
INEX 2011
Workshop
Pre-proceedings

Shlomo Geva, Jaap Kamps, Ralf Schenkel (editors)

December 12–14, 2011

Hofgut Imsbach, Saarbrücken, Germany

http://inex.mmci.uni-saarland.de/

Attribution
http://creativecommons.org/licenses/by/3.0/

Copyright c©2011 remains with the author/owner(s).

The unreviewed pre-proceedings are collections of work submitted before the
December workshops. They are not peer reviewed, are not quality controlled,
and contain known errors in content and editing. The proceedings, published
after the Workshop, is the authoritative reference for the work done at INEX.

Published by: IR Publications, Amsterdam. ISBN 978-90-814485-8-1.
INEX Working Notes Series, Volume 2011.

Preface

Welcome to the tenth workshop of the Initiative for the Evaluation of XML
Retrieval (INEX)!

Traditional IR focuses on pure text retrieval over “bags of words” but the
use of structure—such as document structure, semantic metadata, entities, or
genre/topical structure—is of increasing importance on the Web and in profes-
sional search. INEX has been pioneering the use of structure for focused retrieval
since 2002, by providing large test collections of structured documents, uniform
evaluation measures, and a forum for organizations to compare their results.
Now, in its tenth year, INEX is an established evaluation forum, with over 100
organizations worldwide registered and over 30 groups participating actively in
at least one of the tracks.

INEX 2011 was an exciting year for INEX in which a number of new tasks
and tracks started, including Social Search, Faceted Search, Snippet Retrieval,
and Tweet Contextualization. In total five research tracks were included, which
studied different aspects of focused information access:

Books and Social Search Track investigating techniques to support users in
searching and navigating books, metadata and complementary social media.
The Social Search for Best Books Task studies the relative value of authori-
tative metadata and user-generated content using a collection based on data
from Amazon and LibraryThing. The Prove It Task asks for pages confirm-
ing or refuting a factual statement, using a corpus of the full texts of 50k
digitized books.

Data Centric Track investigating retrieval over a strongly structured collec-
tion of documents based on IMDb. The Ad Hoc Search Task has informa-
tional requests to be answered by the entities in IMDb (movies, actors, di-
rectors, etc.). The Faceted Search Task asks for a restricted list of facets and
facet-values that will optimally guide the searcher toward relevant informa-
tion.

Question Answering Track investigating tweet contextualization, answering
questions of the form “what is this tweet about?” with a synthetic summary
of contextual information grasped from Wikipedia and evaluated by both
the relevant text retrieved, and the “last point of interest.”

Relevance Feedback Track investigate the utility of incremental passage level
relevance feedback by simulating a searcher’s interaction. An unconventional
evaluation track where submissions are executable computer programs rather
than search results.

Snippet Retrieval Track investigate how to generate informative snippets for
search results. Such snippets should provide sufficient information to allow
the user to determine the relevance of each document, without needing to
view the document itself.

IV

Two more tracks were announce, continuations of the Interactive Track and the
Web Service Discovery Track, but these failed to complete in time for INEX
2011.

The aim of the INEX 2011 workshop is to bring together researchers who
participated in the INEX 2011 campaign. During the past year participating or-
ganizations contributed to the building of a large-scale test collection by creating
topics, performing retrieval runs and providing relevance assessments. The work-
shop concludes the results of this large-scale effort, summarizes and addresses
encountered issues and devises a work plan for the future evaluation of XML
retrieval systems.

All INEX tracks start from having available suitable text collections. We
gratefully acknowledge the data made available by: Amazon and LibraryThing
(Books and Social Search Track), Microsoft Research (Books and Social Search
Track), the Internet Movie Database (Data Centric Track), and the Wikimedia
Foundation (Question Answering Track and Relevance Feedback Track).

Finally, INEX is run for, but especially by, the participants. It is a result of
tracks and tasks suggested by participants, topics created by particants, systems
built by participants, and relevance judgments provided by participants. So the
main thank you goes each of these individuals!

December 2011 Shlomo Geva
Jaap Kamps

Ralf Schenkel

Organization

Steering Committee

Charles L. A. Clarke (University of Waterloo)
Norbert Fuhr (University of Duisburg-Essen)
Shlomo Geva (Queensland University of Technology)
Jaap Kamps (University of Amsterdam)
Mounia Lalmas (Yahoo! Research)
Stephen E. Robertson (Microsoft Research Cambridge)
Ralf Schenkel (Max-Planck-Institut für Informatik)
Andrew Trotman (University of Otago)
Ellen M. Voorhees (NIST)
Arjen P. de Vries (CWI)

Chairs

Shlomo Geva (Queensland University of Technology)
Jaap Kamps (University of Amsterdam)
Ralf Schenkel (Max-Planck-Institut für Informatik)

Track Organizers

Books and Social Search

Antoine Doucet (University of Caen)
Jaap Kamps (University of Amsterdam)
Gabriella Kazai (Microsoft Research Cambridge)
Marijn Koolen (University of Amsterdam)
Monica Landoni (University of Strathclyde)

Data Centric

Jaap Kamps (University of Amsterdam)
Maarten Marx (University of Amsterdam)
Georgina Ramı́rez Camps (Universitat Pompeu Fabra)
Martin Theobald (Max-Planck-Institut für Informatik)
Qiuyue Wang (Renmin University of China)

VI

Question Answering

Patrice Bellot (University of Avignon)
Véronique Moriceau (LIMSI-CNRS, University Paris-Sud 11)
Josiane Mothe (IRIT, Toulouse)
Eric SanJuan (University of Avignon)
Xavier Tannier (LIMSI-CNRS, University Paris-Sud 11)

Relevance Feedback

Timothy Chappell (Queensland University of Technology)
Shlomo Geva (Queensland University of Technology)

Snippet Retrieval

Shlomo Geva (Queensland University of Technology)
Mark Sanderson (RMIT)
Falk Scholer (RMIT)
Andrew Trotman (University of Otago)
Matthew Trappett (Queensland University of Technology)

Table of Contents

Front matter.

Preface . iii

Organization . v

Table of Contents . vii

Books and Social Search Track.

Overview of the INEX 2011 Book Track . 11
Gabriella Kazai, Marijn Koolen, Jaap Kamps, Antoine Doucet and
Monica Landoni

University of Amsterdam at INEX 2011: Book and Data Centric Tracks . 36
Frans Adriaans, Jaap Kamps and Marijn Koolen

RSLIS at INEX 2011: Social Book Search Track . 49
Toine Bogers, Kirstine Wilfred Christensen and Birger Larsen

Social Recommendation and External Resources for Book Search 60
Romain Deveaud, Eric Sanjuan and Patrice Bellot

The University of Massachusetts Amherst’s Participation in the INEX
2011 Prove It Track . 65

Henry Feild, Marc Cartright and James Allan

TOC Structure Extraction from OCR-ed Books . 70
Caihua Liu, Jiajun Chen, Xiaofeng Zhang, Jie Liu and Yalou Huang

OUC’s participation in the 2011 INEX Book Track . 81
Michael Preminger and Ragnar Nordlie

Data Centric Track.

Overview of the INEX 2011 Data-Centric Track . 88
Qiuyue Wang, Georgina Ramı́rez, Maarten Marx, Martin Theobald and
Jaap Kamps

Edit Distance for XML Information Retrieval : Some experiments on
the Datacentric track of INEX 2011 . 107

Cyril Laitang, Karen Pinel Sauvagnat and Mohand Boughanem

UPF at INEX 2011: Data Centric and Books and Social Search tracks . . . 117
Georgina Ramı́rez

VIII

University of Amsterdam Data Centric Ad Hoc and Faceted Search Runs 124
Anne Schuth and Maarten Marx

BUAP: A Recursive Approach to the Data-Centric track of INEX 2011 . . 127
Darnes Vilariño Ayala, David Pinto, Saúl León Silverio, Esteban Castillo
and Mireya Tovar Vidal

RUC at INEX 2011 Data-Centric Track . 136
Qiuyue Wang, Yantao Gan and Yu Sun

MEXIR at INEX-2011 . 140
Tanakorn Wichaiwong and Chuleerat Jaruskulchai

Question Answering Track.

Overview of the INEX 2011 Question Answering Track (QA@INEX) 145
Eric Sanjuan, Véronique Moriceau, Xavier Tannier, Patrice Bellot and
Josiane Mothe

A Dynamic Indexing Summarizer at the QA@INEX 2011 track 154
Luis Adrián Cabrera Diego, Alejandro Molina and Gerardo Sierra

IRIT at INEX: Question answering task . 160
Liana Ermakova and Josiane Mothe

Overview of the 2011 QA Track: Querying and Summarizing with XML . . 167
Killian Janod and Olivier Mistral

A graph-based summarization system at QA@INEX2011 track 2011 175
Ana Lilia Laureano Cruces and Ramirez Javier

SUMMA Content Extraction for INEX 2011 . 180
Horacio Saggion

Combining relevance and readability for INEX 2011 Question-Answering
track . 185

Jade Tavernier and Patrice Bellot

The Cortex and Enertex summarization systems at the QA@INEX
track 2011 . 196

Juan-Manuel Torres Moreno, Patricia Velazquez Morales and Michel
Gagnon

The REG summarization system with question expansion and
reformulation at QA@INEX track 2011 . 206

Jorge Vivaldi and Iria Da Cunha

Relevance Feedback Track.

IX

Overview of the INEX 2011 Focused Relevance Feedback Track 215
Timothy Chappell and Shlomo Geva

Snip! . 223
Andrew Trotman and Matt Crane

Snippet Retrieval Track.

Overview of the INEX 2011 Snippet Retrieval Track 228
Matthew Trappett, Shlomo Geva, Andrew Trotman, Falk Scholer and
Mark Sanderson

Focused Elements and Snippets . 238
Carolyn Crouch and Donald Crouch

RMIT at INEX 2011 Snippet Retrieval Track . 240
Lorena Leal, Falk Scholer and James Thom

Topical Language Model for Snippet Retrieval . 244
Rongmei Li and Theo Van Der Weide

Snippet Retrieval Task . 245
Preeti Tamrakar

PKU at INEX 2011 XML Snippet Track . 251
Songlin Wang, Yihong Hong and Jianwu Yang

Back matter.

Author Index . 259

X

Overview of the INEX 2011 Book Track

Gabriella Kazai1, Marijn Koolen2, Jaap Kamps2, Antoine Doucet3, and
Monica Landoni4

1 Microsoft Research, United Kingdom
v-gabkaz@microsoft.com

2 University of Amsterdam, Netherlands
{marijn.koolen,kamps}@uva.nl

3 University of Caen, France
doucet@info.unicaen.fr

4 University of Lugano
monica.landoni@unisi.ch

Abstract. The goal of the INEX 2011 Book Track is to evaluate ap-
proaches for supporting users in reading, searching, and navigating book
metadata and full texts of digitized books. The investigation is focused
around four tasks: 1) the Social Search for Best Books task aims at com-
paring traditional and user-generated book metadata for retrieval, 2) the
Prove It task evaluates focused retrieval approaches for searching books,
3) the Structure Extraction task tests automatic techniques for deriving
structure from OCR and layout information, and 4) the Active Reading
task aims to explore suitable user interfaces for eBooks enabling reading,
annotation, review, and summary across multiple books. We report on
the setup and the results of the track.

1 Introduction

Prompted by the availability of large collections of digitized books, e.g., the
Million Book project5 and the Google Books Library project,6 the Book Track
was launched in 2007 with the aim to promote research into techniques for
supporting users in searching, navigating and reading book metadata and full
texts of digitized books. Toward this goal, the track provides opportunities to
explore research questions around four areas:

– The relative value of professional and user-generated metadata for searching
large collections of books,

– Information retrieval techniques for searching collections of digitized books,
– Mechanisms to increase accessibility to the contents of digitized books, and
– Users’ interactions with eBooks and collections of digitized books.

Based around these main themes, the following four tasks were defined:

5 http://www.ulib.org/
6 http://books.google.com/

11

Table 1. Active participants of the INEX 2011 Book Track, the task they were
active in, and number of contributed runs (SB = Social Search for Best Books,
PI = Prove It, SE = Structure Extraction, AR = Active Reading)

ID Institute Tasks Runs

4 University of Amsterdam SB 6
7 Oslo University College PI 15
18 Universitat Pompeu Fabra SB 6
34 Nankai University SE 4
50 University of Massachusettes PI 6
54 Royal School of Library and Information Science SB 4
62 University of Avignon SB 6
113 University of Caen SE 3

Microsoft Development Center Serbia SE 1
Xerox Research Centre Europe SE 2

1. The Social Search for Best Books (SB) task, framed within the user task of
searching a large online book catalogue for a given topic of interest, aims
at comparing retrieval effectiveness from traditional book descriptions, e.g.,
library catalogue information, and user-generated content such as reviews,
ratings and tags.

2. The Prove It (PI) task aims to test focused retrieval approaches on collec-
tions of books, where users expect to be pointed directly at relevant book
parts that may help to confirm or refute a factual claim;

3. The Structure Extraction (SE) task aims at evaluating automatic techniques
for deriving structure from OCR and building hyperlinked table of contents;

4. The Active Reading task (ART) aims to explore suitable user interfaces to
read, annotate, review, and summarize multiple books.

In this paper, we report on the setup and the results of each of these tasks
at INEX 2011. First, in Section 2, we give a brief summary of the participating
organisations. The four task are described in detail in the following sections: the
SB task in Section 3, the PI task in Section 4, the SE task in Section 5 and the
ART in Section 6. We close in Section 7 with a summary and plans for INEX
2012.

2 Participating Organisations

A total of 47 organisations registered for the track (compared with 82 in 2010, 84
in 2009, 54 in 2008, and 27 in 2007). At the time of writing, we counted 10 active
groups (compared with 16 in 2009, 15 in 2008, and 9 in 2007), see Table 1.7

7 The last two groups participated in the SE task via ICDAR but did not register for
INEX, hence have no ID.

12

3 The Social Search for Best Books Task

The goal of the Social Search for Best Books (SB) task is to evaluate the relative
value of controlled book metadata, such as classification labels, subject headings
and controlled keywords, versus user-generated or social metadata, such as tags,
ratings and reviews, for retrieving the most relevant books for a given user re-
quest. Controlled metadata, such as the Library of Congress Classification and
Subject Headings, is rigorously curated by experts in librarianship. It is used to
index books to allow highly accurate retrieval from a large catalogue. However,
it requires training and expertise to use effectively, both for indexing and for
searching. On the other hand, social metadata, such as tags, are less rigorously
defined and applied, and lack vocabulary control by design. However, such meta-
data is contributed directly by the users and may better reflect the terminology
of everyday searchers. Clearly, both types of metadata have advantages and dis-
advantages. The task aims to investigate whether one is more suitable than the
other to support different types of search requests or how they may be fruitfully
combined.

The SB task aims to address the following research questions:

– How can a system take full advantage of the available metadata for searching
in an online book collections?

– What is the relative value of social and controlled book metadata for book
search?

– How does the different nature of these metadata descriptions affect retrieval
performance for different topic types and genres?

3.1 Scenario

The scenario is that of a user turning to Amazon Books and LibraryThing to
search for books they want to read, buy or add to their personal catalogue. Both
services host large collaborative book catalogues that may be used to locate
books of interest.

On LibraryThing, users can catalogue the books they read, manually index
them by assigning tags, and write reviews for others to read. Users can also post
messages on a discussion forum asking for help in finding new, fun, interesting,
or relevant books to read. The forums allow users to tap into the collective bibli-
ographic knowledge of hundreds of thousands of book enthusiasts. On Amazon,
users can read and write book reviews and browse to similar books based on
links such as “customers who bought this book also bought... ”.

Users can search online book collections with different intentions. They can
search for specific books of which they know all the relevant details with the
intention to obtain them (buy, download, print). In other cases, they search for
a specific book of which they do not know those details, with the intention of
identifying that book and find certain information about it. Another possibility
is that they are not looking for a specific book, but hope to discover one or more
books meeting some criteria. These criteria can be related to subject, author,

13

genre, edition, work, series or some other aspect, but also more serendipitously,
such as books that merely look interesting or fun to read.

Although book metadata can often be used for browsing, this task assumes
a user issues a query to a retrieval system, which returns a (ranked) list of book
records as results. This query can be a number of keywords, but also one or more
book records as positive or negative examples. We assume the user inspects the
results list starting from the top and works her way down until she has either
satisfied her information need or gives up. The retrieval system is expected to
order results by relevance to the user’s information need.

3.2 Task description

The SB task is to reply to a user’s request that has been posted on the Library-
Thing forums (see Section 3.5) by returning a list of recommended books. The
books must be selected from a corpus that consists a collection of book meta-
data extracted from Amazon Books and LibraryThing, extended with associated
records from library catalogues of the Library of Congress and the British Li-
brary (see the next section). The collection includes both curated and social
metadata. User requests vary from asking for books on a particular genre, look-
ing for books on a particular topic or period or books by a given author. The
level of detail also varies, from a brief statement to detailed descriptions of what
the user is looking for. Some requests include examples of the kinds of books that
are sought by the user, asking for similar books. Other requests list examples
of known books that are related to the topic but are specifically of no interest.
The challenge is to develop a retrieval method that can cope with such diverse
requests. Participants of the SB task are provided with a set of book search
requests and are asked to submit the results returned by their systems as ranked
lists.

3.3 Submissions

We want to evaluate the book ranking of retrieval systems, specifically the top
ranks. We adopt the submission format of TREC, with a separate line for each
retrieval result, consisting of six columns:

1. topic id: the topic number, which is based on the LibraryThing forum thread
number.

2. Q0: the query number. Unused, so should always be Q0.

3. isbn: the ISBN of the book, which corresponds to the file name of the book
description.

4. rank: the rank at which the document is retrieved.

5. rsv: retrieval status value, in the form of a score. For evaluation, results are
ordered by descending score.

6. run id: a code to identifying the participating group and the run.

14

Participants are allowed to submit up to six runs, of which at least one should
use only the title field of the topic statements (the topic format is described in
Section 3.5). For the other five runs, participants could use any field in the topic
statement.

3.4 Data

To study the relative value of social and controlled metadata for book search, we
need a large collection of book records that contains controlled subject headings
and classification codes as well as social descriptions such as tags and reviews,
for a set of books that is representative of what readers are searching for. We use
the Amazon/LibraryThing corpus crawled by the university of Duisburg-Essen
for the INEX Interactive Track [1].

The collection consists of 2.8 million book records from Amazon, extended
with social metadata from LibraryThing. This set represents the books available
through Amazon. These records contain title information as well as a Dewey Dec-
imal Classification (DDC) code and category and subject information supplied
by Amazon. From a sample of Amazon records we noticed the subject descriptors
to be noisy, with many inappropriately assigned descriptors that seem unrelated
to the books to which they have been assigned.

Each book is identified by ISBN. Since different editions of the same work
have different ISBNs, there can be multiple records for a single intellectual
work. The corpus consists of a collection of 2.8 million records from Amazon
Books and LibraryThing.com. See https://inex.mmci.uni-saarland.de/data/nd-
agreements.jsp for information on how to get access to this collection. Each book
record is an XML file with fields like ¡isbn¿, ¡title¿, ¡author¿, ¡publisher¿, ¡di-
mensions¿, ¡numberofpage¿ and ¡publicationdate¿. Curated metadata comes in
the form of a Dewey Decimal Classification in the ¡dewey¿ field, Amazon subject
headings are stored in the ¡subject¿ field, and Amazon category labels can be
found in the ¡browseNode¿ fields. The social metadata from Amazon and Li-
braryThing is stored in the ¡tag¿, ¡rating¿, and ¡review¿ fields. The full list of
fields is shown in Table 2.

How many of the book records have curated metadata? There is a DDC
code for 61% of the descriptions and 57% of the collection has at least one
subject heading.The classification codes and subject headings cover the majority
of records in the collection.

More than 1.2 million descriptions (43%) have at least one review and 82%
of the collection has at least one LibraryThing tag.

The distribution of books over the Amazon subject categories shows that
Literature, History, Professional and Technical and Religion are some of the
largest categories (see Table 3). There are also administrative categories related
to sales, edition (paperback, hardcover) and others, but we show only the genre-
related categories. If we look at the distribution over DDC codes (showing only
the main classes in Table 4), we see a somewhat different distribution. Literature
is still the largest class, but is followed by Social sciences, Arts and recreation,
Technology, then History and Religion. Note that a book has only one DDC

15

Table 2. A list of all element names in the book descriptions

tag name

book similarproducts title imagecategory
dimensions tags edition name
reviews isbn dewey role
editorialreviews ean creator blurber
images binding review dedication
creators label rating epigraph
blurbers listprice authorid firstwordsitem
dedications manufacturer totalvotes lastwordsitem
epigraphs numberofpages helpfulvotes quotation
firstwords publisher date seriesitem
lastwords height summary award
quotations width editorialreview browseNode
series length content character
awards weight source place
browseNodes readinglevel image subject
characters releasedate imageCategories similarproduct
places publicationdate url tag
subjects studio data

Table 3. Amazon category distribution (in percentages)

Category % Category %

Non-fiction 20 Science 7
Literature and fiction 20 Fiction 7
Children 14 Literature 7
History 13 Christianity 7
Reference 11 Health, Mind and Body 6
Professional and Technical. 11 Arts and Photography 5
Religion and Spirituality 10 Business and Investing 5
Social science 10 Biography and Memoirs 5

16

Table 4. Distribution over DDC codes (in percentages)

DDC main class %

Computer science, information and general works 4
Philosophy and psychology 4
Religion 8
Social sciences 16
Language 2
Science (including mathematics) 5
Technology and applied Science 13
Arts and recreation 13
Literature 25
History, geography, and biography 11

code—it can only have one physical location on a library shelf—but can have
multiple Amazon categories, which could explain the difference in distribution.
Note also that all but 296 books in the collection have at least one Amazon
category, while only 61% of the records have DDC codes.

3.5 Information needs

LibraryThing users discuss their books in the discussion forums. Many of the
topic threads are started with a request from a member for interesting, fun
new books to read. They describe what they are looking for, give examples of
what they like and do not like, indicate which books they already know and ask
other members for recommendations. Other members often reply with links to
works catalogued on LibraryThing, which have direct links to the corresponding
records on Amazon. These requests for recommendation are natural expressions
of information needs for a large collection of online book records. We aim to
evaluate the SB task using a selection of these forum topics.

The books suggested by members in replies to the initial message are col-
lected in a list on the side of the topic thread (see Figure 1). A technique called
touchstone can be used by members to easily identify books they mention in the
topic thread, giving other readers of the thread direct access to a book record
on LibraryThing, with associated ISBNs and links to Amazon. We use these
suggested books as initial relevance judgements for evaluation. Some of these
touchstones identify an incorrect book, and suggested books may not always be
what the topic creator asked for, but merely be mentioned as a negative example
or for some other reason. From this it is clear that the collected list of suggested
books can contain false positives and is probably incomplete as not all relevant
books will be suggested (false negatives), so may not be appropriate for reliable
evaluation. We discuss this in more detail in Section 3.7. We first describe how
we created a large set of topics, then analyse what type of topics we ended up
with and how suitable they for this task.

17

Fig. 1. A topic thread in LibraryThing, with suggested books listed on the right
hand side.

Topic analysis We crawled 18,427 topic threads from 1,560 discussion groups.
From these, we extracted 943 topics where the initial message contains a request
for book suggestions. Each topic has a title and is associated with a group on the
discussion forums. For instance, topic 99309 in Figure 1 has title Politics of Multi-
culturalism Recommendations? and was posted in the group Political Philosophy.
Not all titles are good descriptions of the information need expressed in the initial
message. To identify which of these 943 topics have good descriptive titles, we
used the titles as queries and retrieved records from the Amazon/LibraryThing
collection and evaluated them using the suggested books collected through the
touchstones. We selected all topics for which at least 50% of the suggested books
were returned in the top 1000 results and manually labelled them with informa-
tion about topic type, genre and specificity and extracted positive and negatives
example books and authors mentioned in the initial message. Some topics had
very vague requests or relied on external source to derive the information need
(such as recommendations of books listed on certain web page), leaving 211
topics in the official test topic set from 122 different discussion groups.

To illustrate how we marked up the topics, we show topic 99309 from Figure 1
as an example:

<topic id="99309">

<title>Politics of Multiculturalism</title>

<group>Political Philosophy</group>

<narrative>I’m new, and would appreciate any recommended reading on the

politics of multiculturalism. <author>Parekh</author>’s

<work id="164382"> Rethinking Multiculturalism: Cultural Diversity and

Political Theory</work> (which I just finished) in the end left me un-

18

convinced, though I did find much of value I thought he depended way

too much on being able to talk out the details later. It may be that I

found his writing style really irritating so adopted a defiant skepti-

cism, but still... Anyway, I’ve read <author>Sen</author>, <author>

Rawls</author>, <author>Habermas</author>, and <author>Nussbaum

</author>, still don’t feel like I’ve wrapped my little brain around

the issue very well and would appreciate any suggestions for further

anyone might offer.

</narrative>

<type>subject</type>

<genre>politics</genre>

<specificity>narrow</specificity>

<similar>

<work id="164382">

<isbn>0333608828</isbn>

<isbn>0674004361</isbn>

<isbn>1403944539</isbn>

<isbn>0674009959</isbn>

</work>

<author>Parekh</author>

<author>Sen</author>

<author>Rawls</author>

<author>Habermas</author>

<author>Nussbaum</author>

</similar>

<dissimilar><dissimilar>

</topic>

The distribution over topic type is shown on the left side of Table 5. The
majority of topics have subject-related book requests. For instance, the topic in
Figure 1 is a subject-related request, asking for books about politics and multi-
culturalism. Most requests (64%) are subject-related, followed by author-related
(15%), then series (5%), genre (4%), edition and known-item (both 3%). Some
topics can be classified with 2 types, such as subject and genre. For instance,
in one topic thread, the topic creator asks for biographies of people with eating
disorders. In this case, the subject is people with eating disorders and the genre
is biography. The topic set covers a broad range of topic types, but for work-
and language-related topics the numbers are too small to be representative. We
will conduct a more extensive study of the topics to see if this distribution is
representative or whether our selection method has introduced some bias.

Next, we classified topics by genre, roughly based on the main classes of the
LCC and DDC (see right side of Table 5), using separate classes for philosophy
and religion (similar to DDC, while LCC combines them in one main class). The
two most requested genres are literature (42%, mainly prose and some poetry),
and history (28%). We only show the 12 most frequent classes. There are more
main classes represented by the topics, such as law, psychology and genealogy,
but they only represent one or two topics each. If we compare this distribution
with the Amazon category and DDC distributions in Tables 3 and 4, we see

19

Table 5. Distribution of topic types and genres

Type Freq. Genre Freq.

subject 134 literature 89
author 32 history 60
series 10 biography 24
genre 8 military 16
edition 7 religion 16
known-item 7 technology 14
subject & genre 7 science 11
work 2 education 8
genre & work 1 politics 4
subject & author 1 philosophy 4
language 1 medicine 3
author & genre 1 geography 3

that military books are more popular among LibraryThing forum users than
is represented by the Amazon book corpus, while social science is less popular.
Literature, history, religion, technology are large class in both the book corpus
and the topic set. The topic set is a reasonable reflection of the genre distribution
of the books in the Amazon/LibraryThing collection.

Furthermore, we added labels for specificity. The specificity of a topic is
somewhat subjective and we based it on a rough estimation of the number of
relevant books. It is difficult to come up with a clear threshold between broad
and narrow, and equally hard to estimate how many books would be relevant.
Broad topics have requests such as recommendations within a particular genre
(“please recommend good science fiction books.”), for which thousands of books
could be considered relevant. The topic in Figure 1 is an example of a narrow
topic. There are 177 topics labelled as narrow (84%), 34 topics as broad (16%).
We also labelled books mentioned in the initial message as either positive or
negative examples of what the user is looking for. There are 58 topics with
positive examples (27%), 9 topics with negative examples (4%). These topics
could be used as query-by-example topics, or maybe even for recommendation.
The examples add further detail to the expressed information need and increase
the realism of the topic set.

We think this topic set is representative of book information needs and expect
it to be suitable for evaluating book retrieval techniques. We note that the titles
and messages of the topic threads may be different from what these users would
submit as queries to a book search system such as Amazon, LibraryThing, the
Library of Congress or the British Library. Our topic selection method is an
attempt to identify topics where the topic title describes the information need.
In the first year of the task, we ask the participants to generate queries from
the title and initial message of each topic. In the future, we could approach
the topic creators on LibraryThing and ask them to supply queries or set up

20

Table 6. Statistics on the number of recommended books for the 211 topics
from the LT discussion groups

rel./topic # topics min. max. median mean std. dev.

All 211 1 79 7 11.3 12.5
Fiction 89 1 79 10 16.0 15.8
Non-fiction 132 1 44 6 8.3 8.3
Subject 142 1 68 6 9.6 10.0
Author 34 1 79 10 15.9 17.6
Genre 16 1 68 7 13.3 16.4

a crowdsourcing task where participants provide queries while searching the
Amazon/LibraryThing collection for relevant books.

Touchstone Recommendations as Judgements We use the recommended
books for a topic as relevance judgements for evaluation. Each book in the Touch-
stone list is considered relevant. How many books are recommended to LT mem-
bers requesting recommendations in the discussion groups? Are other members
compiling exhaustive lists of possibly interesting books or do they only suggest
a small number of the best available books? Statistics on the number of books
recommended for the 211 topics are given in Table 6.

The number of relevant books per topic ranges between 1 and 79 with an
mean of 11.3. The median is somewhat lower (7), indicating that most of the
topics have a small number of recommended books. The topics requesting fiction
books have more relevant books (16 on average) than the topics requesting non-
fiction (8.3 on average). Perhaps this is because there is both more fiction in
the collection and more fiction related topics in the topic set. The latter point
suggests that fiction is more popular among LT members, such that requests for
books get more responses.

The breakdown over topic types Subject, Author and Genre shows that sub-
ject related topics have fewer suggested books than author and genre related
topics. This is probably related to the distinction between fiction and non-fiction.
Most of the Subject topics are also Non-fiction topics, which have fewer recom-
mended books than Fiction books.

ISBNs and intellectual works
Each record in the collection corresponds to an ISBN, and each ISBN corresponds
to a particular intellectual work. However, an intellectual work can have different
editions, each with their own ISBN. The ISBN-to-work relation is a many-to-
one relation. In many cases, we assume the user is not interested in all the
different editions, but in different intellectual works. For evaluation we collapse
multiple ISBN to a single work. The highest ranked ISBN is evaluated and
all lower ranked ISBNs ignored. Although some of the topics on LibraryThing
are requests to recommend a particular edition of a work—in which case the
distinction between different ISBNs for the same work are important—we leave

21

them out of the relevance assessment phase for this year to make evaluation
easier.

However, one problem remains. Mapping ISBNs of different editions to a
single work is not trivial. Different editions may have different titles and even
have different authors (some editions have a foreword by another author, or a
translator, while others have not), so detecting which ISBNs actually represent
the same work is a challenge. We solve this problem by using mappings made
by the collective work of LibraryThing members. LT members can indicate that
two books with different ISBNs are actually different manifestations of the same
intellectual work. Each intellectual work on LibraryThing has a unique work ID,
and the mappings from ISBNs to work IDs is made available by LibraryThing.8

However, the mappings are not complete and might contain errors. Further-
more, the mappings form a many-to-many relationship, as two people with the
same edition of a book might independently create a new book page, each with
a unique work ID. It takes time for members to discover such cases and merge
the two work IDs, which means that at time, some ISBNs map to multiple work
IDs. LibraryThing can detect such cases but, to avoid making mistakes, leaves it
to members to merge them. The fraction of works with multiple ISBNs is small
so we expect this problem to have a negligible impact on evaluation.

3.6 Crowdsourcing Judgements on Relevance and Recommendation

Members recommend books they have read or that they know about. This may
be only a fraction of all the books that meet the criteria of the request. The list
of recommended books in a topic thread may therefore be an incomplete list of
appropriate books. Retrieval systems can retrieve many relevant books that are
not recommended in the thread. On the other hand, LT members might leave
out certain relevant books on purpose because they consider these books inferior
to the books they do suggest.

To investigate this issue we ran an experiment on Amazon Mechanical Turk,
where we asked workers to judge the relevance and make recommendations for
books based on the descriptions from the Amazon/LT collection. For the PI
task last year we found that relevance judgements for digitised book pages from
AMT give reliable system rankings [5]. We expect that judging the relevance of
an Amazon record given a narrative from the LibraryThing discussion forum has
a lower cognitive load for workers, and with appropriate quality-control measures
built-in, we expect AMT judgements on book metadata to be useful for reliable
evaluation as well. An alternative or complement is to ask task participants to
make judgements.

We pooled the top 10 results of all official runs for 24 topics and had each
book judged by 3 workers. We explicitly asked workers to first judge the book on
topical relevance and with a separate question asked them to indicate whether
they would also recommend it as one the best books on the requested topic.

Topic selection

8 See: http://www.librarything.com/feeds/thingISBN.xml.gz

22

Fig. 2. Snapshot of the AMT book request.

For the Mechanical Turk judgements, we 24 topics from the set of 211, 12 fiction
and 12 non-fiction. We selected the following 12 fiction topics: 17299, 25621,
26143, 28197, 30061, 31874, 40769, 74433, 84865, 94888, 92178 and 106721. We
selected the following 12 non-fiction topics: 3963, 12134, 14359, 51583, 65140,
83439, 95533, 98106, 100674, 101766, 107464 and 110593.

Pooling
We pooled the top 10 results per topic of all 22 submitted runs. If the resulting
pool was smaller than 100 books, we continued the round-robin pooling until
each pool contained at least 100 books.

Generating HITs
Each HIT contains 10 books, with at least one book that was recommended in
the topic thread on the LibraryThing discussion group for validation. In total,
269 HITs were generated, and each HIT was assigned to 3 workers, who got paid
$0.50 per HIT. With a 10% fee charged by Amazon per HIT, the total cost was
269 ∗ 3 ∗ $0.50 ∗ 1.1 = $443.85.

HIT design
The design of the HIT is illustrated in Figures 2, 3, 4 and 5. The HIT starts
with short instructions explaining what the task is and what the goal of the task
is, after which the request is shown (see Figure 2). After the request, worker
get a list of 10 book questionnaires, with each questionnaire containing frame
with official metadata (Figure 3), user-generated metadata (Figure 4) and a list
of questions (Figure 5). The official metadata consists of the title information,
publisher information and the Amazon categories, subject headings and classi-
fication information. The user-generated metadata consists of user reviews and
ratings from Amazon and user tags from LibraryThing.

23

Fig. 3. Snapshot of the AMT design for the official description.

Fig. 4. Snapshot of the AMT design for the user-generated description.

24

Fig. 5. Snapshot of the AMT questionnaire design.

The questionnaire has 5 questions:

– Q1. Is this book useful for the topic of the request? Here workers
can choose between

• perfectly on-topic,
• related but not completely the right topic,
• not the right topic and
• not enough information.

– Q2. Which type of information is more useful to answer Q1? Here
workers have to indicate whether the official or user-generated metadata is
more useful to determine relevance.

– Q3. Would you recommend this book? Here workers can choose be-
tween

• great book on the requested topic,
• not exactly on the right topic, but it’s a great book,
• not on the requested topic, but it’s great for someone interested in the

topic of the book,
• there are much better books on the same topic, and
• not enough information to make a good recommendation.

– Q4. Which type of information is more useful to answer Q3? Here
workers have to indicate whether the official or user-generated metadata is
more useful to base their recommendation on.

25

Table 7. Statistics on the number of recommended books for the 211 topics
from the LT discussion groups

rel./topic # topics min. max. median mean std. dev.

LT all 211 1 79 7 11.3 12.5
LT Fiction 89 1 79 10 16.0 15.8
LT Non-fiction 132 1 44 6 8.3 8.3
LT (24 AMT topics) 24 2 79 7 15.7 19.3
AMT all 24 4 56 25 25.0 12.7
AMT fiction 12 4 30 25 22.8 10.8
AMT non-fiction 12 4 56 29 27.3 13.7

– Q5. Please type the most useful tag (in your opinion) from the
LibraryThing tags in the User-generated description. Here workers
had to pick one of the LibraryThing user tags as the most useful, or tick the
box or tick here if there are no tags for this book when the user-generated
metadata has no tags.

There was also an optional comments field per book.

Agreement
What is the agreement among workers? We compute the pairwise agreement
on relevance among workers per HIT in three different ways. The most strict
agreement distinguishes between the four possible answers: 1) Perfectly on-topic,
2) related but not perfect, 3) not the right topic and 4) not enough information.
In this case agreement is 0.54. If we consider only answer 1 as relevant and merge
answers 2 and 3 (related means not relevant), agreement is 0.63. If we also take
answer 4 to mean non-relevant (merging 2, 3 and 4, giving binary judgements),
agreement is 0.68.

Recall that each HIT has at least one book that is recommended on the LT
discussion thread. The average agreement between workers and forum members
is 0.52. That is, on average, each worker considered 52% of the books recom-
mended on LT as perfectly on-topic.

We turn the AMT relevance data from multiple workers into binary relevance
judgements per book by taking the majority vote judgement. We only consider
the perfectly on-topic category as relevant and map the other categories to non-
relevant. For most books we have 3 votes, which always leads to a majority.
Some books occur in multiple HITs because they are added as known relevant
books from the LT forums. If there are fewer recommended books in the LT
forum than there are HITs, some books have to be included in multiple HITs.
Books with judgements from an even number of workers could have tied votes.
In these cases we use the fact that the book was recommended on the LT topic
thread as the deciding vote and label the book as relevant.

How does the relevance distribution of the AMT judgements compare to the
relevance judgements from the LT discussion groups? We compare the AMT
relevance judgements with the recommendations from LT in Table 7. The fiction

26

Table 8. Evaluation results for the official submissions using the LT relevance
judgements of all 211 topics

Run nDCG@10 P@10 MRR MAP

p4-inex2011SB.xml social.fb.10.50 0.3101 0.2071 0.4811 0.2283
p54-run4.all-topic-fields.reviews-split.combSUM 0.2991 0.1991 0.4731 0.1945
p4-inex2011SB.xml social 0.2913 0.1910 0.4661 0.2115
p54-run2.all-topic-fields.all-doc-fields 0.2843 0.1910 0.4567 0.2035
p62.recommandation 0.2710 0.1900 0.4250 0.1770
p62.sdm-reviews-combine 0.2618 0.1749 0.4361 0.1755
p18.UPF QE group BTT02 0.1531 0.0995 0.2478 0.1223
p18.UPF QE genregroup BTT02 0.1327 0.0934 0.2283 0.1001

topics have more LT recommendations than the non-fiction, but fewer relevant
books according to the AMT workers. This might be a sign that, without having
read the book, judging the relevance of fiction books is harder than that of non-
fiction books. For fiction there is often more to the utility of a book (whether it is
interesting and/or fun) than the subject and genre information provided by book
metadata. Or perhaps the relevance of fiction books is not harder to judge, but
fiction is less readily considered relevant. For non-fiction information needs, the
subject of a book may be one of the main aspects on which the relevance of the
book is based. For fiction information needs, the subject of a book might play no
role in determine its relevance. Another explanation might that the judgements
pools based on the official runs might be better for non-fiction topics than for
fiction topics.

3.7 Evaluation

For some topics, relevance may be both trivial and complex. Consider a topic
where a user asks for good historical fiction books. The suggestions from the LT
members will depend on their ideas of what are good historical fiction books.
From the metadata alone it is hard to make this judgement. Should all histor-
ical fiction books be considered relevant, or only the ones suggested by the LT
members? Or should relevance be graded?

For now, we will use a one-dimensional relevance scale, but like to explore
alternatives in the future. One way would be to distinguish between books that a
user considers as interesting options to read next and the actual book or books
she decides to obtain and read. This roughly corresponds to the distinction
between the library objective of helping to find or locate relevant items and the
objective of helping to choose which of the relevant items to access [7].

We first show the results for the 211 topics and associated relevance judge-
ments from the LT forums in Table 8. The best SB run (nDCG@10=0.3101) was
submitted by the University of Amsterdam (p4-inex2011SB.xml social.fb.10.50),
which uses pseudo relevance feedback on an index with only reviews and tags in
addition with the basic title information.

27

Table 9. Evaluation results for the official submissions using the AMT relevance
judgements

Run nDCG@10 P@10 MRR MAP

p62.baseline-sdm 0.6092 0.5875 0.7794 0.3896
p4-inex2011SB.xml amazon 0.6055 0.5792 0.7940 0.3500
p62.baseline-tags-browsenode 0.6012 0.5708 0.7779 0.3996
p4-inex2011SB.xml full 0.6011 0.5708 0.7798 0.3818
p54-run2.all-topic-fields.all-doc-fields 0.5415 0.4625 0.8535 0.3223
p54-run3.title.reviews-split.combSUM 0.5207 0.4708 0.7779 0.2515
p18.UPF base BTT02 0.4718 0.4750 0.6276 0.3269
p18.UPF QE group BTT02 0.4546 0.4417 0.6128 0.3061

Table 10. Evaluation results for the official submissions using the LT relevance
judgements for the 24 topics used in AMT

Run nDCG@10 P@10 MRR MAP

p4-inex2011SB.xml social.fb.10.50 0.3039 0.2120 0.5339 0.1994
p54-run2.all-topic-fields.all-doc-fields 0.2977 0.1940 0.5225 0.2113
p4-inex2011SB.xml social 0.2868 0.1980 0.5062 0.1873
p54-run4.all-topic-fields.reviews-split.combSUM 0.2601 0.1940 0.4758 0.1515
p62.recommandation 0.2309 0.1720 0.4126 0.1415
p62.sdm-reviews-combine 0.2080 0.1500 0.4048 0.1352
p18.UPF QE group BTT02 0.1073 0.0720 0.2133 0.0850
p18.UPF QE genregroup BTT02 0.0984 0.0660 0.1956 0.0743

Next we look at the results for the 24 topics select for the AMT experiment
and associated relevance judgements in Table 9. The best SB run (nDCG@10=0.6092)
was submitted by the University of Avignon (p62-baseline-sdm. The most strik-
ing difference with the LT forum judgements is that here the scores for all runs
are much higher. There are at least three possible explanations for this. First,
the AMT judgements are based on the top 10 results of all runs, meaning all top
10 results of each run is judged, whereas many top ranked documents are not
covered by the LT forum judgements. Second, the AMT judgements are explic-
itly based on relevance, whereas the LT forum judgements are probably more
like recommendations, where users only suggest the best books on a topic and
often only books they know about or have read.

A more important point is that the two evaluations are based on different
topic sets. The LT forum evaluation is based on 211 topics, while the AMT
evaluation is based on a subset of 24 topics.

We can see the impact of the last explanation by using the LT forum judge-
ments only on the subset of 24 topics selected for the AMT experiment. The
results for this are shown in Table 8. It seems that the topic set has little im-
pact, as the results for the subset of 24 topics are very similar to the results
for the 211 topics. This is a first indication that the LT forum test collection is

28

robust with respect to topic selection. It also suggests that the LT forum and
AMT judgements reflect different tasks. The latter is the more traditional topi-
cal relevance task, while the former is closer to recommendation. We are still in
the process of analysing the rest of the AMT data to establish to what extent
the LT forum suggestions reflects relevance and recommendation tasks.

3.8 Discussion

Relevance or recommendation?
Readers may not only based their judgement on the topical relevance—is this
book a historical fiction book—but also on their personal taste. Reading a book
is often not just about relevant content, but about interesting, fun or engaging
content. Relevance in book search might require different dimensions of graded
judgements. The topical dimension (how topically relevant is this book?) is sepa-
rate from the interestingness dimension (how interesting/engaging is this book?)
Many topic creators ask for recommendations, and want others to explain their
suggestions, so that they can better gauge how a book fits their taste.

Judging metadata or book content
In a realistic scenario, a user judges the relevance or interestingness of the book
metadata, not of the content of the book. The decision to read a book comes
before the judgement of the content. This points at an important problem with
the suggested books collected through the touchstones. Members often suggest
books they have actually read, and therefore base their suggestion on the actual
content of the book. Such a relevance judgement—from someone other than
the topic creator—is very different in nature from the judgement that the topic
creator can make about books she has not read. Considering the suggested books
as relevant brushes over this difference. We will further analyse the relevance and
recommendation judgements from AMT to find out to what extent the LT forum
suggestions reflect traditional topical relevance judgements and to what extent
they reflect recommendation.

Extending the Collection
The Amazon/LibraryThing collection has a limited amount of professional meta-
data. Only 61% of the books have a DDC code and the Amazon subjects are
noisy with many seemingly unrelated subject headings assign to books.

To make sure there is enough high-quality metadata from traditional library
catalogues, we plan to extend the data set next year with another collection of
library catalogue records from the Library of Congress and the British Library.
These records contain formal metadata such as classification codes (mainly DDC
and LCC) and rich subject headings based on the Library of Congress Subject
Headings (LCSH).9 Both the LoC records and the BL records are in MAR-
CXML10 format. We obtained MARCXML records for 1.76 million books in

9 For more information see: http://www.loc.gov/aba/cataloging/subject/
10 MARCXML is an XML version of the well-known MARC format. See: http://www.

loc.gov/standards/marcxml/

29

the collection. There are 1,248,816 records from the Library of Congress and
1,158,070 records in MARC format from the British Library. Combined, there are
2,406,886 records covering 1,823,998 of the ISBNs in the Amazon/LibraryThing
collection (66%). Although there is no single library catalogue that covers all
books available on Amazon, we think these combined library catalogues can
improve both the quality and quantity of professional book metadata.

4 The Prove It (PI) Task

The goal of this task was to investigate the application of focused retrieval ap-
proaches to a collection of digitized books. The scenario underlying this task
is that of a user searching for specific information in a library of books that
can provide evidence to confirm or reject a given factual statement. Users are
assumed to view the ranked list of book parts, moving from the top of the list
down, examining each result. No browsing is considered (only the returned book
parts are viewed by users).

Participants could submit up to 10 runs. Each run could contain, for each
of the 83 topics (see Section 4.2), a maximum of 1,000 book pages estimated
relevant to the given aspect, ordered by decreasing value of relevance.

A total of 18 runs were submitted by 2 groups (6 runs by UMass Amhers
(ID=50) and 12 runs by Oslo University College (ID=100)), see Table 1.

4.1 The Digitized Book Corpus

The track builds on a collection of 50,239 out-of-copyright books11, digitized
by Microsoft. The corpus is made up of books of different genre, including his-
tory books, biographies, literary studies, religious texts and teachings, reference
works, encyclopedias, essays, proceedings, novels, and poetry. 50,099 of the books
also come with an associated MAchine-Readable Cataloging (MARC) record,
which contains publication (author, title, etc.) and classification information.
Each book in the corpus is identified by a 16 character long bookID – the name
of the directory that contains the book’s OCR file, e.g., A1CD363253B0F403.

The OCR text of the books has been converted from the original DjVu for-
mat to an XML format referred to as BookML, developed by Microsoft De-
velopment Center Serbia. BookML provides additional structure information,
including markup for table of contents entries. The basic XML structure of a
typical book in BookML is a sequence of pages containing nested structures
of regions, sections, lines, and words, most of them with associated coordinate
information, defining the position of a bounding rectangle ([coords]):

<document>

<page pageNumber="1" label="PT CHAPTER" [coords] key="0" id="0">

<region regionType="Text" [coords] key="0" id="0">

<section label="SEC BODY" key="408" id="0">

<line [coords] key="0" id="0">

11 Also available from the Internet Archive (although in a different XML format)

30

<word [coords] key="0" id="0" val="Moby"/>

<word [coords] key="1" id="1" val="Dick"/>

</line>

<line [...]><word [...] val="Melville"/>[...]</line>[...]

</section> [...]

</region> [...]

</page> [...]

</document>

BookML provides a set of labels (as attributes) indicating structure informa-
tion in the full text of a book and additional marker elements for more complex
structures, such as a table of contents. For example, the first label attribute
in the XML extract above signals the start of a new chapter on page 1 (la-
bel=“PT CHAPTER”). Other semantic units include headers (SEC HEADER),
footers (SEC FOOTER), back-of-book index (SEC INDEX), table of contents
(SEC TOC). Marker elements provide detailed markup, e.g., for table of con-
tents, indicating entry titles (TOC TITLE), and page numbers (TOC CH PN),
etc.

The full corpus, totaling around 400GB, was made available on USB HDDs.
In addition, a reduced version (50GB, or 13GB compressed) was made available
for download. The reduced version was generated by removing the word tags
and propagating the values of the val attributes as text content into the parent
(i.e., line) elements.

4.2 Topics

We use the same topic set as last year [6], consisting of 83 topics. Last year,
relevance judgements were collected for 21 topics from two sources. In the first
phase, INEX participants judged pages using the relevance assessment system
developed at Microsoft Research Cambridge.12 In the second phase, relevance
judgements were collected from Amazon Mechanical Turk.

4.3 Collected Relevance Assessments

This year, we have judgements from INEX participants for an extra 9 topics. We
will use these a ground truth to bootstrap the Mechanical Turk experiments.

4.4 Evaluation Measures and Results

We will report on these once sufficient amount of relevance labels have been
collected.

12 URL: http://www.booksearch.org.uk

31

5 The Structure Extraction (SE) Task

The goal of the SE task was to test and compare automatic techniques for ex-
tracting structure information from digitized books and building a hyperlinked
table of contents (ToC). The task was motivated by the limitations of current
digitization and OCR technologies that produce the full text of digitized books
with only minimal structure markup: pages and paragraphs are usually iden-
tified, but more sophisticated structures, such as chapters, sections, etc., are
typically not recognised.

In 2011, the task was run for the second time as a competition of the In-
ternational Conference on Document Analysis and Recognition (ICDAR). Full
details are presented in the corresponding specific competition description [4].
This year, the main novelty was the fact that the ground truth data built in
2009 and 2010 was made available online 13. Participants were hence able to
build and fine tune their systems using training data.

Participation

Following the call for participation issued in January 2011, 11 organizations
registered. As in previous competitions, several participants expressed interest
but renounced due to time constraints. Of the 11 organizations that signed up, 5
dropped out, that is, they neither submitted runs, nor participated in the ground
truth annotation process. The list of active participants is given in Table 11.
Interestingly, half of them are newcomers (Nankai University, NII Tokyo and
University of Innsbrück).

Organization Submitted runs Ground truthing

Microsoft Development Center (Serbia) 1 y
Nankai University (PRC) 4 y
NII Tokyo (Japan) 0 y
University of Caen (France) 3 y
University of Innsbrück (Austria) 0 y
Xerox Research Centre Europe (France) 2 y

Table 11. Active participants of the Structure Extraction task.

Results

As in previous years [3], the 2011 task permitted to gather manual annotations in
a collaborative fashion. The efforts of the 2011 round gave way to the gathering
and addition of 513 new annotated book ToCs to the previous 527.

32

RunID Participant Title-based [3] Link-based [2]

MDCS MDCS 40.75% 65.1%
Nankai-run1 Nankai U. 33.06% 63.2%
Nankai-run4 Nankai U. 33.06% 63.2%
Nankai-run2 Nankai U. 32.46% 59.8%
Nankai-run3 Nankai U. 32.43% 59.8%
XRCE-run1 XRCE 20.38% 57.6%
XRCE-run2 XRCE 18.07% 58.1%

GREYC-run2 University of Caen 8.99% 50.7%
GREYC-run1 University of Caen 8.03% 50.7%
GREYC-run3 University of Caen 3.30% 24.4%

Table 12. Summary of performance scores for the Structure Extraction compe-
tition 2011 (F-measures).

A summary of the performance of all the submitted runs is given in Table 12.

The Structure Extraction task was launched in 2008 to compare automatic
techniques for extracting structure information from digitized books. While the
construction of hyperlinked ToCs was originally thought to be a first step on the
way to the structuring of digitized books, it turns out to be a much tougher nut
to crack than initially expected.

Future work aims to investigate into the usability of the extracted ToCs.
In particular we wish to use qualitative measures in addition to the current
precision/recall evaluation. The vast effort that this requires suggests that this
can hardly be done without crowdsourcing. We shall naturally do this by building
on the experience of the Book Search tasks described earlier in this paper.

6 The Active Reading Task (ART)

The main aim of the Active Reading Task (ART) is to explore how hardware or
software tools for reading eBooks can provide support to users engaged with a
variety of reading related activities, such as fact finding, memory tasks, or learn-
ing. The goal of the investigation is to derive user requirements and consequently
design recommendations for more usable tools to support active reading prac-
tices for eBooks. The task is motivated by the lack of common practices when it
comes to conducting usability studies of e-reader tools. Current user studies focus
on specific content and user groups and follow a variety of different procedures
that make comparison, reflection, and better understanding of related problems
difficult. ART is hoped to turn into an ideal arena for researchers involved in
such efforts with the crucial opportunity to access a large selection of titles,
representing different genres, as well as benefiting from established methodology
and guidelines for organising effective evaluation experiments.

13 http://users.info.unicaen.fr/~doucet/StructureExtraction/training/

33

The ART is based on the evaluation experience of EBONI [8], and adopts
its evaluation framework with the aim to guide participants in organising and
running user studies whose results could then be compared.

The task is to run one or more user studies in order to test the usabil-
ity of established products (e.g., Amazon’s Kindle, iRex’s Ilaid Reader and
Sony’s Readers models 550 and 700) or novel e-readers by following the pro-
vided EBONI-based procedure and focusing on INEX content. Participants may
then gather and analyse results according to the EBONI approach and submit
these for overall comparison and evaluation. The evaluation is task-oriented in
nature. Participants are able to tailor their own evaluation experiments, inside
the EBONI framework, according to resources available to them. In order to
gather user feedback, participants can choose from a variety of methods, from
low-effort online questionnaires to more time consuming one to one interviews,
and think aloud sessions.

6.1 Task Setup

Participation requires access to one or more software/hardware e-readers (al-
ready on the market or in prototype version) that can be fed with a subset of
the INEX book corpus (maximum 100 books), selected based on participants’
needs and objectives. Participants are asked to involve a minimum sample of
15/20 users to complete 3-5 growing complexity tasks and fill in a customised
version of the EBONI subjective questionnaire, allowing to gather meaningful
and comparable evidence. Additional user tasks and different methods for gath-
ering feedback (e.g., video capture) may be added optionally. A crib sheet is
provided to participants as a tool to define the user tasks to evaluate, providing
a narrative describing the scenario(s) of use for the books in context, including
factors affecting user performance, e.g., motivation, type of content, styles of
reading, accessibility, location and personal preferences.

Our aim is to run a comparable but individualized set of studies, all con-
tributing to elicit user and usability issues related to eBooks and e-reading.

7 Conclusions and plans

This was the first year for The Social Search for Best Books (SB) task, but
the amount of activity and the results promise a bright future for this task.
We are in the process of analysing the data from the Amazon Mechanical Turk
experiment. The topic set and relevance and recommendation judgements should
give us enough data to answer questions about the relative value of professional
controlled metadata and user-generated content for book search, for subject
search topics as well as more recommendation oriented topics.

