2010 RiC CO FOL
78 1025 UWBOOKRRIC2010 RRiC CO FOL
98 1255 I10LIA4FBas Eff CO FOL Phrases
98 1258 I10LIA1ElTri RiC CO Ele Phrases
98 1260 I10LIA1FTri RiC CO FOL Phrases
98 1270 I10LIA2FTri RRiC CO FOL Phrases
98 1284 LIAenertexTopic RFoc CO FOL Phrases
98 1285 LIAenertexDoc RFoc CO FOL Phrases
Continued on Next Page. . .

39

Group Run Label Task Query Results Notes

167 1049 21p167 RiC CO Ele
167 1076 32p167 RRiC CO Ele
167 1079 29p167 RRiC CO Ele
167 1081 27p167 RRiC CO Ele
167 1092 36p167 RiC CO Ele
167 1219 40p167 RFoc CO Ele
167 1241 18P167 Eff CO Ele
167 1242 38P167 Eff CO Ele
557 1313 UPFpLM45co RiC CO FOL Reference run Invalid
557 1316 UPFsecLM45co RRiC CO FOL Reference run Invalid
557 1319 UPFpLM45co RFoc CO FOL Reference run

40

When is in-Context Retrieval Beneficial?

Paavo Arvola, Johanna Vainio

University of Tampere, Dept. of Inf. Studies and Interactive Media
33014 University of Tampere, Finland

{paavo.arvola, s.johanna.vainio}@uta.fi

Abstract. In this study, the Relevant-in-Context retrieval task is explored in the
light of traditional full document retrieval. Obviously, under some
circumstances the full document retrieval is sufficient in finding relevant
material effectively. Namely, the Relevant-in-Context retrieval does not bring
any improvements in case the retrieved documents are thoroughly (i.e. densely)
relevant, or they start with relevant material. By using the INEX data, we
perform a topic-wise analysis focusing on these qualities of the retrieved
relevant documents. In addition, we evaluate the submitted INEX runs with the
localizing effort metric, in order to study what are the actual system
performances in locating the relevant material within a document.

Keywords: Relevant-in-Context, evaluation, metrics, relevance density

1 Introduction

This study seeks justification for the in-Context retrieval tasks, especially the
Relevant-in-Context (RiC) task. The RiC retrieval task can be considered as focused
retrieval enhanced document retrieval. In it, the retrievable unit is a document having
the best matching passages highlighted. This kind of grouping the result passages by
their document is called fetch and browse retrieval [5] and the related RiC task is
considered as the most credible task of all tasks in the ad hoc track [9]. An
information retrieval system aims to comprise the following tasks within the fetch and
browse retrieval:

1. In the fetch phase to rank the documents in decreasing order of relevance.
2. In the browse phase to identify the relevant passages in the retrieved

sparsely relevant documents.

The fetch phase is a task for a document retrieval system, whereas the browse

phase is a task for a focused retrieval system. The optimal document ranking is
sometimes considered to be based on the exhaustivity and specificity dimensions of
relevance [7]. Currently, in INEX, the exhaustivity dimension is binary and the
specificity dimension is approximated as the density of relevance i.e. the amount of
relevant text divided by total text within a retrievable unit [4, 8].

Aiming to rank the documents based on their relevance density is problematic in
the perspective of focused retrieval. Namely, if the relevance density of a document is

41

high, there is no need for a focused retrieval system to identify the relevant passages,
because (nearly) everything within the document is relevant. Instead, with sparsely
relevant documents, the focused retrieval may be beneficial. Another defeat for the
focused retrieval approach is the case when the relevant content occurs at the
beginning of a document. Typically the document start is offered for the user by
default and there is often no need to guide the user elsewhere.

The aim of this paper is to study the potential and actual benefit of the RiC task by
using the INEX data. We perform a topic-wise analysis based on relevance density
and the location of the relevant text measured as the distance of the first relevant
passage from the document start in the retrieved relevant documents. In addition, we
evaluate the submitted INEX runs with the localizing effort metric, in order to study
what are the actual system performances in locating the relevant material within a
document.

2 Analysis Based on Three Document Retrieval Scenarios

Focused retrieval can be beneficial in locating relevant material from a document.
This occurs especially, when the relevance density of the result document is low and
the relevant material doesn’t occur at the beginning of the document. In this section,
we compare three different document retrieval scenarios using the INEX 2010 recall
base and some of the top performing runs. The aim of this is to study, whether
focused retrieval is a justified approach in reducing user’s effort in general in terms of
relevance density and the starting point of the relevant text within the document. We
examine each topic with the following document retrieval scenarios:

1) optimal
2) average
3) realistic.
The optimal scenario refers to a case, where a document retrieval system is

capable of delivering the documents in the best possible order. In terms of density this
means that the documents are ranked in descending order by their density. It is worth
noting that the optimal scenario is actually the worst scenario from the perspective of
focused retrieval. The average scenario is the average of the relevant documents and
the realistic scenario is based on the fetch phase of some best performing runs of
INEX 2010 (Emse303R, 32p167, I10LIA1FTri, Reference/qtau).

In Figure 1 there is a topic-wise comparison between the scenarios based on
relevance density. In order to emphasize precision in the optimal and realistic
strategies, only the top five relevant documents are considered and the average is
reported among them. That means we discard the possible non-relevant documents in
between focusing on the top five relevant documents in the realistic scenario, because
the non-relevant documents are not interesting. The average densities over all topics
are 0.71, 0.34 and 0.42, for optimal, average and realistic scenarios respectively.

42

opti mal

0

0.2

0.4

0.6

0.8

1

2
6

2
1

1
8

5
4

7
0

3
0

10
5

3
4

3
2

1
7 6 4

5
6

1
6

3
6

5
7

3
3

3
9

4
1

4
0 3

3
8

9
6

1
0

4
6

4
8

7
2

4
9

2
7

6
9

2
3

6
8

1
4

7
5

10
0

2
5

9
5

10
6

5
0

3
5

3
1

4
3

4
5

6
1

9
7

1
9

2
0

4
7 7

10
7

7
9

3
7

topic id

de
n

si
ty

average

0

0.2

0.4

0.6

0.8

1

17 26 70 18 34 21 4 6 54 38 56 41 32 3 33 57 36 46 49 96 10
5 39 10
0 72 19 40 68 48 10 16 30 25 69 10
6 35 61 95 47 31 75 10
7 97 27 23 45 20 14 50 37 7 43 79

topic id

de
ns

it
y

real istic

0

0.2

0.4

0.6

0.8

1

10
5 54 17 18 26 32 70 56 41 4 38 6 46 96 40 3 34 33 75 57 21 10
0 16 10 68 72 10
6 23 19 35 61 14 25 48 39 36 49 30 97 10
7 47 43 27 95 45 50 7 69 31 37 20 79

topic id

d
en

si
ty

Figure 1. The average densities of retrieved documents by topic with optimal, average and
realistic document retrieval scenarios. The topics are sorted according to the average density for
each scenario.

Figure 2 illustrates the location of the first occurrence of relevant text, more
precisely, how far the first relevant passage is from the document start on average per
topic. The further the relevant content the better from the focused retrieval
perspective. The document retrieval scenarios are equivalent to the analysis based on
density in Figure 1, except that the criterion is based on the distance of the first
relevant passage from the document start. That is, the optimal run delivers first
documents having the shortest distance between document start and the first relevant
passage. It is worth noting that the higher the bar, the better for focused retrieval. The
average distances are approximately 230, 3049 and 1836 characters for optimal,
average and realistic scenarios respectively.

43

optimal

1

10

100

1000

10000

100000

54 16 18 26 96 10
5 10 56 46 33 34 70 40 45 30 21 17 7 95 43 32 39 69 14 36 4 6 41 61 23 72 49 57 48 38 27 47 3 68 50 79 75 20 25 35 37 10
0

10
6 97 31 19 10
7

topic id

ch
ar

s

average

1

10

100

1000

10000

100000

17 26 39 96 70 18 4 40 10 38 68 49 47 69 46 6 34 72 36 54 21 57 32 16 56 3 61 41 48 19 10
7 37 33 95 7 43 10
0 45 50 23 25 27 31 10
5 30 79 10
6 35 14 20 97 75

topic id

ch
ar

s

average

realistic

1

10

100

1000

10000

100000

54 16 17 18 26 96 10
5 10 6 56 38 3 39 46 33 47 34 41 68 32 27 70 57 50 36 61 4 48 23 79 40 37 10
6 49 72 7 69 19 25 35 14 10
7

10
0 75 45 30 97 95 20 21 43 31

topic id

ch
ar

s

Figure 2. The average distances of the first relevant passage from the document start measured
in characters by topic with optimal, average and realistic document retrieval scenarios. The
topics are sorted according to the distance for each scenario.

In the next section, we briefly introduce the cumulating effort and localizing effort

metric and related assumptions regarding the assumed reading order and report results
of INEX 2010 runs based on how much text the user is expected to browse through
before discovering the relevant material.

3 Results using Cumulated Effort and Localizing Effort

In this paper, we consider the sequential reading order of an individual document by
default following the approach of [1] (see also [3]). This means that the user starts
reading from the beginning of a document and continues to read sequentially the
document’s text until his or her information needs are fulfilled i.e. the relevant content

44

of the document is read, or his or her tolerance-to-irrelevance is exceeded [10]. In the
context of fetch and browse approach a focused retrieval system should return a set of
the best matching passages i.e. a set of character-positions and their locations within
each retrieved document. This aims to guide the user first to the best content of the
document. When combining the two browsing, we are able to define a simple
browsing model for a document with two consecutive phases:

1. The text passages retrieved by the passage retrieval system are read
sequentially until possibly all relevant content has been reached.

2. The remaining passages are read until all relevant content has been reached
starting from the first remaining passage of the document.

Figure 3. Conventional reading order (left) and focused retrieval driven reading order (right)

 Figure 3 illustrates the difference between conventional browsing and focused
retrieval driven browsing. The conventional browsing is assumed to be rather
straightforward. In real life, the user might use skim reading in order to locate the
relevant spots. However, when using a small screen device [e.g. 2] this option is
limited. Nevertheless, focused retrieval is beneficial if the focused retrieval driven
browsing methods overcome the conventional ones. In other words, it is beneficial
only if the relevant content is yielded with less effort.

Next, we aim to measure the effort the user has to take in order to localize the
relevant content. In other words, we measure the effectiveness in assessing the
document to be relevant. This is done by assuming the reading order above and
evaluating the INEX 2010 runs with cumulated effort metric, which is introduced
next.

3.1 Metrics

Cumulated effort [3] is similar to the cumulated gain metric [6], except that instead
of the gain the user receives by reading the documents in the result list, cumulated
effort (CE) focuses on the effort the user has to spend while looking for relevant

45

content. For calculating CE, an effort score for each ranked document d, ES(d), is
needed. The values of ES(d) should increase with the effort; in other words the lower
the score the better. Normalized cumulated effort (vector NCE) averages the scores
over multiple topics. It is defined as follows:

i

j

j

jIE
dES

iNCE
1

1
)(

 (1)

where i is the cut-off point in the result list and IE is the vector representing the

ideal performance for the topic. A normalized optimal run produces a curve having
zero values only. In this study, we report a value for the whole result list or a run. An
average at a given cut-off point for normalized cumulated effort is calculated as
follows:

i

jNCE
iANCE

i

j 1
(2)

 In this paper, we report a MANCE@300 value, which is calculated over a set of

topics. This means the mean average cumulated effort at 300 top ranked documents.
The function ES(d) can be defined in numerous ways, but here we assume that the
system’s task is just to point out that the retrieved document is relevant by guiding the
user to relevant content. The document score represents how much expected effort it
takes to find relevant text within the document. The scoring depends directly on (non-
relevant) characters read before finding the first relevant passage or element.

The document effort score ES(d) is the score, that the LE function gives after the
relevant text within the document is yielded. For non-relevant documents we assume
a default effort score NR:

relevant is d if ,)(
otherwise ,)('drLE

NRdES (3)

where d’ is the expected reading order of document d and rd’ is the position of the first
relevant character with the reading order d’ , i.e. number of characters to be read
before the relevant text is yielded. The function LE(rd’) gives the localizing effort
score for an individual document, when rd’ characters are read before the relevant text.
Measuring the effort on finding relevant content is done with the Localizing Effort
metric for the document score and Cumulated Effort for the list score. As scoring for
an individual document, we set:

otherwise ,
i fi ,

i fi ,
i fi ,

iLE

4
150010003

10005002
5001

)(

NR = 5

(4)

46

Next, we report results using the CE metrics for the list score together with
localizing effort score for each individual result document.

3.2 Results

Figure 4 shows the NCE curves of four INEX 2010 runs by the top 5 participants
(Emse301R, I10LIA1FTri, 31p167, Reference/qtau) plus the reference run (full
document run: Reference_1). Table 1 presents the MANCE@300 value for all the
runs of the participating organizations.

0

50

100

150

0 20 40 60 80 100

rank

NC
E

Emse301R_36
I10LIA1FTri_40
31p167_12
Reference_30
Reference_1

Figure 4. Normalized cumulated effort curves of the runs of some of the best
participants.

47

Table 1. Mean Average Normalized Cumulated Effort (MANCE) at top 300
documents for each submitted run.

4 Discussion and Conclusions

This study aimed to motivate the RiC task by analyzing the relevance densities and
the locations of the relevant material in the relevant result documents. The location
was measured as a distance in characters between the document start and the start of
the first relevant passage. Three document retrieval scenarios: optimal, average and
realistic, were considered. With the optimal scenario, the average density of the top 5
documents was below 50% for only a minority of the topics. However, assuming the
realistic scenario, a majority of the topics went below 0.5 density (using the top 5
relevant documents).

The same trend was present in the location analysis. In the optimal scenario in
most of the topics, the relevant content was situated on average within 100 characters
or less from the document start using top 5 documents for each topic. In the realistic
scenario most of the first relevant material within a document was situated within
1000 characters or more in most of the topics. Accordingly, the results obtained with
the localizing effort metric as document level metric and cumulated effort metric as
list level metric showed the benefit of focused retrieval over plain full document
retrieval.

Consequently, the Relevant-in-Context task of INEX seems to be beneficial in
studying means to reduce user effort in locating relevant material within a document.
This is the case even if the Wikipedia documents tend to be relatively short.
Relevance sparsity and long not relevant document parts require scrolling when only
conventional document retrieval is used. Scrolling thousands of characters for
instance with a cumbersome small screen device requires effort, which can be aided
using focused retrieval driven browsing methods within a document.

48

Acknowledgements

The study was supported by Academy of Finland under grant #115480

References

1. Arvola, P. Passage Retrieval Evaluation Based on Intended Reading Order, In Workshop
Information Retrieval, LWA 2008, 91-94. 2008.

2. Arvola, P., Junkkari, M. and Kekäläinen, J. Applying XML Retrieval Methods for Result
Document Navigation in Small Screen Devices. In Proceedings of MUIA at MobileHCI
2006, 6-10, 2006.

3. Arvola, P., Kekäläinen, J., and Junkkari, M. Expected reading effort in focused retrieval
evaluation. Information Retrieval, 13(4), 460-484, 2010.

4. Arvola, P., Kekäläinen, J., and Junkkari, M. Focused access to sparsely and densely
relevant documents. In Proceedings of SIGIR 2010, 781-782, 2010.

5. Chiaramella, Y. Information retrieval and structured documents. Lectures on information
retrieval, 286–309, 2001.

6. Järvelin, K., and Kekäläinen, J. Cumulated Gain-Based Evaluation of IR Techniques. ACM
Transactions on Information Systems. 20 (4). 422-446, 2002.

7. Kazai, G., and Lalmas, M. Notes on what to measure in INEX. In Proceedings of the INEX,
Workshop on Element Retrieval Methodology, INEX 2005, 2005.

8. Piwowarski, B., and Lalmas, M. Providing consistent and exhaustive relevance assessments
for XML retrieval evaluation. In Proceedings of CIKM '04, 361–370, 2004.

9. Trotman, A., Pharo, N., and Lehtonen, M. XML-IR Users and Use Cases. In Proceedings
of INEX 2006, LNCS 4518, 400-412, 2007.

10. de Vries, A.P., Kazai, G., and Lalmas, M. 2004. Tolerance to irrelevance: A user-effort
oriented evaluation of retrieval systems without predefined retrieval unit. In Proceedings of
RIAO 2004, 463-473, 2004.

49

ENSM-SE and UJM at INEX 2010:
Scoring with Proximity and Tags Weights

Extended abstract

Michel Beigbeder1, Mathias Géry2, Christine Largeron2, and Howard Seck3

1 École Nationale Supérieure des Mines de Saint-Étienne
michel.beigbeder@emse.fr

2 Université de Lyon, F-42023, Saint-Étienne, France
{Mathias.Gery, Christine.Largeron}@univ-st-etienne.fr

3 Université Paris-Dauphine
bseck@olaneo.fr

1 Introduction

The four runs labelled with “Emse” in the 2010 INEX campaign were done by
a team both from the École Nationale Supérieure des Mines de Saint-Étienne
and the Université Jean Monnet de Saint-Étienne and with a master student
from the Université Paris-Dauphine. Both the approaches used in the previous
years by these two organizations were merged for our 2010 participation. The
first oneis based on the proximity/influence of the query terms in the documents
[1] and the second one is based on learnt tags weights [2].

We will first present the notion of proximity between one (query) term and
any position in a document. Then we will show how this notion can be extended
to proximity between one boolean query and any position in a document. The
following section 3 will be dedicated to the computation of tag weights. The
integration of both methods were done by impacting the tag weights directly in
the influence function of the occurrence of a query term. Finally in section 4 we
present how elements are scored with these weighted proximity functions and
how our runs were built with these scores and for two of them with the INEX
Reference Run.

2 Influence functions

2.1 Structure, elements and logical elements

An XML document is composed of elements, each of them is delimited by an
opening tag and a closing tag. Given a XML collection, we consider a partition
of the set of tags, B, that appears in the collection with three subsets:

– Bl: the logical tags (or section-like tags);
– Bt: the title-like tags;
– Bl ∩Bt: the other tags.

50

Given a position x in a document, e(x) is the deepest element that surrounds the
position x, and el(x) is the deepest logical element that surrounds the position
x; b(x) is the tag of the element e(x).

2.2 Influence function of a term to a position

The proximity between

– one occurrence of a term t at position i
– one position x in a document d

measures the influence of this occurrence of term t to the position x. Any function
with the three following properties is acceptable and modelizes the proximity
idea:

– symmetric around i,
– decreasing with the distance to i,
– maximum (value 1) reached at i.

The simplest one is a linearly decreasing function centered around i: x 7→
max(k−|x−i|

k , 0) where k is a controlling parameter. When the distance between
x and i is greater than k, the influence is zero – that’s to say that the occurrence
of t at position i is too far from position x to influence it. Moreover the influ-
ence is limited to the logical element el(i) that surrounds the position i of the
occurrence of the query term t. To do that we take the product of the triangle
function by the characteristic function 1el(i) of the position range that belongs
to the logical element el(i). Lastly, the influence should be that of the nearest
occurrence of the term t, which can be obtained with maxi∈d−1(t) because the
influence function are symmetric and decreasing with the distance.4

So the proximity pd
t (x) of term t to the position x in the document d is

defined by:

pd
t (x) = max

i∈d−1(t)

(
1el(i) ·max

(
0,

k − |x− i|
k

))
(1)

Though when e(i) is a title-like element, the triangle function is replaced by
the constant function 1. Thus one occurrence of a query term in a title spreads
its influence over the whole surrounding logical element.

2.3 Influence function of a query to a position

As a boolean query, the query q is a tree with conjunctive and disjunctive nodes.
To define the proximity on a conjunctive node the minimum is taken over the
proximity functions of its children. Similarly, the proximity on a disjunctive node
is defined as the maximum over the proximity functions of its children.

4 The notation d−1(t) denotes the set of positions in the document d where one oc-
currence of term t does appear.

51

2.4 Score of of an element

Given the influence function of a document d to a query q that maps the positions
in the document d to [0,1] with pd

q(x), the score of an element e is computed
with the following formula:

s(q, e) =

∑
x1(e)≤x≤x2(e) pde

q (x)

x2(e)− x1(e) + 1
(2)

3 Weighting tags and impacting tag weights

3.1 Weighting tags

A weight is computed for each tag b ∈ B, following the learning method intro-
duced by [2]. It estimates the probability that b marks a relevant term or an
irrelevant one. This weight is integrated afterwards in the influence function of
the terms.

The queries set Q from INEX 2009 is used as a learning set. As presented in
the table 1, Pq(e) is the set of the relevant positions in the element e ∈ E for a
query q ∈ Q, and Mb(e) is the set of the positions of e marked by the tag b ∈ B.

Pq(e) Pq(e)

Mb(e) tpm(b, q) tpm(b, q)

Mb(e) tpm(b, q) tpm̄(b, q)

Total = Pq ∪ Pq tcoll
p (q) tcoll

p (q)

Table 1. Positions of the element e ∈ E, for each query q and for each tag b

The weight wb(q) of a tag b for a query q is defined by:

wb(q) =

tpm(b,q)+s
tpm(b,q)+tpm(b,q)+s

tpm(b,q)+s
tpm(b,q)+tpm̄(b,q)+s

(3)

with:

– tpm(b, q) =
∑

e∈E |Pq(e) ∩Mb(e)|: number of relevant positions for the query
q marked by the tag b;

– tpm(b, q) =
∑

e∈E |Pq(e) ∩Mb(e)|: number of relevant positions for the query
q not marked by the tag b;

– tpm(b, q) =
∑

e∈E |Pq(e) ∩Mb(e)|: number of irrelevant positions for the
query q marked by the tag b;

– tpm(b, q) =
∑

e∈E |Pq(e) ∩Mb(e)|: number of irrelevant positions for the
query q not marked by the tag b;

52

The parameter s is a smoothing parameter, which was fixed to 0,5 in our
experiments.

The weight wb of a tag is then averaged using a set of 68 queries from INEX
2009, using the formula 4:

wb =
1

|Q|
∑
q∈Q

wb(q) (4)

3.2 Impacting tag weights

The weights of the tags are impacted on the influence function with two methods.
In the first one, the height of the triangle is impacted according to the formula:

phd
t (x) = max

i∈d−1(t)

(
max

(
0, wb(i) ·

k − |x− i|
k

))
(5)

and in the second one, both the height and the width of the triangle are impacted:

phld
t (x) = max

i∈d−1(t)

(
max

(
0,

wb(i) · k − |x− i|
k

))
(6)

4 Building runs

For the experiments, we used the following sets of tags:

Bl = {article, sec, section, ss1, ss2, ss3, ss4, ss5}

Bt = {title, st}
For the runs Emse301 and Emse301R, the influence function of a query term

is phl , and for the runs Emse303 and Emse303R, the influence function is ph.
As each document is analyzed, a score is computed for each logical element

according to formula 2. A score is computed for a document as the maximum of
the scores of its descendants.

To choose some elements within a document, the scores of the elements of
the document are sorted in decreasing order in a ranked list. The top ranked
element is inserted in the result list. To fulfill the non overlapping requirement,
at the same time every descendants and every ascendants of this element are
removed from the ranked list. This process is repeated util the ranked list is
empty.

For the runs Emse301 and Emse303, the elements are sorted:

1. by document score
2. by document id
3. by element score

For the runs Emse301R and Emse303R, the same sorting keys are used but
the Reference Run is also used. The elements of the documents that appear
both in our results list and in the Reference Run are returned in the order of
the Reference Run, then the elements of the documents that appear only in our
list.

53

References

1. Beigbeder, M.: Focused retrieval with proximity scoring. In: Proceedings of the
2010 ACM Symposium on Applied Computing. SAC ’10, New York, NY, USA,
ACM (2010) 1755–1759

2. Géry, M., Largeron, C., Thollard, F.: Integrating structure in the probabilistic model
for information retrieval. In: Web Intelligence. (2008) 763–769

54

LIP6 at INEX’10 : OWPC for Ad Hoc track

David Buffoni, Nicolas Usunier, and Patrick Gallinari

Université Pierre et Marie Curie - Laboratoire d’Informatique de Paris 6
4, place Jussieu, 75005 Paris, France

{buffoni, usunier, gallinari}@poleia.lip6.fr

Abstract. We present a Retrieval Information system for XML doc-
uments using a Machine Learning Ranking approach. We propose this
year, to extract other features than the previous year, to enhance the
precision of our machine learning runs.

1 Introduction

Learning to rank algorithms have been used in the Machine Learning field for
a while now. In the field of IR, they have first been used to combine features
or preferences relations in the meta search [5], [6]. Learning ranking functions
has also lead to improved performances in a series of tasks such as passage
classification or automatic summarization [1]. More recently, they have been
used for learning the rank function of search engines [4], [11], and [10].

Ranking algorithms work by combining features which characterize the data
elements to be ranked. In our case, these features will depend on the document
or the element itself, its structural context and its internal structure. Ranking
algorithms will learn to combine these different features in an optimal way, ac-
cording to a specific loss function related to IR criteria, using a set of examples.
This set of examples is in fact a set of queries where for each one, a list of doc-
uments is given. In ranking, starting from this list, we make a set of pairs of
documents where one is relevant to the query and the other is irrelevant.

The main problem in ranking is that the loss associated to a predicted ranked
list is the mean of the pairwise classification losses. This loss is inadequate for
IR tasks where we prefer high precision on the top of the predicted list. We
propose, here to use a ranking algorithm, named OWPC [10] which optimizes
loss functions focused on the top of the list.

This year, we concentrated our attention on which features we have to take
into account to enhance the precision of our runs.

In this paper, we describe the selection of features which represent an element
according a query (section 2). We then present our learning to rank model,
OWPC, in section 3. Finally, in section 4 we discuss the results obtained by our
runs for the adhoc track.

2 Learning Base

INEX uses a document collection based on the Wikipedia where the original Wiki
syntax has been converted into XML [8]. This collection is composed of 2,666,190

55

documents and for each document we can separate semantic annotation elements
and content elements. In our case, we indexed only content elements without
doing any preprocessing step along the corpus as stemming or using a stop word
list. To use a machine learning algorithm on this collection we have to build
manually a set of examples (i.e of queries) as a learning base. For each query,
we must create a pool of retrieved elements, assess them and represent them as
a vector of extracted features.

We assessed manually 40 randomly chosen queries from previous INEX com-
petitions (from 2006 to 2009) and according the same process as in [3].

Now, after annotating a set of queries, we can select the elements we will
propose to our learning algorithm. Thus, we have to select elements according
to a query. The strategy used was to select objects by a pooling technique,
more details can be found in [2] where the authors suggest selecting elements by
pooling. Therefore we decided to build our learning base as a pool of the top t

elements of three information retrieval models as BM25, LogTF and a Language
Model with Absolute Discount smoothing function.

2.1 Basic features

Once, we have obtained a set of elements according a query, we have to represent
each element by a feature representation. In our case each feature is a similarity
function between a query and an element. We can separate the features in two
families :

content feature: is a similarity function based on the content of an element
and the content of the query. For example, models such as BM25 [7], TF-IDF
or Language Models can be placed in this class.

element structure feature: provides information on the internal structure of
an element. In practice, we used an indicator function on the type of the
considered element.

We sum up in Table 1 all the features used in our experiments for the Re-
stricted Focused and the Efficiency/Thorough tasks1. We denote tf(t, x) as the
term frequency of the term t of a query q in the element x, [x] as the length
of x, Col as the collection and df(t) as the number of elements in the corpus
containing t.

2.2 Context features

The aim of this work is to identify features that are informative to help a learn-
ing to rank algorithm to perform well on a set of elements. In traditional search
engines, the features of the whole document are used, but the features of impor-
tance in XML retrieval, where the retrieved element must be both specific and

1 These features are commonly employed in IR but we were interested in what kind
of information could bring these features

56

ID Feature Description

1 [x]

2 # of unique words in x

3
∑

t∈q
⋂

x tf(t, x) in x

4
∑

t∈q
⋂

x log(1 + tf(t, x)) in x

5
∑

t∈q
⋂

x

tf(t,x)
[x]

in x

6
∑

t∈q
⋂

x log(1 +
tf(t,x)

[x]
) in x

7
∑

t∈q
⋂

x log(
[Col]+1
df(t)+0.5

) in x

8
∑

t∈q
⋂

x log(1 + log([Col]+1
df(t)+0.5

)) in x

9
∑

t∈q
⋂

x log(1 +
[Col]+1
tf(t,x)

) in x

10
∑

t∈q
⋂

x log(1 +
tf(t,x)

[x]
∗ [Col]+1

df(t)+0.5
) in x

11
∑

t∈q
⋂

x log(1 +
tf(t,x)

[x]
∗ [Col]

tf(t,Col)
) in x

12
∑

t∈q
⋂

x log(1 + tf(t, x)) ∗ log([Col]+1
0.5+df(t)

) in x

13
∑

t∈q
⋂

x tf(t, x) ∗ log(
[Col]+1
0.5+df(t)

) in x

14 BM25k=2
b=0.2 in x

15 log(1 +BM25k=2
b=0.2) in x

16 LMJelinek−Mercer
λ=0.5 in x

17 LMDirichlet
µ=2500 in x

18 LMAbsoluteDiscount
δ=0.88 in x

19-20-21-22-23-24-25 family tag of the element

Table 1. Extracted features for the joint representation of a document accord-
ing to a query. x is either an element or a document (Reference runs). The 19-
25th features give a boolean attribute for the family tag of the current element
x ∈ {sec, ss, ss1, ss2, ss3, ss4, p}.

57

exhaustive, remain to be determined. The approach we present focuses on this
problem.

We built a total of three sets of context features based on the 15 first features
described in Table 1. We then added independently features 16 to 23.

Reference Run submission: This submission describes an element through
23 features (exactly as presented in Table 1 where x is the document, i.e.
/article[1] element). This submission is used as a baseline and called LIP6-
OWPCRefRun*2 .

Element-Document and ratio submission: In this case, an element x can
take two values, that of the retrieved element and that of the document

it belongs to. We add the ratio r = featurei(x)
featurei(document it belongs to) too. This

ratio should compare the proportion of the information included in the ele-
ment to the overall information of the document, to determine whether the
element is exhaustive. We inject into the algorithm both the local informa-
tion held by the element and the global information brought by document
scores. We suppose that the best element is going to be located in one of
the most pertinent documents, and thus we select the best documents and
then the best elements of these documents. This set gives the submission
LIP6-OWPCnormal*.

Element-Parent-Document and ratios submission: In this case, x can take
three values, that of the retrieved element, that of his parent and that of the

document it belongs to. We add two ratios: r1 = featurei(x)
featurei(parent(x))

and

r2 = featurei(parent(x))
featurei(document it belongs to) . As previously, we added the context in-

formation of the element by computing the scores of his parent. We know that
the information inside a parent is greater or equally exhaustive, compared
to that of the element and it remains more specific than the information in
the whole document. This submission is LIP6-OWPCparent*.

3 Learning to rank Model

We outline here the learning to rank model described more in detail in [10]. We
consider a standard setting for learning to rank. The ranking system receives
as input a query q, which defines a sequence of candidates (XML elements)
X(q) def

=
(

X1(q), ...,Xq
)

(where [q] is used as a shortcut for [X(q)]). In our
case, the sequence is a subset of the collection filtered by the pooling technique
as described in section 2. Xj(q) corresponds to the similarity representation,
i.e the vector of extracted similarities, of the j-th object. A score (i.e. real-
valued) function f takes as input the similarity representation of an element,
thus f

(

Xj(q)
)

), denoted fj(z) for simplicity, is the score of the j-th element. The
output of the ranking system is the list of the candidates sorted by decreasing
scores.

2 the * corresponds to the task, in our case, “Th” for Efficiency/Thorough and “Fo”
for Restricted Focused.

58

3.1 Learning step

For clarity in the discussion, we assume a binary relevance of the elements: a
sequence y contains the indexes of the relevant objects labeled by a human expert
(ȳ contains the indexes of the irrelevant ones).

Given a training set S = (qi,yi)
m
i=1 of m examples, learning to rank consists

in choosing a score function f that will minimize a given ranking error function
R̂Φ(f, S) :

R̂Φ(f, S) def

= Ê
(q,y)∼S

err

(

rank(f, q,y)
)

Ê(q,y)∼S is the mean on S of ranking errors and err is the number of misranked
relevant documents in the predicted list.

Rank function We define the rank of a relevant document for a given query q,
its relevant candidates y, and a score function f , as follows:

∀y ∈ y, ranky(f, q,y)
def

=
∑

ȳ∈ȳ

I (fy(q) ≤ fȳ(q)) (1)

where I (fy(q) ≤ fȳ(q)) indicates whether the score of a relevant document is
lower than the score of an irrelevant one. However, directly minimizing the
ranking error function R̂Φ(f, S) is difficult due to the non-differentiable and
non-convex properties of function I (fy(q) ≤ fȳ(q)) of ranky(f, q,y). To solve
this problem we generally take a convex upper bound of the indicator function
which is differentiable and admits only one minimum. In [10], this bound is de-
noted ℓ

(

fy(q)−fȳ(q)
)

and is set to the hinge loss function ℓ : t 7→ [1− t]+ (where
[1− t]+ stands for max(0, 1− t) and t = fy(q)− fȳ(q)).

Error function With equation 1, we can define a general form of the ranking
error functions err of a real valued function f on (q,y) as:

err(f, q,y) def

=
1

[y]

∑

y∈y

Φ[ȳ] (ranky(f, q,y))

where Φ[ȳ] is an aggregation operator over the position of each relevant doc-
ument in the predicted list. Traditionnaly, this aggregation operator Φ[ȳ] was
set to the mean in learning to rank algorithms as in [?, ?]. Yet, optimizing the
mean of the rank of relevant document does not constitute a related ranking
error function to classical Information Retrieval measures. In fact, we obtain the
same ranking error for a relevant element ranked on the top or on the bottom of
the list. This behaviour is not shared by IR metrics where more consideration is
given to the rank of the relevant documents on the top of the list.

To overcome this problem, the authors of [10] showed that fixing Φ[ȳ] by the
convex Ordered Weighted Aggregation (OWA) operators [?] we can affect the
degree to which the ranking loss function focuses on the top of the list. The
definition of the OWA operator is given as follows :

59

Definition 1 (OWA operator [?]) Let α = (α1, ..., αn) be a sequence of n

non-negative numbers with
∑n

j=1 αj = 1. The Ordered Weighted Averaging
(OWA) Operator associated to α, is the function owaα : Rn → R defined as
follows:

∀t = (t1, ..., tn) ∈ R
n, owaα(t) =

n
∑

j=1

αjtσ(j)

where σ ∈ Sn (set of permutations) such that ∀j, tσ(j) ≥ tσ(j+1).

It is then used by the authors to rewrite the ranking error function as follows:

err(f, q,y) def

=
1

[y]

∑

y∈y

owa
ȳ∈ȳ

(ranky(f, q,y)) (2)

SVM formulation Thus, according to the authors, this provides a regularized
version of the empirical risk of equation (2) and can be solved using existing
algorithms as Support Vector Machines for structured output spaces [9].

min
w

1

2
||w||2 + C

∑

(q,y)∈S

1

[y]

∑

y∈y

owa
ȳ∈ȳ

[1− 〈w,Xy(q)−Xȳ(q)〉]+ (3)

where the learning algorithm according to the training set S and the ranking er-
ror function err(f, q,y) will determine the parameter vector w. This weight
vector will be used in the prediction step to compute the score of a docu-
ment (f function). C is a trade-off parameter fixed by the user, to balance the
learning model complexity ||w||2 and the upper bounded ranking loss function
err(f, q,y).

To sum up, this algorithm learns a score function by minimizing a ranking
error function focused on the top of the list. The user has to fix the non-increasing
weights α of the OWA operators to vary the consideration on the errors incurred
on the top of the list. It’s the typical behaviour of a IR evaluation measure.

3.2 Ranking prediction

Given an unlabeled query qu with a candidate Xj(qu) of the sequence of elements
X(qu), the corresponding predicted score based on the learned weight vector w
is:

fj(z) = 〈w,Xj(qu)〉

where 〈., .〉 is the scalar product between the weight vector and the similarity rep-
resentation of Xj(qu). This allows us to sort all elements of X(qu) by decreasing
scores.

4 Experiments - Results

In this section, we present our experiments and results for the Restricted Focused
and the Efficiency/Thorough tasks in Adhoc track for INEX’10. We concentrated

60

on these two tasks to validate the extraction of elements features which are
provided to the learning to rank algorithm.

To do that, for each query, we use a fetch and browse strategy. We retrieve
the top t (t = 1, 500) articles for the fetch step and we extract the list of all
overlapping elements (top t′ = All) which contained at least one of the search
terms for the browse step. We strive to collect only small elements and we limit
the domain to types ∈ {sec, ss, ss1, ss2, ss3, ss4, p}. Thus, the side effects due
to waste labeling are reduced.

We fixed the parameters of our learning to rank algorithm on a validation set
which is Inex’09’s queries . Parameters are selected by using iP[0.01] measure.
We set the weights of the OWA operator to be linearly decreasing as suggested
by [10]. We fixed the C parameter of the equation (3) among {1, 10, 100} using
the iP[0.01] score on the Inex’09 set of queries. In our experiments, C = 10 gave
us the best performances.

4.1 Efficiency/Thorough task

We present here only the runs experimented for the Thorough task. The perfor-
mances of our models are summarized in Table 2 for the Efficiency/Thorough
task.

As explained above (§2), LIP6-OWPCRefRunTh is our reference run and re-
turning only top 1,500 articles. LIP6-OWPCnormalTh retrieves small elements
which are bringing only information on the document and the considered ele-
ment. In end, LIP6-OWPCparentTh gives top 1,500 elements ranked according
the information given by the element, its parent and the document is belong to.

MAiP MAP

LIP6-OWPCRefRunTh 0.2196 0.2801

LIP6-OWPCnormalTh 0.1673 0.2561

LIP6-OWPCparentTh 0.1800 0.2581

Table 2. Test performances of OWPC model in the Efficiency/Thorough task in terms
of MAiP and MAP.

As expected, runs which return articles have better performances in MAP
and MAiP than runs returning only small elements. This shows that the strategy
of retrieving articles is most informative both with respect to precision and recall.
A simple explanation for this, is the effect of the limitation of the results list.
In fact, only the top 1500 elements for each query are evaluated and in the case
of the Efficiency/Thorough task, where the overlap is permitted, this penalizes
runs returning a lot of small elements rather than one article.

In end, taking also into account information on the parent of the considered
element, performs better than a run where information is only given by the
element and the document. That is encouraging for our Restricted Focused runs.

61

4.2 Restricted Focused task

We present in this section the performances of our models for the Restricted
Focused task. For this task, our model retrieves only small elements due to the
limitation of retrieving 1,000 characters by query.

We report the performances of our models in the Restricted Focused task in
Table 3 in terms of character precision measure.

Char prec MAP

LIP6-OWPCRefRunFo 0.3391 0.0016

LIP6-OWPCnormalFo 0.3451 0.0013

LIP6-OWPCparentFo 0.4125 0.0022

Table 3. Test performances of OWPC in the Restricted Focused task in terms of
Character Precision and MAP.

LIP6-OWPCRefRunFo is our reference run and returning only articles from
the LIP6-OWPCnormalFo run and taking into account the size limitation of the
query. LIP6-OWPCnormalFo retrieves small elements which are bringing only
information on the document and the considered element. We remove overlap-
ping elements, and we limit the size of the ranked list for each topic to 1,000
characters. As previously, LIP6-OWPCparentTh gives elements ranked accord-
ing the information given by the element, its parent and the document is belong
to.

We can see that in terms of character precision and MAP the learning to
rank algorithm with information providing by the parent (LIP6-OWPCparentFo)
outperforms other runs. This is the same trend that in the Efficiency/Thorough
task.

In our case, the learning to rank algorithm performs better when an infor-
mation on the parent of the element is given in terms of character precision. In
terms of MAP, this difference is less significative.

5 Conclusion

In conclusion, we built a training set for our learning model named OWPC. We
studied different ways to extract informative features and see their influence in
terms of Character Precision, MAiP and MAP measures.

As in previous INEX competitions, retrieving articles rather than smaller
elements gives better results in terms of MAiP (and MAP if there are not a
limitation on the size of each topic). However, OWPC which retrieves only small
elements performed well on the Restricted Focused task where the evaluation
measure (character precision) gives more importance to the precision of the run
than its recall.

62

References

[1] Massih-Reza Amini, Nicolas Usunier, and Patrick Gallinari. Automatic text sum-
marization based on word-clusters and ranking algorithms. In David E. Losada
and Juan M. Fernández-Luna, editors, ECIR, volume 3408 of Lecture Notes in

Computer Science, pages 142–156. Springer, 2005.
[2] Javed A. Aslam, Evangelos Kanoulas, Virgil Pavlu, Stefan Savev, and Emine

Yilmaz. Document selection methodologies for efficient and effective learning-to-
rank. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference

on Research and development in information retrieval, pages 468–475, New York,
NY, USA, 2009. ACM.

[3] David Buffoni, Nicolas Usunier, and Patrick Gallinari. Lip6 at inex’09: Owpc
for ad hoc track. In Shlomo Geva, Jaap Kamps, and Andrew Trotman, editors,
INEX, volume 6203 of Lecture Notes in Computer Science, pages 59–69. Springer,
2009.

[4] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. Learning to rank
with nonsmooth cost functions. In NIPS, pages 193–200, 2006.

[5] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order
things. In NIPS, 1997.

[6] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. JMLR, 4:933–969, 2003.

[7] Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull,
and Marianna Lau. Okapi at trec. In TREC, pages 21–30, 1992.

[8] Ralf Schenkel, Fabian M. Suchanek, and Gjergji Kasneci. Yawn: A semantically
annotated wikipedia xml corpus. In Alfons Kemper, Harald Schöning, Thomas
Rose, Matthias Jarke, Thomas Seidl, Christoph Quix, and Christoph Brochhaus,
editors, BTW, volume 103 of LNI, pages 277–291. GI, 2007.

[9] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Al-
tun. Large margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6:1453–1484, 2005.

[10] Nicolas Usunier, David Buffoni, and Patrick Gallinari. Ranking with ordered
weighted pairwise classification. In Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, editors, ICML, volume 382 of ACM International Conference

Proceeding Series, page 133. ACM, 2009.
[11] Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims. A support

vector method for optimizing average precision. In SIGIR, pages 271–278, 2007.

63

UMD at INEX 2010

Carolyn J. Crouch, Donald B. Crouch,

Sandeep Vadlamudi, Ramakrisha Cherukuri, Abhijeet Mahule

Department of Computer Science

University of Minnesota Duluth

Duluth, MN 55812

(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper reports the final results of our experiments involv-

ing the 2009 INEX Ad-Hoc Track and describes the methodology upon

which our current, 2010 experiments are built. In 2009, our INEX inves-

tigations centered on indentifying a methodology for producing what we

have referred to as improved focused elements�—i.e., elements which

when evaluated are competitive with others in the upper ranges of the

official rankings. Our 2009 INEX paper [1] describes our approach to

producing such elements, which is based on the combination of tradi-

tional document retrieval (to identify the document set of interest to the

query) with our method of dynamic element retrieval (to generate and

retrieve the elements of the document tree so identified) and the applica-

tion of a specific focusing technique (to select the focused elements).

The system is based on the Vector Space Model [2]; basic functions are

performed using the Smart experimental retrieval system [3]. In this pa-

per, we report the final results of these experiments, applied to the INEX

2009 Focused and Relevant-in-Context tasks. (Results of the Thorough

task are reported as well.) These results show that our approach pro-

duces highly ranked results for all three of these Ad Hoc tasks. Signifi-

cance tests, applied to these results as compared to the top-ranked runs

[details included], show in which cases statistically significant results

are obtained. Our 2010 work is ongoing at present.

References

[1] Crouch, C., Crouch, D., Bhirud, D., Poluri, P., Polumetla, C., Sudhakar, V. A

methodology for producing improved focused elements. In: S. Geva, J. Kamps,

and A. Trotman (Eds.): INEX 2009, LNCS 6203, pp.70-80, Springer, Heidelberg

(2010)

[2] Salton, G., Wong, A., Yang, C. S. A vector space model for automatic indexing.

Comm. ACM 18 (11), 613-620 (1975)

[3] Salton, G., ed. The Smart Retrieval System�—Experiments in Automatic Document

Processing. Prentice-Hall (1971).

64

A Result Reconstruction Method for Effective
XML Fragment Search at INEX 2010

Atsushi Keyaki1, Kenji Hatano2, and Jun Miyazaki3

1 Graduate School of Culture and Information Science, Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan

keyaki@ilab.doshisha.ac.jp,
2 Faculty of Culture and Information Science, Doshisha University

1-3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
khatano@mail.doshisha.ac.jp,

3 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

miyazaki@is.naist.jp,

Abstract. In this paper, we propose an extension scheme of the re-
sult reconstruction method that we previously proposed. In the previous
method, we aimed to extract more relevant fragments without irrelevant
parts. Since the challenge of Ad hoc track in INEX 2010 is to gener-
ate “snippets” which return only small size of contents, we extend our
method along the concept of INEX 2010. To generate meaningful snip-
pets, we propose a novel way of extracting search results and adjust our
previous methods to be suitable one for restricted results in its text size.

Keywords: XML fragment search, result reconstruction method, mean-
ingful snippets

1 Introduction

The extensible markup language4 (XML) is a markup language for structured
documents that has become the de facto format for data exchange. A large
number of XML documents are available on the Web. We expect this trend to
continue in the future. As such, information retrieval techniques for searching
XML documents are very important and required in the field.

An XML fragment is usually defined as a part of a larger XML document.
The fragment is identified by the surrounding start and end tags. XML fragments
are, therefore, nested and have containment relationships with each other, which
can cause overlaps in XML fragments in an XML document. The key goal of
XML search is to obtain relevant XML fragments for a query instead of just
returning the entire XML documents. Therefore, XML search engines can gen-
erate a ranked list composed of a set of relevant XML fragments, while several
Web search engines return a set of entire Web documents. By isolating the XML

4 http://www.w3.org/TR/REC-xml/

65

II

fragments, users do not need to identify the relevant XML fragments from the
larger XML documents.

INEX Ad hoc track requires a ranked list which contains relevant XML frag-
ments for a query. In addition to this, the Ad hoc track in 2010 requires very
restricted results in the text size. This constraint is reasonable because users
should want more focused results.

In our previous studies[5][6], we focused on how we identify the relevant frag-
ments without irrelevant parts in each document. Even though these methods
could improve search accuracy, they did not consider to return restricted results
because they aimed to extract relevant fragments as much as possible. Therefore,
we should modify these methods to return suitable results for the Ad hoc track
in 2010.

To tackle this challenge, we propose a method for returning ideal search
results. We consider the requirements of meaningful snippets while the previous
methods focused on how to identify the appropriate granular fragments, because
it returns very small sized texts as search results.

2 Result Reconstruction Method

In this section, we show our previous study[6]. In the study, we generate the re-
fined ranked list, which is composed of relevant and informative XML fragments.
As shown in Figure 1, the overview of the method is as follows:

DocID NodeID Score …1 1000 k .887 …2 2000 b .864 …3 1000 i .816 …4 3000 d .755 …5 2000 c .716 …6 1000 h .702 …

(1) Scoring each fragment togain simple ranked list

...

Querying Database with SQL
SELECT DocID, NodeID, Score, …FROM …WHERE …

… 1000 d .253 …..

root nodeelement node
text node

Part of SIXF (DocID 1000)

a

2 4
5

313 32
. . .

100
b

d
e f

g h
i k

z
1
c

. . .
33

j

DocID NodeID Score …1 1000 h .702 …2 3000 d .755 …3 2000 b .716 …4 2000 g .668 …

(3) Proposing refinedranked list

(2) Generating a Set ofintegrated XML fragments(SIXF)

..… 1000 d .253 ….

Fig. 1. Overview of the previous study

66

III

(1) We first score each XML fragment by using a scoring method to obtain a
simple ranked list. We use BM25E[9] to calculate relevance scores of each
fragment for a query.

(2) We extract XML fragments from a simple ranked list and generate a set of
relevant XML fragments by considering limitations of the XML fragment
length and reconstruction of XML fragments.

(3) To present a refined ranked list, we rank the XML fragments extracted from
Step (2); we re-rank and remove the XML fragments in the simple ranked
list and incorporate them into the refined ranked list.

Hereafter, we denote the set of relevant XML fragments generated in Step (2)
as the Set of Integrated XML Fragments (SIXF). Furthermore, to more readily
explain the process of generating the SIXF, we translate each XML fragment
into a tree structure. In general, XML documents can be translated into a tree
structure by representing tags as nodes in the tree. Each XML fragment in an
XML document is associated with a sub-tree in the entire XML tree of the XML
document.

2.1 Generating a Set of Integrated XML Fragments

To generate an SIXF, we extract the relevant XML fragments from the simple
ranked list generated in Step (1) of our method. Large XML fragments might
contain irrelevant fragments and decrease the search accuracy. Therefore, we
extract multiple relevant XML fragments from an XML document, as long as
their sizes are properly restricted.

One base line approach for generating a nonoverlapped ranked list of XML
fragments is to repeatedly extract XML fragments from a simple ranked list in
descending order of their rank unless an overlap occurs. The overlapped XML
fragments are simply discarded and ignored.

This operation continues as long as either a candidate of the XML fragments
remains in the search results or the text size of the extracted XML fragments
reaches a predefined upper limit5.

Next, we aim to reconfigure XML fragments in a simple ranked list to produce
results that are better than those of the established base line. We should consider
how to identify and extract XML fragments of appropriate lengths in order to
attain more accurate XML fragment search. We should also consider how to
handle overlapping results, which we ignored in the base line approach.

From the above discussion, we derive the following requirements:

Requirement 1:
Since the traditional search results include several large XML fragments, we
should impose an extraction limit on the fragment size.

5 In our experiments, we extracted 1,000 or less characters for each query. We extract
from the beginning of the string value in the text node to the end. When we obtain
the first 1,000 characters as a search result, we ignore the rest of the text in the
fragment.

67

IV

Requirement 2:
The extracted XML fragments are appropriately abbreviated and recon-
structed to resolve overlap problem.

Extraction Limit To satisfy Requirement 1, we need to limit the size of the
extracted XML fragments to an extraction limit (EL). Furthermore, we should
summarize each XML document, because showing entire documents in search
results is not effective. Therefore, we limit the extracted text size for each XML
document by defining the EL of an XML document D, whose document ID
(DocID) is as follows:

ELDocID = α · |DDocID| (1)

where |DDocID| is the size of the XML document DDocID and α is the ratio of
the size of the relevant fragment.

Given this definition, we extract XML fragments from a simple ranked list
when the text size of the XML fragments in the SIXF is less than EL. This
process repeats until its size exceeds EL.

Reconstructing Fragments To satisfy Requirement 2, we need to arrange the
extracted XML fragments so that the SIXF contains useful search results. For
generating a non-overlapped ranked list for the base line approach, we simply
eliminate the overlapping XML fragments. This may prevent us from extracting
relevant XML fragments. For example, in Figure 2, we assume that the XML
fragment rooted at node c is the most relevant one in the tree; however, we
cannot extract c if we have already extracted d.

1 2 43
ab cd

Fig. 2. Example of overwrite fragment

To address this problem, we search larger XML fragments and overwrite
them. As a result, these relevant fragments are all contained in the SIXF, while
the existing approaches extract the fragments with the higher score. As these
overwrite operations are applied, XML fragment lengths in the SIXF increase;
therefore, the overwrite operation is executed only when Requirement 1 is sat-
isfied.

68

V

Again, consider Figure 2. Suppose that c has been extracted. If a is extracted,
a overwrites c, because it is larger than c. Furthermore, we discard d, because it
is smaller than c.

2.2 Generating a Refined Ranked List

After generating a SIXF, we score each XML fragment in the SIXF and finally
generate a refined ranked list. In this process, we aim to obtain informative XML
fragments for the higher ranked results. The simplest way to score these XML
fragments is to use BM25E, which is used in Step (1) of our method. Unless
noted otherwise, we use the BM25E score in the remainder of this paper.

In the following subsections, we propose two scoring methods for generating a
refined ranked list: (1) bottom-up scoring, which utilizes statistics of descendant
XML fragments in order to score an ancestor XML fragment; and (2) top-down
scoring, which utilizes statistics of an ancestor XML fragment in order to score
descendant XML fragments.

Bottom-Up Scoring The overwrite operation introduced in Section 2.1 is
executed when overlaps exist in the SIXF. In the overwrite operation, an ancestor
XML fragment is extracted in place of its descendants. The ancestor should be
ranked lower in a simple ranked list as compared to its descendants, implying that
the refined ranked list also treats the ancestor XML fragment as a lower rank if
BM25E is used. As a result, the originally higher-ranked XML fragments cannot
always be ranked higher. To score these XML fragments more appropriately, we
propose bottom-up scoring in order to give more reasonable scores to the XML
fragments that contain highly scored descendants.

When we score an XML fragment, we should consider the statistics of its de-
scendant fragments. Conversely, it is not appropriate that XML fragments with
low scores are ranked high. Therefore, we must integrate these scores properly.
Portions of text nodes in an ancestor XML fragment are composed of descendant
XML fragments; the scores of the text nodes in these descendants affect those
in the ancestors. Therefore, the bottom-up score should be calculated using the
BM25E score, as well as the ratio of the lengths of the ancestor XML fragment
and that of its descendants.

Let fa be an ancestor XML fragment and fd be the descendant fragment
with the highest score. We define the bottom-up (BU) scoring function as

sBU (fa) =
|fd|
|fa|

· s(fd) +
|fa| − |fd|

|fa|
· s(fa) (2)

where |fd| is the length of fd, |fa| is the length of fa, sBU (fa) is the bottom-up
score of fa, s(fa) is the BM25E score of fa, and s(fd) is the BM25E score of fd.

Top-Down Scoring Since query keywords may have numerous meanings, it
is often difficult to identify a proper one. One solution is to consider the co-
occurrence of query keywords. If an XML fragment contains several distinct

69

VI

query keywords in its text nodes, we can assume the XML fragment to be closely
related to the meaning of the given query keywords. In our previous study[5],
we obtained informative XML fragments by considering the number of distinct
query keywords in each XML fragment.

The larger XML fragments contain more query keywords, indicating that
larger XML fragments tend to be ranked higher. In other words, we might over-
look smaller XML fragments, although they are informative. To cope with this
problem, we propose a scoring method that is independent of XML fragment
size.

XML fragments contain numerous distinct query keywords and are identi-
fied as informative. Descendant XML fragments of these informative fragments
should also be informative. We, therefore, consider top-down scoring by calcu-
lating the ratio of the number of distinct query keywords contained in an XML
fragment to that of its top-level ancestor—i.e., the entire document.

Let f be a scored XML fragment and Df be an XML document associated
with f . We define the top-down (TD) scoring function as

sTD(f) = s(f) · count(Df) (3)

where s(f) is the BM25E score of f and count(Df) is the number of distinct
query keywords in Df .

2.3 Example of Generating SIXF and Refined Ranked List

In summary, we illustrate an example of generating a part of an SIXF in which
the document ID is 1,000 and its corresponding refined ranked list uses BU
scoring. Figure 3 provides a graphical view of this example.

Suppose that α = 1
3 , and |D1,000| = 300. Then, EL1,000 = α · |D1,000| =

100. Next, we introduce τ1,000, which is the total length of the extracted XML
fragments from document ID 1,000.

We first obtain a simple ranked list calculated in Step (1). The obtained XML
fragments are shown in the left table of Figure 3. For the sake of simplicity, we
assume that the list contains only the XML fragments whose document ID is
1,000.

We extract the XML fragment with the highest score, which is node k, from
the simple ranked list. Since the text length of k is 40 (< EL1,000), k is extracted.
This extraction process continues because τ1,000, which contains text node 33, is
less than EL1,000. Therefore, i is selected next, because i has the second-highest
score in the simple ranked list. Thus, i is extracted because τ1,000, which contains
text nodes 31 and 33, equals 50 (< EL1,000). Node h is the next candidate to
be extracted. Since i and k are the descendants of h, they are overwritten by h.
In particular, i and k are removed from the SIXF and h is added. At this point,
τ1,000 becomes 70, which is still less than EL1,000.

Next, the bottom-up scoring is applied. Equation (2) is used to score node
h(sBU (h)) =

40
70 · 0.887 + 70−30

70 · 0.702 = 0.808.

70

VII

NodeID Score Text size NewScore
k .887 40 .887
i .816 10 .816
h .702 70 .808
j .322 20 .322
d .256 25 .256
b .207 40 .207
a .194 300 .194
c .155 15 .155

={33} = 40
={31, 33} = 50

={31, 32, 33} = 70

2 4
3
d

e f

2 4
3

b
d

e f1
c

={2, 3, 4, 31, 32, 33} = 95

k
33

31 32

h
i k

33

31 32

h
i k

33

31 32

h
i k

33

31 32

h
i k

33

j

j

j

j

(1) (2)

(3)

(4) (5) Part of SIXF
(DocID 1000) a

5
g . . .

100
z. . .

NodeID NewScore
h .808
d .256

(6) Part of
refined ranked list

simple ranked list

1000τ
1000τ

1000τ

1000τ
={2, 3, 4, 31, 32, 33} = 951000τ

Fig. 3. Processing flow of our method

Following Figure 3 further, d is also extracted. Nodes b and c fail to be
extracted because τ1,000 exceeds EL1,000. In the end, the SIXF is formed by
nodes d and h.

Finally, the refined ranked list is constructed by adding the scores calculated
via the bottom-up scoring into the SIXF. In the same manner, we generate com-
plete SIXF for all XML documents and construct the final refined ranked list in
the descending order of their scores.

2.4 Experimental Evaluation on INEX 2010

We performed our experimental evaluation by using the INEX 2010 test collec-
tion. We conducted experiments to compare the previous methods, SIXF,BU,
and TD, with the base line approach.

Note that our experiments show that EL, introduced in Section 2.1, does not
perform well. As a consequence, we do not apply this approach to the experi-
ments in the remaining subsections.

Table 1 shows that the precisions over the retrieved characters (char prec) of
SIXF are higher than those of the base line (non-overlapped ranked list). TD also
overwhelms the base line, and BU decreases its search accuracy when compared
with the base line.

As the result indicates, SIXF is the most effective in these methods, though
we reported that BU and TD are more effective than SIXF when the INEX 2008
test collection is used. Therefore, we should refine BU and TD scorings if we
utilize them for INEX 2010. In next section, we draw a rough sketch of our idea.

71

VIII

Table 1. Comparison of previous methods

SIXF BU TD base line

char prec (INEX 2010) .3884 .3277 .3565 .3391

iP[.01] (INEX 2008) .6628 .6653 .6637 .6131

3 Investigation of Previous Methods and Exploration of
New Methods

Our previous methods[6] tried to extract slightly wider range of relevant frag-
ments. On the other hand, we should try to identify the fragments which can be
strongly relevant for a query because our method returns only small sized con-
tents for INEX 2010. Table 2 shows the average number of extracted fragments
of each query. It indicates that only one or a few more fragments per a query
are extracted. Therefore, we have to carefully determine which fragment is more
suitable as a search result because the search accuracy mainly depends on the
top-ranked result.

Table 2. Average Number of Extracted Fragments

SIXF BU TD base line

average number of
1.212 1.019 1.192 1.192

extracted fragments

This suggests that returning the fragments which are the most relevant for a
query, i.e., having the highest score, lead us better search results while Section
2.4 shows different. To be concrete, the base line which returns the fragments
with the highest score is less effective than SIXF which overwrites fragments and
extracts a larger fragment.

However, it does not mean that returning larger granular fragments shows
higher search accuracy because BU which gives higher score to the larger granular
fragments does not overwhelm the base line. In other words, it is not true that
search accuracy increases as the granularity of fragments becomes larger6.

From above discussion, it is more important to reveal the condition of strongly
relevant fragments for a query rather than to identify the granularity of them.
Therefore, we consider three aspects as follows:

– Two phase extraction
We find relevant contents after identifying relevant documents. The text size

6 Actually, the search accuracy of document retrieval is much lower than the base line
(char prec = .2044).

72

IX

of each fragment affects their score7. Therefore, we relax such effect through
two steps: 1) identifying a relevant document, and 2) extracting relevant
contents to improve search accuracy.

– Management of the range of extraction
In the step of returning search results in Section 2.4, we extract texts from
the beginning of the fragments. However, we can imagine that the range of
extracted texts in the fragments influences large effect on search accuracy
when we obtain not entire texts in each fragment but part of them. Therefore,
we suppose that it is reasonable to consider the condition of each fragment
to return appropriate search results.

– Improvement of previous methods
Some of our previous methods do not perform well as shown in Section 2.4.
This is why we try to modify the previous methods along the requirements
of INEX 2010. For example, BU which utilizes the statistics of descendant
fragments emphasizes the ratio of the text sizes of ancestor and descendant
fragments. It works well for INEX 2008. However, it does not take effect for
INEX 2010 because the granularity of fragments is not so important in 2010.
For this reason, we need to refine each scoring method.

4 Related Studies

There are two types of XML documents: (1) data-centric which mainly contain
single or compound term in their text nodes and (2) document-centric which
tend to contain natural languages in their text nodes[1]. The following subsec-
tions describe the existing studies related to both types of XML documents.
Although we are primarily interested in search techniques for document-centric
XML documents, information on data-centric XML documents will also be use-
ful.

4.1 Data-Centric XML

Data-centric XML documents generally describe only one term in their text
nodes. Therefore, studies investigating data-centric XML primarily focus on
searching query keywords. The existing research efforts to attain efficient XML
fragment search usually utilize the lowest common ancestor (LCA) approach[14].
As a part of this approach, the LCA itself may originate as the top-level com-
mon ancestor of arbitrary nodes in an XML tree; however, it is generally defined
as the deepest node containing all query keywords in its descendants. Research
involving LCA and XML fragments shows significant results related to efficient
XML search; however, such techniques do not perform well in the context of
accurate XML search. In other words, the retrieval accuracy of XML search en-
gines decreases when we use LCAs as the most appropriate XML fragments for
a given query[10].

7 To avoid this effect, BM25E[9] and TF-IPF[8] are normalized by the number of
indexed terms.

73

X

To address this problem, research efforts have also tried to identify and ex-
tract more relevant XML fragments from the sub-tree whose root node is an
LCA. XSeek[10] is one such solution, producing a meaningful LCA (MLCA),
which classifies and analyzes XML tags by using XML schema information and
the positions of query keywords. In the case of XSeek, nodes related to a query
are selected and extracted in the order of their relevance to a query. Another
approach, eXtract[4], is an expansion of MLCA and infers a user’s search pur-
pose by analyzing queries. In eXtract, queries are classified into two cases: (1)
extracting an explicit search target and (2) extracting neighbors of the search
target.

The purpose of these approaches is similar to that of ours: we wish to re-
turn the reconstructed XML fragments. Our method is, however, based on an
information retrieval technique for achieving effective XML search, while the
abovementioned approaches utilize LCA for the purpose of efficiency.

4.2 Document-Centric XML

Since most document-centric XML documents contain multiple terms in their
text nodes, the existing approaches for searching document-centric XML docu-
ments focuses on an effective search. In other words, the key objective is to rank
more relevant XML fragments higher in the result list. Therefore, conventional
information retrieval techniques are often utilized. Another approach is to refine
the result list, for example, by removing insignificant fragments or reducing their
scores.

Scoring methods for XML fragment search are often derived from the ones
used in document search. For example, TF-IPF[2], a popular scoring method for
XML fragment search, is an XPath8-based scoring method that extends the well-
known TF-IDF[13] approach for document search. Another popular approach for
XML fragment search is BM25E[9], which is based on Okapi’s BM25[12] scoring
method for document search.

Although these approaches have been successful, a gap between XML frag-
ment search and document search remains. The goal of XML fragment search
is to extract the relevant part of an XML document directly, whereas that of
document search is to simply find relevant documents. Extracting relevant XML
fragments for a given query is similar to generating snippets in a traditional
document search. Snippets, which are short summaries of Web pages that help
users judge whether the documents are worth reading, are generated by us-
ing information extraction techniques. Since both XML fragments and snippets
present useful information to users, such information extraction techniques can
be applied to our scoring method.

Manning et al. noted that snippets should have useful information and be
maximally informative to a query[11]. To satisfy such requirements, we consider
statistics calculated by query conditions[5]; such statistics consist of two compo-
nents: (1) the ratio of XML fragments containing query keywords amongst XML

8 http://www.w3c.org/TR/xpath

74

XI

fragments satisfying the constraints of the structure of the given query and (2)
the number of query keywords in each XML fragment. In this paper, we denote
(1) as the query structure score and (2) as the query keyword score. In our pre-
vious study[5], [7], our experiments showed that such methods are more effective
than the approaches that do not consider query statistics. We also found that the
length of the retrieved XML fragments increases when we use these statistics.

As mentioned above, removing useless or low-scoring fragments is also effec-
tive. Although all granularities of XML fragments should be treated as search
targets, the effectiveness of the results decreases sharply if a search engine re-
turns noninformative XML fragments. Extremely small XML fragments are often
not suitable for search results; Hatano et al. noted that when such meaningless
XML fragments are removed, search accuracy improves[3]. Furthermore, our pre-
vious study suggests that large XML fragments are also inappropriate for search
results[7]. Therefore, we should consider the length of XML fragments.

5 Conclusion

In this paper, we investigate the Ad hoc track of INEX 2010 and drew a rough
sketch of our ongoing work. Since our previous methods could not always obtain
relevant search results, we should propose a novel approach for returning search
results and refine them to adjust to INEX 2010.

References

1. Henk Blanken, Torsten Grabs, Hans-Jörg Schek, Ralf Schenkel, and Gerhard
Weikum. Intelligent Search on XML Data: Applications, Languages, Models, Imple-
mentations, and Benchmarks, volume 2818 of Lecture Notes on Computer Science.
Springer-Verlag, September 2003.

2. Torsten Grabs and Hans-Jörg Schek. PowerDB-XML: A Platform for Data-Centric
and Document-Centric XML Processing. In Proceedings of the First International
XML Database Symposium, volume 2824 of Lecture Notes on Computer Science,
pages 100–117. Springer Berlin, September 2003.

3. Kenji Hatano, Hiroko Kinutani, Masahiro Watanabe, Yasuhiro Mori, Masatoshi
Yoshikawa, and Shunsuke Uemura. Keyword-based XML Portion Retrieval: Ex-
perimental Evaluation based on INEX 2003 Relevance Assessments. In Proceedings
of the Second Workshop of the Initiative for the Evaluation of XML Retrieval, pages
81–88, March 2004.

4. Yu Huang, Ziyang Liu, and Yi Chen. Query Biased Snippet Generation in XML
Search. In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pages 315–326. ACM, June/July 2008.

5. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki. A Query-oriented XML Frag-
ment Search Approach on A Relational Database System. Journal of Digital In-
formation Management (JDIM), 8(3):175–180, June 2010.

6. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki. Result Reconstruction Approach
for More Effective XML Fragment Search. In Proceedings of the 12th International
Conference on Information Integration and Web-based Applications & Services (ii-
WAS2010), pages 115–123, November 2010.

75

XII

7. Atsushi Keyaki, Jun Miyazaki, and Kenji Hatano. A Method of Generating Answer
XML Fragment from Ranked Results. In INEX 2009 Workshop Pre-Proceedings,
pages 563–574, December 2009.

8. Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective Keyword
search in Relational Databases. In Proceedings of the 2006 ACM SIGMOD inter-
national Conference on Management of Data, pages 563–574. ACM, June 2006.

9. Wei Liu, Stephen Robertson, and Andrew Macfarlane. Field-Weighted XML Re-
trieval Based on BM25. In Advances in XML Information Retrieval and Evalua-
tion, volume 3977 of Lecture Notes on Computer Science, pages 161–171. Springer
Berlin, June 2006.

10. Ziyang Liu and Yi Chen. Identifying Meaningful Return Information for XML Key-
word Search. In Proceedings of the 2007 ACM SIGMOD International Conference
on Management of Data, pages 329–340. ACM, June 2007.

11. Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction
to Information Retrieval, pages 157–159. Cambridge University Press, July 2008.

12. Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. Okapi at TREC-3. The Third Text REtrieval Conference
(TREC-3), pages 109–126, 1995.

13. Gerard Salton and Christopher Buckley. Term-Weighting Approaches in Automatic
Text Retrieval. Journal of Information Processing and Management, 24(5):513–
523, January 1988.

14. Albrecht Schmidt, Martin Kersten, and Menzo Windhouwer. Querying XML Doc-
uments Made Easy: Nearest Concept Queries. In Proceedings of the 17th Interna-
tional Conference on Data Engineering, page 321. IEEE, April 2001.

76

Searching the Wikipedia with
public online search engines

Miro Lehtonen

Department of Computer Science
P. O. Box 68 (Gustaf Hällströmin katu 2b)

FI–00014 University of Helsinki
Finland

Miro.Lehtonen@cs.helsinki.fi

Abstract. Commercial search engines were put to a test as we searched
the online Wikipedia which is a newer version of the INEX 2010 docu-
ment collection. Although the INEX 2010 ad hoc search tasks and the
search features of the public search engines are not 100% compatible,
we were able to compare and evaluate the search results of online search
engines with INEX 2010 topics, assessments, and metrics. Considering
the first page of results, we cannot see a big difference between the per-
formance of the best academic search engines and the best commercial
ones.

1 Introduction

Public online search engines have not been seen in the official INEX evaluations
in the past despite the highly competitive performance that they offer to web
users. Whether they are competitive also when measured in such a standard IR
evaluation has thus not been reported before. The purpose of this experiment
was to find out how well some of the most popular search engines fare with
the academic search engines and with each other. The search engines of choice
are Google, Bing, Yahoo!, and the default Wikipedia search which specialises in
searching the online version of the Wikipedia1.

The comparison is not completely fair for a number of reasons. For one thing,
the Wikipedia articles evolve constantly. Not only is the online Wikipedia dif-
ferent from the INEX version, but each online search engine indexes a slightly
different version of the document collection, as well. For another thing, none of
the search engines return 1500 results per query. It is possible to set a limit on
the results per page, but ultimately, the number of retrieved results depends on
the query. Sometimes the search engines do not return any results, which can be
considered more user-friendly than returning nearly 1500 non-relevant results.
User satisfaction is however not taken into account by all the metrics. Neverthe-
less, the results should be indicative of the true performance, given the variety
of different metrics and appropriate interpretation of the results.
1 This experiment has not been endorsed by any of the mentioned search engines.

77

Initial analysis of the results shows that the best academic search engines are
just as competitive as the best commercial search engines when all the circum-
stances are taken into account, e.g. we only search the Wikipedia.

2 Running online search engines

The tests described in this section were conducted in August 2010. Although
the results for individual queries may change over time as the search engines
index and re-index updated pages, the changes should not affect the overall
performance or the mutual rankings of the search engines.

All the search engines were used in a uniform fashion. One HTTP request
was made for each INEX 2010 topic and for each search engine, after which
the server response — the first page of results — was dumped into a file for
further analysis and processing. The maximum number of results on the first
page naturally depends on the search engine. The URLs for the HTTP requests
came from entering the title field of the topic in the search box as written in the
topic file. Quotations marks, plus and minus signs were all included as such.

2.1 Google

Of the all the different Google search sites, the one that is not specific to any
country was chosen2 although the rankings might be stable across different coun-
try versions when searching a single site. The maximum number of results per
page was set to 100.

Most of the results that Google returns also exist in the INEX version of the
Wikipedia. The retrieved pages that are not found in the INEX collection are
either new articles or combinations of old ones with a new article ID.

2.2 Bing

Bing seems to assume that different rankings are called for in different countries
— even when searching a single site such as the English Wikipedia. Therefore,
choosing a country version for this experiment makes a real difference. American
bing3 was chosen for no other reason than the assumption that, as one of the
most frequently used country versions of Bing, it should be up-to-date and the
rankings should be rather stable. The maximum number of results on the first
page was set to 50 which is the biggest number allowed.

Unlike Google, Bing retrieves a fair amount of pages that are not included
in the INEX collection although the content is. For example, one of the pages
that Bing returns has the title of “Marilyn Munroe” and the URL

http://en.wikipedia.org/wiki/Marilyn Munroe.
The page redirects to a page correctly titled “Marilyn Monroe” which does exist
in the INEX collection and which is retrieved by Google as a link to
2 www.google.com/ncr
3 www.bing.com/search?setmkt=en-US&q=...

78

http://en.wikipedia.org/wiki/Marilyn Monroe.
The contents of these two pages are equivalent, but, if the page is relevant, only
Google scores whereas Bing hits a missing page as it does not retrieve the same
content twice. This might be a case where Bing is being unfairly penalized for
retrieving pages with relevant content but a misspelled title.

2.3 Yahoo!

Yahoo4 returns a maximum of 100 results on the first page with a note “Powered
by Bing”. The exact reliance on Bing is somewhat unclear but one of the prolems
is the same: Yahoo too retrieves a number of redirected pages which are not
included in the INEX version of Wikipedia.

2.4 Wikisearch

The on site Wikipedia search engine5 is the only search engine in this exper-
iment that returns focused results. While other search engines retrieve whole
articles from the Wikipedia, the Wikipedia search engine also suggests which
section might be relevant to the query. However, this feature of Wikisearch was
ignored because the anchor of the section under focus cannot be converted into
an entry point without opening the INEX version of the article, and even then
the conversion is not completely reliable.

Wikisearch allows a total of 500 results to be shown on the first page. Like
Google, the on site search does not return any pages that redirect further, so
most of the retrieved articles also exist in the INEX verion of the Wikipedia.

3 From result pages to run submissions

Run submissions were created for two different tasks: Restricted Focused (RF)
and Restricted Relevant in Context (RRIC). Processing the first page of results
began the same way for both tasks. First, the article titles were collected by
scanning the result page and extracting the title from the URL. Second, the
corresponding pages were found in the INEX collection by matching the titles
of the online article to the titles in the INEX 2009 version of the Wikipedia.
Because the actual online article was not accessed, the reason for not finding a
matching article in the INEX collection was not analysed. Once we had a ranked
list of articles for each topic, we could create a task-specific run submission.

3.1 Restricted Focused

The ranked list of articles which was specific to each search engine did not contain
any focused results. Therefore, the focus had to be artificially added to the result
4 search.yahoo.com
5 http://en.wikipedia.org/w/index.php?title=Special:Search&search=...

79

list. It had to be a blind process because the document and element scores of the
search engines were not accessible and because we wanted to eliminate the effect
of all external factors. A simple but heuristic way to meet the task requirement
of 1000 characters per topic was to pick the top two articles from the list and
return a passage consisting of the first 500 characters of each.

3.2 Restricted Relevant in Context

Creating a run submission for the RRIC task was straightforward. All of the
articles on the first page of results were included. Restricting the results to 500
characters per article was a task requirement. Because none of the search engines
provide ways to define such a restriction, a simple heuristic had to be defined
for all of them. Assuming that the beginning of the article would be the best
entry point, the first 500 characters of the article would be a good guess on the
restricted passage. Retrieving 500 characters from the beginning of the article
was also simple to implement.

The Wikipedia search is the only search engine where the first 500 characters
is not always part of the result retrieved by the online search engine because
Wikipedia search sometimes focuses the results to certain sections. In those
cases, the real Wikipedia might get better scores than it gets in this experiment.

3.3 Summary

All the search engines are good at removing duplicate pages from the results
so that the same content is not retrieved multiple times although it may exist
under several different URLs. How many pages each search engine retrieved that
also exist in the INEX Wikipedia collection is summarised in Table 1.

Search engine First page Total RF Total RRIC Max RRIC

Google 100 212 7,353 10,700

Bing 50 208 1,156 5,350

Yahoo! 100 209 5,893 10,700

Wikisearch 500 202 28,770 53,500
Table 1. Summary of submitted results for the 107 topics of INEX 2010.

There were a total of 107 topics in 2010, so the maximum number of sub-
mitted results for the RF task would be 214 and for the RRIC task 160,500
(1500 results per query), given the chosen heuristics. The number of results that
was actually retrieved is bigger the number of submitted results because of new
pages and redirecting pages.

80

4 Results

The evaluation for the runs submitted for the RF task is shown in Table 2.
Although Google seems to retrieve relevant articles with the highest precision,
Yahoo retrieves the highest ratio of relevant content to non-relevant content.

Search engine art prec char prec

Google 0.7596 0.3276

Yahoo 0.7404 0.3435

Bing 0.7212 0.3354

Wiki 0.6538 0.0047
Table 2. Runs submitted for the restricted focused task evaluated.

5 Conclusion

Four public online search engines were tested when searching the Wikipedia with
the INEX 2010 topics. Google, Bing, Yahoo, and the on site search of Wikipedia
all retrieve relevant articles from the Wikipedia with varying success.

81

Extended Language Models
for XML Element Retrieval

Rongmei Li and Theo van der Weide

Radboud University, Nijmegen, The Netherlands

Abstract. In this paper we describe our participation in the INEX 2010
ad-hoc track. We participated in three retrieval tasks (restricted focused
task, relevant-in-context, restricted relevant-in-context) and report our
findings based on a single set of measure for all tasks. In this year’s par-
ticipation, we evaluate the performance of the standard language model
that is more focused on a fixed number of relevant characters. Our find-
ings are: 1) the simplest language model for document retrieval performs
relatively good in the restricted focused task when using a fixed offset
that is close to the average character distance from the beginning of a
document to its main content; 2) a good result of document ranking does
improve the performance of snippet retrieval.

1 Introduction

INEX offers a framework for cross comparison among content-oriented XML
retrieval approaches given the same test collections and evaluation measures.
The INEX ad-hoc track is to evaluate system performance in retrieving relevant
document components (e.g. XML elements or passages) for a given topic of
request. The relevant results should discuss the topic exhaustively and have
as little non-relevant information as possible (specific for the topic). This year
the retrieved components are restricted to a fixed number of characters as a
form of snippet. Additionally, the system efficiency is evaluated. The ad-hoc
track includes four retrieval tasks: the Restricted Focused task, the Relevant in
Context task, the Restricted Relevant in Context task, and the system efficiency.

The 2010 collection is the same English Wikipedia as in 2009 with XML
format. The ad-hoc topics are created by the participants to represent real life
information need. Same to 2009, each topic consists of five fields. The <title>

field (CO query) is the same as the standard keyword query. The <castitle>

field (CAS query) adds structural constraints to the CO query by explicitly
specifying where to look and what to return. The <phrasetitle> field (Phrase
query) presents explicitly a marked up query phrase. The <description> and
<narrative> fields provide more information about topical context. Especially
the <narrative> field is used for relevance assessment.

Following our last year’s work [1], the paper documents our primary and
official results in the INEX 2010 ad-hoc track. Our aims are to: 1) evaluate the
performance of standard IR engines (Indri search engine) used in full document

82

2 Rongmei Li and Theo van der Weide

retrieval and snippet retrieval; 2) investigate possible improvement techniques.
We adopt the language modeling approach [2] and tailor the estimate of query
term generation from a document to generation from an XML element according
to the user request. The retrieval results are evaluated as: 1) focused (snippet)
retrieval; 2) full document retrieval.

The rest of the paper describes our experiments in the ad-hoc track. The
pre-processing and indexing steps are given in section 2. Section 3 explains how
to convert a user query to an Indri structured query. The retrieval model and
strategies are summarized in section 4. We present our results and analysis in
section 5 and conclude this paper in section 6.

2 Pre-processing and Indexing

The original English XMLWikipedia is not stopped or stemmed before indexing.
The 2010 collection has 2,666,190 documents taken on 8 October 2008. It is
annotated with the 2008-w40-2 version of YAGO ([3]).

We index only the queried XML fields out of all presented XML fields as
follows:

category, actor, actress, adversity, aircraft, alchemist, article, artifact,
bdy, bicycle, caption, catastrophe, categories, chemist, classical music,
conflict, director, dog, driver, group, facility, figure, film festival, food,
home, image, information, language, link, misfortune, mission, missions,
movie, museum, music genre, occupation, opera, orchestra, p, performer,
person, personality, physicist, politics, political party, protest, revolution,
scientist, sec, section, series, singer, site, song, st, theory, title, vehicles,
village.

3 Query Formulation

We handle CO and CAS queries by full document retrieval while ignoring boolean
operators (e.g. “-”or “+”) in <title> and <castitle> fields. Additionally, we
remove terms like “of”, “or”, “and”, “in”, “the”, “from”, “on”, “by”, and “for”
from both. We extract all <castitle> terms within “about”. Both types of
queries use the Indri belief operator #combine [4].

4 Retrieval Model and Strategies

We first retrieve full articles using either CO or CAS queries. The retrieval model
is based on cross-entropy scores between the query model and the document
model that is smoothed using Dirichlet priors [2]. It is defined as follows:

score(D|Q) =
l∑

i=1

Pml(ti|θQ) · log
(
tf (ti, D) + µPml(ti|θC)

|D|+ µ

)
(1)

83

Extended Language Models for XML Element Retrieval 3

where l is the length of the query, Pml(ti|θQ) and Pml(ti|θC) are the Maximum
Likelihood (ML) estimates of respectively the query model θQ and the collection
model θC . tf (ti, D) is the frequency of query term ti in a document D. |D| is
the document length. µ is the smoothing parameter.

We set up our language model and model parameters based on the experi-
mental results of similar tasks for INEX 2008. Here µ is considered to be 500.

4.1 Full Document Retrieval

Baseline runs retrieve full documents for CO or CAS queries. Only the #combine
operator is used. Additional run uses the provided reference run as the final rank
of retrieved documents for CO queries. The reference run uses BM25 ranking
function with k1 = 1.2 and b = 0.3. It is stemmed by a simple s-stemmer.
These parameters are learned using the INEX 2009 topics and assessments on
the INEX 2009 Wikipedia collection using the Mean uninterpolated Average
Precision (MAP) metric.

We submitted 9 results for three tasks. We do not have result on the system
efficiency as our focus is paid on the effectiveness of retrieval model only.

4.2 Snippet Retrieval

Within the ad-hoc retrieval track, there are three considered sub-tasks that are
a form of snippet retrieval:

• The Restricted Focused task is a variant of the Focused Task where the
results to maximum 1,000 characters per topic is allowed. Retrieved elements
are ranked by relevance and are not clustered by article. Overlapping among
elements is not allowed.

• The Relevant in Context (RiC) task requires the system to return rel-
evant elements or passages clustered per article. Within each article, read-
ing order of retrieved element matters. The retrieval of non-relevant text is
strongly penalized. Overlapping within article is not permitted.

• The Restricted Relevant in Context task is similar to RiC but only
allow 500 characters per article to be retrieved.

Empirically the main content of an article does not start from the very be-
ginning, namely at offset zero. We take the average offset from the main content
that is assumed to be 20 characters for two restricted retrieval tasks.

5 Results

For each of the three sub-tasks, we submitted two XML article results for CO
and CAS queries and one extra result using the reference run as the final rank
of the CO query result. On the whole, we had 9 submissions and qualified runs
to the ad-hoc track.

84

4 Rongmei Li and Theo van der Weide

5.1 Measured as Document Retrieval

When measured as document retrieval, our reference based runs outperform our
baseline runs in all sub-tasks in terms of MAP score. The results of CO queries
perform better than the results of CAS queries in all sub-tasks. Compared to
other participanting groups, our best run ranks 9 with MAP of 0.2593. However,
the MAP scores for our baselines of CO and CAS queries are only 0.0243 and
0.0226 respectively.

The split performance overview in sub-tasks are summerized in Table 1. The
total evaluated runs from participating groups are 34, 65, and 39 following the
top-down order of sub-tasks in the Table. Our simple approach for restricted
focused document retrieval is relatively effecitive, even when there is no help of
the reference run.

Table 1. Measured as document retrieval

performance metrics submitted runs for restricted focused
runFocCORef runFocusCO10 runFCASart10

MAP 0.2593 0.0243 0.0226

rank in all runs (34) 6 7 8

submitted runs for relevance in context
runRiCORef runRiCCO10 runRiCCAS10

MAP 0.2593 0.0243 0.0226

rank in all runs (65) 32 61 62

submitted runs for restricted relevance in context
runReRiCORef runReRicCO10 runRRicCAS10

MAP 0.2593 0.0243 0.0226

rank in all runs (39) 14 35 36

5.2 Measured as Snippet Retrieval

When measured as the thorough task, our results for the RiC task ranks the first
than our other results followed by results of the restricted focused task in terms
of MAiP score. Our reference based runs are still better than their counterparts
in each sub-task accordingly. Our best run as the thorough task ranks 3 among
participating groups and 14 in all 217 evaluated runs with MAiP of 0.2230.

The performance overview of sub-tasks of snippet retrieval is represented
seperately in the following sub-sections.

Restricted Focused The restricted focused task is to return to the user a
ranked list of snippets with a maximum length of 1000 characters. Our results
start from the 21th character of the retrieved relevant documents. The overall
performance of our submissions is shown in Table 2. Our best run is based on the
given reference with the score of char prec 0.3361. It ranks 5 among participating

85

Extended Language Models for XML Element Retrieval 5

groups and 8 in all 34 evaluated runs in terms of the score of character precision
(char prec). Our other two runs rank 12 and 13 in all runs with close char prec
score to our best run. The performance of all our runs drops quickly with the
increase of recall. This is also true for the results of other groups. The detailed
information is shown in Table 2.

Table 2. Measured as focused retrieval

runs for restricted focused performance metrics
iP[.00] iP[.01] iP[.05] iP[.10] MAiP char prec

runFocCORef 0.3361 0.0964 0.0435 0.0000 0.0067 0.3361

runFCASart10 0.3241 0.0820 0.0357 0.0000 0.0061 0.3241

runFocusCO10 0.3237 0.0756 0.0357 0.0000 0.0059 0.3237

Relevant in Context The RiC task has the same goal as year 2009. It is to
return the relevant information within the full article. Our baseline runs com-
plete this task as document retrieval. Only the reference based run is officially
evaluated and the result is presented in Table 3. Our reference based run ranks
6 among participating groups and 20 in all 47 evaluated runs with the score of
MAgP 0.1377 (see Table 3).

Table 3. Measured as focused retrieval

runs for relevance in context performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

runRiCORef 0.2642 0.2310 0.1694 0.1431 0.1377

Restricted Relevant in Context The Restricted RiC task limits the result
of the RiC task to be 500 characters at most. Similar to the restricted focused
task, our results start from the 21 character of the baseline document retrieval.
Again only the reference based run is officially evaluated and its performance is
summerized in Table 4. It ranks 9 among participating groups and 12 in all 24
evaluated runs with the score of MAgP 0.1375 (see Table 4)

Table 4. Measured as focused retrieval

runs for restricted relevance in context performance metrics
gP[5] gP[10] gP[25] gP[50] MAgP

runReRiCORef 0.2641 0.2313 0.1686 0.1428 0.1375

86

6 Rongmei Li and Theo van der Weide

5.3 Analysis

In general, BM25 ranking function generates better results than our simplest
language model, which has no stopping and stemming. Our baseline runs perform
relatively good in the restricted focused task. The result of CAS queries is better
than that of CO queries in this task as it contains more query terms, thus more
context information.

There are 52 topics used for evaluation in all snippet retrieval. 11 out of
52 is to return XML elements such as “sec”, “p”, and “person”. The rest is
the normal document retrieval with restriction on a fixed number of characters.
When a topic is about any XML element type (noted as *), we may also accept
the whole document.

For possible performance improvement, it is important to identify the difficult
topics that bring down the average measure score. The number of topics that
have lower measure score than the average is presented in row 1 of the Table 5.
The number of XML element topics is in row 2 while the total number of XML
element topics is 11. Though our retrieval model also fails on document topics,
there is slightly more percentage loss on XML element topics.

Table 5. Number of Topics with Measure Score Less than Average

runFocCORef runFCASart10 runFocusCO10 runRiCORef runReRiCORef

all type 33 33 32 32 32

XML element 7 6 6 8 8

The number of topics that have zero measure score at average are 27 for all
restricted focused runs (the left three columns in Table 5), 3 for the RiC run
(the column 4), and 4 for the restricted RiC run (the right column).

Particularly, the most difficult topics that gain the least measure score in all
tasks are topic 19, topic 31, and topic 107. Their contents are as follows:

topic 19:
<title>gallo roman architecture in paris</title>

<castitle>//*[about(.,gallo roman architecture in paris)]</castitle>

topic 31:
<title>science women few</title>

<castitle>//*[about(., science women few)]</castitle>

topic 107:
<title>factors determining human height</title>

<castitle>//article[about(., human)]//p[about(., factors determining

height)]</castitle>

The content of these topics does not differ much for other topics. Further
investigation is needed to their ground truth.

87

Extended Language Models for XML Element Retrieval 7

6 Conclusion

In this paper, we present our results for the ad-hoc track of INEX 2010. Our
offical runs contain two baseline runs, namely document retrieval for CO queries
and CAS queries as a form of snippet retrieval. Additionally, we generate a ref-
erence based run. Our basline runs perform relatively good among participating
groups in the restricted focused retrieval. Our performance loss happens on both
document topics and XML element topics. The reference run does provide bet-
ter document ranking, which in turn improve the performance of our baselines.
Since our baseline runs are the simplest language models, our on-going experi-
ments will remove the stop words and general terms in addition to the stemming
techniques. The un-offical results will be in our final report.

References

1. Li, R.M., Weide, Th.P. van der: Language Models for XML Element Retrieval, In
Proceedings of INEX (2009)

2. Zhai, C.X., Lafferty, J.: A Study of Smoothing Methods for Language Models
Applied to Information Retrieval. ACM Trans. on Information Systems. 22(2),
179–214 (2004)

3. Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A Semantically Annotated
Wikipedia XML Corpus. In 12. GI-Fachtagung fr Datenbanksysteme in Business,
Technologie und Web, Aachen, Germany. (March 2007)

4. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A Language-model Based
Search Engine for Complex Queries, In Proceedings of ICIA (2005)

88

Overview of the INEX 2010 Book Track: At the
Mercy of Crowdsourcing

Gabriella Kazai1, Marijn Koolen2, Antoine Doucet3, and Monica Landoni4

1 Microsoft Research, United Kingdom
v-gabkaz@microsoft.com

2 University of Amsterdam, Netherlands
m.h.a.koolen@uva.nl

3 University of Caen, France
doucet@info.unicaen.fr

4 University of Lugano
monica.landoni@unisi.ch

Abstract. The goal of the INEX 2010 Book Track is to evaluate ap-
proaches for supporting users in reading, searching, and navigating the
full texts of digitized books. The investigation is focused around four
tasks: 1) the Book Retrieval (Best Books to Reference) task aims at
comparing traditional and book-specific retrieval approaches, 2) the Fo-
cused Book Search (Prove It) task evaluates focused retrieval approaches
for searching books, 3) the Structure Extraction task tests automatic
techniques for deriving structure from OCR and layout information, and
4) the Active Reading task aims to explore suitable user interfaces for
eBooks enabling reading, annotation, review, and summary across mul-
tiple books. We report on the setup and the results of the track.

1 Introduction

The INEX Book Track was launched in 2007, prompted by the availability
of large collections of digitized books resulting from various mass-digitization
projects [1], such as the Million Book project5 and the Google Books Library
project6. The unprecedented scale of these efforts, the unique characteristics of
the digitized material, as well as the unexplored possibilities of user interactions
present exciting research challenges and opportunities, see e.g. [4].

The overall goal of the INEX Book Track is to promote inter-disciplinary
research investigating techniques for supporting users in reading, searching, and
navigating the full texts of digitized books, and to provide a forum for the
exchange of research ideas and contributions. Toward this goal, the track aims
to provide opportunities for exploring research questions around three broad
topics:

– Information retrieval techniques for searching collections of digitized books,

5 http://www.ulib.org/
6 http://books.google.com/

89

– Mechanisms to increase accessibility to the contents of digitized books, and
– Users’ interactions with eBooks and collections of digitized books.

Based around these main themes, the following four tasks were defined:

1. The Best Books to Referencel (BB) task, framed within the user task of
building a reading list for a given topic of interest, aims at comparing tradi-
tional document retrieval methods with domain-specific techniques, exploit-
ing book-specific features, e.g., back-of-book index, or associated metadata,
e.g., library catalogue information,

2. The Prove It (PI) task aims to test the value of applying focused retrieval
approaches to books, where users expect to be pointed directly to relevant
book parts,

3. The Structure Extraction (SE) task aims at evaluating automatic techniques
for deriving structure from OCR and layout information for building hyper-
linked table of contents, and

4. The Active Reading task (ART) aims to explore suitable user interfaces
enabling reading, annotation, review, and summary across multiple books.

In this paper, we report on the setup and the results of each of these tasks
at INEX 2010. First, in Section 2, we give a brief summary of the participating
organisations. In Section 3, we describe the corpus of books that forms the basis
of the test collection. The following three sections detail the four tasks: Section 4
summarises the two search tasks (BR and FBS), Section 5 reviews the SE task,
and Section 6 discusses ART. We close in Section 7 with a summary and plans
for INEX 2010.

2 Participating Organisations

A total of 82 organisations registered for the track (compared with 84 in 2009,
54 in 2008, and 27 in 2007). As of the time of writing, we counted 10 active
groups (compared with 16 in 2009, 15 in 2008, and 9 in 2007), see Table 1.

3 The Book Corpus

The track builds on a collection of 50,239 out-of-copyright books7, digitized by
Microsoft. The corpus is made up of books of different genre, including his-
tory books, biographies, literary studies, religious texts and teachings, reference
works, encyclopedias, essays, proceedings, novels, and poetry. 50,099 of the books
also come with an associated MAchine-Readable Cataloging (MARC) record,
which contains publication (author, title, etc.) and classification information.
Each book in the corpus is identified by a 16 character long bookID – the name
of the directory that contains the book’s OCR file, e.g., A1CD363253B0F403.

7 Also available from the Internet Archive (although in a different XML format)

90

Table 1. Active participants of the INEX 2009 Book Track, contributing topics, runs,
and/or relevance assessments (BR = Book Retrieval, FBS = Focused Book Search, SE
= Structure Extraction, ART = Active Reading Task)

ID Institute Topics Runs Judged topics
(book/page level)

6 University of Amsterdam 19-
20,22

2 BB, 4 PI

7 Oslo University College 02-06 5 PI

14 Uni. of California, Berkeley 4 BB

54 Microsoft Research Cambridge 00-
01,07-
09,24-
25

86 University of Lugano 15-
18,21
,23

98 University of Avignon 9 BB, 1 PI

386 University of Tokyo

662 Izmir Institute of Technology

663 IIIT-H 10-14

732 Wuhan University

The OCR text of the books has been converted from the original DjVu for-
mat to an XML format referred to as BookML, developed by Microsoft De-
velopment Center Serbia. BookML provides additional structure information,
including markup for table of contents entries. The basic XML structure of a
typical book in BookML is a sequence of pages containing nested structures
of regions, sections, lines, and words, most of them with associated coordinate
information, defining the position of a bounding rectangle ([coords]):

<document>

<page pageNumber="1" label="PT CHAPTER" [coords] key="0" id="0">

<region regionType="Text" [coords] key="0" id="0">

<section label="SEC BODY" key="408" id="0">

<line [coords] key="0" id="0">

<word [coords] key="0" id="0" val="Moby"/>

<word [coords] key="1" id="1" val="Dick"/>

</line>

<line [...]><word [...] val="Melville"/>[...]</line>[...]

</section> [...]

</region> [...]

</page> [...]

</document>

BookML provides a set of labels (as attributes) indicating structure informa-
tion in the full text of a book and additional marker elements for more complex
structures, such as a table of contents. For example, the first label attribute

91

in the XML extract above signals the start of a new chapter on page 1 (la-
bel=“PT CHAPTER”). Other semantic units include headers (SEC HEADER),
footers (SEC FOOTER), back-of-book index (SEC INDEX), table of contents
(SEC TOC). Marker elements provide detailed markup, e.g., for table of con-
tents, indicating entry titles (TOC TITLE), and page numbers (TOC CH PN),
etc.

The full corpus, totaling around 400GB, was made available on USB HDDs.
In addition, a reduced version (50GB, or 13GB compressed) was made available
for download. The reduced version was generated by removing the word tags
and propagating the values of the val attributes as text content into the parent
(i.e., line) elements.

4 Information Retrieval Tasks

Focusing on IR challenges, two search tasks were investigated: 1) Best Books to
Reference (BB), and 2) Prove It (PI). Both these tasks used the corpus described
in Section 3, and shared the same set of topics (see Section 4.3).

4.1 The Best Books to Reference (BB) Task

This task was set up with the goal to compare book-specific IR techniques with
standard IR methods for the retrieval of books, where (whole) books are returned
to the user. The user scenario underlying this task is that of a user searching
for books on a given topic with the intent to build a reading or reference list,
similar to those appended to an academic publication or a Wikipedia article. The
reading list may be for research purposes, or in preparation of lecture materials,
or for entertainment, etc.

Participants of this task were invited to submit either single runs or pairs of
runs. A total of 10 runs could be submitted, each run containing the results for all
the 83 topics (see Section 4.3). A single run could be the result of either a generic
(non-specific) or a book-specific IR approach. A pair of runs had to contain
both types, where the non-specific run served as a baseline, which the book-
specific run extended upon by exploiting book-specific features (e.g., back-of-
book index, citation statistics, book reviews, etc.) or specifically tuned methods.
One automatic run (i.e., using only the topic title part of a topic for searching
and without any human intervention) was compulsory. A run could contain, for
each topic, a maximum of only100 books (identified by their bookID), ranked in
order of estimated relevance.

A total of 15 runs were submitted by 3 groups (2 runs by University of
Amsterdam (ID=6); 4 runs by University of California, Berkeley (ID=14); and
9 runs by the University of Avignon (ID=98)), see Table 1.

4.2 The Prove It (PI) Task

The goal of this task was to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The scenario underlying this task

92

is that of a user searching for specific information in a library of books that
can provide evidence to confirm or reject a given factual statement. Users are
assumed to view the ranked list of book parts, moving from the top of the list
down, examining each result. No browsing is considered (only the returned book
parts are viewed by users).

Participants could submit up to 10 runs. Each run could contain, for each
of the 83 topics (see Section 4.3), a maximum of 1,000 book pages estimated
relevant to the given aspect, ordered by decreasing value of relevance.

A total of 10 runs were submitted by 3 groups (4 runs by the University of
Amsterdam (ID=6); 5 runs by Oslo University College (ID=7); and 1 run by
the University of Avignon (ID=98)), see Table 1.

4.3 Topics

This year we explored the use of Amazon’s Mechanical Turk (AMT) service to
aid in the creation of topics for the test collection. This is motivated by the need
to scale up the Cranfield method for constructing test collections where the sig-
nificant effort required to create test topics and to collect relevance judgements
is otherwise inhibiting. By harnessing the collective work of the crowds, crowd-
sourcing offers an increasingly popular alternative for gathering large amounts
of data feasibly, at a relatively low cost and in a relatively short time. We are
interested in using crowdsourcing to contribute to the building of a test collec-
tion for the Book Track, which has thus far struggled to meet this requirement
by relying on its participants’ efforts alone.

With this aim, we experimented with gathering topics both through Ama-
zon’s Mechanical Service and from the track participants. Our aim was to com-
pare the quality of the collected topics and assess the feasibility of crowdsourcing
topics (and relevance judgements later on). To this end, we first redefined the
search tasks, simplifying them in order to make topic creation for them suitable
as a Human Intelligent Task (HIT).

As mentioned already, in the Prove It task systems need to find evidence
in books that can be used to either confirm or refute a factual statement given
as the topic. In the Best Books task systems need to return the most relevant
books on the general subject area of the topic. To collect the test topics for the
two tasks, we created the following two HITs:

– Facts in books HIT (Book HIT): “Your task is to fnd a general knowledge fact
that you believe is true in a book available at http://booksearch.org.uk. Both
the fact and the book must be in English. The fact should not be longer than
a sentence. For example, the fact that ‘The first Electric Railway in London
was opened in 1890 and run between the stations: Bank and Stockwell’ can
be found on page 187 of the book titled ‘West London’ by George Bosworth”.
Workers were asked to record the factual statement they found, the URL of
the book containing the fact, and the page number.

– Facts in books and Wikipedia HIT (Wiki HIT): “Your task is to find a gen-
eral knowledge fact that appears BOTH in a Wikipedia article AND in a

93

book available at http://booksearch.org.uk. You can start either by finding
a fact on Wikipedia first, then locating the same fact in a book, or you can
start by finding a fact in a book and then in Wikipedia. For example, the
Wikipedia page on Beethoven’s Symphony No. 3 claims that ‘Beethoven ded-
icated the symphony to Napoleon, but when Napoleon proclaimed himself
emperor, Beethoven tore up the title’. Page 144 of the book titled Beethoven
by Romain Rolland describes this very fact”. Workers needed to record the
factual statement, the URL and page number of the book where the fact is
found, as well as the Wikipedia article’s URL.

We created 10 Wiki HITs, paying $0.25 per HIT, and issued two batches of
Book HITs, with 50 HITs in each batch, paying $0.10 per HIT in the first batch
and $0.20 in the second batch. All 10 Wiki HITs were completed within a day,
while only 32 Fact HITs were completed in 11 days out of the first batch. The
second batch of 50 Book HITs was completed fully in 14 days. The average time
required per Book HIT was 8 minutes in the first batch and 7 minutes in the
second batch (hourly rate of $0.73 and $1.63, respectively), while Wiki HITs
took on average 11 minutes to complete (hourly rate of $1.31). These statistics
suggest that workers found the Wikipedia task more interesting, despite it taking
longer. However, as we show later, the attractiveness of a HIT does not guarantee
good quality topics.

At the same time, INEX participants were asked to create 5 topics each, 2
of which had to contain factual statements that appears both in a book and in
Wikipedia. A total of 25 topics were submitted by 5 groups. Of these, 16 facts
appear both in books and in Wikipedia.

All collected topics were carefully reviewed and those judged suitable were
selected into the set of test topics that is currently being used by the INEX Book
Track. All topics contributed by INEX participants were selected, while filtering
was necessary for topics created by AMT workers. Out of the 10 Wiki HITs,
only 4 topics were selected. Of the 32 Book HITs in the first batch, 18 were
acceptable, while 36 were selected from the 50 Book HITs in the second batch.
HITs were rejected for a number of reasons: the information given was simply
an extract from a book, rather than a fact (20), the fact was too specialised (5),
or nonsensical (5), the HIT had missing data (3), or the worker submitted the
example given in the task description (1). Of the total 58 accepted HITs, 18 had
to be modified, either to rephrase slightly or to correct a date or name, or to add
additional information. The remaining 40 HITs were high quality and reflecting
real interest or information need.

From the above, it seems clear that crowdsourcing provides a suitable way to
scale up test collection construction: MTurk workers contributed 58 topics, while
INEX participants created only 25 topics. However, the quality of crowdsourced
topics varies greatly and thus requires extra effort to weed out unsuitable submis-
sions. We note that selecting workers based on their approval rate had a positive
effect on quality: batch 2 of the Book HITs required workers to have a HIT
approval rate of 95%. In addition, paying workers more also shows correlation
with the resulting quality.

94

4.4 Relevance Assessment System

The Book Search System (http://www.booksearch.org.uk), developed at Mi-
crosoft Research Cambridge, is an online tool that allows participants to search,
browse, read, and annotate the books of the test corpus. Annotation includes
the assignment of book and page level relevance labels and recording book and
page level notes or comments. The system supports the creation of topics for the
test collection and the collection of relevance assessments. Screenshots of the
relevance assessment module are shown in Figures 1 and 2.

In preparation for the relevance gathering stage, which will run in paral-
lel, collecting judgements from INEX participants and from AMT workers, we
simplified the assessment process from previous years.

Fig. 1. Screenshot of the relevance assessment module of the Book Search System,
showing the list of books in the assessment pool for a selected topic in game 1. For each
book, its metadata, its table of contents (if any) and a snippet from a recommended
page is shown.

4.5 Collected Relevance Assessments

This is still in progress at the time of writing.

95

Fig. 2. Screenshot of the relevance assessment module of the Book Search System,
showing the Book Viewer window with Recommended tab listing the pooled pages to
judge with respect to topic aspects in game 2. The topic aspects are shown below the
page images.

4.6 Evaluation Measures and Results

We will report on these once sufficient amount of relevance labels have been
collected.

5 The Structure Extraction (SE) Task

The goal of the SE task was to test and compare automatic techniques for ex-
tracting structure information from digitized books and building a hyperlinked
table of contents (ToC). The task was motivated by the limitations of current
digitization and OCR technologies that produce the full text of digitized books
with only minimal structure markup: pages and paragraphs are usually iden-
tified, but more sophisticated structures, such as chapters, sections, etc., are
typically not recognised.

The 2010 task was run as a follow-up of the conjoint INEX and ICDAR 2009
competition [2,3]. Participants were able to refine their approaches with the help
of the groundtruth built in 2009.

Only one institution, the University of Caen, participated in this rerun of
the 2009 task, while 2 contributed to the extension of the groundtruth data,
since the University of Firenze joined the effort. The groundtruth now covers an
additional 114 books and reaches a total of 641 annotated ToCs.

96

The performance of the 2010 run is given in Table 2 . A summary of the
performance of the 2009 runs with the extended 2010 ground truth data is given
in Table 3.

Precision Recall F-measure

Titles 18.03% 12.53% 12.33%
Levels 13.29% 9.60% 9.34%
Links 14.89% 7.84% 7.86%
Complete except depth 14.89% 10.17% 10.37%
Complete entries 10.89% 7.84% 4.86%

Table 2. Score sheet of the run submitted by the University of Caen during the 2010
rerun of the SE competition 2009

RunID Participant F-measure (2010) F-measure (2009)

MDCS MDCS 43.39% 41.51%
XRCE-run2 XRCE 28.15% 28.47%
XRCE-run1 XRCE 27.52% 27.72%
XRCE-run3 XRCE 26.89% 27.33%

Noopsis Noopsis 8.31% 8.32%
GREYC-run1 University of Caen 0.09% 0.08%
GREYC-run2 University of Caen 0.09% 0.08%
GREYC-run3 University of Caen 0.09% 0.08%

Table 3. Summary of performance scores for the 2009 runs with the extended 2010
groundtruth-rerun; results are for complete entries.

Naturally, the small increase in the size of the groundtruth does not make
the results vary much (most of the groundtruth data was built for the 2009
experiments: 527 out 641 annotated books).

6 The Active Reading Task (ART)

The main aim of ART is to explore how hardware or software tools for reading
eBooks can provide support to users engaged with a variety of reading related
activities, such as fact finding, memory tasks, or learning. The goal of the investi-
gation is to derive user requirements and consequently design recommendations
for more usable tools to support active reading practices for eBooks. The task is
motivated by the lack of common practices when it comes to conducting usabil-
ity studies of e-reader tools. Current user studies focus on specific content and
user groups and follow a variety of different procedures that make comparison,

97

reflection, and better understanding of related problems difficult. ART is hoped
to turn into an ideal arena for researchers involved in such efforts with the crucial
opportunity to access a large selection of titles, representing different genres, as
well as benefiting from established methodology and guidelines for organising
effective evaluation experiments.

ART is based on the evaluation experience of EBONI [5], and adopts its eval-
uation framework with the aim to guide participants in organising and running
user studies whose results could then be compared.

The task is to run one or more user studies in order to test the usabil-
ity of established products (e.g., Amazon’s Kindle, iRex’s Ilaid Reader and
Sony’s Readers models 550 and 700) or novel e-readers by following the pro-
vided EBONI-based procedure and focusing on INEX content. Participants may
then gather and analyse results according to the EBONI approach and submit
these for overall comparison and evaluation. The evaluation is task-oriented in
nature. Participants are able to tailor their own evaluation experiments, inside
the EBONI framework, according to resources available to them. In order to
gather user feedback, participants can choose from a variety of methods, from
low-effort online questionnaires to more time consuming one to one interviews,
and think aloud sessions.

6.1 Task Setup

Participation requires access to one or more software/hardware e-readers (al-
ready on the market or in prototype version) that can be fed with a subset of
the INEX book corpus (maximum 100 books), selected based on participants’
needs and objectives. Participants are asked to involve a minimum sample of
15/20 users to complete 3-5 growing complexity tasks and fill in a customised
version of the EBONI subjective questionnaire, allowing to gather meaningful
and comparable evidence. Additional user tasks and different methods for gath-
ering feedback (e.g., video capture) may be added optionally. A crib sheet is
provided to participants as a tool to define the user tasks to evaluate, providing
a narrative describing the scenario(s) of use for the books in context, including
factors affecting user performance, e.g., motivation, type of content, styles of
reading, accessibility, location and personal preferences.

Our aim is to run a comparable but individualized set of studies, all con-
tributing to elicit user and usability issues related to eBooks and e-reading.

The task has so far only attracted 2 groups, none of whom submitted any
results at the time of writing.

7 Conclusions and plans

For the evaluation of our two search tasks (best books and prove it), we are
currently collecting relevance assessments from INEX participants. This will be
used as gold set for collecting judgements from workers on Amazon’s Mechanical

98

Turk (AMT). Results will then be distributed around February 2011. The ART
and SE tasks were offered as last year.

This year the focused search task (prove it) was based on factual statements
for which systems were asked to find book pages that either confirmed or refuted
the fact. 70

The SE task was run (though not advertised), using the same data set as last
year. One institution participated and contributed additional annotations.

Unless we get a LOT more ACTIVE participants, 2011 will probably be the
last year of the book track. We hope that with the burden of topic creation and
relevance assessments removed, we will however get higher participation next
year. We also plan to re-shape the research agenda by significantly increasing
the size of the collection on the one hand, and by defining more challenging tasks
that are focused on user interaction on the other hand, placing the ART in the
centre.

References

1. Karen Coyle. Mass digitization of books. Journal of Academic Librarianship,
32(6):641–645, 2006.

2. Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac, Bogdan
Radakovic, and Nikola Todic. ICDAR 2009 Book Structure Extraction Compe-
tition. In Proceedings of the Tenth International Conference on Document Analysis
and Recognition (ICDAR’2009), pages 1408–1412, Barcelona, Spain, july 2009.

3. Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac, Bogdan
Radakovic, and Nikola Todic. Setting up a competition framework for the evalua-
tion of structure extraction from ocr-ed books. International Journal on Document
Analysis and Recognition, pages 1–8, 2010.

4. Paul Kantor, Gabriella Kazai, Natasa Milic-Frayling, and Ross Wilkinson, editors.
BooksOnline ’08: Proceeding of the 2008 ACM workshop on Research advances in
large digital book repositories, New York, NY, USA, 2008. ACM.

5. Ruth Wilson, Monica Landoni, and Forbes Gibb. The web experiments in electronic
textbook design. Journal of Documentation, 59(4):454–477, 2003.

99

The Book Structure Extraction Competition with the
Resurgence software for part and chapter detection

Emmanuel Giguet*, Nadine Lucas*

GREYC Cnrs, Caen Basse Normandie University
BP 5186 F-14032 CAEN Cedex France

* name.surname@info.unicaen.fr

Abstract. The GREYC Island team participated in the Structure Extraction
Competition part of the INEX Book track for the second time, with the
Resurgence software. We used a minimal strategy primarily based on top-down
document representation with two levels. The main idea is to use a model
describing relationships for elements in the document structure. Parts and then
chapters are represented. Frontiers between high-level units are detected. Page
is also used. The periphery center relationship is calculated on the entire
document and reflected on each page. The strong points of the approach are that
it deals with the entire document; it handles books without ToCs, and titles that
are not represented in the ToC (e. g. preface); it is not dependent on lexicon,
hence tolerant to OCR errors and language independent; it is simple and fast.

1. Introduction

The GREYC Island team participated for the second time in the Book Structure
Extraction Competition part of the INEX evaluations [1]. The Resurgence software
used at Caen University to structure various documents was modified to this end. This
software processes academic articles (mainly in pdf format) and news articles (mainly
in HTML format) in various text parsing tasks [2]. The team was also interested in
handling voluminous documents, such as textbooks and cultural heritage books, hence
the interest in INEX.

The experiment was conducted from pdf documents to ensure the control of the
entire process. The document content is extracted using the pdf2xml software [3]. In
the first experiment, we handled only the chapter level [4]. We still could not
propagate our principles on all the levels of the book hierarchy at a time. We
consequently focused on the higher levels of book structure, part and chapter
detection.

In the following, we explain our strategy though the results on the INEX book
corpus are still unknown at the time of submission. We provide estimated results. In
the last section, we discuss the advantages of our method and make proposals for
future competitions.

100

2. Our Book Structure Extraction Method

2.1. Challenges

In the first experiment, the huge memory needed to handle books was found to be
indeed a serious hindrance, as compared with the ease in handling academic articles:
pdf2xml required up to 8 Gb of memory and Resurgence required up to 2 Gb to parse
the content of large books (> 150 Mb). This was due to the fact that the whole content
of the book was stored in memory. The underlying algorithms did not actually require
the availability of the whole content at a time. Resurgence was modified in order to
load the necessary pages only. The objective was to allow processing on usual laptop
computers.

The fact that the corpus was OCR documents also challenged our previous
program that detected the structure of electronic academic articles. A new branch in
Resurgence had to be written in order to deal with scanned documents. We
propagated our document parsing principles on two levels of the book hierarchy at a
time, part (meaning her part including a number of chapters) and chapter, hoping for
an improvement of the results, but two levels proved insufficient to boost the quality.

2.2. Strategy

The strategy in Resurgence is based on document positional representation, and does
not rely on the table of contents (ToC). This means that the whole document is
considered first. Then document constituents are considered top-down (by successive
subdivision), with focus on the middle part (main body) of the book. The document is
thus the unit that can be broken down ultimately to pages. The main idea is to use a
model describing relationships for elements in the document structure. The model is a
periphery-center dichotomy. The periphery center relationship is calculated on the
entire document and reflected on each page. The algorithm aims at retrieving the book
main content bounded by annex material like preface and postface with different
layout. It ultimately retrieves the page body in a page, surrounded by margins [2].

Implementation rules
For this experiment, we focused on part (if any) and chapter title detection so that

the program detects only two levels, i. e. part titles and chapter titles.
Part wrapping chapters are detected throughout the document using a sliding

window of one page. The idea is to detect a page with few written lines. The
transition page between two parts is characterized as follows:

the text body in the page is mainly blank,
• with a blank at least 5 times the standard line space height;
• followed by 1 to 3 written lines;
• with a blank at least 5 times the standard line space height.
A global test checks if there are at least two successive parts in the book.
Figure 1 illustrates the pattern. It applies on a single page. 3 context pages are

given but are not used in the process.

101

Fig. 1. View of the one-page sliding window to detect parts beginning. 3 context pages (1 page
before, two pages after) are given but not used. Excerpt from 2009 book id =
2A5029E027B7427C

Chapter title detection throughout the document was conducted using a sliding
window to detect chapter transitions with two patterns, as explained in [4].

Fig. 2. View of the four-page sliding window to detect chapter beginning. Pattern 1 matches.
Excerpt from 2009 book id = 00AF1EE1CC79B277

Fig. 3. View of the four-page sliding window to detect chapter announced by a blank page.
Pattern 2 matches. Excerpt from 2009 book id= 00AF1EE1CC79B277

102

Chapter title extraction is made from the first third of the top of the page body. The
model assumes that the title begins at the top of the page. The title right end is
detected, by calculating the line height disruption: a contrast between the would-be
title line height and the rest of the page line height. A constraint rule allows a number
of lines containing at most 40 words.

2.3. Calibrating the system

Working on the whole document requires the ability to detect and deal with
possible heterogeneous layouts in different parts of the document (preface, main
body, appendices). Layout changes can impact page formatting (e.g., margin sizes,
column numbers) as well as text formatting (e.g., font sizes, text alignments).

The standard page structure recognition has been improved, by correcting a bug in
the previous program that impaired the recognition of page header and footer [4]. It
has also been improved by a better recognition of the shape of the body which is not
always rectangular in scanned books.

Line detection, standard line height and standard space height detection were also
improved. They are important in our approach, because the standard line is the
background against which salient features such as large blanks and title lines can be
detected. The improvements in line computation improved the results in chapter
detection.

The standard line height and standard line space height are computed in the
following way. The most frequent representative intervals are computed to cope with
OCR variation in line height.

In the previous experiment, line height was calculated somewhat rigidly, after
pdf2xml was used. Line recognition was dependent on bounding box heights.
However, this is not very reliable for scanned text, and the program tended to create
loose line segments. Moreover it also tended to artificially augment the line height,
due to the presence of one capital letter for example, and thus the standard line was
not contrasted against title lines, which are slightly bigger.

In the current experiment, the model drives the detection process. This means that
unless there is a strong clue against it, the line is considered as continue. The line
common characteristics are favored against occasional disruptions in bounding box
height.

2.3. Experiment

The program detected only part and chapter titles. No effort was exerted to find the
sub-titles. There was only one run.

103

2.4. Expected Results

The entire corpus was handled. The official results should be improved compared
with the first official evaluation. However, the very bad results were due to a bug in
page numbers. Corrected results were as given in table 2 [4]. The 2010 results should
slightly outperform the corrected 2009 results. This is mainly due to improvements in
the system calibration. Little gain should be obtained from part detection. This is
mainly due to the fact that the evaluation favors title subsection detection, which is
not addressed in this participation.

3. Discussion

We were the only candidates this year. The official results are expected as deceptive,
although small corrections significantly improved them, as already explained [4]. The
low recall will still be due to the fact that the hierarchy of titles was not addressed as
mentioned earlier. This will be addressed in the future.

3.1. Reflections on the experiment

On the scientific side, some strong points of the Resurgence program, based on
relative position and differential principles, were better implemented. We intend to
further explore this way. The advantages are the following:
− The program deals with the entire document, not only the table of contents;
− It handles books without ToCs, and titles that are not represented in the ToC (e. g.

preface);
− It is dependent on typographical position, which is very stable in the corpus;
− It is not dependent on lexicon, hence tolerant to OCR errors and language

independent.
− Last, it is simple and fast.

Since no list of expected and memorized forms is used, but position instead, fairly
common strings are extracted, such as CHAPTER or SECTION, but also uncommon
ones, such as PSALM or SONNET. When chapters have no numbering and no prefix
such as chapter, they are found as well, for instance a plain title “Christmas Day”.

Resurgence did not rely on numbering of chapters: this is an important source of
OCR errors. Hence they were retrieved as they were by our robust extractor.

The approach reflects an original breakthrough to improve robustness.

3.2. Proposals

Concerning evaluation rules, generally speaking, it is unclear whether the ground
truth depends on the book or on the ToC. If the ToC is the reference, it is an error to
extract prefaces, for instance. The participants using the whole text as main reference
would be penalized if they extract the whole hierarchy of titles as it appears in the

104

book, when the ToC represents only higher levels, as is often the case.
Concerning details, it should be clear whether or when the prefix indicating the

book hierarchy level (Chapter, Section, and so on) and the numbering should be part
of the extracted result. The chapter title is not necessarily preceded by such mentions,
but in other cases there is no specific chapter title and only a number. The ground
truth is not clear either on the extracted title case: sometimes the case differs in the
ToC and in the actual title in the book.

It would be very useful to provide results by title depth (level) as suggested by [5,
6], because it seems that providing complete results for one or more level(s) would be
more satisfying than missing some items at all levels. It is important to get coherent
and comparable text spans for many tasks, such as indexing, helping navigation or
text mining.

The reason why the beginning and end of the titles are overrepresented in the
evaluation scores is not clear and a more straightforward edit distance for extracted
titles should be provided.

There is also a bias introduced by a semi-automatically constructed ground truth.
Manual annotation is still to be conducted to improve the ground truth quality, but it
is time-consuming.

It might be a good idea to give the bounding box containing the title as a reference
for the ground truth. This solution would solve conflicts between manual annotation
and automatic annotation, leaving man or machine to read and interpret the content of
the bounding box. It would also alleviate conflicts between ToC-based or text-based
approaches.

The corpus provided for the INEX Book track is very valuable, it is the only
available corpus offering full books [7]. Although it comprises old printed books
only, it is interesting for it provides various examples of layout.

References

1. Doucet, A. and Kazai, G. ICDAR 2009 Book Structure Extraction Competition. 10th
International Conference on Document Analysis and Recognition ICDAR 2009, Barcelona,
Spain, IEEE. pp. 1408-1412. (2009).

2. Giguet, E., Lucas, N. & Chircu, C. Le projet Resurgence: Recouvrement de la structure
logique des documents électroniques. JEP-TALN-RECITAL'08 Avignon (2008).

3. pdf2xml open source software, Déjean, H. last visited March 2010
http://sourceforge.net/projects/pdf2xml/

4. Giguet, E., Lucas, N. The Book Structure Extraction Competition with the Resurgence
software at Caen University. In: S. Geva, J. Kamps and A. Trotman Eds. Focused Retrieval
and Evaluation, LNCS 6203/2010, pp. 170-178, doi: 10.1007/978-3-642-14556-8_18.
(2010).

5. Déjean, H. and Meunier, J.-L. "XRCE Participation to the Book Structure Task" in Advances
in Focused Retrieval, Berlin, Springer. LNCS 5631/2009, pp. 124-131. doi: 10.1007/978-3-
642-03761-0 (2009).

6. Déjean, H. and Meunier, J.-L. Reflections on the INEX structure extraction competition. In
Proceedings of the 9th IAPR International Workshop on Document Analysis Systems (DAS
'10). ACM, New York, NY, USA, 301-308. DOI=10.1145/1815330.1815369
http://doi.acm.org/10.1145/1815330.1815369 (2010).

105

7. Gabriella Kazai, Antoine Doucet, Marijn Koolen, Monica Landoni. Overview of the INEX
2009 Book Track. Advances in Focused Retrieval: 8th International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX 2009, Springer, Lecture Notes in
Computer Science, Vol. 6203/2010. pp.145-159. (2010).

106

University of Amsterdam at INEX 2010:
Ad hoc and Book Tracks

Jaap Kamps1,2 and Marijn Koolen1

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 ISLA, Faculty of Science, University of Amsterdam

Abstract. In this paper we describe our participation in INEX 2010
in the Ad Hoc Track and the Book Track. In the Ad Hoc track we in-
vestigate the impact of propagated anchor-text on article level precision
and the impact of an element length prior on the within-document pre-
cision and recall. Using the article ranking of an document level run for
both document and focused retrieval techniques, we find that focused
retrieval techniques clearly outperform document retrieval, especially for
the Focused and Restricted Relevant in Context Tasks, which limit the
amount of text than can be returned per topic and per article respec-
tively. Somewhat surprisingly, an element length prior increases within-
document precision even when we restrict the amount of retrieved text to
only 1000 characters per topic. The query-independent evidence of the
length prior can help locate elements with a large fraction of relevant
text. For the Book Track we look at the relative impact of retrieval units
based on whole books, individual pages and multiple pages.

1 Introduction

In this paper, we describe our participation in the INEX 2010 Ad Hoc and Book
Tracks. Our aims for the Ad Hoc Track this year were to investigate the impact
of an element length prior on the trade-off between within-document precision
and recall. In previous years we merged article and element level runs—using the
article ranking of the article run and the element run to select the text to retrieve
in those articles—and found that this can improve performance compared to
individual article and element retrieval runs. But how much text should we
retrieve per article?

For the Book Track we look at the relative impact of books, individual pages,
and multiple pages as units of retrieval for the Best Books and Prove It Tasks.

The rest of the paper is organised as follows. Then, in Section 2, we report our
runs and results for the Ad Hoc Track. Section 3 briefly discusses our Book Track
experiments. Finally, in Section 4, we discuss our findings and draw preliminary
conclusions.

2 Ad Hoc Track

For the INEX 2010 Ad Hoc Track we aim to investigate:

107

– The effectiveness of anchor-text for focused ad hoc retrieval. Anchor-text
can improve early precision in Web retrieval [8], which might be beneficial
for focused retrieval in Wikipedia as well. The new Focused and Restricted
Relevant in Context Tasks put large emphasis on (early) precision.

– The relation between element length and within-document precision and re-
call. With the new tasks restricting systems to return only a limited number
of characters per article (Restricted Relevant in Context Task) or per topic
(Focused Task), an element length prior might be less effective, as it increases
the chances of retrieving irrelevant text.

We will first describe our indexing and retrieval approach, then the official
runs, and finally per task, we present and discuss our results.

2.1 Indexing

In this section we describe the index that is used for our runs in the ad hoc
track. We used Indri [14] for indexing and retrieval. Our indexing approach is
based on earlier work [1–3, 11–13].

– Section index : We used the <section> element to cut up each article in
sections and indexed each section as a retrievable unit. Some articles have a
leading paragraph not contained in any <section> element. These leading
paragraphs, contained in <p> elements are also indexed as retrievable units.
The resulting index contains no overlapping elements.

– Article index : We also build an index containing all full-text articles (i.e., all
wikipages) as is standard in IR.

– Anchor text index : For this index we concatenated all propagated anchor
text of an article as a single anchor text representation for that article.

For all indexes, stop-words were removed, and terms were stemmed using the
Krovetz stemmer. Queries are processed similar to the documents. This year we
only used the CO queries for the official runs.

2.2 Category Evidence

Based on previous experiments, we used category distance scores as extra evi-
dence for ranking [9]. We determine two target categories for a query based on
the top 20 results. We select the two most frequent categories to which the top 20
results are assigned and compute a category distance score using parsimonious
language models of each category. This technique was successfully employed on
the INEX 2007 Ad hoc topics by Kaptein et al. [6] and on the larger INEX 2009
collection [10] with two sets of category labels [9]; one based on the Wikipedia
category structure and one based on the WordNet category labels. Koolen et al.
[9] found that the labels of the original Wikipedia category structure are more
effective for ad hoc retrieval. In our experiments, we use the original Wikipedia
category labels.

108

2.3 Runs

Combining the methods described in the previous section with our baseline runs
leads to the following official runs.

Article an article index run with length prior (λ = 0.85 and β = 1).
ArticleRF an article index run with length prior (λ = 0.85 and β = 1) and

relevance feedback (top 50 terms from top 10 results).
Anchor anchor text index run without length prior (λ = 0.85 and β = 0).
AnchorLen anchor text index run with length prior (λ = 0.85 and β = 1).
Sec a section index run without length prior (λ = 0.85 and β = 0).
SecLen a section index run with length prior (λ = 0.85 and β = 1).

From these initial runs we have constructed our baseline runs:

Base the ArticleRF combined with the category scores based on the 2 most
frequent categories of the top 20 results.

Base Sec the Baseline run where an article is replaced by the sections of that
article retrieved by the Sec run. If no sections for that article are retrieved,
the full article is used.

Fusion a linear combination of the ArticleRF and the AnchorLen runs with
weight S(d) = 0.7ArticleRF (d) + 0.3AnchorLen(d). The combined run is
used to compute category scores based on the 2 most frequent categories
of the top 20 results, which are then combined with the merged article and
anchor text scores.

Fusion Sec the Fusion run where an article is replaced by the sections of that
article retrieved by the Sec run. If no sections for that article are retrieved,
the full article is used.

For the Focused Task, we submitted two runs:

Base Sec F1000 Topic : The Base Sec run with only the first 1000 characters
retrieved for each topic.

Base Sec F100 Article : The Base Sec run with only the first 100 characters
retrieved per article, cut-off after 1000 characters retrieved for each topic.

With the first 1000 characters retrieved, we expect to return only very few doc-
uments per topic. With a restriction of at most N characters per document, we
can control the minimum number of documents returned, thereby increasing the
possible number of relevant documents returned. Both runs have the retrieved
sections grouped per article, with the sections ordered according to the retrieval
score of the Sec run. That is, if sections s1, s2 and s3 of document d1 are re-
trieved by the Sec run in the order (s2, s3, s1), then after grouping, s2 is still
returned first, then s3 and then s1. The first 1000 characters retrieved will come
mostly from a single document (the highest ranked document). With a limit of
100 characters per article, the first 1000 characters will come from at least 10
documents. Although precision among the first 10 documents will probably be
lower than precision at rank 1, the larger number of retrieved documents might

109

give the user access to more relevant documents. We will look at the set-based
precision of the 1000 characters retrieved as well as the article-based precision
and the number of retrieved and relevant retrieved articles.

For the Relevant in Context Task, we submitted two runs:

Base SecLen : the baseline run Base SecLen described above, cut off after the
first 1500 results.

Fusion Sec : the baseline run Fusion Sec described above, cut off after the first
1500 results.

The Base and Fusion runs will allow us to see the impact of using propagated
anchor-text for early precision.

For the Restricted Relevant in Context Task, we submitted two runs:

Base F500 Article : the Base run reduced to the first 500 characters per re-
trieved article, and cut off after the first 1500 results.

Base Sec F500 Article : the Base Sec run reduced to the first 500 characters
per retrieved article, and cut off after the first 1500 results.

Article retrieval is a competitive alternative to element retrieval when it comes to
focused retrieval in Wikipedia [2, 4]. The full per-article recall of article retrieval
makes up for its lack in focus. However, for the Restricted Relevant in Context
Task, the amount of text retrieved per article is limited to 500 characters, which
reduces the high impact of full within-document recall and puts more emphasis
on achieving high precision. Relevant articles tend to have relevant text near the
start of the article [5], which could give fair precision with the first 500 characters
of an article. On the other hand, using the more focused evidence of the section
index on the same article ranking, we can select the first 500 characters of the
most promising elements of the article. With a restricted number of characters
per article, and therefore restricted recall, we expect to a see a clearer advantage
in using focused retrieval techniques.

We discovered an error in the baseline runs, which caused our official runs to
have very low scores. In the next sections, we show results for both the officially
submitted runs and the corrected runs.

2.4 Thorough Evaluation

We first look at the performance of the baseline runs using the Thorough in-
terpolated precision measure. Results can be found in Table 1. We make the
following observations:

– The Fusion run is less effective than the Base run. The anchor text does not
help early precision.

– The length prior on the sections increases recall for the cost of a slight drop
in early precision.

– The focused runs have a lower MAiP but a higher early precision than the ar-
ticle level runs. The article level runs have a much higher recall, and thereby
score better on average precision. But the focused runs retrieve less irrelevant
text and score better on early precision.

110

Table 1: Interpolated precision scores of the baseline runs (runs in italics are
official submissions, runs with an asteriks are the corrected versions)
Run id MAiP iP[0.00] iP[0.01] iP[0.05] iP[0.10]

Base 0.2139 0.4398 0.4219 0.3810 0.3577
Fusion 0.1823 0.4001 0.3894 0.3370 0.3189
Base Sec 0.1555 0.5669 0.5130 0.4039 0.3600
*Base SecLen 0.1702 0.5507 0.5100 0.4162 0.3784
*Fusion Sec 0.1317 0.5447 0.4632 0.3439 0.2967

Base SecLen 0.0723 0.3308 0.2910 0.2184 0.1944
Fusion Sec 0.0678 0.3027 0.2694 0.2110 0.1906

Table 2: Results for the Ad Hoc Track Focused Task (runs in italics are official
submissions, runs with an asteriks are the corrected versions)
Run id # ret. # rel. ret. Particle Pchar iP[0.00] iP[0.01]

Base Sec F1000 Topic 65 20 0.3301 0.1232 0.1694 0.0386
Base Sec F100 Article 529 165 0.3105 0.1162 0.2468 0.0338

*Base Sec F1000 Topic 1.29 0.81 0.6250 0.3490 0.4012 0.1376
*Base Sec F100 Article 10.06 5.27 0.5229 0.2445 0.4626 0.1140
Base SecLen F1000 Topic 1.29 0.81 0.6186 0.3526 0.3903 0.1518
Base SecLen F100 Article 10.06 5.27 0.5229 0.2677 0.5015 0.1226
Base F1000 Topic 1.10 0.69 0.6250 0.2806 0.2828 0.0737
Base F100 Article 10.00 5.23 0.5231 0.1415 0.2623 0.0340

2.5 Focused Task

We have no overlapping elements in our indexes, so no overlap filtering is done.
Table 2 shows the results for the Focused Task. We make the following observa-
tions:

– The first 1000 retrieved characters gives higher precision than first 100 per
article up to 1000 characters. But restricting each article to 100 characters,
many more articles, including relevant articles, are retrieved. Thus, although
the set-based precision of the F100 Article runs is lower, they do give direct
access to many more relevant documents.

– The focused runs Base Sec and Base SecLen have a higher set-based character
precision than the article level Base run. The length prior on the section index
has a positive impact on the precision of the first 1000 characters. The Base
Sec and Base SecLen runs have the same number of retrieved articles and
retrieved relevant articles, but the Base SecLen run has more relevant text
in the first 1000 characters. The query-independent length prior helps locate
elements with a larger proportion of relevant text.

2.6 Relevant in Context Task

For the Relevant in Context Task, we group results per article. Table 3 shows the
results for the Relevant in Context Task. We make the following observations:

111

Table 3: Results for the Ad Hoc Track Relevant in Context Task (runs in italics
are official submissions, runs with an asteriks are the corrected versions)
Run id MAgP gP[5] gP[10] gP[25] gP[50]

Base Sec Len 0.0597 0.1492 0.1330 0.1080 0.1031
Fusion Sec 0.0563 0.1207 0.1068 0.1008 0.0963

Base 0.1613 0.2900 0.2619 0.2123 0.1766
Base Sec 0.1615 0.3026 0.2657 0.2112 0.1763
*Base Sec Len 0.1646 0.3149 0.2790 0.2213 0.1817
Fusion 0.1344 0.2849 0.2399 0.1945 0.1547
*Fusion Sec 0.1294 0.2840 0.2427 0.1917 0.1548

Table 4: Results for the Ad Hoc Track Restricted Relevant in Context Task
(runs in italics are official submissions, runs with an asteriks are the corrected
versions)
Run id MAgP gP[5] gP[10] gP[25] gP[50]

Base F500 Article 0.0576 0.1439 0.1191 0.1053 0.0980
Base Sec F500 Article 0.0566 0.1375 0.1199 0.1040 0.0952

*Base F500 Article 0.1358 0.2516 0.2186 0.1696 0.1473
*Base Sec F500 Article 0.1503 0.2592 0.2288 0.1887 0.1624
Base SecLen F500 Article 0.1545 0.2666 0.2368 0.1868 0.1570

– The difference between the Base and Fusion runs is small.

– The length prior on the section index results in higher early and average
precision.

2.7 Restricted Relevant in Context Task

The aim of the Restricted Relevant in Context task is to return relevant results
grouped per article, with a restriction to return no more than 500 characters per
article. Table 4 shows the results for the Best in Context Task. We make the
following observations:

– Similar to the normal Relevant in Context task, the focused run Base Sec
F500 Article has somewhat better precision than the run based on the full
articles.

– A length prior over the element lengths (Base SecLen F500 Article) leads
to a further improvement in precision. Thus, longer elements give higher
precision in the first 500 characters.

In summary, with the restrictions on the amount of text per article and
per topic that can be retrieved, focused retrieval techniques clearly outperform
standard document retrieval. What is somewhat surprising is that a length prior
on the section index is effective even when we use the article ranking of an article
level run. The query-independent length prior helps locate elements with a large
fraction and amount of relevant text.