This year the Prove It task continued unchanged with respect to last year.
The number of participants for the PI task was low and relevance judgements
based on the top-k pools still need to be collected.

34

The SE task was run (though not advertised), using the same data set as last
year. One institution participated and contributed additional annotations.

The ART was offered as last year. The task has so far only attracted 2 groups,
none of whom submitted any results at the time of writing.

Bibliography

[1] Thomas Beckers, Norbert Fuhr, Nils Pharo, Ragnar Nordlie, and
Khairun Nisa Fachry. Overview and results of the inex 2009 interactive
track. In Mounia Lalmas, Joemon M. Jose, Andreas Rauber, Fabrizio Sebas-
tiani, and Ingo Frommholz, editors, ECDL, volume 6273 of Lecture Notes in
Computer Science, pages 409–412. Springer, 2010.

[2] Hervé Déjean and Jean-Luc Meunier. Reflections on the inex structure ex-
traction competition. In Proceedings of the 9th IAPR International Work-
shop on Document Analysis Systems, DAS ’10, pages 301–308, New York,
NY, USA, 2010. ACM.

[3] Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac,
B.Radakovic, and Nikola Todic. Setting up a competition framework for the
evaluation of structure extraction from ocr-ed books. International Journal of
Document Analysis and Recognition (IJDAR), Special Issue on Performance
Evaluation of Document Analysis and Recognition Algorithms., 14(1):45–52,
2011.

[4] Antoine Doucet, Gabriella Kazai, and Jean-Luc Meunier. ICDAR 2011 Book
Structure Extraction Competition. In Proceedings of the Eleventh Interna-
tional Conference on Document Analysis and Recognition (ICDAR’2011),
pages 1501–1505, Beijing, China, September 2011.

[5] Gabriella Kazai, Jaap Kamps, Marijn Koolen, and Natasa Milic-Frayling.
Crowdsourcing for book search evaluation: Impact of hit design on compar-
ative system ranking. In Proceedings of the 34th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 205–214. ACM Press, New York NY, 2011.

[6] Gabriella Kazai, Marijn Koolen, Jaap Kamps, Antoine Doucet, and Monica
Landoni. Overview of the INEX 2010 book track: Scaling up the evaluation
using crowdsourcing. In Shlomo Geva, Jaap Kamps, Ralf Schenkel, and
Andrew Trotman, editors, Comparative Evaluation of Focused Retrieval : 9th
International Workshop of the Initiative for the Evaluation of XML Retrieval
(INEX 2010), volume 6932 of LNCS, pages 101–120. Springer, 2011.

[7] Elaine Svenonius. The Intellectual Foundation of Information Organization.
MIT Press, 2000.

[8] Ruth Wilson, Monica Landoni, and Forbes Gibb. The web experiments in
electronic textbook design. Journal of Documentation, 59(4):454–477, 2003.

35

University of Amsterdam at INEX 2011:
Book and Data Centric Tracks

Frans Adriaans1,2 Jaap Kamps1,3 and Marijn Koolen1

1 Archives and Information Studies, Faculty of Humanities, University of Amsterdam
2 Department of Psychology, University of Pennsylvania

3 ISLA, Faculty of Science, University of Amsterdam

Abstract. In this paper we describe our participation in INEX 2011 in
the Book Track and the Data Centric Track. For the Book Track we focus
on the impact of different document representations of book metadata for
book search, using either professional metadata, user-generated content
or both. We evaluate the retrieval results against ground truths derived
from the recommendations in the LibraryThing discussion groups and
from relevance judgements obtained from Amazon Mechanical Turk. Our
findings show that standard retrieval models perform better on user-
generated metadata than on professional metadata. For the Data Centric
Track we focus on the selection of a restricted set of facets and facet
values that would optimally guide the user toward relevant information
in the Internet Movie Database (IMDb). We explore different methods
for effective result summarization by means of weighted aggregation.
These weighted aggregations are used to achieve maximal coverage of
search results, while at the same time penalizing overlap between sets
of documents that are summarized by different facet values. We expect
that weighted result aggregation combined with redundancy avoidance
results in a compact summary of available relevant information.

1 Introduction

Our aims for the Book Track were to look at the relative value of user tags
and reviews and traditional book metadata for ranking book search results. The
Social Search for Best Books task is newly introduced this year and uses a large
catalogue of book descriptions from Amazon and LibraryThing. The descrip-
tions are a mix of traditional metadata provided by professional cataloguers and
indexers and user-generated content in the form of ratings, reviews and tags.

Because both the task and collection are new, we keep our approach sim-
ple and mainly focus on a comparison of different document representations.
We made separate indexes for representations containing a) only title informa-
tion, b) all the professional metadata, c) the user-generated metadata, d) the
metadata from Amazon, e) the data from LibraryThing and f) all metadata.
With these indexes we compare standard language model retrieval systems and
evaluate them using the relevance judgements from the LibraryThing discussion
forums and from Amazon Mechanical Turk. We break down the results to look

36

at performance on different topic types and genres to find out which metadata
is effective for particular categories of topics.

For the Data Centric Track we focus on the selection of a restricted set
of facets and facet values that would optimally guide the user toward relevant
information. We aim to improve faceted search by addressing two issues: weighted
result aggregation and redundancy avoidance.

The traditional approach to faceted search is to simply count the number
of documents that is associated with each facet value. Those facet values that
have the highest number of counts are returned to the user. In addition to
implementing this simple approach, we explore the aggregation of results using
weighted document counts. The underlying intuition is that facet values with the
most documents are not necessarily the most relevant values [1]. That is, buying
a dvd by the director who directed the most movies does not necessarily meet
the search demands of a user. It may be more suitable to return directors who
made a large number of important (and/or popular) movies. More sophisticated
result aggregations, acknowledging the importance of an entity, may thus provide
better hints for further faceted navigation than simple document counts. We
therefore explore different methods for effective result summarization by means
of weighted aggregation.

Another problem in faceted search concerns the avoidance of overlapping
facets [2]. That is, facets whose values describe highly similar set of documents
should be avoided. We therefore aim at penalizing overlap between sets of doc-
uments that are summarized by different facet values. We expect that weighted
result aggregation combined with redundancy avoidance results in a compact
summary of the available relevant information.

We describe our experiments and results for the Book Track in Section 2 and
for the Data Centric Track in Section 3. In Section 4, we discuss our findings
and draw preliminary conclusions.

2 Book Track

In the INEX 2011 Book Track we participated in the Social Search for Best
Books task. Our aim was to investigate the relative importance of professional
and user-generated metadata. The document collection consists of 2.8 million
book description, with each description combining information from Amazon and
LibraryThing. The Amazon data has both traditional book metadata such as ti-
tle information, subject headings and classification numbers, and user-generated
metadata as well as user ratings and reviews. The data from LibraryThing con-
sists mainly of user tags.

Professional cataloguers and indexers aim to keep metadata mostly objec-
tive. Although subject analysis to determine headings and classification codes is
somewhat subjective, the process follows a formal procedure and makes use of
controlled vocabularies. Readers looking for interesting or fun books to read may
not only want objective metadata to determine what book to read or buy next,
but also opinionated information such as reviews and ratings. Moreover, subject

37

headings and classification codes might give a very limited view of what a book
is about. LibraryThing users tag books with whatever keywords they want, in-
cluding personal tags like unread or living room bookcase, but also highly specific,
descriptive tags such WWII pacific theatre or natives in Oklahoma.

We want to investigate to what extent professional and user-generated meta-
data provide effective indexing terms for book retrieval.

2.1 Experimental Setup

We used Indri [3] for indexing, removed stopwords and stemmed terms using the
Krovetz stemmer. We made 5 separate indexes:

Full : the whole description is indexed.
Amazon : only the elements derived from the Amazon data are indexed.
LT : only the elements derived from the LibraryThing data are indexed.
Title : only the title information fields (title, author, publisher, publication

date, dimensions, weight, number of pages) are indexed.
Official : only the traditional metadata fields from Amazon are indexed, in-

cluding the title information (see Title index) and classification and subject
heading information.

Social : only the user-generated content such as reviews, tags and ratings are
indexed.

In the Full, LT and Social indexes, the field information from <tag> elements
is also indexed in a separate column to be able to give more weight to terms
occurring in <tag> elements.

The topics are taken from the LibraryThing discussion groups and contain a
title field which contains the title of a topic thread, a group field which contains
the discussion group name and a narrative field which contains the first message
from the topic thread.

In our experiments we only used the title fields as queries and default settings
for Indri (Dirichlet smoothing with µ = 2500). We submitted the following six
runs:

xml amazon : a standard LM run on the Amazon index.
xml full : a standard LM run on the Full index.
xml full.fb.10.50 : a run on the Full index with pseudo relevance feedback

using 50 terms from the top 10 results.
xml lt : a standard LM run on the LT index.
xml social : a standard LM run on the Social index.
xml social.fb.10.50 : a run on the Social index with pseudo relevance feedback

using 50 terms from the top 10 results.

Additionally we created the folowing runs:

xml amazon.fb.10.50 : a standard LM run on the Amazon index.
xml lt.fb.10.50 : a standard LM run on the LT index.
xml official : a standard LM run on the Official index.
xml title : a standard LM run on the Title index.

38

Table 1: Evaluation results for the Book Track runs using the LT recommenda-
tion Qrels. Runs marked with * are official submissions.

Run nDCG@10 P@10 MRR MAP

xml amazon.fb.10.50 0.2665 0.1730 0.4171 0.1901
*xml amazon 0.2411 0.1536 0.3939 0.1722
*xml full.fb.10.50 0.2853 0.1858 0.4453 0.2051
*xml full 0.2523 0.1649 0.4062 0.1825
xml lt.fb.10.50 0.1837 0.1237 0.2940 0.1391

*xml lt 0.1592 0.1052 0.2695 0.1199
xml prof 0.0720 0.0502 0.1301 0.0567

*xml social.fb.10.50 0.3101 0.2071 0.4811 0.2283
*xml social 0.2913 0.1910 0.4661 0.2115
xml title 0.0617 0.0403 0.1146 0.0563

Table 2: Evaluation results for the Book Track runs using the AMT Qrels. Runs
marked with * are official submissions.

Run nDCG@10 P@10 MRR MAP

xml amazon.fb.10.50 0.5954 0.5583 0.7868 0.3600
*xml amazon 0.6055 0.5792 0.7940 0.3500
*xml full.fb.10.50 0.5929 0.5500 0.8075 0.3898
*xml full 0.6011 0.5708 0.7798 0.3818
xml lt.fb.10.50 0.4281 0.3792 0.7157 0.2368

*xml lt 0.3949 0.3583 0.6495 0.2199
xml prof 0.1625 0.1375 0.3668 0.0923

*xml social.fb.10.50 0.5425 0.5042 0.7210 0.3261
*xml social 0.5464 0.5167 0.7031 0.3486
xml title 0.2003 0.1875 0.3902 0.1070

2.2 Results

The Social Search for Best Books task has two sets of relevance judgements. One
based on the lists of books that were recommended on the LT discussion groups,
and one based on document pools of the top 10 results of all official runs, judged
by Mechanical Turk workers. For the latter set of judgements, a subset of 24
topics was selected from the larger set of 211 topics from the LT forums.

We first look at the evaluation results based on the Qrels derived from the LT
discussion groups in Table 1. The runs on the Social index outperform the other
runs on all measures. The indexes with no user-generated metadata–Official and
Title—lead to low scoring runs. Feedback is effective on the four indexes Amazon,
Full, LT and Social.

Next we look at the results based on the Mechanical Turk judgements over
the subset of 24 topics in Table 2. Here we see a different pattern. With the top 10
results judged on relevance, all scores are higher than with the LT judgements.
This is probably due in part to the larger number of judged documents, but
perhaps also to the difference in the tasks. The Mechanical Turk workers were

39

Table 3: Evaluation results for the Book Track runs using the LT recommenda-
tion Qrels for the 24 topics selected for the AMT experiment. Runs marked with
* are official submissions.

Run nDCG@10 P@10 MRR MAP

xml amazon.fb.10.50 0.2103 0.1625 0.3791 0.1445
xml amazon 0.1941 0.1583 0.3583 0.1310
xml full.fb.10.50 0.2155 0.1708 0.3962 0.1471
xml full 0.1998 0.1625 0.3550 0.1258
xml lt.fb.10.50 0.1190 0.0833 0.3119 0.0783
xml lt 0.1149 0.0708 0.3046 0.0694
xml prof 0.0649 0.0500 0.1408 0.0373
xml social.fb.10.50 0.3112 0.2333 0.5396 0.1998
xml social 0.2875 0.2083 0.5010 0.1824
xml title 0.0264 0.0167 0.0632 0.0321

asked to judged the topical relevance of books—is the book on the same topic as
the request from the LT forum—whereas the LT forum members were asked by
the requester to recommend books from a possibly long list of topically relevant
books. Another interesting observation is that feedback is not effective for the
AMT evaluation, whereas it was effective for the LT evaluation.

Perhaps another reason is that the two evaluations use different topic sets.
To investigate the impact of the topic set, we filtered the LT judgements on the
24 topics selected for AMT, such that the LT and AMT judgements are more
directly comparable. The results are shown in Table 3. The pattern is similar
to that of the LT judgements over the 211 topics, indicating that the impact
of the topic set is small. The runs on the Social index outperform the others,
with the Amazon and Full runs scoring better than the LT runs, which in turn
perform better than the Official and Title runs. Feedback is again effective for
all reported measures. In other words, the observed difference between the LT
and AMT evaluations is not caused by difference in topics but probably caused
by the difference in the tasks.

2.3 Analysis

The topics of the SB Track are labelled with topic type and genre. There are
8 different type labels: subject (134 topics), author (32), genre (17), series (10),
known-item (7), edition (7), work (3) and language (2).

We break down the evaluation results over topic types and take a closer look
at the subject, author and genre types.

The other types have either very small numbers of topics (work and language),
or are hard to evaluate with the current relevance judgements. For instance,
the edition topics ask for a recommended edition of a particular work. In the
relevance judgements the multiple editions of a work are all mapped to a single
work ID in LibraryThing. Some books have many more editions than others,
which would create in imbalance in the relevance judgements for most topics.

40

Table 4: Evaluation results using the LT recommendation Qrels across different
topic genres and types. Runs marked with * are official submissions.

nDCG@10
Run Fiction Non-fiction Subject Author Genre

xml amazon.fb.10.50 0.2739 0.2608 0.2203 0.4193 0.0888
*xml amazon 0.2444 0.2386 0.1988 0.3630 0.0679
*xml full.fb.10.50 0.2978 0.2765 0.2374 0.4215 0.1163
*xml full 0.2565 0.2491 0.2093 0.3700 0.0795
xml lt.fb.10.50 0.1901 0.1888 0.1597 0.2439 0.0850

*xml lt 0.1535 0.1708 0.1411 0.2093 0.0762
xml prof 0.0858 0.0597 0.0426 0.1634 0.0225

*xml social.fb.10.50 0.3469 0.2896 0.2644 0.4645 0.1466
*xml social 0.3157 0.2783 0.2575 0.4006 0.1556
xml title 0.0552 0.0631 0.0375 0.1009 0.0000

The genre labels can be grouped into fiction, with genre label Literature (89
topics) and non-fiction, with genre labels such as history (60 topics), biography
(24), military (16), religion (16), technology (14) and science (11).

The evaluation results are shown in Table 4.
For most runs there is no big difference in performance between fiction and

non-fiction topics, with slightly better performance on the fiction topics. For the
two runs on the Social index the difference is bigger. Perhaps this is due to a
larger amount of social metadata for fiction books. The standard run on the LT
index (xml lt) performs better on the non-fiction topics, suggesting the tags for
non-fiction are more useful than for fiction books.

Among the topic types we see the same pattern across all measures and
all runs. The author topic are easier than the subject topics, which are again
easier than the genre topics. We think this is a direct reflection of the clarity
and specificity of the information needs and queries. For author related topics,
the name of the author is a very clear and specific retrieval cue. Subject are
somewhat broader and less clearly defined, making it harder to retrieve exactly
the right set of books. For genre-related topics it is even more difficult. Genres
are broad and even less clearly defined. For many genres there are literally (tens
of) thousands of books and library catalogues rarely go so far in classifying
and indexing specific genres. This is also reflected by the very low scores of the
Official and Title index runs for genre topics.

3 Data Centric Track

For the Data Centric Track we participated in the Ad Hoc Task and the Faceted
Search Task. Our particular focus was on the Faceted Seach Task where we aim
to discover for each query a restricted set of facets and facet values that best
describe relevant information in the results list. Our general approach is to use
weighted result aggregations to achieve maximal coverage of relevant documents
in IMDb. At the same time we aim to penalize overlap between sets of documents

41

that are summarized by different facet values. We expect that weighted result
aggregation combined with redundancy avoidance results in a compact summary
of the available relevant information. Below we describe our setup and provide
details about the different runs that we submitted to INEX. At the time of
writing no results are available for the Faceted Search Task. We are therefore
unable to provide an analysis of the performance of our different Faceted Search
runs at this point in time.

3.1 Experimental Setup

In all ad hoc runs (Ad Hoc and Faceted Search) we use Indri [3] with Krovetz
stemming and default smoothing (Dirichlet with µ = 2500) to create an index.
All XML leaf elements in the IMDb collection are indexed as fields. The XML
document structure was not used for indexing. Documents were retrieved using
title fields only. The maximum number of retrieved documents was set to 1000
(Ad Hoc Task) and 2000 (Faceted Search Task). We submitted one run for the
Ad Hoc Search Task and three runs for the Faceted Search Task.

Ad Hoc Task Since the Ad Hoc Search Task was not the focus of our partici-
pation, only one run (UAms2011adhoc) was generated for the Ad Hoc topic set,
using the settings described above.

Faceted Search Task Three runs were generated for the Faceted Search
Task (UAms2011indri-c-cnt, UAms2011indri-cNO-scr2, UAms2011lucene-cNO-
lth). In each run, a hierarchy of recommended facet values is constructed for
each topic. Every path through the hierarchy represents an accumulated set of
conditions on the retrieved documents. The search results become more refined
at every step, and the refinement ultimately narrows down a set of potentially
interesting documents. Below we describe our approach to faceted search in more
detail.

3.2 Step 1: Ad hoc run on IMDb collection

Two ad hoc result files were used: the 2011-dc-lucene.trec file provided by the
INEX organization, and an ad hoc run that was created on the fly using Indri.
The maximum number of results was set to 2000.

3.3 Step 2: Facet selection

The candidate set consists of all numerical and categorical fields in the IMDb
collection. (Free-text fields were not allowed as candidate facets by the organiza-
tion.) The goal was to select useful facets (and values) from the set of candidate
facets.

42

Result aggregation We explored two different methods of weighted result
aggregation. The first method is aggregation using document lengths rather than
document counts. Since popular movies in IMDb have larger entries (which we
measure by file size), we reasoned that summing over document lengths may help
in getting popular facet values (associated with popular movies) at the top of
the ranked set of facet values. The second method is aggregation using retrieval
scores. That is, we sum the retrieval scores of each document taken from the
ad hoc run. The idea is that higher-ranked documents in the results file display
those facet values that are most likely to be of interest to the user, given the
user’s query. The difference between the two weighted aggregation methods is
that document length is a static (‘global’) measure of document importance,
whereas retrieval scores are dynamic (‘local’), resulting in different degrees of
importance for different topics. We compare both methods to traditional non-
weighted aggregation of search results. The result aggregations form the basis of
facet selection, which is described below.

Coverage The idea behind our approach to facet selection is the simple intu-
ition that facets which provide compact summaries of the available data would
allow for fast navigation through the collection. This intuition was implemented
as facet coverage: the number of documents that are summarized by a facet’s top
n values1. Two types of coverage were implemented. The first version, coverage,
simply sums up the (weighted) document counts that are associated with the
facet’s top n values. A potential pitfall of this approach, however, is that this
method favors redundancy. That is, the sets of documents that are associated
with different facet values may have a high degree of overlap. For example, the
keywords ‘murder’ and ‘homicide’ may point to almost identical sets of doc-
uments. Since we want to give the user compact overviews of different, non-
overlapping sets of documents that may be of interest to the searcher, we im-
plemented a second version: coverageNO (‘coverage, no overlap’). Rather than
summing up document counts, coverageNO counts the number of unique doc-
uments that are summarized by the facet’s top n values. This way redundancy
in facet values is penalized.

Coverage-based facet selection is applied recursively. Starting with the com-
plete set of ad hoc results (corresponding to the root node of the facet hierarchy),
the facet with the highest coverage is chosen. The set of results is then narrowed
down to the set of documents that are covered by this facet. With this new
set, a second facet is chosen with the highest coverage within the new set. This
selection process continues until a specified number of facets has been selected.2

We apply facet selection to movie candidate facets and person candidate facets
independently, since these facets describe different types of documents (i.e., you
cannot drill-down into person files after you’ve narrowed down the results us-
ing a movie facet). An example of a ranked set of movie facets for the query
‘Vietnam’ is given in Table 5.

1 In our runs, we explored n = 5 and n = 10.
2 We set the maximum number of selected facets to 5.

43

Table 5: Facets ranked by coverage (based on document counts).

Rank Coverage Facet Top-5 values

1 945 genre Drama (306)
Documentary (207)
War (199)
Action (157)
Comedy (76)

2 850 keyword vietnam (286)
vietnam-war (220)
independent-film (162)
vietnam-veteran (110)
1960s (72)

3 477 language English (400)
Vietnamese (42)
French (16)
Spanish (10)
German (9)

4 437 country USA (345)
UK (30)
Canada (27)
France (19)
Vietnam (16)

5 397 color Color (291)
Color - (Technicolor) (45)
Black and White (40)
Color - (Eastmancolor) (11)
Color - (Metrocolor) (10)

44

3.4 Step 3: Path construction

The selected set of facets with corresponding top n ranked values form the basis
of the facet hierarchy. Paths in the hierarchy are generated by selecting a value
for the first facet, then a value for the second facet, etc. The paths respect the
rankings of the values along the path. That is, paths through high-ranked facet
values are listed at the top of the hierarchy, followed by paths through lower-
ranked facet values. In order to restrict the number of paths in the hierarchy
(not all logically possible paths are considered relevant) we return only paths
that we think are useful recommendations for the user, using a formal criterium.
In our current implementation, only paths are included which lead to a set of
documents of a specified size.3 Paths that lead to fewer documents (e.g., < 10
documents) are ignored because they are too specific. Conversely, paths that
lead to a larger number of documents (e.g., > 20 documents) are considered too
general, and the system will attempt to branch into a deeper, more specific level.

We generate trees for ‘movies’ and ‘persons’ independently and join them in
the order of the highest number of paths. (For most queries there were more
movie paths than person paths.) An example of our approach to constructing
paths through facet values is shown below. We display the tree corresponding to
the ‘Vietnam’ query, using the facets from Table 5:

<topic tid=”2011205”>

<fv f=”/movie/overview/genres/genre” v=”Drama”>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam”>

<fv f=”/movie/additional details/languages/language” v=”Vietnamese”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Color”/>

</fv>

</fv>

</fv>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam-war”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Color - (Technicolor)”/>

</fv>

</fv>

<fv f=”/movie/additional details/languages/language” v=”Vietnamese”>

<fv f=”/movie/additional details/countries/country” v=”USA”/>

</fv>

</fv>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam-veteran”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Color - (Technicolor)”/>

3 As an inclusion criterium, we keep all paths that lead to a set of 10-20 documents.

45

</fv>

</fv>

</fv>

</fv>

<fv f=”/movie/overview/genres/genre” v=”Documentary”>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Black and White”/>

</fv>

</fv>

</fv>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam-war”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Black and White”/>

</fv>

</fv>

</fv>

<fv f=”/movie/overview/keywords/keyword” v=”vietnam-veteran”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Color”/>

</fv>

</fv>

</fv>

<fv f=”/movie/overview/keywords/keyword” v=”1960s”>

<fv f=”/movie/additional details/languages/language” v=”English”>

<fv f=”/movie/additional details/countries/country” v=”USA”>

<fv f=”/movie/additional details/colors/color” v=”Color”/>

</fv>

</fv>

. . .

3.5 The Faceted Seach runs

With the methodology described above, a total of 32 runs was generated by
varying the parameters listed in Table 6. From this set the following three runs
were selected for submission:

UAms2011indri-c-cnt This is our baseline run which implements the stan-
dard approach of selecting those facet values that summarize the largest
number of documents.

UAms2011indri-cNO-scr2 : This run uses weighted result aggregation (us-
ing retrieval scores, in contrast to the unranked aggregation in the baseline
run). In addition, this run penalizes overlap between document sets that
correspond to different facet values.

46

Table 6: Experimental parameters (which resulted in 2x4x2x1x2x1x1 = 32 runs)

Parameter Values

Ad hoc input lucene, indri
Document weights count, length, score, score2

Selection method coverage, coverageNO
Number of facets 5
Number of values 5, 10
Min. number of path results 10
Max. number of path results 20

UAms2011lucene-cNO-lth : The third run uses the Lucene run that was
provided by the INEX organizers. The run uses weighted result aggregation
based on document lengths (file sizes, as opposed to retrieval scores).

3.6 Results and discussion

Our run for the Ad Hoc Task ranked 1st (based on MAP scores; MAP = 0.3969).
The success of our Ad Hoc run indicates that indexing the complete XML struc-
ture of IMDb is not necessary for effective document retrieval. It appears, at
least for the Ad Hoc case, that it suffices to index leaf elements. Results of the
Faceted Search Task are unknown at this time.

4 Conclusion

In this paper we discussed our participation in the INEX 2011 Book and Data
Centric Tracks.

In the Book Track we participated in the Social Search for Best Books task
and focused on comparing different document representations based on profes-
sional metadata and user-generated metadata. Our main finding is that standard
language models perform better on representations of user-generated metadata
than on representations of professional metadata.

In our result analysis we differentiated between topics requesting fiction and
non-fiction books and between subject-related topics, author-related topics and
genre-related topics. Although the patterns are similar across topic types and
genres, we found that social metadata is more effective for fiction topics than for
non-fiction topics, and that regardless of document representation, all systems
perform better on author-related topics than on subject related topics and worst
on genre-related topics. We expect this is related to the specificity and clarity of
these topic types. Author-related topics are highly specific and target a clearly
defined set of books. Subject-related topics are broader and less clearly defined,
but can still be specific. Genre-related topics are very broad—many genres have
tens of thousands of books—and are also more vague information needs that are
closer to exploratory search.

In future work we will look closer at the relative value of various types of
metadata and directly compare individual types of metadata such as reviews,

47

tags and subject headings. We will also look at the different search scenarios
underlying the relevance judgements and topic categories, such as subject search,
recommendation and exploratory search.

In the Data Centric Track we participated in the Ad Hoc and Faceted Search
Task. While our Ad Hoc approach worked fairly well (as demonstrated by the
high MAP), the results of the Faceted Search Task are not yet available. Our
expectation is that weighted result aggregation will improve faceted search, since
it acknowledges either the global or local importance of different documents in
the results list. In addition, we expect that redundancy avoidance will lead to a
more compact representation of the results list.

Acknowledgments Frans Adriaans was supported by the Netherlands Organiza-
tion for Scientific Research (NWO) grants # 612.066.513 and 446.010.027. Jaap
Kamps was supported by NWO under grants # 612.066.513, 639.072.601, and
640.005.001. Marijn Koolen was supported by NWO under grant # 639.072.601.

Bibliography

[1] O. Ben-Yitzhak, N. Golbandi, N. Har’El, and R. Lempel. Beyond basic
faceted search. In WSDM’08, 2008.

[2] C. Li, N. Yan, S. B. Roy, L. Lisham, and G. Das. Facetedpedia: Dynamic gen-
eration of query-dependent faceted interfaces for wikipedia. In Proceedings
of WWW 2010, 2010.

[3] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: a language-model
based search engine for complex queries. In Proceedings of the International
Conference on Intelligent Analysis, 2005.

48

RSLIS at INEX 2011: Social Book Search Track

Toine Bogers1, Kirstine Wilfred Christensen2, and Birger Larsen1

1 Royal School of Library and Information Science
Birketinget 6, 2300 Copenhagen, Denmark

{tb,blar}@iva.dk
2 DBC, Tempovej 7, 2750 Ballerup, Denmark

{kwc}@dbc.dk

Abstract. In this paper, we describe our participation in the INEX 2011
Social Book Search track. We investigate the contribution of different
types of document metadata, both social and controlled, and examine
the effectiveness of re-ranking retrieval results using social features. We
find that the best results are obtained using all available document fields
and topic representations.

Keywords: XML retrieval, social tagging, controlled metadata, book
recommendation

1 Introduction

In this paper, we describe our participation in the INEX 2011 Social Book Search
track. Our goals for the Social Book Search task were (1) to investigate the
contribution of different types of document metadata, both social and controlled;
and (2) to examine the effectiveness of using social features to re-rank the initial
content-based search results.

The structure of this paper is as follows. We start in Section 2 by describing
our methodology: pre-processing the data, which document and topic fields we
used for retrieval, and our evaluation. In Section 3, we describe the results of
our content-based retrieval runs. Section 4 describes our use of social features
to re-rank the content-based search results. Section 5 describes which runs we
submitted to INEX, with the results of those runs presented in Section 6. We
discuss our results and conclude in Section 7.

2 Methodology

2.1 Data and Preprocessing

In our experiments we used the Amazon/LibraryThing collection provided by the
organizers of the INEX 2011 Social Book Search track. This collection contains
XML representations of 2.8 million books, with the book representation data
crawled from both Amazon.com and LibraryThing.

49

A manual inspection of the collection revealed the presence of several XML
fields that are unlikely to contribute to the successful retrieval of relevant books.
Examples include XML fields like <image>, <listprice>, and <binding>. While
it is certainly not impossible that a user would be interested only in books in
a certain price range or in certain bindings, we did not expect this to be likely
in this track’s particular retrieval scenario of recommending books based on a
topical request. We therefore manually identified 22 such fields and removed
them from the book representations.

In addition, we converted the original XML schema into a simplified version.
After these pre-processing steps, we were left with the following 19 content-
bearing XML fields in our collection: <isbn>, <title>, <publisher>, <editorial>3,
<creator>4, <series>, <award>, <character>, <place>, <blurber>, <epigraph>,
<firstwords>, <lastwords>, <quotation>, <dewey>, <subject>, <browseNode>,
<review>, and <tag>.

One of the original fields (<dewey>) contains the numeric code representing
the Dewey Decimal System category that was assigned to a book. We replaced
these numeric Dewey codes by their proper textual descriptions using the 2003
list of Dewey category descriptions5 to enrich the controlled metadata assigned to
each book. For example, the XML element <dewey>519</dewey> was replaced
by the element <dewey>Probabilities & applied mathematics</dewey>.

2.2 Field categories and Indexing

The 19 remaining XML fields in our collection’s book representations fall into
different categories. Some fields, such as <dewey> and <subject>, are examples
of controlled metadata produced by LIS professionals, whereas other fields con-
tains user-generated metadata, such as <review> and <tag>. Yet other fields
contain ‘regular’ book metadata, such as <title> and <publisher>. Fields such
as <quotation> and <firstwords> represent a book’s content more directly.

To examine the influence of these different types of fields, we divided the
document fields into five different categories, each corresponding to an index. In
addition, we combined all five groups of relevant fields for an index containing
all fields. This resulted in the following six indexes:

All fields For our first index all-doc-fields we simply indexed all of the available
XML fields (see the previous section for a complete list).

Metadata In our metadata index, we include all metadata fields that are im-
mutably tied to the book itself and supplied by the publisher: <title>,
<publisher>, <editorial>, <creator>, <series>, <award>, <character>, and
<place>.

3 Our <editorial> fields contain a concatenation of the original <source> and
<content> fields for each editorial review.

4 For our <creator> field, we disregard the different roles the creators could have in
the original XML schema and simply treat all roles the same.

5 Available at http://www.library.illinois.edu/ugl/about/dewey.html

50

Content For lack of access to the actual full-text books, we grouped together
all XML fields in the content index that contain some part of the book text:
blurbs, epigraphs, the first and last words, and quotations. This corresponded
to indexing the fields <blurber>, <epigraph>, <firstwords>, <lastwords>,
and <quotation>.

Controlled metadata In our controlled-metadata index, we include the three
controlled metadata fields curated by library professionals: <browseNode>,
<dewey>, and <subject>.

Tags We split the social metadata contained in the document collection into
two different types: tags and reviews. For the tags index, we used the tag
field, expanding the tag count listed in the original XML. For example, the
original XML element <tag count=”3”>fantasy</tag> would be expanded
as <tag>fantasy fantasy fantasy</tag>. This ensures that the most popular
tags have a bigger influence on the final query-document matching.

Reviews The user reviews from the <review> fields were indexed in two dif-
ferent ways: (1) all user reviews belonging to a single book were combined
in a single document representation for that book, and (2) each book review
was indexed and retrieved separately. The former book-centric review index
reviews is used in Section 3; the latter review-centric index reviews-split is
used in our social re-ranking approach described in Section 4.

We used the Indri 5.0 retrieval toolkit6 for indexing and retrieval. We per-
formed stopword filtering on all of our indexes using the SMART stopword list,
and preliminary experiments showed that using the Krovetz stemmer resulted in
the best performance. Topic representations were processed in the same manner.

2.3 Topics

As part of the INEX 2011 Social Book Search track two set of topics were
released with requests for book recommendations based on textual description
of the user’s information need: a training set and a test set. Both topic sets
were extracted from the LibraryThing forum. The training set consisted of 43
topics and also contained relevance judgments, which were crawled from the
LibraryThing forum messages. These relevance judgments were provided to the
participants unfiltered and possibly incomplete. Despite these known limitations,
we used the training set to optimize our retrieval algorithms in the different runs.
The results we report in Sections 3 and 4 were obtained using this training set.

The test set containing 211 topics is the topic set used to rank and compare
the different participants’ systems at INEX. The results listed in Section 6 were
obtained on this test set.

Each topic in the two sets are represented by several different fields, with
some fields only occurring in the test set. In our experiments with the training
and the test set, we restricted ourselves to automatic runs using the following
three fields (partly based on a manual inspection of their usefulness for retrieval):

6 Available at http://www.lemurproject.org/

51

Title The<title> field contains the title of the forum topic and typically provide
a concise description of the information need. Runs that only use the topic
title are referred to as title.

Group The LibraryThing forum is divided into different groups covering dif-
ferent topics. Runs that only use the <group> field (i.e., the name of the
LibraryThing group as query) are referred to as group.

Narrative The first message of each forum topic, typically posted by the topic
creator, describes the information need in more detail. This often contains
a description of the information need, some background information, and
possibly a list of books the topic creator has already read or is not looking
for. The <narrative> field typically contains the richest description of the
topic and runs using only this field are referred to as narrative.

All topic fields In addition to runs using these three fields individually, we
also performed runs with all three fields combined (all-topic-fields).

The test and training sets contained several other fields that we did not ex-
periment with due to temporal constraints, such as <similar> and <dissimilar>.
However, we list some of our ideas in Section ??.

2.4 Experimental setup

In all our retrieval experiments, we used the language modeling approach with
Jelinek-Mercer (JM) smoothing as implemented in the Indri 5.0 toolkit. We
preferred JM smoothing over Dirichlet smoothing, because previous work has
shown that for longer, more verbose queries JM smoothing performs better than
Dirichlet smoothing [1], which matches the richer topic descriptions provided in
the training and test sets.

For the best possible performance, we optimized the λ parameter, which
controls the influence of the collection language model. We varied λ in steps of
0.1, from 0.0 to 1.0 using the training set of topics. For each topic we retrieve
up 1000 documents and we used NDCG as our evaluation metric [2].

3 Content-based Retrieval

For our first round of experiments focused on a standard content-based retrieval
approach where we compared the different index and the different topic represen-
tations. We had six different indexes (all-doc-fields, metadata, content, controlled-
metadata, tags, and reviews) and four different sets of topic representations (title,
group, narrative, and all-topic-fields). We examined each of these pairwise combi-
nations for a total of 24 different content-based retrieval runs. Table 1 shows the
best NDCG results for each run on the training set with the optimal λ values.

We can see several interesting results in Table 1. First, we see that the best
overall content-based run used all topic fields for the training topics, retrieved
against the index containing all document fields (all-doc-fields). In fact, for three
out of four topic sets, using all-doc-fields provides the best performance. The

52

Table 1. Results of the 24 different content-based retrieval runs on the training set
using NDCG as evaluation metric. Best-performing runs for each topic representation
are printed in bold. The boxed run is the best overall.

Document fields
Topic fields

title narrative group all-topic-fields

metadata 0.2756 0.2660 0.0531 0.3373
content 0.0083 0.0091 0.0007 0.0096
controlled-metadata 0.0663 0.0481 0.0235 0.0887
tags 0.2848 0.2106 0.0691 0.3334
reviews 0.3020 0.2996 0.0773 0.3748

all-doc-fields 0.2644 0.3445 0.0900 0.4436

book-centric reviews index is close second with strong performance on all four
topic sets. Finally, we observe that the content and controlled-metadata indexes
result in the worst retrieval performance across all four topic sets.

When we compare the different topic sets, we see that the all-topic-fields set
consistently produces the best performance, followed by the title and narrative
topic sets. The group topic set generally produced the worst-performing runs.

4 Social Re-ranking

The inclusion of user-generated metadata in the Amazon/LibraryThing collec-
tion gives the track participants the opportunity to examine the effectiveness
of using social features to re-rank or improve the initial content-based search
results. One such a source of social data are the tags assigned by LibraryThing
users to the books in the collection. The results in the previous section showed
that even when treating these as a simple content-based representation of the
collection using our tags index, we can achieve relatively good performance.

In this section, we turn our attention to the book reviews entered by Ama-
zon’s large user base. We mentioned in Section 2.1 that we indexed the user
reviews from the <review> fields in two different ways: (1) all user reviews be-
longing to a single book were combined in a single document representation
for that book (reviews), and (2) each book review was indexed and retrieved
separately (reviews-split). The results of the content-based runs in the previous
section showed that a book-centric approach to indexing reviews provided good
performance.

Review-centric retrieval However, all user reviews are not equal. Some re-
viewers provide more accurate, in-depth reviews than others, and in some cases
reviews may be even be misleading or deceptive. This problem of spam reviews
on online shopping websites such as Amazon.com is well-documented [3]. This
suggests that indexing and retrieving reviews individually and then aggregating
the individually retrieved reviews could be beneficial by matching the best, most
topical reviews against our topics.

53

Our review-centric retrieval approach works as follows. First, we index all
reviews separately in our reviews-split index. We then retrieve the top 1000 indi-
vidual reviews for each topic (i.e., this is likely to be a mixed of different reviews
for different books). This can result in several reviews covering the same book
occurring in our result list, which then need to be aggregated into a single rel-
evance score for each separate book. This problem is similar to the problem of
results fusion in IR, where the results of different retrieval algorithms on the
same collection are combined. This suggest the applicability of standard meth-
ods for results fusion as introduced by [4]. Of the six methods they investigated,
we have selected the following three for aggregating the review-centric retrieval
results.

– The CombMAX method takes the maximum relevance score of a document
from among the different runs. In our case, this means that for each book in
our results list, we take the score of the highest-retrieved individual review
to be the relevance score for that book.

– The CombSUM method fuses runs by taking the sum of the relevance scores
for each document separately. In our case, this means that for each book
in our results list, we take the sum of the relevance scores for all reviews
referring to that particular book.

– The CombMNZ method does the same as the CombSUM method, but boost
thes sum of relevance scores by the number of runs that actually retrieved the
document. In our case, this means that for each book in our results list, we
take the sum of the relevance scores for all reviews referring to that particular
book, and multiply that by the number of reviews that were retrieved for
that book.

Helpfulness of reviews One of the more popular aspects of user reviewing
process on Amazon.com is that reviews can be marked as helpful or not helpful
by other Amazon users. By using this information, we could ensure that the
most helpful reviews have a better chance of being retrieved. We can use this
information to improve the retrieval results by assigning higher weights to the
most helpful reviews and thereby boosting the books associated with those re-
views. The assumption behind this is that helpful reviews will be more accurate
and on-topic than unhelpful reviews.

We estimate the helpfulness of a review by dividing the number of votes
for helpfulness by the total number of votes for that review. For example, a
review that 3 out of 5 people voted as being helpful would have a helpfulness
score of 0.6. For each retrieved review i we then obtain a new relevance score
scoreweighted(i) by multiplying that review’s original relevance score scoreorg(i)
with its helpfulness score as follows:

scoreweighted(i) = scoreorg(i)× helpful vote count

total vote count
(1)

This will results in the most helpful reviews having a bigger influence on the
final rankings and the less helpful reviews having a smaller influence. We combine
this weighting method with the three fusion methods CombMAX, CombSUM, and

54

CombMNZ to arrive at a weighted fusion approach.

Book ratings In addition, users can also assign individual ratings from zero to
five stars to the book they are reviewing, suggesting an additional method of
taking into account the quality of the books to be retrieved. We used these ratings
to influence the relevance scores of the retrieved books. For each retrieved review
i we obtain a new relevance score scoreweighted(i) by multiplying that review’s
original relevance score scoreorg(i) with its normalized rating r as follows:

scoreweighted(i) = scoreorg(i)× r

5
(2)

This will results in the positive reviews having a bigger influence on the final
rankings and the negative reviews having a smaller influence. An open question
here is whether positive reviews are indeed a better source of book recommenda-
tions than negative reviews. We combine this weighting method with the three
fusion methods CombMAX, CombSUM, and CombMNZ to arrive at a weighted
fusion approach.

Table 2 shows the results of the different social ranking runs for the optimal
λ values. The results of the runs using the book-centric reviews index are also
included for convenience.

Table 2. Results of the 9 different social ranking runs with the reviews-split index on
the training set using NDCG as evaluation metric. The results of the runs using the
book-centric reviews index are also included for convenience. Best-performing runs for
each topic representation are printed in bold. The boxed run is the best overall using
the reviews-split index.

Runs
Topic fields

title narrative group all-topic-fields

CombMAX 0.3117 0.3222 0.0892 0.3457

CombSUM 0.3377 0.3185 0.0982 0.3640
CombMNZ 0.3350 0.3193 0.0982 0.3462

CombMAX - Helpfulness 0.2603 0.2842 0.0722 0.3124
CombSUM - Helpfulness 0.2993 0.2957 0.0703 0.3204
CombMNZ - Helpfulness 0.3083 0.2983 0.0756 0.3203

CombMAX - Ratings 0.2882 0.2907 0.0804 0.3306
CombSUM - Ratings 0.3199 0.3091 0.0891 0.3332
CombMNZ - Ratings 0.3230 0.3080 0.0901 0.3320

reviews 0.3020 0.2996 0.0773 0.3748

What do the results of the social ranking approaches tell us? The best overall
social ranking approach is the unweighted CombSUM method using all available
topic fields, with a NDCG score of 0.3640. Looking at the unweighted fusion
methods, we see that our results confirm the work of, among others [4] and [5],

55

as the CombSUM and CombMNZ fusion methods tend to perform better than
CombMAX. For the weighted fusion approaches where the weights are derived
from information about review helpfulness and book ratings we see the same
patterns for these three methods: CombSUM and CombMNZ outperform Comb-
MAX.

Overall, however, the unweighted fusion methods outperform the two weighted
fusion methods. This is not in line with previous research [6,7], where the optimal
combination of weighted runs tends to outperform the unweighted variants. This
suggests that our weighting methods using helpfulness and ratings are not opti-
mal. Apparently, reviews that are helpful for users are not necessarily helpful for
a retrieval algorithm. Analogously, increasing the influence of positive reviews
over negative reviews is not the ideal approach either. We do observe however
that using weights based on book ratings have a slight edge over weights derived
from review helpfulness.

Finally, if we compare the book-centric and review-centric approaches, we
see a mixed picture: while the best result using the reviews-split index is not as
good as the best result using the reviews index, this is only true for one of the
four topic sets. For the other topic sets where the retrieval algorithm has less
text to work with the review-centric approach actually comes out on top.

5 Submitted runs

We selected four automatic runs for submission to INEX7 based on the results
of our content-based and social retrieval runs. Two of these submitted runs were
content-based runs, the other two were social ranking-based runs.

Run 1 title.all-doc-fields This run used the titles of the test topics8 and ran this
against the index containing all available document fields, because this index
provided the best content-based results.

Run 2 all-topic-fields.all-doc-fields This run used all three topic fields combined
and ran this against the index containing all available document fields. We
submitted this run because this combination provided the best overall results
on the training set.

Run 3 title.reviews-split.CombSUM This run used the titles of the test topics and
ran this against the review-centric reviews-split index, using the unweighted
CombSUM fusion method.

Run 4 all-topic-fields.reviews-split.CombSUM This run used all three topic fields
combined and ran this against the review-centric reviews-split index, using
the unweighted CombSUM fusion method.

7 Our participant ID was 54.
8 While our experiments showed that using only the title topic set did not provide the

best results, submitting at least one run using only the title topic set was required
by the track organizers.

56

6 Results

The runs submitted to the INEX Social Book Search track was examined using
three different types of evaluations. In all three evaluations the results were
calculated using NDCG@10, P@10, MRR and MAP, with NDCG@10 being the
main metric. The first evaluation was using the 211 test set topics where the
relevance judgments derived from the books recommended on the LibraryThing
discussion threads of the 211 topics. Table 3 shows the results of this evaluation.

Table 3. Results of the four submitted runs on the test set, evaluated using all 211
topics with relevance judgments extracted from the LibraryThing forum topics. The
best run scores are printed in bold.

Runs NDCG@10 P@10 MRR MAP

title.all-doc-fields 0.1129 0.0801 0.1982 0.0868
all-topic-fields.all-doc-fields 0.2843 0.1910 0.4567 0.2035
title.reviews-split.CombSUM 0.2643 0.1858 0.4195 0.1661
all-topic-fields.reviews-split.CombSUM 0.2991 0.1991 0.4731 0.1945

We see that, surprisingly, the best-performing runs on all 211 topics was run
4 with an NCDG@10 of 0.2991. Run 4 used all available topic fields and the
unweighted CombSUM fusion method on the review-centric reviews-split index.
Run 2, with all available document and topic fields was a close second.

For the first type of evaluation the book recommendations came from Li-
braryThing users who actually read the book(s) they recommend. The second
type of evaluation conducted by the track participants enlisted Amazon Me-
chanical Turk workers for judging the relevance of the book recommendations
for 24 of the 211 test topics. These 24 topics were divided so that they covered
12 fiction and 12 non-fiction book requests. The judgments were based on pools
of the top 10 results of all official runs submitted to the track, evaluated using
all 211 topics. Table 4 shows the results of this second type of evaluation.

Table 4. Results of the four submitted runs on the test set, evaluated using 24 selected
topics with relevance judgments from Amazon Mechanical Turk. The best run scores
are printed in bold.

Runs NDCG@10 P@10 MRR MAP

title.all-doc-fields 0.4508 0.4333 0.6600 0.2517
all-topic-fields.all-doc-fields 0.5415 0.4625 0.8535 0.3223
title.reviews-split.CombSUM 0.5207 0.4708 0.7779 0.2515
all-topic-fields.reviews-split.CombSUM 0.5009 0.4292 0.8049 0.2331

57

We see that consistent with the results on the training set the best-performing
run on the 24 selected topics was run 2 with an NCDG@10 of 0.5415. Run 2
used all available topic and document fields. Runs 3 and 4 were a close second
and third.

The third type of evaluation used the same 24 Amazon Mechanical Turk top-
ics from the the second evaluation, but with the original LibraryThing relevance
judgments. Table 5 shows the results of this third type of evaluation.

Table 5. Results of the four submitted runs on the test set, evaluated using 24 se-
lected Amazon Mechanical Turk topics with relevance judgments extracted from the
LibraryThing forum topics. The best run scores are printed in bold.

Runs NDCG@10 P@10 MRR MAP

title.all-doc-fields 0.0907 0.0680 0.1941 0.0607
all-topic-fields.all-doc-fields 0.2977 0.1940 0.5225 0.2113
title.reviews-split.CombSUM 0.2134 0.1720 0.3654 0.1261
all-topic-fields.reviews-split.CombSUM 0.2601 0.1940 0.4758 0.1515

We see that, again consistent with the results on the training set, the best-
performing run on the 24 selected topics with LibraryThing judgments was run
2 with an NCDG@10 of 0.2977. Run 2 used all available topic and document
fields. Run 4 was a close second and third.

We also see that for the same 24 topics, evaluation scores are much lower
than for the second type of evaluation. This is probably due to the fact that the
Amazon Mechanical Turk judgements are more directly focused on topical rele-
vance. The LibraryThing judgments are more likely to reflect recommendations
by people who have actually read the books they recommend. This is a more
restrictive criterion, which results in lower evaluation scores.

7 Discussion & Conclusions

Both in the the training set and the test set good results were achieved by com-
bining all topic and document fields. This shows support for the principle of
polyrepresentation [8] which states that combining cognitively and structurally
different representations of the information needs and documents will increase
the likelihood of finding relevant documents. However, using only the split re-
views as index gave in four cases in the test set even better results, which speaks
against the principle of polyrepresentation.

We also examined the usefulness of user-generated metadata for book re-
trieval. Using tags and reviews in separate indexes showed good promise, demon-
strating the value of user-generated metadata for book retrieval. In contrast, the
effort that is put into curating controlled metadata was not reflected its retrieval
performance. A possible explanation could be that user-generated data is much

58

richer, describing the same book from different angles, whereas controlled meta-
data only reflects the angle of the library professional who assigned them.

We also experimented with a review-centric approach, where all reviews were
indexed separately and fused together at a later stage. This approach yielded
good results, both on the training and the test set. We attempted to boost
the performance of this approach even further by using review helpfulness and
book ratings as weights, but this only decreased performance. At first glance,
this is surprising since a helpful review can be expected to be well-written and
well-informed. The quality of a book as captured by the rating could also be
expected to have an influence on the review usefulness for retrieval, as could
have been expected. Our current weighting scheme was not able to adequately
capture these features though.

Our overall recommendation would therefore be to always use all available
document fields and topic representations for book retrieval.

7.1 Future work

Future work would include exploring additional social re-ranking methods. As we
are dealing with a book recommendation task, it would be a logical next step to
explore techniques from the field of recommender systems, such as collaborative
filtering (CF) algorithms. One example could be to use book ratings to calculate
the neighborhood of most similar items for each retrieved book and use this
re-rank the result list. The lists of (dis)similar items in the topic representations
could also be used for this.

References

1. Zhai, C., Lafferty, J.: A Study of Smoothing Methods for Language Models Applied
to Information Retrieval. ACM Transactions on Information Systems 22(2) (2004)
179–214

2. Järvelin, K., Kekäläinen, J.: Cumulated Gain-based Evaluation of IR Techniques.
ACM Transactions on Information Systems 20(4) (2002) 422–446

3. Jindal, N., Liu, B.: Review Spam Detection. In: WWW ’07: Proceedings of the 16th
International Conference on World Wide Web, New York, NY, USA, ACM (2007)
1189–1190

4. Fox, E.A., Shaw, J.A.: Combination of Multiple Searches. In: TREC-2 Working
Notes. (1994) 243–252

5. Lee, J.H.: Analyses of Multiple Evidence Combination. SIGIR Forum 31(SI) (1997)
267–276

6. Renda, M.E., Straccia, U.: Web Metasearch: Rank vs. Score-based Rank Aggrega-
tion Methods. In: SAC ’03: Proceedings of the 2003 ACM Symposium on Applied
Computing, New York, NY, USA, ACM (2003) 841–846

7. Bogers, T., Van den Bosch, A.: Fusing Recommendations for Social Bookmarking
Websites. International Journal of Electronic Commerce 15(3) (Spring 2011) 33–75

8. Ingwersen, P.: Cognitive Perspectives of Information Retrieval Interaction: Elements
of a Cognitive IR Theory. Journal of Documentation 52(1) (1996) 3–50

59

Social Recommendation and External Resources
for Book Search

Romain Deveaud1, Eric SanJuan1 and Patrice Bellot2

1 LIA - University of Avignon
339, chemin des Meinajaries, F-84000 Avignon Cedex 9
{romain.deveaud,eric.sanjuan}@univ-avignon.fr

2 LSIS - Aix-Marseille University
Domaine universitaire de Saint Jérôme, F-13397 Marseille Cedex 20

patrice.bellot@lsis.org

Abstract. In this paper we describe our participation in the INEX 2011
Book Track and present our contributions. This year a brand new collec-
tion of documents issued from Amazon was introduced. It is composed of
Amazon entries for real books, and their associated user reviews, ratings
and tags.
We tried a traditional approach for searching with two query expansion
methods involving Wikipedia as an external source of information. We
also took advantage of the social data with recommendation runs that
use user ratings and reviews.

1 Introduction

Previous editions of the INEX Book Track focused on the retrieval of real out-
of-copyright books [1]. These books were written almost a century ago and the
collection consisted of the OCR content of over 50, 000 books. It was a hard
track because of vocabulary and writing style mismatches between the topics
and the books themselves. Information Retrieval systems had difficulties to found
relevant information, and assessors had difficulties judging the documents.

This year, for the books search task, the document collection changed and is
now composed of the Amazon pages of real books. IR systems must now search
through editorial data and user reviews and ratings for each book, instead of
searching through the whole content of the book. The topics were extracted
from the LibraryThing1 forums and represent real requests from real users.

This year we experimented with query expansion approaches and recommen-
dation methods. Like we already did last year, we used a Language Modeling
approach to retrieval. We started by using Wikipedia as an external source of
information, since many books have their dedicated Wikipedia article [2]. A
Wikipedia article is associated to each topic, and the most informative words
of the articles are selected as expansion terms. For our recommendation runs,
we used the reviews and the ratings attributed to books by Amazon users. We

1 http://www.librarything.com/

60

computed a ”social relevance” probability for each book, considering the amount
of reviews and the ratings. This probability was then interpolated with scores
obtained by Maximum Likelihood Estimates computed on whole Amazon pages,
or only on reviews and titles, depending on the run.

The rest of the paper is organized as follows. The following Section gives an
insight into the document collection whereas Section 3 describes the our retrieval
framework. Finally, we describe our runs in Section 4.

2 The Amazon Collection

The document used for this year’s Book Track is composed of Amazon pages of
existing books. These pages consist of editorial information such as ISBN num-
ber, title, number of pages etc... However, in this collection the most important
content resides in social data. Indeed Amazon is social-oriented, and user can
comment and rate products they purchased or they own. Reviews are identi-
fied by the <review> fields and are unique for a single user: Amazon does not
allow a forum-like discussion. They can also assign tags of their creation to a
product. These tags are useful for refining the search of other users in the way
that they are not fixed: they reflect the trends for a specific product. In the
XML documents, they can be found in the <tag> fields. Apart from this user
classification, Amazon provides its own category labels that are contained in the
<browseNode> fields.

Table 1. Some facts about the Amazon collection.