112

3 Book Track

In the INEX 2010 Book Track we participated in the Best Book and Prove It
tasks. Continuing our efforts of last year, we aim to find the appropriate level of
granularity for focused book search. The BookML markup has XML elements
on the page level. In the assessments of last year, relevant passages often cover
multiple pages [7]. With larger relevant passages, query terms might be spread
over multiple pages, making it hard for a page level retrieval model to assess the
relevance of individual pages.

Can we better locate relevant passages by considering larger book parts as
retrievable units? One simple option is to divide the whole book in sequences
of n pages. Another approach would be to use the logical structure of a book
to determine the retrievable units. The INEX Book corpus has no explicit XML
elements for the various logical units of the books, so as a first approach we
divide each book in sequences of pages.

Book index : each whole book is indexed as a retrievable unit.
Page index : each individual page is indexed as a retrievable unit.
5-Page index : each sequence of 5 pages is indexed as a retrievable unit. That

is, pages 1-5, 6-10, etc., are treated as text units.

This year’s topics are factual statements. For the Best Book Task the aim
is to retrieve the most relevant books for the topic of the statement. For the
Prove It Task the aim is to return pages that either confirm or refute the factual
statement. We submitted six runs in total: two for the Best Book (BB) task and
four for the Prove It (PI) task.

Book : a standard Book index run. Up to 100 results are returned per topic.
Book RF : a Book index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.
Page : a standard Page index run.
Page RF : a Page index run with Relevance Feedback (RF). The initial queries

are expanded with 50 terms from the top 10 results.
5-page : a standard 5-Page index run.
5-Page RF : a 5-Page index run with Relevance Feedback (RF). The initial

queries are expanded with 50 terms from the top 10 results.

At the time of writing, no relevance assessments have been made. Therefore
we cannot yet provide any evaluation results.

4 Conclusion

In this paper we discussed our participation in the INEX 2010 Ad Hoc and Book
Tracks.

For the Ad Hoc Track we found that, with the restrictions on the amount of
text per article and per topic that can be retrieved, focused retrieval techniques

113

clearly outperform standard document retrieval. What is somewhat surprising is
that a length prior on the section index is effective even when we use the article
ranking of an article level run. The query-independent length prior helps locate
elements with a large fraction and amount of relevant text.

For the Book Track, no evaluation results have been released. Hopefully, we
can report results for the final proceedings.

Acknowledgments Jaap Kamps was supported by the Netherlands Organization
for Scientific Research (NWO, grants # 612.066.513, 639.072.601, and 640.001.-
501). Marijn Koolen was supported by NWO under grants # 639.072.601 and
640.001.501.

Bibliography

[1] K. N. Fachry, J. Kamps, M. Koolen, and J. Zhang. Using and detecting
links in Wikipedia. In Focused access to XML documents: 6th International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2007), volume 4862 of LNCS, pages 388–403. Springer Verlag, Heidelberg,
2008.

[2] J. Kamps and M. Koolen. The impact of document level ranking on focused
retrieval. In Advances in Focused Retrieval: 7th International Workshop of
the Initiative for the Evaluation of XML Retrieval (INEX 2008), volume
5631 of LNCS. Springer Verlag, Berlin, Heidelberg, 2009.

[3] J. Kamps, M. Koolen, and B. Sigurbjörnsson. Filtering and clustering XML
retrieval results. In Comparative Evaluation of XML Information Retrieval
Systems: Fifth Workshop of the INitiative for the Evaluation of XML Re-
trieval (INEX 2006), volume 4518 of LNCS, pages 121–136. Springer Verlag,
Heidelberg, 2007.

[4] J. Kamps, M. Koolen, and M. Lalmas. Locating relevant text within XML
documents. In Proceedings of the 31th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
847–849. ACM Press, New York NY, USA, 2008.

[5] J. Kamps, S. Geva, A. Trotman, A. Woodley, and M. Koolen. Overview
of the INEX 2008 ad hoc track. In S. Geva, J. Kamps, and A. Trotman,
editors, Advances in Focused Retrieval: 7th International Workshop of the
Initiative for the Evaluation of XML Retrieval (INEX 2008), volume 5631
of LNCS, pages 1–28. Springer Verlag, Berlin, Heidelberg, 2009.

[6] R. Kaptein, M. Koolen, and J. Kamps. Using Wikipedia categories for ad
hoc search. In Proceedings of the 32nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM
Press, New York NY, USA, 2009.

[7] G. Kazai, N. Milic-Frayling, and J. Costello. Towards methods for the
collective gathering and quality control of relevance assessments. In SI-
GIR ’09: Proceedings of the 32nd international ACM SIGIR conference
on Research and development in information retrieval, pages 452–459,

114

New York, NY, USA, 2009. ACM. ISBN 978-1-60558-483-6. doi: http:
//doi.acm.org/10.1145/1571941.1572019.

[8] M. Koolen and J. Kamps. The importance of anchor-text for ad hoc search
revisited. In H.-H. Chen, E. N. Efthimiadis, J. Savoy, F. Crestani, and
S. Marchand-Maillet, editors, Proceedings of the 33rd Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 122–129. ACM Press, New York NY, USA, 2010.

[9] M. Koolen, R. Kaptein, and J. Kamps. Focused search in books and
Wikipedia: Categories, links and relevance feedback. In S. Geva, J. Kamps,
and A. Trotman, editors, Focused Retrieval and Evaluation: 8th Interna-
tional Workshop of the Initiative for the Evaluation of XML Retrieval
(INEX 2009), volume 6203 of LNCS, pages 273–291, 2010.

[10] R. Schenkel, F. Suchanek, and G. Kasneci. Yawn: A semantically anno-
tated wikipedia xml corpus, 2007. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.140.5501.
[11] B. Sigurbjörnsson and J. Kamps. The effect of structured queries and selec-

tive indexing on XML retrieval. In Advances in XML Information Retrieval
and Evaluation: INEX 2005, volume 3977 of LNCS, pages 104–118, 2006.

[12] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approach
to XML Retrieval. In INEX 2003 Workshop Proceedings, pages 19–26, 2004.

[13] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Mixture models, overlap, and
structural hints in XML element retreival. In Advances in XML Information
Retrieval: INEX 2004, volume 3493 of LNCS 3493, pages 196–210, 2005.

[14] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: a language-
model based search engine for complex queries. In Proceedings of the Inter-
national Conference on Intelligent Analysis, 2005.

115

Combining Page Scores for XML Book Retrieval

Ray R. Larson

School of Information
University of California, Berkeley

Berkeley, California, USA, 94720-4600
ray@ischool.berkeley.edu

Abstract. In the 2010 INEX Evaluation UC Berkeley participated only
in the Book track, and specifically the “Best Books to Reference” task
that seeks to produce a list of the “best books” for a topic. Last year
and in 2008 we tried a variety of different approaches for our Book Track
runs, including the TREC2 logistic regression probabilistic model as well
as various fusion approaches including combining the Okapi BM-25 algo-
rithm with other approaches. But in most cases our previous approaches
used only full-book level indexes. This year we wanted to compare our
best performing method from last year with approaches that combine
the scores obtained by ranking at the page level to arrive at the ranking
for a book. No results are yet available for the track, so this short paper
concentrates on the approaches used in our submitted runs.

1 Introduction

In our 2009 results from the INEX Book Track, we observed that most of the
fusion approaches that we had tried were not as effective as the TREC2 Logistic
Regression with Blind Feedback, so we took that as our baseline for this year.
After testing a number of approaches using book-level indexes and different
fusion weights, we found that this was still the case, and that these attempts often
led to poor matches being ranked highly. We decided instead to try some radical
simplification of the ranking process for books. This was driven by observations
from earlier INEX evaluations and from some of our digital library work that
often the books with highly ranked pages turned out to be more better choices
for the user than books with high overall ranking scores. Since we had generated
page-level indexes for all of the books (see below), we decided to try two simple
approaches. A probabilistic approach based on our logistic regression algorithm
(but without blind feedback), and a simple coordination-level match for pages.

In this paper we will first discuss the algorithms and operators used in our
official INEX 2010 Book Track runs. Then we will look at how these algorithms
and operators were used in combination with page-level indexes for our submis-
sions, and finally we will discuss possible directions for future research.

116

2 The Retrieval Algorithms and Fusion Operators

This section largely duplicates parts of earlier INEX papers in describing the
probabilistic retrieval algorithms used for the Book track in INEX this year.
Although the algorithms are the same as those used in previous years for INEX
and in other evaluations (such as CLEF and NTCIR), including a blind rele-
vance feedback method used in combination with the TREC2 algorithm, we are
repeating the formal description here instead of refering to those earlier papers
alone. In addition we will discuss the simple methods used to combine the results
of searches of book page elements in the collections. All runs used our Cheshire II
XML/SGML search engine [9, 8, 7] which also supports a number of other algo-
rithms for distributed search and operators for merging result lists from ranked
or Boolean sub-queries.

2.1 TREC2 Logistic Regression Algorithm

Once again the primary algorithm used for our INEX baseline runs is based
on the Logistic Regression (LR) algorithm originally developed at Berkeley by
Cooper, et al. [5]. The version that we used for Adhoc tasks was the Cheshire
II implementation of the “TREC2” [4, 3] that has provided good retrieval per-
formance earlier evaluations[9, 10]. As originally formulated, the LR model of
probabilistic IR attempts to estimate the probability of relevance for each docu-
ment based on a set of statistics about a document collection and a set of queries
in combination with a set of weighting coefficients for those statistics. The statis-
tics to be used and the values of the coefficients are obtained from regression
analysis of a sample of a collection (or similar test collection) for some set of
queries where relevance and non-relevance has been determined. More formally,
given a particular query and a particular document in a collection P (R | Q, D)
is calculated and the documents or components are presented to the user ranked
in order of decreasing values of that probability. To avoid invalid probability
values, the usual calculation of P (R | Q, D) uses the “log odds” of relevance
given a set of S statistics derived from the query and database, such that:

log O(R|C, Q) = log
p(R|C, Q)

1− p(R|C, Q)
= log

p(R|C, Q)
p(R|C, Q)

= c0 + c1 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

qtfi

ql + 35

+ c2 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

log
tfi

cl + 80

− c3 ∗
1√
|Qc|+ 1

|Qc|∑
i=1

log
ctfi

Nt

+ c4 ∗ |Qc|

117

where C denotes a document component and Q a query, R is a relevance variable,
and

p(R|C, Q) is the probability that document component C is relevant to query
Q,

p(R|C, Q) the probability that document component C is not relevant to query
Q, (which is 1.0 - p(R|C, Q))

|Qc| is the number of matching terms between a document component and a
query,

qtfi is the within-query frequency of the ith matching term,
tfi is the within-document frequency of the ith matching term,
ctfi is the occurrence frequency in a collection of the ith matching term,
ql is query length (i.e., number of terms in a query like |Q| for non-feedback

situations),
cl is component length (i.e., number of terms in a component), and
Nt is collection length (i.e., number of terms in a test collection).
ck are the k coefficients obtained though the regression analysis.

Assuming that stopwords are removed during index creation, then ql, cl, and
Nt are the query length, document length, and collection length, respectively.
If the query terms are re-weighted (in feedback, for example), then qtfi is no
longer the original term frequency, but the new weight, and ql is the sum of
the new weight values for the query terms. Note that, unlike the document and
collection lengths, query length is the relative frequency without first taking the
log over the matching terms.

The coefficients were determined by fitting the logistic regression model spec-
ified in log O(R|C, Q) to TREC training data using a statistical software package.
The coefficients, ck, used for our official runs are the same as those described
by Chen[1]. These were: c0 = −3.51, c1 = 37.4, c2 = 0.330, c3 = 0.1937 and
c4 = 0.0929. Further details on the TREC2 version of the Logistic Regression
algorithm may be found in Cooper et al. [4].

2.2 Blind Relevance feedback

It is well known that blind (also called pseudo) relevance feedback can substan-
tially improve retrieval effectiveness in tasks such as TREC and CLEF. (See
for example the papers of the groups who participated in the Ad Hoc tasks in
TREC-7 (Voorhees and Harman 1998)[11] and TREC-8 (Voorhees and Harman
1999)[12].)

Blind relevance feedback is typically performed in two stages. First, an initial
search using the original queries is performed, after which a number of terms are
selected from the top-ranked documents (which are presumed to be relevant).
The selected terms are weighted and then merged with the initial query to for-
mulate a new query. Finally the reweighted and expanded query is run against
the same collection to produce a final ranked list of documents. It was a simple
extension to adapt these document-level algorithms to document components
for INEX.

118

The TREC2 algorithm has been been combined with a blind feedback method
developed by Aitao Chen for cross-language retrieval in CLEF. Chen[2] presents
a technique for incorporating blind relevance feedback into the logistic regression-
based document ranking framework. Several factors are important in using blind
relevance feedback. These are: determining the number of top ranked documents
that will be presumed relevant and from which new terms will be extracted, how
to rank the selected terms and determining the number of terms that should
be selected, how to assign weights to the selected terms. Many techniques have
been used for deciding the number of terms to be selected, the number of top-
ranked documents from which to extract terms, and ranking the terms. Harman
[6] provides a survey of relevance feedback techniques that have been used.

Obviously there are important choices to be made regarding the number of
top-ranked documents to consider, and the number of terms to extract from those
documents. We used the same default as last year, i.e., top 10 terms from 10 top-
ranked documents. The terms were chosen by extracting the document vectors
for each of the 10 and computing the Robertson and Sparck Jones term relevance
weight for each document. This weight is based on a contingency table where
the counts of 4 different conditions for combinations of (assumed) relevance
and whether or not the term is, or is not in a document. Table 1 shows this
contingency table.

Table 1. Contingency table for term relevance weighting

Relevant Not Relevant

In doc Rt Nt −Rt Nt

Not in doc R−Rt N −Nt −R + Rt N −Nt

R N −R N

The relevance weight is calculated using the assumption that the first 10
documents are relevant and all others are not. For each term in these documents
the following weight is calculated:

wt = log
Rt

R−Rt

Nt−Rt

N−Nt−R+Rt

(1)

The 10 terms (including those that appeared in the original query) with the
highest wt are selected and added to the original query terms. For the terms
not in the original query, the new “term frequency” (qtfi in main LR equation
above) is set to 0.5. Terms that were in the original query, but are not in the
top 10 terms are left with their original qtfi. For terms in the top 10 and in the
original query the new qtfi is set to 1.5 times the original qtfi for the query.
The new query is then processed using the same TREC2 LR algorithm as shown
above and the ranked results returned as the response for that topic.

119

2.3 Coordination Level Matching

Coordination level matching is the first simple step towards ranking results
beyond simple Boolean matches. Basic coordination level matching (CML) is
simply the number of terms in common between the query and the document
component or |Qc| as defined above. In the implementation that we use in the
Cheshire II system, the coordination level match (CLM) also takes into account
term frequency, thus it is simply:

CLMc =
|Qc|∑
i=1

tfi (2)

Where the variables are the defined the same as defined above. Obviously,
with this simple form, it is possible for terms that have very high frequency to
dominate. To combat this an additional filter removes all results that match on
fewer than 1/4 of the search terms.

2.4 Result Combination Operators

As we have also reported previously, the Cheshire II system used in this evalu-
ation provides a number of operators to combine the intermediate results of a
search from different components or indexes. With these operators we have avail-
able an entire spectrum of combination methods ranging from strict Boolean
operations to fuzzy Boolean and normalized score combinations for probabilis-
tic and Boolean results. These operators are the means available for performing
fusion operations between the results for different retrieval algorithms and the
search results from different components of a document.

However, our approach for the page-level searches done for this evaluation
was to simply sum the page-level results for each book. Thus, for the CLM runs,
if a particular query retrieved 10 pages from a given book, the final ranking score
would be the sum of the CLM values for each page. Although the runs using
the TREC2 logistic regression algorithm return estimates of the probability of
relevance for each page, we decided to treat these also as simple scores and sum
each matching page estimate for each book.

3 Database and Indexing Issues

The Book Track data used this year was the same as last year. In indexing we
attempted to use multiple elements or components that were identified in the
Books markup including the Tables of Contents and Indexes as well as the full
text of the book, since the goal of the “Best Books” task was to retrieve entire
books and not elements, the entire book was retrieved regardless of the matching
elements.

Table 2 lists the Book-level (/article) indexes created for the INEX Books
database and the document elements from which the contents of those indexes
were extracted.

120

Table 2. Book-Level Indexes for the INEX Book Track 2009-10

Name Description Contents Vector?

topic Full content //document Yes

toc Tables of Contents //section@label=”SEC TOC” No

index Back of Book Indexes //section@label=”SEC INDEX” No

Table 3. Components for INEX Book Track 2009-10

Name Description Contents

COMPONENT PAGE Pages //page

COMPONENT SECTION Sections //section

Cheshire system permits parts of the document subtree to be treated as
separate documents with their own separate indexes. Tables 3 & 4 describe the
XML components created for the INEX Book track and the component-level
indexes that were created for them.

Table 3 shows the components and the paths used to define them. The first,
refered to as COMPONENT PAGE, is a component that consists of each identi-
fied page of the book, while COMPONENT SECTION identifies each section of
the books, permitting each individual section or page of a book to be retrieved
separately. Because most of the areas defined in the markup as “section”s are
actually paragraphs, we treat these as if they were paragraphs for the most part.

Table 4. Component Indexes for INEX Book Track 2009-10

Component
or Index Name Description Contents Vector?

COMPONENT SECTION

para words Section Words * (all) Yes

COMPONENT PAGES

page words Page Words * (all) Yes

Table 4 describes the XML component indexes created for the components
described in Table 3. These indexes make the individual sections (such as COM-
PONENT SECTION) of the INEX documents retrievable by their titles, or by
any terms occurring in the section. These are also proximity indexes, so phrase
searching is supported within the indexes.

We also have indexes created using the MARC data (book-level metadata)
made available, but these were not used this year.

3.1 Indexing the Books XML Database

Because the structure of the Books database was derived from the OCR of
the original paper books, it is primarily focused on the page organization and

121

layout and not on the more common structuring elements such as “chapters”
or “sections”. Because this emphasis on page layout goes all the way down to
the individual word and its position on the page, there is a very large amount
of markup for page with content. For this year’s original version of the Books
database, there are actually NO text nodes in the entire XML tree, the words
actually present on a page are represented as attributes of an empty word tag in
the XML. The entire document in XML form is typically multiple megabytes in
size. A separate version of the Books database was made available that converted
these empty tags back into text nodes for each line in the scanned text. This
provided a significant reduction in the size of database, and made indexing much
simpler. The primary index created for the full books was the “topic” index
containing the entire book content.

We also created page-level “documents” as we did last year. As noted above
the Cheshire system permits parts of the document subtree to be treated as sep-
arate documents with their own separate indexes. Thus, paragraph-level com-
ponents were extracted from the page-sized documents. Because unique object
(page) level indentifiers are included in each object, and these identifiers are
simple extensions of the document (book) level identifier, we were able to use
the page-level identifier to determine where in a given book-level document a
particular page or paragraph occurs, and generate an appropriate XPath for it.

Indexes were created to allow searching of full page contents, and component
indexes for the full content of each of individual paragraphs on a page. Because
of the physical layout based structure used by the Books collection, paragraphs
split across pages are marked up (and therefore indexed) as two paragraphs.
Indexes were also created to permit searching by object id, allowing search for
specific individual pages, or ranges of pages.

The system problems encountered last year have been (temporarily) corrected
for this years submissions. Those problems were caused by the numbers of unique
terms exceeding the capacity of the integers used to store them in the indexes. For
this year, at least, moving to unsigned integers has provided a temporary fix for
the problem but we will need to rethink how statistical summary information is
handled in the future – perhaps moving to long integers, or even floating point
numbers and evaluating the tradeoffs between precision in the statistics and
index size (since moving to Longs could double index size).

4 INEX 2010 Book Track Runs

We submitted nine runs for the Book Search task of the Books track,
As Table 5 shows, a small number of variations of algorithms and search

elements were tried this year. The small number was largely due to some issues
in indexing (due to a bug in page indexes that took a lot of time to locate
and fix). With more that 16 million pages, response time was very good for the
basic search operations, but slowed dramatically whenever data from records
was needed.

122

Table 5. Berkeley Submissions for the INEX Book Track 2009

Name Description Algorithm Combined?

T2FB BASE BST Uses book-level topic index TREC2 NA
and blind feedback +BF

CLM PAGE SUM Uses page components and CLM Sum
page words index

CLM PAGE SUM 300 Uses page components and CLM Sum
page words index

T2 PAGE SUM 300 Uses page components and TREC2 Sum
page words index

In Table 5 the first column is the run name (all of our official submissions had
names beginning with “BOOKS10” which has been removed from the name),
the second column is a short description of the run. We used only the main
“fact” element of the topics in all of our runs. The third column shows which
algorithms where used for the run, TREC2 is the TREC2 Logistic regression
algorithm described above, “BF” means that blind relevance feedback was used
in the run, and CLM means that the CLM algorithm described above (2) was
used.

5 Conclusions and Future Directions

The results of the Books track are not yet available, but a few observations can be
made about the runs. We suspect that the simple CLM on pages may outperform
the TREC2 approach on pages. This is partially because of the tendency for the
simple matching algorithm to give the strongest values to “best matches”, from
some eyeballing of the data. However, the real results often come as a surprise.

We also hope to find time to run some additional analyses of the data and try
some alternative approaches before the final version of proceedings are published.

References

1. A. Chen. Multilingual information retrieval using english and chinese queries. In
C. Peters, M. Braschler, J. Gonzalo, and M. Kluck, editors, Evaluation of Cross-
Language Information Retrieval Systems: Second Workshop of the Cross-Language
Evaluation Forum, CLEF-2001, Darmstadt, Germany, September 2001, pages 44–
58. Springer Computer Scinece Series LNCS 2406, 2002.

2. A. Chen. Cross-Language Retrieval Experiments at CLEF 2002, pages 28–48.
Springer (LNCS #2785), 2003.

3. A. Chen and F. C. Gey. Multilingual information retrieval using machine trans-
lation, relevance feedback and decompounding. Information Retrieval, 7:149–182,
2004.

4. W. S. Cooper, A. Chen, and F. C. Gey. Full Text Retrieval based on Probabilis-
tic Equations with Coefficients fitted by Logistic Regression. In Text REtrieval
Conference (TREC-2), pages 57–66, 1994.

123

5. W. S. Cooper, F. C. Gey, and D. P. Dabney. Probabilistic retrieval based on
staged logistic regression. In 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, Copenhagen, Denmark,
June 21-24, pages 198–210, New York, 1992. ACM.

6. D. Harman. Relevance feedback and other query modification techniques. In
W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures &
Algorithms, pages 241–263. Prentice Hall, 1992.

7. R. R. Larson. A logistic regression approach to distributed IR. In SIGIR 2002:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, August 11-15, 2002, Tampere, Finland,
pages 399–400. ACM, 2002.

8. R. R. Larson. A fusion approach to XML structured document retrieval. Informa-
tion Retrieval, 8:601–629, 2005.

9. R. R. Larson. Probabilistic retrieval, component fusion and blind feedback for XML
retrieval. In INEX 2005, pages 225–239. Springer (Lecture Notes in Computer
Science, LNCS 3977), 2006.

10. R. R. Larson. Ranking and fusion approaches for XML book retrieval. In Focused
Retrieval and Evaluation (INEX 2009), pages 179–189. Springer (Lecture Notes in
Computer Science, LNCS 6203), 2010.

11. E. Voorhees and D. Harman, editors. The Seventh Text Retrieval Conference
(TREC-7). NIST, 1998.

12. E. Voorhees and D. Harman, editors. The Eighth Text Retrieval Conference
(TREC-8). NIST, 1999.

124

OUC’s participation in the 2010 INEX Book
Track

Michael Preminger1 and Ragnar Nordlie1

Oslo University College

Abstract. In this article we describe the Oslo University College’s par-
ticipation in the INEX 2010 Book track. The 2010 tasks have been fea-
turing a relatively large number of topics (82). This, combined with the
character of the main task of finding book pages that prove or refute a
given factual utterance, allow for a better calibration of retrieval meth-
ods.
The OUC has submitted retrieval results for the ”prove it” task with
traditional relevance detection combined with some rudimental detection
of confirmation. We call for a broader discussion of a more meaning-
oriented (semantics-aware) approach to retrieval in digitized books, with
the ”prove it” task (classifiable as a simple semantics- aware retrieval
activity) providing the INEX milieu with a suitable context to start this
discussion.

1 Introduction

In recent years large organizations like national libraries, as well as multinational
organizations like Microsoft and Google have been investing labor, time and
money in digitizing books. Beyond the preservation aspects of such digitization
endeavors, they call on finding ways to exploit the newly available materials,
and an important aspect of exploitation is book and passage retrieval.

The INEX Book Track[1], which has been running since 2007, is an effort
aiming to develop methods for retrieval in digitized books. One important aspect
here is to test the limits of traditional methods of retrieval, designed for retrieval
within ”documents” (such as news-wire), when applied to digitized books. One
wishes to compare these methods to book-specific retrieval methods.

One important mission of such retrieval is supporting the generation of new
knowledge based on existing knowledge. The generation of new knowledge is
closely related to access to – as well as faith in – existing knowledge. One impor-
tant component of the latter is claims about facts. This year’s ”prove it” task,
may be seen as challenging the most fundamental aspect of generating knew
knowledge, namely the establishment (or refutal) of factual claims encountered
during research.

On the surface, this may be seen as simple retrieval, but proving a fact is
more than finding relevant documents. This type of retrieval requires from a
passage to ”make a statement about” rather than ”be relevant to” a claim,
which traditional retrieval is about. The questions we pose here are:

125

2

– what is the difference between simply being relevant to a claim and expressing
support for a claim

– how do we modify traditional retrieval to reveal support or refutal of a claim?

We see proving and denial of a statement as different tasks, both classifiable
as semantics-aware retrieval, suspecting that the latter is a more complicated
task. This paper attempts at applying some rudimentary techniques of detecting
the confirmation (proving) of a statement. The rest of the paper discusses these
tasks in the context of meaning-oriented retrieval in books.

2 Indexing and retrieval strategies

The point of departure of the strategies discussed here is that confirming or
refuting a statement is a simple action of speech that does not require from the
book (the context of the retrieved page) to be ABOUT the topic covering the
fact. This means that we do not need the index to be context-faithful (pages
need not be indexed in a relevant book context). It is more the formulation of
the statement in the book or page that matters. This is why we need to look
for words (or sequences of words) or sentences that indicate the stating of a
fact. A simple strategy is looking for the occurrence of words like ”is”, ”are”,
”have”, ”has” a.s.o, that, in combination with nouns from the query (or fact
formulation), indicate a possible act of confirming the fact in question.

Further focus may be achieved by detecting sentences that include (WH-)
question indicators or a question-mark and pruning these from the index, so
that pages that only match the query through such sentences are omitted or
weighed down during retrieval.

Against this background we were trying to construct runs that emphasized
pages that are confirmative in style. The pages in the collection where attempted
divided into categories of how confirmative they are. Occurrences of the words
is, are, was, were, have, has were counted in each page, and a ratio between
this sum and the total number of words in the page was calculated. Based on a
sample of the pages, three levels were defined, so that pages belonging to each
of the levels were assigned a tag, accordingly.

These tags then facilitated weighing different pages differently when retriev-
ing candidates of confirming pages.

3 Runs and Results

By the submission deadline no results were available for evaluation.

4 Discussion

Utilizing digital books poses new challenges on information retrieval. The mere
size of the book text poses both storage, performance and content related chal-
lenges as compared to texts of more moderate size. But the challenges are even

126

3

greater if books are to be exploited not only for finding factual facts, but also to
support exploitation of knowledge, identifying and analyzing ideas, a.s.o

For example, we suspect that confirming and refuting a factual statement,
the Book Track 2010 ”prove it” task, both belong to a class of activities that
extend the current scope of information retrieval. Confirming a fact may have
many facets, based on how complicated the fact is. A fact like: The ten tribes
forming the northern kingdom of Israel (aka the ten lost tribes) disappeared after
being driven to exile by the Assyrians, several hundreds years before Christ may
be confirmed on several levels. Should all minor details be in place for the fact
to be confirmed? What if the book states that it was the Babylonians, rather
than the Assyrians who sent the tribes into exile, the rest of the details being in
agreement with the statement: is the fact then confirmed? Moreover, detecting
the refutal of a statement is arguably a totally different activity than detecting
its confirmation.

Even though such activities may be developed and refined using techniques
from e.g. Question Answering[2], we suspect that employing semantics-aware
retrieval [3,?], which is closely connected to the development of the Semantic
Web [4] would be a more viable (and powerful) path to follow.

Within the INEX Book track, the ”prove it” task can thus serve as a splen-
did start of a broader discussion around detecting meaning rather than only
matching strings. Many projects under way are already using ontologies to aid
in tagging texts of certain kinds (e.g. philosophical essays)[5] to indicate certain
meaning, with the aim of supporting the analysis of these texts. Is this a viable
task for the INEX Book track? Is it a viable path for information retrieval?

5 Conclusion

This article is an attempt to start a discussion about semantics-aware retrieval
in the context of the INEX book track. Proving of factual statements is discussed
in light of some rudimental retrieval experiments incorporating the detection of
confirmation (proving) of statement. We also discuss the task of proving state-
ment, raising the question whether it is classifiable as a semantics-aware retrieval
task.

References

1. Kazai, G., Koolen, M., Landoni, M.: Summary of the book track. In: INEX 2009.
(in press) 0–0

2. VOORHEES, E.M.: The trec question answering track. Natural Language Engi-
neering 7 (2001) 361–378

3. Tim Finin, James Mayfield, A.J.R.S.C., Fink, C.: Information retrieval and the
semantic web. In: Proc. 38th Int. Conf. on System Sciences, Digital Documents
Track (The Semantic Web: The Goal of Web Intelligence). (2005) 0–0

4. Berners-Lee, T., H.J., Lassila, O.: The semantic web. Scientific American (2001)
5. Zllner-Weber, A.: Ontologies and logic reasoning as tools in humanities? DHQ:

Digital Humanities Quarterly 3(4) (2009)

127

Overview of the INEX 2010 Data Centric Track

Andrew Trotman

Department of Computer Science
University of Otago

Dunedin
New Zealand

Qiuyue Wang

School of Information
Renmin University of China

Beijing
China

Abstract. The INEX 2010 Data Centric Track is discussed. A dump of IMDb
was used as the document collection, 28 topics were submitted, 36 runs were
submitted by 8 institutes, and 26 topics were assessed. Most runs (all except 2)
did not use the structure present in the topics; and consequently no
improvement is yet seen by search engines that do so.

1 Introduction

2010 sees the introduction of the Data Centric Track at INEX. The results of INEX
up-to and including 2009 showed that whole document retrieval was effective. This
result was, perhaps, a consequence of the IEEE and Wikipedia collections used in the
past. It is reasonable to assume the Wikipedia will include a whole document result to
almost any ad hoc query.

In the Data Centric Track we ask: Is the same result seen when a highly structured
document collection is used?

To answer this question a new highly structured collection was developed and
made available for download from the INEX website. That collection was a snapshot
of the IMDB taken early in 2010. Highly structured queries were solicited from
participants. Together with the assessments these form the new INEX Data Centric
Collection.

Most of the runs submitted to the track did not use the structure present in the
topics. This is not surprising in a new track because participants are inclined to use
their existing systems on a new collection before making modifications to it.
Consequently the track has not yet seen improvements in precision from structure. It
is hoped that in future years participating groups will prefer to conduct experiments
using the structure present in the topics. The track has generated a topic set that can be
used for training.

128

2 Andrew Trotman and Qiuyue Wang

2 The Task

In its first year, the track focused on ad hoc retrieval from XML data. An XML
document is typically modeled as a rooted, node-labeled tree. An answer to a keyword
query was defined as a set of closely related nodes that are collectively relevant to the
query. So each result could be specified as a collection of nodes from one or more
XML documents that are related and collectively cover the relevant information. The
task was to return a ranked list of results estimated relevant to the user's information
need. The content of the collections of nodes was not permitted to overlap. This is
similar to the focused task in the ad hoc track, but using a data-centric XML
collection and allowing the construction of a result (i.e. a collection of nodes) from
different parts of a single document or even multiple documents.

3 INEX Data Centric Track Collection

3.1 Document Collection

The track used the IMDb data collection newly built from www.imdb.com. It was
converted from the plain text files (April 10, 2010) published on the IMDb web site.
The plain text files were first loaded into a relational database by the Java Movie
Database system 1

 Information about one movie or person is published in one XML file, thus each
generated XML file represents a single object, i.e. a movie or person. In total,
4,418,102 XML files were generated, including 1,594,513 movies, 1,872,492 actors

. Then the relational data are published as XML documents
according to the DTDs. There are two kinds of objects in the IMDb data collection,
movies and persons involved in movies, e.g. actors/actresses, directors, producers and
so on. Each object is richly structured. For example, each movie has title, rating,
directors, actors, plot, keywords, genres, release dates, trivia, etc.; and each person
has name, birth date, biography, filmography, etc. Please refer to the Appendix A and
B for the movie DTD and person DTD respectively.

2

3.2 Topics

,
129,137 directors who did not act in any movies, 178,117 producers who did not
direct or act in any movies, and 643,843 other people involved in movies who did not
produce or direct nor act in any movies.

Each participating group was asked to create a set of candidate topics, representative
of a range of real user needs. Both Content Only (CO) and Content And Structure
(CAS) variants of the information need were requested. In total 30 topics were
submitted by 4 institutes (IRIT / SIG, Renmin University of China, Universidade

1 http://www.jmdb.de/
2 21 of the actor files were empty and removed in the new IMDB data collection.

129

Overview of the INEX 2010 Data Centric Track 3

Federal do Amazonas, and Universitat Pompeu Fabra). From these a total of 28 topics
were selected. An example topic (2010001) is given in Fig. 1:

 <topic id="2010001" ct_no="3">
 <title>Yimou Zhang 2010 2009</title>
 <castitle>//movie[about(.//director, "Yimou Zhang")
 and (about(.//releasedate, 2010) or about(.//releasedate, 2009))]</castitle>
 <description>I want to know the latest movies directed by Yimou Zhang.</description>
 <narrative>
 I am interested in all movies directed by Yimou Zhang,
 and I want to learn the latest movies he directed.
</narrative>
 </topic>

Fig. 1. INEX 2010 Data Centric Track Topic 2010001

4 Submission Format

The required submission format was a variant of the familiar TREC format used by
INEX, the so called TREC++ format. The following information was collected about
each run:

 The participant ID of the submitting institute,
 Whether the query was constructed automatically or manually from the

topic,
 Topic fields used (from: Title, CASTitle, Description, and Narrative),

A run was permitted to contain a maximum of 1000 results for each topic. A result
consisted of one or more nodes from a single or multiple XML documents. A node is
uniquely identified by its element path in the XML document tree. The standard
TREC format is extended with one additional field for specifying each result node:
<qid> Q0 <file> <rank> <rsv> <run_id> <column_7>

Here:
 the first column is the topic number.
 the second column is the query number within that topic (unused and should

always be Q0).
 the third column is the file name (without .xml) from which a result node is

retrieved.
 the fourth column is the rank of the result. Note that a result may consist of

one or more related nodes, so there can be multiple rows with the same rank
if these nodes belong to the same result.

 the fifth column shows the score that generated the ranking. This score must
be in descending (non-increasing) order and is important to include so that
assessment tools can handle tied scores (for a given run) in a uniform fashion
(the evaluation routines rank documents from these scores, not from ranks).
If you want the precise ranking that you submit to be evaluated, the scores
should reflect that ranking.

130

4 Andrew Trotman and Qiuyue Wang

 the sixth column is called the "run tag" and should be a unique identifier
from within a participating group. It should also include a brief detail of the
method used. The run tags contained 12 or fewer letters and numbers, with
no punctuation.

 the seventh column gives the element path of the result node. Element paths
are given in XPath syntax. To be more precise, only fully specified paths are
allowed, as described by the following grammar:

Path ::= '/' ElementNode Path | '/' ElementNode | '/' AttributeNode
ElementNode ::= ElementName Index
AttributeNode ::= '@' AttributeName
Index ::= '[' integer ']'

For Example the path /article[1]/bdy[1]/sec[1]/p[1] identifies the element which

can be found if we start at the document root, select the first article element, then
within that, select the first body element, within which we select the first section
element, and finally within that element we select the first p element.

An example submission is:

1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[1]
1 Q0 9996 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[2]/p[1]
1 Q0 9888 1 0.9999 I09UniXRun1 /article[1]/bdy[1]/sec[3]
1 Q0 9997 2 0.9998 I09UniXRun1 /article[1]/bdy[1]/sec[2]
1 Q0 9989 3 0.9997 I09UniXRun1 /article[1]/bdy[1]/sec[3]/p[1]

Here there are three results. The first result contains the first section and first

paragraph of the second section from 9996.xml, and the third section from 9888.xml.
The second result only consists of the second section in 9997.xml, and the third result
consists of the first paragraph of the third section from 9989.xml.

5 Submitted Runs

Participants were permitted to submit up to 10 runs. Each run was permitted to
contain a maximum of 1000 results per topic, ordered by decreasing value of
relevance. Runs were permitted to use any fields of the topics, but only runs using
either the <title>, or <castitle>, or a combination of them were regarded as truly
automatic. The results of one run was contained in one submission file and so up to 10
files per group could be submitted.

In total 36 runs were submitted by 8 institutes. Those institutes were: Benemérita
Universidad Autónoma de Puebla, Indian Statistical Institute, Kasetsart University,
Peking University, Renmin University of China, Universidade Federal do Amazonas,
Universitat Pompeu Fabra, and the University of Otago. Only 29 runs were assessed
since other runs were submitted after the deadline. Of note is that more runs were

131

Overview of the INEX 2010 Data Centric Track 5

submitted than topics, and more institutes submitted runs than that submitted topics.
This suggests an increase in interest in the track throughout the year.

6 Assessment and Evaluation

Shlomo Geva ported the tool to work with the IMDb collection and in doing so
identified some problems with the document collection. The collection was,
consequently, cleaned for use with the assessment tool. The new collection will most
likely be used in 2011, if the track continues.

Assessment was done by those groups that submitted runs. In total 26 of the 28
topics were assessed. Topics 2010003 and 20100013 were not assessed, all others
were. The evaluation results presented herein were computed using just the 26
assessed topics with the other 2 topics dropped from the runs.

Jaap Kamps used the (unmodified) INEX and TREC evaluation tools on the runs.
The TREC MAP metric was used to measure the performance of the runs at whole
document retrieval. The INEX thorough retrieval MAiP metric and the INEX
Relevant-in-Context MAgP T2I(300) metrics were used to measure Focused
Retrieval. Although the run submission permitted the use of aggregated retrieval, it
has not yet become clear how to measure aggregation and so the track organisers
chose to fall-back to more traditional measures for 2010. Descriptions of the INEX
and TREC measures are not given herein as they are well known and described
elsewhere (see the ad hoc track overview paper pre-proceedings).

Fig. 2. Best runs measured with MAP

132

6 Andrew Trotman and Qiuyue Wang

7 Results

The performance of the runs using the whole document based MAP metric are
presented in Fig. 2. The best run, SIGMACLOUD01 was submitted by Peking
University and performed substantially better than the next best run at all recall
points. We note that this run used the description and narrative of the topic whereas
the other runs did not (formally it is not an INEX automatic run and must be
considered a manual run). The runs from Benemérita Universidad Autónoma de
Puebla used the castitle and all other runs used the title. That is, despite being the data
centric, most runs did not use structure in ranking.

Fig. 3. Best runs measured with MAgP T2I(300)

Fig. 4. Best runs measured with MAiP

133

Overview of the INEX 2010 Data Centric Track 7

From visual inspection, there is little difference between the next three runs. The

Otago run (that placed 3rd amongst the automatic runs) is a whole document run
generated from the title of the topic by using the BM25 ranking function trained on
the INEX 2009 document collection – it is equivalent to the ad hoc reference run. It
can be considered a baseline for performance.

When measured using the MAgP T2I(300) metric (see Fig. 3 the Otago reference-
like run performs best, however there is a cluster of 3 runs performing at about (from
visual inspection) the same level. When measured using MAiP (Fig. 4 the reference-
like run shows high early precision but quickly decreases. Of course, whole document
retrieval is not a good strategy for thorough retrieval because precisely 1 element is
returned per document. Those runs that exhibited overlap were not evaluated using
the MAgP metric.

8 Conclusions

The track has successfully produced a highly structured document collection
including structured documents (IMDb), structured queries, and assessments. The
participants of the track submitted runs and those runs were evaluated. Because most
runs did not use structured queries no claim can be made about the advantage of doing
so. This is expected to change in future years. The track was overly ambitions in
allowing result aggregation. No method of measuring the performance of aggregated
retrieval was developed for the track in 2010 and is left for future years.

9 Acknowledgements

Thanks are given to the participants who submitted the topics, the run, and performed
the assessment process. Special thanks go to Shlomo Geva for porting the assessment
tools, and to Jaap Kamps for performing the evaluation. Finally, some of the contents
of this paper was taken from the INEX web site which was authored by many people
– we thank each of those for their contribution to the text in this paper.

Appendix A: Movie DTD

<!ELEMENT movie (title, url, overview?, cast?, additional_details?, fun_stuff?)>
<!ATTLIST movie xmlns:xlink CDATA #FIXED "http://www.w3.org/1999/xlink">
<!ELEMENT title (#PCDATA)>
<!ELEMENT url (#PCDATA)>

134

8 Andrew Trotman and Qiuyue Wang

<!ELEMENT overview (rating?, directors?, writers?, releasedates?, genres?, tagline?,
plot?, keywords?) >
<!ELEMENT rating (#PCDATA)>
<!ELEMENT directors (director+)>
<!ELEMENT director (#PCDATA)>
<!ELEMENT writers (writer+)>
<!ELEMENT writer (#PCDATA)>
<!ELEMENT releasedates (releasedate+)>
<!ELEMENT releasedate (#PCDATA)>
<!ELEMENT genres (genre+)>
<!ELEMENT tagline (#PCDATA)>
<!ELEMENT plot (#PCDATA)>
<!ELEMENT keywords (keyword+)>
<!ELEMENT keyword (#PCDATA)>

<!ELEMENT cast (actors?, composers?, cinematographers?, producers?,
production_designers?, costume_designers?, miscellaneous?)>

<!ELEMENT actors (actor+)>
<!ELEMENT actor (name, character?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT character (#PCDATA)>
<!ELEMENT composers (composer+)>
<!ELEMENT composer (#PCDATA)>
<!ELEMENT cinematographers (cinematographer+)>
<!ELEMENT cinematographer (#PCDATA)>
<!ELEMENT producers (producer+)>
<!ELEMENT producer (#PCDATA)>
<!ELEMENT production_designers (production_designer+)>
<!ELEMENT production_designer (#PCDATA)>
<!ELEMENT miscellaneous (person+)>
<!ELEMENT person (#PCDATA)>

<!ELEMENT additional_details
(aliases?,mpaa?,runtime?,countries?,languages?,colors?,certifications?,locations?,com
panies?,distributors?)>
<!ELEMENT aliases (alias+)>
<!ELEMENT alias (#PCDATA)>
<!ELEMENT mpaa (#PCDATA)>
<!ELEMENT runtime (#PCDATA)>
<!ELEMENT countries (country+)>
<!ELEMENT country (#PCDATA)>
<!ELEMENT languages (language+)>
<!ELEMENT language (#PCDATA)>
<!ELEMENT colors (color+)>

135

Overview of the INEX 2010 Data Centric Track 9

<!ELEMENT color (#PCDATA)>
<!ELEMENT certifications (certification+)>
<!ELEMENT certification (#PCDATA)>
<!ELEMENT locations (location+)>
<!ELEMENT location (#PCDATA)>
<!ELEMENT companies (company+)>
<!ELEMENT company (#PCDATA)>
<!ELEMENT distributors (distributor+)>
<!ELEMENT distributor (#PCDATA)>

<!ELEMENT fun_stuff (trivias?,goofs?,quotes?,movielinks?)>
<!ELEMENT trivias (trivia+)>
<!ELEMENT trivia (#PCDATA)>
<!ELEMENT goofs (goof+)>
<!ELEMENT goof (#PCDATA)>
<!ELEMENT quotes (quote+)>
<!ELEMENT quote (#PCDATA)>
<!ELEMENT movielinks (movielink+)>
<!ELEMENT movielink (#PCDATA|link)*>
<!ELEMENT link (#PCDATA)>
<!ATTLIST link xlink:type CDATA #IMPLIED>
<!ATTLIST link xlink:href CDATA #IMPLIED>

Appendix B: Person DTD

<!ELEMENT person (name, overview?,filmography?, additional_details?)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT overview (birth_name?, birth_date?, death_date?, height?, spouse*,
trademark*, biographies?, nicknames?, trivias?, personal_quotes?,
where_are_they_now?, alternate_names?, salaries?) >
<!ELEMENT birth_date (#PCDATA)>
<!ELEMENT death_date (#PCDATA)>
<!ELEMENT birth_name (#PCDATA)>
<!ELEMENT nicknames (name+)>
<!ELEMENT alternate_names (name+)>
<!ELEMENT height (#PCDATA)>
<!ELEMENT spouse (#PCDATA)>
<!ELEMENT trademark (#PCDATA)>
<!ELEMENT biographies (biography, by)>
<!ELEMENT biography (#PCDATA)>
<!ELEMENT by (#PCDATA)>
<!ELEMENT trivias (trivia+)>
<!ELEMENT trivia (#PCDATA)>

136

10 Andrew Trotman and Qiuyue Wang

<!ELEMENT personal_quotes (quote+)>
<!ELEMENT salaries (salary+)>
<!ELEMENT quote (#PCDATA)>
<!ELEMENT salary (#PCDATA)>
<!ELEMENT where_are_they_now (where+)>
<!ELEMENT where (#PCDATA)>

<!ELEMENT filmography (act?, direct?, write?, compose?, edit?, produce?,
production_design?, cinematograph?, costume_design?, miscellaneous?)>
<!ELEMENT act (movie+)>
<!ELEMENT direct (movie+)>
<!ELEMENT write (movie+)>
<!ELEMENT compose (movie+)>
<!ELEMENT edit (movie+)>
<!ELEMENT produce (movie+)>
<!ELEMENT production_design (movie+)>
<!ELEMENT cinematograph (movie+)>
<!ELEMENT costume_design (movie+)>
<!ELEMENT miscellaneous (movie+)>
<!ELEMENT movie (title, year, character?)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT character (#PCDATA)>

<!ELEMENT additional_details (otherworks?, public_listings?)>
<!ELEMENT otherworks (otherwork+)>
<!ELEMENT otherwork (#PCDATA)>
<!ELEMENT public_listings (interviews?, articles?, biography_prints?,
biographical_movies?, portrayed_ins?, magazine_cover_photos?, pictorials?)>
<!ELEMENT interviews (interview+)>
<!ELEMENT articles (article+)>
<!ELEMENT biography_prints (print+)>
<!ELEMENT biographical_movies (biographical_movie+)>
<!ELEMENT portrayed_ins (portrayed_in+)>
<!ELEMENT magazine_cover_photos (magazine+)>
<!ELEMENT pictorials (pictorial+)>
<!ELEMENT interview (#PCDATA)>
<!ELEMENT article (#PCDATA)>
<!ELEMENT print (#PCDATA)>
<!ELEMENT biographical_movie (#PCDATA)>
<!ELEMENT portrayed_in (#PCDATA)>
<!ELEMENT magazine (#PCDATA)>
<!ELEMENT pictorial (#PCDATA)>

137

Automatically Generating Structured Queries in
XML Keyword Search

Felipe Hummel1, Altigran S. da Silva1,
Mirella M. Moro2, and Alberto H. F. Laender2

1 Departamento de Ciência da Computação
Universidade Federal do Amazonas
{fch,alti}@dcc.ufam.edu.br

2 Departamento de Ciência da Computação
Universidade Federal de Minas Gerais
{mirella,laender}@dcc.ufmg.br

Abstract. In this paper, we present a novel method for automati-
cally deriving structured XML queries from keyword-based queries and
show how it was applied to the experimental tasks proposed for the
INEX 2010 data-centric track. In our method, called StruX, users spec-
ify a schema-independent unstructured keyword-based query and it au-
tomatically generates a top-k ranking of schema-aware queries based
on a target XML database. Then, one of the top ranked structured
queries can be selected, automatically or by a user, to be executed by
an XML DBMS. The generated structured queries are XPath expres-
sions consisting of an entity path (e.g.,dblp/article) and predicates
(e.g. /dblp/article[author="john" and title="xml"]). We use the
concept of entity, commonly adopted in the XML keyword search lit-
erature, to define suitable root nodes as query results. Also, our method
uses IR techniques to determine in which elements a term is more likely
to occur.

Keywords: XML, Keyword Search, XPath

1 Introduction

Specifying queries through keywords is currently very common. Specially in the
context of search engines in the World Wide Web, users with different levels
of computer skills are used to keyword-based searching. As a consequence, this
approach has been exploited outside the scope of the Web. For example, in
relational databases, several methods [1–3, 8, 10, 21] have been proposed with
this focus. Considering the vast number of applications that use such databases,
it is clear why there is so much interest in adopting such an approach to develop
more intuitive interfaces for querying in this environment.

In the last few years, there has been an increasing interest in the field of
keyword-based search over XML documents, given the growth and consolidation
of such a standard. Many works employ the concept of Lowest Common An-
cestor (LCA) [7] with variations to specific requirements, including Meaningful

138

LCA (MLCA) [17], Smallest LCA (SLCA) [24], Valuable LCA (VLCA) [14],
XSeek [18] and Multiway-SLCA [23]. Another structure-related concept, Mini-
mum Connecting Trees [9], has led to a different approach to the problem. All of
these approaches aim at finding, inside the XML document, subtrees where each
query term occurs at least one time in one of its leafs, returning the root node of
the subtrees as a query result. Specifically, LCA-based methods make restrictions
on the choice of the root node. Notice that for one term queries, these methods
tend to return a single-element subtree, which is generally not desired as a query
result. Furthermore, after an initial indexing phase, those methods disregard the
source XML document, as any queries will be answered only considering their
own indexes. This behavior may not be suitable in a dynamic environment in
which data is frequently updated or when the XML data is stored in a DBMS.
Considering such an environment, it becomes interesting to develop XML key-
word search approaches that can easily cope with data stored and managed by
a DBMS. For instance, as current XML-aware DBMS can perform XQuery and
XPath queries in an efficient way, one could use that to abstract the frequent
updates and storage of the XML data.

This paper presents a novel method for keyword search over XML data based
on a fresh perspective. Specifically, our method, called StruX3, combines the
intuitiveness of keyword-based queries with the expressiveness of XML query
languages (such as XPath). Given a user keyword query, our method is able to
construct a set of XPath expressions that maps all possible interpretations of
the user intention to a corresponding structured query. Furthermore, it assigns
each XPath expression a score that measures its likelihood of representing the
correct interpretation of the user query. Then, a system can submit one or more
of these queries to a DBMS and retrieve the results. The process of automatically
transforming an unstructured keyword-based query into a ranked set of XPath
queries is called query structuring.

This paper is organized as follows. Section 2 summarizes related work. Sec-
tion 3 presents an overview of background concepts and introduces StruX. Sec-
tion 4 describes how StruX was applied to the experimental tasks proposed for
the INEX 2010 data-centric track. Finally, Section 5 presents concluding remarks
and future work.

2 Related Work

The basic principle for StruX is similar to LABRADOR [21], which efficiently
publishes relational databases on the Web by using a simple text box query
interface. Other similar systems for searching over relational data include SUITS
[6] and SPARKS [19]. Our proposal is different from those for two reasons: it
works for a different type of data (XML instead of relational) and does not need
any interaction with the user after she has specified a set of keywords. Therefore,
this section focuses on XML keyword search.

3 The name StruX is derived from the latin verb form struxi, which means to structure
or build things.

139

Using keywords to query XML databases has been extensively studied. Cur-
rent work tackles keyword-based query processing by modeling XML documents
as labeled trees and considers that the desired answer is a meaningful part of
the XML document, retrieving nodes of the XML graph that contain the query
terms. In [11] and [24] the authors suggest that trees of smaller size bear higher
importance. XSEarch [5] adopts an intuitive concept of meaningfully related sets
of nodes based on the relationship of the nodes with its ancestors on the graph.
XSEarch also extends the pure keyword-based search approach by allowing the
user to specify labels and keyword-labels in the query. XRANK [7] employs an
adaptation of Google’s PageRank [22] to XML documents and aims at comput-
ing a ranking score for the answer trees. A distinct approach is XSeek [18], in
which the query processing relies on the notion of entities inferred from DTDs.
StruX shares a similar view with XSeek in this regard.

In [12], the authors propose the concept of mapping probability, which cap-
tures the likelihood of mapping keywords from a query to a related XML element.
This mapping probability serves as weight to combine language models learned
from each element. This method does no generate structured queries (as our
work does). Instead, it uses the structural knowledge to refine a retrieval model.

There are also other works that go beyond simple keyword-based searching.
NaLIX [16] is a natural language system for querying XML in which the queries
are adjusted by interacting with the user until they can be parsed by the system.
Then, it generates an XQuery expression by using Schema-Free XQuery [17],
which is an XQuery extension that provides support for unstructured or partially
unstructured queries. Another approach, called EASE, considers keyword search
over unstructured, semi-structured and structured data [15]. Specifically, EASE
builds a schema graph with data graph indexes. It also provides a novel ranking
algorithm for improving the search results. Finally, LCARANK [4] combines
both SLCA and XRank for keyword-based searching over XML streams. Even
though these approaches work on XML keyword-based queries, their goals are
slightly different from our work, since they consider broader perspectives (i.e.,
natural language, graph-oriented data and XML streams).

3 StruX Description

This section presents StruX, our method for generating structured XML queries
from an input unstructured keyword-based query. First, it gives an overview of
StruX and then it details each of its steps.

3.1 Overview

Algorithm 1 describes StruX general steps, which are illustrated within an exam-
ple in Fig. 3.1. Given an unstructured keyword-based query as input (Fig. 3.1a),
StruX first splits the input sequence of keywords into segments (Fig. 3.1b) and
then generates combinations of these segments (Fig. 3.1c) to obtain possible
semantic interpretations of the input unstructured query.

140

Algorithm 1 StruX Processing

1: procedure StruX(Input: unstructured query U , schema tree T)
2: segs← GenerateSegments(U)
3: combs← GenerateCombinations(segs)
4: for each combination c in combs do
5: cands← GenerateCandidates(c)
6: for each candidate d in cands do
7: rank ← CalculateScores(d, S.root)
8: localRank.add(rank) . sorted add

9: globalRank.add(localRank) . sorted add

10: for i from 1 to k do
11: topK ranks← GenerateXPath(globalRank[i])

12: StructuredQuery ← topK xpaths[0] . the top query

This process assumes that each keyword-based query is an unstructured query
U composed of a sequence of n terms, i.e., U = {t1, t2, ..., tn}. This assumption
is based on the intuition that the user provides keywords in a certain order. For
example, a keyword query “John Clark Greg Austin” is probably intended to
represent interest in someone named “John Clark” and also in “Greg Austin”.
But we cannot say the same for the query “John Austin Greg Clark”. Although
both queries have the same terms, the order in which they are specified may
be used to describe different intentions. Also, this intuition helps StruX dealing
with possible ambiguous keywords.

In the next step, segment combinations are labeled with element names avail-
able on the target XML database, forming sets of element-segment pairs (Fig.
3.1d), called Candidate Predicates. Once these candidate predicates have been
formed, StruX finds adequate entities for each candidate (Fig. 3.1e). In fact,
StruX relies on the concept of entities [18, 20] in order to intuitively represent
real world objects. For this, it uses a few simple heuristics.

For instance, consider an element y that has multiple sub-elements x, then y is
considered as an entity. This can be observed by looking at the document schema
(or by traversing the document) and verifying that x can occur multiple times
within an instance of element y. For example, considering the DTD specification
of author as “<!ELEMENT author (book*, curriculum)>”, book is a possible
entity, while curriculum is not.

In addition, we extend the concept of entity by adding another constraint to
avoid too specific queries: an element x must have at least one direct descendant
to be considered an entity. For example, if book is defined as an element with two
sub-elements like “<!ELEMENT book (title, pages)>”, then it is an entity.

StruX identifies in which elements the query keywords are more likely to oc-
cur. Then, it computes scores for candidate structured queries. Those scores are
necessary to determine which XML query represents more accurately the user’s
intention. Finally, one or more top ranked structured queries will be evaluated,
then returning the results to the users.

141

(b) Segments
 S

11
 = “John”

 S
12

 = “John Smith”

 S
13

 = “John Smith XML”

 S
22

 = “Smith”

 S
23

 = “Smith XML”

 S
33

 = “XML”

(c) Segment Combinations
 C

1
 = {S

11
} = {“John”}

 C
2
 = {S

22
} = {“Smith”}

 C
3
 = {S

33
} = {“XML”}

 C
4
 = {S

12
} = {“John Smith”}

C
5
 = {S

12
,S

33
} = {“John Smith”, “XML”}

 C
6
 = {S

11
,S

22
,S

33
} = {“John”, “Smith”, “XML”}

(among others)

(d) Candidate predicates for C
5

 D
1
 = {<article/author: “John Smith”>, <article/title: “XML”>}

 D
2
 = {<article/author: “John Smith”>, <procs/title: “XML”>}

 D
3
 = {<article/author: “John Smith”>}

 D
4
 = {<procs/editor: “John Smith”>, <procs/title: “XML”>}

 D
5
 = {<procs/editor: “John Smith”>, <article/title: “XML”>}

 D
6
 = {<procs/editor: “John Smith”>}

(among others)

(e) Entity: /dblp/article
 D

1
 = {<article/author: “John Smith”>, <article/title: “XML”>} => /dblp/article[author=“John Smith” and title=“XML”]

 D
3
 = {<article/author: “John Smith”>} => /dblp/article[author=“John Smith”]

 Entity: /dblp/procs
 D

4
 = {<procs/editor: “John Smith”>, <procs/title: “XML”>} => /dblp/procs[author=“John Smith” and title=“XML”]

 D
6
 = {<procs/editor: “John Smith”>} => /dblp/procs[editor=“John Smith”]

(a) Unstructured Query
 U = “John Smith XML”

Fig. 1. StruX example.

The final result produced by StruX is a structured query expressed in XPath4,
which specifies patterns of selection predicates on multiple elements that have
some specified tree structure relationships. Hence, XML queries are usually
formed by (tree) path expressions. Those expressions define a series of XML
elements (labels) in which every two elements are related to each other (for
example, through a parent-child relationship). Although other works consider
recursive schemas, we do not, since this kind of schema is not commonly found
on the Web [13]. Also, notice that in this paper, elements are always identified
by their complete path to the document root, not only by its tag label.

3.2 Input Transformation

After the general overview, this and the next sections detail the core procedures
of StruX. The first step executed by StruX (Algorithm 1, line 2) is to split the
input sequence of keywords into segments that represent possible interpretations
of the query. A segment is a subsequence Sij of terms from an unstructured query
U, where Sij contains the keywords from i to j. For example, considering the
query U from Fig. 3.1a, the generated segments are in Fig. 3.1b. Notice that,
following the intuition discussed in Section 3.1, we assume that users tend to
specify related keywords in sequence. This intuition is captured by the segments.

4 http://www.w3.org/TR/xpath.html

142

Therefore, sets of tokens that are not in the sequence such as 〈 “John”, “XML” 〉
are not considered.

For each segment Sij , StruX retrieves all elements in which all segment
keywords appear at least once within a single leaf node. Segments that retrieve
no elements are called not viable and are discarded from the structuring process.
For example, the segment S23 = 〈“Smith”, “XML”〉 would be considered not
viable if the database includes no leaf having both “Smith” and “XML”.

In order to evaluate the likelihood of a segment Sij occurring within an
element n, StruX uses a function called Segment-Element Affinity (SEA), which
is defined by Equation 1:

SEA(n, Sij) =

j∑
k=i

TF-IEF(n, tk), (1)

where, TF-IEF(n, tk) measures the relevance of a keyword tk for an element type
n on the XML database.

Such a function is similar to TF-IAF [21], which defines the relevance of a key-
word with respect to the values of an attribute in a relational table. Nonetheless,
StruX adapts the concept of “relational attributes” to “XML elements type”.
This new measure is defined by Equation 2:

TF-IEF(n, tk) = TF (n, tk)× IEF (tk), (2)

where each frequency is calculated by Equations 3 and 4, respectively.

TF (n, tk) =
log(1 + fnk)

log(1 +m)
(3)

IEF (tk) = log

(
1 +

e

ek

)
(4)

In these equations: fnk is the number of occurrences of keyword tk as element
type n, m is the total number of distinct terms that occur in n, e gives the total
number of distinct elements types in the XML document, and ek is the total
number of element types in which the term k occurs.

Equation 1 evaluates every segment no matter its number of keywords. Note
that a segment with 2 (or more) keywords is intuitively more selective than
a segment with a single keyword. For example, S13 (from Fig. 3.1b) is more
selective than segments S11, S22 and S33. Hence, we consider such heuristic and
propose an advanced version for function SEA in Equation 5, called Weighted
SEA (WSEA), in which the number of keywords is used to favor more selective
segments.

WSEA(n, Sij) = (1 + j − i)×
j∑

k=i

TF-IEF(n, tk) (5)

For representing all possible semantic interpretations of an unstructured
query, StruX defines all possible combinations for a set of segments (Algorithm

143

1, line 3). Moreover, given a combination Ci, a keyword can belong to only one
segment. For example, Fig. 3.1c illustrates some of the combinations for the
segments in Fig. 3.1b.

For each segment combination Ci, StruX generates all possible sets of
element-segment pairs (Algorithm 1, line 5). For example, using combination
C5 = {“John Smith”, “XML”}, StruX obtains the sets of element-segment pairs
illustrated in Fig. 3.1d, in which each set of pairs Di is called a Candidate
Predicate, or simply candidate. Note that 〈procs/title〉 in D4 is different from
〈article/title〉 in D5 as StruXidentifies elements by their complete path to the
root. By the end of the input transformation procedure, the set of candidates is
able to represent every possible interpretation of the user’s unstructured query. It
is now necessary to determine which interpretation is more suitable to represent
the original user’s intention.

3.3 Candidate Predicates Selection

Once the candidates have been defined, StruX needs to find adequate enti-
ties for each candidate (Algorithm 1, lines 7 and 8). This is accomplished by
using the recursive function presented in Algorithm 2. This function, called
CalculateScores, performs a postorder traversal of the schema tree (which is
given as input in Algorithm 1). During the traversal, the scores are propagated
in a bottom-up fashion.

Algorithm 2 CalculateScores Function

1: function CalculateScores(d, node) . Input d: candidate, node: node from the
XML database

2: for each child h in node.children do
3: CalculateScores(d, h)

4: for each element-segment e in c do
5: if e.element = node.element then
6: node.score← node.score+ e.score

7: for each child h in node.children do
8: node.score← node.score+ (α ∗ h.score)
9: if node.score > 0 AND node.isEntity() then

10: Rank.add(root)

The propagation constant α (Algorithm 2, line 8) determines the percentage
of a child score that is assimilated on its parent score (bottom-up propagation).
As a result of Algorithm 2, there is a rank which is then added to a local rank of
entities for each candidate. All local ranks are merged into a sorted global rank
(Algorithm 1, line 9).

Each entry in the rank is a structured query, containing a score, an entity
element (structural constraint) and a candidate Di (value-based predicates).
The score of a structured query tries to measure how well it represents the

144

users’ original intention while writing her query. Through this ranking procedure,
StruX is able to determine which interpretations of the keyword-based query are
more suitable according to the underlying database.

Next, a structured query can be trivially translated to XPath. Specifically,
for each top-k structured query, StruX generates an XPath query statement
based on the corresponding entity and the candidate predicate, as illustrated in
Fig. 3.1e.

One important final note is that we chose to transform the keyword-based
queries to XPath query statements. However, StruX may also be extended in
order to consider other XML query languages, such as XQuery.

3.4 Keywords matching element names

So far, we have only discussed how our method addresses matches between key-
words from the query and the contents of the XML elements. Indeed, in StruX
we regard such a match as the main evidence to be considered when evaluating
the relevance of a structured query. However, to handle cases in which keywords
match element labels, we use a very simple strategy: we boost the likelihood of
all structured queries in which this is observed, by adding a constant α to its
score value.

3.5 Indexing

In order to build a structured query from user-provided keywords, StruX relies on
an index of terms. This index is defined based on the target database. Specifically,
each term is associated with an inverted list containing the occurrences of this
term in the elements of the database. Such an association allows the query
structuring process to evaluate where a term is more likely to occur within some
element. Each term occurrence in an element contains a list of leaves (each one
is assigned with a leaf id) in which the term occurs. Hence, our method can
determine if two or more keywords are likely to occur in a same leaf node.

4 Experiments

Following the INEX experimental protocol, we employed StruX to process the
tasks on the data-centric track that considered the IMDB datasets. The execu-
tion was organized in runs, and each run consists of processing all topics in the
track under a certain setup.

Specifically, given a topic T , we first generated an unstructured query UT for
this topic. Next, UT was given as input to StruX, producing a list of structured
queries ST

1 , S
T
2 , . . . , S

T
n as a result. Each ST

i is associated with a likelihood score,
calculated as described in Section 3.3. Then, we executed the top-K structured
queries over the IMDB datasets. Different target datasets were considered in
each run. The complete description of the runs is presented in Table 1.

In the following, we discuss some details regarding the generation and the
processing of the runs.

145

run Structured Queries used Target Datasets

1 top-5 "movies"

2 top-10 "movies"

3 top-5 "movies", "actors"

4 top-5 all except "other"

5 top-5 all

6 top-10 all

Table 1. Description of the runs used in the experiments.

Dealing with entities. As we have already explained, StruX aims at generat-
ing structured queries that return single entities found in a collection of entities.
In the IMDB datasets, every document root, such as <movie> and <person>, is
intuitively an entity. However, StruX inherently considers a root element as not
suitable to be an entity. To overcome this, we extend StruX to consider two vir-
tual root nodes: (i) <movies> that has all <movie> elements as its descendants;
and (ii) <persons> with all <person> elements as descendants. With such an
extension, <movie> and <person> elements can now be considered entities.

Generating Queries from Topics. For each given topic from the data-
centric track, we generated a keyword-based query to be used as input for StruX.
In order to do so, we took the <title> field of the topic and applied a few
transformations. This step is fully automated and aims mostly at dealing with
topics specified using natural language expressions, such as: “romance movies
by Richard Gere or George Clooney”, “Movies Klaus Kinski actor movies good
rating”, “Dogme movies”. Specifically, we applied the following transformations:

i) simple stemming of plural terms, e.g.: movies → movie, actors → actor;

ii) removal of stop-words, e.g: by, and, to, of;

iii) disregard of terms indicating advanced search operators, such as like “or”;

iv) removal of terms preceded by “−”, indicating exclusion of terms from the
answers.

Fig. 2 illustrates a complete example of the whole process including: the
<title> field of a topic, the corresponding keyword-based query and a path
expression generated from it. This particular path expression corresponds to the
top-1 structured query generated by StruX. The result obtained from applying
this path expression over the IMDB dataset is also presented in the figure in
two formats: as an XML sub-tree and using the INEX output format. Next, we
detail how this result was obtained.

Processing Structured Queries. The final result for a given run is obtained
by processing the top-K structured queries against the target IMDB datasets.

146

Topic: <title> true story drugs +addiction -dealer </title>

KB Query: true story drug addiction

Path Expression: /movie[overview/plot, "true story drug addiction"]

Result: <movie>
<title>Happy Valley (2008)</title>

<url>...</url>

<overview>

...

<plot> ... The real-life true story, Happy Valley ... that

have been dramatically affected by prescription drug abuse

leading to street drug abuse and addiction</plot>

...

</movie>

INEX Format: 2010012 Q0 1162293 1 2.6145622730255127 ufam2010Run1

/movie[1]

Fig. 2. Example of the steps involved in processing an INEX data-centric topic with
StruX.

This could be performed by using some native XML DBMS such as eXists-db5.
However, for our experiments, we developed a simple XPath matcher, which is
used to match a document against a structured query. By doing so, we could
directly output the results in the INEX result submission format, instead of
having to transform the output provided by the DBMS. Fig. 2 illustrates the
result for one of the topics in the track using both formats.

Regarding the scores of the results, as the final answers for the structured
queries are produced by an external system (in our case a simple XPath matcher),
there is no relevance scores directly associated to them. Thus, we simply assigned
to the result the same score StruX has generated for the structured query from
which it was obtained. Nonetheless, a single ranking of results is generated for
all top-k structured queries. In this ranking, results from the top-1 query occupy
the topmost positions, followed by the results from the top-2 query and so on.

5 Conclusions

In this paper we presented a novel method (StruX) with a fresh perspective
for keyword-based search over XML data. In summary, StruX combines the
intuitiveness of keyword-based queries with the expressiveness of XML query
languages. Given a user keyword-based query, StruX is able to construct a set of
XPath expressions that maps all possible interpretations of the user intention to
a corresponding structured query. We used StruX to perform the tasks proposed
in the INEX 2010 data-centric track considering IMDB datasets. The results
demonstrated that query structuring is feasible and yet effective.

As future work, we plan to optimize even further our method. Specifically,
we need to improve StruX capabilities on indexing very large datasets. We also

5 http://exist.sourceforge.net/

147

want to study other heuristics for improving the set of the structured queries
generated. This should be accomplished by ranking the XML fragments to ensure
that results closer to the original user’s intention are presented first. Finally, we
want to perform experiments with different Segment-Element Affinity (SEA)
functions using other Information Retrieval techniques.

Acknowledgements. This work was partially supported by the Brazilian
National Institute of Science and Technology for the Web (CNPq grant no.
573871/2008-6), the Amanajé project (CNPq grant no. 47.9541/2008-6), the
SAUIM project (CNPq grant no. 554087/2006-5), the MINGroup project (CNPq
grant no. 575553/2008-1), and the authors’ scholarships and individual grants
from CNPq and CAPES.

References

1. B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P. Parag, and S. Su-
darshan. BANKS: Browsing and Keyword Searching in Relational Databases. In
Proceedings of the 28th International Conference on Very Large Data Bases, pages
1083–1086, 2002.

2. S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for Keyword-Based
Search over Relational Databases. In Proceedings of the 18th International Con-
ference on Data Engineering, pages 5–16, 2002.

3. A. Balmin, V. Hristidis, and Y. Papakonstantinou. ObjectRank: Authority-Based
Keyword Search in Databases. In Proceedings of the Thirtieth International Con-
ference on Very Large Data Bases, pages 564–575, 2004.

4. E. G. Barros, M. M. Moro, and A. H. F. Laender. An Evaluation Study of Search
Algorithms for XML Streams. Journal of Information and Data Management,
1(3):487–502, 2010.

5. S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search Engine
for XML. In Proceedings of the 29th International Conference on Very Large Data
Bases, pages 45–56, 2003.

6. E. Demidova, X. Zhou, G. Zenz, and W. Nejdl. SUITS: Faceted User Interface for
Constructing Structured Queries from Keywords. In Proceedings of the Interna-
tional Conference on Database Systems for Advanced Applications, pages 772–775,
2009.

7. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Key-
word Search over XML Documents. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages 16–27, 2003.

8. V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style Keyword
Search over Relational Databases. In Proceedings of the 29th International Con-
ference on Very Large Data Bases, pages 850–861, 2003.

9. V. Hristidis, N. Koudas, Y. Papakonstantinou, and D. Srivastava. Keyword Prox-
imity Search in XML Trees. IEEE Transactions on Knowledge and Data Engineer-
ing, 18(4):525–539, 2006.

10. V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword Search in Relational
Databases. In Proceedings of 28th International Conference on Very Large Data
Bases, pages 670–681, 2002.

148

11. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search
on XML Graphs. In Proceedings of the 19th International Conference on Data
Engineering, pages 367–378, 2003.

12. J. Kim, X. Xue, and W. Croft. A probabilistic retrieval model for semistructured
data. Advances in Information Retrieval, pages 228–239, 2009.

13. A. H. F. Laender, M. M. Moro, C. Nascimento, and P. Martins. An X-ray on
Web-Available XML Schemas. SIGMOD Record, 38(1):37–42, 2009.

14. G. Li, J. Feng, J. Wang, and L. Zhou. Effective Keyword Search for Valuable
LCAs over XML Documents. In Proceedings of the Sixteenth ACM Conference on
Information and Knowledge Management, pages 31–40, 2007.

15. G. Li, J. Feng, J. Wang, and L. Zhou. An Effective and Versatile Keyword Search
Engine on Heterogenous Data Sources. Proceedings of the VLDB Endowment,
1(2):1452–1455, 2008.

16. Y. Li, H. Yang, and H. V. Jagadish. NaLIX: an Interactive Natural Language
Interface for Querying XML. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 900–902, 2005.

17. Y. Li, C. Yu, and H. V. Jagadish. Schema-Free XQuery. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases, pages 72–83, 2004.

18. Z. Liu and Y. Chen. Identifying Meaningful Return Information for XML Key-
word Search. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 329–340, 2007.

19. Y. Luo, W. Wang, and X. Lin. SPARK: A Keyword Search Engine on Relational
Databases. In Proceedings of the 24th International Conference on Data Engineer-
ing, pages 1552–1555, 2008.

20. F. Mesquita, D. Barbosa, E. Cortez, and A. S. da Silva. FleDEx: Flexible Data
Exchange. In Proceedings of the 9th ACM International Workshop on Web Infor-
mation and Data Management, pages 25–32, 2007.

21. F. Mesquita, A. S. da Silva, E. S. de Moura, P. Calado, and A. H. F. Laen-
der. LABRADOR: Efficiently publishing relational databases on the web by us-
ing keyword-based query interfaces. Information Process Management, 43(4):983–
1004, 2007.

22. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford Digital Library Technologies
Project, 1998.

23. C. Sun, C. Y. Chan, and A. K. Goenka. Multiway SLCA-based keyword search in
XML data. In Proceedings of the 16th International Conference on World Wide
Web, pages 1043–1052, 2007.

24. Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in
XML Databases. In Proceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, pages 527–538, 2005.

149

Inferring Query Pattern for XML Keyword Retrieval

Qiushi Li1,2 , Qiuyue Wang1,2, Shan Wang1,2

1Key Laboratory of Data Engineering and Knowledge Engineering, MOE
2School of Information, Renmin University of China, Beijing 100872, China

{qiushili, qiuyuew, swang}@ruc.edu.cn

Abstract. In this paper, we present our experiments with query pattern inference method done on
the IMDB XML data set used in the INEX 2010 data-centric track. After getting the node types
for each XML node which contains the query keywords, we compute the LCA of the node types.
If the LCA is an entity node, it is returned, else, we retrieval the ancestor of the LCA until we find
an entity ancestor, or the document root is returned. With the entity LCA, we construct an XML
node type subtree rooted at the entity LCA node type. Then we retrieve each XML result under
the guidance of the node type subtree. If one of the node types for query keywords changes, we
reconstruct the node type subtree. Each result is ranked by the combination of its content and
structure scores.

Keywords: XML, keyword search, LCA.

1 Introduction

Most of existing keyword search systems on data-centric XML dataset return query results based
upon notions of Lowest Common Ancestor (LCA) and its variants, such as LCA with pruning
irrelevant nodes [1], node interconnected LCA [2], meaningful LCA (MLCA) [3], smallest LCA
(SLCA) [4], valuable LCA (VLCA/CVLCA) [5], and etc. But none of them can cope with the
disjunctive queries, for example “Yimou Zhang 2010 2009”. Moreover, all the above methods require
the candidate result must contain all the query keywords, but in some cases some keywords are not
needed, for example, keyword “by”, “or” in a query “romance movies by Richard Gere or George
Clooney”.

In order to cope with such problems, we propose a dynamic LCA-based XML retrieval method.
First, for each query keyword, we retrieve a list of XML nodes containing the keyword, and then we
get the first node from each list and its node type. We construct a node type subtree rooted at their
node type LCA node. With the guiding of LCA node type subtree, one partial or complete XML node
subtree is returned as a query result. Each query result is ranked by the combination of its content and
structure scores.

2 Data Model and Notions

Each XML document can be modeled as an XML tree and all XML trees can be combined together
under a virtual root node. For example, in Fig. 1, we model two XML documents in the IMDB data
collection as trees and combine them under the a virtual root node named as “imdb”.

150

To facilitate presenting our ideas, we formally define the following notions.
(1) Node Type. For a node t, its node type is the path from root to t. As shown in Fig. 1, the node

type for “movie(2)” is “imdb.movie”. If there is no confusion, we use its last tag name to denote the
path. For example, “imdb.movie” is simplified as “movie”.

(2) Node Instance. For a given node type T, its node instances are all the nodes that have the node
type T. For example, the node instances for “movie” are node 2.

(3) Node type T contains keyword k. It means that at least one instance node of node type T
contains keyword k. An instance node t contains keyword k means that k occurs in t’s textual content.

(4) Structure Summary Tree. We create a structure summary tree for the XML dataset according
to [10, 11]. Each node in the tree represents a node type, and is annotated with its node identifier and
some basic statistical information, such as number of instance nodes and etc. The node identifier is
assigned as the pre-order traversal number of the summary tree. The structure summary tree for the
XML tree in Fig. 1 is shown in Fig. 2.

Fig. 1. The data graph for an IMDB XML fragment

(5) Entity Node Entity nodes are XML nodes that depict entities in real world and often have one

or more attribute nodes, such as “movie(2)”, “person(10)”.
(6) Attribute Node Attribute nodes depict some attributes of an entity node, such as “title(3)” and

“name(11)” in Figure 1.
(7) Joint Node Joint nodes represent neither entities nor attributes, but connect entity or attribute

nodes with other entity or attribute nodes, or even other joint nodes. For example, nodes “directors(6)”
and “releasedates(8)” are joint nodes in Figure 1. We use the algorithm proposed in [6] to identify
entity, attribute and joint nodes.

151

Fig. 2. Structure summary tree for XML data tree in Fig. 1

3 Indexing and Retrieving

3.1 Index Creation

We construct two indexes, XML node index and full-text index. During the index creation, all XML
attributes are treated as XML nodes. Each XML node is assigned a unique identifier which represents
the pre-order traversing order of the node. The XML node index entry contains information such as
the node identifier, Dewey code of the node, node type identifier and other related information.

All XML node values are processed as text, parsed and indexed in a term inverted list. The index
data entry for each term includes the term identifier which is a unique integer, total count of the term
in the dataset, and a list of XML node identifiers that contain the term and the corresponding position
list. The tag name for each XML node is treated as a term and indexed similar to the text terms in an
XML node. The only difference is that the position list for an XML tag name has only one data item, -
1, which means that the tag name of an XML node is viewed as a term in the XML node value and
can occur in any position in the XML node content. If we compute the distance between a tag name
and any term in the XML node value, the distance is always equal to 1.

We build a structure summary tree from the dataset according to [10, 11] to facilitate the
construction of node type subtree rooted at an LCA node. Each node in the structure summary
contains a node type identifier, semantic node type of the node type, such as entity node, attribute
node or joint node.

152

3.2 Retrieve Query Results

We only consider CO queries in our system. CO queries at INEX are given in the title fields of topics.
We remove all the signs, i.e. +, -, and quotes, i.e. “” in the title field. That is, a CO query is simply a
bag of keywords in our system, Q = {w

1
, w

2
, …, w

m
}. Query keywords that are qualified by “-” or not

existed in the IMDB dataset are ignored.
As shown in the Algorithm 1, we first retrieve a list of XML nodes containing the keyword for each

query keyword, and sort the list by the node identifiers. Then we initialize a pointer variable pti to the
beginning of each node list NLi (line 1-4). For each loop, we get the node ei,p pointed by pti and its
node type Ti. If pti is null, the node type Ti is the same as that used in the last loop. Now we have a list
of node types TL: {T1, T2, …, Tn}. The LCA node type is then computed on the structure summary
tree according to the node type list TL (line 6-7).

Definition 1. Query Pattern Given a query Q(k1, k2, …, kn), a query pattern is the node type
subtree defined by a node type list TL: {T1, T2, …, Tn} and their LCA node type Tlca.

We construct a node type tree, and associate each tree node with current node type Tx, current node
ex(its initial value is set to null) and the XML node list NLi if Tx∈TL. Then we compute the structural
score of the query pattern (line 6-9). For each node type Ti for keyword ki, we get the node type path
from Ti to Tlca, then compute the ancestor node of ei,p which is corresponding to node type Tx in the
path. Finally, all paths converge at the Tlca.ex which contains as many query keywords as possible (line
10-18). The comparison between TN.ex and ep guarantees that Tlca.ex is the smallest query result node
(line 14-16). A query result is created from Tlca.ex. Because one query result node might contain
multiple XML nodes of one query keyword, we use the result node to scan each node list from current
position specified by pti and bypass the contained node (line 20-25).After the score of a query result
has been computed, the result is inserted into the query result list by its score (line 26-28).

Algorithm 1: processQuery
Input: a list of keywords for a query: Q: {k1,k2,k3,…kn} .
Output: a list of query results.
1: for each ki in Q
2: NLi←retrieve the list of XML nodes for each keyword ki, NLi= {ei,1, ei,2, … ei,s}, sort NLi by

XML node identifier of pre-traversal number;
3: set node pointer pti to the first node in NLi;
4: end for
5: while not(all pti is null)
6: get node ei,p at the position of pti, Ti ←get node type of ei,1;
7: Tlca←compute entity LCA node on the structure summary tree from node type list

TL:{T1,T2,…Tn};
8: create a tree node TNx:{Tx, ex} for each Tx in the node type subtree rooted at Tlca, initialize

TNx.ex to Null;
9: Ss←compute the structural score of the query pattern according formula (8);
10: for each Ti in TL
11: ep = ei,p;
12: for each tree node TNx in the node type path from TNi to TNlca;
13: ep ← compute parent node Parent(ep);
14: if TNx.ex is Null or ep < TNx.ex
15: TNx.ex=ep;
16: end if

153

17: end for
18: end for
19: create a query result qr from TNlca.ex;
20: for each Ti in TL
21: while(ei,p is the descendant of TNlca.ex and pti is not Null)
22: compute the node score score(ei,p) according to formula (4);
23: move node pointer pti to next element in NLi;
24: end while
25: end for
26: Sc ← compute query result qr’s content score according to formula (2);
27: compute score(qr) according to formula (1);
28: insert the query result qr into result list by its score;
29: end while

Fig. 3 Query pattern for query “Yimou Zhang 2009 2010

(a) (b)

 (a)

 (b)

154

Fig 4 Two query patterns split from Fig. 3(b)

Example: By computing node type LCA subtree, the “or” condition keywords are merged into one
node type. For example, “Yimou Zhang 2009 2010”, if we compute LCA on the keywords directly, in
the most cases, the root “imdb” would be returned as LCA. the node type for “Yimou” and “Zhang” is
both T1:“imdb.movie.directors.director.name” and T2:“imdb.movie.releasedates.releasedate” for
“2009” and “2010”, so the node type LCA for “T1, T1, T2, T2” is “imdb.movie”
(“imdb.movie.overview” is not an entity node type), the final query pattern is shown as Fig. 3 (a). We
think the relationship among all keywords associated with a node type, such as “2009” and “2010” is
“and”, but if a query result can not contain both of them, it can still be returned with a decreased
ranking score.

In some cases, the node types of “2010” and “2009” are still T2, but the node type of “Yimou” and
“Zhang” is “imdb.person.name”, so the node type LCA is the root node type “imdb”, as shown in Fig.
3 (b). Because returning the dataset root is meaningless, the query pattern is split into two query
patterns with partially satisfied keywords for each pattern, as shown in Fig.4 (a),(b).

overview(2)

director(4)

directors(3) releasedates(5)

releasedate(6)

2010

movie(1)

Yimou Zhang

overview(8)

director(10)

directors(9)

Zhang

releasedates(11)

releasedate(12)

movie(7)

imdb

Yimou 2007

overview(14)

director(16)

directors(15)

Ge Chen

releasedates(17)

releasedate(18)

2009

movie(13)

Fig. 5 A sample XML fragment.

For query “Yimou Zhang 2009 2010” and XML data shown in Fig. 5, the XML nodes list is shown
in Table 1. For node 4,4,18,6, the query pattern is “imdb.movie” shown in Fig.3(a). we use the query
pattern subtree to guide retrieve query results. For “Yimou”, we compute its ancestor nodes
corresponding “director”, “directors”, “overview” and “movie”, the ancestors are “4, 3, 2, 1”
respectively. Then we compute remained query keywords, “Zhang”: “4, 3, 2, 1”; “2010”: 6, 5, 2, 1;
“2009”: 18, 17, 14, 13”. Because 14 > 2 for “overview”, the first query is returned as “1 2 3 4 5 6”.
We use the result root node 1 to scan each XML node lists of the keywords, the remaining XML node
lists are shown in Table 1 (step 1). Going on with the above procedure, we get the remaining query
result: “7 8 9 10”, “13 14 17 18”.

Table 1 Index data items for query “Yimou Zhang 2009 2010”

Query Keywords Node List (Step 0) Step 1 Step 2
Yimou director(4), director(10) 10

155

Zhang director(4), director(10) 10
2009 releasedate(18) 18 18
2010 releasedate(6)

4 Ranking Model

The score of a query result is determined by the keywords it contains, the context of keywords
occurrence and its node structure, that is, the score of a query result r has two components: its content
score Sc and its structure score Ss, as shown in formula (1).

Score(r) = Sc(r) * Ss(r) (1)

4.1 Content Score of a Query Result

The content score of a query result is equal to the sum of the scores of the XML nodes it contains, as
shown in Formula (2), where ta is a XML node contained by the query result r.

Intuition 1. In one XML node, the score of one node which contains {k1, k2,..,kn} should be larger
than that of one node which contains {k1, k2,..,kn-1}.

Intuition 2. The score of one XML node containing two keywords should be larger than that of one
XML node containing these two keywords but with a larger distance between them.

Based on the Intuition 1 and 2, the score of an XML node which contains query keywords {k1,
k2,..,km} is defined in Formula (3) and (4), where tf(ki,ta) is the number of occurrence of ki in ta, and
|ta| is the textual content length of ta; ki and kj are the keywords that ta contains and ki is the keyword
which has the maximal Score(ki, ta).

 a

c a a
t r

S (r) Score(t)* w(T)
∈

= ∑ (2)

1 and j i
a i a i , a i j

j m

Score(t) Score(k ,t) [Score(k t)* D(k ,k)]
≤ ≤ ≠

= + ∑ (3)

Score(ki, ta) = tf(ki, ta)/|ta| (4)

4.1.1 Importance Weights of Occurring Contexts of Keywords

The content score of an XML node not only depends on the keywords it contains, but also the context
of keyword occurrence. A keyword is of different importance if it occurs in different contexts, that is,
in different node types. For example, the two occurrences of keyword “Zhang” occurs in “name(11)”
and “trivia(18)” should have different importance weights for locating the node “person(10)”. We use
the average of inverse node frequency of keywords contained by the node type Ta to measure the
importance weights of Ta, as shown in Formula (5). Here Ta is a given node type; Ka denotes the set of
unique terms which are contained by Ta; Na denotes the total number of node instances of Ta; na,i

156

denotes the number of node instances of Ta that contain the term ki (ki∈Ka). Being applied with arc-
tangent function, w(Ta) are normalized into the range [0,π/2].

2* i a

a a ,i
k K

a
a

(N / n)
w(T) arctan /

| K |
π∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 (5)

Example: In Figure 1, consider attribute node type “imdb.person.name” (Ta), then Ka = {yimou,
zhang} and |Ka| =2; Ta has only one instance nodes, so Na =1; The numbers of instance nodes of Ta
that contain keyword “yimou” and “zhang” are both equal to 1. Thus, w(Ta) =2*arctan [(1/1 + 1/1)/2]/
π= 1/2.

4.1.2 Measure the Proximity of Keywords

The proximity of keywords in ranking query results has been proved in many literatures. We use
Dist(ki, kj) to measure the proximity of two keywords, as shown in Formula (4). Here d01 denotes a
threshold given as a user parameter, which shows that when the distance between two keywords is
larger than a given distance, their association becomes very little. d(ki, kj) denotes the keyword
distance between two keywords in one XML node, for example, d(“yimou”,“zhang”) in “name(11)” is
1.

01

01 01

01

2 1 if d(

10 if d(i j

i j i j
(d d(k ,k))i j

i j

* arctan(d d(k ,k) / , k ,k) d
D(k ,k)

, k ,k) d

π
−

− + ≤⎧⎪= ⎨
>⎪⎩

 (6)

4.2 Structural Score of a Query Result

The structural score of a query result is determined by its query pattern, as shown in Formula (7). The
score of a query pattern depends on the distance between its node types. Based on the Intuition 3 and 4,
the distance is defined as D(Ti, Tj), as shown in Formula (8). Here Ti and Tj both belong to the node
type set TL+{Tlca} (see Definition 1 for details); d(Ti, Tj) denotes the distance between Ti and Tj and is
measured by shortest path distance between Ti and Tj on the structure summary tree and the distance is
equal to 0 if Ti=Tj; d02 is a user-specified parameter, which means that when d(Ti, Tj) is larger than d02,
Ti and Tj are not related and the increase of node number in a query pattern does not increase its
structural score, instead, it decreases the structural score of the query pattern.

Intuition 3. For two query patterns, the score of one pattern, which contains n related node types:
{T1,T2,…Tn}, should be larger than that of one pattern which contains n-1 related node types:
{T1,T2,…Tn-1}.

Intuition 4. The larger the distance between Ti and Tj in a query pattern, the smaller the score of
the pattern would be.

02 02i j i jD(T ,T) (d d(T ,T)) / d= − (7)

157

Ss(r)=∑D(Ti,Tj) (8)

4 Experiments and Results Analysis

We implemented our system with C++ and Berkeley DB 5.0.26. All the experiments were performed
on a 3.6 GHz duo-core Intel Xeon machine running Windows Server 2008 with 5GB memory.

5 Conclusion

References

1. Ziyang Liu, Yi Chen: Reasoning and identifying relevant matches for XML keyword search. PVLDB
1(1):921-932 (2008)

2. Guoliang Li, Jianhua Feng, Jianyong Wang, Lizhu Zhou: Effective keyword search for valuable lcas over xml
documents. CIKM 2007:31-40

3. Sara Cohen, Jonathan Mamou, Yaron Kanza, Yehoshua Sagiv: XSEarch: A Semantic Search Engine for XML.
VLDB 2003:45-56

4. V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword Proximity Search on XML Graphs, In ICDE2003.
5. G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Pr´ecis: The Essence of a Query Answer. In ICDE, page 69,

2006.
6. Ziyang Liu, Yi Chen: Identifying meaningful return information for XML keyword search. SIGMOD

2007:329-340.
7. Zhifeng Bao, Tok Wang Ling, Bo Chen, Jiaheng Lu: Effective XML Keyword Search with Relevance

Oriented Ranking. ICDE 2009:517-528.
8. Jiang Li and Junhu Wang, Effectively Inferring the Search-for Node Type in XML Keyword Search.

DASFAA 2010.
9. Jianxin Li, Chengfei Liu, Rui Zhou, Wei Wang: Suggestion of promising result types for XML keyword

search. EDBT 2010:561-572
10. C. Yu and H. V. Jagadish. Schema Summarization. In Proceedings of VLDB, 2006.
11.Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. VLDB 1997.

158

BUAP: A First Approach to the Data-Centric

track of INEX 2010⋆

Darnes Vilariño, David Pinto, Carlos Balderas1, Mireya Tovar, Saul León
darnes,dpinto,mtovar@{cs.buap.mx}, 1charlie kanon@hotmail.com

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla, México

Abstract. In this paper we present the results of the evaluation of an
information retrieval system constructed in the Faculty of Computer
Science, BUAP. This system was used in the following track of the Ini-
tiative for the Evaluation of XML retrieval (INEX 2010): Data-Centric.
This track if focused on the extensive use of a very rich structure of
the documents beyond the content. We have considered topics (queries)
in two variants: Content Only (CO) and Content And Structure (CAS)
of the information need. The obtained results are shown and compared
with those presented by other teams in the competition.

1 Introduction

Current approaches proposed for keyword search on XML data can be catego-
rized into two broad classes: one for document-centric XML, where the struc-
ture is simple and long text fields predominate; the other for data-centric XML,
where the structure is very rich and carries important information about objects
and their relationships [1]. In previous years, INEX focuses on comparing differ-
ent retrieval approaches for document-centric XML, while most research work
on data-centric XML retrieval cannot make use of such a standard evaluation
methodology. This new track proposed at INEX 2010 aims to provide a com-
mon forum for researchers or users to compare different retrieval techniques on
data-centric XML, thus promote the research work in this field [2].

Compared to traditional information retrieval, where whole documents are
usually indexed and retrieved as single complete units, information retrieval from
XML documents creates additional retrieval challenges.

Until recently, the need for accessing the XML content has been addressed
diferently by the database (DB) and the information retrieval (IR) research com-
munities. The DB community has focussed on developing query languages and
eficient evaluation algorithms used primarily for data-centric XML documents.
On the other hand, the IR community has focussed on document-centric XML
documents by developing and evaluating techniques for ranked element retrieval.

⋆ This work has been partially supported by the CONACYT project #106625, as well
as by the PROMEP/103.5/09/4213 grant.

159

Recent research trends show that each community is willing to adopt the well-
established techniques developed by the other to efectively retrieve XML content
[3].

The track uses the IMDB data collection newly built from www.imdb.com.
It consists of information about more than 1,590,000 movies and people involved
in movies, e.g. actors/actresses, directors, producers and so on. Each object is
richly structured. For example, each movie has title, rating, directors, actors,
plot, keywords, genres, release dates, trivia, etc.; and each person has name,
birth date, biography, filmography, and so on.

The Data-Centric track aims to investigate techniques for finding information
by using queries considering content and structure. Participating groups have
contributed to topic development and evaluation, which will then allow them
to compare the effectiveness of their XML retrieval techniques for the data-
centric task. This will lead to the development of a test collection that will allow
participating groups to undertake future comparative experiments.

2 Description of the system

In this section we describe the manner we have indexed the corpus provided by
the task organizers. Moreover, we present the algorithms developed for tackling
the problem of searching information based on structure and content.

For the presented approach we have used an inverted index tree in order to
store the XML templates of the corpus. We have considered to include both, the
term and the XML tag in the dictionary of the inverted index. The posting list
contains the reference of the document (document ID) and the frequency of the
indexed term in the given context (according to the XML tag). The original XML
file has been previously processed in order to eliminate stopwords and punctu-
ation symbols. Moreover, we have traduced the original hierarchical structure
given by XML tags to a similar representation which may be easily analyzed
by our parser. In Figure 1 we may see an example of an XML file,whereas its
pre-processed version is presented in Figure 2.

In Figure 3 we may observe the inverted index calculated on the basis of
the XML files provided as corpus. We have integrated, as previously mentioned,
the dictionary by using the XML tag (the last one in the hierarchy) and the
indexed term (the number that follows the term is the document frequency of
that term). The aim was to be able to localize the correct position of each
term in the XML hierarchy and, therefore, to be able to retrieve those parts of
the XML file containing the correct answer of a given query. In this way, the
inverted index allows to store the same term which occurs in different contexts.
We assumed that the last XML tag would be enough for identifying the complete
path in which the term occurs, however, it would be better to use the complete
hierarchy in the dictionary. Further experiments must verify this issue.

In the following subsection we present the algorithms developed for indexing
and searching information based on content and structure.

160

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE article SYSTEM "../movie.dtd">

<movie xmlns:xlink="http://www.w3.org/1999/xlink">

<title>Hannibal (2001)</title>

<url>http://www.imdb.com/Title?Hannibal (2001)</url>

<overview>

<directors>

<director>Scott, Ridley</director>

</directors>

<writers>

<writer>Harris, Thomas (I)</writer>

</writers>

<genres>

<genre>Crime</genre>

<genre>Thriller</genre>

</genres>

</overview>

<cast>

<actors>

<actor>

<name>Hopkins, Anthony</name>

<character>Hannibal Lecter <1></character>

</actor>

<actor>

<name>Moore, Julianne (I)</name>

<character>Clarice Starling <2></character>

</actor>

</actors>

</cast>

<additional_details>

<aliases>

<alias>The Silence of the Lambs 2 [...]</alias>

</aliases>

</additional_details>

</movie>

Fig. 1. Example of an XML file (1161611.xml)

161

1161611::movie::title::hannibal 2001

1161611::movie::overview::directors::director::scott ridley

1161611::movie::overview::writers::writer::harris thomas

1161611::movie::overview::genres::genre::crime

1161611::movie::overview::genres::genre::thriller

1161611::movie::cast::actors::actor::name::hopkins anthony

1161611::movie::cast::actors::actor::character::hannibal lecter 1

1161611::movie::cast::actors::actor::name::moore julianne

1161611::movie::cast::actors::actor::character::clarice starling 2

1161611::movie::additional_details::aliases::alias::silence lambs [...]

: :

Fig. 2. Pre-processed version of an XML file (1161611.xml)

title hannibal 40 : 981731:1 994171:1 78811:1 [...] 1161611:1 [...]

character hannibal 440 : 959641:1 959947:1 1161611:1 969446:1 [...]

name hopkins 3068 : 1154469:1 1154769:2 1154810:1 [...] 1161611:1 [...]

name anthony 31873 : 943773:1 [...] 944137:2 1161611:1 1224420:3 [...]

director scott 4771 : 1157203:1 1157761:1 1157773:1 [...] 1161611:1 [...]

director ridley 62 : 1289515:1 1011543:1 1011932:1 [...] 1161611:1 [...]

writer harris 2114 : 1120749:1 1121040:1 1121294:1 [...] 1161611:1 [...]

writer thomas 7333 : 115985:1 115986:1 [...] 1161611:1 1161616:2 [...]

: :

Fig. 3. Inverted index of the corpus in which appears the XML file (1161611.xml)

162

2.1 Data processing

Before describing the indexing techniques used, we firstly describe the manner
we have processed the data provided for the competition. We have cleaned the
XML files in order to obtain a easier way of identifying the tag for each data.
For this purpose, as we mentioned beforehand, we have traduced the original
hierarchical structure given by XML tags to a similar representation which may
be easily analyzed by our parser. Thereafter, we have created five different in-
verted indexes, for the each one of the following categories: actors, directors,
movies, producers and others. The inverted index was created as mentioned in
the previous section.

Once the dataset was indexed we may be able to respond to a given query.
In this case, we have also processed the query by identifying the corresponding
logical operators (AND, OR). Let us consider the query presented in Figure 4,
which is then traduced to the sentence shown in Figure 5. The first column is
the topic or query ID; the second column is the number associated to the ct no
tag; the third column indicates the number of different categories that will be
processed, in this case, we are considering only one category: movies.

<topic id="2010001" ct_no="3">

<title>Yimou Zhang 2010 2009</title>

<castitle>//movie[about(.//director, "Yimou Zhang") and

(about(.//releasedate, 2010) or

about(.//releasedate, 2009))]

</castitle>

<description>I want to know the latest movies directed by Yimou Zhang.

</description>

<narrative>I am interested in all movies directed by Yimou Zhang, and

I want to learn the latest movies he directed.

</narrative>

</topic>

Fig. 4. An example of a given query (topic)

2010001 3 1 //movie//director yimou zhang and //movie//releasedate 2010

or //movie//releasedate 2009

Fig. 5. Representation of the topic

In the competition we submitted two runs. The first one considered the topics
as mentioned in the previous paragraph. A second approach considered to split
the data that corresponds to each content into unigrams, with the goal of being

163

more specific in the search process. However, as will be seen in the experimental
results section, both approaches perform similar. An example of topic showing
the second approach is given in Figure 6, whereas its traduced version is given
in Figure 7.

<topic id="2010025" ct_no="19">

<title>tom hanks steven spielberg</title>

<castitle>//movie[about(., tom hanks steven spielberg)]</castitle>

<description>movies where both tom hanks and steven spielberg worked

together

</description>

<narrative>The user wants all movies where Tom Hanks and Steven

Spielberg have worked together (as actors, producers,

directors or writers). A relevant movie is a movie

where both have worked together.

</narrative>

</topic>

Fig. 6. An example of another topic

2010025 19 1 //movie tom and //movie hanks and //movie steven and

//movie spielberg

Fig. 7. The reprentation of a topic by splitting the data

In order to obtain the list of candidate documents for each topic, we have
used the following equations used as similarity measures:

CR(cq, cd) =

{

1+|cq|
1+|cd|

if cq matches cd

0 otherwise
(1)

where cq and cd are the number of nodes in the query path and document path.
The similarity score between a topic and each corpus document is calculated

as shown in Eq. (2), which was implemented as presented in Algorithm 1. All
these techniques have been extracted from [4].

SIM(q, d) =
∑

ck∈B

∑

cl∈B

CR(ck, cl)
∑

t∈V

weight(q, t, ck)
weight(d, t, cl)

√

∑

c∈B,t∈V weight2(d, t, c)

(2)
where V is the vocabulary of non-structural terms; B is the set of all XML
contexts; and weight(q, t, c) and weight(d, t, c) are the weights of term t in XML
context c in query q and document d, respectively.

164

Algorithm 1: Scoring of documents given a topic q

Input: q, B, V , N , normalizer

Output: score

for n = 1 to N do1

score[n] = 02

foreach 〈cq, t〉 ∈ q do3

wq = Weight(q, t, cq)4

foreach c ∈ B do5

if CR(cq, c) > 0 then6

postings = GetPostings(c, t)7

foreach posting ∈ postings do8

x = CR(cq, c) ∗ wq ∗ PostingWeight(posting)9

score[docID(posting)]+ = x10

end11

end12

end13

end14

end15

for n = 1 to N do16

score[n] = score[n]/normalizer[n]17

end18

return score19

2.2 Experimental results

We have evaluated 25 topics with the corpus provided by the competition orga-
nizers. This dataset is made up of 1,594,513 movies, 1,872,492 actors, 129,137
directors, 178,117 producers and, finally, 643,843 files categorized as others.

As it was mentioned before, we submitted two runs which we have named:
“FCC-BUAP-R1” and “FCC-BUAP-R2”. The former uses the complete data of
each record (n-gram), whereas the latter split the words contained in the query
by unigrams. The obtained results when evaluating the task as focused retrieval
(MAgP measure) may be seen in Table 1 and in Figure 8.

As may be seen, we have obtained a very poor performance, which we consider
is derived of the fact of using only one tag for identifying each indexed term. We
assumed that the last XML tag in each context would be enough for identifying
the complete path in which the term occurs, however, it would be better to
use the complete hierarchy in the dictionary. Once the gold standard is being
released, we are considering to carry out more experiments in order to verify this
issue.

The evaluation of the different runs at the competition measured as document
retrieval may be found in Table 2.

165

MAgP Institute Run

1 0.24910409 University of Otago OTAGO-2010-DC-BM25
2 0.24585548 Universitat Pompeu Fabra UPFL15TMI
3 0.24337897 Universitat Pompeu Fabra UPFL15TMImov
4 0.18113477 Kasetsart University NULL
5 0.15617634 University of Otago OTAGO-2010-DC-DIVERGENCE
6 0.06517544 INDIAN STATISTICAL INSTITUTE ISI fdbk em 10
7 0.0587039 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.-1
8 0.04490731 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.0
9 0.04426635 INDIAN STATISTICAL INSTITUTE ISI fdbk 10
10 0.04091211 B. Univ. Autonoma de Puebla FCC-BUAP-R1
11 0.04037697 B. Univ. Autonoma de Puebla FCC-BUAP-R2
12 0.03788804 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .6.0
13 0.03407941 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.1
14 0.02931703 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .2.0

Table 1. Evaluation measured as focused retrieval (MAgP)

Fig. 8. Evaluation measured as focused retrieval (MAgP)

166

MAP Institute Run

1 0.5046 SEECS, Peking University NULL
2 0.5046 SEECS, Peking University NULL
3 0.3687 Universitat Pompeu Fabra UPFL15TMI
4 0.3542 Universitat Pompeu Fabra UPFL15TMImov
5 0.3397 University of Otago OTAGO-2010-DC-BM25
6 0.2961 Universitat Pompeu Fabra UPFL15Tall
7 0.2829 Universidade Federal do Amazonas ufam2010Run2
8 0.2822 Universitat Pompeu Fabra UPFL45Tall
9 0.2537 Universidade Federal do Amazonas ufam2010Run1
10 0.2512 Universidade Federal do Amazonas ufam2010Run5
11 0.2263 Universidade Federal do Amazonas ufam2010Run3
12 0.2263 Universidade Federal do Amazonas ufam2010Run4
13 0.2263 Universidade Federal do Amazonas ufam2010Run5
14 0.2103 University of Otago OTAGO-2010-DC-DIVERGENCE
15 0.2044 Kasetsart University NULL
16 0.1983 Universitat Pompeu Fabra UPFL15Tmovie
17 0.1807 INDIAN STATISTICAL INSTITUTE ISI elts.0
18 0.18 INDIAN STATISTICAL INSTITUTE ISI elts.1
19 0.1783 INDIAN STATISTICAL INSTITUTE ISI elts.-1
20 0.1578 Universitat Pompeu Fabra UPFL45Tmovie
21 0.1126 INDIAN STATISTICAL INSTITUTE ISI fdbk em 10
22 0.0888 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.-1
23 0.0674 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.0
24 0.0672 INDIAN STATISTICAL INSTITUTE ISI fdbk 10
25 0.0602 B. Univ. Autonoma de Puebla FCC-BUAP-R2
26 0.0581 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .6.0
27 0.0544 B. Univ. Autonoma de Puebla FCC-BUAP-R1
28 0.0507 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .4.1
29 0.0424 INDIAN STATISTICAL INSTITUTE ISI nofdbk article .2.0

Table 2. Evaluation measured as document retrieval (whole document retrieval)

167

3 Conclusions

In this paper we have presented details about the implementation of an informa-
tion retrieval system which was used to evaluate the task of focused retrieval of
XML documents. The implemented system was used in the Data-Centric track
of the Initiative for the Evaluation of XML retrieval (INEX 2010).

We presented a indexing method based on inverted index with XML tags
embedded. For each category (movies, actors, producers, directors and others),
we constructed and independent inverted index. The dictionary of the index
considered both, the category and the indexed term which we assumed to be
sufficient to correctly identify the specific part of the XML file associated to the
topic.

Based on the low scores obtained, we may conclude that a more detailed
description in the dictionary (including more tags of the XML hierarchy) is
needed in order to improve the precision of the information retrieval system
presented.

References

1. Wang, Q., Li, Q., Wang, S., Du, X.: Exploiting semantic tags in xml retrieval. In:
In Proc. of the INEX 2009. (2009) 133–144

2. Wang, Q., Trotman, A.: Task description of inex 2010 data-centric track. In: In
Proc. of INEX 2010 (same volume). (2010)

3. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient xml search with
complex full-text predicates. In: Proceedings of the 2006 ACM SIGMOD interna-
tional conference on Management of data. SIGMOD ’06, New York, NY, USA, ACM
(2006) 575–586

4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK (2009)

168

UPF at INEX 2010
Towards Query-type based Focused Retrieval

Georgina Ramı́rez

Universitat Pompeu Fabra, Barcelona, Spain
georgina.ramirez@upf.edu

Abstract. This paper describes our participation at INEX 2010. We
participated in two different tracks: ad-hoc and data-centric. In the first
one we study the performance effects of changing the article order (fetch-
ing phase) and experiment with query-type based retrieval. We present
on-going work on INEX topics classification and an analysis of the char-
acteristics of the relevance assessments for each of the topic classes. The
goal of our study is to be able to use different retrieval strategies depend-
ing on the topic type. In the data-centric track we experiment with the
use of different indices and retrievable element types. Our main finding is
that indexing uniquely the movie documents performs much better than
indexing the complete collection.

Keywords: XML, focused retrieval, INEX, query-based retrieval

1 Introduction

2 Ad-hoc track

This section describes our approach for the Ad-hoc track. We propose a classifi-
cation of INEX topic types and present an analysis of the characteristics of the
relevance assessments for each of the topic classes. In Subsection 2.3 we discuss
different retrieval strategies that could be used for each of the topic types.

2.1 Topic classification

In this subsection we propose a classification of INEX topics. We extend our
previous work on INEX information needs classification [2] with a new dimension:
the type of information sought.

Our classification uses then the following three dimensions: 1) type of in-
formation sought (general or restricted), 2) Specificity of the topic (generic or
specific), and 3) Complexity of the topic (simple or compound). Topics that
are restricted regarding the type of information sought can be further divided
according to the type of restriction (topical or structural).

In the complexity dimension, two categories are used: Simple (S) and Com-
pound (C). Simple requests are those that ask for information about just one

169

2

Table 1. Example of topic descriptions from INEX 2009 belonging to each of the topic
type categories.

Complex. Specific. Info sought Example

Simple
Generic

General Information about Nobel prize.
Restricted information about yoga lesson (topically).

Specific
General Information of classical movies.
Restricted I want to find out what cars the female rally drivers prefer (topically).

Compound

Generic
General Find information about applications of bayesian networks

in the field of bioinformatics.
Restricted Find bands of folk metal coming from Finland (topically).

Specific
General I am looking for solar power facilities in Europe.
Restricted Explain ”mean average precision” and ”reciprocal rank” with images or plots.

Provide references in proceedings and journals (structurally).

topic or aspect of the topic (i.e., mono-faceted requests). While Compound re-
quests are those that ask for information about several topics or several aspects
of the same topic (i.e., multifaceted requests) or want information about the re-
lationship between two topics (e.g. technique A in the field of B or information
about A for B).

In the specificity dimension, we classify requests into Specific (Sp) and Generic
(G), depending on the broadness of the information being searched for.

Regarding the type information sought, we classify requests into General (Gr)
and Restricted (R). General requests are those that simply ask for information
about a topic, in a general way, without any type of constraint. Restricted re-
quests are those which specify any type of constraint on the type of information
being sought. This type of restriction can be topical (e.g., exercises, experiments)
or structural (e.g., references).

Table 1 shows the resulting categories and an example of each of them.

2.2 Relevance assessments analysis

2.3 Topic-based search strategies

3 Experiments

This Section describes the setup and discusses the results of the experiments car-
ried out for both tracks. For all our experiments we have used the Indri Search
Engine [1]. Indri uses a retrieval model based on a combination of language mod-
eling and inference network retrieval frameworks. We have used linear smoothing
and varying lambda value.

3.1 Ad-hoc track experiments

For the ad-hoc track experiments we have used the Indri search engine [1] with
linear smoothing and lambda 0.45. The lambda value has been set to 0.45 after
training on the INEX Wikipedia 2009 collection. The only indexed fields are
articles, sections, and paragraphs, meaning that only these element types can be
explicitly retrieved. Our first set of experiments in each of the subtasks study
the importance of the fetching phase, i.e., the performance effects of changing

170

3

the article order. The second set of experiments experiment with query based
retrieval. We investigate the performance of different retrieval strategies for each
of the query types described in Section 21.

Relevant in Context The aim of the Relevant in Context Task is to first
identify relevant articles (the fetching phase), and then to identify the relevant
results within the fetched articles (the browsing phase). As mention above, we
first experiment with the performance effects of the fetching phase. For that, we
use the same baseline run and reorder its articles in three different ways. Our
baseline is a paragraph run (retrieving only paragraphs) grouped by article. The
final article order is then given by 1) our own article run order (retrieving only
articles), 2) the reference run order, 3) the baseline run order (i.e., the article
where the most relevant paragraph appears, followed by the article were the
second most relevant paragraph appears, etc.).

Unfortunately, due to a bug in our code, our official runs were not correct
and we are not able to show the results of the new runs yet. We hope to do so
in the final version of this paper.

Restricted Relevant in Context The Restricted Relevant in Context Task is
a variant of the Relevant in Context task, where only 500 characters per article
are allowed to be retrieved. Overlapping results are not permitted. For this task,
we have followed a similar approach to the one of our Relevant in Context runs.
This time however, our baseline is a section run (retrieving only sections) and a
second post-processing step is made in order to return only 500 characters per
article. That is, per each article we return the most relevant sections until the
500th character is reached. As in the previous task, the final article order is given
by 1) our own article run order (retrieving only articles), 2) the reference run
order, 3) the baseline run order (i.e., the article where the most relevant section
appears, followed by the article were the second most relevant section appears,
etc.).

Unfortunately, due to a bug in our code, our official runs were not correct
and we are not able to show the results of the new runs yet. We hope to do so
in the final version of this paper.

Restricted Focused The Restricted Focused task aims at giving a quick
overview of the relevant information in the whole Wikipedia. Results are re-
stricted to max. 1,000 characters per topic. For this task, we return a single
paragraph per article (the most relevant) until we reach the 1000 characters per
topic. The assumption is that users prefer to see an overview based on the most
number of articles rather than seeing several relevant paragraphs of the same
article. Our three official runs are again based on the different article order as
in the previous tasks; The final article order is given by 1) our own article run

1 At the moment of writing this paper the experiments on query based retrieval are
not complete. We will discuss them in the final version of this paper.

171

4

order (retrieving only articles), 2) the reference run order, 3) the baseline run
order (i.e., the article where the most relevant paragraph appears, followed by
the article were the second most relevant paragraph appears, etc.).

The results of these runs are shown in Table 2.

Table 2. Official results for the restricted focused runs (measured as focused retrieval)

run name (number) char prec run position
UPFpLM45co (1) 0.3066 15
UPFpLM45co (3) 0.2984 19
UPFpLM45co (2) 0.1156 30

We can see that the article order is an important factor on the overall result
of the run. There is a big difference in terms of performance from our article and
paragraph runs order and the reference run order.

3.2 Data-centric track experiments

For our data-centric track experiments we used the Indri search engine [1] with
linear smoothing and two different lambdas, 0.45 and 0.15. Since this is a new
collection and we did not have training data to optimize lambda, we experiment
with two different values that have been successfully used in other collections. We
also experiment with the use of two different indices (indexing all the collection
vs. indexing only movies) and by restricting the type of elements to be retrieved
(no restriction vs. movie elements)2.

Table 3 shows the parameters used for each of our official runs and Table 4
the official results.

Table 3. Official runs for the data-centric track

run name index retrievable elements lambda
UPFL15Tall all no restriction 0.15
UPFL45Tall all no restriction 0.45

UPFL15Tmovie all movie 0.15
UPFL45Tmovie all movie 0.45
UPFL15TMI movies no restriction 0.15

UPFL15TMImov movies movie 0.15

Our best performing runs are the ones that use the movie index, indicating
that, for this specific topic set, the use of other types of documents introduces

2 Note that movie elements can have very different forms: from a complete movie
document to a movie element within a list of movies played by an actor.

172

5

Table 4. Official results for the data-centric track. The number in parenthesis indicates
the run position in the official ranking.

run name MAgP MAiP Document Retrieval
UPFL15Tall - 0.1486 (7) 0.2961 (6)
UPFL45Tall - 0.1338 (11) 0.2822 (8)

UPFL15Tmovie - 0.0770 (20) 0.1983 (16)
UPFL45Tmovie - 0.0410 (24) 0.1578 (20)
UPFL15TMI 0.2459 (2) 0.1809 (2) 0.3687 (3)

UPFL15TMImov 0.2434 (3) 0.1762 (3) 0.3542 (4)

noise. We also see that lambda 0.15 performs always better than lambda 0.45,
indicating that it is better to give less emphasis to the collection statistics.
Figure 1 show the official graphs. In general terms we can see that using the
movie index (our best runs) leads to high precision at early recall levels while,
not surprisingly, does not manage to do so at middle and/or high recall ones
(MAiP and MAP graphs). This is because a big part of the collection is not
indexed so it is difficult (if not impossible) to have a high overall recall.

4 Conclusions

This paper described our participation at INEX 2010, in the ad-hoc and data-
centric tracks. We presented on-going work on INEX topics classification and
the analysis of the characteristics of the relevance assessments for each of the
topic classes. In the data-centric track, we experimented with the use of dif-
ferent indices and retrievable element types. Our main finding is that indexing
uniquely the movie documents performs much better than indexing the complete
collection.

Acknowledgments This work has been supported by the Spanish Ministry of
Science and Education under the HIPERGRAPH project and the Juan de la
Cierva Program.

References

1. T. Strohman, D. Metzler, H. Turtle, and W. B. Croft Indri: a language model based
search engine for complex queries Proceedings of the International Conference on
Intelligent Analysis, 2005.

2. Georgina Ramı́rez Camps Structural Features in XML Retrieval PhD thesis, Uni-
versity of Amsterdam, 2007.

173

6

MAgP MAiP

MAP

Fig. 1. Official evaluation graphs for the data-centric track

174

The INEX 2010 Interactive Track: an overview

Nils Pharo
1
, Thomas Beckers

2,
Ragnar Nordlie

1
 and Norbert Fuhr

2

1Faculty of Journalism, Library and Information Science, Oslo University College, Norway

nils.pharo@jbi.hio.no, ragnar.nordlie@jbi.hio.no
2Department of Computer Science and Applied Cognitive Science, University

of Duisburg-Essen, Germany

tbeckers@is.inf.uni-due.de, norbert.fuhr@uni-due.de

Abstract. In the paper we present the organization of the INEX 2010

interactive track. For the 2010 experiments the iTrack has gathered data on user

search behavior in a collection consisting of book metadata taken from the

online bookstore Amazon and the social cataloguing application LibraryThing.

The collected data represents traditional bibliographic metadata, user-generated

tags and reviews and promotional texts and reviews from publishers and

professional reviewers. In this year’s experiments we designed two search task

categories, which were set to represent two different stages of work task

processes. In addition we let the users create a task of their own, which is used

as a control taks. In the paper we describe the methods used for data collection

and the tasks performed by the participants.

1 Introduction

The INEX interactive track (iTrack) is a cooperative research effort run as part of the

INEX Initiative for the Evaluation of XML retrieval [1]. The overall goal of INEX is

to experiment with the potential of using XML to retrieve relevant parts of

documents. In recent years, this has been done through the provision of a test

collection of XML-marked Wikipedia articles. The main body of work within the

INEX community has been the development and testing of retrieval algorithms.

Interactive information retrieval (IIR) [2] aims at investigating the relationship

between end users of information retrieval systems and the systems they use. This aim

is approached partly through the development and testing of interactive features in the

IR systems and partly through research on user behavior in IR systems. In the INEX

iTrack the focus over the years has been on how end users react to and exploit the

potential of IR systems that facilitate the access to parts of documents in addition to

the full documents.

The INEX interactive track was run for the first time in 2004, in the first two years

the collection consisted of journal articles from IEEE computer science journals [3,

4]. In 2006/7 [5] and 2008 [6] the collection was collected from the Wikipedia. In

2009 [7] the iTrack switched to a collection consisting of book metadata collected

from the bookstore Amazon and the social cataloguing application LibraryThing.

Throughout the years the design of the iTrack experiments has been quite similar:

175

 a common subject recruiting procedure

 a common set of user tasks and data collection instruments such as interview

guides and questionnaires

 a common logging procedure for user/system interaction

 an understanding that collected data should be made available to all

participants for analysis

In this way the participating institutions have gained access to a rich and

comparable set of data on user background and user behavior, with a relatively small

investment time and effort. The data collected has been subject for both qualitative

and quantitative analysis resulting in a number of papers and conference presentations

([8], [9], [10], [11], [12], [13], [14], [15]).

In 2009, it was felt that although the "common effort" quality of the previous years

was valuable and still held potential as an efficient way of collecting user behavior

data, the Wikipedia collection had exhausted its potential as a source for studies of

user interaction with XML-coded documents. It was therefore decided to base the

experiments on a new data collection with richer structure and more semantic markup

than has previously been available. The collection was based on a crawl of 2.7 million

records from the book database of the online bookseller Amazon.com, consolidated

with corresponding bibliographic records from the cooperative book cataloguing tool

LibraryThing. A sub-set of the same collection was used in this year’s experiments,

with a change to a new IR system, of which two alternative versions were made (a

more specific description of the system and collection is given below). The records

present book descriptions on a number of levels: formalized author, title and publisher

data; subject descriptions and user tags; book cover images; full text reviews and

content descriptions. New this year is that more emphasis is given to the distinction

between publisher data and user-generated data. The two systems differ in that it is

not possible to query the reviews nor the book abstracts in one of the two versions.

The database intended to enable investigation of research questions concerning, for

instance

 What is the basis for judgments on relevance in a richly structured and

diverse material? What fields / how much descriptive text do users make use

of / chose to see to be able to judge relevance?

 How do users understand and make use of structure (e.g. representing

different levels of description, from highly formalized bibliographic data to

free text with varying degrees of authority) in their search development?

 How do users construct and change their queries during search (sources of

terms, use and understanding of tags, query development strategies ..)?

 How do users search strategies differ at different stages of their work task

processes?

176

2 Tasks

For the 2010 iTrack the experiment was designed with two categories of tasks

constructed by the track organizers, from each of which the searchers were instructed

to select one of three alternative search topics. In addition the searchers were invited

to perform one semi-self-generated task, which would function as a control task. The

two task categories were designed to be presented in contexts that reflect two different

stages of a work task process [16]. The theory underlying our choice of tasks is that

searchers at an early stage in the process will be in a more explorative and problem-

oriented mode, whereas at a later stage they will be focused towards more specific

data collection.

The first set of tasks is designed to let searchers use a broad selection of metadata,

in particular combining topical searches with the use of review data. The tasks are

thus designed to inspire users to create “polyrepresentative” [17] search strategies, i.e.

to use explorative search strategies, which will give us data on query development,

metadata type preference and navigation patterns.

At the second stage we try to simulate searchers that are in a rather mechanistic

data gathering mode. The tasks also represent tasks designed to focus on non-topical

characteristics of the books. Information will typically be found in publisher's texts

and possible tags.

The self-selected task is intended to function as a “control” task, the performance

of which we can compare the two others to.

The task groups are introduced in the following way:

Task group 1: The explorative tasks

You are at an early stage of working on an assignment, and have decided to start

exploring the literature of your topic. Your initial idea has led to one of the following

three research needs:

1. Find trustworthy books discussing the conspiracy theories which developed

after the 9/11 terrorist attacks in New York.

2. Find controversial books discussing the climate change and whether it is

man-made or not.

3. Find highly acclaimed novels that treat issues related to racial discrimination.

Task group 2: The data gathering tasks

You are in a data gathering stage of an assignment and need to collect a series of

books for further analysis. This has led to one of the following three research needs:

4. Find novels that won the Nobel prize during the 1990's.

5. Find bestseller crime novels by female authors.

177

6. Find biographies on athletes active in the 1990's.

The semi self-selected task

7. Try to find books about a specific topic or of a certain type, but do not look

for a specific title you already know.

3 Participating groups

Only 2 research groups were able to submit experiment data by the deadline for this

report: Oslo University College and University of Duisburg-Essen. Data from a total

of 126 searches performed by 42 test subjects were collected.

4 Research design

4.1 Search system

The experiments were conducted on a Java-based retrieval system built within the

ezDL framework (http://www.is.inf.uni-due.de/projects/ezdl/, http://ezdl.de), which

resides on a server at and is maintained by the University of Duisburg-Essen. The

collection was indexed with Apache Solr 1.4, which is based on Apache Lucene.

Lucene applies a variation of the vector space retrieval model. The basis of the search

system is similar to the interfaces used for previous iTracks, but the interface has been

modified extensively to accommodate the new data set, and a set of new

functionalities have been developed. Two versions (A and B) were developed.

178

Figure 1: The search system interface

Figure 1 shows the interface of the system (A version). The main features available

to the user are:

 The query interface provides a Google-like query field as well as additional

query fields for title, author, year, abstract and reviews. When a search

term is entered, the searcher can choose if he wants to search also in the

reviews.

 The system can order the search results according to “relevance” (which

books the system considers to be most relevant to your search terms),

“year” (publication year of the book), or “average rating” (in the cases

where quality ratings from readers were available).

 The system will show results twenty titles at a time, with features to assist in

moving further forwards or backwards in the result list.

 A double click on an item in the result list will show the book details in the

“Details” window.

 If the book has been reviewed, the reviews can be seen by clicking the

“Reviews” tab at the bottom of this window. Each review shows the title,

the rating, the date and the helpfulness rating. A simple click on a review

extends the review by the full review text

 The users are instructed to determine the relevance of any examined book, as

“Relevant”, “Partially relevant” or “Not relevant”, by clicking markers at

the bottom of the screen. Any book decided to constitute part of the

answer to the search task can be moved to a result basket by clicking the

“Add to basket” button next to the relevance buttons.

 A “Query history” button in the right of the screen displays the query terms

used so far in the current search session. A single click sets a query to the

search tool. A double-click also executes this query

179

 A line of yellow dots above an item in the result list is used to indicate the

system’s estimate of how closely related to the query the item is

considered to be.

 Query terms are highlighted in the result list and the detail tool

The B version of the search system did not allow the user to search in reviews or

abstracts, that is no query fields for abstract and reviews were available to the user.

4.2 Document corpus

The collection contains metadata of 2 780 300 English-language books. The data

has been crawled from the online bookstore Amazon and the social cataloging web

site LibraryThing in February and March 2009 by the University of Duisburg-Essen.

The MySQL database containing the crawled data has a size of about 190 GB. Cover

images are available for over one million books (100 GB of the database). Several

millions of customer reviews were crawled. For this year’s run of the track we

cleaned up the data by removing all records that do not have an image of the book

cover. This was thought to be a good heuristic for removing records that only have

very sparse data. After the clean-up, metadata from approximately 1.5 million books

remained in the database.

The records present book descriptions on a number of levels: formalized author,

title and other bibliographic data; controlled subject descriptions and user-provided

content-descriptive tags; book cover images; full text reviews and publisher-supplied

content descriptions. The following listing shows what items were crawled from

either Amazon or LibraryThing:

Amazon
ISBN, title, binding, label, list price, number of pages, publisher, dimensions,

reading level, release date, publication date, edition, Dewey classification, title page

images, creators, similar products, height, width, length, weight, reviews (rating,

author id, total votes, helpful votes, date, summary, content) editorial reviews (source,

content).

LibraryThing

Tags (including occurrence frequency), blurbs, dedications, epigraphs, first words,

last words, quotations, series, awards, browse nodes, characters, places, subjects.

4.3 Online questionnaires

During the course of the experiment, the system presents the searchers with online

questionnaires to support the analysis of the log data. The searchers were given a pre-

180

experiment questionnaire, with demographic questions such as searchers’ age,

education and experience in information searching in general and in searching and

buying books online. Each search task was preceded with a pre-task questionnaire,

which concerned searchers’ perceptions of the difficulty of the search task, their

familiarity with the topic etc. After each task, the searcher was asked to fill out a post-

task questionnaire. The intention of the post-task questionnaire is to learn about the

searchers’ use of and their opinion on various features of the search system, in

relation to the just completed task. Each experiment sessions were closed with a post-

experiment questionnaire, which elicited the searchers’ general opinion of the search

system.

4.4 Relevance assessments

The searchers were instructed to indicate the relevance of the items in the result list,

using a three-part relevance scale of “relevant”, “partly relevant” and “not relevant”.

4.5 “Shopping” basket

To simulate the purchase of relevant books the system provided a shopping basket

feature in which searchers were asked to add books they would have purchased for

solving the task. Books can be added and removed from the basket.

4.6 Logging

All search sessions were logged and saved to a database. The logs register and time

stamp the events in the session and the actions performed by the searcher, as well as

the responses from the system.

5 Experimental Procedure

The experimental procedure for each searcher is outlined below.

1. When recruiting searchers for the experiment, the experimenter gives the

searchers the instructions for the self-selected task.

2. Experimenter briefs the searcher, and explains format of study. The searcher

reads and signs the Consent Form.

3. The experimenter logs the searchers into the system. This presents the

searcher with the task assignments and the questionnaire. The experimenter

hands out and explains the User guidelines document. It is important to take

181

good time to demonstrate and explain how the system works. A tutorial of

the system with a training task is provided.

4. The experimenter answers questions from user.

5. The searcher selects his/her tasks from each of the two categories. In

addition the self-selected task is input into the appropriate form. Tasks are

rotated by the system, thus any of the three tasks may be the first to be

solved by the searcher.

6. The searcher answers the Pre-experiment questionnaire provided by the

system.

7. The searcher answers the Pre-task questionnaire provided by the system.

8. The task is started by clicking the link to the IR system. Each task has a

duration of 15 minutes, at which point the system will tell the user time has

run out. The IR system is closed by clicking the “End task” button.

9. The searcher answers the Post-task questionnaire provided by the system.

10. Steps 6-9 repeated for the two other tasks.

11. The searcher answers the Post-experiment questionnaire provided by the

system.

12. At the end of the evaluation session the user presses the “Finish” button in

the evaluation/questionnaire system to store his data into the database

6 Data analysis

To be filled out.

References

[1] Malik, S., Trotman, A., Lalmas, M. & Fuhr, N. (2007): Overview of INEX 2006. In:

Fuhr, N., Lalmas, M. and Trotman, A. eds. Comparative Evaluation of XML

Information Retrieval Systems, 5th International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2006, Dagstuhl Castle, Germany, December

2006. Berlin: Springer, p. 1-11.

[2] Ruthven, I. (2008): Interactive Information Retrieval. In: Annual Review of

Information Science and Technology, 42, p. 43-91.

[3] Tombros, A., Larsen, B. and Malik, S. (2005): The Interactive Track at INEX 2004.

In: Fuhr, N., Lalmas, M., Malik, S. and Szlávik, Z. eds. Advances in XML

Information Retrieval: Third International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8,

2004. Berlin: Springer, p. 410-423

[4] Larsen, B., Malik, S. and Tombros, A. (2006): The interactive track at INEX 2005.

In: Fuhr, N., Lalmas, M., Malik, S. and Kazai, G. eds. Advances in XML Information

Retrieval and Evaluation, 4th International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle, Germany, November 28-

30, 2005. Berlin: Springer, p. 398-410.

[5] Larsen, B., Malik, S. & Tombros, A. (2007): The Interactive track at INEX 2006. In:

Fuhr, N., Lalmas, M. and Trotman, A. eds. Comparative Evaluation of XML

182

Information Retrieval Systems, 5th International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2006, Dagstuhl Castle, Germany, December

2006. Berlin: Springer, p. 387-399.

[6] Pharo, N., Nordlie, R. & Fachry, K. N. (2009): Overview of the INEX 2008

Interactive Track. In: Geva, S., Kamps, J. and Trotman, A. eds. Advances in Focused

Retrieval, 7th International Workshop of the Initiative for the Evaluation of XML

Retrieval, INEX 2008, Dagstuhl Castle, Germany, December 2008. Berlin: Springer,

p. 300-313.
[7] Pharo, N., Nordlie, R., Fuhr, N., Beckers, T. & Fachry, K. N. (2010): Overview of the

INEX 2009 Interactive Track. In: Geva, S., Kamps, J. and Trotman, A. eds. Focused

Retrieval and Evaluation, 8th International Workshop of the Initiative for the

Evaluation of XML Retrieval, INEX 2009, Brisbane, Australia, December 200.

Berlin: Springer, p. 303-311.

[8] Pharo, N. & Nordlie, R. (2005): Context Matters: An Analysis of Assessments of

XML Documents. In: F. Crestani and I. Ruthven eds. Information Context: Nature,

Impact, and Role: 5th International Conference on Conceptions of Library and

Information Sciences, CoLIS 2005, Glasgow, UK, June 4-8, 2005. Berlin: Springer, p.

238-248.

[9] Hammer-Aebi, B., Christensen, K. W., Lund, H. and Larsen, B. (2006): Users,

structured documents and overlap: interactive searching of elements and the influence

of context on search behaviour. In: Ruthven, I. et al. eds. Information Interaction in

Context : International Symposium on Information Interaction in Context : IIIiX 2006

: Copenhagen, Denmark, 18-20 October, 2006 : Proceedings. Copenhagen: Royal

School of Library and Information Science, p. 80-94.

[10] Pehcevski, J. (2006): Relevance in XML retrieval: the user perspective. In:

Trotman, A. and Geva, S. eds. Proceedings of the SIGIR 2006 Workshop on XML

Element Retrieval Methodology : Held in Seattle, Washington, USA, 10 August 2006.

Dunedin (New Zealand): Department of Computer Science, University of Otago, p.

35-42.

[11] Malik, S., Klas, C.-P., Fuhr, N., Larsen, B. and Tombros, A. (2006): Designing a user

interface for interactive retrieval of structured documents: lessons learned from the

INEX interactive track? In: Gonzalo, J. et al. eds. Research and Advanced

Technology for Digital Libraries, 10th European Conference, ECDL 2006. Alicante,

Spain, September 17-22, 2006, Proceedings. Berlin: Springer, p. 147-156.

[12] Kim, H. & Son, H. (2006): Users Interaction with the Hierarchically Structured

Presentation in XML Document Retrieval. In: Fuhr, N., Lalmas, M., Malik, S. &

Kazai, G. eds. Advances in XML Information Retrieval and Evaluation: 4th

International Workshop of the Initiative for the Evaluation of XML Retrieval, INEX

2005, Dagstuhl Castle, Germany, November 28-30, 2005. Berlin: Springer, p. 422-

431.

[13] Kazai, G. & Trotman, A (2007): Users' perspectives on the Usefulness of Structure

for XML Information Retrieval. In: Dominich, S. & Kiss, F. eds. Proceedings of the

1st International Conference on the Theory of Information Retrieval. Budapest:

Foundation for Information Society, p. 247-260.

[14] Larsen, B., Malik, S & Tombros, A. (2008): A Comparison of Interactive and Ad-

Hoc Relevance Assessments. In: Fuhr, N., Kamps, J., Lalmas, M. & Trotman, A. eds.

Focused Access to XML Documents: 6th International Workshop of the Initiative for

the Evaluation of XML Retrieval, INEX 2007 Dagstuhl Castle, Germany, December

17-19, 2007. Berlin: Springer, p. 348-358.

[15] Pharo, N. (2008): The effect of granularity and order in XML element retrieval.

Information Processing and Management. 44(5), 1732-1740.

183

[16] Kuhlthau, C.C. (2004). Seeking meaning: a process approach to library and

information services. 2nd ed. Libraries Unlimited, Westport, CT.

[17] Larsen, B., Ingwersen, P & Kekäläinen, J. (2006). The Polyrepresentation continuum

in IR. In: I. Ruthven et al. eds. Information interaction in context: International

Symposium on Information Interaction in Context, IIiX 2006. New York: ACM Press,

p. 148-162.

[13] Fuhr, N., Klas, C.P., Schaefer, A. & Mutschke, P. (2002): Daffodil: An integrated

desktop for supporting high-level search activities in federated digital libraries. In

Proceedings of the 6th European Conference on Research and Advanced Technology

for Digital Libraries (ECDL), p. 597-612.