Number of pages (i.e. books) 2, 781, 400
Number of reviews 15, 785, 133
Number of pages that contain a least a review 1, 915, 336

3 Retrieval Model

3.1 Sequential Dependence Model

This year we used a language modeling approach to retrieval [3]. We use Met-
zler and Croft’s Markov Random Field (MRF) model [4] to integrate multi-
word phrases in the query. Specifically, we use the Sequential Dependance Model
(SDM), which is a special case of the MRF. In this model three features are con-
sidered: single term features (standard unigram language model features, fT),
exact phrase features (words appearing in sequence, fO) and unordered window
features (require words to be close together, but not necessarily in an exact
sequence order, fU).

61

Finally, documents are ranked according to the following scoring function:

scoreSDM (Q,D) = λT

∑
q∈Q

fT (q,D)

+ λO

|Q|−1∑
i=1

fO(qi, qi+1, D)

+ λU

|Q|−1∑
i=1

fU (qi, qi+1, D) (1)

where the features weights are set according to the author’s recommendation
(λT = 0.85, λO = 0.1, λU = 0.05).

3.2 Wikipedia as an External Resource

As previously done last year, we exploited Wikipedia in a Pseudo-Relevance
Feedback fashion to expand the query with informative terms. We use the
Wikipedia API to retrieve the best ranked article W for each topic. We then
strip the HTML and tokenize the document into words. An entropy measure
HW(w) is then computed for each word w in W:

HW(w) = −p(w|W) · log p(w|W)

This measure gives a weight to each word in the page that reflects their relative
informativeness. The top 20 words with best entropies are used as expansion
words and are incorporated to the SDM model along with their weights:

score(Q,D) = scoreSDM (Q,D)

+ λW
∑

w∈W
HW(w) · fT (w,D) (2)

where λW = 1 in our experiments.

3.3 Wikipedia Thematic Graphs

In the previous methods we expand the query with words selected from pages
directly related to the query. Here, we wanted to select broader, more general
words that could stretch topic coverage. The main idea is to build a thematic
graph between Wikipedia pages in order to generate a set of articles that (ideally)
completely covers the topic.

For this purpose we use anchor texts and their associated hyperlinks in the
first Wikipedia page associated to the query. We keep the term extraction process
detailed in Section 3.2 for selecting a Wikipedia page highly relevant to the query.
We extract informative words from this page using the exact same method as
above. But we also extract all anchor texts in this page. The words selected with
the entropy measure are considering as a set TW , as well as each anchor text.

62

We then compute and intersection between set TW and each anchor text set. If
the intersection is not null, we consider that the Wikipedia article that is linked
with the anchor text is thematically relevant to the first retrieved Wikipedia
article. We can iterate and construct a directed graph of Wikipedia articles
linked together. Children node pages (or sub-articles) are weighted half that of
their parents in order to minimize a potential topic drift. Informative words are
then extracted from the sub-articles and incorporated to the query as previously
described.

4 Runs

This year we submitted 6 runs for the Social Search for Best Books task only.
We used Indri2 for indexing and searching. We did not remove any stopword and
used the standard Krovetz stemmer.

baseline-sdm This run is the implementation of the SDM model described
in (1). We use it as a strong baseline.

baseline-tags-browsenode This is an attempt to produce an improved base-
line that uses the Amazon classification as well as user tags. We search all single
query terms in the specific XML fields (<tag> and <browseNode>). This part is
then combined with the SDM model, which is weighted four times more than
the ”tag searching” part. We set these weights empirically after observations on
the test topics. The Indri syntax for the query schumann biography would be:

#weight (

0.2 #combine (#1(schumann).tag #1(biography).tag

#1(schumann).browseNode #1(biography).browseNode)

0.8 #weight (0.85 #combine(Schumann Biography)

0.1 #combine(#1(schumann biography))

0.05 #combine(#uw8(schumann biography)))

)

sdm-wiki This run is the implementation of the Wikipedia query expansion
model described in Section 3.2. The Wikipedia API was queried on August,
2011.

sdm-wiki-anchors This run is the implementation of the Wikipedia thematic
graph approach described in Section 3.3.

2 http://www.lemurproject.org

63

sdm-reviews-combine This run uses the social information contained in the
user reviews. First, a baseline-sdm is performed. Then for each document re-
trieved we extract the number of reviews and their ratings. A probability that
the book is popular is then computed with a t-test. This ”popularity score” is
finally interpolated to the SDM score and documents are re-ranked.

recommendation This run is similar to the previous one except that we com-
pute a query likelihood only on the <title> and on the <content> fields, instead
of considering the whole document like the SDM does. Scores for the title and
the reviews, and the popularity of the books are interpolated in a logistic re-
gression fashion. The sum of these three scores gives a recommendation score
for each book, based only on its title and on user opinions.

5 Conclusions

In this paper we presented our contributions for the INEX 2011 Book Track.
We proposed two query expansion methods that exploit the online version of
Wikipedia as an external source of expansion terms. The first one simply con-
siders the most informative words of the best ranked article, whereas the second
one focuses on building a limited thematic graph of Wikipedia articles in order
to extract more expansion terms.

We also experimented with the use of the social information available in the
Amazon collection. We submitted two runs that exploits the number of reviews
and the user ratings to compute popularity scores that we interpolate with query
likelihood probabilities.

References

1. Gabriella Kazai, Marijn Koolen, Antoine Doucet, and Monica Landoni. Overview
of the INEX 2010 Book Track: At the Mercy of Crowdsourcing. In Shlomo Geva,
Jaap Kamps, Ralf Schenkel, and Andrew Trotman, editors, Comparative Evaluation
of Focused Retrieval, pages 98–117, Heidelberg, 2011. Springer.

2. Marijn Koolen, Gabriella Kazai, and Nick Craswell. Wikipedia pages as entry points
for book search. In Proceedings of the Second ACM International Conference on
Web Search and Data Mining, WSDM ’09, pages 44–53, New York, NY, USA, 2009.
ACM.

3. D. Metzler and W. B. Croft. Combining the language model and inference network
approaches to retrieval. Inf. Process. Manage., 40:735–750, September 2004.

4. Donald Metzler and W. Bruce Croft. A markov random field model for term depen-
dencies. In Proceedings of the 28th annual international ACM SIGIR conference on
Research and development in information retrieval, SIGIR ’05, pages 472–479, New
York, NY, USA, 2005. ACM.

64

The University of Massachusetts Amherst’s
participation in the INEX 2011 Prove It Track

Henry A. Feild, Marc-Allen Cartright, and James Allan

Center for Intelligent Information Retrieval
University of Massachusetts Amherst, Amherst MA 01003, USA

{hfeild, irmarc, allan}@cs.umass.edu

Abstract. We describe the process that led to the our participation in
the Prove It task in INEX 2011. We submitted the results of six book
page retrieval systems over a collection of 50,000 books. To generate
book page scores, we use the sequential dependency model (a model
that uses both unigrams and bigrams from a query) for two runs and
an interpolation between language model scores at the passage level and
sequential dependency model scores at the page level for the other four
runs. In this report, we describe our observations of various retrieval
models applied to the Prove It task.

Keywords: inex, prove it, book retrieval, sequential dependency model,
passage retrieval

1 Introduction

In this report we describe our submissions to the 2011 INEX Prove It task,
where the goal is to rank book pages that are supportive, refutative, or relevant
with respect to a given fact. We did not participate in the optional sub task of
classifying each result as confirming or refuting the topic; in our submissions we
label all retrieved documents as confirmed. To determine what retrieval systems
to submit, we investigated several models. In the following sections, we detail
those models and give a summary of the results that led to our submissions.

2 Indexing and Retrieval Models

We only consider indexing pages. The index uses no other information about a
page’s corresponding book, chapter, or section. All tokens are stemmed using
the Porter stemmer. It includes 6,164,793,369 token occurrences indexed from
16,971,566 pages from 50,232 books, built using a specialized version of the
Galago retrieval system.1

We explored a number of models for page and passage retrieval, including rel-
evance modeling, sequential dependence modeling, passage modeling, removing
stop words, and mixtures thereof. We describe each below.
1 http://galagosearch.org/

65

Query likelihood language modeling (QL). This model scores each page
by its likelihood of generating the query [4]. The model also smooths with a
background model of the collection; for this, we use Dirichlet smoothing with
the default smoothing parameter: µ = 1500.

Relevance modeling (RM). A form of pseudo relevance feedback, rele-
vance modeling creates a language model from the top k pages retrieved for a
query, expands the query with some number of the most likely terms from the
model, and performs a second retrieval [2]. We investigate relevance modeling
because, as with all pseudo relevance feedback methods, it allows the vocabulary
of the original query to be expanded, hopefully capturing related terms. There
are three parameters to set: the number of feedback pages to use (set to 10),
the number of feedback term to use (also set to 10), and the weight to give the
original query model and the relevance model for the second retrieval (set to
0.5). These are the default settings within Galago.

Sequential dependence modeling (SDM). This model interpolates be-
tween document scores for three language models: unigram, bigram, and proxim-
ity of adjacent query term pairs [3]. Because of its use of bigrams, SDM captures
portions of phrases that unigram models miss. The weight of each sub language
model are parameters that can be set, and we use the defaults suggested by
Metzler and Croft [3]: 0.85, 0.10, 0.05 for the unigram, bigram, and proximity
models respectively. In addition, each laguage model uses Dirichlet smoothing,
and we experiment with µ = 1500 (the Galago default) and µ = 363 (the average
number of terms per page).

Passage modeling (PM). This model first scores passages using QL with
Dirichlet smoothing (setting µ to the length of the passage), selects the high-
est passage score per page, and then interpolates between that score and the
corresponding page’s SDM score. In our implementation, we first retrieve the
top 1,000 pages (Pages) and the top 10,000 passages (Pass)2 as two separate
retrieval list, then the lists are interpolated. If a passage is present in Pass, but
the corresponding page is not in Pages, the page score is set to the minimum
page score in Pages. Likewise, if a page is retrieved in Pages but no passages
from that page are present in Pass, the lowest passage score in Pass is used as
a proxy. The parameters of the PM model include the passage length l and the
interpolation factor, λ, where the maximum passage score is weighted by λ and
the page score is weighted by 1− λ.

Stop word removal (Stop). When stopping is used, query terms found in
a list of 119 stop words3 are removed.

We considered several combinations of the above models, all using stemming.
These include: LM, RM, SDM, SDM+RM, PM, and each of these with and
without stop words removed.

2 We allow multiple passages per document to appear on this list; filtering the highest
scoring passage per page is performed on this 10,000 passage subset.

3 http://www.textfixer.com/resources/common-english-words.txt

66

Field Example 1 Example 2 Example 3

ID 2010000 2010012 2010015
Fact In the battle of New

Orleans on the 8th of
January 1815, 2000
British troops were killed,
wounded or imprisoned,
while only 13 American
troops were lost, 7 killed
and 6 wounded.

The main function of tele-
scope is to make distant
objects look near.

Victor Emanuel enters
Rome as king of united
Italy.

Info need All sections of books that
detail the losses suffered
either at the British or
the American side are rel-
evant. I am not interested
in how the battle was
fought, but just want to
find out about the losses
at the end of the battle.

Most of the book is rele-
vant to Astronomy as its a
handbook on astronomy.

Italy will celebrate next
year its re-unification and
I needed to check the facts
and their dates. Italy had
two other capitals, Tur-
ing and Florence, before
it was possible to get
Rome back from the Vati-
can State.

Query New Orleans battle 1815
troops lost killed

Telescope Rome capital

Subject battle of New Orleans
1815

telescope Rome becomes capital of
united Italy

Task My task is to find out the
scale of losses on both the
British and American side
in the battle of New Or-
leans in 1815

We need to write a primer
on Astronomy.

Find out the date when
Rome became capital of
reunited Italy.

Table 1. The INEX Prove It topic fields.

3 Training data

Of the 83 total topics available for the Prove It task, 21 have judgments to
evaluate submissions from last year’s workshop. We use these as our training
set; all of the observations and results discussed in this report use only this
training data.

Inevitably, new systems pull up unjudged book pages in the top ten ranks. To
handle these cases, we developed a judgment system with which lab members,
including the authors, annotate pages as being supportive, refutative, or relevant
in the case that a page is on topic, but is not distinctly and completely supportive
or refutative. The system displays all fields of a topic, making the annotator as
informed as possible. The fields are listed in the first column of Table 1 along
with three examples of the field contents. The info need field usually describes
what should be considered relevant, and the accessors are asked to abide by this.
Some topics are tricky to judge, as in the case of Example 3 in Table 1 (Topic
2010015), where the broad focus is clearly on Italy, but the specific information
being sought is inconsistent across the fields. In cases such as these, annotators
interpret the information need and ensure that all pages are judged relative to
that interpretation of the topic.

We manually added 535 relevance judgments to the training set. This covers
many of the unjudged documents the systems retrieved in their top 10 lists for
each topic.

67

NDCG@10
System Stopped Unstopped

LMµ=1500 0.811 0.811
RM 0.751 0.701
SDM+RMµ=1500 0.755 0.751
SDMµ=1500 0.834 0.854
SDMµ=363 0.828 0.854
PMl=100,λ=0.25 0.856 0.859
PMl=50,λ=0.25 0.863 0.873

Table 2. The results of several systems over the 21 training topics .

4 Results

In this section we discuss the performance of the models listed in Section 2. We
evaluate over all 21 training topics. Each model considers only the fact field
of each topic; when using the query field, our best models only outperformed
the better systems from last year’s track by a small margin [1]. The substan-
tial difference in performance between using the the two fields stems from the
poor representation of the information need in most topics’ query field. Consider
Example 2 in Table 1: the query “telescope” does not adequately describe the
information need, which is the assertion that the primary function of a telescope
is to magnify distant objects.

Table 2 reports the normalized discounted cumulative gain at rank 10 (NDCG-
@10) of the systems with and without stopwords removed. We binarize the
graded relevance judgements such that the supportive, refutative, and relevant
labels are conflated. The relevance models do not perform as well as the oth-
ers, though this is partially due to not having enough judgments. Even if the
unjudged documents are assumed relevant, SDM outperforms RM in the un-
stopped case, and RM only marginally improves over SDM in the stopped case.
Setting µ to the average page length is not helpful for SDM, however, we entered
SDMµ=363 as a submission because the choice of µ is more principled than the
Galago default.

The PM models outperform the others, with a passage size of 50 terms taking
the lead. To understand why we choose λ = 0.25,4 see Figure 1 (this only shows
the variation with stop words removed). For both 50 and 100 term passages, it is
clear that a value of λ in the [0.20, 0.30] range, and specifically 0.25, is optimal.
This places much of the final page score on SDM, but still gives a substantial
amount of weight to the maximum LM passage score.

SDM captures pieces of phrases in a fact, and these seem to be important
given the results. PM adds the notion of tight proximity—a high passage score
ideally applies to passages that are topical hot spots. By setting λ = 0.25, the
model ranks higher pages that seem relevant overall and also contain topical
hot spots. The page’s content is more important than the passage content, how-
ever. Said differently, a page with many medium scoring passages can be ranked
higher than a page with one very high scoring passage. A manual assessment
4 Our submissions’ names suggest we used λ = 0.025, however this was a typo.

68

● ●
●

● ● ● ● ● ●
● ● ● ●

●
●

●
●

●
● ● ● ● ●

●
● ●

● ● ●
● ● ● ●

● ●
●

● ● ● ● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

λ

N
D

C
G

@
10

100−word passage
50−word passage

Fig. 1. A sweep over the λ parameter for the passage model. Smaller λ values mean
more weight is given to the SDM score of the page, while higher values mean more
weight is given to the highest scoring passage (using QLM). All queries were sopped.

of the retrieved documents supports this observation—pages that only have one
high scoring maximum passage are often non-relevant. The passage may make
reference to an aspect of the topic, but provides no in depth information. Per-
haps an artifact of the format of books, relevant book sections tend to discuss
topics over several paragraphs and even pages.

5 Summary

We considered several systems to retrieve supportive and refutative book pages
for a given fact as part of the 2011 INEX Prove It task. We found that sequential
dependence modeling (SDM) and passage-page interpolation (PM) perform best.

References

1. Geva, S., Kamps, J., Schenkel, R., Trotman, A. (eds.): Pre-proceedings of the INEX
workshop (2010)

2. Lavrenko, V., Croft, W.: Relevance based language models. In: Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval. pp. 120–127. ACM (2001)

3. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In:
Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 472–479. SIGIR ’05, ACM, New York,
NY, USA (2005)

4. Ponte, J., Croft, W.: A language modeling approach to information retrieval. In:
Proceedings of the 21st annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 275–281. ACM (1998)

69

TOC Structure Extraction from OCR-ed Books

Caihua Liu1,†, Jiajun chen2,†, Xiaofeng Zhang2,†, Jie Liu1,⋆, and Yalou Huang2

1 College of Information Technical Science, Nankai University, Tianjin, China 300071
2 College of Software, Nankai University, Tianjin, China 300071
{liucaihua,chenjiajun,zhangxiaofeng}@mail.nankai.edu.cn

{jliu,ylhuang}@nankai.edu.cn

Abstract. This paper addresses the task of extracting the table of con-
tents (TOC) from OCR-ed books. Since the OCR process misses a lot of
layout and structural information, it is incapable of enabling navigation
experience. A TOC is needed to provide a convenient and quick way to
locate the content of interest. In this paper, we propose a hybrid method
to extract TOC, which is composed of rule-based method and SVM-
based method. The rule-based method mainly focuses on discovering the
TOC from the books with TOC pages while the SVM-based method is
empolyed to handle with the books without TOC pages. Experimental
results indicate that the proposed methods obtain comparable perfor-
mance against the other participants of the ICDAR 2011 Book structure
extraction competition.

Keywords: table of contents, book structure extraction, xml extraction

1 Introduction

Nowadays many libararies focus on converting the whole libraries by digitizing
books on an industrial scale and this project is referred as ‘digital libararies’.
One of the most important tasks in digital libararies is extracting the TOC. A
table of contents (TOC) is a list of TOC entries each of which consists of three
elements: title, page number and level of the title. The intention of extracting
TOC is to provide a convenient and quick way to locate content of interest.

To extract the TOC of the books, we are faced with several challenges. First,
the books are various in forms, since the books come from different fields and
there are kinds of layout formats. A large variety of books increases the difficutlty
of utilizing a uniform method to well extract the TOC. Taking the poems for
example, some poems contain TOC pages while some not. The alignment of
poems may be left-aligned, middle-aligned and right-aligned. Second, due to the
limitation of OCR technologies, there are a certain number of mistakes. OCR
mistakes also cause trouble in extracting TOC, especially when some keywords
such as ‘chapters’, ‘sections’, etc., are mistakenly recognized.

† The first three authors make equal contributions
⋆ Corresponding author

70

2 Caihua Liu et al.

Many methods have been proposed to extract TOC, most of which are pub-
lished in INEX1 workshop. Since 80% of these books contain table of contents,
MDCS [8] and Noopsis [1] took the books with table of content into consider-
ation. While the University of Caen [5] utilized a four pages window to detect
the large whitespace, which is considered as the beginning or ending of chapters.
XRCE [3, 6, 7] segmented TOC pages into TOC entries and used the references
to obtain page numbers. XRCE also proposed a method trailling whitespace.

In this paper, we propose a hybrid method to extract TOC, since there are
two types of data. 80% of the books contain TOC pages and the remaining do
not. This two situations are considered via rule-based method and SVM-based
method respectively. For books containing TOC pages, some rules are designed to
extract these TOC entries. The rules designed are compatible with the patterns
of most books, which is also demonstrated in the experiments. For books without
TOC pages, a SVM model is trained to judge whether one paragraph is a title
or not. A set of features is devised for representing each paragraph in the book.
These features also do not depend on knowledge of TOC pages. Using these
features and the machine learning method we can extract TOC entries, whether
the book has an TOC page or not. To better organize these TOC entries, the
level and the page number of each TOC entry locating are also extracted, besides
these TOC entries themselves.

The paper is organized as follows. In section 2, we give a description of the
previous works about the extraction of TOC. An introduction about the books
and the format of these data is presented in section 3. The main idea of our
works to extract TOC entries is shown in section 4. In section 5, we locate the
target page for each TOC entry. We assign levels for TOC entries in section 6.
Finally, experiments and a short conclusion are displayed.

2 Related works

In the application of digital libraries, there are four main technologies, informa-
tion collecting, organizing, retrieving and security. Organizing data with XML
is the normal scheme, especially when we are faced with large scales of data. A
information retrieval workshop named INEX has been organized to retrieve in-
formation from XML data. In 2008, BSE(Book Structure extraction) was added
to INEX, whose purpose is to evaluate the performance of automatic TOC struc-
ture extraction from OCR-ed books.

MDCS [8] and Noopsis[1] focus on books containing TOC pages. Except for
locating the TOC entries, they make no use of the rest of the books. MDCS
emploies three steps to extract TOC entries. Firstly, they recognize TOC pages.
Secondly, they assgin a physical page number for every page. Finally, they ex-
tract the TOC entries via a supervised method relying on pattern occurrences
detected. MDCS’s method depends on the TOC pages and it can not work for
books without TOC pages. University of Caen’s [5] method did not rely on the

1 http://www.inex.otago.ac.nz/

71

TOC Structure Extraction from OCR-ed Books 3

content page, the key hypothesis of which is that the large whitespace is the be-
ginning of one chapter and the ending of another chapter. So they utilized a four
pages window to detect the whitespace. However, it works well on high-level title
but the lower title can not be recognized well. Xerox Research Center Europe
[3, 6, 7] used four methods to extract the TOC entries. First two are based on
TOC pages and index pages. The third method is similar to MDCS, which also
defines some patterns while the last method trails the whitespace like University
of Caen does. The method proposed by us is more effecient than others, since we
directly extract TOC entries by analyzing the TOC pages for books with TOC
pages. Due to the diversity of books without TOC pages, it’s difficult to find a
uniform rule or pattern to extract the TOC entries. To these issues, we perform
an automatic learning method for extracting TOC entries.

3 The architecture of the hybrid extracting method

Fig. 1. The flow chart of our hybrid extracting system.

In this section, we will give a discription of the architecture of our method.
Since 80% of the books contain TOC pages while the remaining do not, we
consider these two situations respectively. One more crucial reason is that the
TOC pages contain a lot of hidden structural contents. The well using of the
TOC pages can help improve the extracting performance. In addition, for books
with TOC pages, directly extracting TOC from the TOC pages performs better
than extracting TOC from main text.

As previously stated, each TOC entry contains three parts: title, page number
and level of the title. As shown in Figure 1, the extracting process is conducted
with the following steps. (1) A judgement is conducted to seperate the books
into two parts via whether containing TOC pages. (2) Extracting each TOC

72

4 Caihua Liu et al.

entry and obtaining the title, page number. Since there are two types of data,
we extract the TOC from them respectively. For books containing TOC pages,
a rule-based method is proposed to extract these TOC entries from the TOC
pages. For books without TOC pages, a SVMmethod is introduced to achieve the
purpose of extracing TOC. (3) Locating the target page for each TOC entry. (4)
Assigning levels for these extracted TOC entries. A simple relationship between
these TOC entries can be obtained by this step.

After these steps, each TOC entry has been extracted. we also obtain the
target pages and the organizational structure of these TOC entries. Then the
TOC is outputed as the predefined format. Until now, all of the works to extract
TOC has been accomplished. And the specific methods to conduct this three
steps is stated in the following sections.

4 Extracting TOC entries

In this section, we focus on the two methods to extract TOC entries. The fol-
lowing two sections will give a specific introduction of these two methods respec-
tively.

4.1 Extracting with TOC pages

We extract the TOC from the original TOC page in the book with TOC pages.
This task is divided into two steps: locating the TOC pages of the book and
extracting TOC entries from the TOC pages.

Locating TOC Pages If a book contains TOC pages, we extract the TOC
entries from the TOC pages directly. Naturally, the TOC pages start with key
words such like ‘Contents’ and ‘Index ’, and the TOC page contains many lines
ending with numbers. We can use these features to locate the beginning of con-
tents pages. Since most books have headers, the pages are ascertained to be
TOC pages, if there are key words like ‘Contents’ and ‘Index ’ appearing at the
beginning of the page, or if there is a considerable number of lines ending with
numbers. Naturally, TOC pages usually appear in the front part of a book, as
a result, we only need to consider the first half of the book to accelerate the
process.

Extracting Contents Entries TOC entries in books vary greatly in different
books. As is shown in Figure 2, some entries like Figure 2(a) occupy only one
line, while some entries Figure 2(b) occupy several lines. Some entries Figure
2(c) are divided into multi-lines, of which the first line is text, the second line is
logical page number and the third line is introduction of the section.

To extract each TOC entry, we need to obtain the beginning and the ending
of each TOC entry. The following rules are conducted to identify the beginning
of TOC entries.

73

TOC Structure Extraction from OCR-ed Books 5

Fig. 2. A variety of Contents structure. (a) Each TOC entry occupy one line; (b) Each
TOC entry occupy serveral lines; (c) Each TOC entry occupy multi-lines

1. if current line starts with key words like ‘Chapter ’, ‘Part ’, ‘Volume’ or ‘Book ’
etc.

2. if current line starts with numbers or Roman numerals.
3. if last line ends with numbers or Roman numerals.

The start of a new TOC entry is the end of last TOC entry, so we can easily
construct the following rules to identity the end of TOC entries.

1. if next line starts with key words like ‘Chapter ’, ‘Part ’, ‘Volume’ or ‘Book ’
etc.

2. if next line starts with numbers or Roman numerals.
3. if current line ends with numbers or Roman numerals.

The above rules can handle most of the situations, however, some TOC entries
such as multi-lines can not be well extracted using only those rules. To these
issues, a new rule is added. If the last line does not have key words like ‘Chapter ’
and Roman numerals etc. that obviously separate contents items and the formats
of current line and last line are very different, delete line information collected
before.

The new rule treats current line as the start of a new TOC entry, and delete
stored lines formerly should be treated as part of current TOC entry. The diffi-
culty of this rule lies in the quantitative description of differences between two
lines. Our approach consider only the relative font sizes.

relative font size =
currentlinefontsize− averagefontsize

maxiumfontsize− avergefontsize
(1)

If the ‘relative font size’ of the two lines are very different and greater than some
pre-set thresholds, these two lines can not be treated as one TOC entries

74

6 Caihua Liu et al.

4.2 Extracting without TOC pages

For the books without TOC pages, we use SVM to extract TOC entries. It
comes into the following steps: (1) extracting the features of each paragraph and
labeling them(2) training the RBF-SVM to classify every paragraph.

Features Through observing data set, some obvious features can be employed
to identitfy a TOC entry, as shown in table 1. Though we get the eight features, it

Table 1. Features designed for books without TOC pages.

Feature ID Discription

1 Proportion of Capital Letters
2 Font Size
3 Left End position of a Paragraph
4 Right End Position of a Paragraph
5 Space between Paragraph
6 Line Number of a Paragraph
7 Average Number of words in Each Line of a Paragraph
8 The y-coordinate of a Paragraph Start

happens that some common paragraphs have one or more features. For example,
the page header is much more similar to the TOC entry, so this will confuse the
classifier. Commonly the page header always has the same content with the title,
while it has a lot of duplications. So we use post-process method to delete the
duplication and make the first page header that has the same content with others
as the title. Another example, the title page (this page only contains a title, and
in the next page it also starts with this title in the top) has also some of the
features, what’s more the effect of the features is more obvious than the title at
times. So we must do some efforts to solve the problem. According to the title
page, we set a threshold to judge whether a page is title page. It is means that if
most of the paragraphs in the page are recognized as title, we think it is a title
page.

Recongnizing the TOC entries We use SVM2 to identify whether one para-
graph is TOC entry. Since many normal paragraphs are predicted as positive,
a further analysis is made on these data. There are four situations to consider:
the title we expect, page header, the misrecognized paragraph and the spot or
handwritten note in the book which can be OCRed. In order to get a much
higher performance, a post-process is conducted. And the following principles
are devised to delete some of the positive ones.

1. If there are less capital letters in a paragraph than a threhold.

2 http://www.cs.cornell.edu/people/tj/svm light.html

75

TOC Structure Extraction from OCR-ed Books 7

2. If a paragraph only contains a letter, and it is not Rome number as well.
3. If a paragraph is similar to others,then keep the first one and delete the

others.
4. If there are more than two positive paragraphs.

5 Locating target page

After extracting TOC entries, we need to ascertain where the entries actually
locate for navigation purpose. The page numbers shown in TOC are the logical
numbers. While the physical number shows the actual page number in the whole
document. Hence the matching of physical page number and logical page number
is expected to help users navigate over the whole document.

To match the physical and the logical page numbers, the logical numbers
for every page are needed to be extracted first. Commonly, the logical number
appears in the headers or footers. However, logical pages extracted in this way are
not prefect enough, as some pages may indeed do not have logical page numbers
or maybe an OCR error makes the logical page numbers not recognized correctly,
so we need to deal with those omissions and errors. So a remedy is conducted
to obtain the complete page numbers. First, fill the vacancies of pages without
page numbers using the following method. If the physical page i and j (j > i)
have logical page L(i) and L(j) respectively, and logical page numbers of pages
between i and j are absent, at the same time, if L(j) − L(i) = j − i, fill the
vacancies of logical page numbers for those page between i and j.

Whereas, there are still some pages with physical numbers which can not
find logical number. For these physical pages we set them to 0. And then the
logical page numbers of the extracted contents items are replaced to physical
page numbers. For these physical pages labeled ‘0’, We first find the the maxi-
mum logical page number smaller then current logical page number, and match
with physical page number. Then from this maximum logical page number and
forward we use text match to find the first page that contains the text of current
TOC entry, and use the physical page number of this page as the physical page
of current TOC entry.

6 Ranking levels for TOC entries

The final step is to rank those extracted TOC entries. Via the analysis of the da-
ta, we find that most of the content entries contain the key term ‘Book ’,‘Volume’,‘Part ’,
‘Chapter ’ and so on. While information like arabic numerals and roman numer-
als can also be utilized to assign the level for content entries. So we pre-define
five levels to arrange the levels of every contents entry.

1. First level: containing key words ‘Part ’, ‘Volume’ and ‘Book ’ etc.
2. Second level: containing keywords ‘Chapter ’ and ‘Chap’ etc.
3. Third level: containing keywords ‘Section’ and ‘Sect ’ etc.

76

8 Caihua Liu et al.

4. Forth level: containing Arabic numerals and Roman numerals or keywords
like ‘(a)’ and ‘a’.

5. To be ascertained level: other TOC entries that do not have above mentioned
features while its level depends on their neighbors’ contents, for example,
previous rank.

A specific statistics on randomly selecting 100 books from the ICDAR 2011
dataset is shown in Figure 3. 70% of TOC entries contain keywords ‘chapter’
etc. and books with keyword ‘Section’ only occupy a small proportion of 100
books. More obvious is that 90% of the books correspond to our definition of
levels. We first scan the whole content entries and assign levels for every entry

Fig. 3. The percent of each level and ‘Ordered’ means that the level of TOC corre-
sponds to the level we defined.

by the rule pre-defined above. Most of these entries are all assigned levels, only
these entries without any characteristics left. A statistics has been conducted
by us and it demonstrates that these left entries have a higher probability of
the same level as the previous one, therefore, the levels for these left entries are
assigned via this idea.

7 Experiments

In order to measure the performance of our method, we conduct experiment on
two datasets. One is the 1000 books provided by the Book structure extraction
competition, while the other is ICDAR 2009 competition dataset. The pdf and
DjVuXML format of the books are both provieded in these two datasets.

To give a full evaluation of the performance, three evaluate criterions are
considered on five aspects. The evaluation measures are: precision, recall and
F-measure. And the 5 aspects are: (1) Titles, which evaluates whether the titles
we obtained are sufficiently similar to the titles in the ground truth; (2) Links,

77

TOC Structure Extraction from OCR-ed Books 9

which is correctly recognized if the TOC entries recognized by our method link
to the same physical page in the ground truth. (3) Levels, which means whether
established level of the title is at the same depth in the ground truth. (4) Com-
plete except depth, which represents the title and the link are both right. (5)
Complete entries, which is considered right only when all of these three items
are right.

Table 2. The performance of our method on five evaluation aspects conducting on
ICDAR 2011 dataset.

Items Precision Recall F-Measure

Titles 47.99% 45.70% 45.20%
Links 44.03% 41.44% 41.43%
Level 37.91% 36.84% 36.08%
Entries disregarding depth 44.03% 41.44% 41.43%
Complete entries 34.80% 33.28% 33.06%

Fig. 4. The public results of ICDAR 2011 book structure extraction competition. It is
conducted on the whole dataset and we rank second.

7.1 Experiments on the whole dataset

The experiments listed in this section are the public experimental results pub-
lished by the official organizing committee of ICDAR. The performance of our
method on the five aspects are reported in table 2. The performance comparision
between our method with other participants of ICDAR is presented in Figure 4.
It can be seen that MDCS outperforms others, but it is a TOC based method

78

10 Caihua Liu et al.

and it can not deal with books without table well. We rank second in the com-
pletion, however, we are capable of processing those books without contents. To
address these issues, our method is comparable to others.

7.2 Experiments on books without table of contents

To evaluate the ability of processing books without TOC pages, we conduct
experiments on 2009 ICDAR dataset. In this dataset, there are ninty three books
without TOC pages. Since the number of normal context is much larger than the
number of TOC entries, so we use all of the TOC entries and randomly select
the same number of normal text.

The result of five fold-cross validation is shown in Table 3. All of these five
evaluate aspects are considered to give a full description of our method. Figure
5 shows the comparation with other methods public published in ICDAR 2009.
It can be seen that our method outperforms others’.

Table 3. The performance of our method on five evaluation aspects conducting on
ICDAR 2009 dataset.

Items Precision Recall F-Measure

Titles 14.85% 23.64% 14.38%
Links 10.88% 16.17% 10.71%
Level 11.78% 19.62% 11.40%
Entries disregarding depth 10.88% 16.17% 10.71%
Complete entries 8.47% 13.07% 8.43%

Fig. 5. Experiment on books without TOC pages and it is conducted on 93 books of
ICDAR 2009 dataset.

79

TOC Structure Extraction from OCR-ed Books 11

8 Conclusion

This paper presents the task of extracting TOC entries for navigation purpose.
However, extracting TOC entries from ocr-ed books is a challenging problem,
since the OCR process misses a lot of layout and structural information. We
proposed an effective method to solve this problem. For books containing con-
tents page, a rule based method is conducted. For books without contents page,
we utilize a machine learning method to classify the title. Besides, recognition
of the title, the matching of physical and logical page is conducted to help users
navigate. To get more specific information about the book, the partition of the
level of title is also performed. The experiments show that our method consid-
ering these three aspects is usable and effective. A uniform model to effectively
address the problem is expected as a future work.

References

1. Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac, Bogdan
Radakovic,Nikola Todic: Setting up a Competition Framework for the Evaluation
of Structure Extraction from OCR-ed Books, in International Journal of Document
Analysis and Recognition (IJDAR), special issue on ”Performance Evaluation of
Document Analysis and Recognition Algorithms”, 22 pages, 2010.

2. Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac, Bogdan
Radakovic, Nikola Todic: ICDAR 2009 Book Structure Extraction Competition”,
in Proceedings of the Tenth International Conference on Document Analysis and
Recognition (ICDAR’2009), Barcelona, Spain, July 26-29, p.1408-1412, 2009.

3. Herv Djean, Jean-Luc Meunier: Reflections on the INEX structure extraction com-
petition, in Proceedings of the 9th IAPR International Workshop on Document
Analysis Systems (DAS’2010), Boston, Massachusetts, p.301-308, 2010.

4. Herv Djean ,Jean-Luc Meunier: a useful level for facing noisy data, in Proceedings
of the fourth workshop on Analytics for noisy unstructured text data (AND ’10),
Toronto, Canada, p.3-10, 2010.

5. Emmanuel Giguet, Nadine Lucas: The Book Structure Extraction Competition with
the Resurgence Software at Caen University, in Advances in Focused Retrieval: 9th
International Workshop of the Initiative for the Evaluation of XML Retrieval, (INEX
2010), Schloss Dagstuhl, Germany, p.170-178, 2010.

6. Herv Djean, Jean-Luc Meunier: XRCE Participation to the 2009 Book Structure
Task, in Advances in Focused Retrieval: 9th International Workshop of the Initiative
for the Evaluation of XML Retrieval, (INEX 2010), Schloss Dagstuhl, Germany,
p.160-169, 2010.

7. Herv Djean, Jean-Luc Meunier: XRCE Participation to the Book Structure Task,
inAdvances in Focused Retrieval: 8th International Workshop of the Initiative for
the Evaluation of XML Retrieval, (INEX 2009), Schloss Dagstuhl, Germany, p.124-
131, 2009.

8. Bodin Dresevic, Aleksandar Uzelac, Bogdan Radakovic, Nikola Todic: Book Layout
Analysis: TOC Structure Extraction Engine, in Advances in Focused Retrieval: 8th
International Workshop of the Initiative for the Evaluation of XML Retrieval, (INEX
2009), Schloss Dagstuhl, Germany, p.164-171, 2009.

80

OUC’s participation in the 2011 INEX Book
Track

Michael Preminger1 and Ragnar Nordlie1

Oslo University College

Abstract. In this article we describe the Oslo University College’s par-
ticipation in the INEX 2011 Book track. In 2010, the OUC submitted
retrieval results for the ”prove it” task with traditional relevance detec-
tion combined with some rudimental detection of confirmation. In line
with our belief that proving or refuting facts are different semantic aware
actions of speech, we have this year attempted to incorporate some rudi-
mentary semantic support based on the wordnet database.

1 Introduction

In recent years large organizations like national libraries, as well as multinational
organizations like Microsoft and Google have been investing labor, time and
money in digitizing books. Beyond the preservation aspects of such digitization
endeavors, they call on finding ways to exploit the newly available materials,
and an important aspect of exploitation is book and passage retrieval.

The INEX Book Track[1], which has been running since 2007, is an effort
aiming to develop methods for retrieval in digitized books. One important aspect
here is to test the limits of traditional methods of retrieval, designed for retrieval
within ”documents” (such as news-wire), when applied to digitized books. One
wishes to compare these methods to book-specific retrieval methods.

One important mission of such retrieval is supporting the generation of new
knowledge based on existing knowledge. The generation of new knowledge is
closely related to access to – as well as faith in – existing knowledge. One im-
portant component of the latter is claims about facts. This year’s ”prove it”
task, may be seen as challenging the most fundamental aspect of generating new
knowledge, namely the establishment (or refutal) of factual claims encountered
during research.

On the surface, this may be seen as simple retrieval, but proving a fact is
more than finding relevant documents. This type of retrieval requires from a
passage to ”make a statement about” rather than ”be relevant to” a claim,
which traditional retrieval is about. The questions we posed in 2010 were:

– what is the difference between simply being relevant to a claim and express-
ing support for a claim

– how do we modify traditional retrieval to reveal support or refutal of a claim?

81

2

We also made the claim that ”prove it” sorts within the (not very well-
defined) category ”semantic-aware retrieval”, which, for the time being will be
defined by us as retrieval that goes beyond simple string matching, and is aware
of the meaning (semantics) of text.

Those question, being rhetorical in part, may be augmented by the questions

– How can one detect the meaning of texts (words, sentences and passages) and
incorporate those in the retrieval process to attain semantic-aware retrieval

and consequently

– can one exploit technologies developed within the semantic web to improve
semantic-aware retrieval

The latter is not directly addressed in this paper, but we claim that the
techniques used here point in this direction.

2 The Prove-it task

2.1 Task definition and user scenario

The prove-it task is still at its infancy, and may be subject to some modifications
in the future. Quoting the user scenario as formulated by the organizers

The scenario underlying this task is that of a user searching for specific
information in a library of books that can provide evidence to confirm
or refute a given factual statement. Users expect to be pointed directly
at book pages that can help them to confirm or refute the claim of the
topic. Users are assumed to view the ranked list of retrieved book pages
starting from the top of the list and moving down, examining each result.
No browsing is considered (only the returned book pages are viewed by
users).

This user scenario is a natural point of departure as it is in the tradition
of information retrieval and facilitates the development of the task by using
existing knowledge. As a future strategy, it may be argued that this user scenario
is gradually modified, as ranking in the context of proving is a highly complex
process, and, in the context where Prove-it algorithms are most likely to be used,
arguably superfluous.

2.2 Proving a claim vs. being relevant to a claim

As we wrote in ??, we see proving a claim as being relevant to the claim and,
in addition, possessing some characteristics as a document. The document char-
acteristics are associated with the type of semantics (in the broad sense of the
word) within which the text is written. Here there is a wide range of issues
that need to be researched into: the language of the page, the type of words
it contains, what kind of other claims there are in the document, and so on.
These latter aspects are orthogonal to the statement or claim itself in the sense
that they (at least ideally) apply equally to whatever claim being the subject of
proving / confirming.

82

3

2.3 Ranking proving efficiency?

In this paper we are still following the two step strategy of first finding pages
relevant to the claim, and from those pages trying to identify pages that are
likely to prove the claim1. The first step is naturally done using current strate-
gies for ranked retrieval. The second stage identifies among relevant documents
those which prove / confirm the statement. Relevance ranking is not necessarily
preserved in this process: if document A comprises a better string-wise match
with the claim than does document B, document B can still be more efficient
at proving the claim than document A. Not all elements that make a document
relevant also make it a good prover

Another issue is the context in which prove-it is used. One example is the
writing of a paper. A writer is (again, arguably) more likely to evaluate a greater
number of sources for proof of a claim than he or she would in a context of pure
fact finding or reference finding. Additionally, different contexts would arguably
invite different proof emphases. All this advocates for use of other strategies of
presenting proving results than ranked lists.

2.4 Semantic approaches to proof

A statement considered as a ”proof” (or confirmation) may be characterized
semantically by several indicators: - the phenomenon to be supported may be
introduced or denoted by specific terms, for instance verbs indicating a definition:
”is”, ”constitutes”, ”comprises” etc. - terms describing the phenomenon may
belong to a specific semantic category - nouns describing the phenomenon may
be on a certain level of specificity - verbs describing the phenomenon may denote
a certain type of action or state Deciding which specificity level or which semantic
categories will depend on the semantic content and the relationship between the
terms of the original claim. Without recourse to the necessary semantic analysis,
we assume that in general, terms indicating a proof / confirmation will be on a
relatively high level of specificity. It will in some way constitute a treatment of
one or more aspects of the claim at a certain level of detail, which we expect to
be reflected in the terminology which is applied.

As an initial exploration of these potential indicators of proof, without access
to semantic analysis of the claim statements, we are investigating whether terms,
in our case nouns, found on a page indicated as a potential source of proof
diverges in a significant way from other text in terms of level of specificity. We
determine the level of noun specificity through their place in the Wordnet term
hierarchies.

3 Indexing and retrieval strategies

The point of departure of the strategies discussed here is that confirming or
refuting a statement is a simple action of speech that does not require from the

1 We still see refutal as a totally different type of task and will not address it in this
paper.

83

4

book (the context of the retrieved page) to be ABOUT the topic covering the
fact. In this way the prove it task is different than e.g. the one referred to in
?? This means that we do not need the index to be context-faithful (pages need
not be indexed in a relevant book context). It is more the formulation of the
statement in the book or page that matters.

In line with the above, indexing should facilitate two main aspects at retrieval
time: identifying relevant pages and finding which of these is likely to prove a
claim. The first aspect is done by creating a simple index of all the words in the
corpus, page by page. The pages are treated as separate documents regardless
of common book belonging. The second aspect is catered for by calculating the
average specificity of each page and tagging each page by one of a number of
specificity tags.

Since this contribution is a direct further step from our 2010 contribution,
we would also like to try and merge 2010’s and this year’s ”proving detection”.
We do this by also creating a merged index where the pages are tagged by their
average specificity as well as their ”confirmatory word” occurrence rate.

3.1 Calculating specificity

At this stage of the research, the second aspect is catered for by statistically
measuring the average specificity of words that occur in the page. We do this
by calculating the specificity of each word and then averaging the measure of
specificity of all the words in a page, as described below. To accomplish that,
we have augmented the WordNet database (ref) by a Direct Acyclic Graph
(DAG) of all the nouns, which lets us calculate a relative specificity of each
word by its average position in this graph. Words closer to the common root of
the graph (measured as a number of steps) are less specific, whereas words closer
to the leaves are more specific. For each word in a trajectory, the specificity S is
calculated as

S =
P

L
,

where P is the position of the words in the trajectory (number of steps away
from the root) and L is the length of the trajectory from root to leaf. Since this
is a graph and not a tree, each word (a string of characters), even a leaf, may
belong to more than one trajectory depending on the number of senses / synsets
it participates in, and the number of parallel synsets it is a descendent of. Since
we generally cannot know which sense of a word a certain occurrence stands for,
we assign to each word (string of characters) the average of its specificities. Each
page is then assigned the average of the specificities of its constituent words.
Words not in the graph are assigned the ”neutral” value of 0.5.

The pages are then categorized into predefined intervals of average speci-
ficity, where each interval has its own tag. These tags then facilitate weighting
pages differently at retrieval time when retrieving candidates of confirming pages.
Retrieval was performed using the Indri language model in the default mode,
weighting the confirmatory pages differently, as indicated above. As the primary

84

5

aim here is to try and compare traditional retrieval with ”prove it”, there was
no particular reason to divert from the default.

As in the 2010 contribution, 21 of 83 topics used for retrieval evaluation.

4 Runs and Results

The results presented here are an attempt at relating this year’s results to the
2010 results. Taken directly from our 2010 contribution, figure 1(a) shows the
results of weighting pages featuring 3 percents or more confirmatory words at
retrieval time, weighted double, quintuple (5x) and decuple (10x) the baseline2.
Our baseline was normal, non-weighted retrieval, as we would do for finding
relevant pages. The analysis was done against a filtered version of the official
qrel file, featuring only the pages assessed as confirming/refuting. Figure 1(b)
shows the result when using double weight of the pages featuring 55% specificity
as baseline, along with the results when superimposing on them the weighting
of pages with more than 3% occurrence of confirmatory words

In absolute retrieval performance terms, the results in figure 1(b) feature a
substantial improvement potential. They are still interesting. Here, superimpos-
ing the confirming words improves the baseline much more than in the 2010
results (figure 1(a)). Considering the use of a specificity measure as a stronger
semantic characterization of a document (in the sense that it is less dependent
on the occurrence of certain pre-chosen words), improving and adapting the
semantic analysis is promising.

5 Discussion

5.1 Limitation of the current experiments and further research

Exploring the semantics of a page in a basically statistic manner may be seen as a
superposition of independent components. Counting occurrences of special words
is one component on which we superimpose the detection of noun specificity. The
treatment using wordnet is further progress from the 2010 experiments, but still
rudimentary. Nouns is currently the only word-class we are treating, using only
level of specificity. trying to detect classes nouns using the lateral structure of
synsets may be another path to follow. It is also conceivable that treating of
other word classes, primarily verbs might contribute to the treatment. Verbs are
more complicated than nouns in wordnet (ref) and such treatment will be more
demanding. Wordnet is not as detailed in treating adjectives and adverbs, so the
possible contribution of treating these is questionable.

Utilizing digital books poses new challenges on information retrieval. The
mere size of the book text poses both storage, performance and content related

2 For these, as well as all other plots, We were using the indri combine / weight
operation (a combination of weighted expression) with no changes to the default
setting (regarding smoothing, a.s.o),

85

6

(a) Weighting relevant pages with 1 percent or more confirmatory words

(b) Weighting relevant pages with 3 percent or more confirmatory words

Fig. 1. Precision-recall curves for detecting confirming (proving) pages. Baseline
marked by solid lines in both subfigures.

86

7

challenges as compared to texts of more moderate size. But the challenges are
even greater if books are to be exploited not only for finding facts, but also to
support exploitation of knowledge, identifying and analyzing ideas, a.s.o.

This article represents work in progress. We explore techniques gradually in
an increasing degree of complexity, trying to adapt and calibrate them.

Even though such activities may be developed and refined using techniques
from e.g. Question Answering[2], we suspect that employing semantics-aware
retrieval [3,4], which is closely connected to the development of the Semantic
Web [5] would be a more viable (and powerful) path to follow.

One obstacle particular to this research is the test collection. Modern ontolo-
gies code facts that are closely connected to the modern world. For example the
Yago ontology, that codes general facts automatically extracted from Wikipedia,
may be complicated to apply to an out-of-copyright book collection emerging
from academic specialized environments. But this is certainly a path to follow.

6 Conclusion

This article is a further step in a discussion about semantics-aware retrieval in
the context of the INEX book track. Proving of factual statements is discussed
in light of some rudimental retrieval experiments incorporating semantics the
detection of confirmation (proving) of statement. We also discuss the task of
proving statement, raising the question whether it is classifiable as a semantics-
aware retrieval task.

References

1. Kazai, G., Koolen, M., Landoni, M.: Summary of the book track. In: INEX 2009
2. VOORHEES, E.M.: The trec question answering track. Natural Language Engi-

neering 7 (2001) 361–378
3. Tim Finin, James Mayfield, A.J.R.S.C., Fink, C.: Information retrieval and the

semantic web. In: Proc. 38th Int. Conf. on System Sciences, Digital Documents
Track (The Semantic Web: The Goal of Web Intelligence)

4. Mayfield, J., Finin, T.: Information retrieval on the semantic web: Integrating
inference and retrieval. In: SIGIR Workshop on the Semantic Web, Toronto

5. Berners-Lee, T., H.J., Lassila, O.: The semantic web. Scientific American (2001)

87

Overview of the INEX 2011 Data-Centric Track

Qiuyue Wang1,2, Georgina Ramírez3, Maarten Marx4, Martin Theobald5, Jaap
Kamps6

1 School of Information, Renmin University of China, P. R. China

2 Key Lab of Data Engineering and Knowledge Engineering, MOE, P. R. China
qiuyuew@ruc.edu.cn

3 Universitat Pompeu Fabra, Spain
georgina.ramirez@upf.edu

4 University of Amsterdam, the Netherlands
maartenmarx@uva.nl

5 Max-Planck-Institut für Informatik, Germany
martin.theobald@mpi-inf.mpg.de

6 University of Amsterdam, the Netherlands
kamps@uva.nl

Abstract. This paper presents an overview of the INEX 2011 Data-Centric
Track. Having the ad hoc search task running its second year, we introduced a
new task, faceted search task, which goal is to provide the infrastructure to
investigate and evaluate different techniques and strategies of recommending
facet-values to aid the user to navigate through a large set of query results and
quickly identify the results of interest. The same IMDB collection as last year
was used for both tasks. A total of 9 active participants contributed a total of 60
topics for both tasks and submitted 35 ad hoc search runs and 13 faceted search
runs. A total of 38 ad hoc search topics were assessed, which include 18
subtopics for 13 faceted search topics. We discuss the setup for both tasks and
the results obtained by their participants.

1 Introduction

As the de facto standard for data exchange on the web, XML is widely used in all
kinds of applications. XML data used in different applications can be categorized into
two broad classes: one is document-centric XML, where the structure is simple and
long text fields predominate, e.g. electronic articles, books and so on, and the other is
data-centric XML, where the structure is very rich and carries important information
about objects and their relationships, e.g. e-Commerce data or data published from
databases. The INEX 2011 Data Centric Track is investigating retrieval techniques
and related issues over a strongly structured collection of XML documents, the IMDB
data collection. With richly structured XML data, we may ask how well such
structural information could be utilized to improve the effectiveness of search systems.

The INEX 2011 Data-Centric Track features two tasks: the ad hoc search task and
the faceted search task. The ad hoc search task consists of informational requests to
be answered by the entities contained in the IMDB collection (movies, actors,
directors, etc.); the faceted search task asks for a restricted list of facet-values that

88

will optimally guide the searcher towards relevant information in a ranked list of
results, which is especially useful when searchers’ information needs are vague or
complex.

There were 49 institutes or groups interested in participating in the track, from
which 8 (Kasetsart University, Benemérita Universidad Autónoma de Puebla,
University of Amsterdam, IRIT, University of Konstanz, Chemnitz University of
Technology, Max-Planck Institute for Informatics, Universitat Pompeu Fabra)
submitted 45 valid ad hoc search topics and 15 faceted search topics. A total of 9
participants (Kasetsart University, Benemérita Universidad Autónoma de Puebla,
University of Amsterdam, IRIT, University of Konstanz, Chemnitz University of
Technology, Max-Planck Institute for Informatics, Universitat Pompeu Fabra,
Renmin University of China, Peking University) submitted 35 ad hoc search runs and
13 faceted search runs. 38 ad hoc topics were assessed, which included 18 subtopics
for 13 faceted search topics.

2 Data Collection

The track uses the cleaned IMDB data collection used in INEX 2010 Data-Centric
Track [1]. It was generated from the plain text files published on the IMDB web site
on April 10, 2010. There are two kinds of objects in the collection, movies and
persons involved in movies, e.g. actors/actresses, directors, producers and so on. Each
object is richly structured. For example, each movie has title, rating, directors, actors,
plot, keywords, genres, release dates, trivia, etc.; and each person has name, birth date,
biography, filmography, etc. Each XML document contains information about one
object, i.e. a movie or person, with structures conforming to the movie.dtd or
person.dtd [1]. In total, the IMDB data collection contains 4,418,081 XML documents,
including 1,594,513 movies, 1,872,471 actors, 129,137 directors who did not act in
any movie, 178,117 producers who did not direct nor act in any movie, and 643,843
other people involved in movies who did not produce nor direct nor act in any movie.

3 Ad-Hoc Search Task

The task is to return a ranked list of results, i.e. objects, or equivalently documents in
the IMDB collection, estimated relevant to the user’s information need.

3.1 Topics

Each participating group was asked to create a set of candidate topics, representative
of a range of real user needs. Each group had to submit a total of 3 topics, one for
each of the categories below:

 Known-item: Topics that ask for a particular object (movie or person). Example:
“I am searching for the version of the movie ‘Titanic’ in which the two major
characters are called Jack and Rose respectively”. For these topics the relevant

89

answer is a single (or a few) document(s). We will ask participants to submit the
file name(s) of the relevant document(s).

 List: Topics that ask for a list of objects (movies or persons). For example:
"Find movies about drugs that are based on a true story", "Find movies about the
era of ancient Rome".

 Informational: Topics that ask for information about any topic/movie/person
contained in the collection. For example: "Find information about the making of
The Lord of the Rings and similar movies", "I want to know more about Ingmar
Bergman and the movies she played in".

All the data fields in the IMDB collection can be categorized into three types:

categorical (e.g. genre, keyword, director), numerical (e.g. rating, release_date, year),
and free-text (e.g. title, plot, trivia, quote). All submitted topics had to involve, at least,
one free-text field. The list of all the fields along with their types is given in Appendix
1. We asked participants to submit challenging topics, i.e. topics that could not be
easily solved by a current search engine or DB system. Both Content Only (CO) and
Content And Structure (CAS) variants of the information need were requested. TopX
provided by Martin Theobald was used to facilitate topic development.