.

184

Using Eye-Tracking for the Evaluation of
Interactive Information Retrieval

Thomas Beckers and Dennis Korbar

Universität Duisburg-Essen
Information Engineering

Duisburg, Germany
{tbeckers, korbar}@is.inf.uni-due.de

Abstract. In this paper we present the INEX 2010 Interactive Track
experiments that have been performed with eye-tracking in addition to
the other collected data (system logs and questionnaires). We present our
tool AOILog for recording AOI data for dynamic user interfaces. Finally,
we show how these eye-tracking and AOI data could be used for further
analysis of the user interaction with the search system.

1 Introduction

In this year’s run of the Interactive Track (iTrack) we wanted to investigate how
users act with an interactive search system. The working tasks do not only rely
on the classical topic aspect but also on other aspects such as book reviews or
structure information. In addition to the standard experiments (see [1] for more
detailed explanations of the experiment design and the data collection) in the
2010 run of the iTrack, we additionally used an eye-tracking system to record
the user’s gaze data while interacting with the search system.

2 System Description

The search system (see figure 1) was developed at the University of Duisburg-
Essen. It is based on the digital library system ezDL1. Pharo et al. provide a
more detailed explanation (see [1]).

The search tool offers a Google-like search field as well as advanced search
fields for title, author, year, abstract and reviews (depends on the system version,
see [1]). A combo box allows the user to search also in reviews with the Google-
like search field. Below this query panel the user can select fields for the sorting
of the results. Furthermore, the user can choose the display style of the result
list. The lower half of the search tool contains the result list and the result page
navigation buttons.

A double-click on a result item shows book details in the detail tool. Users
can indicate the relevance of an examined book as either relevant, partially rel-
evant, or not relevant, by clicking markers at the bottom of the tool. A second

1 Live system: http://www.ezdl.de/
Developer site: http://www.is.inf.uni-due.de/projects/ezdl/

185

tab shows reviews of the selected book. Initially the title, author, rating, date
and the utility rating of the review is shown. By clicking on a review, the actual
review text is added to the review.

Users can mark any book as part of the answer to the search task by moving
it to the basket tool. This can be performed either via drag-and-drop or by
clicking the add to basket button next to the relevance buttons.

A history of performed search queries is provided by in the query history
tool. Finally, the task tool shows the current working task.

Query panel

Result list

Task
Basket

Search controls
Query history

Details

Reviews

Relevance scores

Search

Result scrolling

Fig. 1: The search system interface (blue boxes: tools mentioned in the description
in section 2)

3 Eye-Tracking for Interactive Information Retrieval
Systems

In addition to the questionnaires and system log data we also used an eye-
tracking system2 to record the user’s eye gaze data. For analysing the eye-
tracking data, the user interface of the system (see figure 1) was divided into so
called Areas of Interests (AOIs) (see figure 2). AOIs define larger and logically
connected gaze areas. These areas are used to capture not only fixations, but
also more peripheral perceptions. Since some of the tools in the search system
are on top of other tools and the position of user interface components changes

2 SMI RED: http://www.smivision.com/en/gaze-and-eye-tracking-systems/

products/red-red250-red-500.html

186

dynamically, it is necessary to record the visibility information of tools to cre-
ate dynamic AOIs automatically. The manual creation of AOIs would take too
much time, thus is is generally not applicable in practice, especially when trying
to analyze very dynamic components.

We developed a framework called AOILog which automatically keeps track of
position, visibility and size of registered Java Swing components, thus enabling
us to consider even small and very dynamic areas of interest, such as result
items in a scrollable list widget. Also included in the AOILog framework is a
small converter application which will convert our AOI XML format into the
proprietary SMI AOI format. This will enable us to use the recorded data in
the statistical analysis software BeGaze which is part of SMI’s software suite. In
order to use our framework with eye tracking devices by other manufacturers,
one only has to implement an appropriate converter, the logging functionality
on Java Swing based applications can be used out of the box.

Fig. 2: Areas of Interest (screenshot from BeGaze analysis software)

Figure 2 shows the AOIs of the search interface. We defined the following
AOIs:
– tools (search, details, task, query history)

– query panel and query fields

– search controls and result scrolling

– result list

– parts of the details

– reviews and review sorting

187

With these dynamic AOIs it will be possible for future analyses to investigate
the use of tools and book details as well as reviews in general by the users.

4 A Model for Interactive Information Retrieval

In 2010 we started a new project called HIIR (Highly Interactive Information
Retrieval)3 aiming to create an interactive information retrieval system based
on efficient retrieval algorithms combined with a theoretic model for interactive
IR, the IIR-PRP4[2]. The IIR-PRP tries to offer decision lists and information
based on a cost/benefit ratio. The basic idea is that users move from situation to
situation. In every situation a list of choices is presented to the user, s/he then
decides about each of these choices sequentially. Upon the first positive decision
the user will move to a new situation.

In order to use the IIR-PRP as a model to implement interactive IR systems,
its assumptions have to be confirmed. Furthermore we will have to measure
some of its constants in order to be able to apply the model’s ranking method.
The AOI logging framework described above will help us to accomplish these
goals. Its implementation in the current INEX 2010 iTrack search system will
provide us with a first indication about the validity of the IIR-PRP’s assumption
concerning user behaviour while scanning a list of choices. In addition we might
be able determine if there is a connection between a result item’s textual length
and the effort to evaluate that item. We will also try to analyze the effort to
evaluate other objects provided by the search system (e.g. review items). This
might enable us to create a first measurement to calculate the expected effort
for a given choice.

5 Conclusion and Outlook

We presented how eye-tracking data can be used for evaluation of interactive
information retrieval systems.

We plan to analyze the collected data (questionnaires, system logs and eye-
tracking data) to find out how users interact with interactive search systems.
Our framework AOILog will be extended and included into ezDL. Furthermore
it is planned to develop tools to make the analysis of the eye-tracking data and
the linkage to the system logs easier.

References

1. Pharo, N., Beckers, T., Nordlie, R., Fuhr, N.: The INEX 2010 Interactive Track: an
overview. In: Pre-Proceedings of the 9th International Workshop of the Initiative
for the Evaluation of XML Retrieval (INEX 2010). (2010)

2. Fuhr, N.: A probability ranking principle for interactive information retrieval. In-
formation Retrieval 11(3) (2008) 251–265

3 http://www.is.inf.uni-due.de/projects/hiir/index.html.en
4 Interactive Information Retrieval Probability Ranking Principle

188

Overview of the INEX 2010 Link the Wiki Track

Andrew Trotman and David Alexander

Department of Computer Science
University of Otago

Dunedin
New Zealand

Abstract. Short status report on the INEX 2010 Link the Wiki track

1 Introduction

In 2010 the link the wiki track changed from the Wikipedia collection to the Te Ara
collection. The use of the new collection saw a decline in the number of participating
groups with only QUT and Otago submitting runs.

A total of 29 runs were submitted, 5 from QUT and 24 from Otago. The track is
currently in the assessment phase. At time of writing 7 pools of 10 topics per pool
(70 documents in total) have been assessed.

189

University of Otago at INEX 2010

Xiang-Fei Jia, David Alexander, Vaughn Wood and Andrew Trotman

Computer Science, University of Otago, Dunedin, New Zealand

Abstract. In this paper, we describe University of Otago’s participation
in Ad Hoc, Link-the-Wiki Tracks, Efficiency and Data Centric Tracks of
INEX 2010. In the Link-the-Wiki Track, we show that the simpler rele-
vance summation method works better for producing Best Entry Points
(BEP). In the Ad Hoc Track, we discusses the effect of various stemming
algorithms. In the Efficiency Track, we compare three query pruning al-
gorithms and discusses other efficiency related issues. Finally in the Data
Centric Track, we compare the BM25 and Divergence ranking functions.

1 Introduction

In INEX 2010, University of Otago participated in the Ah Hoc, Link-the-Wiki
Tracks, the Efficiency and Data Centric Tracks. In the Link-the-Wiki Track, we
talk about how our linking algorithm works using the Te Ara collection and the
newly developed assessment tool. In the Ad Hoc Track, we show the performance
of our stemming algorithm using Genetic Algorithms and how it performs against
other stemming algorithms. In the Efficiency Track, we discusses the performance
of our three pruning algorithms; The first is the original topk (originally described
in INEX 2009), an improved version of the topk and the heapk. Finally in the
Data Centric Track, we compare the BM25 and Divergence ranking functions.

In Section 2, related work is discussed. Section 3 explains how our search
engine works. Section 4, 5, 6 and 7 talk about how we performed in the corre-
sponding Tracks. The last section provides the conclusion and future work.

2 Related Work

2.1 The Link-the-Wiki Track

The aim of the INEX Link-the-Wiki track is to develop and evaluate link rec-
ommendation algorithms for large hypertext corpora.

Before 2009, Wikipedia was the only corpus used in the Link-the-Wiki track;
the task was to link related Wikipedia documents to each other, with or without
providing specific anchor locations in the source documents. In 2009, the Te Ara
Encyclopedia of New Zealand was used alongside Wikipedia, and tasks included
producing links within each of the two corpora, and linking articles in one corpus
to articles in the other.

Work has been done on the topic of hypertext link recommendation by a
number of people both within the INEX Link-the-Wiki track and outside of

190

it. It is difficult to compare INEX-assessed algorithms with non-INEX-assessed
algorithms because the assessment methodology plays a large part in the results,
so this section will focus on algorithms from within INEX.

For Wikipedia, the two most successful link-recommendation algorithms are
due to Kelly Itakura [1] and Shlomo Geva [2].

Itakura’s algorithm chooses anchors in a new document by calculating the
probability (γ) that each phrase, if found in the already-linked part of the corpus,
would be an anchor. If γ exceeds a certain threshold (which may be based on the
length of the document), the phrase is used as an anchor. The target for the link
is chosen to be the most common target for that anchor among existing links.
The formula for γ for a given phrase P is:

γ =
number of occurrences of P in the corpus as a link

number of occurrences of P in the corpus altogether

Geva’s algorithm simply searches for occurrences of document titles in the
text of the orphan document. If such an occurrence is found, it is used as an
anchor. The target of the link is the document whose title was found.

2.2 The Ad Hoc Track

In the Ad Hoc Track, we compare the performance of our stemming algorithm
using Genetic Algorithms with other stemming algorithms.

The S Stripper consists of three rules. These rules are given in Table 1. It uses
only the first matching rule. It has improved MAP on previous INEX Ad Hoc
collections, from 2006-2009. This serves as a baseline for stemmer performance,
and is an example of a weak stemmer (It does not conflate many terms).

ies → y
es →
s →

Table 1: S Stripper rules. The first suffix matched on the left is replaced by the
suffix on the right.

The Porter stemmer[3] has improved some runs for our search engine on
previous INEX collections. It serves as an example of a strong stemmer. We use
it here as a baseline for comparing stemmer performance.

People have found ways to learn to expand queries using thesauruses gener-
ation or statistical methods. Jones[4] used clustering methods for query expan-
sion. We have been unable to find any mention of symbolic learning used for
stemming.

A similar method for improving stemming by using term similarity informa-
tion from the corpus was used by Xu and Croft[5]. Their work uses the Expected

191

Mutual Information Measure. Instead we have used Pointwise Mutual Informa-
tion and the Jaccard Index. These were chosen as the best out of a larger group
of measures.

2.3 The Efficiency Track

The following discussion of the related work is taken from our published paper
in ADCS 2010 [6].

Disk I/O involves reading query terms from a dictionary (a vocabulary of all
terms in the collection) and the corresponding postings lists for the terms. The
dictionary has a small size and can be loaded into memory at start-up. However,
due to their large size, postings are usually compressed and stored on disk.
A number of compression algorithms have been developed and compared [7,8].
Another way of reducing disk I/O is caching, either at application level or system
level [9,10]. Since the advent of 64-bit machines with vast amounts of memory,
it has become feasible to load both the dictionary and the compressed postings
into main memory, thus eliminating all disk I/O. Reading both dictionary and
postings lists into memory is the approach taken in our search engine.

The processing (decompression and similarity ranking) of postings and sub-
sequent sorting of accumulators can be computationally expensive, especially
when queries contain frequent terms. Processing of these frequent terms not
only takes time, but also has little impact on the final ranking results. Post-
ings pruning at query time is a method to eliminate unnecessary processing of
postings and thus reduce the number of non-zero accumulators to be sorted. A
number of pruning methods have been developed and proved to be efficient and
effective [11,12,13,14,15,16]. In our previous work [16], the topk pruning algo-
rithm partially sorts the static array of accumulators using an optimised version
of quick sort [17] and statically prunes postings. In this paper, we present an
improved topk pruning algorithm and an new pruning algorithm based on heap
data structure.

Traditionally, term postings are stored in pairs of <document number, term
frequency> pairs. However, postings should be impact ordered so that most
important postings can be processed first and the less important ones can be
pruned using pruning methods [18,14,15]. One approach is to store postings
in order of term frequency and documents with the same term frequency are
grouped together [18,14]. Each group stores the term frequency at the beginning
of the group followed by the compressed differences of the document numbers.
The format of a postings list for a term is a list of the groups in descending
order of term frequencies. Another approach is to pre-compute similarity val-
ues and use these pre-computed impact values to group documents instead of
term frequencies [15]. Pre-computed impact values are positive real numbers.
In order to better compress these numbers, they are quantised into whole num-
bers [19,15]. Three forms of quantisation method have been proposed (Left.Geom,
Uniform.Geom, Right.Geom) and each of the methods can better preserve certain
range of the original numbers [15]. In our search engine, we use pre-computed

192

BM25 impact values to group documents and the differences of document num-
bers in each group are compressed using Variable Byte Coding by default. We
choose to use the Uniform.Geom quantisation method for transformation of the
impact values, because the Uniform.Geom quantisation method preserves the
original distribution of the numbers, thus no decoding is required at query time.
Each impact value is quantised into an 8-bit whole number.

Since only partial postings are processed in query pruning, there is no need to
decompress the whole postings lists. Skipping [12] and blocking [20] allow pseudo-
random access into encoded postings lists and only decompress the needed parts.
Further research work [21,22] represent postings in fixed number of bits, thus
allowing full random access. Our search engine partially decompress postings
list based on the worst case of the static pruning. Since we know the parameter
value of the static pruning and the biggest size of an uncompressed impact value
(1 byte), we can add these together to find the cut point for decompression.
We can simply hold decompression after that number of postings have been
decompressed.

3 System Overview

3.1 Indexer

Memory management is a challenge for fast indexing. Efficient management of
memory can substantially reduce indexing time. Our search engine has a memory
management layer above the operating system. The layer pre-allocates large
chunks of memory. When the search engine requires memory, the requests are
served from the pre-allocated pool, instead of calling system memory allocation
functions. The sacrifice is that some portion of pre-allocated memory might be
wasted. The memory layer is used both in indexing and in query evaluation. As
shown previously in [16], only a very small portion of memory is actually wasted.

The indexer uses hashing with a collision binary tree for maintaining terms.
We tried several hashing functions including Hsieh’s super fast hashing function.
By default, the indexer uses a very simple hashing function, which only hashes
the first four characters of a term and its length by referencing a pre-defined
look-up table. A simple hashing function has less computational cost, but causes
more collisions. Collisions are handled by a simple unbalanced binary tree. We
will examine the advantages of various hashing and chaining algorithms in future
work.

Postings lists can vary substantially in length. The indexer uses various sizes
of memory blocks chained together. The initial block size is 8 bytes and the
re-size factor is 1.5 for the subsequent blocks.

The indexer supports either storing term frequencies or pre-computed impact
values. A modified BM25 is used for pre-computing the impact values. This
variant does not result in negative IDF values and is defined thus:

RSVd =
�

t∈q

log

�
N

dft

�
· (k1 + 1) tftd

k1

�
(1− b) + b×

�
Ld

Lavg

��
+ tftd

193

here, N is the total number of documents, and dft and tftd are the number of
documents containing the term t and the frequency of the term in document
d, and Ld and Lavg are the length of document d and the average length of
all documents. The empirical parameters k1 and b have been set to 0.9 and 0.4
respectively by training on the previous INEX Wikipedia collection.

In order to reduce the size of the inverted file, we always use 1 byte to store
term frequencies and pre-computed impact values. This limits to a maximum
value of 255. Term frequencies which have values larger than 255 are simply
truncated. Truncating term frequencies could have an impact on long documents.
But we assume long documents are rare in a collection and terms with high
frequencies in a document are more likely to be common words. Pre-computed
impact values are transformed using the Uniform.Geom quantisation method.

As shown in Figure 1, the index file has five levels of structure. In the top
level, original documents in compressed format can be stored. Storing original
documents is optional, but is required for focused retrieval.

����� ����� � �� ������� ����� ����� �����

����� ����� � ��� ��� ��� ��� ��� ���

	
����
��������

	
�������� ���

������������
	���
��	��������	��
��	��������������	
������

���

	
���

	
�������� ���

��� ���

���������������������������������

���

���

��� ���

�����
��
����������������
�	�

�����	�
�
�

���	������

��
�����
�
�

���	������

 ��	��������	�

�
���!���"

#�	��	�
����

��
���

�
���!���"

#�	��	�
����

��
���

���	
�

	
��� 	
����
�������� 	
����
��������

$���� $���� $����

��� ��� ��� ��� ��� ��� ��� ��� ���

Fig. 1: The index structures.

Instead of using the pair of <document number, term frequency> for post-
ings, we group documents with the same term frequency (or the impact value)
together and store the term frequency (or the impact value) at the beginning
of each group. By grouping and impacting order documents according to term
frequencies (or impact values), during query evaluation we can easily process
documents with potential high impacts first and prune the less important doc-

194

uments at the end of the postings list. The difference of document ids in each
group are then stored in increasing order and each group ends with a zero.
Postings are compressed with Variable Byte coding.

The dictionary of terms is split into two parts. Terms with the same prefix
are grouped together in a term block. The common prefix (only the first four
characters) is stored in the first level of the dictionary and the remaining are
stored in the term block in the second level. The number of terms in the block is
stored at the beginning of the block. The term block also stores the statistics for
the terms, including collection frequency, document frequency, offset to locate
the postings list, the length of the postings list stored on disk, the uncompressed
length of the postings list, and the position to locate the term suffix which is
stored at the end of the term block.

At the very end of the index file, the small footer stores the location of the
first level dictionary and other values for the management of the index.

3.2 Query Evaluation

At start-up, only the the first-level dictionary is loaded into memory by de-
fault. To process a query term, two disk reads have to be issued; The first reads
the second-level dictionary. Then the offset in that structure is used to locate
postings. The search engine also supports a command line option which allows
loading the whole index into memory, thus totally eliminating I/O at query time.

An array is used to store the accumulators. We used fixed point arithmetic
on the accumulators because it is faster than the floating point.

For last year INEX, we developed the topk algorithm for fast sorting of the
accumulators. It uses a special version of quick sort [17] which partially sorts
the accumulators. A command line option (lower-k) is used to specify how many
top documents to return.

Instead of explicit sorting of all the accumulators, we have developed an im-
proved version of topk. During query evaluation, it keeps track of the current top
documents and the minimum partial similarity score among the top documents.
The improved topk uses an array of pointers to keep track of top documents.
Two operations are required to maintain the top documents, i.e. update and in-
sert. If a document is in the top documents and gets updated to a new score,
the improved topk simply does nothing. If a document is not in the top k and
gets updated to a new score which is larger than the minimum score, the docu-
ment needs to be inserted into the topk. The insert operation is accomplished by
two linear scans of the array of pointers; (1) the first scan locates the document
which has the minimum score and swap the minimum document with the newly
updated document, (2) the second finds the current minimum similarity score.

Based on the topk algorithm, we have further developed a new algorithm
called heapk. It uses a minimum heap to keep track of the top documents. In-
stead of using the minimum similarity score, heapk uses bit strings to define if
a document is among the top k. The heap structure is only built once which is
when the number of top slots are fully filled. If a document is in the heap and
gets updated to a new score, heapk first linearly scans the array to locate the

195

document in the heap and then partially updates the structure. If a document is
not in the heap and the newly updated score is larger than the minimum score
(the first pointer) in the heap, heapk partially inserts the document into the
heap.

The upper-K command line option is used for static pruning of postings. It
specifies a value, which is the number of postings to be processed. Since only
part of the postings lists is processed, there is no need to decompress the whole
list. Our search engine partially decompress postings lists based on the worst
cast. Since we know the parameter value of upper-K and the biggest size of an
uncompressed impact value (1 byte), we can add these together to find the cut
point for decompression.

4 The Link-The-Wiki Track

In this year’s Link-the-Wiki track, the only corpus used was the Te Ara Ency-
clopedia of New Zealand. Wikipedia was abandoned as a corpus because it had
become too easy for algorithms to score highly according to the metrics used by
INEX. This is believed to be because of characteristics of Wikipedia that Te Ara
does not possess. Te Ara is therefore of interest because it presents challenges
that Wikipedia does not.

It is also of interest because its maintainers (New Zealand’s Ministry of Cul-
ture and Heritage) have asked for links to be incorporated into the official, public
version of their encyclopedia. This is an opportunity for these linking algorithms
to be tested in a real-world application.

Our participation in the Link-the-Wiki track is detailed in the rest of this
section. First, the differences between Wikipedia and Te Ara are outlined, as
well as the possible ways to develop linking algorithms for Te Ara. Then, our
own linking algorithm is explained, and its assessment results given. Finally, our
contribution to the Link-the-Wiki assessment process is explained.

4.1 Differences between Wikipedia and Te Ara

The most important difference between Wikipedia and Te Ara is that Te Ara
has no existing links. The Link-the-Wiki Track has always been to take a single
“orphan” (a document whose incoming and outgoing links have been removed)
and produce appropriate links to and from it, using the remainder of the corpus
(including any links that do not involve the orphan) as input if desired. This
meant that algorithms could statistically analyse the anchors and targets of the
existing links in the corpus, using that information to decide what kind of links
would be appropriate for the orphan document. Itakura’s algorithm (described
in Section 2) is an example of one that does so, and it has been consistently
successful on Wikipedia.

In Te Ara this is not possible. The problem is not merely the lack of links,
but that the encyclopedia was not written with links in mind. In any body of
writing there are a number of different ways to refer to a given topic, but in a

196

hypertext corpus such as Wikipedia, writers tend to use existing article titles as
“canonical names” to refer to the topics of those articles. The absence of this in
Te Ara renders an approach such as Geva’s algorithm less effective.

Wikipedia and Te Ara are also organised in very different ways. Te Ara is
primarily a record of New Zealand history, and the discussion of any given topic
may be spread among several articles, each of which may discuss other topics as
well. This is especially true of topics that are relevant to both the indigenous and
colonial inhabitants of New Zealand; and also topics that have been relevant over
a long period of time. In Wikipedia, even such wide-ranging topics are typically
centred around a single article.

4.2 Adapting to the differences in Te Ara

Without the possibility of using previous years’ best-performing algorithms di-
rectly on Te Ara, we were left with two options: we could either find a way
to “map” Wikipedia documents to their closest Te Ara counterparts, and then
translate Wikipedia links into Te Ara links; or we could devise a new linking
algorithm that did not rely on existing links at all.

We chose the latter option because, as discussed above, Te Ara is organised
very differently from Wikipedia, and finding a suitable mapping would have been
difficult. The algorithm we used is described below.

4.3 Algorithm

The main premise behind our linking algorithm is that Te Ara documents are
less “to-the-point” than Wikipedia documents (that is, a single Te Ara article
tends to touch on numerous related topics in order to “tell a story” of some sort),
and therefore it is important to take into account the immediate context of a
candidate anchor or entry-point, as well as the more general content of the two
documents being linked.

Three sets of files were created and indexed using our search engine (described
in Section 3). In the first, each document was contained within a separate file.
In the second, each section of each document was contained within a separate
file. The third was the same, but only included the section headings rather
than the body text of each section. In this way, we were able to vary the level of
target-document context that was taken into account when searching for possible
entry-points for a given link.

Within each source document, candidate anchors were generated. Every max-
imal sequence of consecutive words containing no stopwords or punctuation
marks was considered as a candidate anchor. The purpose of this was to avoid
using large portions of sentences as anchors merely because all the words appear
in the target document.

For each candidate anchor, various levels of context around the anchor (doc-
ument, paragraph, sentence, and clause) were extracted from the source docu-
ment. Each anchor context, as well as the anchor text itself, was used to query

197

for possible targets against whichever one of the three target file-sets provided
the level of context closest in size to the source context. If a particular document
(or section) appeared in the query results for the anchor text itself, and for at
least one of the chosen contexts, it was used as a target for that anchor. The
target was given a relevance score, which was a weighted average of the relevance
scores given by BM25 for each of the different contexts’ queries, based on our
estimate of their importance.

24 runs were produced by varying the following 4 parameters:

– Full-document anchor context Whether or not the entire source document of
an anchor was used as one of its contexts. If not, the largest level of context
was the paragraph containing the anchor.

– Relevance summation method How the total relevance score for a link was
added up. In one method, the relevance scores for a target, queried from all
levels of context and from the anchor itself, were simply averaged using the
predetermined weights. In the other method, the values averaged were the
squared differences between the relevance scores for each context and from
the anchor. The rationale for the second method was that if a target was
much more relevant to the anchor context than the anchor, then a nearby
anchor would probably be better than the current one.

– Relevance score contribution Whether all of the weights for the anchor con-
texts were non-zero, or just the weight for the largest context. When a con-
text has a weight of zero, it still contributes to the choice of targets for an
anchor, but not to their scores.

– Target contexts Which target contexts the anchor texts themselves were di-
rectly queried against (headings, sections or both).

4.4 Results

The results are incomplete because not all assessments have been received from
the assessors.

4.5 Assessment Tool

Apart from submitting runs to Link-the-Wiki, we also took over the task of
maintaining the assessment tool.

Improvements have been made to the assessment tool every year. However,
it is crucial to the quality of our results that the manual assessment process is
made as easy as possible — it is difficult for assessors to produce reliable results
if they cannot understand what they are being asked, if they do not have readily
available all the information that they need to make an assessment, if they need
to perform unnecessarily repetitive tasks to make assessments, or if the tool
responds too slowly. Therefore, we decided to make further improvements.

We rewrote the assessment tool from scratch in C++ using the cross-platform
GUI library GTK+, with SQLite databases for storing assessment information.

198

Fig. 2: An annotated screenshot of the 2010 assessment tool.

This has resulted in a tool that responds to the user’s requests quickly, even for
large documents containing many links to be assessed.

We also made some changes to the layout of the GUI. The previous GUI
only showed information about one target document at a time, whereas the new
one shows a list of the titles of all target documents to be assessed, and shows
the contents of the selected target document. Rather than having every link
assessed, as was done previously, we only ask the assessor to assess links whose
BEPs they have deemed relevant (the assumption being that an anchor cannot
be relevant if its BEP is not). Figure 2 shows a screenshot of the new GUI.

As well as improving the quality of assessments in 2010, we hope that our
changes to the assessment tool will reveal further areas for improvement in 2011.
Our assessment tool collects usage statistics, the analysis of which should help
us improve the tool.

Even before analysing these statistics we have been able to identify one pos-
sible area for improvement. It became clear while doing the assessment that the
process would have been greatly sped up if “hints” had been provided to the
assessor about whether a target was likely to be relevant. As the assessment for
a particular topic progressed, the assessor could build up a list of “relevant” and
“non-relevant” words for that topic, which would be highlighted whenever they
appeared in a candidate target document, just as the Ah Hoc tool does. The as-
sessor could ignore this if necessary, but it would help in many cases. However,
it would be very important to use such a feature carefully so as not to bias the
assessment process.

199

5 The Ad Hoc Track

5.1 Learning Stemmers

We previously learnt suffix rewriting stemmers using Genetic Algorithms. The
stemmer referred to as the Otago Stemmer is one created part way through this
work. Here we use it to address one problem with using assessments to learn
recall enhancing methods like stemming. Pooled collections rely on the result
lists of the participants to restrict the list of documents to assess. When we later
try to learn a recall enhancing method, finding documents which were not found
by any participant cannot be rewarded by increases in Mean Average Precision.
The goal of submitting runs with the Otago stemmer is to compare performance
with the baselines where we can add documents to the pool.

Measure Match this Replace with this
0 shi
2 ej
4 ngen
1 i dops
4 nes sy
0 ics e
0 ii sr
0 ito ng
4 rs tie
0 q
4 al
3 in ar
0 ice s
3 ic
4 rs tie
1 s
1 f uow
0 f uow
0 q
1 s
2 que sy
0 sl anu
2 e
1 f
3 ague dz
0 ean

Table 2: The Otago Stemmer. Rule sections are separated by lines.

The rules of the Otago stemmer are shown in Table 2. Each rule of the
stemmer uses a measure condition to ensure the length of the word is sufficient
for a suffix to exist. This is taken from the Porter stemmer, and is an attempt to

200

count the number of syllables. The measure of the word must be greater than or
equal to the value for the rule. As an efficiency measure, any word to be stemmed
must be longer than 3 characters. It also partitions the rules into sections. Only
the first successful rule in a section is used. This was learnt on the INEX 2008
Wikipedia collection.

5.2 Refining Stemmers

We sought to improve the sets of terms that stemmers conflate. Additional terms
found by the stemmer are only conflated if they are similar enough to the query
term. We found a threshold value for several measures using an adaptive grid
search on the INEX 2008 Wikipedia collection. Pointwise Mutual Information
(PMI) and the Jaccard Index were found to aid performance, and we submitted
runs using them to improve the Otago stemmer.

For both measures we used the term occurrences in documents as the prob-
ability distributions or sets to compare. For PMI, a threshold of 1.43 was found
to give the best improvement. Only terms with similarity scores greater or equal
to this were conflated. The PMI for two distributions x and y:

PMI(x, y) = log
P (x, y)

P (x)P (y)

The Jaccard Index used a parameter of 0.00023 and is given between two
sets of documents A and B by:

J(A, B) =
A ∩B

A ∪B

5.3 Experimental Results

For the INEX 2010 Ad Hoc track we submitted 7 runs. Their performance is given
in Table 3. These runs are combinations of stemmers and stemmer refinement.

The best run uses just the S Stripper. We find the Otago stemmer provides
decent performance, and Porter to hurt performance a lot. Our baseline of no
stemming occurs between the Otago and Porter stemmers.

Using PMI to improve the Otago stemmer proved successful. The Jaccard
index on the same was less so. On the S stripper the Jaccard Index was found
to harm performance excessively.

We forgot to submit one run, the PMI used on the S stripper. This run has
been performed locally and gives a slight decrease in performance to just using
the S stripper.

6 The Efficiency Track

6.1 Experiments

We conducted our experiments on a system with dual quad-core Intel Xeon
E5410 2.3 GHz, DDR2 PC5300 8 GB main memory, Seagate 7200 RPM 500 GB
hard drive, and running Linux with kernel version 2.6.30.

201

Rank MAP Run Name Features
47 0.3012 v_sstem S Stripper
54 0.2935 v_otago_w_pmi Otago Stemmer with PMI refinement
58 0.2898 v_ostem_w_jts Otago Stemmer with Jaccard Index refinement
59 0.2894 v_otago_stem_1 Otago Stemmer
61 0.2789 v_no_stem No Stemming
74 0.2556 v_porter Porter Stemmer

105 0.1102 v_sstem_w_jts S Stripper with Jaccard Index refinement
Table 3: Stemming runs.

We conducted three sets of experiments, one for each of the topk, improved
topk, and heapk algorithms. For the sets of experiments on the original topk, we
used the same settings as our experiments conduced in INEX 2009. We want to
compare the performance of the original topk with our improved topk and heapk
algorithms.

The collection used in the INEX 2010 Efficiency Track is the INEX 2009
Wikipedia collection [23].

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11437080
Total Worlds 2347132312
Postings Size 1.2 GB

Dictionary Size 399 MB

(a)

Collection Size 50.7 GB
Documents 2666190

Avg Document Length 880 words
Unique Words 11186163
Total Worlds 2347132312
Postings Size 1.5 GB

Dictionary Size 390 MB

(b)
Table 4: (a) Summary of INEX 2009 Wikipedia Collection using term frequencies
as impact values and without stemming. (b) Summary of INEX 2009 Wikipedia
Collection using pre-computed BM25 as impact values and S-Striping for stem-
ming.

The collection was indexed twice, one for the original topk and one for im-
proved topk and heapk. For the original topk, term frequencies were used as
impact values, no words were stopped and stemming was not used. For the
improved topk and heapk, pre-computed BM25 similarity scores were used as
impact values and S-String stemming was used. Table 4a and 4b show the sum-
mary of the document collection and statistics for the index file.

The Efficiency Track used 107 topics in INEX Ad Hoc 2010. Only title was
used for each topic. All topics allow focused, thorough and article query evalua-
tions. For the Efficiency Track, we only evaluated the topics for article Content-
Only. During query evaluation, the terms for each topic were sorted in order of
the maximum impact values of the terms.

202

For the sets of experiments on the improved topk and heapk, the whole index
was loaded into memory, thus no I/O was involved at query evaluation time. For
the original topk, only first-level dictionary was loaded into memory at start-up.

For the three sets of experiments, we specified lower-k parameter with k =
15, 150 and 1500 as required by the Efficiency Track. For each iteration of the
lower-k, we specified the upper-K of 10, 100, 1 000, 10 000, 100 000, 1 000 000. In
total we submitted 54 runs. The lists of run IDs and the associated lower-k and
upper-K values are shown in Table 5. Officially we submitted the wrong runs
for the heapk. The runs has been corrected and are used in this paper and the
MAiP measures are generated using the official assessment tools.

Lower-k Upper-K Original topk Improved Topk Heapk
15 10 09topk-1 10topk-1 10heapk-1
15 100 09topk-2 10topk-2 10heapk-2
15 1000 09topk-3 10topk-3 10heapk-3
15 10000 09topk-4 10topk-4 10heapk-4
15 100000 09topk-5 10topk-5 10heapk-5
15 1000000 09topk-6 10topk-6 10heapk-6
150 10 09topk-7 10topk-7 10heapk-7
150 100 09topk-8 10topk-8 10heapk-8
150 1000 09topk-9 10topk-9 10heapk-9
150 10000 09topk-10 10topk-10 10heapk-10
150 100000 09topk-11 10topk-11 10heapk-11
150 1000000 09topk-12 10topk-12 10heapk-12
1500 10 09topk-13 10topk-13 10heapk-13
1500 100 09topk-14 10topk-14 10heapk-14
1500 1000 09topk-15 10topk-15 10heapk-15
1500 10000 09topk-16 10topk-16 10heapk-16
1500 100000 09topk-17 10topk-17 10heapk-17
1500 1000000 09topk-18 10topk-18 10heapk-18

Table 5: The lists of run IDs and the associated lower-k and upper-K values.

6.2 Results

This section talks about the evaluation and performance of our three sets of the
runs, obtained from the official Efficiency Track (except for the heapk).

Figure 3 shows the MAiP measures for the original topk, improved topk and
heapk. When upper-K has values of 150 and 1500, MAiP measures are much
better than the upper-K 15. In terms of lower-k, MAiP measures approach con-
stant at a value of 10 000. The best runs are 09topk-18 with a value of 0.2151,
10topk-18 with a value of 0.2304 and 10heapk-18 with a value of 0.2267 for the
three algorithms respectively.

203

The MAiP measures are about the same for the improved topk and heapk.
The subtle differences are when documents have the same similarity scores and
the order of these documents can be different between the improved topk and
heapk.

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●
●

15
 −

10

15
 −

10
0

15
 −

10
00

15
 −

10
 00

0

15
 −

10
0 0

00

15
 −

1 0
00

 00
0

15
0 −

 10

15
0 −

 10
0

15
0 −

 10
00

15
0 −

 10
 00

0

15
0 −

 10
0 0

00

15
0 −

 1
00

0 0
00

15
00

 −
10

15
00

 −
10

0

15
00

 −
10

00

15
00

 −
10

 00
0

15
00

 −
10

0 0
00

15
00

 −
1 0

00
 00

0

0
0.

05
0.

1
0.

15
0.

2
0.

25
M

Ai
P

● 09topk
10topk
10heapk

Fig. 3: MAiP measures for the original topk, improved topk and heapk.

The MAiP measures of the original topk are quite difference from the other
two algorithms. Using term frequencies as impact values have better MAiP mea-
sures when the values of lower-k and uppoer-K are small while pre-computed
BM25 impact values have better MAiP measures when upper-K has a value
larger than 10 000.

To have a better picture of the time cost for the three sets of the runs, we
plotted the total evaluation times (including both CPU and I/O times) of all
runs in Figure 4. The total times of both the improved topk and heapk are simply
the CPU costs since the index was load into memory.

For the original topk, the total times were dominated by the I/O times.
Regardless of the values used for lower-k and upper-K, the same number of
postings were retrieved from disk, thus causing all runs to have the same amount
of disk I/O.

We also plotted the CPU times of the original topk since we want to compare
it with the other algorithms in terms of CPU cost. The differences of the CPU
times between the original topk and the other two algorithms are the times taken
for decompression of the postings lists and sorting of the accumulators. First,

204

● ● ●
●

●

●

● ● ●
●

●

●

● ● ●
●

●

●

15
 −

10

15
 −

10
0

15
 −

10
00

15
 −

10
 00

0

15
 −

10
0 0

00

15
 −

1 0
00

 00
0

15
0 −

 10

15
0 −

 10
0

15
0 −

 10
00

15
0 −

 10
 00

0

15
0 −

 10
0 0

00

15
0 −

 1
00

0 0
00

15
00

 −
10

15
00

 −
10

0

15
00

 −
10

00

15
00

 −
10

 00
0

15
00

 −
10

0 0
00

15
00

 −
1 0

00
 00

0

10
0

21
00

41
00

61
00

81
00

10
10

0
12

10
0

M
illi

se
co

nd
s ● 09topk (total time)

09topk (CPU Time Only)
10topk
10heapk

Fig. 4: Efficiency comparison.

partial decompression was used in improved topk and heapk while the original
topk did not. Second, the original topk used a special version of quick sort to
partially sort all accumulators while the improved topk and heapk only keep
track of the top documents only the final top documents got sorted.

For the original topk, the value of lower-k has no effect on the CPU cost, and
values of 10 000 or above for upper-K causes more CPU usage.

For the improved topk, it performs the best when lower-k has a value of 15
and 150. However, for the set of the runs where the value of lower-k is 1500, the
performance of the improved topk grows exponentially. This is caused by the
linearly scans of the array of pointers to insert a new document into the top k.

For the runs when lower-k has a value of 15 and 150, the heapk has a small
overhead compared with the improved topk, especially when upper-K has a large
value. Well, the heapk performs the best when both lower-k and upper-K have
large values.

7 The Data Centric Track

The collection used in the INEX 2010 Efficiency Track is the 2010 IMDB collec-
tion. The collection was indexed twice. the first index used pre-computed BM25
similarity scores as the impact values and the second used pre-computer Diver-
gence similarity scores [24] as the impact values. For both indexes, no words
were stopped and S-String stemming was used. Table 6 shows the results.

205

Run ID MAgP MAiP MAP
DC-BM25 0.2491 0.1550 0.3397

DC-DIVERGENCE 0.1561 0.1011 0.2103
Table 6: Effectiveness measure for the Data Centric Track

8 Conclusion and Future Work

8.1 The Link-the-Wiki Track

We have generated a number of runs for Te Ara. Given the inapplicability of
Itakura and Geva’s algorithms to Te Ara (see Section 4.1), we believe that this
year’s results are a step in the right direction towards a successful solution of
what is still an unsolved problem: link recommendation in a corpus that has no
existing links.

8.2 The Ad Hoc Track

We find that the S stripper is hard to beat. However it is possible to use machine
learning to create a good stemmer. Furthermore such stemmers seem amenable
to improvement using collection statistics. Of those PMI is a good measure to
use. It was also found to be the best locally. This also confirms previous findings
that Porter can have a variable effect on performance. Improvement using term
similarity can also harm performance. We had seen this before when finding the
parameters to use, so perhaps that might have been the consequence for the
Jaccard Index. Of course, this refinement can only prevent terms from being
stemmed together, so using it on such a weak stemmer would be expected to not
do so well.

8.3 The Efficiency Track

We compared three of our query pruning algorithms. The original topk uses
a special version of quick sort to sort all accumulators and return the top k
documents. Instead of explicitly sorting all accumulators, the improved topk
keeps tracks of the current top k documents and finally the top k documents
are sorted and returned. Based on the improved topk, we have developed heapk
which essentially is a minimum heap structure. The heapk algorithm has small
overhead compared with the improved topk when the values of lower-k and
upper-K are small. However, the heapk outperforms the improve topk for large
values of lower-k and upper-K.

References

1. Huang, D., Xu, Y., Trotman, A., Geva, S.: Overview of inex 2007 link the wiki
track. In Fuhr, N., Kamps, J., Lalmas, M., Trotman, A., eds.: Focused Access to

206

XML Documents. Volume 4862 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2008) 373–387

2. Geva, S.: Gpx: Ad-hoc queries and automated link discovery in the wikipedia.
In Fuhr, N., Kamps, J., Lalmas, M., Trotman, A., eds.: Focused Access to XML
Documents. Volume 4862 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg (2008) 404–416

3. Porter, M.: An algorithm for suffix stripping. Program 14(3) (1980) 130–137
4. Spärck Jones, K.: Automatic Keyword Classification for Information Retrieval.

Archon Books (1971)
5. Xu, J., Croft, W.B.: Corpus-based stemming using cooccurrence of word variants.

ACM Trans. Inf. Syst. 16(1) (1998) 61–81
6. Jia, X.F., Trotman, A., O’Keefe, R.: Efficient accumulator initialisation. In: Pro-

ceedings of the 15th Australasian Document Computing Symposium (ADCS2010),
Melbourne, Australia (2010)

7. Trotman, A.: Compressing inverted files. Inf. Retr. 6(1) (2003) 5–19
8. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary

codes. Inf. Retr. 8(1) (2005) 151–166
9. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,

F.: The impact of caching on search engines. In: SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, New York, NY, USA, ACM (2007) 183–190

10. Jia, X.f., Trotman, A., O’Keefe, R., Huang, Z.: Application-specific disk I/O op-
timisation for a search engine. In: PDCAT ’08: Proceedings of the 2008 Ninth In-
ternational Conference on Parallel and Distributed Computing, Applications and
Technologies, Washington, DC, USA, IEEE Computer Society (2008) 399–404

11. Buckley, C., Lewit, A.F.: Optimization of inverted vector searches. (1985) 97–110
12. Moffat, A., Zobel, J.: Self-indexing inverted files for fast text retrieval. ACM Trans.

Inf. Syst. 14(4) (1996) 349–379
13. Tsegay, Y., Turpin, A., Zobel, J.: Dynamic index pruning for effective caching.

(2007) 987–990
14. Persin, M., Zobel, J., Sacks-Davis, R.: Filtered document retrieval with frequency-

sorted indexes. J. Am. Soc. Inf. Sci. 47(10) (1996) 749–764
15. Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early

termination. (2001) 35–42
16. Trotman, A., Jia, X.F., Geva, S.: Fast and effective focused retrieval. In Geva, S.,

Kamps, J., Trotman, A., eds.: Focused Retrieval and Evaluation. Volume 6203 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2010) 229–241

17. Bentley, J.L., Mcilroy, M.D.: Engineering a sort function (1993)
18. Persin, M.: Document filtering for fast ranking. (1994) 339–348
19. Moffat, A., Zobel, J., Sacks-Davis, R.: Memory efficient ranking. Inf. Process.

Manage. 30(6) (1994) 733–744
20. Moffat, A., Zobel, J., Klein, S.T.: Improved inverted file processing for large text

databases. (1995) 162–171
21. Anh, V.N., Moffat, A.: Random access compressed inverted files. Australian Com-

puter Science Comm.: Proc. 9th Australasian Database Conf., ADC 20(2) (Febru-
ary 1998) 1–12

22. Anh, V.N., Moffat, A.: Compressed inverted files with reduced decoding overheads.
(1998) 290–297

23. Schenkel, R., Suchanek, F., Kasneci, G.: YAWN: A semantically annotated
wikipedia xml corpus. (March 2007)

207

24. Amati, G., Van Rijsbergen, C.J.: Probabilistic models of information retrieval
based on measuring the divergence from randomness. ACM Trans. Inf. Syst. 20(4)
(2002) 357–389

208

Overview of the 2010 QA Track:

Preliminary results

Eric SanJuan1, Patrice Bellot1, Veronique Moriceau2, and Xavier Tannier2

1 LIA, Université d’Avignon et des Pays de Vaucluse (France)
{patrice.bellot,eric.sanjuan}@univ-avignon.fr
2 LIMSI-CNRS, University Paris-Sud 11 (France)

{moriceau,xtannier}@limsi.fr

Abstract. The INEX QA track (QA@INEX) in 2009 - 2010 aims to
evaluate a complex question-answering task using the Wikipedia. The set
of questions is composed of factoid, precise questions that expect short
answers, as well as more complex questions that can be answered by
several sentences or by an aggregation of texts from different documents.
This overview is centered on the long type answer QA@INEX sub track.
The evaluation methodology based on word distribution divergence has
allowed several summarization systems to participate. Lots of these sys-
tems generated a readable extract of sentences from top ranked docu-
ments by a state-of-the-art method. Some of the participants also tested
several methods of question disambiguation. They have been evaluated
on a pool of real questions from Nomao and Yahoo! Answers. Manual
evaluation, as well as short type question task, are still running.

1 Introduction

The INEX QA 2009-2010 track [1] aims to compare the performance of QA,
XML/passage retrieval and automatic summarization systems on the Wikipedia.
Two types of questions are considered. The first type is factual questions which
require a single precise answer to be found in the corpus if it exists. The second
type consists of more complex questions whose answers require the aggregation
of several passages. Passages might involve multi-document answer aggregation.

For both sets of questions, systems have to provide a ranked list of rel-
evant passages. This overview is centered on results obtained on aggregated
answers. Systems had to provide a document with a maximum of 500 words
exclusively made of passages from the document collection (the 2008 annotated
Wikipedia [2] used at INEX 2009-2010).

Systems have to make a selection of the most relevant information, the max-
imal length of the abstract being fixed. Focused IR systems can just return their
top ranked passages meanwhile automatic summarization systems by sentence
extraction need to be combined with a document IR engine.

The informative content of the resulting extracts has been evaluated by com-
paring their n-gram distributions with those from 4 relevant Wikipedia pages.
Readability evaluation of passages by participants is undergoing.

The track is still open to short type answer runs.

209

2 Set of Questions

There is a total of 345 questions.

2.1 Encyclopedic vs. general questions

231 questions are related to 2009 INEX ad-hoc topics. The remaining questions
come from commercial websites. The local search engine Nomao3 provided us
with a large pool of real questions submitted to their website. We have selected
a subset of these questions such that there exists at least a partial answer in
the Wikipedia 2008. Then we have mixed these questions with others from Ya-
hoo! Answers website4.

We considered three different types of questions: short single, short multiple
and long.

2.2 Short type questions

Those labeled short single or short multiple are 195 and both require short an-
swers, i.e. passages of a maximum of 50 words (strings of alphanumeric characters
without spaces or punctuations) together with an offset indicating the position
of the answer.

Short single questions should have a single correct answer, e.g. question 216:
Who is the last olympic champion in sabre?

whereas multiple type questions will admit multiple answers (question 209:
What are the main cloud computing service providers?).

For both short types, participants should give their results as a ranked list
of maximum 10 passages from the corpus together with an offset indicating the
position of the answer. Passages have to be self-contained to decide if the answer
is correct or not. Assessment for short questions takes into account the presence
of the correct answer within this list and its rank.

Among the 195 short type questions, 151 are related to 2009 ad-hoc topics
and 44 come from Nomao and Yahoo! Answers.

2.3 Long type questions

Long type questions require long answers up to 500 words that must be self-
contained summaries made of passages extracted from the INEX 2009 corpus.
Among the 150 long type questions, 80 are related to 2009 ad-hoc topics and
the remaining 70 come from Nomao and Yahoo! Answers.

An example of a long type question is (#196): What sort of health benefit

has olive oil?

3 http://en.nomao.com/
4 http://answers.yahoo.com/

210

3 Evaluation of long answers

3.1 Methodology

The informative content of the long type answers are evaluated by comparing
the several n-gram distributions in participant extracts and in a set of relevant
passages selected manually by organizers. We followed the experiment in [3] done
on TAC 2008 automatic summarization evaluation data. This allows to evaluate
directly summaries based on a selection of relevant passages.

Given a set R of relevant passages and a text T , let us denote by pX(w)
the probability of finding an n-gram w from the Wikipedia in X ∈ {R, T}.
We use standard Dirichlet smoothing with default µ = 2500 to estimate these
probabilities over the whole corpus. Word distributions are usually compared
using one of these functions:

– Kullback Leibler (KL) divergence:

KL(pT , pR) =
∑

w∈R∪T

pT (w)× log
2

pT (w)

pR(w)

– Jensen Shannon (JS) divergence:

JS(pT , pR) =
1

2
(KL(pT , pT∪R) +KL(pR, pT∪R))

In [3], the metric that obtained best correlation scores with ROUGE semi-
automatic evaluations of abstracts used in DUC and TAC was JS. However,
we have observed that JS is too sensitive to abstract size; therefore we finally
used KL divergence to evaluate informative content extracts from participants.

We used the FRESA package5 to compute both KL and JS divergences
between n-grams (1 ≤ n ≤ 4). This package also allows to consider skip n-grams.

Evaluating informative content without evaluating readability does not make
sense. It clearly appears that if readability is not considered then the best sum-
marizer would be the random summarizer on n-grams which certainly minimizes
KL divergence but produces incomprehensible texts.

The readability and coherence are evaluated according to “the last point of
interest” in the answer which is the counterpart of the “best entry point” in
INEX ad-hoc task. It requires a human evaluation where the assessor indicates
where he misses the point of the answers because of highly incoherent gram-
matical structures, unsolved anaphora, or redundant passages. This evaluation
is actually undergoing by participants. In the following results we evaluated
general readability on pools of 10 summaries.

5 http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html

211

3.2 Preliminary results

We received runs for long type questions from seven participants. All of these
participants generate summaries by sentence extraction. This helps readability
even if it does not ensure general coherence. Extracts made of long sentences
without anaphora are often more coherent but have higherKL scores. To retrieve
documents, all participants used the IR engine powered by Indri, available at
track resources webpage6.

The following preliminary results only take into account KL divergence on
long-type questions from Nomao and Yahoo! Answers. For each question we have
selected four highly relevant Wikipedia pages. The cumulative divergence is the
sum of KL scores between participant extracts and selected pages.

ID method unigrams bigrams 4 skip grams average readability

943 long sentences 1642.93 2252.28 2257.22 2050.81 good
857 question reformulation 1621.14 2234.57 2239.85 2031.85 average
98 focused IR 1599.29 2207.56 2212.49 2006.45 bad
92 MWT expansion 1617.35 2226.61 2231.56 2025.17 average
860 system combination 1617.6 2227.37 2232.43 2025.8 average
855 semantic expansion 1625.76 2235.21 2240.35 2033.77 average
557 JS minimization 1631.29 2237.61 2242.83 2037.24 average

Table 1. Cumulative KL divergence for best participant runs.

As expected, focused IR approach (98) using Indri minimizes KL divergence
but the resulting readability is bad. This system is the same than the one used
by the LIA in the Restricted Focused ad-hoc task. Meanwhile the system (943)
having best readability gets highest divergence scores. The most sophisticated
summary approach is the Cortex system (860) which reaches a compromise be-
tween KL divergence and readability. But query formulation to retrieve docu-
ments looks also important, the approach based on query enrichment with related
MultiWord Terms (92) automatically extracted from top ranked documents, gets
similar divergence scores. Surprisingly sentence JS minimization (557) does not
seem to minimize overall KL divergence.

4 Status of the track and ongoing work

We expect participants to mark “the less point of interest” in a pool of abstracts.
This will be done using a web interface. Simultaneously, participants will be in-
vited to point most relevant sentences. We will then compute precise readability
scores and alternative KL scores using only most relevant sentences.

The track remains open for short-type questions.

6 http://qa.termwatch.es/

212

References

1. Moriceau, V., SanJuan, E., Tannier, X., Bellot, P.: Overview of the 2009 qa track:
Towards a common task for qa, focused ir and automatic summarization systems.
In Geva, S., Kamps, J., Trotman, A., eds.: INEX. Volume 6203 of Lecture Notes in
Computer Science., Springer (2009) 355–365

2. Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A semantically annotated
wikipedia xml corpus. In Kemper, A., Schöning, H., Rose, T., Jarke, M., Seidl,
T., Quix, C., Brochhaus, C., eds.: BTW. Volume 103 of LNI., GI (2007) 277–291

3. Louis, A., Nenkova, A.: Performance confidence estimation for automatic summa-
rization. In: EACL, The Association for Computer Linguistics (2009) 541–548

213

LIA at INEX 2010: Ad Hoc, Book and Question
Answering Tracks

Romain Deveaud, Florian Boudin, Eric SanJuan and Patrice Bellot

Laboratoire Informatique d’Avignon - University of Avignon (CERI-LIA)
339, chemin des Meinajariès, F-84000 Avignon Cedex 9

firstname.lastname@univ-avignon.fr

Abstract. In this paper we describe our participation in the INEX 2010
Ad Hoc, Book and Question Answering tracks. In Ad Hoc and Book
tracks, we experimented language modeling retrieval approaches [7] with
different query expansion methods. We also propose a method for re-
ducing the effect of word hyphenations errors on book retrieval and we
experiment it on the Book track corpus.

1 Introduction

This year, LIA participated in three tracks: Ad Hoc, Question Answering (QA)
and Book tracks. Our interest in the Ad Hoc track relies on the special IR context
induced by Wikipedia. We wanted to check three points:

1. baseline IR system (state to the art systems used with default parameters)
perform quite well on the wikipedia.

2. Query Expansion based on simple n-gram frequency (tf) improves the results
on the wikipedia.

3. Ad Hoc restricted focus task can be handle using summarization methods
also useful for QA.

To prove the last point we submitted one run to each task using the same
system.

Our participation to Book track required much more effort. We wanted to
try different Query Expansion methods on this corpus. For this purpose, we used
Wikipedia as an external resource, and a state-of-the-art dependencies parser [1].
We experimented several term extraction methods for Query Expansion, and fi-
nally observed that the entropy method seemed to give better results on previous
year qrels. We also observed that hidden hyphenations in texts were downgrad-
ing our results, we then set up a specific parser to solve them and produced a
version of the corpus almost without these errors.

The rest of the paper is organized as follows. In Section 2, we present our
first approch for the Ad Hoc and QA tracks. Then, we further develop the
improvements we introduced and we conclude this section with a common focus
Information Retrieval system used in both the Ad Hoc Restricted Focus and
the QA Long Type Answers tasks. Finally, the Section 3 is devoted to the Book
Track, starting by measuring the impact of word hyphenations correction over
book retrieval and setting up two different Query Expansion processes.

214

2 Ad Hoc and Question Answering Tracks

This year we wanted to move away from probabilistic models in Information Re-
trieval (such as BM25 [9]) and experiment Language Modeling (LM) approaches.
We also wanted to concentrate on Focused retrieval which is an interesting chal-
lenge. For these purposes, we chose Indri, which is part of the Lemur toolkit1.
Indri is a search engine which combines inference network to language model [7],
and also provides XML indexing.

We submitted 3 baseline runs for Document retrieval, 2 runs for the Relevance
in Context and Restricted Relevance in Context tasks each and one run for the
Restricted Focused task. These runs are very similar, hence we only present the
best ones for each task.

2.1 Baseline

This run only performed on Document retrieval, not Focused retrieval. Queries
are generated by combining the words from the <title> and <phrasetitle>

fields of the topics. No weight repartition nor normalization are applied to the
terms of the queries. Therefore, given a sequence of query words Q = (q1, ..., qn),
the scoring function of a document D is defined as follow :

sQ(D) =
n∏

i=1

p(qi|D)
1
n (1)

Where p(qi|D) is estimated using Dirichlet smoothing and C is the entire
collection :

p(qi|D) =
tfqi,D + µ× p(qi|C)

|D|+ µ
(2)

We set the µ parameter to 2500, which is the default value proposed by Indri.
Results for Document retrieval on the Efficiency task are reported in Table 1. For
readability we will only present the N top results, where N − 1 is our position.
In other words, we present the 3 top systems when we are ranked second and
the 4 top systems when we are third.

We can see that the approach of the Peking University is by far more effective
than the others. However, our run has roughly the same MAP score than the
University of Otago’s one. The run submitted by the LIP6 also shows comparable
results.

2.2 Query Expansion with Pseudo-Relevance Feedback

This year we decided to concentrate on Focused Retrieval. Hence, we modified
the prior baseline and we applied a simple passage selection strategy : we only
select the first <section> field of each retrieved document. Indeed, we observed

1 www.lemurproject.com

215

Table 1. Document retrieval results on the Efficiency task in terms of Mean Average
Precision (MAP).

Institute Runs MAP

Peking University 38P167 0.3385
University of Otago OTAGO-2010-10topk-18 0.2912
LIA - University of Avignon I10LIA4ElBas 0.2906
University Pierre et Marie Curie - LIP6 LIP6-OWPCRefRunTh 0.2801

that the first <section> field correspond to the first paragraph of the Wikipedia
page. This paragraph usually provides a general description of the topic of the
Wikipedia page, and is highly informative. This is why we think they can always
be considered as important passages inside relevant documents.

Apart from the passage selection, we also expand the queries with relevant
terms selected by the well-known Pseudo-Relevance Feedback technique [2]. We
retrieve the 10 top documents with a baseline query (see Section 2.1) and extract
the 50 most frequent unigrams, the 20 most frequent 2-grams and the 10 most
frequent 3-grams from the aggregated documents.

We keep the same notation as in (1), with Q = (q1, ..., qn) as the sequence
of baseline query terms, and Tuni = (tuni,1, ..., tuni,50), Tbi = (tbi,1, ..., tbi,20) and
Ttri = (ttri,1, ..., ttri,10) the sequences of extracted terms. The scoring function
is then defined as :

sQ(D) =

(
n∏

i=1

p(qi|D)
1
n

) X
X+Y

×

((
50∏

i=1

p(tuni,i|D)
1
i

)
(3)

×

 20∏
j=1

p(tbi,j |D)
1
j

×

(
10∏

k=1

p(ttri,k|D)
1
k

)) Y
X+Y

Where p(·|D) are estimated using (2), X is the weight of the baseline query and
Y is the weight of its expansion. For the following runs we set the weights to
X = 3 and Y = 2.

Results for Focused retrieval on the Relevance in Context and Restricted
Relevance in Context tasks are reported in Table 2 and Table 3.

The aim of the Relevance in Context task is to retrieve relevant passages,
no matter the length of these passages. We can see that our approach ranks
third, with scores comparable to the Peking University and the Queensland
University of Technology. The ENSM-SE’s system ranks first and shows a large
improvement over the other systems.

The aim of the Restricted Relevance in Context task is the same as the
Relevance in Context task, except that the passage lengths are limited to 500

216

Table 2. Focused retrieval results on the Relevance in Context task in terms of Mean
Average Precision (MAP).

Institute Runs MAP

ENSM-SE Emse303R 0.1977
Peking University 32p167 0.1615
LIA - University of Avignon I10LIA1FTri 0.1589
Queensland University of Technology Reference 0.1522

Table 3. Focused retrieval results on the Restricted Relevance in Context task in terms
of Mean Average Precision (MAP).

Institute Runs MAP

Peking University 32p167 0.1580
LIA - University of Avignon I10LIA2FTri 0.1542
Queensland University of Technology Reference 0.1509

characters. For these runs, we only select the 500 first characters of the first
<section> field of the retrieved documents. If the field’s text size below than
500 characters, the system returns the entire field. We can see in Table 3 that
this approach performed well and is ranked second. It also has comparable scores
with the Peking University’s system which is ranked first.

2.3 A summarization system for restricted focus and QA with long
answers

Enertex system applies statistical physics to Natural Language Processing. The
first step consists of retrieving the top 100 Wikipedia pages by using the Baseline
we introduced in Section 2.1. Then, these pages are segmented into sentences
with Tree-Tagger2. A first subset of sentences is defined by selecting the sen-
tences that contains at least one term from the query. A second subset is de-
fined by selecting the sentences that contains at least one term from a sentences
belonging to the first subset. The union of these two subsets forms a set of rele-
vant sentences which are ranked by an entropy measure. Considering a sentence
S = (w1, ..., wn), the entropy measure we use is defined as follow:

E(S) = −
n∑

i=1

p(wi) log2(p(wi)) (4)

Where the p(wi) are computed within the whole set of selected sentences.
For the Question Answering track, the system returns this ranked list of

sentences until the allowed limit number of words is reached. The preliminary
results of the QA track show that this approach obtained the scores in term of
information content, but the readability of the generated extracts needs to be
improved.

2 www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

217

For the Ad Hoc Restricted Focused task, we built extraction patterns using
our set of sentences. Each sentence was considered as a word sequence with pos-
sible insertions, resulting in a pattern. Every passage in the collection matching
at least one of the constructed patterns was retrieved using Indri and a Language
Modeling approach. The results show that this approach achieves the best preci-
sion overall at low recall, but its effectiveness drops very quickly when the recall
increases. Results are presented in Table 4.

Table 4. Focused retrieval results on the Restricted Focused task in terms of Mean
Average Precision (MAP).

Institute Runs MAP

University Pierre et Marie Curie - LIP6 LIP6-OWPCparentFo 0.4125
Doshisha University DURF10SIXF 0.3884
LIA - University of Avignon LIAenertexTopic 0.3434
Peking University 40p167 0.3370

3 Book Track

This is our first participation in one of the INEX Book tracks. Several studies in
Book Search tend to show that indexing specific parts (e.g. headers, titles or table
of contents) is nearly as effective as indexing the entire content of books [6, 10].
We hypothesized that difficulty for retrieval models to cope with these documents
could be partially due to the Optical Character Recognition (OCR) process
used to generate the machine-encoded text. Errors are generally introduced in
this process, increasing the difficulty for retrieval models to deal with these
documents.

Hyphenated words are one source of errors. They are introduced to control
line wrapping in the physical books, but they will be interpreted, if no correc-
tion is applied, as two different words at the indexing step. For example, the
hyphenated word “inter-[line break]polation”, will be indexed as “inter-” and
“polation”.

First, we investigated the effects of word hyphenation correction on the INEX
2009 Book Track test collection. Second, we present different baselines and also
more complex models involving a query expansion process using Wikipedia as
an external resource following the work by Koolen et al. [4]. As for the Ad Hoc,
all the runs we submitted use a language modeling (LM) approach to IR.

3.1 Word Hyphenation Correction

Although we observed a small amount of OCR errors in the corpus, there is a
large number of hyphenations. To tackle this problem, we decided to reconstruct
hyphenated words using a large lexicon made of 118,221 unique words extracted

218

from the English Gigaword corpus3. We evaluated the correction impact with
the official qrels and topics from the INEX 2009 Book Track, issued from the
relevance judgements collected by 9 assessors [3].

The correction algorithm iterates through each couple of successive lines and
generates word candidates from the last substring of the first line and the first
substring of the second line. The candidate word is then corrected if it occurs in
the lexicon.

The collection contains 613,107,923 lines, in which 37,551,834 (6,125%) were
corrected by our method. To measure how much book retrieval is impacted by
these corrections, we tested with three retrieval models. We use the embedded
stopword list along with the standard Porter stemmer. All these methods use a
LM approach to IR with different Dirichlet prior smoothing (µ) values. Queries
are generated from the <title> fields of the INEX 2009 Book Track topics, and
the number of retrieved books is set to 100. Results are reported in Table 5.

Despite the sizeable number of corrected words, the improvement is relatively
low even though it could be statistically significant if it was measured on twice
the number of queries. The large length of books (118,000 words on average)
also tends to reduce the errors introduced by some misspelled words. We used
the corrected version for all the runs we submitted.

Table 5. Book retrieval results on both initial and corrected INEX 2009 Book Track
corpus in terms of Mean Average Precision (MAP) and precision at 10 (P@10).

Model
Uncorrected data Corrected data

MAP P@10 MAP P@10

LM, µ = 2500 0.302 0.486 0.304 0.507
LM, µ = 1000 0.299 0.493 0.302 0.507
LM, µ = 0 0.244 0.443 0.243 0.450

3.2 Baselines

We submitted two simple models as baselines. Queries are treated as a bag of
words and retrieval is performed using a LM approach with µ set to 2000. The
first baseline (namely baseline 1) uses the content of the <query> fields of the
topics, while the second one (baseline 2) uses the content of the <fact> fields.

3.3 Query Expansion using Wikipedia

Several studies previously investigated the use of Wikipedia as an external cor-
pus for Query Expansion [5]. In their approach, Koolen et al. [4] extract useful
terms from Wikipedia pages to expand queries, and use them for Book Retrieval.

3 LDC Catalog No. LDC2007T07, Available at www.ldc.upenn.edu

219

Indeed, a page is selected by querying Wikipedia with the original query and
getting the page that match the query, or the best result. The well-known tf.idf
measure is then computed for each word of the selected Wikipedia page, and
the expanded query is formed by adding the top-ranked N words to the original
query. The idf values are computed within the whole test collection. They em-
ploy a simple term weighting method: the original query terms are weighted N
times more than the N added terms.

We started by expanding the baseline models described in Section 3.2. We
used the <wikiurl> field, when available, to get a Wikipedia page for each
topic. Otherwise we queried the Wikipedia search engine with the <query> of
the topic and we kept its best result. Terms contained in the upper part of
the Wikipedia page (small introductory summary) are selected to expand the
queries. Two runs, one for each baseline, were submitted: baseline 1 wikifact,
baseline 2 wikifact.

In the following runs, we used the <query> field as the original query. We
also noticed that the <fact> field was most of the time a cut-and-paste sentence
from a book, therefore we used it as a first query expansion. Therefore, given a
sequence of query terms Q = (q1, ..., qk), a sequence of fact terms F = (f1, ..., fm)
and a list of weighted terms TQ = {(t1, w1), ..., (tn, wn)} extracted from related
Wikipedia pages, we shall rank books according to the following scoring function
∆Q(D):

∆Q(D) =

(
k∏

i=1

pD(qi)
1
k

) X
X+Y +Z

×

(
m∏

i=1

pD(fi)
1
m

) Y
X+Y +Z

×

(
n∏

i=1

pD(ti)
wi∑n

j=1
wj

) Z
X+Y +Z

where pD(q) is estimated using Dirichlet smoothing (2), with µ = 2500.
Here, we couldn’t learn an appropriate weighting scheme for the X, Y and Z

weights, so they were set empirically. We gave the same weight to the <title>

and the <fact> fields (X = Y = 4), whereas the expansion terms were weighted
half (Z = 2). We use these weights for all the runs featuring Wikipedia query
expansion.

In the following runs, we split the Wikipedia pages into chunks with Tree-
Tagger. Therefore, a term can be composed of one or many words.

Fact query tfwiki Run In this run, the terms from the associated Wikipedia
page are ranked by tf , and the top 10 ones are selected for the expansion. Their
scores are also normalized inside the expansion in order to weight appropriately
the important words.

220

Fact query tfidfwiki Run This run is practically the same as above, except
that we rank the terms by tf.idf , where the idf is computed whithin the whole
collection. The scores are also normalized and used in the expansion.

Fact query entropy Run This run is similar to the fact query tfidfwiki

run but the term selection measure is only computed within the associated
Wikipedia page. We use the entropy measure defined in the Section 2.3 (4).