After cleaning some duplicates and incorrectly-formed topics, there were a total of
25 valid topics (11 list, 7 known-item, 7 informational). An example of topic is shown
in Fig. 1.

<topic id="2011105" guid="20">

<task>AdHoc</task>
<type>Known-Item</type>
<title>king kong jack black</title>
<castitle>//movie[about(.//title, king kong) and about(.//actor, jack black)]</castitle>
<description>I am searching for the version of the movie "King Kong" with the actor

Jack Black.</description>
<narrative>Cause i've heard that this is the best King Kong movie, I am searching for the

version of the movie "King Kong", with the actor Jack Black.</narrative>
</topic>

Fig. 1. INEX 2011 Data Centric Track Ad Hoc Search Topic 2011105

3.2 Submission Format

Each participant could submit up to 3 runs. Each run could contain a maximum of
1000 results per topic, ordered by decreasing value of relevance. The results of one
run had to be contained in one submission file (i.e. up to 3 files could be submitted in
total). For relevance assessment and evaluation of the results we required submission
files to be in the familiar TREC format:

<qid> Q0 <file> <rank> <rsv> <run_id>
Here:

· The first column is the topic number.
· The second column is the query number within that topic. This is currently

unused and should always be Q0.

90

· The third column is the file name (without .xml) from which a result is
retrieved.

· The fourth column is the rank of the result.
· The fifth column shows the score (integer or floating point) that generated

the ranking. This score MUST be in descending (non-increasing) order and
is important to include so that we can handle tied scores (for a given run) in a
uniform fashion (the evaluation routines rank documents from these scores,
not from ranks).

· The sixth column is called the "run tag" and should be a unique identifier
that identifies the group and the method that produced the run. The run tags
must contain 12 or fewer letters and numbers, with NO punctuation, to
facilitate labeling graphs with the tags.

An example submission is:
2011001 Q0 9996 1 0.9999 2011UniXRun1
2011001 Q0 9997 2 0.9998 2011UniXRun1
2011001 Q0 person_9989 3 0.9997 2011UniXRun1

Here are three results for topic “2011001”. The first result is the movie from the file
9996.xml. The second result is the movie from the file 9997.xml, and the third result
is the person from the file person_9989.xml.

4 Faceted Search Task

Given a vague or broad query, the search system may return a large number of results.
Faceted search is a way to help users navigate through the large set of query results to
quickly identify the results of interest. It presents the user a list of facet-values to
choose from along with the ranked list of results. By choosing from the suggested
facet-values, the user can refine the query and thus narrow down the list of candidate
results. Then, the system may present a new list of facet-values for the user to further
refine the query. The interactive process continues until the user finds the items of
interest. The key issue in faceted search is to recommend appropriate facet-values for
the user to refine the query and thus quickly identify what he/she really wants in the
large set of results. The task aims to investigate and evaluate different techniques and
strategies of recommending facet-values to the user at each step in a search session.

4.1 Topics

Each participating group was asked to create a set of candidate topics representative
of real user needs. Each topic consists of a general topic as well as a subtopic that
refines the general topic by specifying a particular interest of it. The general topic had
to result in more than 1000 results, while the subtopics had to be restrictive enough to
be satisfied by 10 to 50 results.
 Each group had to submit 4 topics: two from the set of general topics given by the
organizers, and two proposed by the participants themselves. The given set of general

91

topics was: {"trained animals", "dogme", "food", "asian cinema", "art house", "silent
movies", "second world war", "animation", "nouvelle vague", "wuxia"}.

After removing incorrectly-formed topics, we got a total of 15 general topics along
with their 20 subtopics (2 subtopics for “Food”, 3 subtopics for “Cannes” and 3
subtopics for “Vietnam”). An example of topic is shown in Fig. 2. The general topic
is specified in the <general> field of the <topic> element, while the other fields of
<topic>, e.g. <title> and <castitle>, are used to specify the subtopic, which is the
searcher’s real intention when submitting this general topic to the search system. The
participants running the faceted search task could only view the 15 general topics,
while the corresponding 20 subtopics were added to the set of topics for the ad hoc
search task. The relevance results for these subtopics were used as the relevance
results for their corresponding general topics. Thus, altogether we got 45 topics for
the ad hoc search task and 15 topics for the faceted search task.

<topic id="2011202" guid="28">
 <task>Faceted</task>
 <general>animation</general>
 <title>animation fairy-tale</title>
 <castitle>//movie[about(.//genre, animation) and about(.//plot, fairy-tale)]</castitle>
 <description>I am searching for all animation movies based on a fairy-tale.</description>
 <narrative>I like fairy-tales and their animations remakes.</narrative>
</topic>

Fig. 2. INEX 2011 Data Centric Track Faceted Search Topic 2011202

4.2 Submission Format

Each participant had to submit up to 3 runs. A run consists of two files: one is the
result file containing a ranked list of maximum 2000 results per topic in the ad hoc
search task format, and the other is the recommended facet-value file, which can be a
static facet-value file or a dynamic faceted search module.

(1) Facet-Value File. It contains a hierarchy of recommended facet-values for
each topic, in which each node is a facet-value and all of its children constitute the
newly recommended facet-value list as the searcher selects this facet-value to refine
the query. The maximum number of children for each node is restricted to be 20. The
submission format is in an XML format conforming to the following DTD.

<!ELEMENT run (topic+)>
<!ATTLIST run rid ID #REQUIRED>
<!ELEMENT topic (fv+)>
<!ATTLIST topic tid ID #REQUIRED>
<!ELEMENT fv (fv*)>
<!ATTLIST fv f CDATA #REQUIRED
 v CDATA #REQUIRED>

Here:
· The root element is <run>, which has an ID type attribute, rid, representing

the unique identifier of the run. It must be identical with that in the result file
of the same run.

92

· The <run> contains one or more <topic>s. The ID type attribute, tid, in each
<topic> gives the topic number.

· Each <topic> has a hierarchy of <fv>s. Each <fv> shows a facet-value pair,
with f attribute being the facet and v attribute being the value. The facet is
expressed as an XPath expression. The set of all the possible facets
represented as XPath expressions in the IMDB data collection can be found
in Appendix 1. We allow only categorical or numerical fields to be possible
facets. Free-text fields are not considered. Each facet-value pair represents a
facet-value condition to refine the query. For example, <fv
f=”/movie/overview/directors/director” v=”Yimou Zhang”> represents the
condition /movie/overview/directors/director=“Yimou Zhang”.

· The <fv>s can be nested to form a hierarchy of facet-values.

An example submission is:
<run rid=”2011UniXRun1”>

<topic tid=”2011001”>
<fv f=”/movie/overview/directors/director” v=”Yimou Zhang”>

<fv f=”/movie/cast/actors/actor/name” v=”Li Gong”>
<fv f=”/movie/overview/releasedates/releasedate” v=”2002”/>
<fv f=”/movie/overview/releasedates/releasedate” v=”2003”/>

 </fv>
 <fv f=”/movie/cast/actors/actor/name” v=”Ziyi Zhang”>
 <fv f=”/movie/overview/releasedates/releasedate” v=”2005”/>
 </fv>
 </fv>
 …

</topic>
<topic tid=”2011002”>

 ...
 </topic>
…
</run>

Here for the topic “2011001”, the faceted search system first recommends the facet-
value condition /movie/overview/directors/director=“Yimou Zhang” among other
facet-value conditions, which are on the same level of the hierarchy. If the user selects
this condition to refine the query, the system will recommend a new list of facet-value
conditions, which are /movie/cast/actors/actor/name=“Li Gong” and
/movie/cast/actors/actor/name=“Ziyi Zhang”, for the user to choose from to further
refine the query. If the user then selects /movie/cast/actors/actor/name=“Li Gong”,
the system will recommend /movie/overview/releasedates/releasedate=”2002” and
/movie/overview/releasedates/releasedate =”2003”. Note that the facet-value
conditions that are selected to refine the query form a path in the tree, e.g.
/movie/overview/directors/director=“Yimou Zhang” /movie/cast/actors/actor/name
= “Li Gong” /movie/overview/releasedates/releasedate =”2003”. It is required that
no facet-value condition occurs twice on any path.

93

(2) Faceted Search Module. Instead of submitting a static hierarchy of facet-
values, participants are given the freedom to dynamically generate lists of
recommended facet-values and even change the ranking order of the candidate result
list at each step in the search session. This is achieved by submitting a self-
implemented dynamically linkable module, called Faceted Search Module (FSM). It
implements the FacetedSearchInterface defined as the following:

public interface FacetedSearchInterface {

public String[] openQuery(String topicID, String[] resultList);
public String[] selectFV(String facet, String value, String[] selectedFV);
public String[] refineQuery(String facet, String value, String[] selectedFV);
public String[] expandFacet(String facet, String[] selectedFV);
public void closeQuery(String topicID);

}

public class FacetedSearch implements FacetedSearchInterface {
 // to be implemented by the participant
}
The User Simulation System (USS) used in evaluation will interact with the FSM

to simulate a faceted search session. The USS starts to evaluate a run by instantiating
a FacetedSearch object. For each topic to be evaluated, the USS first invokes
openQuery() method to initialize the object with the topic id and initial result list for
this topic. The result list is actually the list of retrieved file names (without .xml) in
the third column of the result file. The method would return a list of recommended
facet-values for the initial result list. A facet-value is encoded into a String in the
format “<facet>::<value>”, for example, “/movie/overview/directors/director::Yimou
Zhang”.

After opening a query, the USS then simulates a user’s behavior in a faceted search
system based on some user model as described in Section 5. When the simulated user
selects a facet-value to refine the query, the selectFV() method would be called to
return a new list of recommended facet-values; and the refineQuery() method would
be called to return a list of candidate results in the initial result list that satisfy all the
selected facet-value conditions. The inputs to both methods are the currently selected
facet and value, as well as a list of previously selected facet-values. A facet-vaue pair
is encoded into a String in the format shown above.

If the user could not find a relevant facet-value to refine the query in the
recommended list, he/she could probably expand the facet-value list by choosing a
facet among all possible facets, examine all its possible values and then select one to
refine the query. In such a case, the USS invokes the expandFacet() method with the
name of the facet to be expanded as well as a list of previously selected facet-values
as input and the list of all possible values of this facet as output. Observe that in the
specification of FacetedSearchInterface, we do not restrict facet-value comparisons to
be of equality, but can be of any other possible semantics since the interpretation of
facet-value conditions is capsulated into the implementation of
FacetedSearchInterface. Thus, given the same facet, different systems may give
different sets of all possible values depending on if they will cluster and how they will
cluster some values.

94

When the search session of a query ends, the closeQuery() method is invoked. The
FacetedSearch object will be used as a persistent object over the entire evaluation of a
run. That is, different topics in the same run will be evaluated using the same
FacetedSearch object. But different runs may have different implementations of the
FacetedSearch class.

5 Assessments and Evaluations

In total 35 ad hoc search runs and 13 faceted search runs were submitted by 9 active
participants. Assessment was done using the same assessment tool as that used in
INEX 2010 Data-Centric Track provided by Shlomo Geva. 38 ad hoc topics among
45 ones were assessed by those groups that submitted runs. Among the assessed
topics, there are 9 list type topics, 6 known-item type topics, 5 informational type
topics, and 18 subtopics for 13 faceted search topics.
 Table 1 shows the mapping between the subtopics in ad hoc search task and the
general topics in faceted search task. The relevance results of subtopics are treated as
the intended results for their corresponding general topics. Note that some general
topics, e.g. 2011205, 2011207 and 2011210, have more than one intention/subtopic.
For these general topics, we take the subtopics that have the least number of relevance
results. For example, compared with topic 2011120 and 2011142, topic 2011141 has
the least number of relevance results, whose relevance results are then chosen as the
relevance results for topic 2011205. The chosen subtopics are underlined in Table 1.
Since the subtopics 2011121 and 2011139 were not assessed, we have no relevance
results for topics 2011206 and 2011215 in the faceted search task.

Table 1. Mapping between the faceted search topics and subtopics in ad hoc task.

General Topics Subtopics
2011201 2011111
2011202 2011114
2011203 2011118
2011204 2011119
2011205 2011120,2011141,2011142
2011206 2011121
2011207 2011112,2011140

2011208 2011129
2011209 2011130
2011210 2011135,2011144,2011145
2011211 2011143
2011212 2011136
2011213 2011137
2011214 2011138
2011215 2011139

The TREC MAP metric, as well as P@5, P@10, P@20 and so on, was used to

measure the performance of all ad hoc runs at whole document retrieval.
For the faceted search task, since it is the first year, we used the following two

types of evaluation approaches and metrics to gain better understanding to the
problem.

 NDCG of facet-values: The relevance of the hierarchy of recommended
facet-values is evaluated based on the relevance of the data covered by these
facet-values, measured by NDCG. The details of this evaluation methodology
are given in [2].

95

 Interaction cost: The effectiveness of a faceted search system is evaluated by
measuring the interaction cost or the amount of efforts spent by a user in
meeting his/her information needs. To avoid expensive user study and make
the evaluation repeatable, we applied user simulation methodology like that
used in [3, 4] to measure the costs.

We can use two metrics to measure the user’s interaction cost. One is the number
of results, facets or facet-values that the user examined before he/she encounters the
first relevant result, which is similar to the Reciprocal Rank metric in traditional IR.
Here we assume that the effort spent on examining each facet or facet-value is the
same as that spent on examining each result. The other is the number of actions that
the user performs in the search session. We only consider the click actions.

As in [3, 4], we assume that the user will end the search session when he/she
encounters the first relevant result, and the user can recognize the relevant results
from the list of results, and can distinguish the relevant facets or facet-values that
match at least one relevant result from the list of facets or facet-values.

The user begins by examining the first page of the result list for the current query.
It is assumed that each page displays at most 10 results. If the user finds relevant
results on the first page, the user selects the first one and ends the session. If no
relevant result is found, the user then examines the list of recommended facet-values.
If there are relevant facet-values, the user then clicks on the first relevant facet-value
in the list to refine the query, and the system returns the new lists of results and facet-
values for the refined query. If none of the recommended facet-values is relevant, the
user chooses the first relevant facet in the list of all possible facets to expand and
select the first relevant value in this facet’s value list to refine the query. If the user
does not find any relevant facet to expand, the user begins to scan through the result
list and stops at the first relevant result encountered. Fig. 3 shows the flowchart of the
user interaction model and cost model used in the evaluation. Notation used in Fig. 3
is given in Table 2.

Table 2. Notation used in Fig. 3.

Symbol Meaning
q The current query
Rq The result list of query q

FVq The list of recommended facet-values for query q
Fq The list of all possible facets for query q

loc(x,y) A function returns the position of item x in the list y
cost The number of results, facet-values or facets examined by the user

actionCount The number of click actions performed by the user

96

Fig. 3. Flowchart of the Simulated User Interaction Model with Faceted Search System

6 Results

6.1 Ad Hoc Search Results

As mentioned above, a total of 35 runs from 9 different institutes were submitted to
the ad hoc search task. This section presents the evaluation results for these runs.
Results were computed over the 38 topics assessed by the participants using the
TREC evaluation tool. The topic set is a mixture of informational, known-item, list,
and faceted (sub)topics. We use MAP as the main measure since it averages
reasonably well over such a mix of topic types.

Show result.
cost +=loc(r,Rq);
actionCount += loc(r,Rq)/10;

A relevant result r is
among the top 10 of Rq?

A relevant facet-
value fv is in FVq?

Select fv to refine q.
Update Rq, FVq and Fq.
cost +=10+loc(fv,FVq);
actionCount += 1;

A relevant
facet f is in Fq?

Select f to expand.
cost +=10+|FVq|+loc(f,Fq);
actionCount += 1;

Choose a relevant value v from
f’s value list Vq,f to refine q.
Update Rq, FVq and Fq.
cost += loc(v,Vq,f);
actionCount += 1;

End the session for q.

Initialize Rq, FVq
and Fq for q.
cost = 0;
actionCount = 0;

N

N

N

Y

Y

Y

97

Table 3 shows an overview of the 10 best performing runs for this track. Over all
topics, the best scoring run is from the University of Amsterdam with a MAP of
0.3969. Second best scoring team is Renmin University of China (0.3829). Third best
scoring team is Kasetsart University (0.3479) with the highest score on mean
reciprocal rank (1/rank). Fourth best team is Peking University (0.3113) and the
highest precision at 10. Fifth best team is Universitat Pompeu Fabra, with a MAP of
0.2696 but the highest scores for precision at 20 and 30.

Table 3. Best performing runs (only showing one run per group) based on MAP over all ad hoc
topics.

Run map 1/rank P@10 P@20 P@30
p4-UAms2011adhoc 0.3969 0.6991 0.4263 0.3921 0.3579
p2-ruc11AS2 0.3829 0.6441 0.4132 0.3842 0.3684
p16-kas16-MEXIR-2-EXT-NSW 0.3479 0.6999 0.4316 0.3645 0.3298
p77-PKUSIGMA01CLOUD 0.3113 0.5801 0.4421 0.4066 0.3851
p18-UPFbaseCO2i015 0.2696 0.5723 0.4342 0.4171 0.3825
p30-2011CUTxRun2 0.2099 0.6104 0.3684 0.3211 0.2965
p48-MPII-TOPX-2.0-co 0.1964 0.5698 0.3684 0.3395 0.3289
p47-FCC-BUAP-R1 0.1479 0.5120 0.3474 0.2763 0.2412
p12-IRIT_focus_mergeddtd_04 0.0801 0.2317 0.2026 0.1724 0.1702

Interpolated precision against recall is plotted in Fig. 4, showing quite solid

performance for the better scoring runs.

98

Fig. 4. Best run by each participating institute measured with MAP

Breakdown over Topic Types

In this section, we will analyze the effectiveness of the runs for each of the four topic
types. Let us first analyze the topics and resulting judgments in more details. Table 4
lists the topics per topic type, and Table 5 lists statistics about the number of relevant
entities.

Table 4. Breakdown over Topic Types

Topic Type Topics created Topics Judged Topics with relevance
Informational 7 5 5
Known-Item 7 6 6
List 11 9 8
Faceted subtopics 20 18 18
All 45 38 37

Table 5. Relevance per Topic Type

Topic Type Topics Min Max Median Mean Std. Total
Informational 5 6 327 40 125.8 150.4 629
Known-Item 6 1 416 2 71.3 168.9 428
List 8 5 299 32 98.6 118.1 789
Faceted subtopics 18 23 452 148 168.3 123.8 3,029
All 37 1 452 72 168.3 134.0 4,875

What we see in Table 4 is that we have 5 (informational) to 18 (faceted sub-) topics

judged for each type. Given the small number of topics per type, one should be
careful with drawing final conclusions based on the analysis, since the particular
choice of topics may have had a considerable influence on the outcome.

While all topics have been judged “as is” without special instructions for each of
the topic types, the statistics of the relevance judgments in Table 5 is confirming the
differences between these topic types. The known-item topics have a median of 2
relevant documents, the list topics have a median of 32 relevant documents, and the
informational topics have a median of 40. The faceted (sub)topics, which were based
on a general seed topic, have even a median of 148 relevant documents. For all topic
types the distribution over topics is skewed, and notable exceptions exist, e.g. a
known-item topic with 416 relevant documents.

Table 6 shows the results over only the informational topics. We see that Kasetsart
(0.3564), Chemnitz (0.3449), and BUAP (0.3219) now have the best scores, and that
there are less differences in scores amongst the top 5 or 6 teams. Over all 34
submissions the system rank correlation (Kendall’s tau) with the ranking over all
topics is moderate with 0.512.

99

Table 6. Best performing runs (only showing one run per group) based on MAP over the 5
informational ad hoc topics.

run map 1/rank P@10 P@20 P@30
p16-kas16-MEXIR-2-EXT-NSW 0.3564 0.8000 0.5000 0.4200 0.3600
p30-2011CUTxRun2 0.3449 0.7067 0.5000 0.4700 0.4333
p47-FCC-BUAP-R1 0.3219 1.0000 0.5600 0.4300 0.4133
p2-ruc11AMS 0.3189 0.6500 0.4200 0.4500 0.4600
p4-UAms2011adhoc 0.3079 0.6750 0.3800 0.3100 0.2600
p18-UPFbaseCO2i015 0.2576 0.6346 0.4600 0.4400 0.3800
p77-PKUSIGMA02CLOUD 0.2118 0.5015 0.4400 0.4200 0.3133
p48-MPII-TOPX-2.0-co 0.0900 0.3890 0.2600 0.1800 0.2000
p12-IRIT_focus_mergeddtd_04 0.0366 0.3022 0.2200 0.1100 0.0733

Table 7 shows the results over only the known-item topics, now evaluated by the

mean reciprocal rank (1/rank). We observe that Amsterdam (0.9167), Renmin (also
0.9167), and MPI (0.7222). Hence the best teams over all topics score also well over
the known-item topics. This is no surprise since the known-item topics tend to lead to
relatively higher scores, and hence have a relatively large impact. Over all 34
submissions the system rank correlation based on MAP is 0.572.

Table 7. Best performing runs (only showing one run per group) based on 1/rank over the 6
known-item ad hoc topics.

run map 1/rank P@10 P@20 P@30
p4-UAms2011adhoc 0.8112 0.9167 0.3167 0.2417 0.2167
p2-ruc11AS2 0.7264 0.9167 0.3167 0.2417 0.2167
p48-MPII-TOPX-2.0-co 0.2916 0.7222 0.2333 0.1833 0.1778
p18-UPFbaseCO2i015 0.3752 0.7104 0.2500 0.2083 0.1944
p16-kas16-MEXIR-2-EXT-NSW 0.4745 0.6667 0.0833 0.0417 0.0278
p77-PKUSIGMA01CLOUD 0.5492 0.6389 0.3167 0.2417 0.2167
p30-2011CUTxRun2 0.3100 0.5730 0.2667 0.1750 0.1667
p47-FCC-BUAP-R1 0.2500 0.3333 0.0333 0.0167 0.0111
p12-IRIT_large_nodtd_06 0.0221 0.0487 0.0167 0.0333 0.0222

Table 8 shows the results over the list topics, now again evaluated by MAP. We see

the best scores for Kasetsart (0.4251), Amsterdam (0.3454), and Peking University
(0.3332). The run from Kasetsart outperforms all other runs on all measures for the
list topics. Over all 34 submissions the system rank correlation is 0.672.

Table 8. Best performing runs (only showing one run per group) based on MAP over the 8 list
ad hoc topics.

run map 1/rank P@10 P@20 P@30
p16-kas16-MEXIR-2-EXT-NSW 0.4251 0.7778 0.4778 0.3833 0.3741
p4-UAms2011adhoc 0.3454 0.6674 0.4222 0.3500 0.3222
p77-PKUSIGMA02CLOUD 0.3332 0.5432 0.3889 0.3667 0.3481
p2-ruc11AS2 0.3264 0.6488 0.4111 0.3333 0.2963
p48-MPII-TOPX-2.0-co 0.2578 0.4926 0.3000 0.3333 0.3259
p18-UPFbaseCO2i015 0.2242 0.5756 0.3556 0.3278 0.2741

100

p12-IRIT_focus_mergeddtd_04 0.1532 0.2542 0.2333 0.2111 0.2148
p30-2011CUTxRun3 0.0847 0.5027 0.1889 0.1611 0.1667
p47-FCC-BUAP-R1 0.0798 0.3902 0.2889 0.2500 0.2259

Table 9 shows the results over the faceted search subtopics (each topic covering

only a single aspect). We see the best performance in the runs from Renmin (0.3258),
Amsterdam (0.3093), and Peking University (0.3026), with Peking University having
clearly the best precision scores. Given that 18 of the 37 topics are in this category,
the ranking corresponds reasonably to the ranking over all topics. Over all 34
submissions the system rank correlation is high with 0.818.

Table 9. Best performing runs (only showing one run per group) based on MAP over the 18
facted ad hoc topics.

run map 1/rank P@10 P@20 P@30
p2-ruc11AS2 0.3258 0.5585 0.4722 0.4778 0.4722
p4-UAms2011adhoc 0.3093 0.6492 0.4778 0.4861 0.4500
p77-PKUSIGMA02CLOUD 0.3026 0.7400 0.5722 0.5361 0.5315
p16-kas16-MEXIR-2-EXT-NSW 0.2647 0.6443 0.5056 0.4472 0.4000
p18-UPFbaseCO2i015 0.2605 0.5072 0.5278 0.5250 0.5000
p30-2011CUTxRun2 0.2130 0.6941 0.4611 0.4083 0.3741
p48-MPII-TOPX-2.0-co 0.1635 0.6078 0.4778 0.4389 0.4167
p47-FCC-BUAP-R1 0.0995 0.4969 0.4222 0.3333 0.2778
p12-IRIT_focus_mergeddtd_04 0.0810 0.2754 0.2500 0.2278 0.2296

6.2 Faceted Search Results

In the faceted search task, 5 groups, University of Amsterdam (Jaap), Max-Plank
Institute, University of Amsterdam (Maarten), Universitat Pompeu Fabra, and
Renmin University of China, submitted 12 valid runs. All runs are in the format of
static hierarchy of facet-values except that one run from Renmin is in the format of a
self-implemented faceted search module. So we only present the evaluation results for
the 11 static runs. Most of the runs are based on the reference result file provided by
Anne Schuth, who generated the reference result file using XPath and Lucene. Two
runs from Amsterdam (Jaap) are based on a result file generated by Indri and one run
from Max-Plank Institute is based on the result file generated by TopX.

13 out of 15 general topics have relevance results. Table 10 shows, for each topic,
the number of relevant results, and the rank of the first relevant result in the three
result lists generated by Indri, Lucene and TopX respectively, which is in fact the cost
that users sequentially scan through the list of results to find the first relevant answer
without using the faceted-search facility. We call it raw cost, which is actually equal
to 1/RR. “-“ means that the result file contains no relevant result for this topic. It can
be observed that the Indri result file contains relevant results for all topics and ranks
them quite high. The TopX result file ranks the first relevant results for 7 topics
highest among the three result files, but it fails in containing relevant results for 3
topics. The Lucene reference result file, however, is the worst one.

101

Table 10. Raw costs (1/RR) of faceted search topics on 3 different result files.

Topic ID Number of
relevant results

Raw cost of
Indri result file

Raw cost of
Lucene result file

Raw cost of
TopX result file

2011201 48 45 - 97
2011202 327 11 19 85
2011203 138 114 451 -
2011204 342 306 989 -
2011205 141 9 316 1
2011207 23 69 850 44
2011208 285 2 11 1
2011209 76 1 2 1
2011210 23 217 - 49
2011211 72 61 45 40
2011212 156 1110 - 344
2011213 35 828 - -
2011214 176 4 44 16

We use two metrics to evaluate the effectiveness of recommended facet-values by

each run. One is the interaction cost based on a simple user simulation model, and the
other is the NDCG of facet-values [2].

As described in Section 5, the interaction cost is defined as the number of results,
facets or facet-values that the user examined before he/she encounters the first
relevant result. This cost can be compared with the raw cost, which is the number of
results sequentially examined in the result list without using faceted search facility, to
see if the faceted search facility is effective or not. We name their difference as the
Gain of faceted search. To compare systems across multiple topics, we define the
Normalized Gain (NG) and Average Normalized Gain (ANG) as the following. Note
that NG is a number between 0 and 1.

 max(0, () /)NG rawCost Cost rawCost= − (1)

| |

1

1
| |

Q

i
i

ANG NG
Q =

= ∑ (2)

 Table 11 shows the evaluation results for all the 11 runs in terms of NG and ANG.
Two runs from Amsterdam (Jaap), p4-UAms2011indri-c-cnt and p4-UAms2011indri-
cNO-scr2, are based on the Indri result file, and p48-MPII-TOPX-2.0-facet-entropy
(TopX) from Max-Plank is based on the TopX result file. All the other 8 runs are
based on the Lucene result file. Because the Indri result file is superior to the TopX
and Lucene result files, the two runs based on it perform also better than other runs,
and the best one is p4-UAms2011indri-cNO-scr2 (0.35). Among all the 8 runs based
on the Lucene result file, p2-2011Simple1Run1 (0.33) from Renmin performs best in
terms of ANG. It is followed by p4-UAms2011Lucene-cNO-lth (0.24) from
Amsterdam (Jaap), p18-2011UPFfixGDAh2 (0.21) from Universitat Pompeu Fabra
and p4-2011IlpsNumdoc (0.20) from Amsterdam (Maarten).

The NDCG scores calculated using the method described in [2] for all 11 static
runs are listed in Table 12. For p we chose 10 (we thus consider the top 10 documents
per facet-value) and we also limited the number of facet-values to be evaluated to 10.
Note that we did not evaluate the runs using NRDCG.

102

Table 11. Evaluation results of all static runs in terms of NGs and ANG.

run p4-
UAms
2011in
dri-c-
cnt

p4-
UAms
2011in
dri-
cNO-
scr2

p4-
UAms
2011lu
cene-
cNO-
lth

p48-
MPII-
TOPX-
2.0-
facet-
entropy
(TopX)

p48-
MPII-
TOPX-
2.0-
facet-
entropy
(Lucene)

p4-
2011Il
psFtSc
ore

p4-
2011Il
psNu
mdoc

p18-
2011U
PFfix
G7DA
nh

p18-
2011U
PFfix
GDAh

p18-
2011U
PFfix
GDAh
2

p2-
2011Si
mple1
Run1

201 0.64 0.60 - 0 - - - - - - -
202 0 0 0.21 0 0 0 0.21 0.11 0.11 0.11 0.21
203 0 0 0 - 0 0.83 0.82 0 0 0 0.86
204 0.63 0.75 0.94 - 0 0 0.90 0 0 0.98 0.91
205 0 0 0.81 0 0.75 0.79 0.72 0.95 0.95 0.95 0.81
207 0 0.77 0 0 0 0 0 0 0 0 0.94
208 0 0 0 0 0 0 0 0 0 0 0
209 0 0 0 0 0 0 0 0 0 0 0
210 0.75 0.74 - 0 - - - - - - -
211 0.18 0 0.53 0 0 0 0 0.71 0.71 0.71 0.60
212 0.89 0.88 - 0 - - - - - - -
213 0.76 0.76 - - - - - - - - -
214 0 0 0.64 - 0 0 0 0 0.09 0 0

ANG 0.30 0.35 0.24 0 0.06 0.12 0.20 0.14 0.14 0.21 0.33

Table 12. Evaluation results for the 11 statics runs in terms of NDCG. Results are per topic and
the mean over all topics. Highest scores per topic are highlighted.

run p4-
UAms
2011in
dri-c-
cnt

p4-
UAms
2011in
dri-
cNO-
scr2

p4-
UAms
2011lu
cene-
cNO-
lth

p48-
MPII-
TOPX-
2.0-
facet-
entropy
(TopX)

p48-
MPII-
TOPX-
2.0-
facet-
entropy
(Lucene)

p4-
2011Il
psFtSc
ore

p4-
2011Il
psNu
mdoc

p18-
2011U
PFfix
G7DA
nh

p18-
2011U
PFfix
GDAh

p18-
2011U
PFfix
GDAh
2

p2-
2011Si
mple1
Run1

201 0.03 0.03 0 0 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0 0 0 0 0
203 0 0 0 0 0 0 0 0 0 0 0
204 0 0 0 0 0 0 0 0 0 0 0
205 0 0.43 0.21 0 0 0 0.13 0 0 0 0.07
207 0 0.16 0 0 0 0 0 0 0 0 0
208 0 0.45 0 0 0 0 0 0 0 0 0
209 0 0 0 0 0 0 0.24 0 0 0 0
210 0 0 0 0 0 0 0 0 0 0 0
211 0 0 0 0 0 0 0 0 0 0 0
212 0 0 0 0 0 0 0 0 0 0 0
213 0 0 0 0 0 0 0 0 0 0 0
214 0.18 0.18 0.09 0 0 0 0 0 0 0 0

mean 0.02 0.10 0.02 0 0 0 0.03 0 0 0 0.01

NDCG

NG

103

Note that the NDCG calculation used the union of relevance judgments in case
there were multiple subtopics for a topic. Statistics for the relevance judgments used
for the NDCG evaluation are listed in Table 13.

Table 13. Relevance judgments for faceted search topics.

Topic Type Topics Min Max Median Mean Std. Total
Faceted 13 35 774 156 233 229.3 3029

7 Conclusions and Future Work

We presented an overview of the INEX 2011 Data-Centric Track. This track has
successfully run its second year and has introduced a new task, the faceted search
task. The IMDB collection has now a good set of assessed topics that can be further
used for research on richly structured data. Our plan for next year is to extend this
collection with related ones such as DBpedia and Wikipedia in order to reproduce a
more realistic scenario for the newly introduced faceted search task.

Acknowledgements
Thanks are given to the participants who submitted the topics, runs, and performed
the assessment process. Special thanks go to Shlomo Geva for porting the assessment
tools, to Anne Schuth, Yu Sun and Yantao Gan for evaluating the faceted search runs,
and to Ralf Schenkel for administering the web site.

References

1. A. Trotman, Q. Wang, Overview of the INEX 2010 Data Centric Track, INEX 2010.
2. A. Schuth, M.J. Marx, Evaluation Methods for Rankings of Facetvalues for Faceted Search,

Proceedings of the Conference on Multilingual and Multimodal Information Access
Evaluation 2011.

3. J. Koren, Y. Zhang, X. Liu, Personalized Interactive Faceted Search, WWW 2008.
4. A. Kashyap, V. Hristidis, M. Petropoulos, FACeTOR: Cost-Driven Exploration of Faceted

Query Results, CIKM 2010.

Appendix 1: All the Fields or Facets in IMDB Collection

Field Type Field (or Facet) expressed in XPath
------------ --
free-text /movie/title
numerical /movie/overview/rating
categorical /movie/overview/directors/director
categorical /movie/overview/writers/writer
numerical /movie/overview/releasedates/releasedate
categorical /movie/overview/genres/genre
free-text /movie/overview/tagline

104

free-text /movie/overview/plot
categorical /movie/overview/keywords/keyword
categorical /movie/cast/actors/actor/name
categorical /movie/cast/actors/actor/character
categorical /movie/cast/composers/composer
categorical /movie/cast/editors/editor
categorical /movie/cast/cinematographers/cinematographer
categorical /movie/cast/producers/producer
categorical /movie/cast/production_designers/production_designer
categorical /movie/cast/costume_designers/costume_designer
categorical /movie/cast/miscellaneous/person
free-text /movie/additional_details/aliases/alias
categorical /movie/additional_details/mpaa
numerical /movie/additional_details/runtime
categorical /movie/additional_details/countries/country
categorical /movie/additional_details/languages/language
categorical /movie/additional_details/colors/color
categorical /movie/additional_details/certifications/certification
categorical /movie/additional_details/locations/location
categorical /movie/additional_details/companies/company
categorical /movie/additional_details/distributors/distributor
free-text /movie/fun_stuff/trivias/trivia
free-text /movie/fun_stuff/goofs/goof
free-text /movie/fun_stuff/quotes/quote
categorical /person/name
categorical /person/overview/birth_name
numerical /person/overview/birth_date
numerical /person/overview/death_date
numerical /person/overview/height
categorical /person/overview/spouse
free-text /person/overview/trademark
free-text /person/overview/biographies/biography
categorical /person/overview/nicknames/name
free-text /person/overview/trivias/trivia
free-text /person/overview/personal_quotes/quote
free-text /person/overview/where_are_they_now/where
categorical /person/overview/alternate_names/name
numerical /person/overview/salaries/salary
free-text /person/filmography/act/movie/title
numerical /person/filmography/act/movie/year
categorical /person/filmography/act/movie/character
free-text /person/filmography/direct/movie/title
numerical /person/filmography/direct/movie/year
categorical /person/filmography/direct/movie/character
free-text /person/filmography/write/movie/title
numerical /person/filmography/write/movie/year
categorical /person/filmography/write/movie/character
free-text /person/filmography/compose/movie/title
numerical /person/filmography/compose/movie/year
categorical /person/filmography/compose/movie/character
free-text /person/filmography/edit/movie/title
numerical /person/filmography/edit/movie/year
categorical /person/filmography/edit/movie/character
free-text /person/filmography/produce/movie/title
numerical /person/filmography/produce/movie/year
categorical /person/filmography/produce/movie/character
free-text /person/filmography/production_design/movie/title
numerical /person/filmography/production_design/movie/year
categorical /person/filmography/production_design/movie/character

105

free-text /person/filmography/cinematograph/movie/title
numerical /person/filmography/cinematograph/movie/year
categorical /person/filmography/cinematograph/movie/character
free-text /person/filmography/costume_design/movie/title
numerical /person/filmography/costume_design/movie/year
categorical /person/filmography/costume_design/movie/character
free-text /person/filmography/miscellaneous/movie/title
numerical /person/filmography/miscellaneous/movie/year
categorical /person/filmography/miscellaneous/movie/character
free-text /person/additional_details/otherworks/otherwork
free-text /person/additional_details/public_listings/interviews/interview
free-text /person/additional_details/public_listings/articles/article
free-text /person/additional_details/public_listings/biography_prints/print
free-text /person/additional_details/public_listings/biographical_movies/biographical_movie
free-text /person/additional_details/public_listings/portrayed_ins/portrayed_in
free-text /person/additional_details/public_listings/magazine_cover_photos/magazine
free-text /person/additional_details/public_listings/pictorials/pictorial

106

Edit Distance for XML Information Retrieval :
Some experiments on the Datacentric track of

INEX 2011

Cyril Laitang, Karen Pinel-Sauvagnat, and Mohand Boughanem

IRIT-SIG,
118 route de Narbonne,
31062 Toulouse Cedex 9,

France

Abstract. In this paper we present our structured information retrieval
model based on subgraphs similarity. Our approach combines a content
propagation technique which handles sibling relationships with a docu-
ment query matching process on structure. The latter is based on tree
edit distance which is the minimum set of insert, delete, and replace
operations to turn one tree to another. As the effectiveness of tree edit
distance relies both on the input tree and the edit costs, we experimented
various subtree extraction techniques as well as different costs based on
the DTD associated to the Datacentric collection.

1 Introduction

XML documents could be naturally represented through trees in which nodes are
elements and edges hierarchical dependencies. Similarly structural constraints of
CAS queries can be expressed though trees. Based on these common represen-
tations we propose a SIR model using both graph theory properties and content
scoring. Figure 1 shows a conversion example of an XML document and a CAS
query expressed in the Narrowed Extended XPath (NEXI) language. The target
element is “m”. For clarity reasons we shorten the tags. In real case the “m”
is equivalent to “movie”. This document and query will be used all along this
article to illustrate the different steps of our algorithms.

The rest of this paper is organized as follows: Section 2 presents work re-
lated to the different steps of our approach; Section 3 presents state of the art
approaches and finally Section 4 discusses the results obtained over the Data-
centric track of INEX 2011 for each of our approaches.

2 Related Works

In this section we will first overview document structure representation and ex-
traction techniques and then give a brief survey on tree edit distance algorithms.

107

Fig. 1. Tree representation of an XML document and a query in which we want a
“movie” directed by “Terry Gilliam”’ with the actor “Benicio del Toro” and with a
character named “Dr Gonzo”.

2.1 Document structure representation and extraction

In the litterature we identify two families of approaches regarding how to handle
document structure regardless of content. The first one is relaxation. In these
approaches the main structure is atomized into a set of node-node relationships.
The weight of these relationships is then a representation of the distance between
nodes in the original structure. These relationships could then be used with a
language model [2]. The second family of approaches is linked to subtree extrac-
tion. The most widely used is the lowest common ancestor. The LCA is the tree
rooted by the first common ancestor of two or more selected nodes [3]. In infor-
mation retrieval it aims at finding the subtrees in which all the leaves contains
at least on term of the query [1]. The root node of that particular subtree is then
considered as a candidate to return in answer to the query.

2.2 Edit distance

Two graphs are called isomorphic if they share the same nodes and edges. Evalu-
ating how isomorphic they are is called graph matching. We make the distinction
between approximate matching and exact matching. The first one attempts to
find a degree of similarity between two structures while exact matching tries to
validate the similarity. Because of the context of our work, we will focus here
on approximate tree matching. There are three main families of approximate
tree matching: edit distance, alignment and inclusion. As tree edit distance of-
fers the most general application we will focus on this one. Tree edit distance
algorithms [13] generalize Levenshtein edit distance[9] to trees. The similarity is
the minimal set of operations (adding, removing and relabeling) to turn one tree
to another. Given two forests (set of trees) F and G, ΓF and ΓG their rightmost
nodes, T (ΓF) the tree rooted in ΓF and the cost functions cdel() and cmatch() for
removing (or adding) and relabeling; the distance d(F,G) is evaluated according
to the following recursive lemma:

108

d(F, ∅) = d(F − ΓF , ∅) + cdel(ΓF)
d(∅, G) = d(∅, G− ΓG) + cdel(ΓG)

d(F,G) = min

(a) d(F − ΓF , G) + cdel(ΓF)
(b) d(F,G− ΓG) + cdel(ΓG)

(c)
d(T (ΓF)− ΓF , T (ΓG)− ΓG)
+d(F − T (ΓF), G− T (ΓG))+cmatch(ΓF , ΓG)

(1)

Operations (a) and (b) are respectively the cost cdel() of removing ΓF or ΓG while
(c) is the cost cmatch() of relabeling the ΓF by ΓG. Later, Klein et al. [8] reduced
the overall complexity in time and space by splitting the tree structure based on
the heavy path (defined in Section 3.2). Demaine et al. [4] further improved this
algorithm by storing subtrees scores in order to reduce calculation time. Finally
Touzet et al. [5] used a decomposition strategy to dynamically select the best
nodes to recurse on between rightmost and leftmost, which reduces the number
of subtrees in memory.

Regarding the costs, a common practice is to use apriori fixed costs for the
primitive operations [10], i.e. : 1 for removing a node, 0 for relabeling a node by
another if their tags are similar and 1 otherwise. However as these costs strongly
impact the isomorphism evaluation ones can find some approaches that try to
estimate these costs in a more precise manner. Most of the non-deterministic
approaches are based on learning and training techniques. As tree-edit distance
is a generalization of the string edit distance ones can find approaches regarding
cost estimation in this domain. For example in their paper Oncina et al. [12] used
stochastic transduction for costs learning. Regarding tree edit distance itself, in
their paper Neuhaus et al.[11] used an automated cost estimation techniques
based of probability distribution of edit distance results.

3 Tree-edit distance for structural document-query
matching

We assume that a query is composed of content (keywords) and structure con-
ditions, as shown in Figure 1. The document-query similarity is evaluated by
considering content and structure separately. We then combine these scores to
rank relevant elements. In this section, we first describe the content evaluation
and then detail our structure matching algorithm based on tree edit distance.

3.1 Content relevance score evaluation

First, we used a tf × idf(Term Frequency × Inverse Document Frequency [7])
formula to score the document leaf nodes according to query terms contained
in content conditions. We evaluated two main propagation approaches which
only differ on how to handle these content conditions. In the first model (which
we call Vague) content parts of the query are merged and the content score is

109

evaluated in a one time pass. In our second approach which we define as Strict,
the content conditions are considered separately and summed at the end of the
process.

Regarding our propagation algorithm, our intuition is that an inner node
score must depend on three elements. First, it must contain its leaves relevance
(this is what we call the intermediate score). Second we should score higher a
node located near a relevant element than a node located near an irrelevant one.
Finally, there must be a way to balance the hierarchical effect on the node score.
Based on these constraints we define the content score c(n) of an element n as
the intermediate content score of the element itself plus its father’s intermediate
score plus all its father’s descendants score. Recursively, and starting from the
document root:

c(n) =

p(n)

| leaves(n) |︸ ︷︷ ︸
(i)

+
p(a1)− p(n)

| leaves(a1) |︸ ︷︷ ︸
(ii)

+
c(a1)− p(a1)

|leaves(a1)|

| children(a1) |︸ ︷︷ ︸
(iii)

if n 6= root

︷ ︸︸ ︷
p(n)

| leaves(n) |
otherwise

(2)

(i) is the intermediate content score part, with | leaves(n) | the number of leaf
nodes descendants of n and p(n) the intermediate score of the node based on
the sum of the scores of all its leaf nodes: p(n) =

∑
x∈leaves(n) p(x), with p(x)

evaluated using a tf × idf formula.
(ii) is the neighborhood score part which allows us to convey a part of the rele-
vance of a sibling node through its father a1. p(a1) is the intermediate score of
a1 and | leaves(a1) | the number of leaves of a1.
(iii) is the ancestor scores, evaluated with c(a1) the final score of the father a1

minus its intermediate score.

3.2 Structure relevance score evaluation

The second part of our approach is the structure score evaluation. Our structural
evaluation process follows three steps. The first one is the subtree selection and
extraction. The second part is the tree edit distance. The final step is then the
structure score combination. As the final part is strongly related to the subtree
extraction we will post-pone our explanations on it at the end of this section.

Edit distance optimal path As seen in Section 2.2, the tree edit distance
is a way of measuring similarity based on the minimal cost of operations to
transform one tree to another. The number of subtrees stored in memory during
this recursive algorithm depends on the direction we choose when applying the
operations. Our algorithm is an extension of the optimal cover strategy from
Touzet et al. [5]. The difference is that the optimal path is computed with the

110

help of the heavy path introduced by Klein et al. [8]. The heavy path is the path
from root to leaf which passes through the rooted subtrees with the maximal
cardinality. This means that selecting always the most distant node from this
path allows us to create the minimal set of subtrees in memory during the
recursion : this is the optimal cover strategy. Formally a heavy path is defined
as a set of nodes [n1, ..., nz] satisfying:

∀(ni, ni+1) ∈ heavy
{
ni+1 ∈ children(ni)
∀x ∈ children(ni), x 6∈ ni+1, | T (ni+1) |≥| T (x) | (3)

This strategy is used on the document and the query as input to our following
tree edit distance algorithm.

Algorithm 1: Edit distance using optimal paths

pF , pG = 1;
d(F , G, pF , pG) begin

if F = � then
if G = � then

return 0;
else

return d(�, G - OG.get(pG)), pF , pG++) + cdel

(OG.get(pG));

end

end
if G = � then

return d(F - OF .get(pF)), �, pF ++, pG) + cdel (OF .get(pF));
end
a = d(F - OF .get(pF), G, pF ++, pG) + cdel (OF .get(pF));
b = d(F , G - OF .get(pF), pF , pG++) + cdel (OG.get(pG));
c = d(T (OF .get(pF)) - OF .get(pF), T (OG.get(pG)) - OG.get(pG),
pF ++, pG++) + d(F - T(OF .get(pF)), G - T(OG.get(pG)),
next(pF), next(pG)) + cmatch (OF .get(pF), OG.get(pG));
return min(a, b, c);

end

F, G are two forests (i.e. the document and the query as first input), pF

and pG are positions in OF and OG the optimal paths (i.e. paths of the optimal
cover strategy). Function O.get(p) returns the node in path O corresponding to
position p.

Edit distance costs evaluation As seen in section 2.2, tree edit distance
operation costs are generally set to 1 for removing, to 0 for relabeling similar tags
and to 1 otherwise [13]. This could be explained by the fact that edit distance is
usually used to score slightly different trees. However in our approach document
trees are usually larger than query trees which means that the edit costs must
be more precise in their representation of the structural distance of two tags.
There is two more constraints in estimating these costs. The first constraint is

111

formal. As relabeling is equivalent to removing and then adding a node, its cost
should be at most equivalent to two removings. The last constraint is a domain
one. An IR model should be efficient as well as effective. That’s why we need
to reduce the estimation of these costs to the minimum. For all these reasons
we propose to use the DTD of the considered collection which contains all the
transition rules betweens the document elements.

We use this DTD to create an undirected graph representing all the possible
transitions between elements. We choose it to be undirected in order to make
elements strongly connected. The idea behind this is that the more a node is
isolated the less its cost will be. Figure 2 illustrates the transformation of both
DTDs of the Datacentric collection into graphs.

Fig. 2. Partial representation of the graphs created from both ”person” and ”movie”
DTDs.

As the Datacentric collection comes up with two distinct DTDs (respectively
movie and person) we choose to create three graphs : one for each DTD and a
last one merged on the labels equivalent in the two (hashed links on figure 2).
This merged DTD is used when the structure specified in the query is not explicit
enough to determine if the document is following either of the two available spe-
cific DTDs. For example in the query //movie[about(*, terry)]//character[about(*,
gonzo)] relevant nodes could be find either in a movie document or in a person
document. The merged DTD should thus be used.

In order to process the substitution cost cmatch(n1, n2) of a node n1 by a
node n2, respectively associated with the tags t1 and t2, we seek the shortest
path in these DTD graphs through a Floyd-Warshall [6] algorithm. The shortest
path allows to overcome the cycle issues we can encounter in a regular graph. We
divide this distance by the longest of all the shortest paths that can be computed
from this node label to any of the other tags in the DTD graph. Formally, with
sp() our shortest path algorithm :

cmatch(n1, n2) =
sp(t1, t2)

max(sp(t1, tx))
∀x ∈ DTD (4)

Following the above formula and the figure 2 the relabeling cost for a node
with a label m with a node labeled d will be 2/4 as the shortest path from m→ d

112

has a distance of 2 and the longest of the shortest path is m → c which has a
distance value of 4.

Similarly the removing cost is the highest cost obtained from all the sub-
stitution costs between the current document node and all of the query nodes.
Formally

cdel(n1) = max(
sp(t1, ty)

max(sp(t1, tx))
)∀x ∈ DTD;∀y ∈ Q (5)

In our example in figure 3 the deletion cost of the node associated with tag o
will be the max between o→ d, o→ a, o→ n and o→ p which is 5. The longest
shortest path being 5 our deletion cost is equal to 1.

Fig. 3. Example of the removing cost evaluation of a node labeled “o”.

Subtree extraction and evaluation As said previously we used two main
models to score and rank relevant nodes, namely Strict and Vague. These models
also differ on their way to score structure. In the Strict model we use the minimal
subtree representing all the relevant nodes labeled with a label contained in the
query as input for the matching process. This subtree is reconstructed from all
branches extracted from the relevant nodes. On the other hand, in the Vague
algorithm we extract all the subtrees rooted from the first node with a label
matching a label in the query to the documents root.

Formally, for the Vague approach, with Anc(n) the set of n ancestors; a ∈
Anc(n); T (a) the subtree rooted in a; d(T (a), Q) the edit distance between T (a)
and Q, the structure score s(n) is :

s(n) =

∑
a∈{n,Anc(n)}(1−

d(T (a),Q)
|T (a)|)

| Anc(n) |
(6)

This method is illustrated in the left part of the figure 4. Starting from the
first ancestor of a relevant leaf matching a label from the query to the root we
have eight different subgraphs. The final structure score of a node will be the
combination of all its father’s rooted subtrees. For example, the subtrees used
for the score of the node associated with the label d are 1, 2 and 8. The idea
behind this extraction is that a node located near another one matching the
structural constraint should get an improvement to its score.

113

Fig. 4. Subtree extracted regarding each of our methods. On the left the multiple
subtree extraction. On the right the minimal subtree extraction.

In our second technique which we call strict the subtree S is created from
the combination of all the paths from the deepest relevant nodes which contain a
label of the query to the higher in the hierarchy containing a label of the query.
The subtree is then the merged paths rooted by a node having the same label
than the query root. This is used to get the minimal relevant subtree possible
for the edit distance algorithm input. Formally our subtree is composed of all
the nodes a extracted as follow

{a ∈ G | a ∈ {n,Anc(n)},∀n ∈ leaves ∧ p(n) 6= 0} (7)

In this particular case there is no need to combine the final score from various
edit distances. We only have one edit distance for all the nodes in the created
subtree. The final score is then

s(n) =
d(S,Q)

| S |
(8)

This second method is illustrated in the right part of the figure 4. Starting from
the first relevant leaves ancestor matching a label from the query (in our case
“d”, “n” and “c”) we extract three branches. We then merge them into one
subgraph.

3.3 Final structure and content combination

For both models, the final score score(n) for each candidate node n is evaluated
through the linear combination of the previously normalized scores ∈ [0, 1]. Then
the elements corresponding to the target nodes are filtered and ranked. Formally,
with λ ∈ [0, 1]:

score(n) = λ× c(n) + (1− λ)× s(n). (9)

114

4 Experiments and evaluation

We submitted a total of three runs in the INEX 2011 Datacentric track. These
runs are Strict with split DTD in which we used the three DTD graphs; Strict
with merged DTD with only the merged DTD and Vague with no DTD for our
solution in which the edit distance operation costs are fixed to 1 for removing a
node not in the query 0.5 for a node with a tag in the query, 0 for a relabeling
of one node with another if their label are equivalent and 1 otherwise. As the
Datacentric task asks to return whole documents, and as our method retrieve
elements, we decided to score documents with the score of the best element they
contain. For the Strict runs ans according to previous experiments we choose
the λ parameter from the equation (9) to 0.4 while for the Vague run λ is set to
0.6. Before going further it is important to notice that the runs we submitted for
the INEX 2011 Datacentric track were launched over a corrupted index missing
around 35% of the documents (mostly movie ones). This can explain the very
low official results obtained. Results are presented in table 1.

Runs MAP P@5 P@10 P@20 P@30

Strict with split DTD 0.1046 0.2526 0.2605 0.2487 0.2360

Strict with merged DTD 0.0801 0.1895 0.2026 0.1724 0.1702

Vague with no DTD 0.041 0.0737 0.0684 0.0684 0.0684
Table 1. Our official INEX 2011 results with λ set to 0.4 for our Strict method and
0.6 for our Vague approach over our previous corrupted index.

The same runs evaluated over a non-corrupted index are presented in table
2. For this article we also decided to experiment all the possible combinations of
our various algorithms in order to study the influence of the DTD use as well as
our choice to split the content constraints.

Runs MAP P@5 P@10 P@20 P@30

Strict with split DTD 0.1613 0.2722 0.2583 0.2593 0.2407

Strict with merged DTD 0.1289 0.2389 0.2000 0.2167 0.2204

Strict with no DTD 0.1280 0.2278 0.2278 0.2083 0.2102

Vague with split DTD 0.1143 0.1947 0.1816 0.1711 0.1553

Vague with merged DTD 0.1206 0.1842 0.1684 0.1553 0.1360

Vague with no DTD 0.1667 0.3368 0.2912 0.2684 0.2588
Table 2. Our corrected INEX 2011 results with λ set to 0.4 for our Strict method and
0.6 for our Vague approach over a clean index.

Surprisingly our most recent method which gave better results on the Data-
centric 2010 test collection, namely the Strict one, scores less (in average) than
our previous method Vague which merges all the content constraints. This could
due to the fact that since we return the whole document and not the element
there is less interests in limiting the content conditions to the structure. Re-
garding the DTD itself we cannot conclude on its general effectiveness. It seems
to be a good way to estimate costs for edit distance when the input trees are
similar (Strict runs) while it decreases results in case of trees being of different
cardinalities. Finally our revised runs score less than the top ten participants.

115

We suppose that one of the critical issue is our choice about global document
scoring: as said previously our algorithm is not designed to retrieve a whole
document but an element.

4.1 Conclusions and future work

In this paper we presented two of our XML retrieval models whose main origi-
nality is to use graph theory through tree edit distance. We proposed a way of
estimating the tree edit distance operation costs based on the DTD. It appears
that the use of the DTD in our case seems to be only relevant in the context
of matching trees with approximatively the same cardinality as the more the
difference between tree cardinalities increases, the more it decreases the results.
Finally, as our system is designed to retrieve elements and not whole documents
we made the choice to set the documents score to the score of it’s best element.
This decision could have impacted our results over the other INEX participants.

References

1. Evandrino G. Barros, Mirella M. Moro, and Alberto H. F. Laender. An Evaluation
Study of Search Algorithms for XML Streams. JIDM, 1(3):487–502, 2010.

2. M. Ben Aouicha, M. Tmar, and M. Boughanem. Flexible document-query matching
based on a probabilistic content and structure score combination. In Symposium
on Applied Computing (SAC), Sierre, Switzerland. ACM, mars 2010.

3. Michael A. Bender and Martin Farach-Colton. The lca problem revisited. In Pro-
ceedings of the 4th Latin American Symposium on Theoretical Informatics, LATIN
’00, pages 88–94, London, UK, 2000. Springer-Verlag.

4. E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal decom-
position algorithm for tree edit distance. ACM Trans. Algorithms, 6:2:1–2:19,
December 2009.

5. S. Dulucq and H. Touzet. Analysis of tree edit distance algorithms. In Proceedings
of the 14th annual symposium of combinatorial pattern matching, pages 83–95,
2003.

6. Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5:345–, June
1962.

7. K. Sparck Jones. Index term weighting. Information Storage and Retrieval,
9(11):619–633, 1973.

8. P N. Klein. Computing the edit-distance between unrooted ordered trees. In
Proceedings of the 6th Annual European Symposium on Algorithms, ESA ’98, pages
91–102, London, UK, 1998. Springer-Verlag.

9. VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, 1966.

10. Yashar Mehdad. Automatic cost estimation for tree edit distance using particle
swarm optimization. In Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers, ACLShort ’09, pages 289–292, 2009.

11. Michel Neuhaus and Horst Bunke. Automatic learning of cost functions for graph
edit distance. Information Science, 177(1):239–247, 2007.

12. Jose Oncina and Marc Sebban. Learning stochastic edit distance: Application
in handwritten character recognition. Pattern Recogn., 39:1575–1587, September
2006.

13. K-C. Tai. The tree-to-tree correction problem. J. ACM, 26:422–433, July 1979.

116

UPF at INEX 2011
Data Centric and Books and Social Search tracks

Georgina Ramı́rez

Universitat Pompeu Fabra, Barcelona, Spain
georgina.ramirez@upf.edu

Abstract. This paper describes our participation at INEX 2011. We
participated in two different tracks: Data Centric and Books and Social
Search. In the Books and Social Search track we only participated in
one of the tasks: Social Search for Best Books (SB). We studied the
performance effects of using different query fields for query expansion. In
the Data Centric track we participated in both tasks: Adhoc and Faceted
Search. In the Adhoc task we studied the effects of using different indices
depending on what type of object is asked for. For the Faceted task we
use a fixed set of facets and experiment with the hierarchical and non
hierarchical presentation of them.

Keywords: XML, focused retrieval, INEX, faceted search, query ex-
pansion

1 Introduction

We describe the experiments performed on the INEX 2011 data for two different
tracks: data centric and books and social search.

2 Social Search for Best Books

From the Books and Social Search track we only participated in the Social Search
for Best Book task (SB). The goal of this task is to investigate the value of user-
generated metadata (e.g., reviews and tags) in addition to publisher-supplied
and library catalogue metadata, to aid retrieval systems in finding the best,
most relevant books for a set of topics of interest.

Thus the task is to find the most relevant books given a topic. After perform-
ing a few experiments on the training set, we observed the following: 1) There
are, in general, a few relevant books per topic. Most of the time it is not difficult
to find them. The main problem is to rank them high, to obtain a good early
precision. 2) When giving emphasis to the words contained in the title field we
improve precision but we miss some relevant results, we loose in recall. 3) When
giving emphasis to the words contained in the tags field, we improve slightly
both, precision and recall.

Besides expecting to verify whether these observations hold in the larger set,
in this track we investigate the following research questions:

117

2

1.- Do the genre and group fields from the topic description contain useful terms
for query expansion?

2.- How does the use of the tag count information affect retrieval performance?
3.- Can we improve precision by using the category information from the books?

2.1 Collection

The social data collection contains metadata for 2.8 million books crawled from
the online book store of Amazon and the social cataloging web site of Library-
Thing in February and March 2009 by the University of Duisburg-Essen. The
data set is available as a MySQL database or as XML. For each book, the fol-
lowing metadata is included:

From Amazon: ISBN, title, binding, label, list price, number of pages, pub-
lisher, dimensions, reading level, release date, publication date, edition, Dewey
classification, title page images, creators, similar products, height, width, length,
weight, reviews (rating, author id, total votes, helpful votes, date, summary,
content) editorial reviews (source, content). From LibraryThing: Tags (includ-
ing occurrence frequency), blurbs, dedications, epigraphs, first words, last words,
quotations, series, awards, browse nodes, characters, places, subjects.

2.2 Experiments setup

This section describes the setup of the experiments carried out for the Social
Search for Best Book task of INEX 2011. For all our experiments we have used
the Indri Search Engine [1]. Indri uses a retrieval model based on a combination
of language modeling and inference network retrieval frameworks. We have used
linear smoothing and lambda 0.2. Topics and documents have been pre-processed
using the Krovetz stemmer [2] and the Smart stop-word list [3]. We indexed all
the fields in the collection.

2.3 Runs

The different NEXI [4] queries used for our official runs are presented in Table 2.3.
Runs number 1 and 2 are our baselines and simply give emphasis to the

words contained in different fields of the documents. The first one gives a bit
more importance to the words contained in the tags field. The second one gives
emphasis to the words contained in the tags but also in the title fields. For these
runs the query is formed by the words contained in the title field of the topic
description.

Runs number 3, 4, and 5 perform query expansion with the terms contained
in the genre and group fields of the topic description. These runs use the same
NEXI query type as run 2 and should give us some insight whether the terms
contained in these fields are useful terms for query expansion (first research
question).

118

3

Table 1. Description of the official runs.

Run id NEXI query

1 UPF base BT02 //book[about(.,q) AND about (.//tags, q)]

2 UPF base BTT02 //book[about(.,q) AND about (.//tags, q)
AND about (.//title, q)]

3 UPF QE genre BTT02 //book[about(.,q+ge) AND about (.//tags, q+ge)
AND about (.//title, q+ge)]

4 UPF QE group BTT02 //book[about(.,q+gr) AND about (.//tags, q+gr)
AND about (.//title, q+gr)]

5 UPF QE genregroup BTT02 //book[about(.,q+ge+gr) AND about (.//tags, q+ge+gr)
AND about (.//title, q+ge+gr)]

6 UPF QEGr BTT02 RM //book[about(.,q+ge+gr) AND about (.//tags, q+ge+gr)
AND about (.//title, q+ge+gr)]

Run number 6 is the same as run number 5 applying a post-processing step
were all isbn numbers from the similar and dissimilar fields of the topic descrip-
tion are removed. Our assumption for this run is that the books contained in
the similar and dissimilar fields are examples of books that the user gives to
help with the search but are not books the user wants to see in the result set.
Note that only 56 out of the 211 topics contain any of these informations in its
description.

2.4 Results

The results of our official runs are shown in Table 2.4.

Table 2. Official results for the SB runs.

Run id MAP MRR P@10 P@20 R-precision

UPF base BT02 0.1048 0.2039 0.0796 0.0756 0.0949
UPF base BTT02 0.1018 0.2135 0.0863 0.0706 0.0909
UPF QE genre BTT02 0.0910 0.2089 0.0844 0.0725 0.0841
UPF QE group BTT02 0.1223 0.2478 0.0995 0.0834 0.1265
UPF QE genregroup BTT02 0.1001 0.2283 0.0934 0.0787 0.1042
UPF QEGr BTT02 RM 0.0973 0.2183 0.0872 0.0718 0.1049

Best performing run at INEX 2011 0.2283 0.4811 0.2071 0.1569 0.2225

119

4

Our best run is the one that performs query expansion using the terms con-
tained in the group field of the topic (fourth row). This run improves significantly
over its baseline (second row). However, it performs very poorly compared to
the best performing run in this task (last row). We plan to investigate why the
performance of our baselines are so poor.

Note that when removing the similar and dissimilar books from our best run,
we obtain a much worse overall performance (sixth row). This indicates that our
assumption that the user does not want to see the examples he or she suggests
is not true.

Performing query expansion with the genre information performs much worse
than performing it with the group one. That is probably because the terms
contained in the genre field are generally more generic. For example, in topic
number 399 the title is “cakes”, the group is “sweet treat” and the genre is
“technology home economics cooking”. It could be that when adding the genre
terms in the query terms such as technology or economics introduce some noise,
irrelevant results. Further analysis needs to be done in order to confirm this
hypothesis. We also plan to analyze, on a topic base, in which cases does the
use of the genre and group information help most effectively to improve retrieval
performance.

Having a look at the relevance assessments we can see that there are very
few relevant documents per topic, an average of 11.3 (median 7). This confirms
our observation from the training set. Furthermore, for more than a third of
the topics, the task can be seen as a know-item search since a very small set
of relevant results can be found: 17 topics have only 1 relevant result, 37 topics
have 1 or 2 relevant results, and 79 topics have less or 5 relevant results.

The extra experiments performed to address the other research questions and
its results will be reported in the final version of this paper.

3 Data Centric track

The goal of the Data Centric Track is to investigate retrieval over a strongly
structured collection of documents, in particular, the IMDB collection. The track
features two tasks. In the Ad Hoc Search Task retrieval systems are asked to an-
swer informational requests with the entities contained in the collection (movies,
actors, directors, etc.). In the Faceted Search Task retrieval systems are asked to
provide a restricted list of facets and facet-values that will optimally guide the
searcher toward relevant information.

3.1 Collection

The track uses the IMDB data collection generated from the plain text files
published on the IMDb web site on April 10, 2010. There are two kinds of objects
in the collection, movies and persons involved in movies, e.g. actors/actresses,
directors, producers and so on. Each object is richly structured. For example,
each movie has title, rating, directors, actors, plot, keywords, genres, release

120

5

dates, trivia, etc.; and each person has name, birth date, biography, filmography,
etc. Each XML file contains information about one object, i.e. a single movie
or person. In total, the IMDB data collection contains 4,418,081 XML files,
including 1,594,513 movies, 1,872,471 actors, 129,137 directors who did not act
in any movie, 178,117 producers who did not direct nor act in any movie, and
643,843 other people involved in movies who did not produce nor direct nor act
in any movie.

3.2 Experiments setup

This section describes the setup of the experiments carried out for both tasks
in the Data-Centric track of INEX 2011. For all our experiments we have used
the Indri Search Engine [1]. Indri uses a retrieval model based on a combina-
tion of language modeling and inference network retrieval frameworks. We have
used linear smoothing and lambda 0.15 (based on our last year experiments in
the same collection). Topics and documents have been pre-processed using the
Krovetz stemmer [2] and the Smart stop-word list [3].

We created two different indices for the collection: one for movies and one
for persons. We indexed all fields for both types of documents.

3.3 Adhoc Search Runs and Results

Runs Our approach for the Adhoc Search task is based on the results obtained
from our last year participation in the track, where we found out that indexing
only the movie documents of the collection performed much better than indexing
all the collection, one of the best performing runs of last year. For this year, we
wanted to check whether we can improve those results by running topics in
different indices according to the object they ask for.

Therefore, we manually classified all topics according to which type of object
the users are searching for: movies or persons. We found that only 9 out of the
45 topics were asking for persons. We then run each topic on its specific index,
either movies or persons, and merged the results for submission.

We only submitted two runs, both following the same approach. The first
one, UPFbaseCO2i015, uses the CO title of the topic while the second one,
UPFbaseCAS2i015, uses the CAS one.

Results The results of our official runs are shown in Table 3.3.
We can see that using the CO title of the topic performs much better than

using the CAS version of it. That could be due to the strictness we treat the
structure of the query in our run but further analysis will be done in order to
confirm this hypothesis.

Our runs are clearly better at precision than recall (when looking at their
ranking position). This suggests that the use of independent indices might indeed
help to improve on early precision. The low performance at high recall levels
could be due to the strictness of retrieving only one type of object per topic.

121

6

Table 3. Official results for the Data Centric, adhoc search runs. The number in
parentheses indicates the run position in the official ranking.

Run id MAP P@5 P@10 P@20 P@30

UPFbaseCO2i015 0.2696 (9) 0.4211 (9) 0.4342 (5) 0.4171 (3) 0.3825 (5)
UPFbaseCAS2i015 0.1117 (26) 0.3579 (18) 0.3474 (14) 0.3211 (13) 0.3070 (13)

Many topic authors have assessed both types of objects as relevant. A deeper
analysis on these issues will be reported in the final version of this paper.

3.4 Faceted Search Runs and Results

Runs For the Faceted search task we used a fixed set of facets, namely directors,
actors, and genres, and experiment with the hierarchical and non-hierarchical
presentation of them. For that, we first took the reference run and extracted the
most popular facets values for each of our facets. By popular we mean the most
repeated facet-value in the result set. We then presented these facet-values in
different ways.

We submitted three runs. The parameters and description of our runs can
be found in Table 3.4.

Table 4. Description of the official faceted search runs.

Run id Type facet-value number

1 UPFfixGDAnh2 Non hierarchical genre (7), director (5), actor (8)
2 UPFfixGDAh Hierarchical genre (7), director (5), actor (8)
3 UPFfixGDAh2 Hierarchical genre (20), director (20), actor (20)

The first run is a non hierarchical run, which means that presents all the
facet-value pairs at the same level. Thus, we return 20 facet-value pairs per
topic. The second and third run are hierarchical, meaning that for each genre-
value pair, we return all director-value pairs, and within each director-value pair
we return all actor-value pairs. Thus we return 280 and 8000 results per topic
respectively.

Results Official results for the Faceted search task are not yet available.

4 Discussion and Conclusions

This paper described our participation at INEX 2011. We participated in two
different tracks: Data Centric and Books and Social Search.

122

7

Acknowledgments This work has been supported by the Spanish Ministry of
Science and Education under the HIPERGRAPH project and the Juan de la
Cierva Program.

References

1. T. Strohman, D. Metzler, H. Turtle, and W. B. Croft, Indri: a language model based
search engine for complex queries. Proceedings of the International Conference on
Intelligent Analysis, 2005.

2. R. Krovetz, Viewing morphology as an inference process. In Proc. of the 16th ACM
SIGIR Conference, Pittsburgh, June 27-July 1, 1993; pp. 191-202.

3. G. Salton, The SMART Retrieval SystemExperiments in Automatic Document Pro-
cessing. Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1971.

4. A. Trotman, B. Sigourbjörnsson Narrowed Extended XPath I (NEXI). In Advances
in XML Information Retrieval, Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2005.

123

University of Amsterdam Data Centric Ad Hoc
and Faceted Search Runs

Anne Schuth and Maarten Marx

ISLA, University of Amsterdam, The Netherlands
{anneschuth,maartenmarx}@uva.nl

Abstract. We describe the ad hoc and faceted search runs for the 2011
INEX data centric task that were submitted by the ILPS group of the
University of Amsterdam.

Description of the runs

As our XPath/XQuery processor we used eXist version 1.4.1, a native XML
database (Meier, 2009). Running NEXI queries (Trotman and Sigurbjörnsson,
2005) —all CAStitles are NEXI expressions— is easy in eXist because it supports
full integration of XQuery with full-text search. Full-text search is implemented
using Lucene 2.9.2. We defined Lucene indexes on all elements E, for which a
topic exists which checks whether E is about() some full text expression T . This
includes the two “document-indexes” on movie and person elements.

The INEX NEXI queries are easily translated into the specific syntax of
XQuery with full-text search employed by eXist. Table 1 describes the rewrite
rules we used.

We also translated each content-and-structure query into a content-only
query. We did so by first repacing all paths by ’.’, and then replacing expressions
of the form .[Q1]/.[Q2] by .[Q1 and Q2]. Boolean and’s and or’s were kept.
For example (based on the Dr Gonzo query),

CAS //A[about(.//B,’b’)]//C[about(.//D,’d’) or about(.//E,’e’)]
CO .[about(.,’b’) and (about(.,’d’) or about(.,’c’))]

Both our ad hoc and faceted search runs are implemented as XQueries. We
now describe the specific settings used.

Ad hoc runs. For ad hoc, we created mixture models. Experiments with esti-
mating the best value for λ on the INEX 2010 collection had no success. Thus
we used the extreme values: 0.0, 0.5 and 1.0. For each document d, we calculate
the Document Score (ds(d)) and the Element Score (es(d)), as follows

ds(d) is simply the Lucene score of the document for the CO version of the CAS
query. For $d a document and Q a NEXI expression, this score is available
in eXist by the function ft:score($d/Q)).

es(d) is the maximum Lucene-score for any element in document d answering
the NEXI query. For $da document and Q a NEXI expression, this score is
calculated as max(for $e in $d/Q return ft:score($e)).

124

Table 1. Rewrite rules for CAStitles

before after

OR or

AND and

about(P,T) ft:query(P,’T’)

Faceted runs We have to define a limited number of facets on our documents. We
selected facets in such a way that each can cover a broad range of values while
these facetvalues are not unique for a single document. Movies and persons have
different facets. For each facet, we define its name and an XPath expression by
which the facetvalues can be retrieved. The possible values are dictated by the
data. We list our selection in Table 2.

We defined two strategies for the selection and ordering of facetvalues. The
first system, which we will call count, ranks facetvalues based on the number of
—not necessarily relevant— hits that would be the result if the facetvalue were
selected. This is captured by the following calculation:

count($hits[facet-path eq $value])

A slightly more elaborate system, which we call sumscore, orders facetvalues
based on the sum of the Lucene full-text score of a certain subset of the hits
that would be the result if the facetvalue were selected. Exactly what kind of
subset is a parameter in this function. We have used the 10 documents with the
highest Lucene score.

Both runs use the provided standard run for retrieval of the documents.

Acknowledgments

The authors acknowledge the financial support of the Future and Emerging
Technologies (FET) programme within the Seventh Framework Programme for
Research of the European Commission, under the FET-Open grant agreement
FOX, number FP7-ICT-233599. This research was supported by the Netherlands
organization for Scientific Research (NWO) under project number 380-52-005
(PoliticalMashup).

Bibliography

Meier, W. (2009). eXist: An open source native XML database. Web, Web-
Services, and Database Systems, pages 169–183.

Trotman, A. and Sigurbjörnsson, B. (2005). Narrowed extended xpath i (NEXI).
Advances in XML Information Retrieval, pages 16–40.

125

Table 2. Names and paths, defined as XPath expressions, of our selections of facets.
Some apply to topics that ask for movies, others to topics that ask for persons, there
is no overlap.

name facet-path applies to

director .//directors/director movie
writer .//writers/writer movie
genre .//genres/genre movie
keyword .//keywords/keyword movie
actor .//cast/actors/actor/name movie
producer .//cast/producers/producer movie
certification .//certifications/certification movie
language .//additional details/languages/language movie
country .//additional details/countries/country movie
name .//person/name person
height .//height person
other-movie .//filmography/act/movie/title person
other-movie-year .//filmography/act/movie/year person
nickname .//nicknames/name person

126

BUAP: A Recursive Approach to the

Data-Centric track of INEX 2011⋆

Darnes Vilariño, David Pinto, Saul León1, Esteban Castillo2, Mireya Tovar
{darnes,dpinto,mtovar}@cs.buap.mx, 1saul.ls@live.com,

2ecjbuap@gmail.com

Facultad de Ciencias de la Computación
Benemérita Universidad Autónoma de Puebla, México

Abstract. A recursive approach for keyword search on XML data for
the Ad-Hoc Search Task of INEX 2011 is presented in this paper. The aim
of this approach was to detect the concrete part (in the representation
tree) of the XML document containing the expected answer. For this
purpose, we initially obtain a tree structure, which represents an XML
document, tagged by levels. A typical search engine based on posting
lists is used in order to determine those documents that match in some
degree with the terms appearing in the given query(topic). Thereafter, in
a recursively process, we navigate into the tree structure until we find the
best match for the topic. The obtained results are shown and compared
with those presented by other teams in the competition.

1 Introduction

The Data-Centric track, introduced first at 2010 and now presented in its sec-
ond edition at INEX 2011, aims to provide a common forum for researchers
or users to compare different retrieval techniques on Data-Centric XML, thus
promoting the research work in this field [2]. Compared with the traditional
information retrieval process, where whole documents are usually indexed and
retrieved as single complete units, information retrieval from XML documents
creates additional retrieval challenges. In the task of document-centric XML
keyword search, a simple structure of long text field predominates, however, in
Data-Centric XML, the structure of document representation is very rich and
carries important information about objects and their relationships [1].

Until recently, the need for accessing the XML content has been addressed
diferently by the database (DB) and the information retrieval (IR) research com-
munities. The DB community has focussed on developing query languages and
eficient evaluation algorithms used primarily for Data-Centric XML documents.
On the other hand, the IR community has focussed on document-centric XML
documents by developing and evaluating techniques for ranked element retrieval.

⋆ This work has been partially supported by the CONACYT project #106625, VIEP
VIAD-ING11-I, as well as by the PROMEP/103.5/09/4213 grant.

127

Recent research trends show that each community is willing to adopt the well-
established techniques developed by the other to efectively retrieve XML content
[3].

The Data-Centric track uses the IMDB data collection gathered from the
following website: http://www.imdb.com. It consists of information about more
than 1,590,000 movies and people involved in movies, e.g. actors/actresses, direc-
tors, producers and so on. Each document is richly structured. For example, each
movie has title, rating, directors, actors, plot, keywords, genres, release dates,
trivia, etc.; and each person has name, birth date, biography, filmography, and
so on.

The Data-Centric track aims to investigate techniques for finding information
by using queries considering content and structure. Participating groups have
contributed to topic development and evaluation, which will then allow them to
compare the effectiveness of their XML retrieval techniques for the Data-Centric
task. This will lead to the development of a standard test collection that will
allow participating groups to undertake future comparative experiments.

The rest of this paper is structured as follows. Section 2 describes the ap-
proach used for preparing the run submitted to the competition. Section 3 show
the results obtained, as well as the scores reported by the rest of the teams.
Finally, in Section 4 we discuss findings and future work.

2 Description of the system

In this section we describe how we have indexed the corpus provided by the task
organizers. Moreover, we present the algorithms developed for tackling the prob-
lem of searching information based on structure and content. The original XML
file has been previously processed in order to eliminate stopwords and punctua-
tion symbols. Moreover, we have transformed the original hierarchical structure
given by the XML tags to a simple string containing both the corresponding
XML tag and a numeric value which indicates the level at the original structure.
In Figure 1 we may see the original structure of a part of an XML document
([XML]). The same Figure depicts the corresponding strings obtained as a result
of the document representation transformation ([TXT]).

For the presented approach we have used an inverted index tree in order to
store the XML templates of the corpus. In this kind of data structure we have
considered to include both, the term and the XML tag (with its corresponding
hierarchy). The aim was to be able to find the correct position of each term
in the XML hierarchy and, therefore, to retrieve those parts of the XML file
containing the correct answer of a given query. The numeric value introduced
in the previously mentioned document representation allows to store the same
term in the inverted index, even when this term occurs in different contexts.
In Figure 2, we show an example of the inverted index. We may see that the
dictionary entry “person.overview.alternate names.name[1].smith” refers to the
term “smith” which has a document frequency of 699, a term frequency of 1
at the document identified as “person 990001”, etc. The complete name of this

128

[XML]

<alternate_names>

<name>Smith, Kamani Ray

</name>

<name>Smith, Kimani

</name>

<name>Smithlou, Kimani Ray

</name>

</alternate_names>

[TXT]

person.overview.alternate_names.name[1] smith

person.overview.alternate_names.name[1] kamani

person.overview.alternate_names.name[1] ray

person.overview.alternate_names.name[2] smith

person.overview.alternate_names.name[2] kimani

person.overview.alternate_names.name[3] smithlou

person.overview.alternate_names.name[3] kimani

person.overview.alternate_names.name[3] ray

: :

Fig. 1. Example of the transformation for the document representation

“smith” instance is “smith kamani ray”, but there is, at least at the example
showed, another “smith” whose complete name is “smith kimani”. Therefore,
the numeric value introduced allows to avoid confusions for identifying each of
the different instances.

person.overview.alternate_names.name[1].smith : (699) person_990001:1,

person_993004:1 ...

: :

Fig. 2. Example of the type of inverted index used in the experiments

We have created five different inverted indexes, for the each one of the follow-
ing categories: actors, directors, movies, producers and others. Once the dataset
was indexed we may be able to respond to a given query. In this case, we have also
processed the query by identifying the corresponding logical operators (AND,
OR) in a recursive manner, i.e., we produce answers for the inner operators first,
and recursively we merge the results until we reach the external operators, which
lead us to obtain the complete evaluation of the query.

129

In order to obtain the list of candidate documents for each topic, we have
calculated the similarity score between the topic and each corpus document as
shown in Eq. (1) [4], which was implemented as presented in Algorithm 1.

SIM(q, d) =
∑

ck∈B

∑

cl∈B

CR(ck, cl)
∑

t∈V

weight(q, t, ck)
weight(d, t, cl)

√

∑

c∈B,t∈V weight(d, t, c)2

(1)
where the CR function is calculated as shown in Eq. (2), V is the vocabulary
of non-structural terms; B is the set of all XML contexts; and weight(q, t, c)
and weight(d, t, c) are the weights of term t in XML context c in query q and
document d, respectively (as shown in Eq. (3)).

CR(cq, cd) =

{

1+|cq|
1+|cd|

if cq matches cd

0 otherwise
(2)

where cq and cd are the number of nodes in the query path and document path.

weight(d, t, c) = idft ∗ wft,d (3)

where idft is the inverse document frequency of term t, and wft,d is the frequency
ot term t in document d.

Algorithm 1: Scoring of documents given a topic q

Input: q, B, V , N : Number of documents, normalizer

Output: score

for n = 1 to N do1

score[n] = 02

foreach 〈cq, t〉 ∈ q do3

wq = weight(q, t, cq)4

foreach c ∈ B do5

if CR(cq, c) > 0 then6

postings = GetPostings(c, t)7

foreach posting ∈ postings do8

x = CR(cq, c) ∗ wq ∗ PostingWeight(posting)9

score[docID(posting)]+ = x10

end11

end12

end13

end14

end15

for n = 1 to N do16

score[n] = score[n]/normalizer[n]17

end18

return score19

130

3 Experimental results

We have evaluated 45 topics with the corpus provided by the competition orga-
nizers. This dataset is made up of 1,594,513 movies, 1,872,471 actors, 129,137
directors, 178,117 producers and, finally, 643,843 files categorized as others.

In this competition we submitted one run which we was named: “p47-FCC-
BUAP-R1”, and the obtained results (scores and ranking) are presented as fol-
lows. Table 1 a) shows the Mean Average Precision for the differents runs sub-
mitted by all the teams at the competition (included ours). Table 1 b) shows the
Precision at 5 (P@5) score for the differents runs submitted by all the teams at
the competition (included ours). Here we may see that our approach obtained,
in both cases, scores above median.

In Figure 3 we may see the Precision-Recall graph for the best runs mea-
sured with MAP. The curve behaviour clearly shows that we have retrieve some
relevant documents at the first positions of the ranking list, however, as the
number of answers increases, we introduce a number of documents that were
not considered at the gold standard. This analysis lead us to consider a better
way of filtering the noisy documents in order to bring the rest of the relevant
documents in a better position at the ranking list.

Fig. 3. Precision-Recall graph

131

Run Score

p4-UAms2011adhoc 0.3969
p2-ruc11AS2 0.3829
p2-ruc11AMS 0.3655
p16-kas16-MEXIR-2-EXT-NSW 0.3479
p77-PKUSIGMA01CLOUD 0.3113
p77-PKUSIGMA02CLOUD 0.2997
p77-PKUSIGMA04CLOUD 0.2939
p77-PKUSIGMA03CLOUD 0.2874
p18-UPFbaseCO2i015 0.2696
p4-2011IlpsEs 0.2504
p4-2011IlpsEs 0.2318
p2-ruc11AI2 0.2166
p16-kas16-MEXIR-2-ANY-NSW 0.2125
p30-2011CUTxRun2 0.2099
p2-ruc-casF-2011 0.2082
p30-2011CUTxRun3 0.1968
p48-MPII-TOPX-2.0-co 0.1964
p16-kas16-MEXIR-2-ALL-NSW 0.1937
p30-2011CUTxRun1 0.1898
p4-2011IlpsDs 0.1884
p16-kas16-MEXIR-EXT2-NSW 0.183
p2-ruc11AMI 0.1804
p2-ruc11AL2 0.1677
p2-ruc11AML 0.1661
p47-FCC-BUAP-R1 0.1479
p18-UPFbaseCAS2i015 0.1117
p16-kas16-MEXIR-ANY2-NSW 0.0871
p16-kas16-MEXIR-ALL2-NSW 0.0857
p12-IRIT focus mergeddtd 04 0.0801
p16-kas16-BM25W-SS-SW 0.0643
p16-kas16-BM25W-NSS-SW 0.0641
p16-kas16-BM25W-SS-NSW 0.0606
p12-IRIT large nodtd 06 0.041
p48-MPII-TOPX-2.0-cas 0.0194

Run Score

p77-PKUSIGMA04CLOUD 0.5158
p77-PKUSIGMA02CLOUD 0.5158
p16-kas16-MEXIR-2-EXT-NSW 0.5053
p77-PKUSIGMA03CLOUD 0.4895
p4-UAms2011adhoc 0.4842
p77-PKUSIGMA01CLOUD 0.4737
p2-ruc11AMS 0.4632
p2-ruc11AS2 0.4474
p18-UPFbaseCO2i015 0.4211
p30-2011CUTxRun2 0.4105
p30-2011CUTxRun1 0.4105
p47-FCC-BUAP-R1 0.4
p30-2011CUTxRun3 0.3895
p4-2011IlpsEs 0.3842
p48-MPII-TOPX-2.0-co 0.3632
p2-ruc11AI2 0.3632
p2-ruc-casF-2011 0.3632
p18-UPFbaseCAS2i015 0.3579
p4-2011IlpsEs 0.3316
p16-kas16-MEXIR-EXT2-NSW 0.3316
p16-kas16-MEXIR-2-ANY-NSW 0.3158
p16-kas16-MEXIR-2-ALL-NSW 0.2947
p4-2011IlpsDs 0.2895
p2-ruc11AMI 0.2789
p2-ruc11AML 0.2526
p2-ruc11AL2 0.2421
p16-kas16-MEXIR-ANY2-NSW 0.1947
p12-IRIT focus mergeddtd 04 0.1895
p16-kas16-MEXIR-ALL2-NSW 0.1789
p16-kas16-BM25W-SS-SW 0.0789
p16-kas16-BM25W-NSS-SW 0.0789
p12-IRIT large nodtd 06 0.0737
p16-kas16-BM25W-SS-NSW 0.0632
p48-MPII-TOPX-2.0-cas 0.0474

a) Mean Average Precision (MAP) b) Precision at 5 (P@5)
Table 1. Scores reported at the Ad-Hoc Track of INEX 2011

In Figures 4, 5 and 6 we may see the results obtained by all the teams
considering Precision at 10, Precision at 20 and Precision at 30, respectively.
Again, in all the different metrics we have obtained scores above median.

With respect to our participation at the last year, we have greatly outper-
formed the obtained results. We consider that this result is associated with both,
a better mechanism of translating the topics, but most of all, because in this case
we have introduced a better way of indexing the documents, by including the
reference to the complete hierarchy.

132

Fig. 4. Precision at 10 (P@10)

Fig. 5. Precision at 20 (P@20)

133

Fig. 6. Precision at 30 (P@30)

4 Conclusions

In this paper we have presented details about the implementation of an infor-
mation retrieval system which was used to evaluate the task of Ad-Hoc retrieval
of XML documents, in particular, in the Data-Centric track of the Initiative for
the Evaluation of XML retrieval (INEX 2011).

We presented an indexing method based on an inverted index with XML
tags embedded. For each category (movies, actors, producers, directors and oth-
ers), we constructed an independent inverted index. The dictionary of the index
considered both, the category and the indexed term with its corresponding hi-
erarchy to correctly identify the specific part of the XML file associated to the
topic.

A recursive method for evaluating the topic was used considering only the
“castitle” tag. The obtained results are all above median which encourages us
to still participating in this competition forum, after analyzing the manner we
may improve the document representation, document indexing and document
retrieval.

References

1. Wang, Q., Li, Q., Wang, S., Du, X.: Exploiting semantic Tags in XML retrieval.
In: In Proc. of the INEX 2009. (2009) 133–144

2. Wang, Q., Trotman, A.: Task description of INEX 2010 Data-Centric track. In: In
Proc. of INEX 2010 (same volume). (2010)

134

3. Amer-Yahia, S., Curtmola, E., Deutsch, A.: Flexible and efficient XML search
with complex full-text predicates. In: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. SIGMOD ’06, New York, NY,
USA, ACM (2006) 575–586

4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK (2009)

135

RUC at INEX 2011 Data-Centric Track

Qiuyue Wang1,2, Yantao Gan1, Yu Sun1

1 School of Information, Renmin University of China,
2 Key Lab of Data Engineering and Knowledge Engineering, MOE,

Beijing 100872, P. R. China
qiuyuew@ruc.edu.cn, {ganyantao19901018, everysecondbetter}@163.com

Abstract. We report our experiment results on the INEX 2011 Data-Centric
Track. We participated in both the ad hoc and faceted search tasks. On the ad
hoc search task, we employ language modeling approaches to do structured
object retrieval, trying to capture both the structure in data and structure in
query and unify the structured and unstructured information retrieval in a
general framework. However, our initial experiment results using INEX test
bed show that the unstructured retrieval model performs better than structured
retrieval models. On the faceted search task, we propose a simple user-
simulation model to evaluate the effectiveness of a faceted search system’s
recommending facet-values. We implemented the evaluation system and
conducted the evaluations for the track. The results show that our basic
approach of recommending most frequent facet-values in the result set performs
quite well.

1 Introduction

2 Ad Hoc Search

Language modeling approach has a solid statistical foundation, and can be easily
adapted to model various kinds of complex and special retrieval problems, such as
structured document retrieval. In particular, mixture models [1] and hierarchical
language models [2][3][4] were proposed to be applied in XML retrieval. On the ad
hoc search task in INEX 2011 data-centric track, we employ the language modeling
approach to do structured object retrieval as the IMDB data collection can be viewed
as a set of structured objects, i.e. movies and persons. With the rich structural
information in data, we intend to investigate how to capture the structural information
in data as well as that in query in language models to retrieve more accurate results
for an ad hoc information need.

In this section, we discuss different ways of adapting language modeling approach
to structured object retrieval, and evaluate them on the IMDB data collection.

136

2.1 Unstructured Data, Unstructured Query

The basic idea of language modeling approach in IR is to estimate a language model
for each document (θD) and the query (θQ), and then rank the document in one of the
two ways: by estimating the probability of generating the query string with the
document language model, i.e. P(Q|θD), as in Equation 1, or by computing the
Kullback-Leibler divergence of the query language model from the document
language model, i.e. D(θQ‖θD), as in Equation 2.

On the surface, the KL-divergence model appears to be quite different from the query
likelihood method. However, it turns out that the KL-divergence model covers the
query likelihood method as a special case when we use the empirical distribution to
estimate the query language model, i.e. maximum-likelihood estimate.

In IMDB data collection, each document is a structured object, i.e. movie or person.
Our first retrieval strategy is to ignore the structural information in each object,
estimate a language model for each object based on their free-text content, and rank
them using query likelihood. We only consider CO queries, so query is unstructured
too in this strategy.

2.2 Structured Data, Unstructured Query

When considering the structural information in data, the common way is to view each
object as consisting of multiple fields and represent its language model as a
combination of different language models estimated from its different fields [5][6], as
shown in Equation 3.

1

(|) [(|) (|)]
i i

k

D D D
iw Q

P Q D P w Pθ θ θ
=∈

= ∑∏ (3)

Here we assume that object D consists of k fields. (|)
iDP w θ is the language model

estimated from its ith field, which is normally smoothed with the collection’s ith
field’s language model. In the generative model, (|)

iD DP θ θ is thought as the
probability of object D generating the ith field, which can be uniform, i.e. 1/k, or
proportional to the frequency or length of this field in object D as proposed in [3]. It
can be also interpreted as the importance weight of ith field to D, which can be
learned or tuned to the task. In this paper, we propose a new approach using the
normalized average IDF values of terms in a field to determine the weight of this field
if no training data exist.

(|) (|)D D
w Q

P Q P wθ θ
∈

= ∑ . (1)

(|)
(||) (|) log

(|)
Q

Q D Q
w V D

P w
D P w

P w
θ

θ θ θ
θ∈

− = −∑ . (2)

137

2.3 Structured Data, Structured Query

2.4 Results

3 Faceted Search Evaluation

3.1 Cost Model

3.2 User Model

3.3 User Simulation System

4 Faceted Search

4.1 Frequency based Approach

4.2 Results

5 Conclusions and Future Work

References

1. D. Hiemstra, “Statistical Language Models for Intelligent XML Retrieval”, Intelligent
Search on XML data, H. Blanken et al. (Eds.), 2003.

2. P. Ogilvie, J. Callan, “Language Models and Structured Document Retrieval”, INEX 2003.

138

3. P. Ogilvie, J. Callan, “Hierarchical Language Models for XML Component Retrieval”,
INEX 2004.

4. P. Ogilvie, J. Callan, “Parameter Estimation for a Simple Hierarchical Generative Model for
XML Retrieval”, INEX 2005.

5. P. Ogilvie, J. Callan, “Combining Document Representations for Known-Item Search”,
SIGIR 2003.

6. Z. Nie, Y.Ma, S. Shi, J. Wen, W. Ma, “Web Object Retrieval”, WWW 2007.
7. J. Kim, X. Xue, W.B. Croft, “A Probabilistic Retrieval Model for Semistructured Data”,

ECIR 2009.

139

MEXIR at INEX-2011

Tanakorn Wichaiwong and Chuleerat Jaruskulchai

Department of Computer Science,
Faculty of Science, Kasetsart University,

Bangkok, Thailand
{g5184041,fscichj}@ku.ac.th

Abstract. This is the second year of Kasetsart University’s participa-
tion in INEX. We participated in three tracks: Snippet retrieval, Data
Centric, and Web Service Discovery. This year, we introduced an XML
information retrieval system that uses MySQL and Sphinx which we call
the More Efficient XML Information Retrieval (MEXIR). In our system,
XML documents are stored into one table that has a fixed relational
schema. The schema is independent of the logical structure of XML doc-
uments. Furthermore, we present a structure weighting function which
optimizes the performance of MEXIR.

Keywords: XML Retrieval, Implementation System, Sphinx, MySQL

1 Introduction

According to the large collections in the availability of electronic information,
the size of information collections is growing rapidly. Large collections are com-
monplace now. Since, the Extensible Markup Language (XML)[1] documents
have additional information; document representation of these might be add up
metadata to describe data in context respect to XML language design.

According to previous study, we are addressing on Content Only (CO) or
only keywords search. In this year, we move forward to study the Content and
Structure (CAS) for the Data Centric track of INEX. Furthermore, we presented
the structure weight function for optimize the performance of our system.

This paper is organized as follows; Section 2 reviews related works. Section
3 explains the implementation of our system overview and new structure weight
algorithm. Section 4 show the experiment, Section 5 explains the result and
discussion, conclusions and further work are drawn in Section 6.

2 Related Work

In this section, we provide some historical perspectives on areas of XML research
that have influenced to this article as follows.

140

2 MEXIR at INEX-2011: T. Wichaiwong, C. Jaruskulchai

2.1 XML Data Models

The basic XML data model [1] is a labeled, ordered tree. Fig. 1 shows the data
tree of an XML document based on the node-labeled model. There are basically
three types of nodes in a data tree as follows.

Element nodes correspond to tags in XML documents, for example, the body
and section nodes.

Attribute nodes correspond to attributes associated with tags in XML docu-
ments, for example, the id node. In contrast to element nodes, attribute nodes
are not nested (that is, an attribute cannot have any sub-elements), not repeat-
able (that is, two same-name attributes cannot occur under one element), and
unordered (that is, attributes of an element can freely interchange their occur-
rence locations under the element).

Leaf nodes (i.e., text nodes) correspond to the data values in XML docu-
ments, for example, the xml node.

Fig. 1. The Example of XML Element Tree

3 Methods

3.1 An Implementation of XML Retrieval System

The More Efficient XML Information Retrieval (MEXIR) [2] is based on the
leaf-node indexing scheme that uses a relational DBMS as a storage back-end.
We discuss the schema setup using MySQL [3] and the full-text engine Sphinx
[4], [5] with the MySQL dumps function.

141

MEXIR at INEX-2011: T. Wichaiwong, C. Jaruskulchai 3

For the initial step, we consider a simplified XML data model, but we disre-
gard Meta mark-up such as, comments, links and attributes. In Fig. 2, depicts
the overview of XML retrieval system. The main components of the MEXIR
retrieval system are follows:

1. When new documents are entered, the ADXPI indexer parses and analyzes
the tag and position to build a list of indices.

2. The ecADXPI compressor analyzes the tag and position to build the struc-
ture index, which is stored in the MySQL database.

3. The AutoMix analyzes the tag and position to build the SW index, which is
stored in the MySQL database.

4. The Sphinx is used to analyze and build all full text indices.
5. The Score Sharing function is used to assign parent scores by sharing scores

from leaf nodes to their parents using a top-down approach.
6. The Double Scoring function is used to adjust the leaf-node scores based on

linear recombination.

3.2 Structure Weight Function

Our structural scoring model essentially counts the number of navigational (i.e.,
tag name-only) query conditions that are satisfied by a result candidate and
thus connect the content conditions matched for the user queries. It assigns C
for every navigational condition that is matched a part of an absolute path.
When matching the structural constraints against the document tree, we cal-
culate structural scoring using 2c and recomputed the leaf element score as
following:

LeafScore(Node)← LeafScore(Node) ∗ 2c (1)

Note that;
c is the frequency of navigational condition that is matched a part of an

absolute path

4 Experiment Setup

In this section, we present and discuss the results based on the INEX collec-
tion. We also present the results of an empirical sensitivity analysis of various
parameter performed on a Wikipedia collection. This experiment was performed
on Intel Pentium i5 4 * 2.79 GHz with 6 GB of memory, Microsoft Windows 7
Ultimate 64-bit Operating System and Microsoft Visual C].NET 2008.

4.1 INEX Collections

1. On the Snippet retrieval track, the document collections are from the INEX-
Wiki09 collection was created from the October 8, 2008 dump of English

142

4 MEXIR at INEX-2011: T. Wichaiwong, C. Jaruskulchai

Fig. 2. MEXIR XML Retrieval System Overvie

143

MEXIR at INEX-2011: T. Wichaiwong, C. Jaruskulchai 5

Wikipedia articles, and incorporates semantic annotations from the 2008-
w40-2 version of YAGO. It contains 2,666,190 Wikipedia articles and has a
total uncompressed size of 50.7 GB. There are 101,917,424 XML elements
of at least 50 characters.

2. On the Data Centric track, Information about one movie or person is pub-
lished in one XML file [14]; thus, each generated XML file represents a single
object, i.e., a movie or a person. In total, about 4,418,102 XML files were
generated, including 1,594,513 movies, 1,872,492 actors, 129,137 directors
who did not act in any movies, 178,117 producers who did not direct or act
in any movies, and 643,843 other people involved in movies that did not
produce or direct or act in any movies, and the total size is 1.40 GB.

3. On the Web Service Discovery track, this track will use a collection of WSDL
documents. These WSDL documents were directly taken from real-world
public Web services indexed by the Google search engine. The test collection
was pre-processed so that only valid WSDL1.1-compliant descriptions are
retained for XML-based retrieval that contains 1,987 articles.

5 Results and Discussion

5.1 Snippet Retrieval Track

5.2 Data Centric Track

5.3 Web Service Discovery Track

6 Conclusions

References

1. Bray, T. et al, Markup Language (XML) 1.1 (Second Edition). Available Source:
http://www.w3.org/TR/xml11/ (2006).

2. Wichaiwong T. and Jaruskulchai C., MEXIR: An Implementation of High Perfor-
mance and High Precision XML Information Retrieval, Computer Technology and
Application, David Publishing Company, Volume 2, Issue No. 4, April. (2011).

3. Hinz, S. et al, MySQL Full-Text Search Functions, Available Source: http://dev.
mysql.com/doc/refman/5.1/en/fulltext-search.html (Current 2009).

4. Aksyonoff, A. et al, Sphinx Open Source Search Server, Available Source: http:

//www.sphinxsearch.com/ (Current 2009).
5. Aksyonoff, A. Introduction to Search with Sphinx, O’Reilly Media. (2011).

144

Overview of the INEX 2011 Question Answering
Track (QA@INEX)

Eric SanJuan1, Véronique Moriceau2, Xavier Tannier2, Patrice Bellot1, and
Josiane Mothe3

1 LIA, Université d’Avignon et des Pays de Vaucluse (France)
{patrice.bellot,eric.sanjuan}@univ-avignon.fr

2 LIMSI-CNRS, University Paris-Sud (France)
{moriceau,xtannier}@limsi.fr

3 IRIT, Universtité de Toulouse (France)
josiane.mothe@irit.fr

Abstract. The INEX QA track (QA@INEX) aims to evaluate a com-
plex question-answering task. In such a task, the set of questions is com-
posed of complex questions that can be answered by several sentences or
by an aggregation of texts from different documents. Question-answering,
XML/passage retrieval and automatic summarization are combined in
order to get closer to real information needs. Based on the groundwork
carried out in 2009-2010 edition to determine the sub-tasks and a novel
evaluation methodology, the 2011 edition of the track is contextualizing
tweets using a recent cleaned dump of the Wikipedia.

Key words: Question Answering, Automatic Summarization, Focus In-
formation Retrieval, XML, Natural Language Processing, Wikipedia

1 Introduction

The QA task to be performed by the participating groups of INEX 2011 is
contextualizing tweets, i.e. answering questions of the form “what is this tweet
about?” using a recent cleaned dump of the Wikipedia. The general process
involves:

– tweet analysis,
– passage and/or XML element retrieval,
– construction of the answer.

We regard as relevant passage segments that both contain relevant information
but also contain as little non-relevant information as possible (the result is spe-
cific to the question).

For evaluation purposes, we require that the answer uses only elements or
passages previously extracted from the document collection. The correctness of
answers is established by participants exclusively based on the support passages
and documents.

145

2 SanJuan et al.

The paper is organized as follows. Section 2 presents the description of the
task. Section 3 details the collection of questions and documents. Section 4 de-
scribes the baseline system provided by the track organizers. Section 5 presents
the techniques and tools used for manual evaluation and explains the final choice
of metrics. Full results will be given during the workshop and published in the
final version of INEX proceedings.

2 Task description

The underlying scenario is to provide the user with synthetic contextual infor-
mation when receiving a tweet with an url on a small terminal like a phone. The
answer needs to be built by aggregation of relevant XML elements or passages
grasped from a local XML dump of the Wikipedia.

The aggregated answers will be evaluated according to the way they overlap
with relevant passages (number of them, vocabulary and bi-grams included or
missing) and the “last point of interest” marked by evaluators. By combining
these measures, we expect to take into account both the informative content and
the readability of the aggregated answers.

Each assessor will have to evaluate a pool of answers of a maximum of 500
words each. Evaluators will have to mark:

– The “last point of interest”, i.e. the first point after which the text becomes
out of context because of:
• syntactic incoherence,
• unsolved anaphora,
• redundancy,
• not answering the question.

– All relevant passages in the text, even if they are redundant.

Systems will be ranked according to:

– The length in words (number of words) from the beginning of the answer to
the “last point of interest”,

– The distributional similarities between the whole answer and the concate-
nation of all relevant passages from all assessors using the FRESA package4

which computes both Kullback Leibler (KL) and Jenssen-Shanon (JS) di-
vergences between n-grams (1 ≤ n ≤ 4).

3 Test data

3.1 Questions

The question data set is composed of 132 topics. Each topic includes the title
and the first sentence of a New York Times paper that were twitted at least two
months after the Wikipedia dump we use. An example is provided below:

4 http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html

146

QA@INEX 2011 3

<topic id="2011005">

<title>Heat Wave Moves Into Eastern U.S</title>

<txt>The wave of intense heat that has enveloped much of the

central part of the country for the past couple of weeks is

moving east and temperatures are expected to top the 100-degree

mark with hot, sticky weather Thursday in cities from

Washington, D.C., to Charlotte, N.C.</txt>

</topic>

For each topic, we manually checked that there is related information in the
document collection.

3.2 Document collection

The document collection has been built based on a recent dump of the English
Wikipedia from April 2011. Since we target a plain XML corpus for an easy ex-
traction of plain text answers, we removed all notes and bibliographic references
that are difficult to handle and kept only the 3,217,015 non empty Wikipedia
pages (pages having at least one section).

Resulting documents are made of a title (title), an abstract (a) and sec-
tions (s). Each section has a sub-title (h). Abstract and sections are made of
paragraphs (p) and each paragraph can have entities (t) that refer to other
Wikipedia pages. Therefore the resulting corpus has this simple DTD:

<!ELEMENT xml (page)+>

<!ELEMENT page (ID, title, a, s*)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT title (#PCDATA)><!ELEMENT a (p+)>

<!ELEMENT s (h, p+)>

<!ATTLIST s o CDATA #REQUIRED>

<!ELEMENT h (#PCDATA)>

<!ELEMENT p (#PCDATA | t)*>

<!ATTLIST p o CDATA #REQUIRED>

<!ELEMENT t (#PCDATA)>

<!ATTLIST t e CDATA #IMPLIED>

For example:

<?xml version="1.0" encoding="utf-8"?>

<page>

<ID>2001246</ID>

<title>Alvin Langdon Coburn</title>

<s o="1">

<h>Childhood (1882-1899)</h>

<p o="1">Coburn was born on June 11, 1882, at 134 East Springfield

Street in <t>Boston, Massachusetts</t>, to a middle-class family.

His father, who had established the successful firm of

Coburn & Whitman Shirts, died when he was seven. After that he

147

4 SanJuan et al.

was raised solely by his mother, Fannie, who remained the primary

influence in his early life, even though she remarried when he was

a teenager. In his autobiography, Coburn wrote, "My mother was

a remarkable woman of very strong character who tried to dominate

my life. It was a battle royal all the days of our life

together."</p>

<p o="2">In 1890 the family visited his maternal uncles in

Los Angeles, and they gave him a 4 x 5 Kodak camera. He immediately

fell in love with the camera, and within a few years he had developed

a remarkable talent for both visual composition and technical

proficiency in the <t>darkroom</t>. (...)</p>

(...)

</page>

A complementary list of non Wikipedia entities has also been made available.
The named entities (person, organisation, location, date) of the document collec-
tion have been tagged using XIP [1]. For example, for the previous documents,
the extracted named entities are:

Alvin Langdon Coburn

1882-1899

Coburn

June 11, 1882

134 East Springfield Street

Boston, Massachusetts

Coburn Whitman

Fannie

Coburn

1890

Los Angeles

Kodak

This can be used for participants willing to use named entities in texts but
not having their own tagger.

3.3 Submission format

Participants can submit up to 3 runs. One run out of the 3 should be com-
pletely automatic, using only available public resources. Submitted XML ele-
ments and/or passages up to 500 words in total. The passages will be read top
down and only the 500 first words will be considered for evaluation and may not
be overlapping for the same topic (we consider as a single word any string of
alphanumeric characters without space or punctuation).

The format for results is a variant of the familiar TREC format with addi-
tional fields:

<qid> Q0 <file> <rank> <rsv> <run_id> <column_7> <column_8> <column_9>

where:

148

QA@INEX 2011 5

– the first column is the topic number.
– the second column currently unused and should always be Q0.
– the third column is the file name (without .xml) from which a result is

retrieved, which is identical to the <id> of the Wikipedia document.
– the fourth column is the rank the result is retrieved, and fifth column shows

the score (integer or floating point) that generated the ranking.
– the sixth column is called the “run tag” and should be a unique identifier

for the participant group and for the method used.

The remaining three columns depend on the chosen format (text passage or off-
set).

For textual context, raw text is given without XML tags and without format-
ting characters. The resulting word sequence has to appear in the file indicated
in the third field. Here is an example of such an output:

1 Q0 3005204 1 0.9999 I10UniXRun1 The Alfred Noble Prize is an award

presented by the combined engineering societies of the United States,

given each year to a person not over thirty-five for a paper published

in one of the journals of the participating societies.

1 Q0 3005204 2 0.9998 I10UniXRun1 The prize was established in 1929 in

honor of Alfred Noble, Past President of the American Society of Civil

Engineers.

1 Q0 3005204 3 0.9997 I10UniXRun1 It has no connection to the Nobel

Prize , although the two are often confused due to their similar spellings.

An Offset Length format (FOL) can also be used. In this format, passages are
given as offset and length calculated in characters with respect to the textual
content (ignoring all tags) of the XML file. File offsets start counting from 0
(zero). Previous example would be the following in FOL format:

1 Q0 3005204 1 0.9999 I10UniXRun1 256 230

1 Q0 3005204 2 0.9998 I10UniXRun1 488 118

1 Q0 3005204 3 0.9997 I10UniXRun1 609 109

The results are from article 3005204. The first passage starts at the 256th char-
acter (so 257 characters beyond the first character), and has a length of 239
characters.

4 Baseline system

A baseline XML-element retrieval/summarization system has been made avail-
able for participants.

4.1 Online interface

The system is available online through a web interface5 that allows to query:

5 http://qa.termwatch.es

149

6 SanJuan et al.

– an index powered by Indri6 that covers all words (no stop list, no stemming)
and all XML tags.

– a PartOfSpeech tagger powered by TreeTagger7.
– a baseline summarization algorithm powered by TermWatch8 used in [2].
– a summary content evaluation based on FRESA[3].

Three kind of queries can be used. Standard bag of words, sets of muti-word
terms or more complex structured queries using Indri Language[4]. The system
returns the 50 first documents retrieved by Indri in raw text format, PoS tagged
text or XML document source.

It is also possible to get a summary of these retrieved documents powered
by TermWatch which is based like most of the state of art sentence ranking
algorithms [5] on a PageRank approach. Given a square stochastic matrix M
derived from the matrix of term co-occurrences in text sentences, and a term
weight vector −→x , they compute Mn−→x for n ≈ 30 as an approximation of the
first eigenvector −→e1 . −→e1 is then used to score and rank sentences. The idea is to
progressively weight the sentences according to the number of sentences in their
neighborhood (sentences sharing at least one word). The algorithm converges
towards the same solution no matter the initial weights on vertex. In this baseline
we stop the iterative process at n = 2 and only nominals (nouns or adjectives)
are considered in sentences.