Fact query 10bestswiki Run This run is a sort of query expansion baseline.
Indeed we didn’t normalized the scores inside the expansion and the selected
terms are words and not chunks from Tree-Tagger. As for the prior runs, the 10
most frequent words are selected for the expansion.

The results for the Book Track are not currently available. We however exper-
imented our approach with the topics and the qrels from the INEX Book Track
2009, and the entropy term selection measure seems to lead to better results.

3.4 Using the Stanford Parser

In these models, we consider multiword phrases. It is clear that finding the
exact phrase “New York” is a much stronger indicator of relevance than just
finding “New” and “York” scattered within a document. We use Metzler and
Croft’s Markov Random Field model [8] to integrate that. In this model three
features are considered: single term features (standard unigram language model
features), exact phrase features (words appearing in sequence) and unordered
window features (require words to be close together, but not necessarily in an
exact sequence order). Features weights are set according to the authors’s recom-
mendation. Multiword phrases are detected using the Stanford parser [1]. In this
work, we use the typed dependency representation of the <fact> fields to extract
complex noun phrases (e.g. “london daily mail”, “sioux north american shields”
or “symphony no 3”). The submitted run is named fact stanford deps.

4 Conclusions

In this paper we experimented Focused retrieval with a language modeling ap-
proach and traditional query expansion with Pseudo-Relevance Feedback. This
year, this approach proved its efficiency and robustness, and it encourages us to
further explore this path. We also proposed to enhance Book Search performance
by correcting word hyphenations. Although we cannot see a significant improve-
ment on a Book Retrieval task, we expect that this approach can perform better
in focused search tasks such as page or extent retrieval. We plan to extend this
study when the qrels of the INEX 2010 Book track will be available.

221

References

1. M.C. De Marneffe, B. MacCartney, and C.D. Manning. Generating typed depen-
dency parses from phrase structure parses. In Proceedings of LREC’06 conference,
2006.

2. D. Harman. Relevance feedback revisited. In Proceedings of the SIGIR’92 confer-
ence, pages 1–10, 1992.

3. G. Kazai, A. Doucet, M. Koolen, and M. Landoni. Overview of the INEX 2009
Book Track. Focused Retrieval and Evaluation, pages 145–159, 2010.

4. M. Koolen, G. Kazai, and N. Craswell. Wikipedia pages as entry points for book
search. In Proceedings of the WSDM’09 conference, pages 44–53, 2009.

5. Y. Li, W.P.R. Luk, K.S.E. Ho, and F.L.K. Chung. Improving weak ad-hoc queries
using wikipedia as external corpus. In Proceedings of the SIGIR’07 conference,
pages 797–798, 2007.

6. W. Magdy and K. Darwish. Book search: indexing the valuable parts. In Proceeding
of the BooksOnline’08 workshop, pages 53–56, 2008.

7. D. Metzler and W. B. Croft. Combining the language model and inference network
approaches to retrieval. Inf. Process. Manage., 40:735–750, September 2004.

8. D. Metzler and W.B. Croft. A Markov random field model for term dependencies.
In Proceedings of SIGIR’05 conference, pages 472–479, 2005.

9. S. Robertson and K. Sparck Jones. Relevance weighting of search terms, pages
143–160. Taylor Graham Publishing, London, UK, UK, 1988.

10. H. Wu, G. Kazai, and M. Taylor. Book search experiments: Investigating IR meth-
ods for the indexing and retrieval of books. Advances in Information Retrieval,
pages 234–245, 2008.

222

The GIL-UNAM-3 summarizer: an experiment
in the track QA@INEX’10

Edmundo-Pavel Soriano-Morales, Alfonso Medina-Urrea, Gerardo Sierra
and Carlos-Francisco Méndez-Cruz

Instituto de Ingenieŕıa
Universidad Nacional Autónoma de México, Mexico.

{esorianom,amedinau,gsierram,cmendezc}@iingen.unam.mx}

http://www.iling.unam.mx

Abstract. In this paper we describe the GIL-UNAM-3 summarizer,
which extracts utterances from a set of documents retrieved by means
of synonym modified queries. That is, we modify each query by obtain-
ing from the WordNet database word synonyms for each of its words.
The queries are provided by the INEX@QA 2010 task. The results of the
experiment are evaluated automatically by means of the FRESA system.

Key words: INEX, Automatic summarization system, Question-Answering sys-
tem, WordNet synonyms, GIL-UNAM-3 summarizer, FRESA system.

1 Introduction

A wide variety of text extraction techniques for summarizing documents exists
(see, for instance, [4, 5]). Our experience with summarization systems has in-
cluded mainly word information content, sentence or utterance position, and
standard deviation of utterance position measurements ([1–3]). In this paper,
we explore the implementation of a summarizer based on a) query enrichment
by means of word synonyms and b) token occurrence in both the query and the
document summarized. We call this system the GIL-UNAM-3 summarizer.

This system is evaluated in the context of the question-answering task of the
INEX@QA 2010 track,1 which provides questions either with short answers or
with complex answers dealing with one or more utterances, possibly very long
ones. Our summarizer is proposed as a tool for dealing with an experiment on
this second challenge.

The corpus used contains all English texts of Wikipedia. The idea is to re-
trieve relevant documents by means of synonym enriched queries. The documents
are retrieved by the search engine INDRI.2 Then, by using the GIL-UNAM-3
summarizer, we provide answers which are extracts from these retrieved docu-
ments. Each extract has no more than 500 words. We then evaluate the answers
automatically by means of the FRESA system ([6–8]).

1 http://www.inex.otago.ac.nz/
2 http://www.lemurproject.org/indri/

223

The organization of this paper is as follows: in Section 2 we give details
on the methodology behind the summarizer proposed; in Section 3 we present
the algorithm used in order to modify queries; the experimental settings and
results are presented in Section 4; and, finally, in Section 5, we briefly present
our conclusions and future work.

2 The GIL-UNAM-3 summarizer

The GIL-UNAM-3 summarizer is an utterance extraction system for single-
documents. The method proposed deals with two key aspects: a document rep-
resentation scheme and an utterance weighting procedure. The former is accom-
plished by vector representation and the latter by means of a greedy optimiza-
tion algorithm. The summary is build by concatenating utterances exhibiting
the highest weightings according to the algorithm. In order to accomplish this,
the GIL-UNAM-3 summarizer is composed of the following stages: document
transformation to vector representation, calculation of utterance weightings, and
summary generation.

In the first stage, a lemmatizer (stemmer) and a stop-list, both tailor-made
for the English language, are used in order to filter the document tokens so that
same-root forms are conflated and function words are eliminated.

In the second stage, the optimization algorithm is applied to build a matrix
and to estimate utterance weightings. These weightings are calculated by means
of the following two values:

1. Cosine measurements of the angles related between each utterance vector
and the modified query vector. These values are normalized to fall in the
interval [0,1].

2. Normalized word frequencies in both the document and the modified query
(also in [0,1]).

Furthermore, each utterance weighting is simply the arithmetic mean of both
of these values calculated for each utterance, which is also a value in the interval
[0,1].

In the last stage, the relevant utterances, those with the highest weightings,
are extracted and concatenated in order to build the summary.

3 Query Modification

To modify the queries, all content words in the original query were replaced
by those synonyms found in the synsets of the lexical database WordNet.3 In
fact, since reliance on WordNet for obtaining synonyms is questionable, we are
actually dealing with candidate synonyms rather than real synonyms.

The algorithm for replacing each word of the question with the first different
word found in the synsets obtained from WordNet was implemented with Python

3 http://wordnet.princeton.edu/

224

2.7,4 using the Natural Language Toolkit (NLTK)5 suite of libraries. This allows
fast tokenization and easy access to the WordNet database.

The steps of the algorithm are:

1. For each query:

(a) Tokenize the original query via regular expressions keeping the order of
appearance of each token.

(b) Remove all tokens that contain non alphabetic characters. Also remove
tokens contained in a stoplist.

(c) For each remaining token:

i. Search in WordNet the token and keep the first different word found
in the synsets. this word will be the new token to be exchanged with
the original one.

(d) Replace the old tokens from the original query with the new ones, keeping
the same order of appearance.

This can be also described in pseudocode:

Input: List of original queries OQ
Output: List of modified queries MQ
foreach originalquery ∈ OQ do

OriginalTokens← Tokenize(originalquery) ;
NotFunctional← RemoveFunctionalTokens(OriginalTokens);
foreach token ∈ NotFunctional do

Synonym← GetSynonymFromWordNet(token);
NewTokens += Synonym;

end
ModifiedQuery ← ReplaceTokens(OriginalTokens, NewTokens);
NewQueries += ModifiedQuery;

end
OQ← NewQueries;
return OQ;

Algorithm 1: ModifyOriginalQueries(OQ)

The most interesting method, GetSynonymFromWordNet, is described
also:

4 http://www.python.org/about/
5 http://www.nltk.org/

225

Input: token T
Output: synonym S
Result← LookupWordInWordNet(T);
S ← T ;
if Result is not empty then

foreach synset ∈ Result do
foreach word ∈ synset do

if word 6= T then
S ← word;
return S;

end

end

end

else
return S;

Algorithm 2: GetSynonymFromWordNet(T)

4 Experiments Settings and Results

As mentioned above, in order to evaluate the performance of the GIL-UNAM-
3 summarizer, applied on the INEX@QA corpus, we used the FRESA system,
which does not rely on human produced summaries or human validation. The
results of the experiment can be observed in Table 1. Values represent divergence
of the summaries with respect to the original documents. On the one hand,
the random summaries (unigram and 5-gram) exhibit smaller divergence values
than our summaries. However, these summaries are unintelligible (given their
randomness).

Table 1. FRESA results for modified query number 2009071

Distribution type unigram bigram with 2-gap Average

Baseline summary 14.46978 22.27342 22.19415 19.64579

Empty baseline 19.32973 27.98158 27.87586 25.06239

Random unigram 11.94329 20.80448 20.57957 17.77578

Random 5-gram 10.777 18.08401 18.30523 15.72208

Submitted summary 13.92082 21.7732 21.7724 19.15548

On the other hand, it can be observed that all divergence values of the sum-
maries generated by our summarizer (the submitted ones) are somehow smaller
than the values of the baseline and noticeably smaller than those of the empty
baseline summaries (which consists of the words in the original documents not
included in our summaries).

226

5 Conclusions

In this brief paper, we have presented an experiment on the document sets
made available during the Initiative for the Evaluation of XML Retrieval (INEX)
20106, in particular on the INEX 2010 QA Track (QA@INEX) http://www.

inex.otago.ac.nz/tracks/qa/qa.asp.
We have described the GIL-UNAM-3 summarizer, which extracts utterances

from a set of documents retrieved by means of synonym modified queries. That
is, we obtain from the WordNet database word synonyms for each word of said
query. The system applies several utterance selection metrics in order to extract
those most likely to summarize a document; namely, normalized cosine measure-
ments and normalized word frequencies. As mentioned before, the queries are
provided by the INEX@QA 2010 task. The results of the experiment are eval-
uated automatically by means of the FRESA system. Interestingly, our system
performs somehow better than the baselines.

Many adjustments can be made to this experiment. For instance, as future
work, it would be interesting to modify the queries by adding synonyms, rather
than replacing the query words by them, like it was done here.

References

1. Méndez C, Carlos F and Medina U, Alfonso, “Extractive Summarization Based on
Word Information and Sentence Position”, Computational Linguistics and Intelli-
gent Text Processing, CICLing 2005, 653–656, Springer, Lecture Notes in Computer
Science, 3406.

2. Gutiérrez Vasques, M Ximena, Sistema de resumen extractivo automático, Facultad
de Ingenieŕıa, UNAM, Mexico, 2010.

3. Medina U, Alfonso, “De la palabra gráfica al texto: sobre la extracción de enun-
ciados para el resumen automático”, In: Vázquez Laslop, M E and Zimmermann,
Klaus and Segovia, Francisco, eds., De la lengua por sólo la extrañeza: estudios de
lexicoloǵıa, norma lingǘıstica, historia y literatura en homenaje a Luis Fernando
Lara, El Colegio de México, Mexico, forthcoming.

4. Mani, Inderjeet and Maybury, Mark T, Automatic Text Summarization, The MIT
Press, 1999.

5. Weiss, Sh M and Indurkhya, N and Zhang, T and Damerau, F, Text Mining. Pre-
dictive Methods for Analizing Unstructured Information, Springer, 2005.

6. Saggion, H and Torres-Moreno, J M and da Cunha, I and SanJuan, E, and
Velásquez-Morales, P, Multilingual Summarization Evaluation without Human Mod-
els, Proceedings of the 23rd International Conference on Computational Linguistics,
COLING 2010, Beijing, 2010.

7. Torres-Moreno, J M and Saggion, H and da Cunha, I and SanJuan, E, Summary
Evaluation with and without References, Polibits Research Journal on Computer
Science and Computer Engineering and Applications, 42, 2010.

8. Torres-Moreno, J M and Saggion, H and da Cunha, I and Velázquez-Morales, P
and SanJuan, E, Évaluation automatique de résumés avec et sans référence, 17e
Conférence sur le Traitement Automatique des Langues Naturelles, TALN, Mon-
treal, 2010.

6 http://www.inex.otago.ac.nz/

227

The Cortex automatic summarization system at
the QA@INEX track 2010

Juan-Manuel Torres-Moreno and Michel Gagnon

École Polytechnique de Montréal - Département de génie informatique
CP 6079 Succ. Centre Ville H3C 3A7 Montréal (Québec), Canada.

juan-manuel.torres@univ-avignon.fr,michel.gagnon@polymtl.ca

Abstract. The Cortex system is constructed of several different sen-
tence selection metrics and a decision module. Our experiments have
shown that the Cortex decision on the metrics always scores better than
each system alone. In the INEX@QA 2010 task of Long Questions, Cor-
tex strategy system obtained very good results in the automatic evalua-
tions FRESA.

Key words: INEX, Automatic summarization system, Question-Answering sys-
tem, Cortex.

1 Introduction

Automatic summarization is indispensable to cope with ever increasing volumes
of valuable information. An abstract is by far the most concrete and most rec-
ognized kind of text condensation [1]. We adopted a simpler method, usually
called extraction, that allow to generate summaries by extraction of pertinence
sentences [2, 3]. Essentially, extracting aims at producing a shorter version of
the text by selecting the most relevant sentences of the original text, which we
juxtapose without any modification. The vector space model [4, 5] has been used
in information extraction, information retrieval, question-answering, and it may
also be used in text summarization. Cortex1 is an automatic summarization
system, recently developed [6] which combines several statistical methods with
an optimal decision algorithm, to choose the most relevant sentences.

An open domain Question-Answering system (QA) has to precisely answer a
question expressed in natural language. QA systems are confronted with a fine
and difficult task because they are expected to supply specific information and
not whole documents. At present there exists a strong demand for this kind of
text processing systems on the Internet. A QA system comprises, a priori, the
following stages [7]:

– Transform the questions into queries, then associate them to a set of docu-
ments;

1 COndenss et Rsums de TEXte (Text Condensation and Summarization).

228

– Filter and sort these documents to calculate various degrees of similarity;
– Identify the sentences which might contain the answers, then extract text

fragments from them which constitute the answers. In this phase an analysis
using Named Entities (NE) is essential to find the expected answers.

Most research efforts in summarization emphasize generic summarization [8–
10]. User query terms are commonly used in information retrieval tasks. How-
ever, there are few papers in literature that propose to employ this approach
in summarization systems [11–13]. In the systems described in [11], a learning
approach is used (performed). A document set is used to train a classifier that
estimates the probability that a given sentence is included in the extract. In [12],
several features (document title, location of a sentence in the document, cluster
of significant words and occurrence of terms present in the query) are applied to
score the sentences. In [13] learning and feature approches are combined in a two
step system: a training system and a generator system. Score features include
short length sentence, sentence position in the document, sentence position in
the paragraph, and tf.idf metrics. Our generic summarization system includes a
set of ten independent metrics combined by a Decision Algorithm. Query-based
summaries can be generated by our system using a modification of the scoring
method. In both cases, no training phase is necessary in our system.

This paper is organized as follows. In Section 2 we explain the methodology
of our work. Experimental settings are results are presented in Section 3. Section
4 exposes the conclusions of the paper and the future work.

2 The CORTEX system

COndensation et Résumés de Textes (CORTEX) [14, 15] is a single-document
extract summarization system using an optimal decision algorithm that com-
bines several metrics. These metrics result from processing statistical and infor-
mational algorithms on the document vector space representation.

The INEX 2010 Query Task evaluation is a real-world complex question
(called long query) answering, in which the answer is a summary constructed
from a set of relevant documents. The documents are parsed to create a corpus
composed of the query and the the multi-document retrieved by Indri.

The idea is to represent the text in an appropriate vectorial space and ap-
ply numeric treatments to it. In order to reduce complexity, a preprocessing is
performed to the topic and the document: words are filtered, lemmatized and
stemmed.

The CORTEX system can use up to Γ = 11 metrics [16] to evaluate the
sentence’s relevance.

– The frequency of words (F).
– The overlap between the words of query (R).
– The entropy the words (E).
– The shape of text (Z).
– The angle between the topic and the sentence (A).

229

– The sum of Hamming weights of words per segment times the number of
different words in a sentence.

– The sum of Hamming weights of the words multiplied by word frequencies.
– ...

The specific similarity measure [17] between the query and the corpus allows
us to re-scale the sentence scores according to the relevance of the document
from which they are extracted. This measure is the normalized scalar product of
the Tf-Idf vectorial representations (vd, wt) of the document d and the topic t.

Similarity(t, d) =

∑
vd.wt√∑

vd
2 +

∑
wt

2

The overlap assigns a higher ranking for the sentences containing topic words
and makes selected sentences more relevant. The overlap is defined as the nor-
malized cardinality of the intersection between the topic word set T and the
sentence word set S.

Overlap(T, S) =
card(S ∩ T)

card(T)

The system scores each sentence with a decision algorithm which relies on
the normalized metrics. Two averages are calculated, a positive λs > 0.5 and
a negative λs < 0.5 tendency (the case λs = 0.5 is ignored). The following
algorithm combines the vote of each metric:

s∑
α =

Γ∑
v=1

(||λvs || − 0.5); ||λvs || > 0.5

s∑
β =

Γ∑
v=1

(0.5− ||λvs ||); ||λvs || < 0.5

Γ is the number of metrics and v is the index of the metrics. The value given
to each sentence s is calculated with:

if(
s∑
α >

s∑
β)

then Scorecortexs = 0.5 +
∑s

α/Γ : retain s
else Scorecortexs = 0.5−

∑s
β/Γ : not retain s

CORTEX will be used as a user-oriented multi-document summarization
system by using two parameters : the topic-document similarity and the topic-
sentence overlap. The CORTEX system is applied to each document of a topic
set and the summary is generated by concatenating higher score sentences.

230

The final score of a sentence s from a document d and a topic t is the following:

Score = α1 Score
cortex
s,d + α2 Overlaps,t

+α3 Similarityd,t;∑
i αi = 1

3 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX) 20102, in particular on the INEX 2010
QA Track (QA@INEX) http://www.inex.otago.ac.nz/tracks/qa/qa.asp.

To evaluate the efficacity of Cortex on INEX@QA corpus, we have used the
FRESA package [18–20]. FRESA package is disponible at web site: http://lia.
univ-avignon.fr/fileadmin/axes/TALNE/downloads/index_fresa.html.

INEX queries None pre-processing or modification was applied on queries set.
Cortex used the query as a title of a big document retrieved by Indri. Table 1
shows an example of the results obtained by Cortex systema using 50 documents
as input. The query that the summary should answer in this case was the number
2010111:

What is considered a beautiful body shape?.

This table presents Cortex results in comparison with an the INEX baseline
(Baseline summary), and three baselines, that is, summaries including random
n-grams (Random unigram) and 5-grams (Random 5-gram) and empty baseline.
We observe that our system is always better than Baseline summary and empty
baseline.

Table 1. Example of Cortex Summarization results.

Summary type 1-gram 2-gram SU2-gram FRESA Average

Baseline summary: 26.67949 34.10809 34.21768 31.66842
Empty baseline: 31.71499 39.45237 39.53447 36.90061
Random unigram: 25.06349 32.82227 32.85178 30.24585
Random 5-gram: 23.16818 30.64380 30.83843 28.21680
Cortex summary: 26.42140 33.93461 34.02986 31.46196

2 http://www.inex.otago.ac.nz/

231

4 Conclusions

We have presented the Cortex summarization system that is based on the fusion
process of several different sentence selection metrics. The decision algorithm
obtains good scores on INEX-2010, indicating that the decision process is a
good strategy for preventing overfitting on the training corpus. In the INEX-
2010 corpus, Cortex system obtained very good results in the automatic FRESA
evaluations.

References

1. ANSI. American National Standard for Writing Abstracts. Technical report, Amer-
ican National Standards Institute, Inc., New York, NY, 1979. (ANSI Z39.14.1979).

2. H. P. Luhn. The Automatic Creation of Literature Abstracts. IBM Journal of
Research and Development, 2(2):159, 1958.

3. H. P. Edmundson. New Methods in Automatic Extracting. Journal of the ACM
(JACM), 16(2):264–285, 1969.

4. Gregory Salton. The SMART Retrieval System - Experiments un Automatic Doc-
ument Processing. Englewood Cliffs, 1971.

5. Gregory Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

6. Juan-Manuel Torres-Moreno, Patricia Velazquez-Morales, and Jean-Guy Meunier.
Condenss automatiques de textes. Lexicometrica. L’analyse de donnes textuelles
: De l’enqute aux corpus littraires, Special(www.cavi.univ-paris3.fr/lexicometrica),
2004.

7. C. Jacquemin and P. Zweigenbaum. Traitement automatique des langues pour
l’accs au contenu des documents. Le document en sciences du traitement de
l’information, 4:71–109, 2000.

8. Jose Abracos and Gabriel Pereira Lopes. Statistical Methods for Retrieving Most
Significant Paragraphs in Newspaper Articles. In Inderjeet Mani and Mark T.
Maybury, editors, ACL/EACL97-WS, Madrid, Spain, July 11 1997.

9. Simone Teufel and Marc Moens. Sentence Extraction as a Classification Task. In
Inderjeet Mani and Mark T. Maybury, editors, ACL/EACL97-WS, Madrid, Spain,
1997.

10. Eduard Hovy and Chin Yew Lin. Automated Text Summarization in SUM-
MARIST. In Inderjeet Mani and Mark T. Maybury, editors, Advances in Automatic
Text Summarization, pages 81–94. The MIT Press, 1999.

11. Julian Kupiec, Jan O. Pedersen, and Francine Chen. A Trainable Document Sum-
marizer. In Proceedings of the 18th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 68–73, 1995.

12. Anastasios Tombros, Mark Sanderson, and Phil Gray. Advantages of Query Biased
Summaries in Information Retrieval. In Eduard Hovy and Dragomir R. Radev,
editors, AAAI98-S, pages 34–43, Stanford, California, USA, March 23–25 1998.
The AAAI Press.

13. Judith D. Schlesinger, Deborah J. Backer, and Robert L. Donway. Using Document
Features and Statistical Modeling to Improve Query-Based Summarization. In
DUC’01, New Orleans, LA, 2001.

232

14. J.M. Torres-Moreno, P. Velazquez-Moralez, and J. Meunier. CORTEX, un algo-
rithme pour la condensation automatique de textes. In ARCo, volume 2, page 365,
2005.

15. Juan Manuel Torres-Moreno, Pier-Luc St-Onge, Michel Gagnon, Marc El-Bèze,
and Patrice Bellot. Automatic summarization system coupled with a question-
answering system (qaas). in CoRR, abs/0905.2990, 2009.

16. J.M. Torres-Moreno, P. Velazquez-Morales, and J.G. Meunier. Condensés de textes
par des méthodes numériques. JADT, 2:723–734, 2002.

17. G. Salton. Automatic text processing, chapter 9. Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

18. J.-M. Torres-Moreno, H. Saggion, I. da Cunha, P. Velázquez-Morales, and E. San-
Juan. Evaluation automatique de rsums avec et sans rfrence. In 17e Confrence sur
le Traitement Automatique des Langues Naturelles (TALN), 2010.

19. J-M. Torres-Moreno, H. Saggion, I. da Cunha, E. SanJuan, and P. Velázquez-
Morales. Summary evaluation with and without references. Polibitis: Research
journal on Computer science and computer engineering with applications, 42:13–
19, 2010.

20. H. Saggion, J-M. Torres-Moreno, I. da Cunha, E. SanJuan, and P. Velázquez-
Morales. Multilingual summarization evaluation without human models. In 23rd
International Conference on Computational Linguistics (COLING 2010), Pekin,
2010.

233

Using Textual Energy (Enertex) at QA@INEX
track 2010

Andrea Carneiro Linhares1 and Patricia Velázquez2

1 Universidade Federal do Ceara
Fortaleza, Brasil

2 VM Labs
France

andreaclinhares@gmail.com,patricia_velazquez@yahoo.com

Abstract. In this paper we present a Neural Network approach, inspired
by statistical physics of magnetic systems, applied to NLP problems. We
obtained good results on the application of this method to automatic
summarization. In the INEX@QA 2010 task of Long Questions, Ener-
tex strategy system obtained good results in the automatic evaluations
FRESA.

Key words: INEX, Automatic summarization system, Question-Answering sys-
tem, Enertex.

1 Introduction

Hopfield [1, 2] took as a starting point physical systems like the magnetic Ising
model (formalism resulting from statistical physics describing a system composed
of units with two possible states named spins) to build a Neural Network (NN)
with abilities of learning and recovery of patterns. The capacities and limitations
of this Network, called associative memory, were well established in a theoreti-
cal frame in several studies [1, 2]: the patterns must be not correlated to obtain
free error recovery, the system saturates quickly and only a little fraction of the
patterns can be stored correctly. As soon as their number exceeds ≈ 0, 14N , any
pattern is recognized. This situation strongly restricts the practical applications
of Hopfield Network. However, in NLP, it is possible to exploit this behavior.
Vector Space Model (VSM) [3] represents the sentences of a document into vec-
tors. These vectors can be studied as Hopfield NN. With a vocabulary of N terms
of a document, it is possible to represent a sentence as a chain of N neurons
actives (words are presents) or inactives (words are absents). A document with
P sentences is formed of P chains in the vector space Ξ of dimension N . These
vectors are correlated according to the shared words. If thematics are close, it
is raisonable to suppose that the degree of correlation will be very high. That is
a problem if we want to store and recover these representations from a Hopfield
NN. However, our interest does not relate with recovery, but to study the inter-
actions between the terms and the sentences. From these interactions [4, 5] have

234

defined the Textual Energy of a document. It can be to score sentences in order
to obtain a summary of a document.

This paper is organized as follows. In Section 2 we explain the methodology
of our work. Experimental settings are results are presented in Section 3. Section
4 exposes the conclusions of the paper and the future work.

2 The Enertex system

The Textual Energy [4, 5] can be expressed:

E = −1

2
S × J × ST ; Eµ,ν ∈ E[P×P] (1)

2.1 Textual Energy: a new similarity measure

We are going to explain the nature of the links between sentences that Textual
Energy infers. To do that, we use some elementary notions of the graph theory.
The interpretation that we are going to do, is based on the fact that the matrix
(1) can be written:

E = −1

2
S × (ST × S)× ST = −1

2
(S × ST)2 (2)

Textual Energy can be used as a similarity measure in NLP applications. In
an intuitive way, this similarity can be used in order to score the sentences of a
document and thus separate those which are relevant from those which are not.
This leads immediately to a strategy for automatic summarization by extraction
of sentences.

The summarization algorithm includes three modules. The first one makes
the vectorial transformation of the text with filtering, lemmatisation/stemming
and standardization processes. The second module applies the spins model and
makes the calculation of the matrix of textual energy (2). We obtain the weight-
ing of a sentence ν by using its absolute energy values, by sorting according to∑
µ |Eµ,ν |. So, the relevant sentences will be selected as having the biggest ab-

solute energy. Finally, the third module generates summaries by displaying and
concatenating of the relevant sentences. The two first modules are based on the
Cortex system1.

Enertex system has been used in automatic mono and multidocument in
three languages: english, french and spanish.

3 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX) 20102, in particular on the INEX 2010
QA Track (QA@INEX) http://www.inex.otago.ac.nz/tracks/qa/qa.asp.

1 The Cortex system [6–8] is an unsupervised summarizer of relevant sentences using
several metrics controlled by an algorithm of decision.

2 http://www.inex.otago.ac.nz/

235

To evaluate the efficacity of Enertex on INEX@QA corpus, we have used the
FRESA package [9–11] 3.

3.1 INEX queries

A simple modification was applied on queries set. We have manually enriched
the original query with the synonyms of a term. Enertex used the query as a
title of a big document retrieved by Indri. Table 1 and 2 show two examples of
the results obtained by Enertex systema using five documents as input.

The queries that the summary should answer in these cases was the number
2009006 :

What are the similarities and differences between mean average precision and
reciprocal rank used in Information Retrieval?

and 2009009:
Who are the people, chemists, physicists and even alchemists, who studied

elements and the periodic table?.
These tables present Enertex results in comparison with an the INEX baseline

(Baseline summary), and three baselines, that is, summaries including random
n-grams (Random unigram) and 5-grams (Random 5-gram) and empty baseline.
We observe that summaries produced by Enertex system are close of Baseline
summary.

Table 1. Example of Enertex Summarization results on 2009006 question.

Summary type 1-gram 2-gram SU2-gram FRESA Average

Baseline summary: 15.92107 22.67403 23.02247 20.53919
Empty baseline: 25.51794 33.38139 33.58377 30.82770
Random unigram: 11.91236 19.89169 19.96834 17.25747
Random 5-gram: 13.41264 20.26874 20.82560 18.16899
Enertex summary: 17.93214 25.54367 25.76446 23.08009

Table 2. Example of Enertex Summarization results on 2009009 question.

Summary type 1-gram 2-gram SU2-gram FRESA Average

Baseline summary: 24.24380 32.77566 32.77625 29.93190
Empty baseline: 35.38031 44.44000 44.55194 41.45742
Random unigram: 23.14971 32.24334 32.17335 29.18880
Random 5-gram: 20.80877 29.14371 29.31407 26.42218
Enertex summary: 27.06117 35.78855 35.84767 32.89913

3 FRESA package is disponible at web site: http://lia.univ-avignon.fr/

fileadmin/axes/TALNE/downloads/index_fresa.html

236

4 Conclusions

We have presented the Enertex summarization system on INEX-2010 Question-
Answering task. In the INEX-2010 corpus, Enertex system obtained good results.
However, by technical limitations (memory, CPU time), we used only the first
five documents retrieved by Indri. We think that, a bigger number of documents
may outperform the present results.

References

1. J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. National Academy of Sciences, 9:2554–2558, 1982.

2. J. Hertz, A. Krogh, and G. Palmer. Introduction to the theorie of Neural Compu-
tation. Addison Wesley, Redwood City, CA, 1991.

3. G. Salton and M.J. McGill. Introduction to modern information retrieval. Com-
puter Science Series McGraw Hill Publishing Company, 1983.

4. Silvia Fernandez, Eric SanJuan, and Juan-Manuel Torres-Moreno. Energie
textuelle des mémoires associatives. In TALN’07, volume 1, pages 25–34, 2007.

5. Silvia Fernandez, Eric SanJuan, and Juan-Manuel Torres-Moreno. Textual Energy
of Associative Memories: performants applications of Enertex algorithm in text
summarization and topic segmentation. In MICAI’07, pages 861–871, 2007.

6. J.M. Torres-Moreno, P. Velazquez-Moralez, and J. Meunier. CORTEX, un algo-
rithme pour la condensation automatique de textes. In ARCo, volume 2, page 365,
2005.

7. J.M. Torres-Moreno, P. Velazquez-Morales, and J.G. Meunier. Condensés de textes
par des méthodes numériques. JADT, 2:723–734, 2002.

8. Juan Manuel Torres-Moreno, Pier-Luc St-Onge, Michel Gagnon, Marc El-Bèze,
and Patrice Bellot. Automatic summarization system coupled with a question-
answering system (qaas). in CoRR, abs/0905.2990, 2009.

9. J.-M. Torres-Moreno, H. Saggion, I. da Cunha, P. Velázquez-Morales, and E. San-
Juan. Evaluation automatique de rsums avec et sans rfrence. In 17e Confrence sur
le Traitement Automatique des Langues Naturelles (TALN), 2010.

10. J-M. Torres-Moreno, H. Saggion, I. da Cunha, E. SanJuan, and P. Velázquez-
Morales. Summary evaluation with and without references. Polibitis: Research
journal on Computer science and computer engineering with applications, 42:13–
19, 2010.

11. H. Saggion, J-M. Torres-Moreno, I. da Cunha, E. SanJuan, and P. Velázquez-
Morales. Multilingual summarization evaluation without human models. In 23rd
International Conference on Computational Linguistics (COLING 2010), Pekin,
2010.

237

The REG summarization system at QA@INEX
track 2010

Jorge Vivaldi1, Iria da Cunha1 and Javier Ramı́rez2

1 Instituto Universitario de Linguistica Aplicada - UPF
Barcelona

2 Universidad Autonoma Metropolitana-Azcapotzalco
Mexico

{iria.dacunha,jorge.vivaldi}@upf.edu;jararo@correo.azc.uam.mx

http://www.iula.upf.edu

Abstract. In this paper we present REG, a graph approach to study
a fundamental problem of Natural Language Processing: the automatic
summarization of documents. The algorithm models a document as a
graph, to obtain weighted sentences. We applied this approach to the
INEX@QA 2010 task (question-answering). To do it, we have extracted
the terms from the queries, in order to obtain a list of terms related with
the main topic of the question. Using this strategy, REG obtained good
results with the automatic evaluation system FRESA.

Key words: INEX, Automatic Summarization System, Question-Answering
System, REG.

1 Introduction

Nowadays automatic summarization is a very prominent research topic. We can
define summary as “a condensed version of a source document having a recog-
nizable genre and a very specific purpose: to give the reader an exact and concise
idea of the contents of the source” (Saggion and Lapalme, 2002: 497). Summaries
can be divided into “extracts”, if they contain the most important sentences ex-
tracted from the original text (ex. Edmunson, 1969; Nanba and Okumura, 2000;
Gaizauskas et al., 2001; Lal and Reger, 2002; Torres-Moreno et al., 2002) and
“abstracts”, if these sentences are re-written or paraphrased, generating a new
text (ex. Ono et al., 1994; Paice, 1990; Radev, 1999). Most of the automatic sum-
marization systems are extractive. These systems are useful in several domains:
medical (ex. Johnson et al., 2002 Afantenos et al., 2005; da Cunha et al., 2007;
Vivaldi et al., 2010), legal (ex. Farzindar et al., 2004), journalistic (ex. Abracos
and Lopes, 1997; Fuentes et al., 2004), etc. One of the tasks where these ex-
tractive summarization systems could help is question-answering. The objective
of the INEX@QA 2010 track is to evaluate a difficult question-answering task,
where questions are very precise (expecting short answers) or very complex (ex-
pecting long answers, including several sentences). In this second task is where

238

automatic summarization systems could help. The used corpus in this track con-
tains all the texts included into the English Wikipedia. The expected answers
are automatic summaries of less than 500 words exclusively made of aggregated
passages extracted from the Wikipedia corpus. The evaluation of the answers will
be automatic, using the automatic evaluation system FRESA (Torres-Moreno et
al., 2010a, 2010b, Saggion et al., 2010), and manual (evaluating syntactic inco-
herence, unsolved anaphora, redundancy, etc.). To carry out this task, we have
decided to use REG (Torres-Moreno and Ramirez, 2010; Torres-Moreno et al.,
2010), an automatic summarization system based on graphs. We have performed
some expansions of the official INEX@QA 2010 queries, detecting the terms they
contain automatically, in order to obtain a list of terms related with the main
topic of all the questions.

This paper is organized as follows. In Section 2 we show REG, the sum-
marization system we have used for our experiments. In Section 3 we explain
how we have carried out the terms extraction of the queries. In Section 4 we
present the experimental settings and results. Finally, in Section 5, we expose
some conclusions.

2 The REG system

REG (Torres-Moreno and Ramirez, 2010; Torres-Moreno et al. 2010) is an En-
hanced Graph summarizer (REG) for extract summarization, using a graph ap-
proach. The strategy of this system has two main stages: a) to carry out an ad-
equate representation of the document and b) to give a weight to each sentence
of the document. In the first stage, the system makes a vectorial representation
of the document. In the second stage, the system uses a greedy optimization
algorithm. The summary generation is done with the concatenation of the most
relevant sentences (previously scored in the optimization stage).

REG algorithm contains three modules. The first one carries out the vectorial
transformation of the text with filtering, lemmatization/stemming and normal-
ization processes. The second one applies the greedy algorithm and calculates
the adjacency matrix. We obtain the score of the sentences directly from the
algorithm. Therefore, sentences with more score will be selected as the most
relevant. Finally, the third module generates the summary, selecting and con-
catenating the relevant sentences. The first and second modules use CORTEX
(Torres-Moreno et al., 2002), a system that carries out an unsupervised extrac-
tion of the relevant sentences of a document using several numerical measures
and a decision algorithm.

3 Terms extraction

The first procedure for obtaining the query terms has been to found the main
topic of the questions. This has been obtained by finding the terms candidate
present in every query. Terms are usually defined as lexical units to designate
concepts in a domain. The detection of these units is a complex task mainly

239

because terms adopt all word formation rules in a given language [22]. Also, as
mentioned in the term definition itself, it is necessary to confirm that a given
lexical unit belong to the domain of interest. Due to the difficulties to verify this
condition it is usual to refer the results obtained by an extractor as term candi-
dates instead of just “terms”. In this context we have used the basic procedure
for obtaining term candidates in the field of term extraction. Such candidates
are typically obtained by using the morphosyntactic terminological patterns for
any given language (see [23, 24]), English in this case.

As the queries do not belong to any specific domain it is not possible deter-
mine the termhood of the retrieved candidates.

Considering that questions are very short, only a few candidates are obtained
by such procedure; therefore, they have a high probability to be the main topic
of the question.

For example, for the query “How does GLSL unify vertex and fragment pro-
cessing in a single instruction set?”, we consider the terms “glsl”, “vertex pro-
cessing”, “fragment processing” and “single instruction set”. But for the query
“Who is Eiffel?”, there are not any term, only the proper name “Eiffel?”.

4 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX) 20101, in particular on the INEX 2010
QA Track (QA@INEX). These sets of documents where provided by the search
engine Indri.2 REG has produced multidocument summaries using sets of 30, 40
and 50 of the documents provided by Indri using all the queries of the track.

To evaluate the efficiency of REG over the INEX@QA corpus, we have used
the FRESA package.

Table 1 shows an example of the results obtained by REG using 50 docu-
ments as input. The query that the summary should answer in this case was the
number 2009006. This table presents REG results in comparison with an intelli-
gent baseline (Baseline summary), and two simple baselines, that is, summaries
including random n-grams (Random unigram) and 5-grams (Random 5-gram).
We observe that our system is always better than these two simple baselines,
but in comparison with the first one the performance is variable.

5 Conclusions

We have presented the REG summarization system, an extractive summarization
algorithm that models a document as a graph, to obtain weighted sentences. We
applied this approach to the INEX@QA 2010 task, extracting the terms from

1 http://www.inex.otago.ac.nz/
2 Indri is a search engine from the Lemur project, a cooperative work between the Uni-

versity of Massachusetts and Carnegie Mellon University in order to build language
modelling information retrieval tools: http://www.lemurproject.org/indri/

240

Table 1. Example of REG results using 50 documents as input.

Distribution type unigram bigram with 2-gap Average

Baseline summary 22.64989 31.70850 32.07926 28.81255
Random unigram 18.18043 28.25213 28.44528 24.95928
Random 5-gram 17.47178 26.33253 27.03882 23.61437
Submitted summary 22.77755 32.06325 32.53706 29.12595

the queries, in order to obtain a list of terms related with the main topic of the
question.

Our experiments have shown that the system is always better than the two
simple baselines, but in comparison with the first one the performance is variable.
We think this is due to the fact that some queries are long and they have several
terms we could extract, but there are some queries that are very short and
the term extraction is not possible or very limited. Nevertheless, we consider
that, over the INEX-2010 corpus, REG obtained good results in the automatic
evaluations, but now it is necessary to wait for the human evaluation and the
evaluation of other systems to compare with.

References

1. Abracos, J.; Lopes, G. (1997). Statistical methods for retrieving most significant
paragraphs in newspaper articles. In Proceedings of the ACL/EACL’97 Workshop
on Intelligent Scalable Text Summarization. Madrid. 51-57.

2. Afantenos, S.; Karkaletsis, V.; Stamatopoulos, P. (2005). Summarization of medical
documents: A survey. Artificial Intelligence in Medicine 33 (2). 157-177.

3. da Cunha, I.; Wanner, L.; Cabré, M.T. (2007). Summarization of specialized dis-
course: The case of medical articles in Spanish. Terminology 13 (2). 249-286.

4. Edmunson, H. P. (1969). New Methods in Automatic Extraction. Journal of the
Association for Computing Machinery 16. 264-285.

5. Farzindar, A.; Lapalme, G.; Desclés, J.-P. (2004). Résumé de textes juridiques par
identification de leur structure thématique. Traitement automatique des langues 45
(1). 39-64.

6. Fuentes, M.; Gonzalez, E.; Rodriguez, H. (2004). Resumidor de noticies en catala
del projecte Hermes. In Proceedings of II Congrés d’Enginyeria en Llengua Catalana
(CELC’04). Andorra. 102-102.

7. Gaizauskas, R.; Herring, P.; Oakes, M.; Beaulieu, M.; Willett, P.; Fowkes, H.; Jons-
son, A. (2001). Intelligent access to text: Integrating information extraction technol-
ogy into text browsers. En Proceedings of the Human Language Technology Confer-
ence. San Diego. 189-193.

8. Johnson, D.B.; Zou, Q.; Dionisio, J.D.; Liu, V, Z.; Chu, W.W. (2002). Modeling
medical content for automated summarization. Annals of the New York Academy of
Sciences 980. 247-258.

9. Lal, P.; Reger, S. (2002). Extract-based Summarization with Simplication. In Pro-
ceedings of the 2nd Document Understanding Conference at the 40th Meeting of
the Association for Computational Linguistics. 90-96.

241

10. Nanba, H.; Okumura, M. (2000). Producing More Readable Extracts by Revising
Them. In Proceedings of the 18th International Conference on Computational Lin-
guistics (COLING-2000). Saarbrucken. 1071-1075.

11. Ono, K.; Sumita, K.; Miike, S. (1994). Abstract generation based on rhetorical struc-
ture extraction. In Proceedings of the International Conference on Computational
Linguistics. Kyoto. 344-348.

12. Paice, C. D. (1990). Constructing literature abstracts by computer: Techniques and
prospects. Information Processing and Management 26. 171-186.

13. Radev, D. (1999). Language Reuse and Regeneration: Generating Natural Lan-
guage Summaries from Multiple On-Line Sources. New York, Columbia University.
[PhD Thesis]

14. Saggion, H.; Lapalme, G. (2002). Generating Indicative-Informative Summaries
with SumUM. Computational Linguistics 28 (4). 497-526.

15. Torres-Moreno, J-M.; Saggion, H. da Cunha, I. SanJuan, E. Velázquez-Morales, P.
SanJuan, E.(2010a). Summary Evaluation With and Without References. Polibitis:
Research journal on Computer science and computer engineering with applications
42.

16. Saggion, H.; Torres-Moreno, J-M.; da Cunha, I.; SanJuan, E.; Velázquez-Morales,
P.; SanJuan, E. (2010b). Multilingual Summarization Evaluation without Human
Models. In Proceedings of the 23rd International Conference on Computational Lin-
guistics (COLING 2010). Pekin.

17. Torres-Moreno, J.-M.; Saggion, H.; da Cunha, I.; Velázquez-Morales, P.; SanJuan,
E. (2010b). Ealuation automatique de résumés avec et sans référence. In Proceed-
ings of the 17e Conférence sur le Traitement Automatique des Langues Naturelles
(TALN). Université de Montréal et Ecole Polytechnique de Montréal: Montreal
(Canada).

18. Torres-Moreno, J-M.; Ramı́rez, J. (2010). REG : un algorithme glouton appliqué
au résumé automatique de texte. JADT 2010. Roma, Italia.

19. Torres-Moreno, J-M.; Ramı́rez, J.; da Cunha, I. (2010). Un resumeur a base de
graphes, indépendant de la langue. Workshop African HLT 2010. Djibouti.

20. Torres-Moreno, J. M.; Velázquez-Morales, P.; Meunier, J. G. (2002). Condensés
de textes par des méthodes numériques. En Proceedings of the 6th International
Conference on the Statistical Analysis of Textual Data (JADT). St. Malo. 723-734.

21. Vivaldi, J.; da Cunha, I.; Torres-Moreno, J.M.; Velázquez, P. (2010). ”Automatic
Summarization Using Terminological and Semantic Resources”. En actas del 7th
International Conference on Language Resources and Evaluation (LREC 2010). Val-
letta, Malta.

22. Pearson J. (1998). Terms in context. John Benjamin. Amsterdam.
23. Cabré, M.T.; R. Estopà; Vivaldi, J. (2001). Automatic term detection: a review of

current systems. In Bourigault, D., C. Jacquemin and M.C. L’Homme (eds.). Recent
Advances in Computational Terminology. 53-87. Amsterdam: John Benjamins.

24. Pazienza, M.T.; Pennacchiotti, M.; Zanzotto, F.M. (2005). Terminology Extraction:
An Analysis of Linguistic and Statistical Approaches. In: Studies in Fuzziness and
Soft Computing. Volume 185/2005. 255-279.

242

Focused Relevance Feedback @ INEX 2010
Shlomo Geva

Computer Science, QUT
2 George St

Brisbane Q4001 Australia
+617 3138 1920

s.geva@qut.edu.au

Timothy Chappell
Computer Science, QUT

2 George St
Brisbane Q4001 Australia

+617 3138 1920

timothy.chappell@qut.edu.au

ABSTRACT
The INEX 2010 Focused Relevance Feedback track offered a
refined approach to the evaluation of Focused Relevance
Feedback algorithms through simulated exhaustive user feedback.
As in traditional approaches we simulated a user-in-the loop by
re-using the assessments of ad-hoc retrieval obtained from real
users who assess focused ad-hoc retrieval submissions. The
evaluation was extended in several ways: the use of exhaustive
relevance feedback over entire runs; the evaluation of focused
retrieval where both the retrieval results and the feedback are
focused; the evaluation was performed over a closed set of
documents and complete focused assessments; the evaluation was
performed over executable implementations of relevance feedback
algorithms; and finally, the entire evaluation platform is reusable.
We present the evaluation methodology, its implementation, and
experimental results obtained for 9 submissions from 3
participating organizations.

Categories and Subject Descriptors
Focused Relevance Feedback, Relevance Feedback, Information
Retrieval, IR, RF, User Simulation, Search Engine, Evaluation,
INEX http://www.inex.otago.ac.nz/

General Terms
Algorithms, Measurement, Performance, Benchmark.

Keywords
Relevance feedback evaluation.

1. INTRODUCTION
Information retrieval systems are most effective when used by
skilled operators who are capable of forming queries appropriate
for retrieving relevant documents. The vast majority of users of
information retrieval systems are unlikely to be skilled users. It is
a trivial observation that user will sooner reformulate a query than
they would scan the initial result list to any depth beyond the first
page of results. As query reformulation may be a difficult and
time-consuming task, machine-assisted query reformulation based
on the requirements of the user is an important part of information
retrieval. An early and rather effective mechanism for improving
the effectiveness of search interfaces is known as relevance
feedback where by query reformulation is automated. We are
concerned with the evaluation of this approach. This paper
describes an extension of the Incremental Relevance Feedback
approach, described by IJsbrand Jan Aalbersberg[1], to Focused
Relevance Feedback and to the evaluation of executable
implementations under uniform setting.

1.1 Relevance Feedback Evaluation
This wealth of research and reported results on relevance
feedback leads to an obvious problem – most of the earlier work is
difficult to reproduce reliably, and certainly not without great
difficulty in implementation of systems described by others. Of
great importance to the task of comparing different methods of
ranking and retrieval is having a standard, systematic way of
evaluating the results so that it can be empirically validated, in a
methodologically sound manner, that for a given test collection
one particular method is better than another.
Ruthven and Lalmas[2] review alternate evaluation methods
suited to relevance feedback: Freezing, Residual ranking, and Test
and control, all intended to counter the effect where the
documents marked as 'relevant' by the user are pushed to the top
of the document ranking, artificially raising the mean precision of
the results. Freezing is where the initially top-ranked documents
are frozen in place and the relevance feedback system used to re-
rank the remaining documents, and the precision/recall evaluation
conducted on the entire document set. Residual ranking is where
the top-ranked documents, used to train the relevance feedback
system, are removed from the document set before evaluation.
Test and control groups; where the document set is partitioned
into two equal groups, the first used to train the relevance
feedback system and the second used to evaluate the system.
Aalbersberg[1] describes an incremental approach which we
extend in this paper, where one document at a time is evaluated by
the user until a given depth of results list is inspected.

1.2 Focused Relevance Feedback evaluation
In the INEX 2010 we adopted a refined approach to the evaluation
of Relevance Feedback algorithms through simulated exhaustive
incremental user feedback. The approach extends evaluation in
several ways, relative to traditional evaluation. First, it facilitates
the evaluation of retrieval where both the retrieval results and the
feedback are focused. This means that both the search results and
the feedback are specified as passages, or as XML elements, in
documents - rather than as whole documents. Second, the
evaluation is performed over a closed set of documents and
assessments, and hence the evaluation is exhaustive, reliable and
less dependent on the specific search engine in use. By reusing the
relatively small topic assessment pools, having only several
hundred documents per topic, the search engine quality can
largely be taken out of the equation. Third, the evaluation is
performed over executable implementations of relevance
feedback algorithms rather than being performed over result
submissions. Finally, the entire evaluation platform is reusable
and over time can be used to measure progress in focused
relevance feedback in an independent, reproducible, verifiable,
uniform, and methodologically sound manner.

243

2. EVALUATION APPROACH
This approach is concerned with the simulation of a user in loop,
in the evaluation of relevance feedback systems. This approach
can be used to compare systems in an evaluation forum setting, or
simply to evaluate improvements of variations to existing
relevance feedback algorithms in the development process.

2.1 Use Case
The use-case of this track is similar to Aalbersberg[1] - a single
user searching with a particular query in an information retrieval
system that supports relevance feedback. Our user views and
highlights relevant passages of text in a returned document (if
exist) and provides this feedback to the information retrieval
system. The IR system re-ranks the remainder of the unseen
results list to provide the next assumed most relevant result to the
user. The exact manner in which this is implemented is not of
concern in this evaluation; here we test the ability of the system to
use focused relevance feedback to improve the ranking of
previously unseen results. Importantly, we extend Aalbersberg’s
approach to compare the improvement, if exists, which focused
relevance feedback (FRF) offers over whole document feedback.
This includes structured IR (e.g. XML documents).
2.2 Test Collection
The relevance feedback track re-used the INEX Wikipedia XML
collection. Evaluation was based on the focused relevance
assessments, which are gathered by the INEX Ad-Hoc track
through the GPXrai assessment tool, where assessors highlight
relevant passages in documents. The INEX Wikipedia test
collection is semantically marked up. This facilitates the
evaluation of FRF algorithms implementations, which take
advantage not only of the (often) passage-sized feedback, but also
the semantic mark-up of the relevant text.
2.3 Task
Participants were asked to create one or more Relevance
Feedback Modules (RFMs) intended to rank a collection of
documents with a query while incrementally responding to
explicit user feedback on the relevance of the results presented to
the user. These RFMs were implemented as dynamically linkable
modules that implement a standard defined interface. The
Evaluation Platform (EP) interacts with the RFMs directly,
simulating a user search session. The EP instantiates an RFM
object and provide it with a set of XML documents and a query.
The RFM responds by ranking the documents (without feedback)
and returning the ranking to the EP. This is so that the difference
in quality between the rankings before and after feedback can be
compared to determine the extent of the effect the relevance
feedback has on the results. The EP is then asked for the next
most relevant document in the collection (that has not yet been
presented to the user). On subsequent calls the EP passes
relevance feedback (in the form of passage offsets and lengths)
about the last document presented by the RFM. This feedback is
taken from the qrels of the respective topic, as provided by the
Ad-Hoc track assessors. The simulated user feedback may then be
used by the RFM to re-rank the remaining unseen documents and
return the next most relevant document. The EP makes repeated
calls to the RFM until all relevant documents in the collection
have been returned.
The EP retains the presentation order of documents as generated
by the RFM. This order can then be evaluated as a submission to
the ad-hoc track in the usual manner and with the standard
retrieval evaluation metrics. It is expected that an effective

dynamic relevance feedback method will produce a higher score
than a static ranking method (i.e. the initial baseline rank
ordering). Evaluation is performed over all topics and systems are
ranked by the averaged performance over the entire set of topics,
using standard INEX and TREC metrics.
Each topic consists of a set of documents (the topic pool) and a
complete and exhaustive set of manual focused assessments
against a query. Hence, we effectively have a "classical" Cranfield
experiment over each topic pool as a small collection with
complete assessments for a single query. The small collection size
allows participants without an efficient implementation of a
search engine to handle the task without the complexities of scale
that the full collection presents.
Participants in the track were provided with a model solution as a
baseline. Figure 1 depicts the performance improvement
evaluation as obtained by using Rocchio with the Lucene search
engine, when evaluated by trec_eval. Rocchio-based relevance
feedback engine results in an improved mean average precision.
The third line shown (the middle) is the best performing
submission at INEX 2008, modified to conform to the trec_eval
input format. It performs best out of the three in early precision,
but precision suffers later and it has a lower average precision
than the Lucene engine when using relevance feedback.

Figure 1. Evaluation with trec_eval, document retrieval.

The approach provides an interactive user session simulation in a
focused relevance feedback setting. The evaluation provides a
level playing field for the independent and completely
reproducible evaluation of RF implementations in a standard
setting and with a standard pool of documents for each topic.
The approach supports the accurate evaluation of any benefits that
may (or may not) arise from the use of Focused IR, as opposed to
document IR, be it passage based or XML Element based.

3. Results
In 2010 there were 3 participating organisations: Indian
Statistical Institute, Peking University, and QUT. There were 9
submissions in total and the baseline submission was provided by
the Lucene search engine with default parameters out of the box.
Figures 2 and 3 depict preliminary outcomes. Of course all FRF
submissions were collected before the INEX 2010 assessments
were made available and so this test is not biased by training.
Further analysis and details will be provided in the final
proceedings paper.

244

Figure 2. INEX 2010 topics evaluated with trec_eval,
document retrieval

4. References
1. IJsbrand Jan Aalbersberg, Incremental Relevance Feedback,

Proceedings of SIGIR 1992, pp 11-22.
2. I. Ruthven and M. Lalmas. A survey on the use of relevance

feedback for information access systems. Knowl. Eng. Rev.,
18(2):95-145, 2003

Figure 3. INEX 2010 topics evaluated with inex_eval,
best in context metric

245

DCU and ISI@INEX 2010: Adhoc Data-Centric
and Feedback tracks

Debasis Ganguly1, Johannes Leveling1, Gareth J. F. Jones1,
, and Sauparna PalChowdhury2

1CNGL, School of Computing, Dublin City University, Dublin, Ireland
2CVPR Unit, Indian Statistical Institute, Kolkata, India
{dganguly, jleveling, gjones}@computing.dcu.ie

Abstract. We describe the participation of Dublin City University (DCU)
and the Indian Statistical Institute (ISI) in INEX 2010. We propose a
Hieararchical Language Model (HLM) implemented in SMART for the
adhoc task to retrieve the XML elements where an XML element is scored
against the combined probability of generating the given query from itself
and its parent article. We submitted three element level runs for each Fo-
cussed and Restricted subtask. For the newly introduced “Data-Centric”
track we submitted 10 runs. exploring the effects of Blind Relevance Feed-
back (BRF) using query expansion terms and Expectation Maximization
(EM). For the newly introduced Relevance Feedback track, we submitted
an implementation which is based on extracting the most similar non-
overlapping fixed length word windows from relevant passages and then
re-retrieving with a modified query which additionally contains the most
frequent terms extracted from these word windows.

1 Introduction

Traditional Information Retrieval systems return whole documents in response
to queries, but the challenge in XML retrieval is to return the most relevant parts
of XML documents which meet the given information need. Since INEX 2007 [1]
arbitrary passages are also permitted as retrievable units, besides XML elements.
A retrieved passage can be a sequence of textual content either from within an
element or spanning a range of elements. INEX-2010 saw the introduction of the
restricted versions of the “Focused” and the “Relevant In Context” tasks which
have been designed particularly for displaying results on a mobile device with
limited graphics resources. The tasks for the Adhoc track are outlined as follows:
a) the “Restricted Focused” task which asks systems to return a ranked list of
elements or passages to the user; b) the (un)restricted “Relevant in Context”
tasks which asks systems to return relevant elements or passages grouped by
article, a limit of atmost 500 characters being imposed on the restricted version;
and c) the “Efficiency” task which expects systems to return thorough article
level runs.

The participants were free to use either of the two query variants: Content-
Only (CO) and Content-And-Structure (CAS) queries. In the CO variant, the

246

user poses the query in free text (resembling web search queries) and the retrieval
system is supposed to return the most relevant elements/passages. A CAS query
can provide explicit or implicit indications about what kind of element the user
requires along with a textual query. Thus, a CAS query contains structural hints
expressed in XPath [2] along with an about() predicate.

We also participated in two new tracks introduced in 2010: a) the “Data
Centric track” which is similar to adhoc retrieval of elements or passages on a
domain specific collection of IMDB movie pages; b) the “Feedback track” which
attempts to simulate user-interaction by the communication of true relevance
information between a Controller module, which has access to the qrels file, and
a user implemented Feedback module.

In INEX-2010 we submitted 9 adhoc focused runs, (3 for each Focussed task)
and 3 Thorough runs for the Adhoc track. In addition we submitted 10 runs for
the Data Centric task and 3 relevance feedback modules (as .jar files) for the
Feedback track. Retrievals for the adhoc and the Data Centric tasks were done
by using the SMART1 system whereas the Java classes used for the Feedback
track use the Lucene API2 for indexing and retrieval.

The remainder of the paper is organized as follows: Section 2 elaborates on the
approaches to indexing and retrieval of whole documents followed by Section 3
which describes the strategy for measuring the similarities of the individual XML
elements to the query. In Sections 4, 5, 6 we give details of our approaches for
our participation in the various tracks. Section 7 reports the official results and
Section 8 concludes the paper with directions for future work.

2 Document Retrieval

This Section describes the approaches undertaken towards whole document re-
trieval.

2.1 Preprocessing

Similar to INEX-2009, for extracting useful parts of documents, we shortlisted
about thirty tags that contain useful information: <p>, <p1>, <st>, <section>
etc. [6]. Documents were parsed using the libxml2 parser, and only the textual
portions included within the selected tags were used for indexing. Similarly, for
the topics, we considered only the title and description fields for indexing, and
discarded the inex-topic, castitle and narrative tags. No structural information
from either the queries or the documents was used.

The extracted portions of the documents and queries were indexed using sin-
gle terms and a controlled vocabulary (or pre-defined set) of statistical phrases
following Salton’s blueprint for automatic indexing [3]. Words listed in the stan-
dard stop-word list included within SMART were removed from both documents

1 ftp://ftp.cs.cornell.edu/pub/smart/
2 http://www.apache.org/dyn/closer.cgi/lucene/java/

247

and queries. Words were stemmed using the default stemmer implementation of
SMART which is a variation of the Lovin’s stemmer. Frequently occurring word
bi-grams (loosely referred to as phrases) were also used as indexing units. We
used the N-gram Statistics Package (NSP)3 on the English Wikipedia text cor-
pus and selected the 100,000 most frequent word bi-grams as the list of candidate
phrases.

2.2 Language Model (LM) Term weighting

Our retrieval method was based on the Language Modeling approach proposed
by Hiemstra [4]. In this Subsection we summarize the Language Modeling method
to IR used by us for document retrieval. In LM based IR, a document d is ranked
by the estimated probability P (q|d) of generating a query q from the docu-
ment model underlying the document d. The document is modelled to choose
q = {t1, t2 . . . tn} as a sequence of independent words as proposed by Hiem-
stra [4].

P (q|d) = P (d) logP (d)
n∏
i=1

λiP (ti|d) + (1− λi)P (ti) (1)

The term weighting equation can be derived from Equation 1 by dividing it with
(1−λi)P (ti) and taking log on both sides to convert the product to summation.

logP (q|d) = logP (d) +
n∑
i=1

log(1 +
λi

1− λi
P (ti|d)
P (ti)

) (2)

We used SMART to index each query vector q as qk = tf(tk) and each document
vector d as dk = log(1 + P (tk|d)

P (tk)
λk

1−λk
), so that the dot product d · q gives the

likelihood of generating q from d and hence can be used as the similarity score
to rank the documents.

3 Element Retrieval

For the element-level retrieval, we adopted a 2-pass strategy. In the first pass,
we retrieved 1500 documents (since the thorough runs for INEX are required to
report atmost 1500 documents per topic) for each query using the LM retrieval
method as described in the previous section 2.2, without using query expansion
from BRF the reason being usage of BRF showed a decrease in the MAiP on the
2009 topics.In the second pass, these documents were parsed using the libxml2
parser, and leaf nodes having textual content were identified. Figure 1 shows
a fragment of a file from the Wikipedia collection. The leaf nodes that have
textual content are enclosed in rectangles in the figure. The total set of such
leaf-level textual elements obtained from the 1500 top-ranked documents were
then indexed and compared to the query as before to obtain the final list of 1500

3 http://www.d.umn.edu/∼tpederse/nsp.html

248

retrieved elements. We adopted two strategies for element scoring: a) pivoted
length normalization b) a generalization of LM with two levels of smoothing [a)]
The following sections provide details of these methods. The preprocessing steps
are similar to 2.1.

3.1 Pivoted Length Normalization

Earlier year, we revisited length normalization (see [5] [6] for more details) and
rewritten it as:

normalization = 1 +
slope

(1− slope)
∗ #unique terms

pivot

where length is given by #unique terms in the document. Instead of varying both
pivot and slope separately we considered the combined term slope

(1−slope)∗pivot . For

the sake of simplicity, we chose pivot = 1 which reduces the factor to slope
(1−slope) .

We call it the pivot-slope factor and used the optimal value of 0.00073 as trained
on 2009 topics.

3.2 Hierarchical Language Model

An extension of LM for Field Search was proposed by Hiemstra [4] which involves
scoring a document according to the probability of generation of the query terms
either from the document itself as a whole, or from a particular field of it (e.g
title) or from the collection. Thus Equation 1 can be extended as

P (q|d) = logP (d)
n∏
i=1

µiP (ti|d, f) + λiP (ti|d) + (1− λi − µi)P (ti) (3)

where f is the field to search from and µi is the probability of the additional
event of choosing the term only from field f . We use almost the same principle as
in Equation 1 for scoring the individual elements of the Wikipedia articles. The
only difference with Field Language Model (FLM) is that it uses the evidence
from a constituent field to assign a score to the container document, whereas we
assign a score to the constituent element itself from the parent article evidence.
We use Equation 4 to score an element.

P (q|e) = logP (d)
n∏
i=1

µiP (ti|e) + λiP (ti|d) + (1− λi − µi)P (ti) (4)

The parameter λi denotes the probability of choosing ti from the parent article
of the element e, whereas µi denotes the probability of choosing ti from the ele-
ment text. The residual event involves choosing ti from the collection. Thus even
if a query term ti is not present in the element some non zero probability of gen-
eration is contributed to the product. Two levels of this smoothing are employed
in this case. The following interpretations can be drawn from Equation 4:

249

a) An element e1 which has a query term t only in itself but not anywhere else
in the top level article, would score lower than an element e2 which has the
term present both in itself and somewhere else in the article. Thus the model
would favour elements with some pre-defined contextual information about
the query terms over individual snippets of information which do not have
any associated context.

b) An element without any or only a few of the given query terms might still be
retrieved if the missing terms are abundant in the article. This is particularly
helpful for assigning high scores to elements (sections or paragraphs) which
densely discusses a single sub-topic (the sub-topic typically being one facet
of the user information need). For example if the user issues a query “fish
drift net” and he wants information on the environmental hazards of “drift
netting” but only from documents which are about “fishing”, this way of
scoring the elements ensures that a section with abundance of the words
“drift” and “net” have higher likelihood of retrieval if the parent article is
abundant with the term “fish”.

We call this method Hierarchical Language Model (HLM) since it can be gen-
eralized upto d + 1 levels of smoothing, i.e. one from each of the parent levels
0, . . . d − 1 (d being the depth of the XML element in the DOM tree) and one
from the collection. For the time being to keep things simple, we restrict our
choice of smoothing only to the root article element.

body

The emph3 is an org-
anization...

Temple of
Hiphop

KRS One

c-link It’s goal
is to ...

c-link

Hip Hop

...

Fig. 1. Parse tree for a fragment of a Wikipedia document

4 Adhoc Track

4.1 Thorough task

We submitted three element level runs for each of the four tasks thus making
12 runs in total. Each element level run was converted to the trec++ format
reporting the FOLs instead of the element names using the conversion utility
SUB2FOL.jar. All the initial article level runs were done using LM retrieved
as described in Equation 1. We assign λi = λ ∀i = 1 . . . n and also assigned
uniform prior probabilities to the documents. To find the optimal value of λ

250

we varied its value in the range [0.2, 0.5] in steps of 0.1 assuming that 0.1 is
the smallest level of granularity of changes in the λ values for observing any
significant differences in retrieval results. The results are reported in Table 1.
We discovered an error that we used the file gpxrairel.table.serialized instead of
gpxrai50rel.table.serialized for converting the element submission to FOL sub-
mission. Usage of the smaller version of the serialized FOLs (which only contains
the mapping for the true relevant elements for 2009 topics) resulted in false boost-
ing of retrieval effectiveness scores. In Table 1 we report both the evaluations -
one with gpxrairel.table.serialized and the other with gpxrai50rel.table.serialized.
Table 1 shows that we obtain the best retrieval results with λ set to 0.4.

Table 1. Effect of varying λ for INEX 2009 topics

λ Relevant FOLs All FOLs

iP[0.01] iP[0.05] iP[0.10] MAiP iP[0.01] iP[0.05] iP[0.10] MAiP

0.2 0.4762 0.4498 0.4249 0.2309 0.3503 0.3229 0.2735 0.1134
0.3 0.4887 0.4712 0.4403 0.2515 0.3690 0.3442 0.2949 0.1210
0.4 0.4996 0.4824 0.4513 0.2572 0.3720 0.3456 0.2991 0.1228
0.5 0.4858 0.4638 0.4471 0.2505 0.3635 0.3367 0.2938 0.1167

4.2 Focussed Task

We tried out two element level retrieval approaches as outlined in Section 3 on
our generated best performing article level run. We also performed HLM element
retrieval on the reference BM25 run provided by the INEX organizers. For the
HLM experiments to simplify the model we used λi = λ ∧ µi = µ ∀i = 1 . . . n.
A higher value of µ as compared to λ would attach too much importance on
the presence of the query terms in the elements to get a higher likelihood of
retrieval. While this might be good for queries with highly correlated terms,
typically user queries are faceted, each term representing one such facet. It is
highly unlikely that a single section or paragraph would cover all the facets.
The more likely situation is that a small paragraph would cover one facet of the
user’s information need whereas the other facets are covered somewhere else in
the document. A value of µ lower than λ ensures retrieval of elements highly
focussed on one subtopic covering a single aspect of the user’s information need
from the parent article covering some other facets as well. Following the above
line of argument, we chose λ = 0.25 and µ = 0.15 for our element retrieval
experiments.

A critical issue to explore in the model of Equation 4 is the issue of assigning
prior probabilities to the elements. Singhal [7] analyzes the likelihood of relevance
against the length of TREC documents and reports that longer documents have
a higher probability of relevance. While this scheme of assigning document prior
probabilities proportional to their lengths suits the traditional adhoc retrieval of

251

documents (the retrieval units being whole documents) from the news genre, for a
more flexible retrieval scenario such as the Restricted Focussed INEX task where
retrieval units can be arbitrary passages and shorter passages are favoured over
longer ones, it might be worth trying to assign prior probabilities to elements
inversely proportional to their lengths. We performed HLM retrieval of XML
elements on the best performing article level run (λ being set to 0.4 as reported in
Table 1). As a baseline we chose to use standard LM scoring of the elements which
is a special case of HLM obtained by setting λ = 0. To verify our hypothesis
that λ should be higher than µ, we ran two versions of HLM one with λ < µ
and µ, λ. Table 2 reports the measured retrieval effectiveness of the different
cases and also shows the effect on precision for the three different modes of
element priors - uniform, proportional and inversely proportional for the case
µ < λ. Table 2 provides empirical evidence to the hypothesis that an element

Table 2. HLM for element retrieval for INEX 2009 topics

λ µ Element Prior Retrieval Effectiveness

probability iP[0.01] iP[0.05] iP[0.10] MAiP

0.0 0.15 Uniform 0.2639 0.1863 0.1335 0.0448
0.15 0.25 Uniform 0.4082 0.2648 0.1894 0.0566
0.25 0.15 Uniform 0.5256 0.3595 0.2700 0.0991
0.25 0.15 Shorter favored 0.3459 0.1682 0.0901 0.0314
0.25 0.15 Longer favored 0.4424 0.3582 0.2787 0.1064

scored with some contextual information from the article performs better. The
first row of the table reports the case where elements are LM weighted without
any parent article information. It can be seen that the first row yields the least
iP [0.01] value. The table also justifies the hypothesis of assigning µ < λ since
iP [0.01] of the third and fifth rows are higher than that of the second row.

4.3 Relevant In Context

For the Relevant In Context task we undertook an approach of regrouping the
returned elements by the parent article. We employed two methods for reranking
the elements described as follows:

Group by the reading order In this ordering scheme the elements are grouped
together by the rank of the top ranked element from an article. In this ordering
scheme, an element ei gets a lower rank (best is rank 1) as compared to ej if the
best ranked element from the article to which ei belongs is retrieved at a lower
rank when compared to the best ranked element from the article containing ej .
Thus,

rank(ei) < rank(ej)⇔ rank(first(p(ei))) < rank(first(p(ej))

252

where p(x) refers to the parent article of element x and first(y) denotes the
best ranked element of article y.

Group by the aggregated similarities In this ordering scheme, the articles are
reranked by a weighted sum of the similarity values of the individual elements of
the articles. Thus the elements of the article which has the maximum aggregated
similarity values of its constituent elements are returned first and so on. An
element ei gets a lower rank as compared to ej if the aggregated similarity
values of the elements from the parent article of ei is higher than those for ej .
Thus,

rank(ei) < rank(ej)⇔
∑
e∈Ai

sim(e) <
∑
e∈Aj

sim(e) (5)

where Ai refers to the set of all elements of the parent article of ei and sim(x)
is the similarity of element x. The elements which are further down the ranked
list can be penalized by down-weighting their contributions. Thus, we used a
modified version of Equation 5

rank(ei) < rank(ej)⇔
∑
e∈Ai

N − rank(e)
N

sim(e) <
∑
e∈Aj

N − rank(e)
N

sim(e)

(6)
In Equation 6 rank(e) refers to the rank of an element e and downweights the
similarities of elements at higher ranks.

We tried out these approaches on the HLM element retrievals involving uni-
form and longer element priors. The results are summarized in Table 3. Results
are reported for both the unrestricted and restricted (to 500 characters) ver-
sions. The reported 500 characters for the restricted version often cover less
than 5 documents as a result of which the fixed point cut-off metrics for 5 or
higher number of documents e.g. gP [5], gP [10] etc. yield the same value. Hence
for the restricted version, we report only the MAgP scores. Table 3 shows that

Table 3. Relevant In Context runs generated from HLM element retrievals for INEX
2009 topics

λ µ Element Prior RIC Unrestricted Restricted

probability method gP[5] gP[10] gP[25] gP[50] MAgP MAgP

0.25 0.15 Uniform ro 0.2872 0.2182 0.1547 0.1138 0.0912 0.0231
0.25 0.15 Uniform aggr 0.1992 0.1613 0.1294 0.1095 0.0722 0.0114
0.25 0.15 Uniform waggr 0.2516 0.1918 0.1579 0.1222 0.0869 0.0163
0.25 0.15 Longer favored ro 0.2175 0.1752 0.1251 0.0880 0.0628 0.0309
0.25 0.15 Longer favored aggr 0.1304 0.1124 0.0916 0.0707 0.0396 0.0110
0.25 0.15 Longer favored waggr 0.1625 0.1491 0.1106 0.0842 0.0496 0.0129

weighted aggregation method of Equation 6 performs better than its unweighted

253

counterpart. The HLM element retrieval runs without length bias of the elements
do better. Although waggr performs worse as compared to ro, it yields higher
fixed point cut-off precisions for 25 and 50 documents as can be seen from the
third row.

5 Data Centric Track

6 Feedback Track

6.1 Motivation

A major problem in IR is the mismatch between query terms and terms in
relevant documents in the collection which satisfy the user’s information need.
Query expansion (QE) is a popular technique used to bridge this vocabulary gap.
Query expansion techniques work by adding terms to the user’s original query
so as to enrich it to more fully describe the information need either by including
alternative terms which might have been used in the relevant documents or which
augment the terms in the original query. If good expansion terms are selected
then the retrieval system can fetch additional relevant documents or increase the
retrieved rank of items already retrieved. The query expansion techniques aim
to predict the most suitable candidate words to be added to the query so as to
increase retrieval effectiveness.

One of the problems in BRF is that all terms which are not related to the
query, but meet the selection criterion for feedback terms are used for QE (e.g.
semantically unrelated, but high frequency terms from long pseudo-relevant doc-
uments). Using text passages for feedback (sentences instead of full documents)
might be more successful because long documents can contain a wider range of
discourse and noisy terms would be added to the original query, causing a topic
shift. As a result of this wide range of discourse for long documents the relevant
portion of such a document may be quite small and feedback terms should be
extracted from relevant portions only. These problems have led to the idea of
using smaller textual units (passages4) for query expansion, which dates back to
the experiments on the TIPSTER collections [8, 9]. This approach raises ques-
tions of how to create the passages, how to select the relevant passages, how
passage size influences performance, and how to extract feedback terms from
the passages. This track provides the opportunity to explore how true relevant
passages can be used for feedback.

Xu and Croft [10] proposed Local Context Analysis (LCA) which involves
decomposing the feedback documents into fixed length word windows so as to
overcome the problem of choosing terms from the unrelated portions of a long
document and then ranking the terms by a scoring function which depends on the
co-occurrence of a word with the query term, the co-occurrence being computed
within the fixed word length windows.
4 We employ the term passage in its most general sense, denoting phrases, sentences,

paragraphs, and other small text units.

254

The motivation behind our method is the assumption that even large true
relevant text might contain unuseful or harmful terms for query expansion. We
assume that terms in close proximity to the query terms are good candidates for
expansion. Thus, in our method, we restrict the choice of feedback terms from
word windows maximally similar to the query, thus achieving the same effect
of filtering out potentially irrelevant parts of a longer document as LCA. The
difference with LCA is that we do not compute the co-occurrences explicitly nor
do we use the idf scores.

6.2 Algorithm

The newly introduced feedback track provides opportunity to utilize true rele-
vance feedback information as opposed to BRF paradigm of traditional IR. The
incremental reporting of relevant portions from full documents allows develop-
ment of a feedback algorithm with which to choose a variable number of terms
directly or inversely proportional to the lengths of the relevant portions reported.
Both the directly and inversely proportional approaches can be justified in their
own ways. One might want to choose more terms from a smaller chunk of a
relevant section in the hope that it has little or no noisy terms, whereas it might
be worth to choosing more terms from a larger chunk of relevant section on the
assumption that longer the relevant section higher is the greater likelihood of
finding useful expansion terms. For the feedback track, we propose the following
basic algorithm and its variations achieved by how ti is chosen in Step 6 of the
algorithm.

1. For the ith request of the next document to return, repeat Steps 2-7.
2. Let R be the accumulated string of relevant passages from the last document

returned.
3. Break up R into fixed length windows of m words after applying stopword

removal and stemming.
4. For each window w = (w1, . . . wn), where wi = tf(ti)

1
2 log idf(ti) (tf(ti) is

the term frequency of the ith term in the window and idf(ti) is the inverse
document frequency of ti), compute the cosine-similarity of w with q =
(q1, . . . qn), where qi = tf(ti).

5. Choose a subset of p windows having the top similarity values.
6. Extract out the most frequent ti terms from these windows and add them

to the query.
7. Re-retrieve with the expanded query and return the topmost yet unreturned

document of the new ranked list.

The three variants for choosing ti in Step 6 are as follows:

1. ti = t, where t is a constant ∀i.
2. ti = (Li−ri)

Li
t, where t is a constant, Li is the length of the ith document and

ri is the length of the relevant section of the ith document.
3. ti = ri

Li
t, with t, Li and ri defined as before.

255

The first variant chooses a constant number of terms regardless of the segment
length, whereas the second variant is used to choose a greater number of terms
from shorter relevant segments, and the third variant is used to choose a smaller
number of terms from shorter segments.

6.3 Training the system

The parameters as outlined in the feedback algorithm are the window length m,
the number p of most similar windows to restrict the expansion terms to, and
the constant t which guides the choice of the number of feedback terms. After
performing a range of experiments to choose the optimal settings, the following
values of the parameters were found to work well in practise: m = 30, p = 10,
and t = 5. The results of the experiments with the above settings are outlined
in Table 4. RFconst is the relevance feedback run with a constant number of
terms added from each marked relevant section, whereas RFinvrsl and RFrsl use
number of terms inversely and directly proportional to the length of the relevant
section respectively. As a baseline we use standard Rochhio’s feedback which was
packaged as a default feedback module implementation by the INEX organizers.
The default Rochhio’s feedback implementation uses α = 1, β = 0.75 and γ = 0
and uses 20 terms for query expansion. A notable difference between the baseline
module and our implementation is that the former adds expansion terms to the
original query at each iteration, whereas in case of the later for the ith iteration
we add expansion terms to the expanded query obtained during the (i − 1)th

iteration. Thus our query expansion is cumulative in nature in contrast to the
baseline method.

Table 4. Best MAPs obtained by the three term selection methods for QE.

Topics RFRochhio RFconst RFinvrsl RFrsl

Training set 0.4356 0.4892 0.4939 0.4838

Figure 2 shows the interpolated precsion-recall curves for the four approaches
as reported in Table 4. The graph reveals some interesting characteristics of the
two feedback methods RFrsl and RFinvrsl. While it can be seen that RFrsl yields
low precision for lower levels of recall, it outperforms RFinvrsl for higher levels
of recall which suggests that it might be worthy to try out a combination of the
above two as a part of our future work.

7 Results

In this section we report the official results as reported in the INEX website.

256

Table 5. Official evaluation of the thorough runs

Run Id # docs retrieved MAiP

ISI2010 thorough.1500 1500 0.0846
ISI2010 thorough.150 150 0.0826
ISI2010 thorough.15 15 0.0714

12P167 (Best run) 0.2354

Table 6. Official evaluation of the Focussed runs

Run Id Methodology char precision

ISI2010 rfcs ref HLM element retrieval on 0.2451
article level reference run

ISI2010 rfcs flm HLM element retrieval on 0.2151
article level LM run

ISI2010 rfcs vsm Pivoted normalized element 0.1289
retrieval on article level LM run

LIP6-OWPCparentFo (Best run) 0.4125

Table 7. Official evaluation of the Relevant In Context runs

Run Id Methodology Restricted MAgP

ISI2010 ric ro Reading order No 0.0645
ISI2010 ric aggr Weighted aggregation No 0.0245
ISI2010 rric ro Reading order Yes 0.0485

ISI2010 rric aggr Weighted aggregation Yes 0.0482

ENSM-SE (Best run) No 0.1977
32p167 (Best run) Yes 0.1580

257

0.20

0.30

0.40

0.50

0.60

0.70

0.00 0.20 0.40 0.60 0.80 1.00

P
re

c
is

io
n

Recall

RF_Rochhio
RF_const
RF_invrsl

RF_rsl

Fig. 2. Interpolated Precision-Recall curve

7.1 Adhoc task

Table 6 shows that the HLM based element retrieval on the reference run yields
the highest character-precision among our runs. Table 7 shows that the reading
order grouping by method works better than the weighted aggregation method.

8 Conclusion

Through our participation in INEX-2010, we wanted to explore an extension of
LM for IR which we call HLM for element retrieval method. Trial experiments on
INEX-2009 topics show that it outperforms the baseline LM element retrieval.
Official restricted focussed runs show that HLM element retrieval outperforms
the pivoted normalized VSM element retrieval. A new method for grouping re-
trieved elements by articles utilizing the weighted aggregated retrieval scores
was investigated. But unfortunately it was not able to outperform the method
of grouping by reading order on both INEX 2009 and 2010 topics. We proposed
a new feedback method which restricts the choice of feedback terms to maxi-
mally similar pseudo-sentences extracted from reported relevant sections. The
proposed method outperforms the baseline Rochhio feedback method on the
training topics.

258

Acknowledgments

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142)
as part of the Centre for Next Generation Localisation (CNGL) project.

References

1. : INEX: Initiative for the Evaluation of XML Retrieval (2008)
http://www.inex.otago.ac.nz.

2. W3C: XPath-XML Path Language(XPath) Version 1.0
http://www.w3.org/TR/xpath.

3. Salton, G.: A Blueprint for Automatic Indexing. ACM SIGIR Forum 16(2) (Fall
1981) 22–38

4. Hiemstra, D.: Using language models for information retrieval. PhD thesis, Uni-
versity of Twente (2001)

5. Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In:
SIGIR ’96: Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
(1996) 21–29

6. Pal, S., Mitra, M., Ganguly, D.: Parameter tuning in pivoted normalization for
xml retrieval: Isi@inex09 adhoc focused task. In: INEX. (2009) 112–121

7. Singhal, A.: Term Weighting Revisited. PhD thesis, Cornell University (1996)
8. Callan, J.P.: Passage-level evidence in document retrieval. In: SIGIR 1994,

ACM/Springer (1994) 302–310
9. Allan, J.: Relevance feedback with too much data. In: SIGIR 1995, ACM Press

(1995) 337–343
10. Xu, J., Croft, W.B.: Query expansion using local and global document analysis.

In: SIGIR 1996, ACM (1996) 4–11

259

Combining Strategy for XML Retrieval

Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

Key Laboratory of Machine Perception (Ministry of Education)
School of Electronic Engineering and Computer Science, Peking University

nanacream@gmail.com;zhdeng@cis.pku.edu.cn;jjjoke@163.com;
davidfracs@gmail.com; pkucthh@gmail.com

Abstract. This paper describes Peking University’s approaches to the Ad Hoc,
Data Centric and Relevance Feedback track. In Ad Hoc track, results for four
tasks were submitted: Efficiency, Restricted Focused, Relevance In Context and
Restricted Relevance In Context. To evaluate the relevance between documents
and a given query, multiple strategies, such as BM25, Two-Layer retrieval,
MAXLCA semantic query model, distribution measurements and learn-to-
optimize method are combined to form a more effective search engine. In Data
Centric track, to get a set of "closely related" nodes that are "collectively
relevant" to a given keyword query, we promoted three factors, correlativeness,
explicitnesses and distinctiveness, to evaluate the importance of an attribute or a
set of nodes from result documents. In Relevance Feedback track, our
implementation employs two techniques, a revised Rocchio algorithm and
criterion weight adjustment, to obtain useful information from feedbacks.

Keywords: INEX, Ad Hoc, Data Centric, Relevance Feedback

1 Introduction

INEX Ad Hoc Track [1] aims to evaluate performance in retrieving relevant results
(e.g. XML elements or documents) to a certain query. In INEX Ad Hoc 2010, four
different tasks are addressed: (1) Efficiency task requires a thorough run estimating
the relevance of document components. (2) Relevant in Context task requires a ranked
list of articles, and for each article a non-overlap ranked list results covering the
relevant material in the article. (3) Restricted Focused task limits results (elements or
passages) ranked in relevance order up to a maximal length of 1,000 characters per
topic. (4) Restricted Relevant in Context tasks requires a ranked list of documents,
and for each document a ranked list results covering its non-overlapping relevant
material. Per result document can contain maximal 500 characters.

Initially our search engine is implemented to optimize the effectiveness of retrieval,
regardless of the efficiency and restricted length. Five different querying strategies,
BM25 [2], Two-Layer retrieval, Maximal Lowest Common Ancestor (MAXLCA)
semantic query model, distribution measurements and learn-to-optimize method, are
combined to form a more efficient search engine. Detailed definitions of these

260

2 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

technologies will be introduced in section 2.The thorough retrieval results are
submitted to efficiency task. Furthermore, the results for other three tasks are variants
of these thorough runs. In Restricted Focused task, each topic limits the answers up to
a maximal length of 1,000 characters. Hence, we only return the result elements that
with top relevance-length ratio, in which relevance score for each results are
computed by the aforementioned combined strategy module. For Relevance in
Context task, the process scans the thorough runs and integrates the elements belong
to the same document. The orders for these integrated covers in ranked list are
determined by the elements with maximal relevance score in each set. To obtain the
results of Restricted Relevance in Context task, each result in the Relevance in
Context are pruned to maximal 500 characters. Similar to Restricted Focused task,
only passages with top relevance-length ratio are reserved.

Data Centric track aims to provide a common forum for researchers or users to
compare different retrieval techniques on data-centric XML, where the structure is
very rich and carries important information about objects and their relationships. In
Data Centric track, the task is to get a set of "closely related" nodes that are
"collectively relevant" to a given keyword query. In XML keyword search, most
XML documents can be seen as description of an entity (such as a person, a website
or a company etc.), and most content of the document are about attributes of the entity
(e.g., name or job of a person). In order to generate a good snippet [1][2] of an XML
document, it is critical to pick up the most descriptive or representative attributes
together with their values. In this paper, we present three main principles to judge the
importance of attributes. First, whether the attribute is distinguishable or not. Second,
whether the attribute is explicit or implicit. Third, whether the attribute describes the
entity directly or indirectly.
Relevance feedback is a new track in INEX 2010. IR system with relevancefeedback
permits interactivities between the users and the system. Users provide relevance
(irrelevance) information of search result to IR system, which will be utilized by IR
system to return more effective result. Relevance feedback track in INEX2010
simulates a single user searching with a particular query in an IR system that supports
relevance feedback. The user highlights relevant passages of text and provides this
feedback to the IR system. The IR system re-ranks the remainder of the unseen results
list to provide more relevant results to the user. The Relevance Feedback track mainly
focuses on the improvement of search result before and after implementing relevance
feedback. As a consequence, our team pays more attention to acquiring more
information through feedback rather than optimize results as in Ad hoc track.

In section 2, we explicitly introduce the five strategies used in Ad Hoc track and
reveal the corresponding evaluation results. Section 3 describes our work on Data
Centric track. In section 4, we show the methods applied for Relevance Feedback
track. Section 5 is the conclusion.

261

Combining Strategy for XML Retrieval 3

2 Ad Hoc Track

In Ad Hoc track, the search engine combines five strategies: Two-Layer Retrieval,
BM25, MAXLCA semantic query model, Distribution measurements and Learn-to-
optimize method. Within these five strategies, Two-Layer retrieval and BM25 are two
technologies that widely used and proven to be effective.

 Two-Layer Retrieval: Different from HTML, the querying atom of XML retrieval
is elements rather than the whole documents. Thus, the core idea of Two-Layer
retrieval is splitting the searching process into two layers. The first level starts from
the traditional article retrieval. Then taking thetop returned relevant articles as
querying database, the second layer further processes extracting the relevant
elements. Finally, the extracted elements are ranked and returned in a result list
form.

 BM25: Based onlots of research and comparative experiments, BM25 is confirmed
to be an effective ranking method.It takes both text and structure information into
consideration. Plus, evaluation results of Ad Hoc Track show thatBM25 performs
better than some other frequently cited ranking models, such as TF*IDF [3] and so
on. Motivated by BM25’s excellent performance, we implant it into the search
engine as a basic ranking method.

In the rest part of the section, we will propose the other three technologies applied in
the search engine. MAXLCA is a semantic model defining which elements are
relevant so that can be returned as results. Distribution measurements are ranking
criterions used to evaluate the relevance between elements and queries according to
the distribution of the keyword matches. Learn-to-optimize method is devised to tune
the weights of different ranking methods in the final decision.

2.1 Maximal Lowest Common Ancestor (MAXLCA)

Due to that the returned results of XML retrieval can be elements, semantic query
model are used to define which elements are relevant so that should be returned.
Several approaches have been proposed for identifying relevant results, such as
XRANK [4], SLCA [5] and XSeek [6] and so on. In this paper, we define a new
semantic query model call MAXLCA [12], and compare it with another model All
Common Ancestor (ACA). The formal definitions are as follow:

DEFINITION 2.1.1. Given a keyword query Q = { k1, …, km}, an XML tree Xtree,
we assume that Vi (1 i m) is the set of nodes that directly contains keyword ki in
Xtree. LCA(Q, Xtree)is defined as follows:

LCA(Q, Xtree) = {n | (v1 V1 ,…, vm Vm), n is the lowest common ancestors of
v1 ,…, vm}

DEFINITION 2.1.2.Given a keyword query Q = { k1, …, km}, an XML treeXtree,
we define MAXLCA(Q, Xtree) as follows:

262

4 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

MAXLCA(Q, Xtree) = {n | n LCA(Q, Xtree) (n LCA(Q, Xtree), n n)},
where n nmeansn is an ancestor of n.

DEFINITION 2.1.3.Given a keyword query Q = { k1, …, km}, an XML treeXtree,
we define ACA(Q, Xtree) as follows:

ACA(Q, Xtree) = {n | (v1 V1 ,…, vm Vm), n is the common ancestors of v1 ,…,
vm}.

To sum up, in ACA semantic query model, elements containing all matches of
keywords are returned as relevant results. In MAXLCA, only the maximal LCA
element of a document is returned.

2.2 Distribution Measurements

By observing a large amount of over 2000 query-result pairs, we interestingly
discover that the distribution of the keyword matches in results plays a crucial role in
picturing the theme of the passage. Moreover, four detailed statistical characteristics
based on distribution are considered that presenting advantage capability on
distinguishing relevant and irrelevant passages [13].

 Distance Among Keywords (DAK). The minimum distance among the keywords
is calculated. A passage with close matches of keywords in query will be more
relevant.

 Distance Among Keyword Classes (DAKC).The matches in passage of a certain
keyword are firstly categorized into several subsets. The closer the keywords
subsets are, the more relevant a passage is.

 Degree of Integration Among Keywords (DIAK).The passage with high degree
of integration will be more concentrating on one certain theme and should be given
higher priority in the returned list.

 Quantity Variance of Keywords (QVK). The passages whose numbers of
different keywords vary significantly should be penalized.

The four distribution measurements evaluate the relevant between an element and a
given query from different point of view. The weights of these features in final
ranking module can be learned by the learn-to-optimize method introduced in next
section. After all, the distribution measurements strategy belongs to ranking
technology, modifying and completing the classic ranking function from the
perspective of distribution of keyword matches in the passage.

2.3 Learn-to-optimize

Learn-to-optimize method [14] is proposed to tune the weights of the four features in
distribution measurements. The Wiki English collection, queries and assessments of
INEX 2009 Ad Hoc track are used as training samples.

263

Combining Strategy for XML Retrieval 5

In training, there is a set of query Q = {q1,q2,…,qm} extracted from the INEX 2009
Ad Hoc track. Each query qi is associated with a list of candidate elements Ei=
(, , … ,), where denotes the the j-th candidate element to query qi and n(i) is
the size of Ei. The candidate elements are defined as MAXLCA or ACA elements.
Moreover, each candidate elements list Ei is associated with a ground-truth list Gi=
(, , … ,), indicating the relevance score of each elements in Ei.

Furthermore, for each query qi, we use the distribution criterions defined in section
2.2 to get the predict relevant scores of each candidate element, recorded in Ri=
(,…,). In formula (1), SDAK, SDAKC, SDIAK and SQVK are the predicted scores
for element j according to distance among keywords, distance among keyword classes,
degree of integration among keywords and quantity variance of keywords
respectively.

Then each ground-truth score list Gi and predicted score list Ri form a “instance”.
The loss function L is defined as the Euclidean distance between standard results lists
Di and search results lists Ri.

In each training epoch, the four criterions were used to compute the predicted score Ri.
Then the learning module replaced the current weights with the new weights tuned
according to the derivative of the loss between Gi and Ri. Finally the process stops
either while reaching the limit cycle index or when the parameters do not change.

2.4 Comparison Results

In Ad Hoc track, the results submitted are obtained from five different combinations
of the aforementioned strategies, illustrated in table 1.

Table 1.Results Submitted to Ad Hoc Track

MAXLCA ACA Two Layer BM25 Distribution

AcaBM25

MaxBM25

RefMaxDis

RefMaxBM25

RefMaxBM25Dis

Figure 1,2,3 present the evaluation results of Efficiency task, Relevance In Context
task and Restricted Relevance In Context task respectively under measure as focused
retrieval. Table 2 describes the evaluation results under document retrieval. As can be
concluded: (1) Two-Layer search performs better than simple one layer element
search; (2) MAXLCA semantic query model is more suitable for XML retrieval than
ACA; (3) Rather than completely replacing BM25, distribution measurement is
suitable for improving and modifying the drawbacks of it; (4) The method using Two-

264

6 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

Layer as retrieving strategy, MAXLCA as semantic query model, BM25 and
distribution measurement as ranking functions shows the best performance.

Fig.1.Evaluation Results of Efficiency Task

Fig.2.Evaluation Results of Relevance in Context Task

265

Combining Strategy for XML Retrieval 7

Fig.3.Evaluation Results of Restricted Relevance in Context Task

Table 2.Evaluation Results Under Measure as Document Retrieval

MAiP AcaBM25 MaxBM25 RefMaxDis RefMaxBM25 RefMaxBM25Dis

Efficiency 0.0538 0.0538 0.2404 0.3160 0.3047

Relevance In
Context

0.0538 0.0538 0.2404 0.3160 0.3385

Restricted
Relevance In
Context

0.0102 0.0102 0.2404 0.3160 0.3202

3 Data Centric Track

In XML keyword search, there can be usually quite a number of results returned, only
by the snippetof each result can the users judge whether it is useful to them, therefore
it is important to generate a good snippetfor each result. [6][8] Pointed that a good
XML result snippet should be a self-contained information unit of a bounded size that
effectively summarizes the query result and differentiates itself from the others,
meanwhile the authors have also accomplished a snippet generation system called
eXtract [9].

The limited size of a snippet requests the search engine to extract the most important
information (information here refers to attributes of an entity) from the result
document, thus the main problem is to define the importance of attributes. In this
paper, we present a semantic model MRepA (Most Representative Attribute) to
evaluate the importance of an attribute to its corresponding entity, and afford three
main principles to judge the importance of attributes. First, whether the attribute is
distinguishable or not. Second, whether the attribute is explicit or implicit. Third,
whether the attribute describes the entity directly or indirectly.

To be distinguishable, an attribute should meet the following two conditions. First, the
attribute appears in all of the corresponding entities. Second, the attributes in different
entities have different values. For example, as everyone has his or her name, and
mostly different person has different name (though sometimes it is possible that two
different person share the same name), so we can use the name to distinguish different
person, however, we can’t use the nationality or driving license ID to distinguish
different person.

266

8 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

Fig.4.IMDB data segment

An attribute is explicit if all the content of the attribute value describes its
corresponding entity only and not any other entities. For example, in figure 4 an XML
document about Tom Hanks has two attributes birth_date and biography, and
birth_date is an explicit attribute while biography is not, since birth_date is all about
Tom Hanks’s informationwhile biography contains the information about others (here,
“one of the best directors nowadays”describes Steven Spielberg not Tom Hanks).

An attribute describes an entity directly means the attribute describes the entity itself
but not any part of the entity, while an attribute describes an entity indirectly means
the attribute describes some of the attributes of the entity or entities that are related to
the entity (e.g., entity that is a son of the entity). For example, in figure 1 Tom Hanks
is the name of the actor and we say it describes the entity (the actor) directly while
Forrest Gump is the name of a movie that he acts in, so we can say that it describes
the entity indirectly.

3.1 Extracting the Most Representative Attributes

In this section, we will discuss about how to integrate the three factors, which
evaluate the importance of an attribute to an entity, into our semantic model MRepA
[15].

3.1.1 Correlativeness Between Entities and Attributes

To evaluate if an attribute describes an entity directly or not, we have to analyze the
relative position between the attribute and the entity in an XML document tree. In this

267

Combining Strategy for XML Retrieval 9

section we define the entity-attribute path and use the number of entities on the path
to measure the correlativeness between an attribute and its corresponding entity.

Definition 3.1.1.1: an entity-attribute path is a set of nodes those are on the path from
the entity to the attribute (including the entity and the attribute).

Besides the number of entities on the entity-attribute path, the number of entities in
the same level can be another factor that affects the correlativeness between an entity
and an attribute. For example, for an actor named Tom Hanks in figure 1, as we
discussed in section 1 Forrest Gump describes the actor indirectly, however, if
Forrest Gump is the only movie that Tom Hanks acts in, then Forrest Gump can be
very representative for actor Tom Hanks, while in the other hand, if Forrest Gump is
just the one of a large number of movies that Tom Hanks acts in, then it may not be
that much representative for actor Tom Hanks. So we integrate the two factors to
evaluate the correlativeness between entities and attributes.

Definition 3.1.1.2: we define the correlativeness between entity e and attribute a R(e,
a) as follows:

(,)

1

1(,)
n

length e a

ii

R e a k
m

Where n=length(e, a) refers to the number of entities between entity e and attribute a,
and mi refers to the number of the entities of i-th category in the path.

For example, in figure 1, suppose there are 10 movie nodes, the entity-attribute path
from node person to title-Forrest Gump is {person, filmography, act, movie, title},
and there are two entities person and movie on the path, and the number of person is 1
while the number of the movie is 10. If we set k as 1/2

3.1.2 Explicitnesses of attributes

In XML keyword search, length of the value of an attribute is usually associated with
the explicitness of the attribute, and long text tends to be more descriptive but less
explicit, while short text tends to be more explicit and clear. Thus we use the length
(or the number of words) of the text to judge the explicitness of an attribute roughly.

Definition 3.1.2.1: we judge the explicitness of an attribute by the complicacy (we use
the length here) of its value, and we sign the explicitness of attribute a as E(a).

3.1.3 Distinctiveness of attributes

As discussed in section 1, a distinguishable attributes should match the following two
conditions: (1) The attribute appears in all of the entities; (2) The value of the attribute
should be different in different entities.

In XML keyword search, there may not exist this kind of attributes. For example, we
tend to use someone’s name to differentiate one person from another, however, it is

268

10 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

possible that two different person share the same name. Therefore in this section we
afford the formula to calculate how much an attribute meet the demands.

Definition 3.3: we use distinctiveness of attributes to evaluate the degree of how
much an attribute is able to distinguish different entities, and we sign the
distinctiveness of attribute a as Wa.

In the above formulas, parefers to the percentage of the correlative entities that
attribute a appears, while H(a) is the chaos of attribute a, which estimates the variety
of attribute a. The attribute’s weightiness just evaluates the information an attribute
itself can provide. To weigh how much an attribute contributes to an entity, we need
the relationship between the attribute and the entity in addition.

4 Relevance Feedback Track

In relevance feedback track, our implementation employs two techniques: a revised
Rocchio algorithm and criterion weight adjustment. In section 2.1, we will briefly
introduce Rocchio algorithm and in section 2.2 we will show how we revise it. At last,
we will we will show how we adjust criterion weights in section 2.3.

4.1 Rocchio Algorithm

Rocchio algorithm operates on vector space model [9], in which a document is
represented by a vector of n weights like , where n is the
number of unique terms in document collections and is the weight of the ith term in
document d if d contains the term, else equals to 0. And query is also represented as
a vector just like a particular document only contains keywords.

The general idea of Rocchio is that the initial query may not express the purpose of a
IR system user completely and effectively. Using the relevant or irrelevant document
vector, RF could bring the query vector to express what the user needs more
accurately. Rocchio’s goal is to define an optimal query that maximizes the difference
between the average vector of the relevant documents and the average vector of the
irrelevant documents.

To achieve this, Rocchio add new query terms and reweight query terms in the query
vector, making it more discriminative in choosing relevant documents from
documents collection. The following formula shows the basic Rocchio algorithm:

1

exp() ()

() () log[()]

a a
n

i i
i

W p H a

H a p a p a

269

Combining Strategy for XML Retrieval 11

where is the initial query vector and is the revised query vector, is the number
of relevant documents and is the number of irrelevant documents, is the vector
of a relevant document and is a irrelevant document vector.

After modification , the terms only appear in relevant document get a high positive
weight and those only in irrelevant documents get a high negative weight, while the
terms got relatively low weight if they appear in both relevant and irrelevant
documents and have less discriminative power. It makes revised query vector contain
more information about the difference of relevant and irrelevant documents.

Some researchers have modified and extended the formula such as assign different
weight to original query terms [10] and added query terms or make constraints of
number of documents used in the modification [11]. We won’t introduce them here
because they are basically the same.

4.2 Revised Rocchio Algorithm

Due to relevant information about each part of a relevant document is accessible in
INEX2010 we divided a document into several paragraphs and represent each
paragraph as a vector in our implementation. We treat a paragraph as a document in
the searching process and give each paragraph a score. The score of a document is the
weighted sum of its paragraphs’ scores.

In our implementation, we redefine the formula in section 2.i as:

Where donates the vector of term weights calculated from a paragraph. Unlike
original method to compute term weight , as how we define and in formula in
section 2.1, we define as follows:

For term in , its weight

Where denotes the score of paragraph , and denotes the score
of paragraph after removing all from it.

We will use an example to illustrate why we compute like this. In INEX2009, the
first topic of Ad hoc track is “Noble Prize”. A user queries this for needing to prepare
a presentation about the Nobel Prize. Therefore, he wants to collect information about
it as much as possible. Assume there is a document with a simple paragraph as a
section title, “Ig Nobel Prize”. Apparently, the paragraph is not relevant because the

270

12 Ning Gao, Zhi-Hong Deng, Jia-jian Jiang, Sheng-Long Lv, Yu Hang

Ig Nobel Prize is an American parody of the Nobel Prizes organized by the scientific
humor magazine Annals of Improbable Research. However, the score of this
paragraph is relatively high for the reason that it only contains three words and two of
them are keywords. Intuitively, we can figure out that the term “Ig” is a largely bad
word for this topic for it turns a high-score paragraph to a irrelevant one. In addition,
term “Nobel” or “Prize” seems has no responsibility for the irrelevance of this
paragraph. However, if we use the formula in section 2.1, no difference between “Ig”
and “Nobel” is reflected in the values of or . While in the revised model, the
weights of “Ig” and “Nobel” are significantly different.

In the revised model, we focus on the contribution of a term to relevance or
irrelevance of the paragraph it is belong to.

4.3 Criterion Weight Adjustment

To calculate score of a paragraph, we make three criterions. They are the frequency
entropy, the mixing entropy and the weighted term distance between paragraph vector
and query vector. The frequency entropy scales difference of terms’ appearance
frequency. It assigns a high score if all keywords appear the same number of times in
a paragraph. The mixing entropy scales whether keywords appears alternatively. It
assigns low score to a paragraph if it talks about one of the keyword at beginning
while talks about another keyword at end without mixture of them. Each criterion
makes contrition to the final score of a paragraph.

However, we can’t decide which criterion is of greater importance to a specific topic.
So we try to get this information from the feedback data. In the searching process, we
keep the score history of every criterion and every keyword. Then at criterion weight
update time, the discriminative power of each criterion and each keyword are
computed. The discriminative power is computed as follows:

Where is the mean contribution of this criterion or keyword to relevant paragraphs
and is the mean contribution of this criterion or keyword to irrelevant paragraphs,

 is the standard deviation of contribution of this criterion or keyword to relevant
paragraphs and is the standard deviation of contribution of this criterion or
keyword to relevant paragraphs

High DP value means strong discriminative power in current topic, so we raise its
weight to let it make bigger contribution to scoring paragraph. While low DP value
donates a criterion of keyword is not a suitable criterion for current topic.

For example, in our experiment, in the topic “Nobel Prize”, these two keywords are
assigned the same criterion weight, 0.5. However after all the document are returned.
The criterion weight of “Nobel” rises to 0.89 but the “Prize” is only 0.11. The result is
easy to understand. “Prize” is relatively a more widely word because there are a lot of
prizes such as Fields Medal Prize, Turing Prize.

271

Combining Strategy for XML Retrieval 13

5 ACKNOWLEDGMENTS

This work was supported by the National High-Tech Research and Development Plan of China
under Grant No.2009AA01Z136.

6 Reference

[1] http://www.inex.otago.ac.nz/.

[2] D. Carmel, Y.S. Maarek, M. Mandelbrod, et al. Searching XML documents via XML
fragments. In SIGIR, pages 151—158, 2003.

[3] M. Theobald, R. Schenkel, G. Wiekum. An Efficient and Versatile Query Engine for TopX
Search. In VLDB, pages 625—636, 2005.

[4] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: Ranked Keyword Search
over XML Documents. In SIGMOD, 2003.

[5] Y. Xu and Y. Papakonstantinou.Efficient Keyword Search for Shortest LCAs in XML
Databases.In SIGMOD, 2005.

[6] Z. Liu and Y. Chen.Identifying Meaningful Return Information for XML Keyword
Search.In SIGMOD, 2007.

[7] Z. Liu, J. Walker, Y. Chen: XSeek: A Semantic XML Search Engine Using Keywords. In
VLDB 2007: 1330-1333.

[8] Yu Huang, Ziyang Liu, Yi Chen. eXtract: A Snippet Generation System for XML Search.
In VLDB 2008, Pages 1392-1395.

[9] Ian Ruthven and MouniaLalmas, A survey on the use of relevance feedbackfor information
access systems. In The Knowledge Engineering Review (2003)

[10] E Ide. New experiments in relevance feedback.The SMART retrieval system experiments
inautomatic document processing. (G. Salton ed). Chapter 16.pp 337-354. 1971.

[11] E. Ide and G. Salton.Interactive search strategies and dynamic file organization
ininformation retrieval. The SMART retrieval system - experiments in automatic document
processing.(G. Salton ed). Chapter 18.pp 373-393. 1971.

[12] Ning Gao, Zhi-Hong Deng, Jia-Jian Jiang, Yong-Qing Xiang, Hang Yu, MAXLCA A
Semantic XML Search Model Using Keywords. Technical Report.

[13] Ning Gao, Zhi-Hong Deng, Hang Yu, Jia-Jian Jiang, ListOPT: A Learning to Optimize
Method for XML Ranking. Technical Report.

[14] Ning Gao, Zhi-Hong Deng, Shenglong, Lv, Hang Yu, Jia-Jian Jiang, XDist A New XML
Ranking Model Based on Keywords Distribution in Results. Technical Report.

[15] Jiajian Jiang, Zhihong Deng, Ning Gao, Shenglong Lv, Hang Yu. MRepA: Extracting the
Most Representative Attributes in XML Keyword Search. Technical Report.

272

Web Service Discovery Track Overview

James A. Thom1 and Chen Wu2

1 RMIT University, Melbourne, Australia
james.thom@rmit.edu.au

2 Curtin University, Perth, Australia
Chen.Wu@cbs.curtin.edu.au

Abstract

An efficient and effective Web services discovery mechanism is important in many

computing paradigms including Pervasive Computing, Service-Oriented Com-

puting, and the most recent Cloud Computing, in which Web services constitute

the chief building blocks. The Web Service Discovery track aims to investigate

techniques for discovery of Web services based on searching service descriptions

provided in Web Services Description Language (WSDL). Participating groups

have contribute to topic development and will contribute to evaluation, which

will then allow them to compare the effectiveness of their XML retrieval tech-

niques for the discovery of Web services. This will lead to the development of a

test collection that will allow participating groups to undertake future compara-

tive experiments. This track would not been possible without the support of the

INEX organisers in providing software support, as it makes extensive use of the

existing INEX infrastructure. The results for the Web Services Discovery track

are not yet available.

273

 Semantics-based Web Service Discovery Using
Information Retrieval Techniques

J.Hou, J.Zhang, R.Nayak, A.Bose

Faculty of Information Technology, Queensland University of Technology,
2 George Street, GPO Box 2434, Brisbane, QLD 4001 Australia

{jun.hou, jinglan.zhang, r.nayak, a.bose}@qut.edu.au

Abstract. This paper demonstrates an experimental study that examines the ac-
curacy of various information retrieval techniques for Web service discovery
according to users’ queries. The evaluation is comprehensively benchmarked
using more than 1,700 real-world WSDL documents from INEX 2010 Web
Service Discovery Track dataset. For automatically search, we successfully use
Latent Semantic Analysis and BM25 to perform Web service discovery. More-
over, we provide linking analysis to automatically link possible atomic Web
services for complex requirements of users. After that, the fusion engine inte-
grates results and recommends a final result to users. Based on evaluation, link-
ing analysis can provide flexible combinations of Web services based on users’
preferences. Search results show that the combination of Latent Semantic
Analysis and linking analysis can improve the overall performance of Web ser-
vice discovery.

Keywords: Web service discovery, Semantics, Latent Semantic Analysis,
Linking Analysis

1 Introduction

With the popularity of Service Oriented Architecture (SOA), many enterprises offer
their distributed Web services as interfaces for their core business systems. Web Ser-
vices are embracing an unprecedented attention from the computer world. Web ser-
vices can be discovered by matchmaking requirements of service requesters with
service specifications from service providers. Web service discovery plays a key role
in finding appropriate Web services. Since a number of Web services are provided by
different organizations and there are still no standards for Web service design and
provision. It is a challenging and interesting task to identify accurate Web services.

Web Service Description Language (WSDL), the standard description language,
and Universal Description Discovery and Integration (UDDI) for advertising Web
services, are introduced to discover and invoke existing Web services. Web services
Requesters and providers then communicate with each other by SOAP message, a
XML format communication language based on HTTP. However, WSDL and UDDI
search mechanism utilizes syntactic search based on keyword. Semantic search is
needed to enhance the search performance. In addition, since different organizations
design services in enclosed circumstance, atomic Web services cannot satisfy differ-
ent users’ requirements [8]. Therefore, a set of Web services need to be composed to
fulfil the given tasks.

274

The main goal of this research is to evaluate algorithms for semantic Web service
discovery using WSDL1.1–compliant documents. Two methods are used in this pa-
per, namely Latent Semantic Analysis supported by Wikipedia corpus and BM25
supported by WordNet. Wikipedia corpus is used to create Latent Semantic Kernel,
while WordNet is introduced to improve the search performance of BM25. On top of
that, we propose a linking analysis, which can automatically compose possible atomic
Web services to conduct user-preferred tasks. In the fusion engine, a new result with
atomic and composite Web services is recommended to users. There are six submis-
sions created by each method and their combinations with linking analysis.

2 Related Work

This section summarizes some previous work in semantic Web service discovery.
Due to the lack of semantics in WSDL, many semantic Web service description

languages such as OWL-S, WSMO and WSDL-S have emerged to explicitly annotate
WSDL with semantic information. OWL-S and WSMO demonstrate Web services
semantics at a distinct level [7]. OWL-S is more concentrated on the “Upper ontol-
ogy” (not domain-specific ontology) for describing Web services [2]. Compared to
OWL-S, WSMO is more focused on producing a reference implementation of an
execution environment, the Web Service modelling execution environment and speci-
fying mediators [9]. Mediators are not the significant consideration in OWL-S con-
ceptual and implementation [12]. However, the discovery mechanism in WSMX is
based on keyword and simple semantic description [12]. Compared to OWL-S,
WSDL-S has several advantages over OWL-S. First, details of both the semantics and
operations can be described in WSDL. In addition, the semantic domain models are
detailed externally, which offers Web service developers an opportunity to select
preferred ontology language. On top of that, the existing tooling can be updated rela-
tively easy. The objectives of WSDL-S are to be of compatibility with OWL-S with
emphasises on a more lightweight and incremental approach [9]. Although more
lightweight and flexible (supporting different ontologies) ontology languages are
emerging, there is still no standard ontology and the maintenance cost is very high
with low scalability.

Many researchers make use of traditional Information Retrieval techniques. They
parse WSDL files (documents) into bags of words and create terms-documents. Then
Webs services are ranked by TF-IDF (term frequency –inverse document frequency)
or LSA (Latent Semantic Analysis)/LSI (Latent Semantic Indexing) according to the
term (search query) frequency in each document. A binning & merging-based Latent
Semantic Kernel [1] is proposed to enhance the semantics of LSA. Experiment result
shows that LSA approach can be acceptable both in scalability and complexity [13].
A method using surface parsing of sentences to add structural relations [3] are pro-
posed to improve the performance on single sentences in LSA. However, there still
are some issues related to LSA. When the pre-process (stop word removal and stem-
ming) reduces common terms and outliers, WSDL structure is broken at the same
time. Nayak & Iryadi [10] and Hao & Zhang [5] propose Schema matching ap-
proaches in WSDL-based Web service discovery. Such approaches try to find not
only text but also structure information for comparing WSDL documents. To effec-
tively investigate semantics in text, a Wikipedia-based structural relationship-

275

enhanced concept thesaurus [6] is introduced. This approach concentrates on improv-
ing the semantic relationships between important terms by applying text clustering.

Researchers are devoted to dig more semantic information from current Web re-
sources. Ding, Lei, Jia, Bin, & Lun [4] propose a discovery method based on Tag.
Tags are widely used in images, bookmarks, blogs and videos to annotate the content
of them. This approach suffers the same problem of above ontology language. It is
limited by the scope of comment on Web services and variety between different
comment styles. Semantic Web Services Clustering (SWSC) [11] makes use of pre-
conditions and effects from OWL-S to improve the accuracy of Web service discov-
ery. Using translation tools, more context information such as preconditions and ef-
fects after invocation can be collected thereby increasing the consistency of Web
service discovery. In this method, hidden Web services can be discovered and be
attached to similar groups before conducting search. However, the scalability is still a
problem.

3 Discovery approach

Our approach is a novel three-phase. Figure 1 shows the overview of Web service
discovery methodology. In the semantic analysis phase, there are two methods used to
retrieve atomic Web services, namely Latent Semantic Analysis (LSA) supported by
Wikipedia corpus and BM25 supported by WordNet. Before applying those ap-
proaches, standard text pre-processing is performed to parse WSDL documents into
bags of words. During this stage, stop word removal and stemming has been exe-
cuted.

276

User Query
LSA/BM25

WSDL Documents WSDL Pre-

Processing

Link Analyser

Fusion Engine

Recommendation Engine

List of Web Services in the ranked order of

relevancy to the user query

Fig. 1. Overview of Web Service Discovery Methodology

3.1 Pre-Processing

Stop word removal aims to reduce words which act poorly as index terms. For exam-
ple, those words can be “a”, “the”, “and” etc. An external stop word list is introduced
to filter out those words to perform data analysis.

Stemming is a process to replace words with their root or stem forms by removing
affixes (suffixes or prefixes). Words such as “computing”, “computer” and “com-

277

puted” will be replaced by the word “compute”. This process reduces not only the
variety of words also the computation cost. The Porter Stemming Algorithm is used to
conduct the stemming process.

3.2 Semantic Analysis

Latent Semantic Analysis (LSA)
Figure 2 shows the overview of Latent Semantic Analysis (LSA). In LSA, the seman-
tic kernel is used to find semantic similarity between Web services and users’ queries.
The semantic kernel is constructed from a general-purpose dataset. Wikipedia dataset
is chosen because it is not domain-specific and covers various topics. Figure 2 shows
the overview of LSA in phase I.

Fig. 2. Overview of LSA

To start, each pre-processed WSDL document is then encoded as a vector. Compo-

nents of the vector are terms in the WSDL document. Each vector component reflects
the importance by TF*IDF. The user query is also converted to a vector which is
compared with the vector of a WSDL document. The similarity between the user
query (Q) and the Web service document (W) is represented by the cosine value of
two vectors. Equation 1 shows how to calculate the cosine value.

278

���	��,�	
 	��	��,�	
 	

�∙�

||�||	||�||
 . (1)

However, we use semantic kernel (K) here to enhance the semantics between Q

and W. The Q and W is replaced with ��� and	��� respectively. Equation 2 shows
the improved equation with semantic kernel.

���	��,�	
 	��	��,�	
 	
���∙���

||���||||���||
 . (2)

Finally, the top-k Web services are returned to users (k is set as 20).

BM25
BM25 is a bag-of-words retrieval algorithm that ranks documents based on the query
terms appearing in each document. To increase the amount of query terms, WordNet
is introduced to incorporate with BM25. WordNet is a general ontology, which can
boost semantics from users’ queries. Figure 3 shows the overview of using BM25 in
phase I.

Fig. 3. Overview of BM25

After pre-processing, WSDL documents (W) are computed with users’ queries (Q)
for similarity. Equation 3 shows the major equation of BM25.

�������,�	
 	∑ ������	 ∙ 	
�� !,�	∙�"#$%	

�� !,�		$"#∙�%	–'	$'∙
|(|

)*+,-
	

.
� . (3)

279

In	/��� ,�	, q1 is the term frequency in the WSDL document W. |W| is the length
of the WSDL document and avgdl is the average document length in the text collec-
tion. Equation 4 shows the details of	������	.

������	
 8�9
:	–.� !	$;.=

.� !		$;.=
 . (4)

> represents the total number of WSDL document in the collection and ?���	 is

the number of WSDL documents containing	��.
Same as LSA, the top-k Web services are returned to users (k is set as 20).

3.3 Linking Analysis

Web services are retrieved based on the query of a user. However, one Web service
may not meet the requirement of the query of a user. For example, the query from a
user is “weather by postcode” and the actual Web service is “weather by location”.
Obviously, the Web service needs to corporate with another Web service such as
“postcode to location”. Linking analysis aims to link possible Web services to satisfy
the requirements of users. Figure 4 shows the overview of linking analysis.

280

Fig. 4. Overview of Linking Analysis

In linking analysis, we use top 25 results from LSA or BM25 instead of directly

linking Web services in the collection. In a WSDL document, the <PortType> tag
consists of sets of <Operation> tags, which contain the description of invocable func-
tions. We consider that Web services can be linked together if one Web service’s
output parameters match another one’s input parameters in parameter name, parame-
ter amount and data type. That information of input and output parameters is extracted
for linking analysis. During the extraction, non-topic words such as “result” and “re-
sponse” are filtered out.

Once we get parameter names, they are decomposed into tokens. For instance,
“ChangePowerUnit” is split into “Change”, “Power” and “Unit” from each capital
letter. If two parameter tokens are exactly same, we consider it as exact match. How-
ever, there are parameters having tokens such as “car” and “vehicle” and they seman-
tically can be linked. Therefore, we calculate the similarity between input and output
parameters to semantically link two Web services. Equation 5 shows how to compute
the similarity of two parameters.

281

���	�@%, @A	
 	
.∙BCD	�E�D	��F# ,�FG		

:
 . (5)

�H�	���	��I#

,�IG
		 is the sum of the similarity between tokens in parameter @%

and @A. N represents the total number of parameter tokens in @% and @A. For n, it is
the number of parameter tokens which is less than the other one. For example, if @%
has 2 tokens and @A has 3 tokens, n will be 2 and N will be 5. If ���	�@%, @A	 is greater
than 0.98, we consider that the two parameters can be linked (linkable parameters).
Furthermore, we use another factor, link strength, to decide if the two Web services
can be linked. Link strength demonstrates the compatibility of two Web services by
the number of linkable parameters. Equation 6 shows how to calculate the link
strength.

J�?K	�L��?9LM
 	
:-

:N
 . (6)

>O is the total number of linkable parameters and >P is the number of input parame-

ters of one Web service. Once we have the link strength, functions of Web services
are converted to a graph where nodes representing functions are connected with each
other by link strength. Afterwards, we use Floyd Warshell algorithm to calculate the
shortest path from each method to all other methods. We define composition strength
as the average of link strength of a composition. All compositions are ordered by
composition strength. Each composition is treated a new Web service and compared
with users’ queries for similarity by LSA.

3.4 System Integration

The main purpose of integration is to integrate the composition of Web services with
atomic ones from LSA or BM25. The most important task is to decide which result
appears in the final list. Generally, composition result has a higher accuracy than
atomic one. In addition, if a Web service is the component of a composition, it will
not appear in the final result. As a result, we select all compositions to the final result
and then add atomic results to form top 20 recommendations. Figure 5 shows the
overview of System Integration.

282

Fig. 5. Overview of System Integration

4 Data Set

The document collection used is provided by the INEX 2010 organizing committee.
The dataset contains over 1,700 documents in the format of WSDL 1.1, which are
directly crawled from real-world public Web services indexed by the Google search
engine.

5 Evaluation

There are 25 topics for evaluation and we submitted results but still wait for the ma-
nual evaluation/verification results currently. User queries are created by competition
participants to ensure the variety of queries. Final results will be added after
INEX2010 – Web Service Track has conducted the evaluation and published the
results.

6 Conclusions and Future Work

The experiment result shows that Latent Semantic Analysis improves the search per-
formance by discovering the semantic relationship between users’ queries and WSDL
documents. Link analysis automatically composes Web services to fulfill complex
tasks.
 In this paper, Web services are converted to bags of words and then compared with
users’ queries for similarity. However, WSDL documents are not like normal docu-
ments having high richness of terms. More decomposition rules are needed to deal

283

with abbreviation and artificial names when parsing WSDL documents. Furthermore,
the single term cannot describe function very well and simply investigating semantics
by single words may mislead search result. In addition, the user query is overly sim-
ple and Web services are involved in more complex business scenarios. Service cho-
reography and service orchestration are considered when deploying and invoking
Web services. Web services contain more business relationships than normal docu-
ments, especially during invocation. More practical situations need to be investigated
to effectively invoke Web services.

Acknowledgement
The coding of the research described here is supported by Ping-Liang Lin and Jianing
Chen.

References

[1] Bose, A., Nayak, R., & Bruza, P. (2008). Improving Web service discovery by using
semantic models. Proceedings of the 9th International Conference on Web Information
Systems Engineering (pp. 366-380). Auckland, New Zealand: Springer-Verlag.

[2] Burstein, M. H., & McDermott, D. V. (2005). Ontology translation for interoperability
among semantic Web services. AI Magazine, 26(1), 71-82.

[3] Dennis, S. (2007). Handbook of latent semantic analysis. Mahwah, N.J: Lawrence Erl-
baum Associates.

[4] Ding, Z., Lei, D., Jia, Y., Bin, Z., & Lun, A. (2010). A Web service discovery method
based on tag. The 2010 International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS) (pp. 404-408). Krakow, Poland: IEEE Computer Society.

[5] Hao, Y., & Zhang, Y. (2007). Web services discovery based on schema matching. Pro-
ceedings of the 13th Australasian Conference on Computer Science (pp. 107-113). Balla-
rat, Australia: Australian Computer Society.

[6] Hu, J., Fang, L., Cao, Y., Zeng, H.-J., Li, H., Yang, Q., et al. (2008). Enhancing text
clustering by leveraging Wikipedia semantics. Proceedings of the 31st Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 179-186). Singapore, Singapore: Association for Computing Machinery.

[7] Lara, R., Roman, D., Polleres, A., & Fensel, D. (2004). A conceptual comparison of
WSMO and OWL-S. In L.-J. Zhang & M. Jeckle (Eds.), Web Services (pp. 254-269). Ber-
lin: Springer-Verlag.

[8] Li, Q., Liu, A., Liu, H., Lin, B., Huang, L., & Gu, N. (2009). Web services provision:
Solutions, challenges and opportunities (invited paper). Proceedings of the 3rd Interna-
tional Conference on Ubiquitous Information Management and Communication (pp. 80-
87). Suwon, Korea: Association for Computing Machinery.

[9] Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., et al.
(2007). Bringing Semantics to Web Services with OWL-S. World Wide Web, 10(3), 243-
277.

[10] Nayak, R., & Iryadi, W. (2007). XML schema clustering with semantic and hierarchical
similarity measures. Knowledge-Based Systems, 20(4), 336-349.

[11] Nayak, R., & Lee, B. (2007). Web service discovery with additional semantics and
clustering. Proceedings of the IEEE/WIC/ACM International Conference on Web Intelli-
gence (pp. 555-558). Fremont, USA: IEEE Computer Society.

[12] Shafiq, O., Moran, M., Cimpian, E., Mocan, A., Zaremba, M., & Fensel, D. (2007).
Investigating Semantic Web Service Execution Environments: A Comparison between
WSMX and OWL-S Tools. Proceedings of the 2nd International Conference on Internet

284

and Web Applications and Services (pp. 31-36). Morne, Mauritius: IEEE Computer Socie-
ty.

[13] Wu, C., Potdar, V., & Chang, E. (2009). Latent Semantic Analysis - The dynamics of
semantics Web services discovery. In Advances in Web semantics I: Ontologies, Web Ser-
vices and Applied Semantic Web (pp. 346-373). Berlin: Springer-Verlag.

285

A first approach to web service discovery

Maŕıa J. Somodevilla, Beatriz Beltrán, David Pinto,
Darnes Vilariño, José Aaron

mariasg,bbeltran, dpinto,darnes@{cs.buap.mx}

Faculty of Computer Science
Benemérita Universidad Autónoma de Puebla, México

Abstract. A clustering approach for web services discovering based on
techniques from Information Retrieval (IR), Natural Language Process-
ing (NLP) and XML Retrieval was developed in order to use texts con-
tained in WSDL files is proposed. It calculates the degree of similarity
between words and their relative importance to support the task of web
services discovering. The algorithm uses the information contained in the
WSDL (Web Service Description Language) specifications and clusters
web services based on their similarity. A second approach based on a sim-
ple information retrieval system that index terms by using an inverted
index structure was also used. Both algorithms are applied to a set of
1947 real web services in 25 categories Web Service Discovery, all of them
provided by INEX.

1 Introduction

The Service Oriented Architecture (SOA)1 was developed based on the concept
of a wide mesh of collaborating services, published and available for invocation.
Web services are the set of protocols by which services are published, discov-
ered, and used in a technology independent, standard form. As the number of
web services repositories grows and the number of available services expands,
finding the web service that one needs has become a key task within the invoca-
tion process. Web service discovery is concerned with locating web services that
match a set of functional and non-functional criteria [1].

The Web Services Description Language (WSDL) 2 is the most basic mecha-
nism used to describe web services. This leads many current discovery approaches
to focus on locating web services based on their functional description.

An efficient and effective Web services discovery mechanism is important in
many computing paradigms including Pervasive Computing, Service-Oriented
Computing, and the most recent Cloud Computing, in which Web services con-
stitute the chief building blocks. The Web Service Discovery track aims to in-
vestigate techniques for discovery of Web services based on searching service
descriptions provided in Web Services Description Language (WSDL) . Partic-
ipating groups will contribute to topic development and evaluation, which will

1 XML Web Services. http://webservices.xml.com/lpt/a/129
2 WSDL Specification. http://www.w3.org/TR/wsdl.html

286

then allow them to compare the effectiveness of their XML retrieval techniques
for the discovery of Web services. This will lead to the development of a test
collection that will allow participating groups to undertake future comparative
experiments.

The rest of this paper is devoted to explain the two different approaches
submitted to the competition, as well as the dataset used in the experiments.

2 Description of the presented approaches

Two algorithms based on Clustering and Information Retrieval in order to find
the most appropiate web service (WSDL file) to a given topic were developed.

2.1 Clustering Approach

In Figure 1 we may see the approach that uses a clustering method. The complete
description follows this figure.

Fig. 1. An overview of the presented approach

1. Tag removal: A corpus was built with the content of the XML tags for each
document, in addition to the attribute values of the labels.

2. Parsing WSDL: Stopwords and punctuation symbols were removed from the
corpus.

3. Tokenization: MMA algorithm was applied [2], using a list of 53 000 English
words which split them into tokens (i.e. GetAllitems as Get All Items).

4. Re-parsing WSDL: Stopwords and punctuation symbols were removed from
the corpus again due to the MMA decomposition.

5. Word stemming: The Porter stemming algorithm was applied to the corpus.

287

6. Function word removal: Words with frequency less than 10 were eliminated.
7. K-means algorithm: K=2 was used; the distance criterion NGD is presented

in Eq. (1), and the convergence criterion is that the centroid words are at
least twice in different iterations.

8. Content word recognition: Thereafer, we removed the words of the cluster
with minimal elements (i.e. service, soa, array and data).

9. Services corpus creation: A second corpus was constructed with the services
of each XML file; again we used the MMA algorithm, we eliminate stopwords,
and finally we applied the Porter algorithm.

10. Query answering: Using the two corpus constructed, a query can be answered
by applying Eq. (2), and sorting the results from lowest to highest.

NGD(x, y) =
max {logf(x), logf(y)} − logf(x, y)

logM − min {logf(x), logf(y)}
(1)

O(Si, Sj) = 0.5 ∗ S′(Si, Sj) + 0.5 ∗ S′′(Si, Sj) (2)

where:

S′(Si, Sj) =

∑
a∈Si

∑
b∈Sj

Sim(a, b)

|Si||Sj |
(3)

S′′(Si, Sj) = 1 − NGD(Si, Sj) (4)

2.2 Using information retrieval for webservice discovery

In Figure 2 we may see the approach that uses information retrieval for finding
the corresponding web services files that satisfies the user needs.

Fig. 2. An overview of the presented approach

The implementation uses an inverted index for storing all the terms detected
in the WSDL files. For the case of function names, we have also used the MMA

288

algorithm. Each term is used as the dictionary entry in the data structure, and
one posting list is attached to each dictionary entry. Finally, given a query, we
may calculate the intersection between pairs of posting lists (p1 and p2) as shown
in are given in Algorithm 1 (taken from [3]).

Algorithm 1: Intersection of two posting lists

Input: Posting lists p1 and p2

Output: Relevant documents D1, D2, · · ·
answer = 〈〉1

while p1! = NIL and p2! =NIL do2

if docID(p1) = docID(p2) then3

ADD(answer, docID(p1));4

p1 = next(p1);5

p2 = next(p2);6

else7

if docID(p1) < docID(p2) then8

p1 = next(p1)9

else10

p2 = next(p2)11

end12

end13

end14

return answer15

3 Conclusions

We have presented details about the implemented approaches for tackling the
problem of webservice discovery. Two different approaches were implemented,
one based on clustering and the second on information retrieval techniques. Un-
fortunately, at the moment of publishing this paper, the evaluation results were
not available, therefore, we are not able to discuss the performance of these
approaches.

References

1. Dan, A., Davis, D., Kearney, R., Keller, A., King, R., Kuebler, D., Ludwig, H., Polan,
M., Spreitzer, M., , Youssef, A.: Web services on demand: Wsla-driven automated
management. IBM Systems Journal 43(1) (2004) 136–158

2. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering wsdl documents to bootstrap the
discovery of web services. In: Proceedings of the 2010 IEEE International Conference
on Web Services. ICWS ’10, Washington, DC, USA, IEEE Computer Society (2010)
147–154

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK (2009)

289

RMIT participation in Web Service Discovery
Track

James A. Thom

RMIT University, Melbourne, Australia
james.thom@rmit.edu.au

Abstract. This paper describes the participation of RMIT in the 2010
Web Service Discovery track of INEX. In this paper we describe a naive
document level approach that focuses on how to preprocess the WSDL
documents before indexing. An addendum to the paper briefly describes
our participation in the ad hoc track.

Introduction

The web service discovery task has several key differences from ad hoc XML
retrieval. These include:

– the lack of text nodes in many documents
– information is often included as attribute values
– attribute values are often not ordinary English words, but invented com-

pounds often using case changes

Approach and Results

Our main observation was that much of the content in the WSDL was not
in ordinary text nodes, but was in other parts of the XML documents such
as attribute values. In many cases these were not ordinary English words but
were often compounds such as “msdSSMPurgeResponse”. So we wrote a simple
sed script that attempted to extract useful words to index from the documents
splitting up any compound names.

1i\

<html>

s/[^a-zA-Z]+/ /g

s/[A-Z]?[a-z]+|[A-Z]+/ & /g

$a\

</html>

We then indexed the resulting files with Zettair, an open source search engine
developed at RMIT. We used a stable released version of Zettair (version 0.9.3)

290

which we ran on a MacBook Pro computer with 2.4 GHz Intel Core 2 Duo
running Mac OS X version 10.6.4 with 3 MB of L2 Cache and 4 GB memory.
Our runs used the CO titles of the topics as the queries and we used the default
similarity measure in Zettair (a language model with Dirichlet-smoothing) which
has been shown to perform adequately in the ad hoc task in previous years.

The results for the Web Services Discovery track are not yet available.

Addendum

We also submitted two “vanilla” document level runs to the ad hoc track that
were similar to runs from 2009. In the queries we used the CO titles of the topics
and two similarity measures: RMIT09title used the default similarity measure
in Zettair (a language model with Dirichlet-smoothing), and RMIT09titleO used
Okapi BM25. The best-entry-point was set at the start of the article.

291

XML Retrieval More Efficient Using Double-Scoring Scheme

Tanakorn Wichaiwong and Chuleerat Jaruskulchai
Department Of Computer Science,

 Faculty of Science,Kasetsart University,

Bangkok Thailand

Abstract

This is the first year for the Kasetsart University participation of INEX. We participated in three tracks; Ad Hoc, Data

Centric, and Web Service Discovery tracks. In this paper, we report experimental results of our approach using Double-

Scoring scheme base on BM25 model for retrieval large-scale XML collection. This model is commonly used in the

information retrieval community. Our approaches present a way to reduce parameter tuning step by extended new indices to

store all of selected fields, to avoid the amount of parameters tuned weights for each selected fields of BM25F.

Keywords

XML Retrieval, Information Retrieval, Indexing Units, Ranking Schemes

1. Introduction
The widespread use of Extensible Markup Language (XML) [1] documents in digital libraries led to the development of

information retrieval (IR) methods specifically designed for XML collections. Most traditional IR systems are limited to
whole document retrieval; however, since XML documents separate content and structure, XML-IR systems are able to
retrieve only the relevant portions of documents. Therefore, users who utilize an XML-IR system could potentially receive
highly relevant and precise material. In the Initiative for the Evaluate of XML Retrieval (INEX) [2] reports, The BM25F run
performs excellent when evaluated at the element level and results showed that first ranked in INEX. However, there is still
limitation in parameters tuned weights for each selected fields. Our approaches reduce the parameters tuning by extended
indices scheme.

This paper is organized as follows: section 2 reviews related works, section 3 explains the implementation of our system,

section 4 presents the experiment, and conclusions and recommendations for further work are provided in section 5

2. Related Works
On INEX 2005, Robertson et al. [3, 4, 5] applied an earlier version of BM25F to XML element retrieval, reporting 65%

improvements over BM25 measured by nxCG on INEX-IEEE collection with a different task where overlap is allowed. In

that work, an element's score is computed from multiple fields, which may include the body of the element, the document's

title, the documents abstract, and ancestral section titles.