The resulting summary is evaluated against retrieved documents using Kullback-
Leibler (KL) measure. The web interface also allows the user to test its own sum-
mary against the same set of documents. The system also gives a lower bound
using a random set of 500 words extracted from the texts and an upper bound
using an empty summary. Random summaries naturally reaches the closest word
distribution but they are clearly unreadable.

4.2 Application Programming Interface

A perl API running on linux and using wget to query the server was also made
available. By default this API takes as input a tabulated file with three fields:
topic names, selected output format and query. The output format can be the
baseline summary or the 50 first retrieved documents in raw text, PoS tagged
or XML source. An example of such file allowing to retrieve 50 documents per
topic based on their title was also released.

5 Evaluation

Due to the extension of run submission deadline, evaluation is not fully achieved.
Results will be given during the workshop and published in the final version of
INEX proceedings.

This section describes the techniques and metrics used to perform the eval-
uation.
6 http://www.lemurproject.org/
7 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
8 http://termwatch.es

150

QA@INEX 2011 7

5.1 Submitted runs

23 valid runs by 11 teams from 6 countries (France, Spain, Mexico, India,
Canada, Brasil) were submitted. All runs are in raw text format and almost
all participants used their own summarization system. Only three participants
did not use the online Indri IR engine. Participants using the perl API gener-
ated queries based on both title and phrase fields using various query expansion
techniques. Only one used XML tags.

The total number of submitted passages is 37,303. The median number of
distinct passages per topic is 284.5 and the median length in words is 26.9. This
relative small amount of distinct passages could be due to the fact that most of
the participants used the provided Indri index with its perl API.

5.2 Pooling

It was planned to perform the evaluation by assessing participant runs by means
of pooling technique. When relevant RSVs are provided by participants, passages
are sorted by their RSVs. In other cases (RSVs are often all the same for a given
summary), passages are sorted by their frequency through all participants’ runs.
The 20% best passages per run are then kept, and mixed, so that duplicates
are removed. Only these passages are evaluated by organizers. In all, 20% of all
passages would have been selected for assessment. It appears that this approach
penalizes participants that did not use the Indri index provided by organizers,
since some of their passages often only appear once among all runs. Therefore
they would have been evaluated only on the passages at the beginning of their
summaries, the rest of the summary being considered as non relevant. We fi-
nally chose to evaluate all passages on a consistent pool of topics. Each passage
informativeness will be evaluated independently from others.

This assessment is intended to be quite generous towards passages. All pas-
sages concerning a protagonist of the topic are considered relevant, even if the
main subject of the topic is not addressed. The reason is that missing words in
the reference can lead to artificial increase of the divergence, which is a known
and not desirable side effect of this measure.

5.3 Metrics

Systems had to make a selection of the most relevant information, the maxi-
mal length of the abstract being fixed. Therefore focused IR systems could just
return their top ranked passages meanwhile automatic summarization systems
need to be combined with a document IR engine. In the QA task, readability of
answers [6] is as important as the informative content. Both need to be evalu-
ated. Therefore answers cannot be any passage of the corpus, but at least well
formed sentences. As a consequence, informative content of answers cannot be
evaluated using standard IR measures since QA and automatic summarization
systems do not try to find all relevant passages, but to select those that could

151

8 SanJuan et al.

provide a comprehensive answer. Several metrics have been defined and experi-
mented with at DUC [7] and TAC workshops [8]. A mong them, Kullback-Leibler
(KL) and Jenssen-Shanon (JS) divergences have been used [9, 3] to evaluate the
informativeness of short summaries based on a bunch of highly relevant docu-
ments.

In this edition we will use the KL one to evaluate the informative content
of answers by comparing their n-gram distributions with those from all assessed
relevant passages.

5.4 Interface for manual evaluation

Readability evaluation will rely on participants. Each will have to evaluate a
pool of summaries of a maximum of 500 words each on a online web interface.

The interface will allow to mark:

1. The “last point of interest”, i.e. the first point after which the text becomes
out of context because of: syntactic incoherence, unsolved anaphora, redun-
dancy or not answering the question.

2. all relevant passages in the text, even if they are redundant.

Systems will then be ranked according to the:

– length in words from the beginning of the answer to the “last point of inter-
est”.

– distributional similarities between the whole answer and the concatenation
of all relevant passages from all assessors using the FRESA package.

Therefore, a second evaluation of summary content informativeness in con-
text will complement the evaluation by organizers done out of context.

6 Conclusion

This tracks that brings together the NLP and the IR communities is getting more
attention. The experimented measures used for evaluation based on textual con-
tent more than passage offsets seem to reach some consensus between the two
communities. Taking into account readability of summary also encourages NLP
and linguistic teams to participate. Next edition will start much more earlier,
the corpus generation from a wikipedia dump is now completely automatic. We
plan to propose a larger variety of questions from twitter, but also from web
search engines provided by the CAAS ANR project (Contextual Auto-Adaptive
Search). We also would like to encourage XML systems by providing more struc-
tured questions with explicit name entities. We also envisage to open the track
to terminology extractor systems.

152

QA@INEX 2011 9

References

1. At-Mokhtar, S., Chanod, J.P., Roux, C.: Robustness beyond shallowness: Incre-
mental deep parsing. Natural Language Engineering 8 (2002) 121–144

2. Chen, C., Ibekwe-Sanjuan, F., Hou, J.: The structure and dynamics of cocitation
clusters: A multiple-perspective cocitation analysis. JASIST 61(7) (2010) 1386–1409

3. Saggion, H., Moreno, J.M.T., da Cunha, I., SanJuan, E., Velázquez-Morales, P.:
Multilingual summarization evaluation without human models. In Huang, C.R.,
Jurafsky, D., eds.: COLING (Posters), Chinese Information Processing Society of
China (2010) 1059–1067

4. Metzler, D., Croft, W.B.: Combining the language model and inference network
approaches to retrieval. Inf. Process. Manage. 40(5) (2004) 735–750

5. Fernández, S., SanJuan, E., Moreno, J.M.T.: Textual energy of associative memo-
ries: Performant applications of enertex algorithm in text summarization and topic
segmentation. In: MICAI. (2007) 861–871

6. Pitler, E., Louis, A., Nenkova, A.: Automatic evaluation of linguistic quality in
multi-document summarization. In: ACL. (2010) 544–554

7. Nenkova, A., Passonneau, R.: Evaluating content selection in summarization: The
pyramid method. In: Proceedings of HLT-NAACL. Volume 2004. (2004)

8. Dang, H.: Overview of the TAC 2008 Opinion Question Answering and Summa-
rization Tasks. In: Proc. of the First Text Analysis Conference. (2008)

9. Louis, A., Nenkova, A.: Performance confidence estimation for automatic summa-
rization. In: EACL, The Association for Computer Linguistics (2009) 541–548

153

A Dynamic Indexing Summarizer at the QA@INEX 2011
track

Luis Adrián Cabrera-Diego, Alejandro Molina, Gerardo Sierra

 Instituto de Ingeniería, Universidad Nacional Autónoma de México, Torre de Ingeniería,
Basamento, Av. Universidad 3000, Mexico City, 04510 Mexico

{lcabrerad, amolinav, gsierram}@iingen.unam.mx

Abstract. In this paper we present a question-answering system developed for
the QA task of INEX 2011, where a set of tweets from the New York Times are
used as long questions. The developed system indexes dynamically Wikipedia
pages to extract a relevant summary. The results reveal that this system can
bring related information despite the dump of Wikipedia is older than the tweets
from the New York Times. The results obtained were evaluated using a
framework for evaluating summaries automatically based on Jensen-Shannon
divergence.

Keywords: Question-Answering, QA, Dynamic Indexing, Summarizer,
Wikipedia

1 Introduction

Question-answering (QA) is the task of responding automatically an inquiry posed in
natural language. Since the last advances in summarization methods and their
automatic evaluation [1], several summarization systems have been used in question-
answering systems [2, 3]. Typically, the methods employed in these systems, consist
in extract the most important sentences from a given static-document collection (see
“multi-document” summarization at [4]). However, recent studies have shown that
dynamic indexing could be useful in information retrieval tasks [5].

In this paper we propose a question-answer system that dynamically retrieve a
document collection and use it to extract the most important information by scoring
paragraphs and sentences. The name of this system is Dynamic Indexing Summarizer
for Question-answering (DISQ).

The utilization of DISQ is done in the track of QA of INEX 2011, where a set of
long queries have to be answered with passages of Wikipedia. The inquiries of the
track for 2011 are the tweets posted by the New York Time newspaper.

The organization of this paper is as follows, we firstly present the architecture of
DISQ. Secondly, we show the experiments, some results and their evaluation. Finally,
we give our conclusions and divers future tasks.

154

2 A Dynamic Indexing Summarizer for Question-Answering

DISQ is a system based on an optimized database created from the XML and SQL
dumps of Wikipedia1. This database was built using the tools available in the JWPL
API2 [6]. As well, DISQ is based on four main modules, which are described below:

1. Query Preprocessor
2. Dynamic Indexing
3. Paragraph Ranking
4. Index Expansion

The Figure 1 shows a diagram of the system.
The Query Preprocessing module obtains the keywords from the long original

query. To do this, DISQ firstly deletes from the query some punctuation marks, like
commas, brackets or colons (although, it does not delete dashes, periods or
apostrophes, because they could be part of important keywords like student-teacher or
U.S.). Secondly, the system creates n-grams with a length that goes from 1 to 5.
Finally, the list of n-grams is cleaned-up (we eliminate the n-grams that begin or end
with stop-words). This last preprocessing task is done because we try to reduce the
number of word constructions that possibly do not exist in Wikipedia. The final set of
n-grams is considered the set of keywords.

The second main module, Dynamic Indexing, tries to elicit an index from the
search of the keywords in Wikipedia. If a keyword retrieves an article, the page is
added to a Dynamic Document Collection (DDC), i.e., a set of article pages of
Wikipedia where DISQ will do future searches. As well, the keyword is indexed with
the ID of the article page of Wikipedia. If the page retrieved by the keyword is instead
a redirection page, the system tries to add new keywords and entries into the DDC. In
a first step, the name of the page, where the system is redirected, is added to the
keywords list. This is done because we can obtain, from the redirections, some
synonyms, lemmas, different spellings, among other information that could be used to
make a better search. In a second step, the redirected page is added to the DDC and
index with its ID the original search keyword and the new one. A similar case happens
when the name of a page has information between brackets, e.g. Galicia (Spain). In
this case, the name of the page is divided in two and the extra information is
considered a related keyword instead a synonym or lemma. If a keyword is not found
in Wikipedia, it is indexed with a special ID (null). In Table 1 we show some
examples of new keywords that can be obtained from Wikipedia.

1 The dumps of Wikipedia used to create the optimized database are from April 5th 2011,

following the guidelines of QA@INEX 2011 to use the Wikipedia’s dumps of April 2011.
The dumps are available in the page of Wikimedia Foundation.

2 http://code.google.com/p/jwpl/

155

Fig. 1. A general diagram of the system SPRII

Table 1. Examples of the different keywords that can be obtained from Wikipedia using the
redirection pages and information between brackets.

Original keyword New keyword
U.N. United Nations
Years Year

Boardgame Board Game
Obama Barack Obama

Data (Computing) Data, Computing

The Paragraph Ranking module starts when the DDC is completed. This module
does two tasks at the same time. The first one is to search all the keywords in the
paragraphs of each article that belongs to the DDC. The second one is to rank the
paragraphs to obtain the most important ones. For the last task, we use the score (1).

Rp=
∑Lk Fk

Sk
 (1)	

Where, Rp is the value of relevance of the paragraph; Lk is the length of the keyword
found in the paragraph (size of the n-gram); Fk is the number of keywords found in
the paragraph3 and Sk is the number of keywords searched in the paragraph.

To decrease the number of over-ranked paragraphs, we omit the keyword(s) that
retrieved the article which the system is analyzing. Thus, the number of keywords to
search in the paragraphs varies in each article.

After each paragraph is ranked, the system finds the highest value of Rp and selects
the paragraphs that have the same value of Rp.

If a paragraph from the DDC is not selected or if the selected paragraphs have a
value lower than 0.34 the system does a new ranking using the score (2) and then
selects the most important paragraphs as in the first method.

Rp=
∑ fkL

k
Fk

Sk
 (2)

3 This number of n-grams is not the frequency of apparition of them. It is the number of n-

grams searched that appeared in the selected paragraph.
4 This figure was chosen experimentally.

156

Where fk is the frequency of the keyword in the paragraph.
In both formulae the size of the keyword is a parameter, because we consider that a

paragraphs with larger keywords are going to be more related with the query than one
with smaller keywords.

The fourth main module, Index Expansion, expands the DDC to find new related
information but at the same time look for new keywords. To do this, the system first
extracts the links that belong to the best ranked paragraphs (previous module) and that
target to other articles of Wikipedia. For each link extracted, the system retrieves the
corresponding article of Wikipedia and adds it to the Link List. When the Link List is
finished, the system searches in it the keywords and ranks all the paragraphs using the
same methods described previously. The articles of the Link List from where the new
selected paragraphs come from are added to the DDC. Additionally, the name of the
articles, where the new selected paragraphs were obtained, becomes new keywords
that are linked to the respective article ID. All the selected paragraphs at this point
become the first result, which it is called R12.

We repeat the process of the module Page Ranking one more time, using the new
keywords and the updated DDC, to obtain a more refined result. This result is called
R3. As well, to do the finals summaries of R12 and R3, we use an implementation of
LexRank [7].

3 Experiments and Results

The experiments were done with the set of questions (tweets from the New York
Times) that INEX 2011 prepared for the Question-Answering track. From the
experiments we got two summaries, the R12 and the R3; both are frequently different.

In order to evaluate our system we use FRESA5, a framework for evaluating
summaries automatically based on Jensen-Shannon divergence [8-10]. The Table 2
shows an example of the evaluation of FRESA, between our summaries and the one
from the online-tools of QA@INEX 2011 webpage6. The query used for this example
was “Heat Wave Moves Into Eastern U.S”.

Although the evaluation shows that our summaries are worse than the INEX
summary (higher divergences), our summaries are evaluated against summaries
obtained from the texts retrieved by the tools QA@INEX 2011 and not with the
original article. Thus, we did an evaluation using FRESA between the original article
from the Ney York Times7 and both summaries; the results can be seen in the Table 3.

We observe that DISQ has good results, but the performance against the baseline
summary is variable. Nevertheless, our results are better than the random summaries.

5 http://lia.univ-avignon.fr/fileadmin/axes/TALNE/downloads/index_fresa.html
6 https://inex.mmci.uni-saarland.de/tracks/qa/
7 The original articles were searched in internet using the tweets from the Ney York Times

Newspaper.

157

Table 2. Example of the evaluation between our system and the baseline system of QA@INEX
2011 for the question “Heat Wave Moves Into Eastern U.S”

Distribution type Unigram Bigram With 2-gap Average
Baseline summary 55.44376 64.12505 64.25264 61.27382
Empty baseline 72.32032 81.33022 81.40719 78.35258
Random unigram 58.29775 67.32914 67.37218 64.33302
Random 5-gram 49.98983 58.64993 58.86784 55.83587
R12 61.28982 70.16201 70.27805 67.24329
R3 65.37411 74.23967 74.36819 71.32732

Table 3. Example of the evaluation with the original article between DISQ and the baseline
system of QA@INEX 2011 for the question “Heat Wave Moves Into Eastern U.S”

Distribution type Unigram Bigram With 2-gap Average
Baseline summary 9.00524 16.91866 16.86023 14.26137
R12 8.72437 16.45770 16.26208 13.81472
R3 8.79530 16.11737 15.93532 13.61600

It is important to say, that we saw in some baseline summaries fragments of text
that came from a more recent Wikipedia (e.g. from May or June 2011). In our opinion,
this can affect the results, because the baseline summaries can be more related to the
tweets that were posted in the months after April 2011.

4 Conclusion

We have presented a Question-Answering system that uses n-grams to evaluate
paragraphs from Wikipedia articles and to retrieve them as related and relevant
information for a certain question. The developed system was used for the track of
QA@INEX 2011, where a set of tweets from New York Times newspaper worked as
questions of the system.

The experiments have revealed that the system developed can bring related
information despite the dump of Wikipedia is older than the tweets from the New
York Times. Nevertheless, there are cases where the performance of our system can
be very variable. In this case, we think this is due the fact sometimes the tweets have
very ambiguous words that cannot be disambiguated by Wikipedia or they are not
enough to find a correct relation between them to find a good answer. As well, the
experiments have shown that it is not necessary to use cleaned dumps of Wikipedia to
retrieve easily and clean information from the encyclopedia.

As future work, we have to develop a better way to find the correct answer when
the words of the question are not interrelated. As well, we have to find how to treat
the ambiguous terms of Wikipedia; this is to get the correct page and extract from it
the possible related information. In addition, we have to develop a module to update
the database of Wikipedia automatically.

158

References

1. San Juan, E., Bellot, P., Moriceau, V., Tannier, X.: Overview of the INEX 2010 Question-
Answering Track (QA@INEX). Lecture Notes in Computer Science, Comparative
Evaluation of Focused Retrieval. 9th International Workshop of the Initiative for the
Evaluation of XML Retrieval (INEX 2010), Revised and Selected Papers, vol. 6932, pp.
269-281, Springer (2011).

2. Soriano-Morales, E.P., Medina-Urrea, A., Sierra, G., Méndez-Cruz, C.F.: The GIL-
UNAM-3 summarizer: an experiment in the track QA@INEX’10. Lecture Notes in
Computer Science, Comparative Evaluation of Focused Retrieval. 9th International
Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2010), Revised and
Selected Papers, vol. 6932, pp. 269-281, Springer (2011).

3. Torres-Moreno, J.M.: The Cortex automatic summarization system at the QA@INEX track
2010. Lecture Notes in Computer Science, Comparative Evaluation of Focused Retrieval.
9th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX
2010), Revised and Selected Papers, vol. 6932, pp. 269-281, Springer (2011).

4. Torres-Moreno, J.M.: Résumé automatique de documents une approche statistique. Ed.
Hermes Lavoisier (2011).

5. Strohman, T.: Dynamic collections in Indri. Technical Report IR-426, University of
Massachusetts Amherst (2005).

6. Zesch, T., Müller, C., Gurevych, I.: Extracting lexical semantic knowledge from Wikipedia
and Wiktionary. In: 6th Conference on Language Resources and Evaluation (LREC),
Marrakech (2008).

7. Erkan, G., Radev, D.R.: LexRank: Graph-Based Lexical Centrality As Salience in Text
Summarization. Artificial Intelligence Research, vol. 22, pp. 457-479 (2004).

8. Saggion, H., Torres-Moreno, J.M., da Cunha, I., SanJuan, E., Velásquez-Morales, P.:
Multilingual Summarization Evaluation without Human Models. In: 23rd International
Conference on Computational Linguistics (COLING), Beijing (2010).

9. Torres-Moreno, J.M., Saggion, H., da Cunha, I., SanJuan, E.: Summary Evaluation with
and without References. Polibits Research Journal on Computer Science and Computer
Engineering and Applications, vol. 42 (2010).

10. Torres-Moreno, J.M., Saggion, H., da Cunha, I., Velázquez-Morales, P., SanJuan, E.:
Évaluation automatique de résumés avec et sans reference. In: 17e Conférence sur le
Traitement Automatique des Langues Naturelles (TALN), Montreal (2010).

159

IRIT at INEX: Question answering task

Liana Ermakova, Josiane Mothe

Institut de Recherche en Informatique de Toulouse

118 Route de Narbonne, 31062 Toulouse Cedex 9, France

Abstract. This paper presents the approach we developed in the context of INEX QA track.

The INEX QA track considers a tweet as an input and a summary up to 500 words as an output.

There are 132 tweets which include the title and the first sentence of a New York Times

articles. The summary should be made of extracted relevant sentences from April 2011 English

Wikipedia dump, totally 3 217 015 non-empty pages. The approach we developed at IRIT

considers first the 20 top documents retrieved by a search engine (Terrier using default

settings). Those documents and tweets are then parsed using Stanford CoreNLP tool. We then

computed indices for each section and each sentence. The index includes not only word forms

and lemmas, but also NE. Sentence retrieval is based on standard TF-IDF measure enriched by

named entity recognition, POS weighting and smoothing from local context. Three runs were

submitted with different parameter settings.

Keywords: Information retrieval, question answering, contextual information, smoothing, part

of speech tagging, name entity.

1 Introduction

INEX (Initiative for the Evaluation of XML Retrieval) is an evaluation forum for

XML IR. It provides large structured test collections and scoring methods for IR

system evaluation.

Question answering track (QA@INEX) is one of the INEX research task and aims

at investigating how semi-structured data can be used to find real-world answer to a

question in natural language (1).

QA task is a challengeable problem of IR. The major tasks of QA systems are

searching for the relevant information and generation of answers.

In 2011 the INEX QA track aims at evaluating summarization systems. Summary

is a “condensed version of a source document having a recognizable genre and a very

specific purpose: to give the reader an exact and concise idea of the contents of the

source” (2). Summaries are either “extracts”, if they contain the most important

sentences extracted from the original text, or “abstracts”, if these sentences are re-

written or paraphrased, generating a new text (3).

In 2011 the INEX QA track considers a tweet as an input and a summary up to 500

words as an output. The motivation for the task is to contextualize tweets received on

small terminals like phones by information from a local XML dump of Wikipedia.

There are 132 tweets which include the title and the first sentence of a New York

Times articles. The summary should be made of extracted relevant sentences from

April 2011 English Wikipedia dump, totally 3 217 015 non-empty pages. XML

160

documents are made of title, abstract and sections. Each section has a sub-title.

Abstract and sections are made of paragraphs and each paragraph can have entities

that refer to Wikipedia pages. Results are presented in TREC-like format where each

row corresponds to the retrieved sentence ranked by score. The systems will be

evaluated by two criteria: relevance of the retrieved information and readability of the

presented results. (https://inex.mmci.uni-saarland.de/tracks/qa/).

Usually a QA system includes following stages (4):

1. Transform the questions into queries

2. Associate queries to a set of documents

3. Filter and sort these documents to calculate various degrees of similarity

4. Identify the sentences which might contain the answers

5. Extract text fragments from them which constitute the answers

Similarly, our approach consists in:

1. Document retrieval by a search engine (documents are sorted by a search

engine according to a similarity measure) for each tweets

2. Parsing of tweets and sets of retrieved documents

3. Index construction for sentences

4. Calculation of similarity for sentences and sentence sorting

5. Getting top n sentences which have the highest score and contain no more

than 500 tokens in total

This approach we propose in IRIT runs includes two steps:

1. Preprocessing

2. Searching for relevant sentences.

Preprocessing consists of the three previous first stages, namely searching for the

documents similar to queries, parsing and re-indexing.

The proposed techniques for relevant sentence searching is standard TF-IDF

measure enriched by named entity recognition, POS weighting and smoothing from

local context. Moreover, there is a possibility to assign different weights to abstracts

and sections of Wikipedia pages, definitional sentences, and various labels.

The two next sections present these steps.

2 Preprocessing

The first step of our approach is preprocessing of texts.

We first looked for the documents similar to the queries. For this stage, document

retrieval was performed by the Terrier Information Retrieval Platform

(http://terrier.org/), an open-source search engine developed by the School of

Computing Science, University of Glasgow. To this end we transformed queries into

to the format accepted by Terrier. We used the default settings. Terrier provides up to

1000 documents as a result, however we considered just the top 20 which are the most

similar to the query. Each document retrieved by Terrier was then split into ordered

sections. Sections were considered as different documents since usually Wikipedia

articles consists of sections related to the topic but not connected to each other.

161

Moreover it gives the possibility to keep relative sentence order to increase readability

if we would like to generate coherent text from them. New documents have an

attribute IS_ABSTRACT. Our system provides the possibility to set different weights

to abstracts and sections. By default it is assumed that the weight of an abstract is 1.0

and the weight of other sections is 0.8.

The second stage of preprocessing is parsing of tweets and retrieved texts by

Stanford CoreNLP developed by the Stanford Natural Language Processing Group.

CoreNLP integrates such tools as POS tagger, Named Entity Recognizer, parser and

the co-reference resolution system (http://nlp.stanford.edu/software/corenlp.shtml). It

produces an XML document as an output. It uses the Penn Treebank tag set (5). In our

approach, tweets were transformed into queries with POS tagging and recognized

named entities (NE). It allows taking into account different weights for different

tokens within a question, e.g. NE are considered to be more important than common

nouns; nouns are more significant than verbs; punctuation marks are not valuable, …

The preprocessing ends with indexing. We computed indices for each section and

each sentence. The index includes not only word forms and lemmas, but also NE.

3 Sentence Retrieval

“Sentence Retrieval is the task of retrieving a relevant sentence in response to a

query, a question, or a reference sentence” (6).

The general idea of the proposed approach is to compute similarity between the

query and sentences and to retrieve the most similar passages. To this end we used

standard TF-IDF measure. We extended the basic approach by adding weight

coefficients to POS, NE, headers, sentences from abstracts, and definitional sentences.

Moreover sentence meaning depends on the context. Therefore we used an algorithm

for smoothing from the local context. The sentences were sorted. The sentences with

the highest score were added to the summary until the total number of words exceeds

500.

In the implemented system there is a possibility to choose one of the following

similarity measures:

1. Cosine similarity: ����������	
, � = ∑
� × �������∑ 	
������ × �∑ 	�������
(I)

2. Dice similarity: ����������	
, � = 2∑
� × ������∑ 	
������ + ∑ 	�������
(II)

3. Jaccard similarity: ����������	
, � = ∑
� × ������∑ 	
������ +∑ 	������� − ∑
� × ������
(III)

where
 is a query, � is a sentence,
� is the occurrence of the i-th token in a

query and �� is the occurrence of the i-th token in a sentence. If the token is not

presented in the query or in the sentence,
� (resp. ��) is equal to 0 respectively.

162

We took into account only lexical vocabulary overlap between a query and a

document. However it is possible also to consider morphological and spelling

variants, synonyms, hyperonyms, …

Different words should not have the same weight, e.g. usually it is better not to

take into account stop-words. Our system provides several ways to assign score to

words. The first option is to identify stop-words by frequency threshold. The second

way is to assign different weights to different parts of speech. When the option

Rank_POS is true each vector component is multiplied by this rank, e.g. determiners

have zero weight, proper names have the highest weight equal to 1.0, and nouns have

greater weight than verbs, adjectives and adverbs. Another option gives a possibility

to consider or not IDF.

NE comparison is hypothesized to be very efficient for contextualizing tweets

about news. Therefore for each NE in query we searched corresponding NE in the

sentences. If it is found the whole similarity measure is multiplied by NE coefficient

computed by the formula: ������ = !�"ℎ�	�� × ��$%&&%� + 1��()*+, + 1 , (IV)

where !�"ℎ�	�� is floating point parameter given by a user (by default it is

equal to 1.0), ��$%&&%� is the number of NE appearing in both query and sentence, ��()*+, is the number of NE appearing in the query. We used Laplace smoothing to

NE by adding one to the numerator and the denominator. The sentence may not

contain a NE from the query and it can be still relevant. However, if smoothing is not

performed the coefficient will be zero. NE recognition is performed by Stanford

CoreNLP. We considered only the exact matches of NE. Synonyms were not

identified. However, it may be done later applying WordNet, which includes major

NE.

We consider that Headers, labels, …. should not be taken into account since they

are not “good” sentences for summarization. Therefore we assign them lower weights.

Stanford parser allows making distinction between auxiliary verbs and main verbs,

personal and impersonal verb forms. We assumed that such kinds of sentences do not

have personal verbs. One of the settings allows assigning weights to sentences

without personal verb forms. By default this parameter is equal to 0. Sentences with

personal verb forms have the weight equal to 1.0.

As it has already been mentioned, it is possible to give smaller weights to sections

than to abstracts. By default we assume that sections have the weight equal to 0.8 and

for abstracts this parameter is 1.0.

Since sentences are much smaller than documents general document IR systems

provides worse results to sentence retrieval. Moreover, document retrieval systems

are based on the assumption that the relevant document is about the query. However

this is not enough for sentence retrieval, e.g. in QA systems the sentence containing

the answer is much more relevant that the sentence which is about the subject.

General approach to document IR is underlined by TF-IDF measure. In contrast,

usually the number of each query term in a sentence is no more than one (6).

Traditionally, sentences are smoothed by the entire collection, but there exist

another approach namely smoothing from local context (6).

163

This method assigns the same weight to all sentences from t

we assume that the importance of the context reduces as the distance increases. So,

the nearest sentences should produce more effect on the target sentence sense than

others. For sentences with the distance greater than k this coef

of all weights should be equal to one.

The system allows taking into account k neighboring sentences with the weights

depending on their remoteness from the target sentence. In this case the total target

sentence score ./ is a

target sentence �0 itself:

 where / is a target sentence weight set by a user,

from k context. The weights become smaller as the remoteness increases (see

1). If the sentence number in left or right context is less than k, their weights are

added to the target sentence weight

default, 1 = 1, target sentence weight is equal to 0.8.

Figure

We assumed that definitional sentences

task. Therefore they should have higher weights. We have ta

definitions of NE by applying the following linguistic pattern:

0

0,2

0,4

-4 -3

This method assigns the same weight to all sentences from the context. In contrast,

we assume that the importance of the context reduces as the distance increases. So,

the nearest sentences should produce more effect on the target sentence sense than

others. For sentences with the distance greater than k this coefficient is zero. The total

of all weights should be equal to one.

The system allows taking into account k neighboring sentences with the weights

depending on their remoteness from the target sentence. In this case the total target

is a weighted sum of scores of neighboring sentences

itself:

./ = 2 � × ��3
��43

 � = 51 − /1 + 1 × 1 − |�|1 , 0 8 |�| 9 1 / , � = 00, |�| : 1 ;
2 � = 13
��43

is a target sentence weight set by a user, � are weights of the sentences

from k context. The weights become smaller as the remoteness increases (see

). If the sentence number in left or right context is less than k, their weights are

added to the target sentence weight / . This allows keeping the sum equal to one. By

t sentence weight is equal to 0.8.

Figure 1. Weighting for smoothing from local context

definitional sentences are extremely important to contextualizing

task. Therefore they should have higher weights. We have taken into account only

definitions of NE by applying the following linguistic pattern: 8 �� :8 <!=*+> :8 �?@ABℎ���! :.

-2 -1 0 1 2 3 4Remoteness

Weights

he context. In contrast,

we assume that the importance of the context reduces as the distance increases. So,

the nearest sentences should produce more effect on the target sentence sense than

ficient is zero. The total

The system allows taking into account k neighboring sentences with the weights

depending on their remoteness from the target sentence. In this case the total target

weighted sum of scores of neighboring sentences �� and the

(V)

(VI)

(VII)

are weights of the sentences

from k context. The weights become smaller as the remoteness increases (see Figure

). If the sentence number in left or right context is less than k, their weights are

. This allows keeping the sum equal to one. By

extremely important to contextualizing

ken into account only

164

<!=*+> is a personal form of the verb to be. Noun phrase recognition is also

performed by Stanford parser. We considered only sentences occurred in abstracts

since they contain more general and condensed information and usually includes

definitions in the first sentence. However, the number of extracted definitions was

quite small and therefore we did not use them in our runs.

For the first run we used default settings, namely:

1. NE were considered with a coefficient 1.0;

2. Abstract had weight equal to 1.0, sections had score 0.8;

3. Headers, labels, … were not taken into account;

4. We did not consider stop-words;

5. Cosine similarity was applied;

6. Parts of speech were ranked;

7. Each term frequency was multiplied by IDF.

In the second run we changed the similarity measure to Dice similarity. The section

weight was reduced to 0.7. The context was extended to two sentences in each

direction and the target sentence weight was equal to 0.7. For NE we kept the weight

equal to 1.0.

In the third run we applied Jaccard similarity measure and we set the weight to

sections equal to 0.5.

4 Conclusion and discussion

The proposed method is based on computing similarity between the query and

sentences using an extended TF-IDF measure. We enhance the basic approach by

adding weight coefficients to POS, NE, headers, sentences from abstracts, and

definitional sentences. Moreover the algorithm for smoothing from local context is

provided. The sentences with the highest score are added to the summary until the

total number of words exceeds 500.

Future work includes sentence clustering to exclude redundant information, query

expansion by WordNet and applying additional syntactic features.

5 References

1. Eric SanJuan, Patrice Bellot, Veronique Moriceau, Xavier Tannier.

Overview of the 2010 QA Track: Preliminary results. 2010.

2. Horacio Saggion, Guy Lapalme. Generating Indicative-Informative Summaries

with SumUM. Association for Computational Linguistics. 2002.

3. Jorge Vivaldi, Iria da Cunha, Javier Ramırez. The REG summarization

system at QA@INEX track 2010. 2010.

4. Juan-Manuel Torres-Moreno, Michel Gagnon. The Cortex automatic

summarization system at the QA@INEX track 2010. 2010.

5. Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz. Building

a large annotated corpus of English: the Penn Treebank. Computational Linguistics.

1993, Vol. 19, 2.

165

6. MURDOCK, VANESSA GRAHAM. ASPECTS OF SENTENCE

RETRIEVAL. Dissertation. 2006.

7. Jay M. Ponte, W. Bruce Croft. A Language Modeling Approach to

Information Retrieval. Proceedings of the 21st Annual Conference on Research and

Development in Information Retrieval (ACM SIGIR). 1998.

8. Franz Josef Och, Hermann Ney. Discriminative Training and Maximum

Entropy Models for Statistical Machine Translation. Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL). 2002.

9. Abraham Ittycheriah, Martin Franz, Salim Roukos. IBM's Statistical

Question Answering System - TREC-10. Proceedings of the Tenth Text Retrieval

Conference (TREC). 2001.

10. Buchholz, Sabine. Using grammatical relations, answer frequencies and the

World Wide Web for TREC question answering. Proceedings of the Tenth Text

Retrieval Conference (TREC). 2001.

11. Hristo Tanev, Milen Kouylekov, Bernardo Magnini. Combining linguistic

processing and web mining for question answering: ITC-irst at TREC-2004.

Proceedings of the Thirteenth Text Retrieval Conference (TREC). 2004.

12. Deepak Ravichandran, Eduard Hovy. Learning surface text patterns fora

question answering system. Proceedings of the ACL Conference. 2002.

13. Michael Kaisser, Tilman Becker. Question answering by searching large

corpora with linguistic methods. Proceedings of the Thirteen Text Retrieval

Conference (TREC). 2004.

14. Stanley F. Chen, Joshua Goodman. An Empirical Study of Smoothing

Techniques for Language Modeling. 1998.

15. Edmundo-Pavel Soriano-Morales, Alfonso Medina-Urrea, Gerardo Sierra,

Carlos-Francisco Mendez-Cruz. The GIL-UNAM-3 summarizer: an experiment in

the track QA@INEX’10. 2010.

16. Andrea Carneiro Linhares, Patricia Velazquez. Using Textual Energy

(Enertex) at QA@INEX track 2010. 2010.

166

Overview of the 2011 QA Track:
Querying and Summarizing with XML

Killian Janod, Olivier Mistral

LIA, Université d’Avignon et des Pays de Vaucluse (France)
{killian.janod,olivier.mistral}@etd.univ-avignon.fr

Abstract. In this paper, we describre our participation in the INEX
2011 Question Answering track. There is many ways to answer this track,
we focused on how to use meta-data XML in the summarizing process.
Firstly, we used XML in the querying process in order to get the most
relevant document thanks to the Indri search engine. Secondly, XML en-
abled us to find sentences that are useful in our probabilistic summarizing
process.

Keywords: XML, INEX, QA track, Indri

1 Introduction

For this first participation at the Initiative for the Evaluation of XML retrieval
[1], we started working on this track and we thought about this: How can a sum-
marizer answers a question when the corpus which it works on doesn’t have this
answer? We thought the summarizer have to select only very relevant documents
in the Wikipedia and work with them. Our summarizer is able to do so, thanks
to the tools given to work on this track :

– An XML document which contains the 132 topics of the track of the form :
id topic, title and first sentence of the news,

– A recent cleaned dump of the Wikipedia1 whose pages are plain XML corpus,
– A baseline XML-element retrieval system powered by Indri 2.

We obviously understood that we have to improve the most we can our using
of the XML-element retrieval system. We wanted to try a summarizer which do
not only use a probabilistic method. To do so we needed an other way to have
information about the corpus. At his point using XML was logical.

Therefore we decided to focus on the two following tasks to carry out this
track with such limited time:

1. The improvement of requests with XML,
2. The integration of XML in the summarizer.

The rest of the paper is organized as follows. In Section 2, we present the im-
provements we did on the requests with XML. Then, we develop the summarizer.
Finally, the Section 3 is a conclusion on our works.

1 http://qa.termwatch.es/data/enwiki-latest-pages-articles.xml.gz
2 http://qa.termwatch.es/qa.html

167

2 Killian Janod, Olivier Mistral

2 Improved queries with XML

2.1 Indri 3

For this track, we experimented an XML-element retrieval system powered by
Indri. Indri is a search engine that provides state-of-the-art text search and a
rich structured query language for text collections. We relied on three elements
of this language which are the following operators: #combine, #weight and #1 :

– #combine is a query likelihood method used for retrieval in ad-hoc retrieval,
the results are ranked by :

P (Q|D) = ΠqP (qi|D)1/|Q| (1)

It’s possible to use [section] in order to evaluate a query only with the section
context, for example: “#combine[title](query)” will return titles as results,
and rank by query. By default, an Indri query without operators uses the
#combine on all terms.

– #weight : with this operator, we can assign varying weights to certain ex-
pressions. This allows us to control how much of an impact each expression
within our query has on the final score,

– #1 : For compound words such as Comic-con for example, this operator
allows us to keep the order of the words and within one term of each other.

Combined with the use of XML, this syntax is the heart of the queries to
express.

2.2 Methodology

Here is the diagram of the method we used:
The first step in improving queries is to extract the topic of the XML file

containing the 132 topics. As this file is XMLised, extraction becomes easy and
we end up with a topic like this:

<xml>

<topic id="numId">

<title>tweet title</title>

<txt>first sentence of the news</txt>

</topic>

</xml>

Then we clean the topic of everything that is not a word. We clean unneces-
sary spaces and we use a stop list to keep only the most relevant unigrams.

The fact that the text of the topic is the first sentence of the news is very
important, because it has statistically more weight than others. So there is more
chance of finding key words in that sentence. Thus, with our clean topic, we

3 http://www.lemurproject.org/indri.php

168

Overview of the 2011 QA Track: Querying and Summarizing with XML 3

Tweet

Improving Clean up the tweet

Add weight to more frequent word in the tweet

Add weight to important position

Indri

Document collection

Fig. 1. Improving queries diagram

count the number of iterations of unigrams or compound words by hyphens of
the title in both title and text. This will allow us to give weight to the unigrams
of the title. For each one, we search them in abstracts and sections and for the
two most weighted unigrams (weight must be greater than 1). We also search
them in titles. At last, we put in all unigrams of the text non included in the
title in a general #combine with a weight equal to 1.

Finally, we have a query of the form:

#weight(nj #1(Uj).title ni #1(Ui).a ni #1(Ui).s #combine(text unigrams))

Where U i: unigram title at i position, ni: number of iterations of U i, i from 1
to final unigram position and j from 1 to 2.

Improved queries allowed us to drastically reduce the number of Wikipedia
documents returned, while increasing the relevance of these.

3 Summarizing and XML

The summarizing is the second part in our process of automatic answering. This
part is composed by four majors steps. The first step “Filtering” will aim at
removing every irrelevant element inside the corpus.

Then the second part will edit each word in the corpus in order to keep only
the meaning of the word to make the summarizing more efficient. Step number
three “Scoring” will give a score to each sentence depending on words contained
in the sentence.

169

4 Killian Janod, Olivier Mistral

To finish a Decision algorithm give a rank to each sentence based on the score
made earlier. The top-ranked sentence is kept in order to make the answer and
to meet the five hundred word. We can decompose the path like this:

XML corpus from Wikipedia

Filtering

Stemming

Scoring

Decision making

Text generating

Summary

Fig. 2. Summarizing diagram

3.1 Filtering

The filtering step is the first one in the summarizing process we use. The aim
in this step is to clean up the corpus. That means we are going to remove every
element which can’t be useful in the summarizing process. At first the corpus
is segmented by sentence. Each line in the corpus was made to be a sentence
in order to make editing texts easier. Our corpus contains XML, so we have to
deal with tag during the whole process. To handle that tag are segmented as a
sentence, as it’s showed by the example below.

<tag>

<tag2>

sentence

</tag2>

sentence

sentence

</tag>

In the corpus, we noticed that pages contain only a file and a file’s title.
We realized these pages never contain any information that can be used by the
summarizer. So we decided to remove this kind of pages. It has appeared that
there are paragraphs which only contain a picture or a drawing. Those elements
are useless for a text summarizer, so we obviously chose to remove them. So, this
is the first part of filtering: removing noise in the corpus that used to contain
key word but never usable sentences.

170

Overview of the 2011 QA Track: Querying and Summarizing with XML 5

The next step is Character filtering. The summarizer looks for hardly usable
Character in the corpus and removes them. In this process numbers are removed
because it’s hard to detect if a number means a quantity, a date or something
else. And the summarizer can’t deal with numbers as they increase the noise.
Punctuation marks are removed too. A meaning could be deduced from these
marks but the model used here only uses words. During this process quotes,
accents, brackets, etc, are all removded.

The corpus now only contain words and spaces. So, here comes the last step.
A stop list is now used in order to keep only words which express something in
the corpus. The stop list contains every word which appears too often and can’t
caracterize a sentence.

3.2 Stemming

The second step is the stemming. In this step, each word is reduced to his stem.
We need to find a relation between sentences. The answer is to link words which
have the same root and must be talking about the same thing. This step is done
thanks to the Porterh4 algorithm.

3.3 Scoring

When the stemming is finished, the third step begins. Each line is transformed
in a vector in order to have a matrix which represents the entire corpus. Then
three metrics are done on those vectors in order to give to each of them a score.

In the matrix made, each line represents a sentence in the corpus and each
column represents a word from the corpus.

Corpus =
TF1,1 TF1,2

TF2,1 TF2,2
(2)

The ’TF’ means Term Frequency defined by :

TFi,j =
ni∑
x nx,j

(3)

where Sj is the sentence number j,
and Wi is the word number i,
and

∑
x nx,j is the count of words in Sj ,

and ni is the number of Wi in the entire corpus.
When the matrix is done, but still, sentences can’t be ranked, we need to

make a score with sentences’s vectors. In order to do this score, three metrics
were used. The first metrics is the Sum frequency defined as below

Scorej =
∑

k

TFk,j (4)

4 http://tartarus.org/martin/PorterStemmer/

171

6 Killian Janod, Olivier Mistral

This metric give a good score to sentences which have a lot of important words
but long sentences have better marks than shorter but they are not more im-
portant just because they are longer. We need to use another metric. This one
is called entropy, defined like this :

Ej = −
∑

k

pkj × log pk,j (5)

We use two metrics XML based. The first metric is “t tag count”. This metric
can be explained by the more a sentence contains links the more relevant it is.

That can be defined as :
tj =

∑
k

qk (6)

where qk = 1 if word number k surround by t tag
and qk = 0 otherwise.
In XML, a document can be shown as a tree. We noticed that the deeper in

the tree the text is, the less concise the text should be. In order to score, we give
a mark to each sentence depending on where the sentence is in the XML tree.
We use a scoring system completely dependent of the context defined as follows
:

treej = Qa
j +Qh

j +Qtitle
j +Qs

j +Qp
j (7)

Where Qa = 20 if sentence is between ¡a¿ 0 otherwise,
Qh = 10 if sentences is between h tag 0 otherwise,
Qtitle = 10 if sentences is between title tag 0 otherwise,
Qs = 5 if sentences is between s tag 0 otherwise,
Qp = 1 if sentences is between p tag 0 otherwise.
At this point we changed a vector of words against a vector of 4 metrics. it’s

not easier to make a rank of sentence. That’s where the last step begins.

3.4 Decision making algorithm

The last step based on [5] is called Decision making because this step have to
define which sentences are most relevant in order to use them in the summary.
At first each metrics is standardized between 0 and 1 thanks to the equation :

std(scorej,m) =
scorejm −min(scorem)

max(scorem)−min(scorem)
(8)

Where j is a sentence
and m is a metric. In order to process next steps, each metric is normalized.

We have to define an average able to handle those metrics and finally score each
sentence. the Decision making algorithm is defined as follows:

Avgsup =
M∑

v=1scorev,j>0.5

(scorej,v − 0.5) (9)

172

Overview of the 2011 QA Track: Querying and Summarizing with XML 7

Avginf =
M∑

v=1scorev,j<0.5

(0.5− scorej,v) (10)

Where M is the number of metrics used
j is the sentence we are scoring
if Avgsup > Avginf then

FinalMarkj = 0.5 +
Avgsup

M
(11)

otherwise

FinalMarkj = 0.5− Avginf

M
(12)

This algorithm return a Single final mark for each sentence. We are now able
to sort them and use only the top sentences in order to make the summary. We
will keep the maximum sentences we can to be as relevant as possible but we
will never have more thant five hundred words in the summary. The summary
is ready to be assessed with FRESA [2] [3] [4].

4 Conclusion

To conclude, we made a summarizer able to answer the question “what is this
tweet about ?”. This answer isn’t perfect, the summarizer is far to be too. Using
XML in queries improving and summarizing raises the question of the XML
capacities in automatic Summarizing. We found a way to use it in the INEX
QA track context but there is certainly a way to generalize this use. It could
be smart to focus on the tree level as we did with scoring the deep. This brief
overview is now ended, we hope to be able go further, maybe in the next INEX.

References

1. Shlomo Geva, Jaap Kamps, Ralf Schenkel, and Andrew Trotman, editors. Compar-
ative Evaluation of Focused Retrieval - 9th International Workshop of the Inititative
for the Evaluation of XML Retrieval, INEX 2010, Vugh, The Netherlands, December
13-15, 2010, Revised Selected Papers, volume 6932 of Lecture Notes in Computer
Science. Springer, 2011.

2. Horacio Saggion, Juan-Manuel Torres-Moreno, Iria da Cunha, and Eric SanJuan.
Multilingual summarization evaluation without human models. In Proceedings of
the 23rd International Conference on Computational Linguistics: Posters (COL-
ING’10), pages 1059–1067, Beijing, Chine, 2010. ACL.

3. J.-M. Torres-Moreno, Horacio Saggion, I. da Cunha, P. Velazquez-Morales, and
E. SanJuan. Evaluation automatique de résumés avec et sans réferences. In Proceed-
ings de la conference Traitement Automatique des Langagues Naturelles (TALN’10),
Montral, QC, Canada, 2010. ATALA.

173

8 Killian Janod, Olivier Mistral

4. Juan-Manuel Torres-Moreno, Horacio Saggion, Iria da Cunha, and Eric SanJuan.
Summary Evaluation With and Without References. Polibits: Research journal on
Computer science and computer engineering with applications, 42:13–19, 2010.

5. Jorge Vivaldi, Iria da Cunha, Juan Manuel Torres-Moreno, and Patricia Velzquez-
Morales. Automatic summarization using terminological and semantic resources. In
Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors,
Proceedings of the Seventh International Conference on Language Resources and
Evaluation (LREC’10), Valletta, Malta, may 2010. European Language Resources
Association (ELRA).

174

A graph-based summarization system at
QA@INEX track 2011

Ana Lilia Laureano-Cruces1,2 and Javier Ramı́rez-Rodŕıguez1,2

1 Universidad Autónoma Metropolitana-Azcapotzalco
Mexico

2 LIA, Université d’Avignon et des Pays de Vaucluse
France

{clc,jararo}@correo.azc.uam.mx

http://lia.univ-avignon.fr/

Abstract. In this paper we use REG, a graph-based system to study
a fundamental problem of Natural Language Processing: the automatic
summarization of documents. The algorithm models a document as a
graph, to obtain weighted sentences. We applied this approach to the
INEX@QA 2011 task (question-answering). We have extracted the title
and some key or related words according to two people from the queries,
in order to recover 50 documents from english wikipedia. Using this strat-
egy, REG obtained good results with the automatic evaluation system
FRESA.

Key words: Automatic Summarization System, Question-Answering System,
graph-based.

1 Introduction

Nowadays automatic summarization using graph-based ranking algorithms has
drawn much attention in recent years from the computer science community and
has been widely used (Mihalcea, 2004; Sidiropoulos and Manolopoulos, 2006;
Torres-Moreno and Ramı́rez Rodŕıguez, 2010; Torres-Moreno, 2011). Accord-
ing to (Saggion and Lapalme, 2002: 497) a summary is “a condensed version
of a source document having a recognizable genre and a very specific purpose:
to give the reader an exact and concise idea of the contents of the source”.
Summaries has two main approaches “extraction”, if they contain the most im-
portant sentences extracted from the original text (ex. Torres-Moreno et al.,
2002; Torres-Moreno, 2011) and “abstraction”, if these sentences are re-written
or paraphrased from the source, generating a new text (ex. Ono et al., 1994;
Paice, 1990; Radev, 1999). Most of the automatic summarization systems are
extractive. These systems have been used in different domains (ex. da Cunha et
al., 2007; Vivaldi et al., 2010; Farzindar et al., 2004; Abracos and Lopes, 1997).
One of the tasks where these extractive summarization systems could help is
question-answering. The objective of the INEX@QA 2011 track is contextual-
izing tweets, i.e. answering questions of the form ”what is this tweet about?”

175

using a recent cleaned dump of the Wikipedia. In this task is where automatic
summarization systems is used. Each of the selected 132 topics for 2011 includes
the title and the first sentence of a New York Times paper that were twitted at
least two months after the wikipedia. The expected answers are automatic sum-
maries of less than 500 words exclusively made of aggregated passages extracted
from the Wikipedia corpus. The evaluation of the answers will be automatic,
using the automatic evaluation system FRESA (Torres-Moreno et al., 2010a,
2010b, Saggion et al., 2010), and manual (evaluating syntactic incoherence, un-
solved anaphora, redundancy, etc.). To carry out this task, we have decided to
use REG (Torres-Moreno and Ramı́rez-Rodŕıguez, 2010; Torres-Moreno et al.,
2010), an automatic summarization system based on graphs.

The rest of this paper is organized as follows. In the next section we show
REG, the graph-based summarization system we have used for the experiments.
In Section 3 we explain how we have carried out the terms extraction of the
queries. In Section 4 we present the results. In Section 5, some conclusions are
given.

2 The graph-based system

REG (Torres-Moreno and Ramı́rez-Rodŕıguez, 2010; Torres-Moreno et al. 2010)
is an Enhanced Graph Summarizer (REG) for extract summarization, using a
graph approach. The strategy of this system has two main stages: a) to carry
out an adequate representation of the document and b) to give a weight to
each sentence of the document. In the first stage, the system makes a vectorial
representation of the document. In the second stage, the system uses a greedy
optimization algorithm of traversal graph to obtain a desired number of relevant
sentences, all if necessary. The summary generation is done with the concatena-
tion of the most relevant sentences (previously scored in the optimization stage).

REG algorithm contains three modules. The first one carries out the vectorial
transformation of the text with filtering, lemmatization/stemming and normal-
ization processes. The second one applies the greedy algorithm and calculates
the adjacency matrix. We obtain the score of the sentences directly from the
algorithm. Therefore, a desired number of sentences with more score will be
selected by the greedy algorithm as the most relevant. Finally, the third mod-
ule generates the summary, selecting and concatenating the desired number of
relevant sentences. The first and second modules use CORTEX (Torres-Moreno
et al., 2002), a system that carries out an unsupervised extraction of the rele-
vant sentences of a document using several numerical measures and a decision
algorithm.

3 Treatment of queries

The 132 queries obtained from the topics of the New York Times were processed
by two persons. The first one has chosen in addition to the title the words of the
phrase are, from her point of view, key words. The second has been considered in

176

addition to the title, words related to the to the title, for example, for the query
”Largest Holder of US Debt” we consider the terms: debit, china and USA. The
132 queries were processed by the perl program of inex and sent to INDRI to
subsequently obtain 50 documents per query from english wikipedia, of which
REG obtained a summary of between 500 and 600 words of each. A random
sample was selected from 6 queries of each form of generating it and that were
evaluated with the FRESA tool.

4 Results

In this study, we used the document sets made available during the —Initiative
for the Evaluation of XML retrieval (INEX) 2011 1, in particular on the INEX
2011 QA Track (QA@INEX). These sets of documents where provided by the
search engine Indri. 2 REG has produced the same number of summaries of
approximately 550 words each.

To evaluate the efficiency of REG over the INEX@QA corpus, we have used
the FRESA package.

Table 1 shows an example of the best result obtained by REG using 50
documents as input. The query that the summary should answer in this case
was the number 2011024. This table presents REG results in comparison with
an intelligent baseline (Baseline summary), and two simple baselines, that is,
summaries including random n-grams (Random unigram) and 5-grams (Random
5-gram). We observe that our system is always better than these baselines. Then
we present the average of the random sample for each one of the people and the
Baseline summary, finding that REG is acceptable. To complete the study, we are
going to choose a larger random sample of the queries to compare the averages
of reg with those of the other baselines.

Table 1. Example of REG results using 50 documents as input.

Distribution type unigram bigram with 2-gap Average

Baseline summary 20.5418 27.5864 27.6669 25.2650
Empty baseline 29.3267 36.8774 36.9097 34.3712
Random unigram 19.6240 27.2631 27.2464 24.7112
Random 5-gram 19.0643 26.1404 26.3386 23.8478
Submitted summary 20.2178 27.2809 27.3687 24.9558

1 https://inex.mmci.uni-saarland.de/
2 Indri is a search engine from the Lemur project, a cooperative work between the Uni-

versity of Massachusetts and Carnegie Mellon University in order to build language
modelling information retrieval tools: http://www.lemurproject.org/indri/

177

Table 2. Averge of REG results for each person to generate the query.

Form Person 1 Person 2 Baseline summary

Average 33.6984 33.9505 32.8402

5 Conclusions

We have presented the REG summarization system, an extractive summarization
algorithm that models a document as a graph, to obtain weighted sentences. We
applied this approach to the INEX@QA 2011 task, extracting the terms from
the queries, in order to obtain a list of terms related with the main topic of the
question.

Our experiments have shown that the system is always better than the two
simple baselines, but in comparison with the first one the performance is variable.
We think this is due to the fact that some queries are long and they have several
terms we could extract, but there are some queries that are very short and
the term extraction is not possible or very limited. Nevertheless, we consider
that, over the INEX-2011 corpus, REG obtained good results in the automatic
evaluations, but now it is necessary to wait for the human evaluation and the
evaluation of other systems to compare with.