On INEX 2009, Kelly and Charles [6] applied BM25F on Wikipedia’s collection; on each element, they constructed two

fields, one for “title” and another for “body”. The title field consists of concatenation of an article title and any section titles.

The body field contains the rest of the context. In the INEX reports [7], the results showed that ranked first with iP [0.01] is

0.6333.

2.1 BM25F Scheme Overview
Robertson et al. [3, 4, 5], presented the BM25F scheme, an extension of BM25 that exploits structural information. Under

BM25F, terms contained in a document's title, for example, may be given more weight than terms contained in the

document's body. Using BM25F scheme that can compute an element's score as follows:

BM25F 𝑒 =
𝑋𝑒 ,𝑡

𝐾 + 𝑋𝑒 ,𝑡
𝑡∈𝑞∩𝑒

∗ 𝑊𝑡

Note that;

BM25F(e) measures the relevance of element e to a query q.

q is a set of query terms.

Xe,t is a weighted normalized term frequency.

292

K is a common tuning parameter for BM25.

Wt is the inverse document frequency weight of a term t.

The weighted normalized term frequency is obtained by first performing length normalization, on a term frequency We,f,t

of a term t of field f in an element e,

𝑊𝑒 ,𝑓 ,𝑡 =
𝑋𝑒 ,𝑓 ,𝑡

1 + 𝐵𝑓 (
𝑙𝑒 ,𝑓

𝑙𝑓
− 1)

Where Bf is a parameter to tune, le,f is a length of a field f in an element e, lf is an average field length then multiplied the

normalized term frequency We,f,t by field weight Wf ,

𝑋𝑒 ,𝑡 = 𝑊𝑓 ∗ 𝑊𝑒 ,𝑓 ,𝑡

𝑓

3. XML Retrieval Model

3.1 Inverted File Definition
The Zettair search engine has good performance in [8], but this engine only support for document level. We have to

converted element level to document level by absolute XPath [9] context replace to <DOCNO> tag in Zettair TREC format

then our system is able to use the best features of Zettair [10], when we replace all tag to <DOCNO> by absolute XPath then

the Leaf-Only indexing is closest to traditional information retrieval since each XML node is a bag of words of itself, and can

be scored as ordinary plain text document then we calculate the leaf element score of its context using BM25 algorithm; For

instance, take a document named x1.

<?xml version="1.0"?>

<article>

 <title>xml</title>

 <body>

 <section>

 <title>xml</title>

 <p>information</p>

 <p>retrieval</p>

 </section>

 </body>

</article>

Figure 1. The Example of XML Element Tree

Figure 1 depicts an example of an XML element tree of x1; we can build an index using absolute XPath expression to

identify a leaf XML node that has text contained within the document, relative to document and its parents, as follows.

x1/article[1]/title[1]: xml

x1/article[1]/body[1]/section[1]/title[1]: xml

x1/article[1]/body[1]/section[1]/p[1]: information

x1/article[1]/body[1]/section[1]/p[2]: retrieval

article

title body

section

title p p

xml

xml information retrieval

293

Finally, term position identifies the ordinal position of the term within the XPath context. The next step to data

preprocesses for Zettair search engine application, and then we convert Xpath into TREC format as follow;

<DOC><DOCNO>x1/article[1]/title[1]</DOCNO>xml</DOC>

<DOC><DOCNO>x1/article[1]/body[1]/section[1]/title[1]</DOCNO>xml</DOC>

<DOC><DOCNO>x1/article[1]/body[1]/section[1]/p1[1]</DOCNO>information</DOC>

<DOC><DOCNO>x1/article[1]/body[1]/section[1]/p2[1]</DOCNO>Retrieval</DOC>

3.2 Leaf-Node Scoring Scheme
The Leaf-Only indexing is closest to traditional information retrieval since each XML node is a bag of words of itself, and

can be scored as ordinary plain text document then we calculate the leaf element score of its context using BM25 as following;

𝐿𝑒𝑎𝑓𝑆𝑐𝑜𝑟𝑒(𝑒, 𝑄) = 𝑊𝑡 ∗
(𝑘1 + 1) ∗ 𝑡𝑓𝑒

𝑘1 ∗ (1 − 𝑏 + 𝑏 ∗
𝑙𝑒𝑛(𝑒)
𝑎𝑣𝑒𝑙

) + 𝑡𝑓𝑒
𝑡∈𝑄

Note that;

LeafScore(e, Q) measures the relevance of element e to a query Q.

Wt is the inverse element frequency weight of term t.

tfe is the frequency of term t occurring in element e.

len(e) is the length of element e.

avel is the average length of elements in whole collection.

k1 and b are used to balance the weight of term frequency and element length.

3.3 Double-Scoring Scheme
On the point of field weight, our approaches reduce parameter tuning step by extended new indices to store all of selected

fields, namely Selected Weight (SW). The selected indexing is also closest to traditional information retrieval since each

XML node is a bag of words of itself, and can be scored as ordinary plain text document, then we calculate the leaf element

score of its context using BM25 as following;

𝑆𝑊(𝑒, 𝑄) = 𝑊𝑡 ∗
(𝑘1 + 1) ∗ 𝑡𝑓𝑒

𝑘1 ∗ (1 − 𝑏 + 𝑏 ∗
𝑙𝑒𝑛(𝑒)
𝑎𝑣𝑒𝑙

) + 𝑡𝑓𝑒
𝑡∈𝑄

After this step, we can compute the element score that using;

𝐿𝑒𝑎𝑓𝑆𝑐𝑜𝑟𝑒 𝑒, 𝑄 <= 𝐿𝑒𝑎𝑓𝑆𝑐𝑜𝑟𝑒(𝑒, 𝑄) ∗ 𝑆𝑊(𝑒, 𝑄)
𝑡∈𝑄

Refer to an example of an XML element tree; we classify tag by manual, then we can build new indices as follows.

SW Indices;

x1/article[1]/title[1]: xml

x1/article[1]/body[1]/section[1]/title[1]: xml

Leaf-Node Indices;

x1/article[1]/body[1]/section[1]/p[1]: information

x1/article[1]/body[1]/section[1]/p[2]: retrieval

294

3.4 Score Sharing Scheme
In previous reports [11], we compute the scores of all elements in the collection that contain query terms. We must

consider the scores of elements by accounting for their relevant descendents. The scores of retrieved elements are now shared

between leaf node and their parents in the document XML tree according to the following scheme.

𝑆𝑐𝑜𝑟𝑒 𝑃𝑁𝑜𝑑𝑒 ⟵ 𝑆𝑐𝑜𝑟𝑒 𝑃𝑁𝑜𝑑𝑒 + [𝐿𝑒𝑎𝑓𝑆𝑐𝑜𝑟𝑒 ∗ 𝛽𝑛]

Note that;

PNode is a current parent node.

β is tuning parameter.

If [0 – 1], then preference is given to the leaf node over the parents.

Otherwise, preference should be given to the parents.

n is the distance between the current parent node and the leaf node.

4. Experiment Setup
In this section, we present and discuss the results that were obtained at INEX collections. We also present the results of an

empirical sensitivity analysis of various β parameters, performed with the Wikipedia collection. This experiment was done on

Intel Pentium i5 4 * 2.79 GHz with the memory of 6 GB, Microsoft Windows 7 Ultimate 64-bit Operating System and using

Microsoft Visual C#.NET 2008 for develop system.

4.1 INEX Test Collections
The INEX document collections are following;

On Ad hoc track, the Wikipedia XML Corpus of the English Wikipedia in early 2009 [12] that contains 2,666,190 articles

and the total size is 50.7 GB.

On Data Centric track, the IMDB data collection newly built from www.imdb.com [13]. It consists of information about

more than 1,590,000 movies and people involved in movies and the total size is 1.40 GB.

On Web Service Discovery track, this track will use a collection of WSDL documents. These WSDL documents were

directly crawled from real-world public Web services indexed by the Google search engine. The test collection was pre-

processed so that only valid WSDL1.1-compliant descriptions are retained for XML-based retrieval that contains 1,987

articles.

At first, the system parses all the structures of each XML document with XML parser and parses all the selective nodes of

each XML document. After that, our system uses the Leaf-Only indexing scheme in experiments.

4.2 Experiment Results

4.2.1 Ad Hoc Track
In this section, we tuned parameters using INEX-2008 Ad hoc track evaluation scripts distributed by the INEX organizers.

Our tuning approach was such that the sum of all relevance scores are maximized as shown the total number of leaf nodes is

2,500 and the β parameter is set to 0.10, which is used to compute the sharing score. We have used the value is K1 = 1.80 and

B = 0.40 for evaluate the sensitivity of the element length in BM25 on both indices.

We practically submitted three runs; I138BM25ESS010, I138BM25ESS015 and I138BM25ESS020. Our results showed

that I138BM25ESS010 ranked 78th with MAiP is 0.1296, I138BM25ESS015 ranked 87th with MAiP is 0.1132 and our other

run I138BM25ESS020 ranked 91th with MAiP is 0.1057. Table 1 and Figure 2 depict the measured as Focused Retrieval.

Table 1. The Effectiveness of the Focused Task in INEX-Wiki

RUN ID β iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP

I138BM25ESS010 0.10 0.4299 0.4053 0.3695 0.3271 0.1296

I138BM25ESS015 0.15 0.4596 0.4394 0.3735 0.3254 0.1132

I138BM25ESS020 0.20 0.4960 0.4532 0.3589 0.2765 0.1057

295

Figure 2. INEX-2010 Ad hoc Result on Focused Retrieval

4.2.2 Data Centric Track
On Data Centric track, we have used the value is K1 = 1.80 and B = 0.40 for evaluate the sensitivity of the element length

in BM25 on both indices, the total number of leaf nodes is 2,500 and the β parameter is set to 0.60, which is used to compute

the sharing score.

We practically submitted only one run; our result showed that I138BM25ESS060 ranked 4th with MAgP is 0.1811. Table 2

and Figure 3 depict the measured as Focused Retrieval on Data Centric track.

Table 2. The Effectiveness of the Data Centric

Figure 3. INEX-2010 Data Centric Result on Focused Retrieval

RUN ID β iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP

I138BM25ESS060 0.60 0.5821 0.5113 0.3244 0.2719 0.1211

296

4.2.3 Web Service Discovery Track
On the Web Service Discovery track, these raw name tokens cannot be utilized directly due to various reasons such as the

sublanguage patterns, or programming conventions, etc. Therefore, they need to be converted to natural languages before being

indexed using IR models. We applied the Capitalization scheme [14] to solve and then we have used the value is K1 = 1.80

and B = 0.40 for evaluate the sensitivity of the element length in BM25 on both indices, the total number of leaf nodes is 2,500

and the β parameter is set to 0.10, 0.15, and 0.25, which is used to compute the sharing score.

We practically submitted three runs; I138BM25ESS010, I138ANYBM25SS015 and I138ANYSS025.

5. Conclusions
The widespread use of XML documents in digital libraries led to the development of IR methods specifically designed for

XML collections. Most traditional IR systems are limited to whole document retrieval; however, since XML documents
separate content and structure, XML-IR systems are able to retrieve only the relevant portions of documents. Therefore, users
who utilize an XML-IR system will potentially receive highly relevant and highly precise material.

In this paper, we report experimental results of our approach using Double-Scoring scheme base on BM25 model for
retrieval large-scale XML collection. This strategy can process by using only common parameter on BM25 by extended new
indices to store all of selected fields, to reduce the amount of parameters tuned weights for each selected fields of BM25F.

In our future work, we plan to study the sensitivity of the evaluation to the K1 and B parameter and how to make inferences
regarding structural aspects based on CAS queries.

6. References
[1] Extensible Markup Language (XML) 1.1 (Second Edition). http://www.w3.org/TR/xml11/

[2] INitiative for the Evaluation of XML Retrieval (INEX). http://www.inex.otago.ac.nz/

[3] N. Craswell, H. Zaragoza, and S. Robertson. Microsoft Cambridge at TREC 14: Enterprise track. In Proceedings of the TREC 14,

2005.

[4] S. Robertson, H. Zaragoza, and M. Taylor. Simple BM25 extension to multiple weighted fields. In Proceedings of CIKM 2004, pages

42-49, 2004.

[5] W. Lu, S. Robertson, A. Macfarlane. 2006. Field-Weighted XML Retrieval Based on BM25. Proceedings of INEX 2005. LNCS. pp.

126-137.

[6] K. Y. Itakura and C. L. A. Clarke. University of Waterloo at INEX 2009: Adhoc, Book, Entity Ranking, and Link-the-Wiki Tracks. In

Advances in Focused Retrieval: Seventh International Workshop of the Initiative for the Evaluation of XML Retrieval, (INEX-2009),

pages 249–259, 2009.

[7] Geva, S. et al,. 2009. Overview of INEX 2009 Ad Hoc Track. The INEX 2009 Workshop Pre-proceeding. Schloss Dagstuhl,

Germany, pp. 16-50.

[8] C. Middleton and R. Baeza-Yates. 2009. A Comparison of Open Source Search Engines. http://wrg.upf.edu/WRG/dctos/Middleton-

Baeza.pdf.

[9] XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath

[10] Zettair. The Zettair search engine, 2009. http://www.seg.rmit.edu.au/zettair/.

[11] W. Tanakorn and J. Chuleerat, “A Simple Approach to Optimize XML Retrieval,” The 6th International Conference on Next

Generation Web Services Practices, Goa, India, November 23-25, 2010.

[12] R. Schenkel, F. Suchanek, and G. Kasneci. YAWN: A semantically annotated Wikipedia XML corpus. In 12. GI-Fachtagung fÄur

Datenbanksysteme in Business, Technologie und Web, pages 277-291, 2007.

[13] Information courtesy of The Internet Movie Database http://www.imdb.com

[14] W. Tanakorn, K. Kitti, and J. Chuleerat, “A Simple Approach to Optimize Text Compression’s Performance,” The 4th International

Conference on Next Generation Web Services Practices, Seoul, Korea, October 20-22, 2008.

297

Overview of the INEX 2010 XML Mining Track:

Clustering and Classification of XML Documents

Christopher M. De Vries1, Richi Nayak1, Sangeetha Kutty1, Shlomo Geva1,
Andrea Tagarelli2

Faculty of Science and Technology,
Queensland University of Technology, Brisbane, Australia1

University of Calabria, Italy2

chris@de-vries.id.au, {r.nayak, s.kutty, s.geva}@qut.edu.au,
tagarelli@deis.unical.it

Abstract. This report explains the objectives, datasets and evaluation
criteria of both the clustering and classification tasks set in the INEX
2010 XML Mining track. The report also describes the approaches and
results obtained by participants.

Key words: XML document mining, INEX,Wikipedia, Structure, Con-
tent, Clustering, Classification

1 Introduction

The XML Document Mining track was launched for exploring two main ideas: (1)
identifying key problems and new challenges of the emerging field of mining semi-
structured documents, and (2) studying and assessing the potential of Machine
Learning (ML) techniques for dealing with generic ML tasks in the structured
domain i.e. classification and clustering of semi-structured documents. This track
has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The
first five editions have been summarized in [1,2,3,4] and we focus here on the
2010 edition.

INEX 2010 included two tasks in the XML Mining track: (1) unsupervised
clustering task and (2) semi-supervised classification task where documents are
organized in a graph. The clustering task requires the participants to group the
documents into clusters without any knowledge of category labels using an unsu-
pervised learning algorithm. On the other hand, the classification task requires
the participants to label the documents in the dataset into known categories
using a supervised learning algorithm and a training set. This report gives the
details of clustering and classifications tasks.

2 Corpus

Working with XML documents is particularly challenging task for ML and IR.
XML documents are defined by their logical structure and content. The current

298

Wikipedia collection contains structure as document structure such as sections,
titles and tables, semantic structure as entities mined by YAWN, and navigation
structure as document to document links. In 2008 and 2009 the classification task
focused on exploiting the link structure of the Wikipedia and continues to do
so this year. The clustering task has continued in the same manner as previous
years and uses any available content or structure.

A 146,225 document subset of the INEX XML Wikipedia collection was used
as a data set for the clustering and classification tasks. The subset is determined
by the reference run used for the ad hoc track. The reference run contains the
1500 highest ranked documents for each of the queries in the ad hoc track.
The queries were searched using an implementation of Okapi BM25 in the ANT
search engine. Using the reference run reduced the collection from 2,666,190 to
146,225 documents. This is a new approach for selecting the XML Mining subset.
In previous years it was selected by choosing documents from Wikipedia portals.

The clustering evaluation uses ad hoc relevance judgments for evaluation and
most of the relevant documents are contained in the subset. Table 1 contains
details of documents relevant to queries missing from the subset. The reference
run contains approximately 90 percent of the relevant documents.

Topic Relevant Missing Topic Relevant Missing

2010003 231 24 (10.39%) 2010035 16 3 (18.75%)
2010004 124 29 (23.39%) 2010036 94 0 (0.00%)
2010006 151 20 (13.26%) 2010037 11 0 (0.00%)
2010007 49 6 (12.24%) 2010038 433 8 (1.85%)
2010010 251 6 (2.39%) 2010039 138 0 (0.00%)
2010014 64 7 (10.94%) 2010040 60 3 (5.00%)
2010016 506 72 (14.23%) 2010041 35 0 (0.00%)
2010017 5 0 (0.00%) 2010043 130 11 (8.46%)
2010018 34 0 (0.00%) 2010045 159 60 (37.74%)
2010019 6 0 (0.00%) 2010046 53 0 (0.00%)
2010020 34 0 (0.00%) 2010047 18 0 (0.00%)
2010021 203 28 (13.79%) 2010048 72 11 (15.28%)
2010023 115 31 (26.96%) 2010049 42 6 (14.29%)
2010025 19 0 (0.00%) 2010050 147 5 (3.40%)
2010026 54 5 (9.26%) 2010054 292 42 (14.38%)
2010027 77 4 of (5.19%) 2010056 269 37 (13.75%)
2010030 80 32 (40.00%) 2010057 74 0 (0.00%)
2010031 18 1 (5.56%) 2010061 13 0 (0.00%)
2010032 23 2 (8.70%) 2010068 222 2 (0.90%)
2010033 134 16 (11.94%) 2010069 358 82 (22.91%)
2010034 115 9 (7.83%)

Total 5451 587 (10.77%)

Table 1. Relevant Documents Missing from the XML Mining Subset

299

3 Categories

In previous years, document categories have been selected using Wikipedia por-
tals where each portal becomes a category. The drawback of this approach is that
it only finds categories for documents related to portals. Last year the categories
used for clustering evaluation were produced by YAWN that creates categories
based on entities found from the YAGO ontology. These categories are very fine
grained and narrow and were found not to be particularly useful.

A new approach extracting categories was taken this year. The Wikipedia
categories listed for each document are very similar to the YAGO categories as
YAGO contains entities based on Wikipedia information. Both the Wikipedia
and YAGO categories are noisy and very fine grained. However, the Wikipedia
categories exist in a category graph where there are 24 high level topical cat-
egories called the “main topic classifications” [5]. Unfortunately, the category
graph is not a hierarchy and contains cycles. Many of the paths from a doc-
ument to the main topic classifications do not make sense. Additionally, users
who add categories to Wikipedia pages often attach them to fine grained cate-
gories in the graph. They may not realize what links the internal structure of
the graph contains when choosing particular categories. The category graph can
be changed over time also changing the original intent of the author. Therefore,
categories were extracted by finding the shortest paths through the graph be-
tween a document and any of the main topic classifications. This is motivated
Occam’s Razor where the simplest explanation is often the correct one. Figure 1
illustrates the Wikipedia category graphs and highlights a hypothetical shortest
category path for the document Hydrogen.

Fig. 1. Complicated and Noisy Wikipedia Category Graph

300

For INEX 2010 the category graph from the 22nd of June 2010 Wikipedia
dump was used. The graph exists of Wikipedia pages with the “Category:” prefix
such as “Category:Science”. The graph is extracted by finding links between
category pages. Generally speaking, a category page links to another category
page that is broader in scope. Wikipedia pages indicate their categories by linking
to a category page.

Figure 2 lists the algorithm used to extract the categories. The INEX 2010
categories were extracted where only the 2 broadest levels of categories were
extracted (t = 2). Only categories containing more than 3000 documents were
used. This approach extracts multiple categories for a document resulting in a
multi-label set of documents for INEX 2010. Note that paths that contain the
“Category:Hidden” category are not used. Table 2 lists the categories that were
extracted.

P is the set of Wikipedia pages (articles) to find categories for. C is the
set of Categories in the Wikipedia. M the set of categories in the main topic
classifications. G = (V,E) is the Wikipedia category graph consisting of a set of
vertices V and edges E with pages P attached to it. P ⊂ V . C ⊂ V . M ⊂ V .
M ⊂ C. t is a parameter indicating the broadest t levels to consider as categories.
If t is 1 then only the main topic classifications are considered. If t is 2 then
the main topic classifications and any categories 1 edge away in the graph are
considered and so on.

Note that a path is a sequence of graph vertices visited from page p ∈ P

to main topic m ∈ M . For example, Hydrogen → Category:Elements → Cat-
egory:Chemistry → Category:Science, is the path for the Wikipedia document
Hydrogen.

ExtractCategories(G,M,P, t)

1 E = a map from page p ∈ P to a list of categories for p
2 for p ∈ P

3 S = the set of shortest paths between p and any category in M

4 for s ∈ S

5 if path s does not contain Category:Hidden
6 B = the set of last t vertices in path s

7 for b ∈ B

8 append b to list E[p]
9 return E

Fig. 2. Algorithm to Extract Categories from the Wikipedia

The category extraction process could be enhanced in the future using fre-
quent pattern mining to find interesting repeated sequences in the shortest paths.
Other graph algorithms such as the Minimum Spanning Tree algorithm could be
used to simplify the graph. The browsable category tree starting at the “main

301

Category Documents Category Documents

People 48186 Agriculture 5975
Society 34912 Education 4367
Culture 27986 Companies 4314
Geography 22747 Biology 4309
Politics 18519 Recreation 4276
Humanities 14738 Environment 4216
Countries 13966 Musical culture 4195
Arts 11979 Geography stubs 4052
History 10821 Information 3919
Business 10249 American musicians 3845
Applied sciences 9278 Language 3764
Life 9018 Literature 3660
Technology 8920 Belief 3412
Entertainment 8887 Creative works 3395
Nature 7400 Human geography 3370
Science 7311 Places 3202
Computing 6835 Law 3156
Health 6329 Cultural history 3117

Table 2. XML Mining Categories

topic classifications” [5] appears to have processed the category graph as well.
Using this post-processed graph could also improve the categories.

4 Clustering Task

The task was to utilize unsupervised machine learning techniques to group the
documents into clusters. Participants were asked to submit multiple clustering
solutions containing 50, 100, 200, 500 and 1000 clustering.

4.1 Clustering Evaluation Measures

The clustering solutions are evaluated by two means. Firstly, we utilize the
categories-to-clusters evaluation which assumes that the categorization of the
documents in a sample is known (i.e., each document has known category la-
bels). Any clustering of these documents can be evaluated with respect to this
predefined categorization. It is important to note that the category labels are
not used in the process of clustering, but only for the purpose of evaluation of
the clustering results.

The standard measures of Purity, Entropy, NMI and F1 are used to determine
the quality of clusters with regard to the categories. Negentropy [6] is also used. It
measures the same system property as Entropy but it is normalized and inverted
so scores fall between 0 and 1 where 0 is the worst and 1 is the best. The

302

evaluation measures the mapping of categories-to-clusters where the categories
are multi-label but the clusters are not. A document can have multiple categories
but documents can only belong to one cluster. Each measure is defined to deal
with a multi-label ground truth.

The NCCG measure is defined to calculate the spread of relevant documents
from ad hoc queries over clusters. It was defined is last years overview paper [4].

Divergence from Random Most measures of quality for clustering can be
tricked by changing the number of clusters or the number of documents assigned
to clusters. The Purity and Entropy measures can be fooled if each document is
placed in its own cluster. Every cluster becomes pure because it only contains
one document. The NCCG measure can be fooled by creating one cluster with all
the documents except for every other cluster containing one document. As the
NCCG measure orders clusters by the number of relevant documents they con-
tain, the large cluster containing most documents will almost always be ranked
first. Therefore, all relevant documents will exist in one cluster, achieving the
highest score possible.

Any measure that can be tricked by creating a pathological clustering solu-
tion can be adjust for by subtracting a cluster solution from a uniform randomly
generated solution with the same number of clusters with the same number of
documents in each cluster. Apart from how documents are assigned to clusters,
the random baseline appears the same as the real solution. Therefore, each so-
lution needs a uniform random baseline generated. This is done by taking all
document IDs, shuffling them uniformly randomly and splitting the document
IDs into clusters the same size as the solution being measured. The score for
the uniform random solution in subtracted from the matching solution being
measured. The graphs and tables in the following section contain the results for
all metrics where this approach was taken.

The submissions this year from BUAP contained several large clusters and
many other small clusters. This tricked the NCCG metric into giving arbitrarily
high scores. When the scores are subtracted from a uniform random baseline
with the same properties they performed no better than a randomly generated
solution. This can be seen in Figure 6.

4.2 Clustering Participants, Submissions and Evaluations

The clustering tasks had submissions from three participants from Peking Uni-
versity, BUAP and Queensland University of Technology. The submissions la-
beled Random are a random solution that does not use any information about
the documents. A cluster for each document is chosen uniformly at random
from one of the k clusters required. Figures 3 to 6 graph the best performing
submissions from each participant for Purity, Negentropy, NMI and NCCG. The
divergence from random for each metric is also graphed.

The full details of the results are listed in tables in a separate document
available from http://de-vries.id.au/inex10/full_results.pdf. The ta-
bles have been broken into sections matching the required numbers of clusters 50,

303

100, 200, 500 and 1000. Some submissions were outside the 5 percent tolerance
of number of clusters. These form separate groups in the tables.

The group from Peking University made a submission based on the the struc-
tured link vector model (SLVM). It incorporated document structure, links and
content. This year they focused on the preprocessing step for document struc-
ture and links. They modified two popular clustering algorithms, AHC clustering
algorithm and K-means algorithm, to work with this model.

The group from BUAP proposed an iterative clustering method for grouping
the Wikipedia documents. The recursive clustering process iteratively brings to-
gether subsets of the complete collection by using two different clustering meth-
ods: k-star and k-means. In each iteration, we select representative items for
each group which are then used for the next stage of clustering.

The group from the Queensland University of Technology used a 1024 bit
document signature representation generated by quantizing random indexing or
random projections of TF-IDF vectors. The k-means algorithm was modified to
cluster binary strings of data using the hamming distance, including a different
approach to calculating means of binary vectors.

5 Classification Task

The goal of the classification task was to utilize supervised or semi-supervised
machine learning techniques to predict categories of documents from a set of
known categories described in Section 3. The training set of documents contained
17 percent of the collection where each category had at least 20 percent of the
category labels available.

5.1 Classification Evaluation Measures

Classification is evaluated using Type I and II errors made by classifiers. Each
category is transformed into a binary classification problem. One category is
evaluated at a time using all documents. The scores are calculated based on
the Type I and II errors and then micro and macro averaged. Micro averaging
weights the average by the category size and macro averaging does not. Table 3
defines the Type I and II errors for a category.

In Category Not in Category

Predicted in Category True Positive (tp) False Positive (fp)

Predicted not in Category False Negative (fn) True Negative (tn)

Table 3. Type I and II Classification Errors

The F1, Precision, Recall, Accuracy and True Negative Rate (TNR) scores
are calculated as described in Equations 1 to 5. F1 is the harmonic mean of
precision and recall.

304

Clusters

M
ic

ro
 P

ur
ity

0.35

0.40

0.45

0.50

0.55

0.60

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Clusters

M
ic

ro
 P

ur
ity

 D
iv

er
ge

nc
e

0.00

0.05

0.10

0.15

0.20

0.25

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Fig. 3. Micro Purity

305

Clusters

M
ic

ro
 N

eg
en

tr
op

y

0.10

0.15

0.20

0.25

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Clusters

M
ic

ro
 N

eg
en

tr
op

y
D

iv
er

ge
nc

e

0.00

0.05

0.10

0.15

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Fig. 4. Micro Negentropy

306

Clusters

N
M

I

0.05

0.10

0.15

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Clusters

N
M

I D
iv

er
ge

nc
e

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP ASB

Random

Fig. 5. NMI

307

Clusters

N
C

C
G

0.2

0.4

0.6

0.8

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP MS

Random

Clusters

N
C

C
G

 D
iv

er
ge

nc
e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

200 400 600 800 1000

Participants

QUT RI 1024 bit

Peking 4

BUAP MS

Random

Fig. 6. NCCG

308

F1 =
2× tp

2× tp+ fn+ fp
(1)

Precision =
tp

tp+ fp
(2)

Recall =
tp

tp+ fn
(3)

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(4)

True Negative Rate (TNR) =
tn

tn+ fp
(5)

5.2 Classification Participants, Submissions and Evaluations

Two groups from Peking University and the Queensland University of Technol-
ogy (QUT) made submissions for the classification task. The results are listed
in Table 4.

The group from Peking University made a submission based on the the struc-
tured link vector model (SLVM). It incorporated document structure, links and
content. This year they focused on the preprocessing step for document structure
and links.

The group from QUT made a submission using content only to provide a
baseline approach. Documents were represented in the bag of words vector space
model using the BM25 weighting for each term where the tuning parameters
K1 = 2 and b = 0.75. A Support Vector Machine (SVM) was used to classify
each document by treating each category as a binary classification problem.

6 Conclusion

The XML Mining track in INEX 2010 brought together researchers from Infor-
mation Retrieval, Data Mining, Machine Learning and XML fields. The clus-
tering task allowed participants to evaluate clustering methods against a real
use case and with significant volumes of data. The task was designed to facili-
tate participation with minimal effort by providing not only raw data, but also
pre-processed data which can be easily used by existing clustering software. The
classification task allowed participant to explore algorithmic, theoretical and
practical issues regarding the classification of interdependent XML documents.

309

F1 Precision Recall
Submission Micro Macro Micro Macro Micro Macro

QUT BM25 SVM 0.536 0.473 0.562 0.527 0.523 0.440
Peking tree1 sim3 linkTxt 0 0.460 0.380 0.553 0.525 0.436 0.334
Peking tree2 sim3 linkTxt N 0.518 0.446 0.436 0.359 0.652 0.614

Peking tree2 sim2 linkTxt 0 0.452 0.371 0.562 0.536 0.423 0.321
Peking tree1 sim1 linkTxt 0 0.399 0.314 0.582 0.570 0.363 0.252
Peking tree1 sim3 linkTxt 67 0.508 0.435 0.422 0.345 0.653 0.612
Peking tree2 sim2 0.521 0.452 0.480 0.414 0.574 0.510
Peking tree1 sim3 0.518 0.444 0.443 0.368 0.635 0.582
Peking tree1 sim3 linkTxt N 0.517 0.444 0.432 0.356 0.656 0.613
Peking tree1 sim2 linkTxt N 0.521 0.454 0.456 0.389 0.615 0.559

Accuracy TNR
Submission Micro Macro Micro Macro

QUT BM25 SVM 0.897 0.944 0.932 0.970
Peking tree1 sim3 linkTxt 0 0.891 0.943 0.931 0.974
Peking tree2 sim3 linkTxt N 0.866 0.918 0.882 0.933
Peking tree2 sim2 linkTxt 0 0.892 0.943 0.934 0.976
Peking tree1 sim1 linkTxt 0 0.888 0.943 0.934 0.980

Peking tree1 sim3 linkTxt 67 0.860 0.914 0.874 0.928
Peking tree2 sim2 0.883 0.932 0.910 0.954
Peking tree1 sim3 0.869 0.920 0.886 0.936
Peking tree1 sim3 linkTxt N 0.864 0.917 0.878 0.931
Peking tree1 sim2 linkTxt N 0.873 0.926 0.893 0.944

Table 4. Classification Results

310

References

1. Denoyer, L., Gallinari, P., Vercoustre, A.: Report on the xml mining track at inex
2005 and inex 2006. Comparative Evaluation of XML Information Retrieval Systems
(2007) 432–443

2. Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007 cate-
gorization and clustering of XML documents. In: ACM SIGIR Forum. Volume 42.,
ACM (2008) 22–28

3. Denoyer, L., Gallinari, P.: Overview of the INEX 2008 XML mining track. Advances
in Focused Retrieval (2009) 401–411

4. Nayak, R., De Vries, C., Kutty, S., Geva, S., Denoyer, L., Gallinari, P.: Overview of
the INEX 2009 XML mining track: Clustering and classification of XML documents.
Focused Retrieval and Evaluation (2010) 366–378

5. : Wikipedia main topic classifications,
http://en.wikipedia.org/wiki/Category:Main_topic_classifications. (2010)

6. De Vries, C., Geva, S.: Document Clustering with K-tree. Advances in Focused
Retrieval (2009) 420–431

311

An Iterative Clustering Method for the

XML-Mining task of the INEX 2010

Mireya Tovar1, Adrián Cruz2, Blanca Vázquez3,
David Pinto1, Darnes Vilariño1

{mtovar,dpinto,darnes}@cs.buap.mx, abadrector@gmail.com,

blanca tec@hotmail.com

1Benemérita Universidad Autónoma de Puebla, México
2Instituto Tecnológico de Cerro Azul, México

3Instituto Tecnológico de Tuxtla Gutiérrez, México

Abstract. In this paper we propose two iterative clustering methods
for grouping Wikipedia documents of a given huge collection into clus-
ters. The recursive clustering process clusters iteratively subsets of the
complete collection. In each iteration, we select representative items for
each group which are then used for the next stage of clustering.
The presented approaches are highly scalable algorithms which may be
used with huge collections that in other way (for instance, using the clas-
sic clustering methods) would be almost impossible of being clustered.
The obtained results outperformed the random baseline presented in the
INEX 2010 clustering task of the XML-Mining track.

1 Introduction

The INEX 2010 clustering task was presented with the purpose of being an eval-
uation forum for providing a platform to measure the performance of clustering
methods over a real-world and high-volume Wikipedia collection.

Clustering analysis refers to the partitioning of a data set into subsets (clus-
ters), so that the data in each subset (ideally) share some common trait, often
proximity, according to some defined distance measure [1,2,3].

Clustering methods are usually classified with respect to their underlying
algorithmic approaches. Hierarchical, iterative (or partitional) and density-based
are some possible categories belonging to this taxonomy.

In this paper we report the obtained results when two different approaches
for clustering the INEX2010 collection were used. The description of both ap-
proaches are given in the following section.

2 Description of the two approaches

In order to be able to cluster high volumes of data, we have approached two clus-
tering techniques by partitioning the complete document collection. The process

312

followed by the so called K-biX/k-biN approach is presented in Figure 1, whereas
a scheme of a similar process but in this case using K-Means is shown in Figure
2. An explanation of both approaches follows.

Fig. 1. The K-biX/K-biN approach of BUAP Team at the INEX 2009 clustering
task

2.1 The K-biX / K-biN clustering approach

This approach consider two main modules: the K-biX and the K-biN. The former
is described first and later we describe the latter.

The K-biX clustering method: This clustering method receives as input a
similarity matrix sorted in a non-increasing order. Thereafter, it brings together
all those items whose similarity value is greater than a given threshold (in this
particular case, we have used the average similarity of the matrix). The procedure
of K-biX is given in Algorithm 1.

The presented clustering method (K-biX) is unable to find a fixed number of
clusters. Instead it tries to discover the optimal number of clusters. Therefore, we
have proposed an additional clustering method for fixing the number of clusters
to those required in the competition (50, 100, 200, 500 and 1000). The description
of this technique is given as follows.

The K-biN clustering method: The K-biX clustering method considers the
clustering with a number fixed of clusters. This number depends of some criterion
given in advance, and the similarity degree among the documents processed. The
Algorithm 2 presents the K-biN technique.

313

Algorithm 1: Algorithm K-biX used for clustering the INEX 2010

Input: A n × n similarity matrix ϕ(di, dj) sorted in a non-increasing order, a
threshold ǫ

Output: A set of clusters C1, C2, ...
D = {d1, d2, ...};1

REG = (|D|2 − |D|)/2;2

loop = 1;3

while (loop ≤ REG) and (ϕ(di, dj) ≥ ǫ) do4

if (|di| > |dj |) then5

tmp = di;6

di = dj ;7

dj = tmp;8

if (di 6∈ rel and dj 6∈ rel) then9

fusiondi
= {di, dj};10

reldi
= {di};11

reldj
= {di};12

else if (di ∈ rel) and(dj 6∈ rel) then13

fusionreldi
= fusionreldi

∪ {dj};14

reldj
= {di};15

else if dj ∈ rel and (di 6∈ rel) then16

fusionreldj
= fusionreldj

∪ {di};17

reldi
= {dj};18

loop = loop + 1;19

cluster = 1;20

foreach dx ∈ fusion do21

first d representative(fusiondx);22

Ccluster = fusiondx ;23

cluster = cluster + 1;24

foreach dx ∈ |D| do25

if dx 6∈ rel then26

Ccluster = {dx};27

cluster = cluster + 1;28

return C1, C2, ...29

314

Algorithm 2: Algorithm K-biN used for clustering the INEX 2010

Input: A n × n similarity matrix ϕ(di, dj) sorted in a non-increasing order, n
number of clusters

Output: A set of clusters C1, C2, ...Cn

D = {d1, d2, ...};1

REG = (|D|2 − |D|)/2;2

gs = n + 1;3

cn = 0;4

loop = 1;5

while (loop ≤ REG) and (gs > n) do6

if (|di| > |dj |) then7

tmp = di;8

di = dj ;9

dj = tmp;10

if (di 6∈ rel and dj 6∈ rel) then11

fusiondi
= {di, dj};12

reldi
= {di};13

reldj
= {di};14

cn = cn + 2;15

else if (di ∈ rel) and(dj 6∈ rel) then16

fusionreldi
= fusionreldi

∪ {dj};17

reldj
= {di};18

cn = cn + 1;19

else if dj ∈ rel and (di 6∈ rel) then20

fusionreldj
= fusionreldj

∪ {di};21

reldi
= {dj};22

cn = cn + 1;23

if |D| − n ≥ cn then24

f = 0;25

cd = 0;26

foreach dx ∈ fusion do f = f + 1;27

foreach dx ∈ |D| do28

if dx ∈ rel then cd = cd + 1;29

gs = f + cd;30

loop = loop + 1;31

cluster = 1;32

foreach dx ∈ fusion do33

first d representative(fusiondx);34

Ccluster = fusiondx ;35

cluster = cluster + 1;36

foreach dx ∈ D do37

if dx 6∈ rel then38

Ccluster = {dx};39

cluster = cluster + 1;40

return C1, C2, ..., Cn41

315

Fig. 2. The K-Means based approach of BUAP Team at the INEX 2009 clus-
tering task

2.2 The K-Means based clustering approach

A second approach have considered to use the widely known K-Means algorithm,
which assigns each object to the cluster whose center is nearest. The center is
the average of all the points of the cluster. That is, its coordinates are the
arithmetic mean for each dimension separately over all the points in the cluster.
The K-Means clustering method follows as shown in Algorithm 3 ([3]).

Algorithm 3: Algorithm of the K-Means clustering method

Input: K number of clusters, a similarity matrix σ(di, dj)
Output: A set of clusters {C1, C2, · · · , CK}
Randomly generate K clusters and determine the cluster centers;1

repeat2

Assign each point to the nearest cluster center;3

Recompute the new cluster centers;4

until some convergence criterion is met (usually that the assignment has not5

changed) ;
return C1, C2, · · · , CK6

The main advantages of this algorithm are its simplicity and speed which
allows it to run on large datasets. Its disadvantage is that it does not yield

316

the same result with each run, since the resulting clusters depend on the initial
random assignments.

The proposed approach using the K-Means clustering method is depicted in
Algorithm 4.

Algorithm 4: Algorithm used for clustering the INEX 2010 with K-Means

Input: A document collection D, n number of clusters (50, 100, 200, 500 or
1000)

Output: A set of clusters C1, C2, ...Cn

Represent each document according to TF-IDF;1

Split D into m subsets Di made of |D|
m

documents;2

foreach Di ⊂ D such as Di = {di,1, di,2, di,3, ..., d
i,

|D|
m

} do
3

Calculate the similirity matrix Mi of Di using the cosine measure;4

Apply the K-Means clustering method to Mi in order to obtain k clusters;5

({Ci,1, Ci,2, ..., Ci,k});6

end7

Loop = 1;8

while (Loop ≤ MAX ITERATIONS) do9

Select a random representative document di,j for each cluster Ci,j obtained;10

Let D′ be the set of documents di,j i.e., only those that represent each11

cluster obtained;
Calculate the similiraty matrix M ′

i of D′
i using the cosine measure;12

Apply the K-Means clustering method to M ′
i in order to obtain n clusters13

({C′
i,1, C

′
i,2, ..., C

′
i,n});

Let Ci,j = Ci,j ∪ Ci,j′ , where di, j ∈ C′
i,r and di,j′ ∈ C′

i,r with 1 ≤ r ≤ k and14

j <> j′;
Loop = Loop + 1;15

end16

return C1, C2, ...Cn17

2.3 Construction of the similarity matrix

The clustering methods aforementioned assume that a matrix that represents the
similarity degree among all the documents of the collection is given in advance.
In this case, the construction of the similarity matrix was carried out by means
of the TF-IDF measure which is described into detail as follows.

The Term Frequency and Inverse Document Frequency (tf -idf) is a statistical
measure of weight often used in natural language processing to determine how
important a term is in a given corpus, by using a vectorial representation. The
importance of each term increases proportionally to the number of times this
term appears in the document (frequency), but is offset by the frequency of the
term in the corpus. In this document, we will refer to the tf -idf as the complete
similarity process of using the tf -idf weight and a special similarity measure

317

proposed by Salton [4] for the Vector Space Model, which is based on the use of
the cosine among vectors representing the documents.

The tf component of the formula is calculated by the normalized frequency
of the term, whereas the idf is obtained by dividing the number of documents
in the corpus by the number of documents which contain the term, and then
taking the logarithm of that quotient. Given a corpus D and a document dj

(dj ∈ D), the tf -idf value for a term ti in dj is obtained by the product between
the normalized frequency of the term ti in the document dj (tfij) and the inverse
document frequency of the term in the corpus (idf(ti)) as follows:

tfij =
tf(ti, dj)

∑|dj |
k=1

tf(tk, dj)
(1)

idf(ti) = log

(

|D|

|d : ti ∈ d, d ∈ D|

)

(2)

tf -idf = tfij ∗ idf(ti) (3)

Each document can be represented by a vector where each entry corresponds
to the tf -idf value obtained by each vocabulary term of the given document.
Thus, given two documents in vectorial representation, di and dj , it is possible
to calculate the cosine of the angle between these two vectors as follows:

Cosθ(
−→
di ,

−→
dj) =

−→
di ·

−→
dj

∥

∥

∥

−→
di

∥

∥

∥

∥

∥

∥

−→
dj

∥

∥

∥

The similarity matrix is then constructed on the basis of the above formulae,
i.e., for each possible pair of documents, we need to calculate how similar they
are by using the cosine measure. Once the similarity matrix is calculated, we
may proceed with the clustering step, as described in the previous subsections.

The obtained results are presented and discussed in the following section.

3 Experimental results

The clustering task of INEX 2010 evaluated unsupervised machine learning so-
lutions against the ground truth categories by using standard evaluation criteria
such as Purity, Entropy and F-score (f1).

Even if the complete description of the dataset used in the clustering task
of INEX 2010 is given in the track overview paper, we may describe general
features of this corpus.

The clustering task use a 146,225 document subset of INEX 2010 collection
that has been pre-processed to provide various representations of the documents
such as, vector space representation of terms, frequent bi-grams, XML tags, trees,
links and named entities. From these representations, we have used unigrams and
frequent bi-grams (original terms and stemmed terms). The obtained results are
presented in Figures 3 and 4.

318

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

pu
rit

y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

pu
rit

y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

a) Macro purity b) Micro purity

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

en
tr

op
y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

en
tr

op
y

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

c) Macro entropy d) Micro entropy

Fig. 3. Evaluations of the runs with Purity and Entropy (macro and micro) at
the INEX 2010 clustering task

In general, it can be noticed that the presented approaches performs slightly
better than the random assignment. Our thought is that we have not iterated
the algorithm in order to converge to an optimal clustering. We are considering
to repeat the experiments with the gold standard in hand in order to analyze
what went wrong with both approaches.

4 Conclusions

A recursive method based on the K-biX/K-biN and K-Means clustering methods
has been proposed in this paper. The aim of the two presented approaches was
to allow high scalability of the clustering algorithms. Traditional clustering of
huge volumes of data requires to calculate a two dimensional similarity matrix.
A process which needs quadratic time complexity with respect to the number
of documents. The lower the dimensionality of the similarity matrix, the faster
the clustering algorithm will be executed. However, the performance of both
approaches were not as expected, because it just slightly improved a baseline

319

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

ne
ge

nt
ro

py

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

ne
ge

nt
ro

py

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

a) Macro negentropy b) Micro negentropy

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ac

ro
−

f1

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

su
re

 m
ic

ro
−

f1

Groups

random
pekin_uni

qut_devries
buap_A

buap_M

c) Macro f1 d) Micro f1

Fig. 4. Evaluations of the runs with negentropy and f1 (macro and micro) at
the INEX 2010 clustering task

made up of a random assignment. We would like to analyze this behaviour when
the gold standard is released by the task organizers.

5 Acknowledgments

This work has been partially supported by CONACYT and PROMEP projects.

References

1. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press (2003)

2. Mirkin, B.G.: Mathematical Classification and Clustering. Springer (1996)
3. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-

servations. In: Proc. of the 5th Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, University of California Press (1967) 281–297

4. Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Communications of the ACM 18(11) (1975) 613–620

320

PKU at INEX 2010 XML Mining Track

Songlin Wang, Feng Liang, and Jianwu Yang

Institute of Computer Sci. & Tech., Peking University,

Beijing 100871, China

{wangsonglin, liangfeng, yangjianwu }@icst.pku.edu.cn

Abstract. This paper presents our participation in the INEX 2010 XML Mining

track. Our classification and clustering solutions for XML documents have used

both the structure and content information, where the frequent subtrees as

structural units are used for content extraction from the XML document. In

addition, we use the WordNet and the link information for better performance.

We have experimented the tuning of various parameters using the collection of

INEX 2009 rather than the collection used for INEX 2010, and we apply the

structured link vector model for classification.

Keywords: XML Document, Classification, Clustering, Frequent Subtree,

Structured Link Vector Model (SLVM).

1 Introduction

The two tasks in INEX 2010’s XML mining track are categorization and

clustering. The clustering task is an unsupervised process through which all the

documents can be classified into clusters and the problem is to find meaningful

clusters without any prior information. The categorization task is a supervised task for

which, given a set of categories, a training set of reclassified documents is provided.

Using this training set, the task keep on learning the categories description in order to

be able to classify a new document into one or more categories. And in this XML

mining tack, the corpus is a subset of the Wikipedia corpus with 144,625 documents

that belong to 36 categories resulting in a multi-label classification task.

In this paper, the documents are represented according to the structured link

vector model (SLVM) [1], which was extended from the conventional vector space

model (VSM) [2], and used the closed frequent subtrees as structural units. More

precisely, we focus on the preprocessing step, particularly the feature selection,

frequent subtrees selection, the process of link information, and these steps can be

essential for improving the performance of the categorization and clustering.

Moreover, the content information (the text of the documents), the structural

information (the XML structure of the documents) and the links between the

321

2 Songlin Wang, Feng Liang, and Jianwu Yang

documents can be used for this task. We need to extract text from a subset of terms

that can be used to represent the documents in view of their categorization efficiently.

In this year, a file with a list of links between XML documents has been given, and

we will show that those links add relevant information for the categorization of

documents.

This paper is organized as follows. In section 2, document representation is

discussed. In section 3, we show some parameters tuning in the corpus of INEX2009.

Section 4 describes the approach taken to the classification task and the associated

results. In section 5, we review the clustering task and discuss the results. The paper

ends with a discussion of future research and conclusion in section 6.

2 System overview

2.1 Document model for categorization(SLVM)

The Vector space model (VSM) [2] has been widely used for representing text

documents as vectors which contain terms weights. Given a collection D of

documents, a document of D is represented by a

vector , where is the weight of the term in

the document .

SLVM is extended from VSM. The basic idea is to extract structure units from

XML documents, then extract content information from each structure units. The

content information of each structure units is regarded as a VSM model. Every XML

document is modeled as a matrix in SLVM [1].

So, the document can be represented by a document feature matrix

 ,

 (1)

 (2)

Where m is the number of unit of document , and is the weight of the

term in the unit of document . SLVM combines both structure information

and content information. In order to calculate the weight of the terms, TFIDF and

BM25 formula can be used.

322

PKU at INEX 2010 XML Mining Track 3

2.2 BM25 formula

Our system is based on the BM25 weights function [3].

 (3)

(4)

 (5)

With:

- : the frequency of term q in article d.

-N: the number of articles in the collection.

-n(q): the number of articles containing the term q.

-

: the ratio between the length of articles d and the average article length.

- and b: the classical BM25 parameters.

Parameter is able to control the term frequency saturation. Parameter b allows

setting the importance of

.

2.3 Chi-square feature selection

The main idea of the feature selection is to choose a subset of input variables by

eliminating features with little or no predictive information, and the feature selection

can significantly improve the comprehensibility of the resulting classifier models. The

Chi-square test is a commonly used method, which evaluates the features individually

by measuring their chi-square statistic with respect to the classes.

3 Parameters tuning (INEX 2009)

We have used the train collection and test collection of INEX 2009 XML Mining

Track for this experiment. The collection is composed of about 54,889 XML

documents of the Wikipedia XML Corpus, and this subset of Wikipedia represents 39

categories, each corresponding to one subject or topic. The training set with the

category annotations is composed of 11,028 elements, which is about 20% of the

whole collection. On the training set, the mean of the number of category by

document is 1.46 and 9809 documents belong to only one category.

323

4 Songlin Wang, Feng Liang, and Jianwu Yang

First we list all the features encountered in the documents of the collection,

about one million features are built for all of the documents. Then the chi-square test

has been used to select the features, and we find about 2,000 features for each

categorization can acquire a good value.

The INEX 2009 tuning results show in table1, where all the value with the

BM25 have been improved, so our system is based in the BM25 weights function for

this year task.

Table 1. The result of BM25

 Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

TFIDF 0.966 0.953 0.855 0.863 0.496 0.543 0.709

BM25 0.967 0.952 0.932 0.933 0.537 0.579 0.745

3.1 Pruning the tree

In this paper, we utilize the frequent subtrees as structural units to extract the

content information from the XML documents, and a series of pre-processing have

been done for the subtrees.

As the last year, we use the closed frequent subtrees as structural units. The

documents of INEX 2009 is more complex than the collection of ever before, so we

employ some pruning strategies for mining closed frequent subtrees and use the chi-

square test to select a part of subtrees as useful structural. We obtain the document

vectors at three different pruning levels, 0, 1/3, and 1/2, which yield a better

performance for almost all the evaluation measures.

Table 2 presents the effectiveness comparison of classification structures at

various pruning levels, we choice 10 subtrees for each category, and uses no more

than 40,000 features for all categories. We only use 35,000 features when the

WordNet is used, as calculation of the similarity between the words is very slowly.

324

PKU at INEX 2010 XML Mining Track 5

Table 2. The results of pruning the document tree

 Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

0 0.956 0.940 0.879 0.861 0.428 0.438 0.606

1/3 0.961 0.944 0.896 0.872 0.464 0.465 0.626

1/2 0.961 0.942 0.876 0.873 0.447 0.475 0.633

In addition, we find that the average of subtrees for each XML document has

increased, which is useful for the classification, when some pruning strategies are

used for mining closed frequent subtrees.

3.2 WordNet

In some documents, there are only a few words, which can’t express the

information of the categories completely. So we use the WordNet to extend the

information of the documents.

Given the closed frequent subtrees , the

features , and two documents , that contain the tree of

T, and suppose their parts of the are

and

 .

The similarity between the parts of the documents given as:

(6)

After using the WordNet, we can get the similarity matrix between the words,

and the similarity between the parts of the documents given as:

(7)

 Where

 is the similar between the word
 and

 .

325

6 Songlin Wang, Feng Liang, and Jianwu Yang

Given, the similarity matrix between the words, we can change the
 as

follow:

 (8)

When

 have all features of , this

method is equal to (7), however no document can contain all of the selected features,

and in this way we can increase the feature number of the document, especially the

words that don’t appear in the document, which is important to some small documents

for classification and clustering, it equal to use the similarity matrix between the

words to do smoothing. For example, when the features of
 don’t contain word A,

but it contain word B and word C, which the similarity with A is greater than 0, and

then we can use

 to smoothing the weight of word A in
.

Definition:

 means the similarity between the two words , if

 , where is the parameter of similarity, are synonym, we

can merge the word together.

3.3 Using the link information to improve the result

In this section, we show that the classification accuracy can be improved based on

word features and out-linked features. And the XML documents of INEX can provide

much richer information to classifiers for classification. Links between the documents

can be used for this task. In this year a file with a list of links between XML

documents has been given, and we will show that those links add relevant information

for the categorization of documents. As how to use the link information, we have tried

three ways:

3.3.1 Change the document structural

After a series of pre-processing for the documents, we can change the documents

in the following format:

<article>

 <content_information> ……</ content _information>

 <frq_subtrees>……</frq_subtrees>

</article>

326

PKU at INEX 2010 XML Mining Track 7

In the above table, the text of the document is included by the tag of

“<content_information>”, “<frq_subtrees>” contain the frequent subtrees of the

document, which is the XML structure of the documents. As well, in order to join the

link information of the document, we should add another tag, which is named

“<link_informatiom>”, and the table can be changed as follow:

<article>

 <content_information> ……</ content _information>

 <frq_subtrees>……</frq_subtrees>

 <link_information>……</link_information>

</article>

3.3.2 Change the vector of the document

The closed frequent subtrees , and a given document , which

contain the tree of T, and suppose the part of the is

 (9)

Where m is the total number of features appear in the tree part of the

document collection,
 is the weight of term i in document D and

 .

Hence, if
 ,it means that word i exists in the tree part of the document D.

Therefore, document D will be represented by a vector of features

 (10)

Where n is the total number of links appear in the tree part of the document,

is the weight of link
 in document D and

 . Hence, if
 ,it means that

link
 exists in the tree part of the document D.

3.3.3 Using the link for tuning

Build SVM model base on the link information, get the correlativity between the

documents and categories, and improve the correlativity of documents and categories

that calculation form the text information:

 (11)

327

8 Songlin Wang, Feng Liang, and Jianwu Yang

Where is the final correlativity between the document d and the category

c; is the correlativity between the document d and the category c by using the

link information only; and is the correlativity between the document d and

the category c by using the text information only; parameter allows setting the

importance of .

In this experiment, we use 80000 features for the text content, and use BM25 for

the text representation. The SVM based text classification results are listed in Table 3.

In the following tables, we can notice that, out-linked features work very well in the

experiment, and this simply means that add in out-link features can improve the

performance of classification.

328

PKU at INEX 2010 XML Mining Track 9

Table 3. The result of using the link for tuning

 Ma_acc Mi_acc Ma_roc Mi_roc Ma_prf Mi_prf Map

α=0 0.967 0.952 0.932 0.932 0.537 0.579 0.746

Using link for
tuning

0.968 0.956 0.912 0.916 0.570 0.608 0.780

3.4 Compare the results

Table 4. Compare the result with INEX 2009

Team Micro F1 Macro F2 APR

University of Wollongong
+
 51.2 47.9 68

University of Peking
+
 51.8 48 70.2

XEROX Research center
+
 60 57.1 67.8

University of Saint Etienne
+
 56.4 53 68.5

University of Granada
+
 26.2 25.3 72.9

Our result* 60.9 57.1 78.0

+ Result of INEX09; * the wordNet is not used.

4 The clustering methods

AHC Clustering Algorithm and K-means Algorithm are two popular clustering

algorithms in statistics and machine learning, but these methods do not work well in

the massive data sets. So we modify these algorithms, considering the structure of the

document and the massive data set. We have approached the simple countering

technique based on batch of the complete document collection; the process followed

is present in Figure 1.

329

10 Songlin Wang, Feng Liang, and Jianwu Yang

• Given

• X: a set of N vectors

• K:desired number of clusters

• Begin

• Select K random seeds from X

• Each time load part of the documents, and computer the

distance between the document and clusters

• Do

• Do all of the document

• Load a batch of documents

• Assign each document to cluster

which is the minimal distance, and calculate

the cluster for next time.

• End_do

• Calculate the clusters and the distance between

the clusters and document.

• End_do (if the gap of distance between two consecutive

cycles exceeds the given threshold.)

• Load the documents and assign each document to

clusters.

• Print_result.

• Done

Figure 1. An algorithm for clustering

Another algorithm is based on AHC Clustering Algorithm, and the process of

the Local AHC Clustering Algorithm is present as Figure 2.

• Let D be the whole complete document collection, split D into subset

containing 1000 documents, and for each , we do the follow process, after we

combine the result ,and continue, until the number of clusters meet our

requirement:

• Given:

• Subsets and a threshold

• Calculate similarity matrix M

• Do (if max element in M > threshold)

• Find the max element of M: and constructs a cluster

 made up of the document and , it marks these

documents as assigned.

• Do all unassigned document

330

PKU at INEX 2010 XML Mining Track 11

• If

• add to cluster and mark assigned

• End_do

• Update row i and column j, set

 , where .

• Update row c and column c, set ,

where .

• End_do

Figure 2. The Local AHC Clustering Algorithm

5 INEX 2010 results

We present in this section the official results obtained by our system during

INEX2010 on the new INEX 2010 collection, we submitted 9 runs, and all of our

submit results are based on the BM25, reference run given by the INEX organizers.

1.1. System settings:

Most of the settings given in section 3 have been reused for our INEX2010

runs, except:

 - BM25 parameters = 2.0 and b = 0.75；

- For each category, we set the frequent tree number is 10, and the threshold of

support is 200;

-To improve the result of classification, we used the link information, and we

set 0.40 and 0.46, which is obtained from tuning in section 3;

-The threshold for each category, we tuning from the training set, and we get

three groups.

1.2. Results

Tables 5 present the official results of classification:

331

12 Songlin Wang, Feng Liang, and Jianwu Yang

Table 5. The results of classification

Team Run Mi_p Ma_p Mi_r Ma_r Mi_t Ma_t Mi_a Ma_a Mi_f Ma_f

Peking T1_S3_link0 0.553 0.525 0.436 0.334 0.931 0.974 0.891 0.942 0.518 0.446

 T1_S3_link67 0.422 0.345 0.653 0.612 0.874 0.928 0.860 0.914 0.508 0.435

 T1_S3 0.433 0.368 0.635 0.582 0.886 0.936 0.869 0.920 0.518 0.444

 T1_S3_linkN 0.432 0.356 0.656 0.613 0.878 0.931 0.864 0.917 0.517 0.444

 T1_S2_linkN 0.456 0.389 0.615 0.559 0.893 0.944 0.873 0.926 0.522 0.454

 T1_S1_link0 0.582 0.570 0.363 0.252 0.934 0.980 0.888 0.943 0.400 0.320

 T2_S2_link0 0.562 0.536 0.422 0.321 0.934 0.976 0.892 0.943 0.452 0.372

 T2_S2 0.48. 0.414 0.574 0.510 0.910 0.954 0.883 0.932 0.521 0.452

 T2_S3_linkN 0.436 0.359 0.652 0.614 0.882 0.933 0.886 0.918 0.518 0.446

Qut Inex10_sub 0.561 0.527 0.523 0.440 0.932 0.970 0.896 0.944 0.536 0.473

Firstly, for all of the runs , we use 80,000 features for all categories, and frequent

subtrees have select two groups: one is T1, in which the trees can be a subtree of

another; another is T2, in which the frequent subtree cannot be a subtree of another.

We also use different thresholds for each categories, S1, S2, S3. And we use the link

information to improve the result of the castigation, the run 1, 2, 4,5,6,7 and 9 have

use, but the run 3 and 8 have not. In addition, in order to save time, we just use the

WordNet to calculate the similarity matrix between the words that select form

INEX2009 collection, so there is a certain deviation between the words.

Secondly, from the result table, we can obtain some conclusions. The threshold

of each category has played an important rule, and the results including the

information are not as good as last year. We suspect that this might be caused by the

fact that we tuned the parameters in the collection of INEX 2009, which were not

suitable in this year’s data. For this year, each document belong to the number of

categories is more than last year, and the standard evaluation of classification has

changed, thus, future experiments should do this parameters adjustment. In the part of

frequent subtrees we use two extreme cases, T1 and T2, and the result are not so

much difference as we expected, though they have a different effect on the INEX2009

data set, so this part needs to do further research experiments.

Tables 6 present the official results of clustering.

332

PKU at INEX 2010 XML Mining Track 13

Table 6. The results of clustering

 Runs Mi_p Ma_e Mi_e Ma_n Mi_n Ma_f
1

Mi_f
1

Nmi M_NC
CG

S_NC
CG

Pek Result_1000_4 0.531 3.89 3.89 0.202 0.219 0.072 0.150 0.093 0.524 0.220

 Result_500_4 0.518 3.99 3.97 0.201 0.218 0.063 0.140 0.088 0.584 0.235

 Result_200_4 0.467 4.00 4.05 0.314 0.212 0.056 0.130 0.084 0.661 0.219

 result502_0.15 0.364 4.36 4.52 0.133 0.118 0.019 0.053 0.020 0.391 0.221

 Result_100_4 0.481 4.06 4.10 0.212 0.206 0.048 0.120 0.082 0.741 0.193

 result_0.18_1004 0.336 4.38 4.48 0.118 0.119 0.022 0.060 0.024 0.290 0.169

 Result_50_4 0.463 4.11 4.18 0.203 0.191 0.038 0.101 0.075 0.185 0.157

 Result_100_3 0.483 4.07 4.11 0.209 0.204 0.040 0.119 0.081 0.745 0.190

 Result_200_2 0.501 4.01 4.00 0.213 0.213 0.057 0.132 0.085 0.662 0.212

In table 6, the runs 4 and 6 we use the Local AHC Clustering Algorithm, and the

rest we used k-means based on batch of the complete document collection.

6 Conclusions

In this paper, we applied SLVM to XML documents classification and clustering,

and we used the frequent subtrees as structural units, both the structure and content

information have been used, especially the information of link, which performance

well, and in order to extend the information of features, we used the WordNet to

smooth the weight of the words in the documents.

It is not so easy to reuse setting of parameters tuned on the different collection.

In the experiments of INEX2009, we show that use link information can improve the

result of classification by 2%, but it not do so at this year, so we have to experiment

more deeply on 2010 collection. Furthermore, Information provided by the inlinks

(links received by one file) is also useful, a symmetric procedure can be defined with

inlinks instead, and being tested. If the inlinks could be available, that information

could result in a better performance. Some of those experiments will probably be

include in the final version of this paper although, as we exposed in the introduction,

we not consider that approach to be very realistic.

333

14 Songlin Wang, Feng Liang, and Jianwu Yang

Acknowledgment

The work reported in this paper was supported by the National Natural science

Foundation of China Grant 60642001 and 60875033.

References

1. Yang,j., Chen,x.: A semi_structured document model for text mining. In: Journal

of computer secience and Technology, 17(5) 603-610 (202)

2. Salton G, and McGill MJ.: Introduction to Moder infomrmation Retrieval,

McGraw-Hill, 1983.

3. S.E.Robertson and K.Spark Jones.: Relevance wighting of search terms. JASIST,

27(3):129-146, 1976

4. Chi, Y., Nijssen, S., Muntz, R.R, Kok, J.N.: Fequent Subtree Mining – An

Overview. Foundamenta Information, 2005

5. Chi,Y., Yang Y., Xia Y., Muntz, R.R.: CMTreeMiner: Mining Both Closed and

MaxImal Frequent Subtrees. The Eighth Pacific Asia Conference on Knowledge

Discover and Data Mining, 2004

6. Xie, W., Manmadov, M., Yearwood, J.: Using Links to Aid Web Classification. In:

ICIS 2007(2007) 0-7695-2841-4/07

334

Author Index

Alexander, David 189, 190
Arvola, Paavo 11, 41

Balderas, Carlos 159
Beckers, Thomas 175, 185
Beigbeder, Michel 50
Bellot, Patrice209, 214
Beltran, Beatriz286
Boudin, Florian 214
Buffoni, David . 55

Carneiro Linhares, Andrea 234
Chappell, Timothy 243
Crouch, Carolyn 64
Crouch, Donald 64
Cruz, Adrian .312

da Cunha, Iria 238
da Silva, Altigran 138
Deng, Zhihong 260
Deveaud, Romain 214
De Vries, Chris 298
Doucet, Antoine89

Fuhr, Norbert . 175

Gagnon, Michel 228
Gallinari, Patrick 55
Ganguly, Debasis 246
Gao, Ning . 260
Geva, Shlomo 11, 243, 298
Giguet, Emmanuel 100
Géry, Mathias . 50

Hatano, Kenji . 65
Hou, Jun . 274
Hummel, Felipe 138

Ibekwe, Fidelia223

Jaruskulchai, Chuleerat 292
Jia, Xiang-Fei . 190
Jiang, Jia-Jian 260
Jones, Gareth . 246

Kamps, Jaap 11, 107
Kazai, Gabriella89
Keyaki, Atsushi 65
Koolen, Marijn 89, 107
Korbar, Dennis 185
Kutty, Sangeetha 298

Laender, Alberto 138
Landoni, Monica 89
Largeron, Christine 50
Larson, Ray .116
Lehtonen, Miro 77
Leveling, Johannes 246
Li, Qiushi . 150
Li, Rongmei .82
Liang, Feng . 321
Lucas, Nadine .100
Lv, Sheng-Long 260

Medina-Urrea, Alfonso 223
Miyazaki, Jun . 65
Moriceau, Véronique 209
Moro, Mirella . 138
Méndez-Cruz, Carlos-Francisco . . . 223

Nayak, Richi 274, 298
Nordlie, Ragnar 125, 175

Pharo, Nils . 175
Pinto, David 159, 286, 312
Preminger, Michael 125

Ramirez, Georgina 169
Ramı́rez, Javier 238

SanJuan, Eric 209, 214, 223
Schenkel, Ralf . 11
Seck, Howard . 50
Sierra, Gerardo 223
Somodevilla-Garcia, Maŕıa 286
Soriano-Morales, Edmundo Pavel .223

Tagarelli, Andrea 298
Tannier, Xavier 209
Thom, James A. 273, 290
Torres-Moreno, Juan-Manuel 228
Tovar, Mireya . 159
Trotman, Andrew . . .11, 128, 189, 190

Usunier, Nicolas55

Vainio, Johanna 11, 41
Velazquez, Patricia 234
Vidal, Mireya Tovar312
Vilariño Ayala, Darnes . 159, 286, 312
Vivaldi, Jorge . 238
Vázquez, Blanca 312

Wang, Qiuyue128, 150
Wang, Shan .150
Wang, Songlin 321
Weide, Theo P. van der 82
Wichaiwong, Tanakorn 292
Wood, Vaughn 190
Wu, Chen . 273

Yang, Jianwu . 321
Yu, Hang . 260

Zhang, Jinglan 274

4485437890819

ISBN 978-90-814485-4-3

90000 >