References

1. Abracos, J.; Lopes, G. (1997). Statistical methods for retrieving most significant
paragraphs in newspaper articles. In Proceedings of the ACL/EACL’97 Workshop
on Intelligent Scalable Text Summarization. Madrid. 51-57.

2. da Cunha, I.; Wanner, L.; Cabré, M.T. (2007). Summarization of specialized dis-
course: The case of medical articles in Spanish. Terminology 13 (2). 249-286.

3. Farzindar, A.; Lapalme, G.; Desclés, J.-P. (2004). Résumé de textes juridiques par
identification de leur structure thématique. Traitement automatique des langues 45
(1). 39-64.

4. Mihalcea, R. (2004). Graph-based ranking algorithms for sentence extraction, applied
to text summarization. In Proceedings of the 42nd Annual Meeting of the Associ-
ation for Computational Lingusitics (ACL 2004) (companion volume), Barcelona,
Spain.

5. Ono, K.; Sumita, K.; Miike, S. (1994). Abstract generation based on rhetorical struc-
ture extraction. In Proceedings of the International Conference on Computational
Linguistics. Kyoto. 344-348.

6. Paice, C. D. (1990). Constructing literature abstracts by computer: Techniques and
prospects. Information Processing and Management 26. 171-186.

7. Radev, D. (1999). Language Reuse and Regeneration: Generating Natural Language
Summaries from Multiple On-Line Sources. New York, Columbia University. [PhD
Thesis]

8. Saggion, H.; Lapalme, G. (2002). Generating Indicative-Informative Summaries with
SumUM. Computational Linguistics 28 (4). 497-526.

178

9. Torres-Moreno, J-M.(2011). Résumé automatique de documents: Une approche
statistique . Hermès-Lavoisier (Paris).

10. Torres-Moreno, J-M.; Saggion, H. da Cunha, I. SanJuan, E. Velázquez-Morales, P.
SanJuan, E.(2010a). Summary Evaluation With and Without References. Polibitis:
Research Journal on Computer science and computer engineering with applications
42.

11. Torres-Moreno, J.-M.; Saggion, H.; da Cunha, I.; Velázquez-Morales, P.; SanJuan,
E. (2010b). Ealuation automatique de résumés avec et sans référence. In Proceed-
ings of the 17e Conférence sur le Traitement Automatique des Langues Naturelles
(TALN). Université de Montréal et Ecole Polytechnique de Montréal: Montreal
(Canada).

12. Torres-Moreno, J-M.; Ramı́rez, J. (2010). REG : un algorithme glouton appliqué
au résumé automatique de texte. JADT 2010. Roma, Italia.

13. Torres-Moreno, J-M.; Ramı́rez, J.; da Cunha, I. (2010). Un resumeur a base de
graphes, indépendant de la langue. Workshop African HLT 2010. Djibouti.

14. Torres-Moreno, J. M.; Velázquez-Morales, P.; Meunier, J. G. (2002). Condensés
de textes par des méthodes numériques. En Proceedings of the 6th International
Conference on the Statistical Analysis of Textual Data (JADT). St. Malo. 723-734.

15. Vivaldi, J.; da Cunha, I.; Torres-Moreno, J.M.; Velázquez, P. (2010). ”Automatic
Summarization Using Terminological and Semantic Resources”. In proceedings of
7th International Conference on Language Resources and Evaluation (LREC 2010).
Valletta, Malta.

16. Sidiropoulos; A.; Manolopoulos, Y. (2006). Generalized comparison of graph-based
ranking algorithms for publications and authors. In: The Journal of Systems and
Software. Volume 79. 1679-1700.

179

SUMMA Content Extraction for INEX 2011

Horacio Saggion

TALN
Department of Information and Communication Technologies

Universitat Pompeu Fabra
C/Tanger 122/140 Poble Nou - Barcelona (08018) - Spain

horacio.saggion@upf.edu

Abstract. We present a text summarization system prepared for the
INEX QA 2011 evaluation. The system constructs an answer summary
with sentences extracted from Wikipedia documents deemed relevant to
a given natural language topic. The system is based on the SUMMA
summarization tool for sentence relevance computation and selection.

1 Introduction

The INEX 2011 Question Answering Track asks participants to create a short
answer for the question “What is this tweet about?”. An instance of the problem
could be the following questions:

– What is “At Comic-Con, a Testing Ground for Toymakers” tweet about?

Given such a question, relevant documents from Wikipedia are retrieved in
order to give context to the tweet. These relevant documents have to be sum-
marized in order to reduce redundancy and provide the best possible answer.

We have developed a simple text summarization system in order to extract
relevant sentences from Wikipedia documents. The system is based on available
summarization technology provided through the SUMMA software [2] which has
been used in other evaluation programs [5, 1, 4, 3].

This short communication provides an overview of the technology used to
develop our summarizer for INEX.

2 SUMMA tool

SUMMA is a toolkit for the development of text summarization systems [2]: given
a summarization task a set of components can be pipelined to create and deploy a
summarization application. SUMMA is composed of a series of modules to assess
the relevance of sentences or larger units of text (e.g., paragraphs, documents)
in a given context. Additional components provide infrastructure for document
analysis, document representation, and evaluation. Here we describe SUMMA
basic functionalities:

180

Fig. 1. Document Analised with SUMMA

– Statistics computation: SUMMA computes basic frequency statistics for
words or other linguistic units such as named entities: these statistics can
be normalized relying on inverted document frequency tables computed by
specific modules.

– Text representation: The full document and various document units can
be represented as vectors of terms and weights (e.g., the statistics). The
system is flexible in that the statistics to use for representation are system
parameters.

– Text similarity computation: Various similarity measures are provided with
the tool such as cosine similarity or normalized word overlap.

– Sentence features: The basic mechanism to assess sentence relevance is fea-
ture computation and a number of programs are available that implement
well known summarization relevance features such as sentence position, term
frequency distribution, sentence title similarity, sentence query similarity,
sentence centroid similarity, cue word distribution, etc.

– Feature combination: The computed features can be combined in an easy
way (using a user specified weighting schema) to produce a numerical score
for each sentence. The features could also be selected based on an statistical
feature selection framework. The score can be used to rank sentences.

In Figure 1 we show a document analysed with SUMMA. The figure shows
various features computed for a specific sentence such as the title feature, the
word feature, the position feature, the centroid feature, etc.

181

3 Summarization for INEX 2011

The INEX QA task requires the creation of a 500-word summary of documents
retrieved from Wikipedia given a query. Figure 2 shows the text retrieved for the
tweet “At Comic-Con, a Testing Ground for Toymakers” by the programs pro-
vided by the INEX organizers which produces a combined file with all retrieved
documents. Note that the first sentence of the retrieved text is the text of the
tweet. We use directly this input in our summarizer.

At Comic-Con, a Testing Ground for Toymakers.
The ”Celestial Toymaker” is a fictional character in the long-running British
science fiction television series, ”Doctor Who”. He was played by Michael Gough,
and featured in the 1966 story ”The Celestial Toymaker” by Brian Hayles. ...
He also wrote ”Short History of Europe”, edited ”Lady Mary Wortley-Montagu’s
Letters” (Selection and Life), and was a contributor to ”Punch” magazine. Ross
died of heart failure at his home in Kensington, London on 11 September 1933
at the age of 73.

Fig. 2. Retrieved Wikipedia Documents

The input text is analysed with a standard tokenization, sentence splitting
program provided by the GATE software. After this, word sentence statistics
are computed over the document: the frequency of a word in the sentence and
the word inverted sentence frequency (i.e., the number of sentences containing
the word). The relevance of a word in the sentence is computed as:

w(t) = freqsent(t) ∗ ln(Nsent

Nsent(t)
)

where freqsent(t) is the frequency of t in the sentence, Nsent is the number of
sentences in the document, and Nsent(t) is the number of sentences containing
t. Each sentence is the document is represented in the vector space model using
the words and their weights w(t). The document is also represented as a vector
but using global word frequency statistics.

For each sentence four features were computed: (i) the similarity between
each sentence and the first sentence (i.e., the tweet) computed as the cosine
of the two vector representations, (ii) the position of the sentence (note that
documents at the beginning are more relevant than those at the end), (iii) the
similarity between the the sentence and the document also computed as the co-
sine between the two vector representations, and (iv) the term frequency feature
computed as a normalized sum of the weights of the words in the sentence.

182

Fig. 3. Query-based Summary

3.1 Selecting the Summary

In order to decide what features to use to produce our answer summary, we relied
on the Fresa software [7] that compares an input document with a summary
through the computation of divergences. The tool has been proved to produce
rankings correlated with rankings produced relying on comparison with human
summary models [6]. We used a sample of documents to produce 4 different
summaries each using a different feature: similarity to the first sentence, position,
similarity to the document, and term frequency. In all cases the best summary
according to the Fresa package was one produced using the similarity to the first
sentence as scoring feature. We have also tried some feature combinations but
none improve the results on the sample. We therefore decide to use this feature
alone for scoring and selecting sentences. One example first sentence similarity
summary produced by our tool is shown in Figure 3.

4 Outlook

In this short communication we have described the tool we are using for pro-
ducing a summary that contextualizes a tweet for the INEX 2011 Question
Answering task. We have developed a very simple system that scores sentences
represented in a vector space model. The scores are produced by comparing the
sentence to the initial tweet. This way of scoring sentences was decided after ver-
ifying that the “divergence” between summaries and documents was minimized

183

using this sentence scoring schema. We believe, however, the summarization sys-
tem is still to simplistic and that it should be improved by taking into account
more sophisticated features. We expect to improve the system based on the
feedback received after evaluation.

References

1. H. Saggion. Experiments on semantic-based clustering for cross-document corefer-
ence. In Proceedings of the Third Joint International Conference on Natural Lan-
guage Processing, pages 149–156, Hyderabad, India, January 7-12 2008. AFNLP,
AFNLP.

2. H. Saggion. SUMMA: A Robust and Adaptable Summarization Tool. Traitement
Automatique des Langues, 49(2):103–125, 2008.

3. Horacio Saggion. Matching texts with summa. In Défi Fouille de Texte (DEFT
2011), Montpellier, France, June 2011 2011. TALN, TALN.

4. Horacio Saggion. Using summa for language independent summarization at tac
2011. In Text Analysis Conference, Gaithersburg, Maryland USA, 11/2011 2011.
NIST, NIST.

5. Horacio Saggion and Robert Gaizauskas. Multi-document summarization by clus-
ter/profile relevance and redundancy removal. In Proceedings of the Document Un-
derstanding Conference 2004, Boston, USA, May 6-7 2004. NIST.

6. Horacio Saggion, Juan-Manuel Torres-Moreno, Iria da Cunha, Eric SanJuan, and
Patricia Velazquez-Morales. Multilingual summarization evaluation without human
models. In In Proceedings of COLING, 2010.

7. J.M. Torres-Moreno, Horacio Saggion, I Da Cunha, P. Velazquez-Morales, E. San-
Juan, and A. Molina. Summary evaluation with and without references. Polibits,
In Press, 2010.

184

Combining relevance and readability
for INEX 2011 Question-Answering track

Jade Tavernier and Patrice Bellot

LSIS - Aix-Marseille University
patrice.bellot@lsis.org, jade.tavernier@gmail.com

Abstract. For INEX 2011 QA track, we wanted to measure the impact
of some classical measures of readability in the selection of sentences
related to topics. We considered the readability as an indicator of the
cohesion of the summaries we produced from documents. This is a step
towards adaptive information retrieval approaches that take into account
the reading skills of users and their level of expertise.

1 Introduction

While many scientific studies and papers deal with information retrieval in con-
text, adapting retrieval to users with limited reading skills is still an open prob-
lem. This may include people with language disorders (eg dyslexia makes reading
slow and complex) as well as those not proficient enough in the language of a
document or that have to read a content whose necessary expertise for under-
standing is too high. Adaptation of information retrieval with the consideration
of individual reading / understanding performance may be a major concern for
modern societies where citizens learn online, without human mediation. The is-
sue of measuring the readability of a text is important in many other areas. For
example, it allows to estimate the level of difficulty of a text when a child learns
reading or learns a foreign language.

Many studies have examined the concept of relevance in trying to define it
according to extra-linguistic and contextual parameters that are not explicit in
a query [15]. We do not specify in a query our level of expertise (how would we?)
and we do not indicate our average speed of reading or difficulties. Moreover,
the common retrieval models allow ordering documents according to how much
information they convey vis-a-vis what the user expressed in its query, taking into
account, possibly, a personal profile (previous queries and consultations) or that
of other users who made a similar request. This is an essentially informational
relevance. This is adequate to a certain extent but does not take into account that
the needs are different depending, for example, the level of expertise of the user:
someone new to an area will be more interested in a simple document rather than
an expert study with very specialized terms and complex structure. Meet such
a need for customization requires to define new measures taking into account
readability and relevance of a text. In such a case, an information retrieval
system could provide users with, for example, simplest documents first.

185

For INEX 2011 QA track, we wanted to measure the impact of some clas-
sical measures of readability in the selection of sentences answering to topics.
We considered the readability as an indicator of cohesion of the summaries we
extracted from documents. Related work concerns the estimation of linguistic
quality, or the fluency, of a text such as employed in some automatic summariza-
tion systems [3, 16]. However, we are more interested in detection of text easier
to understand than text well written. There are many challenges: determining
a good measure of readability for the task, achieving a good balance between a
selection of phrases according to their informational relevance (quantity of new
information) and their readability.

In Section 2, we present some related work and classical measures of readabil-
ity. Then, we present and machine learning approaches for adapting readability
to users although we have not been able to experience them yet. In Section 3,
we describe the experiments we realized and the runs we submitted. In Section
4, we analyze our runs and scores statistically.

2 Relevance and readability

The purpose of an information retrieval system is to provide relevant documents
to the user in relation to its information need (topic or query). The notion of
relevance has been the subject of many studies that attempt to identify the
concepts to which it refers [18]. S. Mizzaro proposes a definition of relevance
that encompasses several dimensions [15] :

– the need for information, broken down into real need, perceived need, ex-
pressed need, and a query written in a formal query language;

– the compounds : the information, the task and its context;
– the time required to retrieve the information;
– the granularity of the answers: comprehensive document, segments of docu-

ments or precise answer.

The type of documents, the level of detail, the date of writing are so many
criteria that can be included in retrieval models, along with the popularity
(PageRank) and the authority. The integration of the criterion of readability
also requires to reformulate what is a relevant document. Adapting the retrieval
process to the reading skills of the user amounts to considering the readability
as a continuous variable that we seek to maximize while selecting only the best
documents verifying the other criteria of relevance. Readability can be seen as
an additional criterion in the retrieval model or as a new filtering step in the
selection of documents.

2.1 Classical measures for estimating readability

W.H. Dubay notes that more than 200 readability formulas can be found in the
literature [8]. They exploit linguistic, syntactic, semantic or pragmatic clues. In

186

this section, we report the most classic formula. Coh-Metrix1 combines more
than 50 measures to calculate the coherence of texts [11]. Some measures of
readability still used date back fifty years. For the English language, the most
common measures of readability are : FOG [12] (formula 1), SMOG [14] (formula
2) and Flesch [9] (formula 3) which is proposed by software such as Microsoft
Word in its statistical tools set. Derivatives of these formulas can also be found
such as formula 4 described in [20].

Let d a document (or a text or a sentence), L(d) the readability of d. Let
ASL be the average length of sentences (number of words), ASW the average
number of syllables per word, MON the frequency of monosyllabic words in d
and POL the number of multisyllabic words in the beginning, in the middle and
at the end of d.

LFOG(d) = 3, 068 + 0, 877×ASL+ 0, 984×MON (1)

LSMOG(d) = 3 +
√
POL (2)

LFlesch(d) = 206, 835− 1, 015×ASL− 84, 6×ASW (3)

LFlesch−Kincaid(d) = 0, 39×ASL+ 11, 8×ASW − 15, 59 (4)

Some other measures are reported in [5] that employ closed list of words
classified according to their difficulty such as the Caroll-Davies-Richman list [2]
and the Dale & O’Rourke dictionary [7] : Lexile [21], Dale-Chall (formula 5) [4]
and Fry [10] for very short texts.

LDale−Chall(d) = (0.1579×DS) + (0.0496×ASL) + 3.6365; (5)

where DS is Dale-Chall Lexicon-based score, or % of words not in their
dictionary of 3,000 common words, and ASW the average number of syllables
per word.

Note that many other factors, particularly sensitive for visually impaired
people, could be considered: spacing and font size, contrast, paragraph align-
ment, the presence of images, physical structure of documents... These criteria
are taken into account to measure the accessibility of Web pages by Web Acces-
sibility Initiative (WAI).

2.2 Machine Learning for readability measures adapted to users

The availability of large corpora and the organization of large-scale experiments
have enabled the development of new measures of readability that does not
involve numerical parameters selected manually. They are used to better reflect
certain contexts than do generic measures such as those defined above. L. Si

1 http://cohmetrix.memphis.edu/cohmetrixpr/index.html

187

and J. Callan have proposed to combine linguistic criteria and surface analysis
(unigram language model) [20].

They conclude that the rarity of words (estimated through a generic unigram
model) and the length of sentences are meaningful criteria for estimating the
difficulty of reading a web page but not the number of syllables per word. This
is consistent with psycholinguistic studies on the reading process: a long word
is not necessarily more difficult to recognize if it has already been met by the
reader.

As recommended by W3C, K. Inui and S. Yamamoto looked at the issue of
simplification of text for easy reading. Solving this problem requires the identi-
fication of the most complex sentences in the texts [13]. The authors note that
the usual measures of readability do not take into account the literacy skills of
persons to whom the texts were intended. They propose to learn automatically
from manually labeled examples a ranking function of sentences. In their first
experiments only POS-tags are taken into account. R. Barzilay and M. Lapat
propose a similar solution by learning a ranking function estimating the local
consistency of the texts by means of an analysis of transitions between sentences
[1]. They show that their method can be effectively applied to the detection of
complex sentences in that it connects cohesion and complexity to the number
of common words and entities between sentences to the number of anaphoric
relations and to some syntactic information.

More recently, Tanaka-Ishii have addressed the problem of building a training
corpus clustered in different classes of difficulty. They propose to see it as a
classification task by only tagging pairs of texts for which is easily possible to
determine, for each pair, which of both texts is more complex than the other [22].
K. Collins-Thompson and J. Callan have developed an approach to automatically
determine the grade level associated with a web page using a multinomial naive
Bayesian approach which assumes that the different levels of difficulty are not
independent (grade 1 is closest to grade 2 than to grade 3). They lead to a better
prediction quality than that obtained by means of a measure such Flesch [5]. S.
Schwarm and M. Ostendorf have extended this method to n-gram models that, to
some extent, capture the syntactic complexity of sentences [19]. They combine,
using a SVM classifier, the scores obtained by the Flesch-Kincaid formula, the
number of new words and some information such as the average number of
noun phrases and verbal phrases by sentence. An evaluation of their model to
discriminate documents from encyclopedia and journals, for children and adults,
showed results significantly higher than those achieved with the Flesch or Lexile
measures alone. E. Pitler and A. Nenkova brought together previous approaches
by including an analysis of discourse relations between sentences of a text and
of lexical cohesion, unigram models and numerical values such length of text,
number of pronouns, definite articles, noun phrases... [17].

188

3 Experiments

3.1 Informational Based Summarization

For QA track, we started by querying The New York Times in the Termwatch
platform2. Each queries returned a set of Wikipedia documents. Then, we had
to summarize every retrieved document.

Relevance scores for initial selection of sentences. At first, for each set of
documents, we made a preprocessing : sentence splitting, filtering (punctuation,
parentheses...), stemming.

Then, we calculated three relevance scores and we employed a decision for-
mula to attribute a final score to each sentence.

1. Entropy :

E(s) =
∑

tf. log tf (6)

where tf is term-frequency:

tfi,s =
ni,s∑
k nk,s

(7)

with i a word, s a sentence, ni, j the number of occurrences of i in j.
2. Similarity (dot product) between the sentence s and the title of the document

it belongs to,
3. Sum Frequency F :

F (s) =
∑
tf

N
(8)

with N the total number of words in the sentence s.

Initial scoring of the sentences. In order to obtain a score for each sentence
s, we followed the following steps:

1. Calculate two average values
∑µ
α and

∑µ
β

α(s) =
γ−1∑

v=0/λs,v>0.5

(λs,v − 0.5) (9)

β(s) =
γ−1∑

v=0/λv<0.5

(0.5 − λs,v) (10)

where λs,v is the score of a sentence s by employing a scoring function v
(one the three scores defined above) and γ the number of scoring functions
(in our case, γ= 3).

2 http://http://qa.termwatch.es/

189

2. Make decision : let SP (s) be the final score of sentence s:

SP (s) =

{
0.5 + α(s)

γ if α(s) > β(s)
0.5− β(s)

γ else
(11)

Fig. 1. Steps producing the initial set of ranked sentences.

3.2 Combining relevance score and readability

In the following, we explain how we incorporated readability in the summariza-
tion process. We chose to combine linearly the inital score with a readability
score. Then we chose to produce a summary by ranking the top scored sen-
tences by following the order they appear in the set of documents retrieved by
TermWatch.

The final score of sentence s combining original score SP and readability SL
is:

S(s) = λ.SP (s) + (1− λ).SL(s) (12)

with ∀s, 0 ≤ SP ≤ 1 and 0 ≤ SL(s) ≤ 1. According to our previous experi-
ments, we chose to set λ = 0.7.

3.3 Runs submitted

We submitted 3 runs. Each run combines readability and original scoring func-
tion. Figure 2 show the beginning of a summary ignoring readability. It corre-
sponds to Run 1 of University of Avignon - LIA team. This will allow to compare
our results with a baseline.

Run 1. For this first run we decided to use the Flesch readability formula (3)3.
Figure 3 shows the summary produced by using Flesch on the summary

presented in Figure 2.
3 We use the perl library Lingua::EN::Syllable to calculate the number of syllables per

sentence.

190

Fig. 2. Example of summary without taking into account readability.

Fig. 3. A summary of the document presented in Figure 2 by taking into account
Flesch readability. We have highlighted the sentences that did not appear in the initial
summary.

191

Run2. For this run, we used the Dale Chall formula (5). This formula does not
take into account the number of syllables per sentence, but checks if the words
are in the list of Dall-Chall (list of 3000 words)[6]. Figure 4 shows the summary
produced by using Flesch on the summary presented in Figure 2.

Fig. 4. A summary of the document presented in Figure 2 by taking into account Dale-
Chall readability measure. We have highlighted the sentences that did not appear in
the initial summary.

Run 3. For the third run we have decided to not score each sentence inde-
pendently to others. We computed a score by using a sliding window of three
sentences and by employing Flesch formula (3). This allowed us to take into
account the context of each sentence.

Let SP ′(sn) be the new ”informational relevance” score of a sentence s in
position n in a document :

SP ′(sn) = max{SP (sn−2,..,n), SP (sn−1,...,n+1), SP (sn,...,n+2)} (13)

with SP (sn−1,...,n+1) the score (formula 11) of the aggregation of the sen-
tences in position n− 1, n and n+ 1.

We did the same for computing a new readability score SL′:

SL′(sn) = max{SL(sn−2,..,n), SL(sn−1,...,n+1), SL(sn,...,n+2)} (14)

As previously, we combined SP ′ and SL′ linearly to obtain a new final score
S′ :

S′(s) = λ.SP ′(s) + (1− λ).SL′(s) (15)

Figure 5 shows the summary produced by using these new scoring functions
on the summary presented in Figure 2.

192

Fig. 5. A summary of the document presented in Figure 2 by taking into account our
Window-based measures. We have highlighted the sentences that did not appear in the
initial summary.

4 Results

At the time of writing this paper, we have not the results of the task. We stud-
ied statistically the association between the different scoring functions we have
tested. More precisely, we computed the Kendall rank correlation coefficient for
each topic between pairs of ranking of the top 50 best scored sentences.

Table 1 shows the proportions of queries for which the assumption of inde-
pendence between the rankings should be rejected (p-value ¡ 0.1) i.e. on which
there is not significant difference in the ranking of top 50 sentences. It indicates
these proportions:

– between the original relevance score and each of the three readability formu-
las we used,

– between final rankings (combinations S of relevance score SP and readability
SL with different values of λ) and each of the three readability formulas.

Readability measure
Flesch (3) Dale-Chale (5) Window-based (15)

SP only 0.121 0.167 0.136

Final score S
λ = 0.6 λ = 0.7 λ = 0.8

0.659 0.811 0.947

λ = 0.6 λ = 0.7 λ = 0.8

0.477 0.598 0.758

λ = 0.6 λ = 0.7 λ = 0.8

0.893 0.992 1
Table 1. Proportions of queries for which the assumption of independence between
the rankings (SP only or S and Flesch or Dale-Chale or Window-based) should be
rejected for different values of λ (based on Kendall’s tau coefficient).

As expected, the association between readability scores and the original score
SP is very weak since only about 12-16% of the topics lead to dependent rank-

193

ings. The Dale-Chale measure is the most correlated with the initial scoring SP ,
but it is the one that changes the final ranking the most.

5 Conclusion and Future work

Our contributions for the INEX 2011 question-answering track have involved the
combination of informational relevance scores and readability scores during ex-
traction of sentences from documents. We submitted three runs. The first two by
using two classical measures and the third one by proposing a smoothed window-
based readability function. In future work, we plan to improve our approaches
by refining readability according to experiments with real users searching for
documents in a digital library. Our aim is to provide them with navigation facil-
ities : contextual routes through the collection of documents and user-adapted
recommendation.

References

1. R. Barzilay and M. Lapata. Modeling local coherence: An entity-based approach. In
43rd Annual Meeting of the ACL, pages 141–148. Association for Computational
Linguistics, 2005. Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics.

2. D. Carroll, P. Davies, and B. Richman. Word frequency book. American Heritage,
New York. 1971.

3. J. Chae. Predicting the fluency of text with shallow structural features: case stud-
ies of machine translation and human-written text. In 12th Conference of the
European Chapter of the ACL (EACL 2009), pages 139–147, 2009.

4. J. S. Chall and E. Dale. Readability revisited: The new Dale-Chall readability
formula. Brookline Books Cambridge, MA, 1995.

5. K. Collins-Thompson and J. Callan. A language modeling approach to predicting
reading difficulty. In HLT-NAACL, volume 4, 2004. Proceedings of HLT/NAACL.

6. Dale and Chall. A formula for predicting readability. 1948.
7. E. Dale and J. O’Rourke. The living word vocabulary. Chicago: World Book-

Childcraft International. 1981.
8. W. H. DuBay. The principles of readability. Impact Information, pages 1–76, 2004.
9. R. Flesch. A new readability yardstick. Journal of applied psychology, 32:221–233,

1948.
10. E. Fry. A readability formula for short passages. Journal of Reading, 33(8):594–597,

1990.
11. A. C. Graesser, D. S. McNamara, M. M. Louwerse, and Z. Cai. Coh-metrix: Anal-

ysis of text on cohesion and language. Behavior Research Methods, Instruments,
and Computers, 36:193–202, 2004.

12. R. Gunning. The Teaching of Clear Writing. New York: McGraw Hill, 1952.
13. Kentaro Inui, Satomi Yamamoto, and Hiroko Inui. Corpus-based acquisition of

sentence readability ranking models for deaf people. In Sixth Natural Language
Processing Pacific Rim Symposium (NLPRS 2001), pages 159–166, Tokyo, Japan,
2001.

14. G. H. McLaughlin. Smog grading: A new readability formula. Journal of reading,
12(8):639–646, 1969.

194

15. S. Mizzaro. Relevance : the whole history. Journal of the American Society for
Information Science, 48(9):810–832, 1997.

16. E. Pitler, A. Louis, and A. Nenkova. Automatic evaluation of linguistic quality
in multi-document summarization. In 48th Annual Meeting of the Association for
Computational Linguistics (ACL 2010), pages 544–554, 2010.

17. E. Pitler and A. Nenkova. Revisiting readability: A unified framework for pre-
dicting text quality. In EMNLP 2008, pages 186–195, 2008. Proceedings of the
Conference on Empirical Methods in Natural Language Processing.

18. T. Saracevic. Relevance: A review of and a framework for the thinking on the
notion in information science. Journal of the American Society for Information
Science, 26(6):321–343, 1975.

19. S. E. Schwarm and M. Ostendorf. Reading level assessment using support vector
machines and statistical language models. In 43rd Annual Meeting of the ACL,
pages 523–530. Association for Computational Linguistics, 2005. Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics.

20. L. Si and J. Callan. A statistical model for scientific readability. In Proceedings
of the tenth international conference on Information and knowledge management,
pages 574–576. ACM, 2001.

21. A. J. Stenner, I. Horablin, D. R. Smith, and M. Smith. The lexile framework,
MetaMetrics. Inc., Durham, NC. 1988.

22. K. Tanaka-Ishii, S. Tezuka, and H. Terada. Sorting texts by readability.
Computational Linguistics, 36(2):203–227, 2010.

195

The Cortex and Enertex summarization systems
at the QA@INEX track 2011

Juan-Manuel Torres-Moreno1 and Patricia Velázquez-Morales2

and Michel Gagnon1

1École Polytechnique de Montréal - Département de génie informatique
CP 6079 Succ. Centre Ville H3C 3A7 Montréal (Québec), Canada.

2 VM Labs, 84000 Avignon, France.
juan-manuel.torres@univ-avignon.fr,patricia_velazquez@yahoo.com,michel.

gagnon@polymtl.ca

http://www.polymtl.ca

Abstract. The Enertex system is based on a statistical physics ap-
proach. It transforms a document on a spins (words present/absent)
system. A summary is obtained using the sentences with large spins in-
teractions. In another way, the Cortex system is constructed of several
different sentence selection metrics and a decision module. Our experi-
ments have shown that the Cortex decision on the metrics always scores
better than each system alone. In the INEX@QA 2011 task of Questions,
Cortex strategy system obtained very good results in the automatic eval-
uations FRESA.

Key words: INEX, Automatic summarization system, Question-Answering sys-
tem, Cortex, Enertex.

1 Introduction

Automatic text summarization is indispensable to cope with ever increasing vol-
umes of valuable information. An abstract is by far the most concrete and most
recognized kind of text condensation [1, 2]. We adopted a simpler method, usually
called extraction, that allow to generate summaries by extraction of pertinence
sentences [3–5, 2]. Essentially, extracting aims at producing a shorter version of
the text by selecting the most relevant sentences of the original text, which we
juxtapose without any modification. The vector space model [6, 7] has been used
in information extraction, information retrieval, question-answering, and it may
also be used in text summarization. Cortex1 is an automatic summarization
system, recently developed [8] which combines several statistical methods with
an optimal decision algorithm, to choose the most relevant sentences.

An open domain Question-Answering system (QA) has to precisely answer a
question expressed in natural language. QA systems are confronted with a fine

1 CORTEX es Otro Resumidor de TEXtos (CORTEX is anotheR TEXt summarizer).

196

and difficult task because they are expected to supply specific information and
not whole documents. At present there exists a strong demand for this kind of
text processing systems on the Internet. A QA system comprises, a priori, the
following stages [9]:

– Transform the questions into queries, then associate them to a set of docu-
ments;

– Filter and sort these documents to calculate various degrees of similarity;

– Identify the sentences which might contain the answers, then extract text
fragments from them that constitute the answers. In this phase an analysis
using Named Entities (NE) is essential to find the expected answers.

Most research efforts in summarization emphasize generic summarization
[10–12]. User query terms are commonly used in information retrieval tasks.
However, there are few papers in literature that propose to employ this approach
in summarization systems [13–15]. In the systems described in [13], a learning
approach is used (performed). A document set is used to train a classifier that
estimates the probability that a given sentence is included in the extract. In [14],
several features (document title, location of a sentence in the document, cluster
of significant words and occurrence of terms present in the query) are applied
to score the sentences. In [15] learning and feature approaches are combined
in a two-step system: a training system and a generator system. Score features
include short length sentence, sentence position in the document, sentence po-
sition in the paragraph, and tf.idf metrics. Our generic summarization system
includes a set of eleven independent metrics combined by a Decision Algorithm.
Query-based summaries can be generated by our system using a modification of
the scoring method. In both cases, no training phase is necessary in our system.

This paper is organized as follows. In Section 2 we explain the INEX Task
Question Answering 2011. In Section 3 we explain the methodology of our work.
Experimental settings and results obteined with Enertex and Cortex summariz-
ers are presented in Section 4. Section 5 exposes the conclusions of the paper
and the future work.

2 The INEX initiative and the QA INEX Track

The Initiative for the Evaluation of XML Retrieval (INEX) is an established eval-
uation forum for XML information retrieval (IR) [16]. This in initiative ”...aims
to provide an infrastructure, in the form of a large structured test collection and
appropriate scoring methods, for the evaluation of focused retrieval systems”.

The Question Answering track of INEX 2011 (QA) is about contextualizing
tweets, i.e. answering questions of the form ”What is this tweet about?” using
a recent cleaned dump of the english Wikipedia 2

2 See the officiel web site of INEX 2011 Track: https://inex.mmci.uni-saarland.
de/tracks/qa/

197

2.1 Document collection

The document collection has been rebuilt based on a recent dump of the En-
glish wikipedia from April 2011. Since we target a plain xml corpus for an easy
extraction of plain text answers, all notes and bibliographic references were re-
moved. Theses informations are difficult to handle. Then only 3,217,015 non
empty Wikipedia pages (pages having at least on section) are used as corpus.

2.2 Topics

The commitee of INEX has defined 132 topics for the Track 2011. Each topic
includes the title and the first sentence of a New York Times paper that were
twitted at least two months after the wikipedia dump we use. Each topic was
manually checked that there is related information in the document collection.

3 The summarization systems used

3.1 Cortex summarization system

Cortex [17, 18] is a single-document extract summarization system. It uses an
optimal decision algorithm that combines several metrics. These metrics result
from processing statistical and informational algorithms on the document vector
space representation.

The INEX 2011 Query Task evaluation is a real-world complex question
(called long query) answering, in which the answer is a summary constructed
from a set of relevant documents. The documents are parsed to create a corpus
composed of the query and the the multi-document retrieved by a perl program
supplied by INEX organizers3. This program is coupled to Indri system4 to
obtain for each query, 50 documents from the whole corpus.

The idea is to represent the text in an appropriate vectorial space and apply
numeric treatments to it. In order to reduce complexity, a preprocessing is per-
formed to the question and the document: words are filtered, lemmatized and
stemmed.

The Cortex system uses 11 metrics (see [19, 18] for a detailed description of
these metrics) to evaluate the sentence’s relevance.

1. The frequency of words.
2. The overlap between the words of the query (R).
3. The entropy the words (E).
4. The shape of text (Z).
5. The angle between question and document vectors (A).

3 See: http://qa.termwatch.es/data/getINEX2011corpus.pl.gz
4 Indri is a search engine from the Lemur project, a cooperative work between the Uni-

versity of Massachusetts and Carnegie Mellon University in order to build language
modelling information retrieval tools. See: http://www.lemurproject.org/indri/

198

6. The sum of Hamming weights of words per segment times the number of
different words in a sentence.

7. The sum of Hamming weights of the words multiplied by word frequencies.
8. The words interaction (I).
9. ...

By exemple, the topic-sentence overlap measure assigns a higher ranking
for the sentences containing question words and makes selected sentences more
relevant. The overlap is defined as the normalized cardinality of the intersection
between the question word set T and the sentence word set S.

Overlap(T, S) =
card(S ∩ T)

card(T)

The system scores each sentence with a decision algorithm that relies on
the normalized metrics. Before combining the votes of the metrics, these are
partitionned into two sets: one set contains every metric λi > 0.5, while the
other set contains every metric λi < 0.5 (values equal to 0.5 are ignored). We
then calculate two values α and β, which give the sum of distances (positive for
α and negative for β) to the threshold 0.5 (the number of metrics is Γ , which is
11 in our experiment):

α =
Γ∑
i=1

(λi − 0.5); λi > 0.5

β =
Γ∑
i=1

(0.5− λi); λi < 0.5

The value given to each sentence s given a query q is calculated with:

if(α > β)
then Score(s, q) = 0.5 + α/Γ
else Score(s, q) = 0.5− β/Γ

The Cortex system is applied to each document of a topic and the summary
is generated by concatenating higher score sentences.

3.2 The Enertex system

[21] shows that the energy of a sentence s reflects its weight, related to the others
µ sentences µ = 1, ...P , in the document. We applied

Es,µ = (S × ST)2 (1)

where S is the matrix sentences by terms and ST their transposed, to summa-
rization by extraction of sentences. The summarization algorithm includes three

199

modules. The first one makes the vectorial transformation of the text with filter-
ing, lemmatisation/stemming and standardization processes. The second module
applies the spins model and makes the calculation of the matrix of textual en-
ergy (1). We obtain the weighting of a sentence s by using its absolute energy
values, by sorting according to ∑

µ

|Es,µ| (2)

So, the relevant sentences will be selected as having the biggest absolute
energy. Finally, the third module generates summaries by displaying and con-
catenating of the relevant sentences. The two first modules are based on the
Cortex system5.

In order to calculate the similarity between every topic and the phrases we
have used Textual Energy (1). Consequently the summary is formed with the
sentences that present the maximum interaction energy with the query.

At first, the first 10 documents6 of the cluster are concatenated into a single
multi-document in chronological order. Placing the topic q (enriched or not) like
the title of this long document. The Textual Energy between the topic and each
of the other sentences in the document is computed using 1. Finally, we are only
interested in recovering the row ρ of matrix E which corresponds to interaction
energy of the topic q vs. the document. We construct the summary by sorting
the most relevant values of ρ.

4 Experiments Settings and Results

In this study, we used the document sets made available during the Initiative for
the Evaluation of XML retrieval (INEX)7, in particular on the INEX 2011 QA
Track (QA@INEX) https://inex.mmci.uni-saarland.de/tracks/qa/.

To evaluate the efficacity of Cortex and Enertex systems on INEX@QA track,
we used the FRESA package8.

4.1 INEX queries modification

Two different strategies were employed to generate the 132 queries from topics:

1. No pre-processing of topic.
2. Enrichment of the topic by manual definitions of terms.

1) No pre-processing or modification was applied on queries set. Summarizers
use the query as a title of a big multi-document retrieved by Indri engine.

5 See next section.
6 We used only 10 documents by limits of memory.
7 http://www.inex.otago.ac.nz/
8 FRESA package is disponible at web site: http://lia.univ-avignon.fr/

fileadmin/axes/TALNE/downloads/index_fresa.html

200

2) Enrichment of topic. The query has been mannualy enriched using the
title and the definitions of each term present.

Table 1 shows an example of the results obtained by Cortex and Enertex
systems using 50 or 10 documents respectively as input. The topic that the
summary should answer in this case was the number 2011001:

<topic id="2011001">

<title>At Comic-Con, a Testing Ground for Toymakers</title>

<txt>

THIS summer’s hottest toys won’t be coming to a toy aisle

near you. The only place to get them will be at Comic-Con

International in San Diego.

</txt>

</topic>

For query 2011001, strategy 2 give the next query:
q = ”At Comic-Con, a Testing Ground for Toymakers a place or area

used for testing a product or idea a company that manufactures toys”
Table 1 presents Cortex and Enertex results (queries enriched or not) in

comparison with the INEX baseline (Baseline summary), and three baselines,
that is, summaries including random n-grams (Random uni-grams) and 5-grams
(Random 5-grams) and empty baseline. We observe that Cortex system is always
better than others summarizers.

Table 1. Example of Summarization results on topic 2011001.

Summary type uni-grams bi-grams SU4 bi-grams FRESA average

Baseline summary 27.73262 35.17448 35.17507 32.69406
Empty baseline 36.20351 43.96798 43.93392 41.36847
Random unigrams 28.99337 36.80240 36.74110 34.17896
Random 5-grams 25.36871 32.78485 32.90045 30.35133
Cortex (Query=Title) 25.62371 32.93572 32.97384 30.51109
Cortex (Query=Title+Definition) 31.50112 39.18660 39.14994 36.61255
Enertex (Query=Title) 27.93538 35.36765 35.38713 32.89672

Table 2 presents the average over 15 queries of our three systems (queries
numbers are: 2011001, 2011005, 2011010, 2011015, 2011020, 2011025, 2011030,
2011035, 2011040, 2011050, 2011055, 2011060, 2011071, 2011080 and 2011090).

5 Conclusions

We have presented the Cortex and Enertex summarization systems. The first
one is based on the fusion process of several different sentence selection metrics.

201

Table 2. Averages (FRESA) of our three systems over 15 sampled queries.

System FRESA averages

Cortex summary 47.6282
(Query = Title)
Cortex summary 50.7814
(Query = Title + Definitons)
Enertex summary 50.5001
(Query = Title)

45

50

55

60

65

E
m

pt
y

ba
se

lin
e

R
an

d
un

ig
ra

m

qu
er

y_
sy

n_
co

rte
x_

10
do

cs
qu

er
y_

E
ne

rte
x_

10
do

cs
B
as

el
in

e
su

m
m

ar
y

qu
er

y_
co

rte
x_

50
do

cs

R
an

d
5-

gr
am

Sampling over 15 INEX'11 queries

M
e

a
n

 o
f
K

L
 D

iv
e

rg
e

n
c
e

SUMMARIZER

Fig. 1. Recall FRESA results for the 7 systems on INEX 2011 corpora.

The decision algorithm obtains good scores on the INEX 2011 task (the decision
process is a good strategy without training corpus). The second one is based in
Statistical mechanical concepts of spins models. On INEX 2011 track, Cortex
summarizer has obtained very good results in the automatic FRESA evalua-
tions. The Enertex summarizer results are less good than Cortex system. We
explain this because the Enertex summarizer has used only sets of 10 documents
(the Cortex system uses data sets of 50 documents). Others tests, with 50 doc-
uments, are in progress using Enertex system. Manually query enrichment has
dissapointed in this task. May be the set of documents recuperated by Indri are
less pertinents if terms and their (several) definitions are used as queries.

202

6 Appendix

We presents the Cortex summary of topic 2011001.

With his partner, artist Jack Kirby, he co-created Captain America, one of comics”

most enduring superhero es, and the team worked extensively on such features at DC

Comics as the 1940s Sandman and Sandy the Golden Boy, and co-created the News-

boy Legion, the Boy Commandos, and Manhunter. The New York Comic Con is a

for-profit event produced and managed by Reed Exhibitions, a division of Reed Busi-

ness, and is not affiliated with the long running non-profit San Diego Comic-Con, nor

the Big Apple Convention, now known as the Big Apple Comic-Con, which is owned

by Wizard World. With the relaunch, ”The Swots and the Blots” became a standard

bearer for sophisticated artwork, as Leo Baxendale began a three year run by adopting

a new style, one which influenced many others in the comics field, just as his earlier

”Beano” . Some of the strips from ”Smash” survived in the new comic, including ”His

Sporting Lordship”, ”Janus Stark” and ”The Swots and the Blots”, but most were

lost, although the ”Smash” Annual continued to appear for many years afterwards .

Other work includes issues of Marvel’s ”Captain America”, ”Captain Marvel”, ”The

Power of Warlock”, Ka-Zar in ”Astonishing Tales”, Ant-Man in ”Marvel Feature”, and

”The Outlaw Kid”, writing a short-lived revival of Doug Wildey ’s Western series from

Marvel’s . Powell also did early work for Fox’s ”Wonderworld Comics ”and” Mystery

Men Comics”; Fiction House’s ”Planet Comics”, where his strips included Gale Allen

and the Women’s Space Battalion ; Harvey ’s ”Speed Comics”, for which he wrote

and drew the feature Ted Parrish, ; Timely ’s one-shot ”Tough Kid Squad . His work

in the 1950s included features and covers for Street and Smith ’s ”Shadow Comics” ;

Magazine Enterprises ” ” Bobby Benson’s B-Bar-B Riders ”, based on the children’s

television series, and all four issues of that publisher’s ”Strong Man”; and, for Harvey

Comics, many war, romance, and horror stories, as well as work for the comics ”Man

. The winner of each round receives the same contract deal as Comic Creation Nation

winners, ie a team of professional artists creating a 22-page comic using the writer’s

script and background elements, shared ownership of development rights, a public-

ity campaign built around their property, and the Zeros 2 Heroes team pushing the

property towards other entertainment venues. The duo left the comic book business to

pursue careers in feature films and were involved producing the feature film adaptation

of ”Mage” by legendary comic book creator Matt Wagner with Spyglass Entertain-

ment, and had various projects with Mike Medavoy, Mark Canton, Akiva Goldsman,

and Casey Silver. The company has been very active by participating in various events,

including the L A Times Festival of Books, Heroes Con, San Diego Comic Con, Toronto

Fan Expo, D23 Disney Convention, and Baltimore Comic Con. The ECBACC STARS

Workshop is an ECBACC initiative designed to use comic book art and imagery as a

vehicle to foster creativity and promote literacy, with a secondary focus on introducing

participants to the various career options that exist within the comic book industry.

Co-presenting with comics author and scholar Danny Fingeroth during a Comics Arts

Conference panel at 2008’s Comic-Con International in San Diego, California, the cre-

ators explained how the first Rocket Llama story evolved into a webcomic. In addition

to ”The Ongoing Adventures of Rocket Llama”, e-zine features from the ”Rocket Llama

203

Ground Crew” ”include” ”Action Flick Chick” movie reviews by G4TV ’s Next Woman

of the Web, cosplayer ”Katrina Hill”; ”The Action Chick” webcomic; ”Marko’s Cor-

ner” comics, cartoon arts, and podcasts by ”Marko Head”; ”Reddie Steady” comics

for college newspapers; ”The Workday Comic”, the 8-hour . After the redrawn num-

ber #112’s online publication came the serialized time travel story #136-137, Time

Flies When You”re on the Run, appearing one page at a time throughout each week

and expanding the cast with characters like the scientist Professor Percival Penguin

and cavedogs who joined them by stowing away in the heroes” time rocket during

the supposed previous . Other tie-in products were produced, including lunchboxes,

3-D puffy stickers, party supplies, paintable figurines, Underoos, coloring and activity

books, Stain-A-Sticker, Justice League of America Skyscraper Caper game, sunglasses,

playhouses, belt buckles, sneakers, cufflinks, signature stamp sets, coloring play mats,

drinking glasses/tumblers, model kits, soap, stain painting sets, calendars, Play-Doh

sets, jointed wall figures, wrist watches, jigsaw puzzles (Jaymar and .

References

1. ANSI. American National Standard for Writing Abstracts. Technical report, Amer-
ican National Standards Institute, Inc., New York, NY, 1979. (ANSI Z39.14.1979).

2. Juan Manuel Torres-Moreno. Resume automatique de documents: une approche
statistique. Hermes-Lavoisier, 2011.

3. H. P. Luhn. The Automatic Creation of Literature Abstracts. IBM Journal of
Research and Development, 2(2):159, 1958.

4. H. P. Edmundson. New Methods in Automatic Extracting. Journal of the ACM
(JACM), 16(2):264–285, 1969.

5. I. Mani and M. Mayburi. Advances in automatic text summarization. The MIT
Press, U.S.A., 1999.

6. Gregory Salton. The SMART Retrieval System - Experiments un Automatic Doc-
ument Processing. Englewood Cliffs, 1971.

7. Gregory Salton and M. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

8. Juan-Manuel Torres-Moreno, Patricia Velazquez-Morales, and Jean-Guy Meunier.
Condensés automatiques de textes. Lexicometrica. L’analyse de données textuelles :
De l’enquête aux corpus littéraires, Special(www.cavi.univ-paris3.fr/lexicometrica),
2004.

9. C. Jacquemin and P. Zweigenbaum. Traitement automatique des langues pour
l’accès au contenu des documents. Le document en sciences du traitement de
l’information, 4:71–109, 2000.

10. Jose Abracos and Gabriel Pereira Lopes. Statistical Methods for Retrieving Most
Significant Paragraphs in Newspaper Articles. In Inderjeet Mani and Mark T.
Maybury, editors, ACL/EACL97-WS, Madrid, Spain, July 11 1997.

11. Simone Teufel and Marc Moens. Sentence Extraction as a Classification Task. In
Inderjeet Mani and Mark T. Maybury, editors, ACL/EACL97-WS, Madrid, Spain,
1997.

12. Eduard Hovy and Chin Yew Lin. Automated Text Summarization in SUM-
MARIST. In Inderjeet Mani and Mark T. Maybury, editors, Advances in Automatic
Text Summarization, pages 81–94. The MIT Press, 1999.

204

13. Julian Kupiec, Jan O. Pedersen, and Francine Chen. A Trainable Document Sum-
marizer. In Proceedings of the 18th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 68–73, 1995.

14. Anastasios Tombros, Mark Sanderson, and Phil Gray. Advantages of Query Biased
Summaries in Information Retrieval. In Eduard Hovy and Dragomir R. Radev,
editors, AAAI98-S, pages 34–43, Stanford, California, USA, March 23–25 1998.
The AAAI Press.

15. Judith D. Schlesinger, Deborah J. Backer, and Robert L. Donway. Using Document
Features and Statistical Modeling to Improve Query-Based Summarization. In
DUC’01, New Orleans, LA, 2001.

16. Shlomo Geva, Jaap Kamps, Ralf Schenkel, and Andrew Trotman, editors. Com-
parative Evaluation of Focused Retrieval - 9th International Workshop of the Ini-
titative for the Evaluation of XML Retrieval, INEX 2010, Vugh, The Netherlands,
December 13-15, 2010, Revised Selected Papers, volume 6932 of Lecture Notes in
Computer Science. Springer, 2011.

17. J.M. Torres-Moreno, P. Velazquez-Moralez, and J. Meunier. CORTEX, un algo-
rithme pour la condensation automatique de textes. In ARCo, volume 2, page 365,
2005.

18. Juan Manuel Torres-Moreno, Pier-Luc St-Onge, Michel Gagnon, Marc El-Bèze,
and Patrice Bellot. Automatic summarization system coupled with a question-
answering system (qaas). in CoRR, abs/0905.2990, 2009.

19. J.M. Torres-Moreno, P. Velazquez-Morales, and J.G. Meunier. Condensés de textes
par des méthodes numériques. JADT, 2:723–734, 2002.

20. G. Salton. Automatic text processing, chapter 9. Addison-Wesley Longman Pub-
lishing Co., Inc., 1989.

21. Silvia Fernández, Eric SanJuan, and Juan Manuel Torres Moreno. Textual en-
ergy of associative memories: Performant applications of enertex algorithm in text
summarization and topic segmentation. In MICAI, pages 861–871, 2007.

205

The REG summarization system
with question expansion and reformulation

at QA@INEX track 2011

Jorge Vivaldi and Iria da Cunha

Institut Universitari de Lingǘıstica Aplicada - UPF
Barcelona

{iria.dacunha,jorge.vivaldi}@upf.edu

http://www.iula.upf.edu

Abstract. In this paper, our strategy and preliminary results for the
INEX@QA 2011 question-answering task are presented. In this task, a
set of 50 documents is provided by the search engine Indri, using some
queries. The initial queries are titles associated wih tweets. A reformula-
tion of these queries is carried out using terminological and names entities
information. To design the queries to obtain the documents with INDRI,
the full process is divided into 2 steps: a) both titles and tweets are POS
tagged, and b) queries are expanded or reformulated, using: terms and
name entities included in the title, terms and name entities found in the
tweet related to those ones, and Wikipedia redirected terms and name
entities from those ones included in the title. In our work, the automatic
summarization system REG is used to summarize the 50 documents ob-
tained with these queries. The algorithm models a document as a graph,
to obtain weighted sentences. A single document is generated, consid-
ered as the answer of the query. This strategy, combining summarization
and question reformulation, obtains preliminary good results with the
automatic evaluation system FRESA.

Key words: INEX, Question-Answering, Terms, Name Entities, Wikipedia,
Automatic Summarization, REG.

1 Introduction

The Question-Answering (QA) task can be related to two types of questions:
very precise questions (expecting short answers) or complex questions (expect-
ing long answers, including several sentences). The objective of the QA track of
INEX 2011 (Initiative for the Evaluation of XML retrieval) is oriented to the sec-
ond one. Specifically, the QA task to be performed by the participating groups of
INEX 2011 is contextualizing tweets, i.e. answering questions of the form “what
is this tweet about?” using a recent cleaned dump of the Wikipedia (WP). The
general process involves: tweet analysis, passage and/or XML elements retrieval
and construction of the answer. Relevant passages segments should contain rele-
vant information but contain as little non-relevant information as possible. The

206

used corpus in this track contains all the texts included into the English WP.
The expected answers are short documents of less than 500 words exclusively
made of aggregated passages extracted from the WP corpus.

Thus, we consider that automatic extractive summarization systems could be
useful in this QA task, taking into account that a summary can be defined as “a
condensed version of a source document having a recognizable genre and a very
specific purpose: to give the reader an exact and concise idea of the contents
of the source” (Saggion and Lapalme, 2002: 497). Summaries can be divided
into “extracts”, if they contain the most important sentences extracted from the
original text (ex. Edmunson, 1969; Nanba and Okumura, 2000; Gaizauskas et
al., 2001; Lal and Reger, 2002; Torres-Moreno et al., 2002) and “abstracts”, if
these sentences are re-written or paraphrased, generating a new text (ex. Ono
et al., 1994; Paice, 1990; Radev, 1999). Most of the automatic summarization
systems are extractive.

To carry out this task, we have decided to use REG (Torres-Moreno and
Ramı́rez, 2010; Torres-Moreno et al., 2010), an automatic extractive summariza-
tion system based on graphs. We have performed some expansions and reformu-
lations of the initial INEX@QA 2011 queries, using terms and name entities, in
order to obtain a list of terms related with the main topic of all the questions.

The evaluation of the answers will be automatic, using the automatic evalu-
ation system FRESA (Torres-Moreno et al., 2010a, 2010b, Saggion et al., 2010),
and manual (evaluating syntactic incoherence, unsolved anaphora, redundancy,
etc.).

This paper is organized as follows. In Section 2, the summarization system
REG is shown. In Section 3, queries expansions and reformulations are explained.
In Section 4, experimental settings and results are presented. Finally, in Section
5, some preliminary conclusions are exposed.

2 The REG System

REG (Torres-Moreno and Ramı́rez, 2010; Torres-Moreno et al. 2010) is an En-
hanced Graph summarizer (REG) for extract summarization, using a graph ap-
proach. The strategy of this system has two main stages: a) to carry out an ad-
equate representation of the document and b) to give a weight to each sentence
of the document. In the first stage, the system makes a vectorial representation
of the document. In the second stage, the system uses a greedy optimization
algorithm. The summary generation is done with the concatenation of the most
relevant sentences (previously scored in the optimization stage).

REG algorithm contains three modules. The first one carries out the vectorial
transformation of the text with filtering, lemmatization/stemming and normal-
ization processes. The second one applies the greedy algorithm and calculates
the adjacency matrix. We obtain the score of the sentences directly from the
algorithm. Therefore, sentences with more score will be selected as the most
relevant. Finally, the third module generates the summary, selecting and con-
catenating the relevant sentences. The first and second modules use CORTEX

207

(Torres-Moreno et al., 2002), a system that carries out an unsupervised extrac-
tion of the relevant sentences of a document using several numerical measures
and a decision algorithm.

The complexity of REG algorithm is O(n2). Nevertheless, there is a limita-
tion, because it includes a fast classification algorithm which can be used only
for short instances; this is the reason it is not very efficient for long texts.

3 Terms and Name Entity Extraction

The starting point of this work is to consider that the terms and name entities
(T&NE) included into the titles and the associated tweets are representative of
the main subject of these texts. If this assumption is true, the results of quering
the search engine with an optimized list of T&NE should be better that simply
to use the title of the tweet as search query.

In order to demonstrate such hypothesis, we have decided to generate 3
different queries to Indri:

a) Using the initial query string (the title of the tweet).
b) Enriching the initial query with a list of those T&NE from the tweet that

are related to the T&NE already present in the initial query. Redirections from
WP are also considered.

c) Using only the above mentioned list of T&NE obtained from the previous
step.

The procedure for obtaining this list from the tweet may be sketched as
follows:

1. To find, in both query and tweet strings, for T&NE and verify that such
strings are also present in WP. This procedure is again splitted in two stages:
first finding the T&NE, and then looking for such unit in WP. The last step
is close to those presented in Milne and Witten (2008), Strube and Ponzetto
(2006) or Ferragina and Scaiella (2010).

2. To compare each unit in the tweet with all the units found in the query.
Such comparison is made using the algorithm described in Milne and Witten
(2007).

3. To choose only those units whose relatedness value are higher than a given
threshold.

Figure 1 shows how the enriched query is built. From the query string we
obtain a number of terms: (ttm); we repeat the procedure with the tweet string
(ttm). We look for such terms in the WP; only the terms (or a substring of
them) that have an entry in WP are considered. Then, we calculate the semantic
relatedness among each term of the tweet (ttn) with each term of the query. Only
those terms of the tweets whose similarity with some of the term of the query is
higher that a threshold value are taken into account. Assuming a query and tweet
string as shown in Figure 1, each ttm is compared with all tqn. As a result of
such comparisons, only tt2 and tt4 will be inserted in the enriched query because
tt1 and tt3 will be rejected.

208

Fig. 1. Advanced query terms selection.

As mentioned above, the comparison among WP articles is done by using
the algorithm described in Milne and Witten (2007). The idea is pretty simple
and it is based in the links extending each article: higher is the number of
number of such links shared by both article higher is their relatedness. Figure 2
shows an outline about how to calculate the relatedness among the WP pages
“automobile” and “global warming”. It is clear that some outgoing links (“air
pollution”, “alternative fuel”, etc.) are shared by both articles while other links
not (“vehicle”, “Henry Ford”, “Ozone”). From this idea it is possible to build
such relatedness measure (see Milne and Witten, 2007 for details).

Fig. 2. Looking for the relation among WP articles (reprinted from Milne and Witten,
2007).

Let’s see an example of some queries generated in our experiment. For the
initial query (the title of the tweet) “Obama to Support Repeal of Defense of

209

Marriage Act”, we extract the term “defense” and “marriage act”, and the name
entity “Obama”. Moreover, we add the name entity “Barack Obama”, since there
is a redirection link in WP from “Obama” to “Barack Obama”. Finally, some
terms (“law”, “legal definition”, “marriage union”, “man”, “woman”, “support”
and “gay rights”) and name entities (“President Obama” and “White House”)
semantically related with the units of the title are selected.

The process of building of the 3 different queries for this same example is the
following:

1. The initial query is the title of the tweet:
Obama to Support Repeal of Defense of Marriage Act.

In this title the following T&NEs have been found: “Obama”, “Defense of
Marriage Act”.

2. The expanded query is built from the body of the tweet:
WASHINGTON - President Obama will endorse a bill to repeal

the law that limits the legal definition of marriage to a union between
a man and a woman, the White House said Tuesday taking another
step in support of gay rights.

The T&NE found in this string are: “Obama”, “Defense of Marriage Act”,
“Barack Obama”, “law”, “legal definition”, “marriage”, “union”, “man”,
“woman”, “step”, “support”, “gay rights”, “President Obama”, “White House”
and “Tuesday”. The built expanded query contains the following query
terms: “Obama to Support Repeal of Defense of Marriage Act”, “Obama”,
“Barack Obama”, “President Obama”, “White House”, “marriage”, “union”,
“man”, “gay rights” and “woman”. Note that some terms are dropped (like
“step” and “Tuesday”) because they do no have any relation to the T&NE
found in the title of the tweet, and some new query terms have been added
(“President Obama”) using WP redirection links.

3. The reformulated query is built using only the list of T&NE: “Obama”,
“Barack Obama”, “President Obama”, “White House”, “marriage”, “union”,
“man”, “gay rights” and “woman”.

The term and name entity extraction was carried out manually. Nowadays
several term extraction systems and name entity recognition systems exist for
English. Nevertheless, their performances are not still perfect, so if we employ
these systems in our work, their mistakes and the mistakes of the system we
present here would be mixed. Moreover, term extractors are usually designed
for a specialized domain, as medicine, economics, law, etc, but the topics of the
queries provided by INEX@QA 2011 are several, that is, they do not correspond
to an unique domain. Also the relatedness among WP pages is manually done
because our implementation of the relatedness measure relies in a relatively old
dump of English WP.

4 Experiments Settings and Results

In this study, we used the document sets made available for the INEX 2011
QA Track (QA@INEX). These sets of documents where provided by the search

210

engine Indri.1 REG produced multidocument summaries using the set of 50
documents provided by Indri using all the initial queries of the track and the
expansions and reformulations following our strategy.

To evaluate the efficiency of REG over the INEX@QA corpus, we have used
the FRESA package. This evaluation framework (FRESA –FRamework for Eval-
uating Summaries Automatically-) includes document-based summary evalu-
ation measures based on probabilities distribution, specifically, the Kullback-
Leibler (KL) divergence and the Jensen-Shannon (JS) divergence. As in the
ROUGE package (Lin, 2004), FRESA supports different n-grams and skip n-
grams probability distributions. The FRESA environment has been used in
the evaluation of summaries produced in several European languages (English,
French, Spanish and Catalan), and it integrates filtering and lemmatization in
the treatment of summaries and documents. FRESA is available in the following
link: http://lia.univ-avignon.fr/fileadmin/axes/TALNE/Ressources.html.

Tables 1, 2 and 3 show an example (document ID = 2011041) of the results
obtained by REG with 50 documents as input and using the 3 different queries
(a, b and c, respectively). These tables present REG results in comparison with
an intelligent baseline (Baseline summary) and 3 other baselines: summaries
including random n-grams (Random unigram), 5-grams (Random 5-gram) and
empty words (Empty baseline). In this example, the reformulated query obtains
better results (56.58465) than the initial query (59.04529) using FRESA.

Table 1. Example of REG results over the document 2011041 using query a.

Distribution type unigram bigram with 2-gap Average

Baseline summary 51.88447 60.37075 60.67855 57.64459
Empty baseline 74.53241 83.71035 83.95558 80.73278
Random unigram 55.86427 65.06233 65.25039 62.05900
Random 5-gram 47.71473 56.34721 56.71558 53.59251
Submitted summary 53.09912 61.89060 62.14615 59.04529

In table 4, the average of the results of 6 summaries selected at random
from the 50 summaries is presented (IDs = 2011144, 2011026, 2011041, 2011001,
2011183, 2011081). In this case, the situation regarding the best query changes,
and the initial query (the title) obtains the best results. With regard to the
baselines, Baseline summary and Random 5-gram are always better than our
system. However, in general, our system is better than Random unigram and
Empty baseline. Nevertheless, we consider that this evaluation, including only
6 texts, is very preliminary and that it is necessary to wait for the final official
evaluation of INEX 2011, in order to obtain a complete evaluation of the results.

1 Indri is a search engine from the Lemur project, a cooperative work between the Uni-
versity of Massachusetts and Carnegie Mellon University in order to build language
modelling information retrieval tools: http://www.lemurproject.org/indri/

211

Table 2. Example of REG results over the document 2011041 using query b.

Distribution type unigram bigram with 2-gap Average

Baseline summary 48.75833 57.14385 57.36983 54.42401
Empty baseline 70.35451 79.43793 79.60188 76.46477
Random unigram 52.37199 61.48490 61.59465 58.48385
Random 5-gram 45.73679 54.36620 54.71034 51.60444
Submitted summary 52.08416 60.80215 61.04838 57.97823

Table 3. Example of REG results over the document 2011041 using query c.

Distribution type unigram bigram with 2-gap Average

Baseline summary 49.62939 58.06352 58.40945 55.36745
Empty baseline 73.65646 82.85850 83.14989 79.88829
Random unigram 53.94457 63.17036 63.39601 60.17031
Random 5-gram 45.36140 53.99297 54.45397 51.26945
Submitted summary 50.67031 59.34556 59.73806 56.58465

The 6 selected summaries can be divided in 2 sets of 3 summaries using: a)
reformulated queries with a high quantity of terms and/or name entities (IDs
= 2011144, 2011026, 2011041) and b) reformulated queries with a low quantity
of terms and/or name entities (IDs = 2011001, 2011183, 2011081). The longest
query cotains 11 units and the shortest includes 3 units. Table 5 includes a
comparative evaluation between both results. It is interesting to observe that
the summaries obtained using queries with a high quantity of terms and name
entities obtain better results with the query c) (that is, using the reformulated
query). However, when the queries do not include lots of terms, the best results
are obtained with the initial queries (that is, the titles).

5 Conclusions

We have presented the REG summarization system, an extractive summarization
algorithm that models a document as a graph, to obtain weighted sentences. We
have applied this approach to the INEX@QA 2011 task, using 3 types of queries,
the initial ones (titles of tweets) and other ones extracting T&NE from titles,
and selecting those units that are semantically related to T&NE present in the
associated tweets. Semantic relatedness is obtained directly from WP.

Our preliminary experiments have shown that our system is always better
than the 2 simple baselines, but in comparison with the 2 more intelligent base-
lines the performance is variable. Morevoer, this preliminary evaluation shows
that the reformulated queries obtain bestter results than the initial queries when
the quantity of extracted terms and name entities is high.

212

Table 4. Average of results using the 3 queries and REG.

Average Query a Query b Query c

Baseline summary 45.313355 48.297996 48.668063
Empty baseline 59.050726 63.367683 66.331401
Random unigram 46,563255 48.538538 49.83195
Random 5-gram 41.434218 43.78428 43.813228
Submitted summary 45.530785 48.5865 49.421386

Table 5. Comparison between summaries obtained with short and long queries.

Average Query a Query b Query c

Summaries with short query 39.882106 43.721356 47.69209
Summaries with long query 51.179463 53.451656 51.150683

We consider that, over the INEX-2011 corpus, REG obtained good results
in the automatic evaluations, but now it is necessary to wait for the human
evaluation and the evaluation of other systems to compare with.

References

1. Edmunson, H. P. (1969). New Methods in Automatic Extraction. Journal of the
Association for Computing Machinery 16. 264-285.

2. Ferragina, P. and Scaiella, U. (2010). TAGME: On-the-fly Annotation of Short Text
Fragments (byWikipedia Entities). 19th International Conference on Information
and Knowledge Management. Toronto, Canada.

3. Gaizauskas, R.; Herring, P.; Oakes, M.; Beaulieu, M.; Willett, P.; Fowkes, H.; Jons-
son, A. (2001). Intelligent access to text: Integrating information extraction technol-
ogy into text browsers. En Proceedings of the Human Language Technology Confer-
ence. San Diego. 189-193.

4. Lal, P.; Reger, S. (2002). Extract-based Summarization with Simplication. In Pro-
ceedings of the 2nd Document Understanding Conference at the 40th Meeting of
the Association for Computational Linguistics. 90-96.

5. Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In
Proceedings of Text Summarization Branches Out: ACL-04 Workshop. 74-81.

6. Milne, D.; Witten, I.H. (2007). An effective , low-cost measure of semantic related-
ness obtained from Wikipedia links Obtaining Semantic Relatedness from. Associa-
tion for the Advancement of Artificial Intelligence.

7. Milne, D.; Witten, I.H. (2008). ALearning to link with wikipedia. Proceedings of the
17th ACM conference on Information and knowledge mining. New York.

8. Nanba, H.; Okumura, M. (2000). Producing More Readable Extracts by Revising
Them. In Proceedings of the 18th International Conference on Computational Lin-
guistics (COLING-2000). Saarbrucken. 1071-1075.

9. Ono, K.; Sumita, K.; Miike, S. (1994). Abstract generation based on rhetorical struc-
ture extraction. In Proceedings of the International Conference on Computational
Linguistics. Kyoto. 344-348.

213

10. Paice, C. D. (1990). Constructing literature abstracts by computer: Techniques and
prospects. Information Processing and Management 26. 171-186.

11. Radev, D. (1999). Language Reuse and Regeneration: Generating Natural Lan-
guage Summaries from Multiple On-Line Sources. New York, Columbia University.
[PhD Thesis]

12. Saggion, H.; Lapalme, G. (2002). Generating Indicative-Informative Summaries
with SumUM. Computational Linguistics 28(4). 497-526.

13. Saggion, H.; Torres-Moreno, J-M.; da Cunha, I.; SanJuan, E.; Velázquez-Morales,
P.; SanJuan, E. (2010). Multilingual Summarization Evaluation without Human
Models. In Proceedings of the 23rd International Conference on Computational Lin-
guistics (COLING 2010). Pekin.

14. Strube, M.; Ponzetto, S.P. (2006). WikiRelate! Computing Semantic Relatedness
Using Wikipedia. Association for Artificial Intelligence.

15. Torres-Moreno, J-M.; Saggion, H. da Cunha, I. SanJuan, E. Velázquez-Morales, P.
SanJuan, E.(2010a). Summary Evaluation With and Without References. Polibitis:
Research journal on Computer science and computer engineering with applications
42.

16. Torres-Moreno, J-M.; Saggion, H.; da Cunha, I.; Velázquez-Morales, P.; SanJuan,
E. (2010b). Ealuation automatique de résumés avec et sans référence. In Proceed-
ings of the 17e Conférence sur le Traitement Automatique des Langues Naturelles
(TALN). Université de Montréal et Ecole Polytechnique de Montréal: Montreal
(Canada).

17. Torres-Moreno, J-M.; Ramı́rez, J. (2010). REG : un algorithme glouton appliqué
au résumé automatique de texte. JADT 2010. Roma, Italia.

18. Torres-Moreno, J-M.; Ramı́rez, J.; da Cunha, I. (2010). Un resumeur a base de
graphes, indépendant de la langue. In Proceedings of the International Workshop
African HLT 2010. Djibouti.

19. Torres-Moreno, J. M.; Velázquez-Morales, P.; Meunier, J. G. (2002). Condensés
de textes par des méthodes numériques. En Proceedings of the 6th International
Conference on the Statistical Analysis of Textual Data (JADT). St. Malo. 723-734.

214

Overview of the INEX 2011 Focused Relevance
Feedback Track

Timothy Chappell1 and Shlomo Geva2

1 Queensland University of Technology,
t.chappell@student.qut.edu.au

2 Queensland University of Technology,
s.geva@qut.edu.au

Abstract. The INEX 2011 Focused Relevance Feedback track was run
in mostly identical form to the INEX 2010 Focused Relevance Feedback
track[2]. Due to the limited number of submissions, this overview is being
presented as a preproceedings paper only and is not intended to be pub-
lished with the conference proceedings. As such, this paper is virtually
identical to the track overview presented at INEX 2010 with the main
changes being differences between the submissions for the two tracks.

1 Introduction

This paper presents an overview of the INEX 2011 Focused Relevance Feedback
track. The purpose behind the track is to evaluate the performance of focused
relevance feedback plugins in comparison to each other against unknown data.
The data used for this track is the document collection and the assessments col-
lected for the INEX 2009 Ad Hoc track. Organisations participated in the track
by submitting their algorithms in the form of dynamic libraries implementing a
ranking function capable of receiving relevance information from the evaluation
platform and acting on it to improve the quality of future results. The interface
also allows the algorithms to provide back more detailed information, such as
the section or sections within a document that it believes are most relevant,
enabling focused results to be returned.

The result of running the algorithms against a set of topics is a set of relevance
assessments, which can then be scored against the same assessments used to
provide feedback to the algorithms. The result is a reflection of how well the
algorithms were able to learn from the relevance information they were given.

2 Focused Relevance Feedback

The relevance feedback approach that is the focus of this track is a modified
form of traditional approaches to relevance feedback, which typically involved
nominating whole documents as either relevant or not relevant. The end user
would typically be presented with a list of documents which they would mark as
relevant or not relevant before returning this input to the system which would

215

search the remainder of the collection for similar documents and present them
to the user.

Due to a fundamental paradigm change in how people use computers since
these early approaches to relevance feedback, a more interactive feedback loop
where the user continues to provide relevance information as they go through
the results is now possible. We adopted a refined approach to the evaluation
of relevance feedback algorithms through simulated exhaustive incremental user
feedback. The approach extends evaluation in several ways relative to traditional
evaluation. First, it facilitates the evaluation of retrieval where both the retrieval
results and the feedback are focused. This means that both the search results
and the feedback are specified as passages, or as XML elements, in documents
- rather than as whole documents. Second, the evaluation is performed over a
closed set of documents and assessments, and hence the evaluation is exhaustive,
reliable and less dependent on the specific search engine in use. By reusing the
relatively small topic assessment pools, having only several hundred documents
per topic, the search engine quality can largely be taken out of the equation.
Third, the evaluation is performed over executable implementations of relevance
feedback algorithms rather than being performed over result submissions. Fi-
nally, the entire evaluation platform is reusable and over time can be used to
measure progress in focused relevance feedback in an independent, reproducible,
verifiable, uniform, and methodologically sound manner.

3 Evaluation

The Focused Relevance Feedback track is concerned with the simulation of a
user interacting with an information retrieval system, searching for a number
of different topics. The quality of the results this user receives is then used to
evaluate the relevance feedback approach.

The INEX Ad-Hoc track, which evaluates ranking algorithms, makes use of
user-collected assessments on which portions of documents are relevant to users
searching for particular topics. These assessments are perfect, not just for the
evaluation of the rankings produced by the algorithms, but also for providing
Focused Relevance Feedback algorithms with the relevance information they
need.

As such, a Focused Relevance Feedback algorithm can be mechanically evalu-
ated without a need of a real user by simulating one, looking up the appropriate
assessments for each document received from the algorithm and sending back
the relevant passages.

To be able to accurately evaluate and compare the performance of different
focused relevance feedback algorithms, it is necessary that the algorithms not be
trained on the exact relevance assessments they are to receive in the evaluation.
After all, a search engine isn’t going to know in advance what the user is looking
for. For this reason, it becomes necessary to evaluate an algorithm with data
that was not available at the time the algorithm is written. Unlike in the Ad-Hoc
track, the relevance submissions used to evaluate the plugins are also required for

216

input to the plugins, so there is no way to provide participating organisations
with enough information for them to provide submissions without potentially
gaining an unrealistic advantage.

There are at least two potential ways of rectifying this. One is to require
the submission of the algorithms a certain amount of time (for example, one
hour) after the assessments for the Ad Hoc track were made available. This
approach, however, is flawed as it allows very little margin for error and that it
will unfairly advantage organisations that happen to be based in the right time
zones, depending on when the assessments are released. In addition, it allows the
relevance feedback algorithm to look ahead at relevance results it has not yet
received in order to artificially improve the quality of the ranking. These factors
make it unsuitable for the running of the track.

The other approach, and the one used in the Focused Relevance Feedback
track, is to have the participating organisations submit the algorithms them-
selves, rather than just the results. The algorithms were submitted as dynamic
libraries written in Java, chosen for its cross-platform efficiency. The dynamic
libraries were then linked into an evaluation platform which simulated a user
searching for a number of different topics, providing relevance results on each
document given. The order in which the documents were submitted to the plat-
form was then used to return a ranking, which could be evaluated like the results
of any ranking algorithm.

4 Task

4.1 Overview

Participants were asked to create one or more Relevance Feedback Modules
intended to rank a collection of documents with a query while incrementally
responding to explicit user feedback on the relevance of the results presented to
the user. These Relevance Feedback Modules were implemented as dynamically
linkable modules that implement a standard defined interface. The Evaluation
Platform interacts with the Relevance Feedback Modules directly, simulating a
user search session. The Evaluation Platform instantiates a Relevance Feedback
Module object and provides it with a set of XML documents and a query.

The Relevance Feedback Module responds by ranking the documents (with-
out feedback) and returning the ranking to the Evaluation Platform. This is so
that the difference in quality between the rankings before and after feedback can
be compared to determine the extent of the effect the relevance feedback has on
the results. The Evaluation Platform is then asked for the next most relevant
document in the collection (that has not yet been presented to the user). On
subsequent calls the Evaluation Platform passes relevance feedback (in the form
of passage offsets and lengths) about the last document presented by the Rele-
vance Feedback Module. This feedback is taken from the qrels of the respective
topic, as provided by the Ad-Hoc track assessors. The simulated user feedback
may then be used by the Relevance Feedback Module to re-rank the remaining

217

unseen documents and return the next most relevant document. The Evalua-
tion Platform makes repeated calls to the Relevance Feedback Module until all
relevant documents in the collection have been returned.

The Evaluation Platform retains the presentation order of documents as gen-
erated by the Relevance Feedback Module. This order can then be evaluated as
a submission to the ad-hoc track in the usual manner and with the standard
retrieval evaluation metrics. It is expected that an effective dynamic relevance
feedback method will produce a higher score than a static ranking method (i.e.
the initial baseline rank ordering). Evaluation is performed over all topics and
systems are ranked by the averaged performance over the entire set of topics,
using standard INEX and TREC metrics. Each topic consists of a set of doc-
uments (the topic pool) and a complete and exhaustive set of manual focused
assessments against a query. Hence, we effectively have a ”classical” Cranfield ex-
periment over each topic pool as a small collection with complete assessments for
a single query. The small collection size allows participants without an efficient
implementation of a search engine to handle the task without the complexities
of scale that the full collection presents.

4.2 Submission format

Participating organisations submitted JAR files that implemented the following
specification:

package rf;

public interface RFInterface {

public Integer[] first(String[] documentList, String query);

public Integer next();

public String getFOL();

public String getXPath();

public void relevant(Integer offset, Integer length,

String Xpath, String relevantText);

}

In the call to first, the algorithm is given the set of documents and the query
used to rank them and must return an initial ranking of the documents. The
purpose of this is to quantify the improvement gained from providing the rele-
vance assessments to the Relevance Feedback Module. The Evaluation Platform
then calls next to request the next document from the algorithm, making a call
to relevant to provide feedback on any relevant passages in the document. The
optional methods getFOL and getXPath, if implemented, allow the Relevance
Feedback Module to provide more focused results to the Evaluation Platform in
order to gain better results from the focused evaluation. None of the submitted
algorithms implemented these methods, however.

Before the track submission date, participants were also provided with an
optional binary interface JAR file to allow participants to supply an algorithm

218

in the form of native client code. The JAR file acts as a driver for the native
client, passing information back and forth using pipes.

5 Results

5.1 Submissions

Two groups submitted a total of four Relevance Feedback Modules to the INEX
2011 Relevance Feedback track- down from nine submissions to the INEX 2010
Relevance Feedback track. QUT resubmitted the reference Relevance Feedback
Module described in the next paragraph while the University of Otago submitted
three native client submissions using the supplied driver.

To provide a starting point for participating organisations, a reference Rele-
vance Feedback Module, both in source and binary form, was provided by QUT.
This reference module used the ranking engine Lucene[3] as a base for a modified
Rocchio[4] approach. The approach used was to provide the document collec-
tion to Lucene for indexing, then construct search queries based on the original
query but with terms added from those selections of text nominated as relevant.
A scrolling character buffer of constant size was used, with old data rolling off
as new selections of relevant text were added to the buffer, and popular terms
(ranked by term frequency) added to the search query. The highest ranked doc-
ument not yet returned is then presented to the Evaluation Platform and this
cycle continues until the collection is exhausted. The reference algorithm does
not provide focused results and as such does not implement the getFOL or getX-
Path methods.

The University of Otago made three submissions of a native client that uses
the ATIRE search engine with various settings.

5.2 Evaluation

To evaluate the results, the first 20 topics from the INEX 2009 Ad Hoc track
were chosen as the data set used for the evaluation. This was chosen due to the
fact that the Ad Hoc track was not run in 2011, the INEX 2010 Ad Hoc track
results were already used in the INEX 2010 Focused Relevance Feedback track
and the INEX 2008 Ad Hoc track were used as training data for the reference
submission.

The Relevance Feedback Modules submitted by participating organisations
were run through the Evaluation Platform. As none of the submitted Relevance
Feedback Modules returned focused results, trec eval [1] was used to evaluate the
results.

Trec eval reports results using a variety of different metrics, including in-
terpolated recall-precision, average precision, exact precision and R-precision.
Recall-precision reports the precision (the fraction of relevant documents re-
turned out of the documents returned so far) at varying points of recall (after
a given portion of the relevant documents have been returned.) R-precision is

219

calculated as the precision (number of relevant documents) after R documents
have been seen, where R is the number of relevant documents in the collection.
Average precision is calculated from the sum of the precision at each recall point
(a point where a certain fraction of the documents in the collection have been
seen) divided by the number of recall points.

As the Otago submissions do not make use of relevance feedback, alternative
no-feedback results for them have not been listed for these submissions. The
reference run therefore appears twice; as Reference when feedback is used and
Reference (NF) without applying feedback. The Otago submissions have abbre-
viated names for clarity, but Otago (BM25) refers to untuned BM25 applied
as-is. Otago (Rocchio) refers to BM25 with Rocchio pseudo-relevance feedback.
Otago (Tuned) refers to BM25 with Rocchio, stemming and tuning.

Run Average Precision R-Precision

Reference 0.4219 0.4126
Reference (NF) 0.3376 0.3361
Otago (BM25) 0.3580 0.3597
Otago (Rocchio) 0.3576 0.3597
Otago (Tuned) 0.3656 0.3573

Table 1. Average precision and R-precision for submitted modules

The following table shows the exact precision of the submitted modules in the
form of P@N precision, referring to the average proportion of relevant documents
that have been returned after N documents have been returned. For example, a
P@5 value of 0.5 means that, on average, 50% (or 2.5) of the first 5 documents
returned were relevant.

Reference Ref (nf) Otago (BM25) Otago (Rocchio) Otago (Tuned)

P@5 0.5 0.5 0.54 0.54 0.52
P@10 0.515 0.435 0.445 0.445 0.485
P@15 0.49 0.4 0.4167 0.4167 0.45
P@20 0.4675 0.385 0.3975 0.3975 0.3975
P@30 0.4367 0.35 0.3583 0.3583 0.3533
P@100 0.3095 0.242 0.226 0.226 0.2175
P@200 0.2327 0.174 0.183 0.1828 0.1788
P@500 0.1224 0.1182 0.1154 0.1154 0.1152
P@1000 0.0636 0.0636 0.0636 0.0636 0.0636

Table 2. Exact (P@N) precision

Another way of plotting the results is the previously described interpolated
recall-precision curve. This has the downside of producing occasionally unex-

220

@5 @10 @15 @20 @30 @100@200@500@1000
0

0.1

0.2

0.3

0.4

0.5

0.6

Exact precision

Reference
Reference (no rf)
BM25
BM25+Rocchio
BM25+Rocchio+Tuned

Fig. 1. Comparison of P@N precision of submitted Relevance Feedback modules

pected results due to the smoothing being enough to show improvement in the
reference run even at 0.0, despite the fact that improvements don’t occur in the
first 5 results as shown in the exact precision plot.

In this case we present recall-precision data at 11 points from 0.0 to 1.0 to
compare the submitted modules.

Reference Ref (nf) Otago (BM25) Otago (Rocchio) Otago (Tuned)

0.0 0.87 0.8418 0.8481 0.8481 0.8679
0.1 0.6903 0.5741 0.5782 0.5782 0.5916
0.2 0.5877 0.5105 0.494 0.494 0.516
0.3 0.5132 0.433 0.4354 0.4354 0.4518
0.4 0.4718 0.3986 0.3943 0.3943 0.3916
0.5 0.4329 0.3078 0.3537 0.3537 0.3632
0.6 0.3912 0.2703 0.3128 0.3134 0.3305
0.7 0.3557 0.2488 0.279 0.279 0.2977
0.8 0.3015 0.2053 0.241 0.241 0.2407
0.9 0.217 0.1716 0.1761 0.1761 0.1753
1.0 0.1528 0.1291 0.1369 0.1369 0.1368

Table 3. Interpolated recall-preecision

221

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1

Interpolated precision

Reference
Reference (no rf)
BM25
BM25+Rocchio
BM25+Rocchio+Tuned

Fig. 2. Recall-precision comparison of Relevance Feedback Modules

6 Conclusion

We have presented the Focused Relevance Feedback track at INEX 2011. Despite
the limited pool of participating organisations, the track has provided optimistic
results, with improved results on INEX 2010.

7 Acknowledgements

We would like to thank all the participating organisations for their contributions
and hard work.

References

1. C. Buckley. The trec eval IR evaluation package. Retrieved January, 1:2005, 2004.
2. T. Chappell and S. Geva. Overview of the inex 2010 relevance feedback track.

Comparative Evaluation of Focused Retrieval, pages 303–312, 2011.
3. B. Goetz. The Lucene search engine: Powerful, flexible, and free. Javaworld

http://www. javaworld. com/javaworld/jw-09-2000/jw-0915-lucene. html, 2002.
4. J. J. Rocchio. Relevance feedback in information retrieval. In G. Salton, edi-

tor, The SMART Retrieval System: Experiments in Automatic Document Process-
ing, Prentice-Hall Series in Automatic Computation, chapter 14, pages 313–323.
Prentice-Hall, Englewood Cliffs NJ, 1971.

222

Snip!

Andrew Trotman, Matt Crane

Department of Computer Science

University of Otago

Dunedin, New Zealand

Abstract. The University of Otago submitted runs to the Snippet Retrieval

Track and the Relevance Feedback tracks at INEX 2011. This paper discusses

those runs. At the time of writing the snippet results had not been released. In

the relevance feedback track no improvement was seen in whole-document

retrieval when Rocchio blind relevance feedback was used.

Keywords: Snippet Generation, Relevance Feedback, Procrastination.

1 Introduction

In 2011 the University of Otago participated in two tracks it had not previously

experiment with: the Snippet Retrieval Track and the Relevance Feedback Track. Six

snippet runs were submitted and three relevance feedback runs were submitted. This

contribution discusses those runs.

For details of the INEX document collection and the “rules” for the tracks the

interested reader is referred to the track overview papers.

2 Snippets

2.1 Runs

A total of six runs were submitted:

First-p: in this run the snippet was the first 300 characters of the first <p> element in

the document. This run was motivated by the observation that the start of a Wikipedia

article typically contains an overview of the document and is therefore a good

overview of the paper. In this run and all submitted runs the snippet was constructed

so that it always started at the beginning of a word and ended at the end of a word and

all XML tag content was discarded.

Tf-paragraph: in this run the snippet was the first 300 characters from the paragraph

(<p>) element with the highest sum of query term occurrences (that is, for a two word

query it is sum of the tf’s of each term).

223

Tf-passage : in this run the snippet was the 300 character (word aligned) sliding

window with the highest sum of query term occurrences. Since there are usually

many such possible windows, the window was centered so that the distance from the

start of the window to the first occurrence was the same (within rounding errors) as

the distance from the last occurrence to the end of the window (measured in bytes).

These three runs together form experiment 1 in which the aim is to determine whether

a snippet is better formed from an element or a passage.

Tficf-paragraph: in this run the snippet was the first 300 characters of the paragraph

with the highest tf * icf weight were icft = log(C/ct) were C is the length of the

collection (in term occurrences) and c is the number of times term t occurs.

Tficf-passage: in this run the snippet was the first 300 character (word aligned) sliding

window with the highest tf * icf score.

The tficf runs along with the tf runs form experiment 2 in which the aim is to

determine the most effective way of choosing a passage or paragraph.

The final run was

KL-word-cloud: in this run the KL-divergence between each term in the document

and the collection was used to order all terms in the document. From this ordering the

top n were chosen as the snippet so that the snippet did not exceed 300 characters.

This final run forms experiment 3 in which the aim is to determine whether snippets

are better form using extractive techniques (phrases) are better than summative

techniques (word clouds).

2.2 Results

At the time of writing no results have been posted and so the results of the

experiments remain unknown.

2.3 Observations from assessing

In total 6 topics were assessed by participants at the University of Otago. A post-

assessment debriefing by the four assessors resulted in the following observations:

Snippets that included the title of the document were easier to assess than those that

did not. It is subsequently predicted that those runs will generally score better than

runs that did not. A recommendation is made to the track chairs to either

automatically include the document title in the assessment tool, or to make it clear

that the snippet may include the document title.

224

Snippets that were extractive from multiple parts of the document (included ellipses)

generally contained multiple snippets each of which was too short to be useful and

collectively not any better.

Snippets made from word clouds were not generally helpful.

Snippets that contained what appeared to be the section / subsection “path” through

the document generally took so much space that the remaining space for the extractive

snippet was too short for a useful snippet.

2.4 Further work

If the track is run in 2012 then from the observations it would be reasonable to submit

a run that contains the document title, a single snippet extracted from the document,

and the title of the section from which the snippet was extracted. The method of

extraction is unclear and would depend on the results of the experiments submitted to

this track in 2011.

3 Relevance Feedback

The purpose of the Otago relevance feedback runs was twofold.

The first purpose was to experiment with the INEX relevance feedback infrastructure.

In particular, the infrastructure was written in Java but the search engine Otago uses is

written in C++. The gateway from Java to C++ was provided by INEX.

The second purpose was to determine whether or not blind relevance feedback is an

effective method of improving whole-document search results on Wikipedia. To this

end the runs submitted by Otago ignored the human assessments and only returned

whole documents.

3.1 Runs

A total of three runs were submitted:

BM25: in this run the documents are ranked using BM25 (k1=0.9, b=0.4). No

relevance feedback was performed. This runs forms an out-of-the-box baseline. Is it

the result of running the untrained ATIRE search engine over the documents.

BM25-RF: in this run the documents are ranked using BM25 (as above), then from

the top 5 document the top 8 terms were selected using KL-divergence. These were

then added to the query (according to Rocchio’s algorithm) and BM25 was again used

to get the top results. Terms added to the query had an equal weight to those already

there, and terms already in the query could be added. The parameters 5 and 8 were

chosen through learning over the training data.

225

BM25-RF-S: in this run the documents are ranked using BM25, then from the top 5

document the top 8 terms were selected using KL-divergence (as above). Additionally

the s-stemmer was used in the initial and second query. Additional to this the

parameters for BM25 were learned using a grid search (k1=0.5 b=0.5). Again

training was on the INEX supplied training data.

In all runs blind relevance feedback was used and the user’s assessments were

ignored. As such these runs form a good baseline for ignoring the user.

3.2 Results

A subset of the official INEX published results are presented in Table 1 and the

Precision / Recall graph is presented in Figure 1. The focused retrieval results are not

presented as whold-document retrieval was used.

From the results, it appears as though relevance feedback has no effect on the

performance of the search engine, but stemming does. It is already know that

stemming works on the INEX Wikipedia collection, but unexpected that Rocchio

Feedback does not. This result needs to be verified as it could be a problem with the

run or a problem with the assessment method.

Table 1: INEX Published Results (from INEX)

Precision Reference Reference Otago Otago Otago

 no feedback BM25 BM25-RF BM25-RF-S

P@5 0.500 0.500 0.540 0.540 0.520

P@10 0.515 0.435 0.445 0.445 0.485

P@15 0.490 0.400 0.417 0.417 0.450

P@20 0.468 0.385 0.398 0.398 0.398

R-Precision 0.413 0.336 0.360 0.360 0.357

Figure 1: Official INEX Relevance Feedback Result (from INEX)

226

3.4 Further work

If the track is run in 2012 then it is reasonable to build on the baseline by including

the user’s assessments in the run. This could be done by performing a process similar

to run BM25-RF-S at each assessment point and returning the top as-to un-seen

document.

However, before any further work is done it is important to understand why relevance

feedback does not appear to have an effect on this collection.

4. Conclusions

The University of Otago submitted six snippet runs and three feedback runs. These

runs form baselines for experiments in improving the quality of the results in the

search engine.

It is not clear why the relevance feedback method had no effect on precision. In

further work this will be investigated.

References

The interested reader is referred to the overview papers of INEX 2011, especially the

overview of the snippet and relevance feedback tracks.

227

Overview of the INEX 2011 Snippet Retrieval
Track

Matthew Trappett1, Shlomo Geva1, Andrew Trotman2, Falk Scholer3, and
Mark Sanderson3

1 Queensland University of Technology, Brisbane, Australia
matthew.trappett@qut.edu.au, shlomo.geva@qut.edu.au

2 University of Otago, Dunedin, New Zealand
andrew@cs.otago.ac.nz

3 RMIT University, Melbourne, Australia
falk.scholer@rmit.edu.au, mark.sanderson@rmit.edu.au

Abstract. This paper gives an overview of the INEX 2011 Snippet Re-
trieval Track. The goal of the Snippet Retrieval Track is to provide a
common forum for the evaluation of the effectiveness of snippets, and
to investigate how best to generate snippets for search results, which
should provide the user with sufficient information to determine whether
the underlying document is relevant. We discuss the setup of the track,
and the preliminary results.

1 Introduction

Queries performed on search engines typically return far more results than a
user could ever hope to look at. While one way of dealing with this problem
is to attempt to place the most relevant results first, no system is perfect, and
irrelevant results are often still returned. To help with this problem, a short text
snippet is commonly provided to help the user decide whether or not the result
is relevant.

The goal of snippet generation is to provide sufficient information to allow
the user to determine the relevance of each document, without needing to view
the document itself, allowing the user to quickly find what they are looking for.

The INEX Snippet Retrieval track was run for the first time in 2011. Its goal
is to provide a common forum for the evaluation of the effectiveness of snippets,
and to investigate how best to generate informative snippets for search results.

2 Snippet Retrieval Track

In this section, we briefly summarise the snippet retrieval task, the submission
format, the assessment method, and the measures used for evaluation.

228

2.1 Task

The task is to return a ranked list of documents for the requested topic to the
user, and with each document, a corresponding text snippet describing the docu-
ment. This text snippet should attempt to convey the relevance of the underlying
document, without the user needing to view the document itself.

Each run is allowed to return up to 500 documents per topic, with a maximum
of 300 characters per snippet.

2.2 Test Collection

The Snippet Retrieval Track uses the INEX Wikipedia collection introduced in
2009 — an XML version of the English Wikipedia, based on a dump taken on
8 October 2008, and semantically annotated as described in [1]. This corpus
contains 2,666,190 documents.

The topics have been reused from the INEX 2009 Ad Hoc Track [2]. Each
topic contains a short content only (CO) query, a content and structure (CAS)
query, a phrase title, a one line description of the search request, and a narrative
with a detailed explanation of the information need, the context and motivation
of the information need, and a description of what makes a document relevant
or not.

To avoid the ‘easiest’ topics, the 2009 topics were ranked in order of the
number of relevant documents found in the corresponding relevance judgements,
and the 50 with the lowest number were chosen.

For those participants who wished to generate snippets only, and not use
their own search engine, a reference run was generated using BM25.

2.3 Submission Format

An XML format was chosen for the submission format, due to its human read-
ability, its nesting ability (as information was needed at three hierarchical levels
— submission-level, topic-level, and snippet-level), and because the number of
existing tools for handling XML made for quick and easy development of assess-
ment and evaluation.

The submission format is defined by the DTD given in Figure 1. The follow-
ing is a brief description of the DTD fields. Each submission must contain the
following:

– participant-id: The participant number of the submitting institution.
– run-id: A run ID, which must be unique across all submissions sent from a

single participating organisation.
– description: a brief description of the approach used.

Every run should contain the results for each topic, conforming to the following:

– topic: contains a ranked list of snippets, ordered by decreasing level of rele-
vance of the underlying document.

229

<!ELEMENT inex-snippet-submission (description,topic+)>

<!ATTLIST inex-snippet-submission

participant-id CDATA #REQUIRED

run-id CDATA #REQUIRED

>

<!ELEMENT description (#PCDATA)>

<!ELEMENT topic (snippet+)>

<!ATTLIST topic

topic-id CDATA #REQUIRED

>

<!ELEMENT snippet (#PCDATA)>

<!ATTLIST snippet

doc-id CDATA #REQUIRED

rsv CDATA #REQUIRED

>

Fig. 1. DTD for Snippet Retrieval Track run submissions

– topic-id: The ID number of the topic.
– snippet: A snippet representing a document.
– doc-id: The ID number of the underlying document.
– rsv: The retrieval status value (RSV) or score that generated the ranking.

2.4 Assessment

To determine the effectiveness of the returned snippets at their goal of allowing
a user to determine the relevance of the underlying document, manual assess-
ment has been used. The documents for each topic were manually assessed for
relevance based on the snippets alone, as the goal is to determine the snippet’s
ability to provide sufficient information about the document.

Each topic within a submission was assigned an assessor. The assessor, after
reading the details of the topic, read through the top 100 returned snippets,
and judged which of the underlying documents seemed relevant based on the
snippets.

To avoid bias introduced by assessing the same topic more than once in a
short period of time, and to ensure that each submission is assessed by the same
assessors, the runs were shuffled in such a way that each assessment package
contained one run from each topic, and one topic from each submission.

2.5 Evaluation Measures

Submissions are evaluated by comparing the snippet-based relevance judgements
with the existing document-based relevance judgements, which are treated as a
ground truth. This section gives a brief summary of the specific metrics used. In
all cases, the metrics are averaged over all topics.

230

We are interested in how effective the snippets were at providing the user
with sufficient information to determine the relevance of the underlying docu-
ment, which means we are interested in how well the user was able to correctly
determine the relevance of each document. The simplest metric is the mean pre-
cision accuracy (MPA) — the percentage of results that the assessor correctly
assessed, averaged over all topics.

MPA =
TP + TN

TP + FP + FN + TN
(1)

Due to the fact that most topics have a much higher percentage of irrelevant
documents than relevant, MPA will weight relevant results much higher than
irrelevant results — for instance, assessing everything as irrelevant will score
much higher than assessing everything as relevant.

MPA can be considered the raw agreement between two assessors — one
who assessed the actual documents (i.e. the ground truth relevance judgements),
and one who assessed the snippets. Because the relative size of the two groups
(relevant documents, and irrelevant documents) can skew this result, it is also
useful to look at positive agreement and negative agreement to see the effects of
these two groups.

Positive agreement (PA) is the conditional probability that, given one of the
assessors judges a document as relevant, the other will also do so. This is also
equivalent to the F1 score.

PA =
2 · TP

2 · TP + FP + FN
(2)

Likewise, negative agreement (NA) is the conditional probability that, given
one of the assessors judges a document as relevant, the other will also do so.

NA =
2 · TN

2 · TN + FP + FN
(3)

Mean normalised prediction accuracy (MNPA) calculates the rates for rel-
evant and irrelevant documents separately, and averages the results, to avoid
relevant results being weighted higher than irrelevant results.

MNPA = 0.5
TP

TP + FN
+ 0.5

TN

TN + FP
(4)

This can also be thought of as the arithmetic mean of recall and negative
recall. These two metrics are interesting themselves, and so are also reported
separately. Recall is the percentage of relevant documents that are correctly
assessed.

Recall =
TP

TP + FN
(5)

Negative recall (NR) is the percentage of irrelevant documents that are cor-
rectly assessed.

231

NR =
TN

TN + FP
(6)

The primary evaluation metric, which is used to rank the submissions, is the
geometric mean of recall and negative recall (GM). A high value of GM requires
a high value in recall and negative recall — i.e. the snippets must help the user
to accurately predict both relevant and irrelevant documents. If a submission
has high recall but zero negative recall (e.g. in the case that everything is judged
relevant), GM will be zero. Likewise, if a submission has high negative recall
but zero recall (e.g. in the case that everything is judged irrelevant), GM will be
zero.

GM =

√
TP

TP + FN
· TN

TN + FP
(7)

3 Participation

Table 1. Participation in the Snippet Retrieval Track

ID Institute Runs

14 University of Otago 6
16 KASETSART UNIVERSITY 3
20 QUT 3
23 RMIT University 3
31 Radboud University Nijmegen 6
65 University of Minnesota Duluth 4
72 Jiangxi University of Finance and Economics 8
73 Peking University 8
77 Room 2318, Science Buildings 2, Peking University 6
83 ISMU 3

In this section, we discuss the participants and their approaches.

In the 2011 Snippet Retrieval Track, 50 runs were accepted from a total of 56
runs submitted. These runs came from 10 different groups, based in 7 different
countries. Table 1 lists the participants, and the number of runs accepted from
them.

Participants were allowed to submit as many runs as they wanted, but were
required to rank the runs in order of priority, with the understanding that some
runs may not be assessed, depending on the total number of runs submitted. To
simplify the assessment process, 50 runs were accepted, to match the number of
topics. This was achieved by capping the number of runs at 8 runs per partipating
institute, and discarding any runs ranked below 8.

232

3.1 Participant approaches

The following is a brief description of the approaches used, as reported by the
participants.

Queensland University of Technology The run ‘QUTFirst300’ is simply
the first 300 characters of the documents in the reference run.

The run ‘QUTFocused’, again using the reference run, ignored certain ele-
ments, such as tables, images, templates, and the reference list. The tf-idf values
were calculated for the key words found in each document. A 300 character win-
dow was then moved along the text, counting the total key words found in each
window, weighted by their tf-idf scores. The highest scoring window was found,
then rolled back to the start of the sentence to ensure the snippet did not start
mid-sentence.

The run ‘QUTIR2011A’ selects snippets, using the reference run to select
the appropriate documents. A topological signature is created from the terms of
the query. Snippets are determined as 300 character passages starting from the
<p> tag that is used to delineate paragraphs in the documents. Signatures are
created for these snippets and compared against the original query signature.
The closest match is used.

RMIT University The snippet generation algorithm was based on selecting
highly ranked sentences which were ranked according to the occurrence of query
terms. Nevertheless, it was difficult to properly identify sentence boundaries due
to having multiple contributors with different writing styles. The main exception
was detected when a sentence included abbreviations such as ”‘Dr. Smith”’. We
did not do an analysis of abbreviations to address this issue in detail.

We processed Wikipedia articles before constructing snippets. Specifically,
information contained inside the <title> and <bdy> was used to narrow the
document content. We suggest that snippets should include information of the
document itself instead of sources pointing to other articles. Therefore, the Ref-
erence section was ignored in our summarisation approaches. The title was con-
catenated to the leading scored sentences.

We used the query terms listed in the title, and we expanded them by ad-
dressing a pseudo relevance feedback approach. That is, the top 5 Wikipedia
articles were employed for selecting the first 25 and 40 terms.

Radboud University Our previous study found that topical language model
improves document ranking of ad-hoc retrieval. In this work, our attention is
paid on snippets that are extracted and generated from the provided ranked list
of documents.

In our experiments of the Snippet Retrieval Track, we hypothesize that the
user recognizes certain combinations of terms in created snippets which are re-
lated to their information needs. We automatically extract snippets using terms

233

as the minimal unit. Each term is weighted according to their relative occur-
rance in its article and in the entire Wikipedia. The top K scoring terms are
chosen for inclusion in the snippet. The term-extraction based snippets are then
represented differently to the user. One is a cluster of words that indicate the
described topic. Another is a cluster of semi-sentences that contains the topic
information while preserving some language structure.

Jiangxi University of Finance and Economics p72-LDKE-m1m2m3m4,
where mi (1 ≤ i ≤ 4) equals to 0 or 1, employs four different strategies to
generate a snippet. Strategy 1 is dataset selection: using documents listed in
reference runs (m1 = 0) or Wikipedia 2009 dataset (m1 = 1). Strategy 2 is
snippet selection: using baseline method (m2 = 0) or window method (m2 = 1).
According to the baseline method, after the candidate elements/nodes being
scored and ranked, only the first 300 characters are extracted as snippet from
the element/node has the highest score. Remain part of this snippet are extracted
from the successive elements/nodes in case of the precedents are not long enough.
While in the window method, every window that contain 15 terms are scored
and those with higher scores are extracted as snippets. Strategy 3 is whether
using ATG path weight (m3 = 1) or not (m3 = 0) in element retrieval model.
The element retrieval model used in our system is based on BM25 and the works
about ATG path weight has been published in CIKM 2010. Strategy 4 is whether
reordering the XML document according to the reference runs (m4 = 0) or not
(m4 = 1) after elements/nodes being retrieved.

Peking University In the INEX 2011 Snippet Retrieval Track, we retrieve
XML documents based on both document structure and content, and our re-
trieval engine is based on the Vector Space Model. We use Pseudo Feedback
method to expand the query of the topics. We have learned the weight of ele-
ments based on the cast of INEX2010 to enhance the retrieval performance, and
we also consider the distribution of the keywords in the documents and elements,
the more of the different keywords, the passage will be more relevant, and so
is the distance of the keywords. We used method of SLCA to get the smallest
sub-tree that satisfies the retrieval. In the snippet generation system, we use
query relevance, significant words, title/section-title relevance and tag weight to
evaluate the relevance between sentences and a query. The sentences with higher
relevance score will be chosen as the retrieval snippet.

4 Snippet Retrieval Results

In this section, we present and discuss the preliminary evaluation results for the
Snippet Retrieval Track.

At the time of writing, 39 of the 50 assessment packages have been completed.
As not all of the assessments have been completed yet, the results presented here
are preliminary results only. Each submission has been evaluated on a slightly

234

Table 2. Ranking of all runs in the Snippet Retrieval Track, ranked by GM (prelimi-
nary results only)

Rank Run Score

1 p20-QUTFirst300 0.5925
2 p72-LDKE-1111 0.5774
3 p72-LDKE-0101 0.5686
4 p73-PKU ICST REF 11a 0.5647
5 p23-baseline 0.5612
6 p65-UMD SNIPPET RETRIEVAL RUN 3 0.5606
7 p72-LDKE-1110 0.5580
8 p14-top tficf passage 0.5539
9 p72-LDKE-1101 0.5497
10 p77-PKUSIGMASR01CLOUD 0.5479
11 p72-LDKE-1121 0.5467
12 p23-expanded-25 0.5446
13 p77-PKUSIGMASR03CLOUD 0.5415
14 p23-expanded-40 0.5411
15 p20-QUTFocused 0.5358
16 p77-PKUSIGMASR05CLOUD 0.5354
17 p72-LDKE-0111 0.5241
18 p72-LDKE-1011 0.5175
19 p72-LDKE-1001 0.5141
20 p35-97-ism-snippet-Baseline-Reference-run 01 0.5135
21 p73-PKU 106 0.5116
22 p73-PKU 105 0.5102
23 p20-QUTIR2011A 0.5082
24 p73-PKU ICST REF 11b 0.5027
25 p77-PKUSIGMASR04CLOUD 0.5020
26 p73-PKU 102 0.5018
27 p14-top tf passsage 0.4979
28 p35-98-ism-snippet-Baseline-Reference-run 01 0.4925
29 p65-UMD SNIPPET RETRIEVAL RUN 4 0.4914
30 p31-SRT11DocTXT 0.4899
31 p31-SRT11ParsDoc 0.4878
32 p77-PKUSIGMASR02CLOUD 0.4863
33 p73-PKU 100 0.4852
34 p77-PKUSIGMASR06CLOUD 0.4837
35 p73-PKU 107 0.4831
36 p31-SRT11DocParsedTXT 0.4799
37 p14-top tficf p 0.4792
38 p14-top tf p 0.4764
39 p35-ism-snippet-Baseline-Reference-run 02 0.4708
40 p65-UMD SNIPPET RETRIEVAL RUN 1 0.4667
41 p65-UMD SNIPPET RETRIEVAL RUN 2 0.4610
42 p31-SRT11ParsStopDoc 0.4556
43 p14-first p 0.4178
44 p73-PKU 101 0.4030
45 p31-SRT11ParsStopTerm 0.3731
46 p14-kl 0.3703
47 p31-SRT11ParsTerm 0.3563
48 p16-kas16-MEXIR-ALL 0.0000
49 p16-kas16-MEXIR-ANY 0.0000
50 p16-kas16-MEXIR-EXT 0.0000

235

Table 3. Additional metrics of all runs in the Snippet Retrieval Track (preliminary
results only)

Run MPA MNPA Recall NR PA NA

p14-first p 0.7885 0.5816 0.2562 0.9069 0.2717 0.8633
p14-kl 0.7579 0.5706 0.2771 0.8641 0.2001 0.8358
p14-top tf p 0.7669 0.5922 0.3414 0.8431 0.3016 0.8426
p14-top tf passsage 0.7572 0.6140 0.4065 0.8214 0.3123 0.8252
p14-top tficf p 0.7670 0.6055 0.3521 0.8589 0.3109 0.8471
p14-top tficf passage 0.7787 0.6375 0.4281 0.8468 0.3709 0.8548
p16-kas16-MEXIR-ALL 0.5692 0.2846 0.0000 0.5692 0.0000 0.6360
p16-kas16-MEXIR-ANY 0.8942 0.4471 0.0000 0.8942 0.0000 0.9355
p16-kas16-MEXIR-EXT 0.8786 0.4393 0.0000 0.8786 0.0000 0.9286
p20-QUTFirst300 0.8069 0.6625 0.4600 0.8651 0.4067 0.8703
p20-QUTFocused 0.7572 0.6223 0.4064 0.8383 0.3385 0.8311
p20-QUTIR2011A 0.7823 0.6190 0.3681 0.8699 0.3327 0.8529
p23-baseline 0.7928 0.6459 0.4219 0.8698 0.3739 0.8629
p23-expanded-25 0.7803 0.6248 0.3867 0.8629 0.3316 0.8582
p23-expanded-40 0.7555 0.6202 0.4034 0.8369 0.3376 0.8354
p31-SRT11DocParsedTXT 0.7938 0.6135 0.3345 0.8926 0.3194 0.8674
p31-SRT11DocTXT 0.8023 0.6211 0.3672 0.8750 0.3315 0.8589
p31-SRT11ParsDoc 0.7885 0.6206 0.3570 0.8843 0.3241 0.8631
p31-SRT11ParsStopDoc 0.8041 0.6213 0.3439 0.8986 0.3078 0.8723
p31-SRT11ParsStopTerm 0.7562 0.5759 0.3025 0.8493 0.2396 0.8222
p31-SRT11ParsTerm 0.7803 0.5726 0.2566 0.8885 0.2330 0.8495
p35-97-ism-snippet-Baseline-Reference-run 01 0.7969 0.6271 0.3834 0.8709 0.3552 0.8622
p35-98-ism-snippet-Baseline-Reference-run 01 0.7874 0.6161 0.3483 0.8840 0.3179 0.8576
p35-ism-snippet-Baseline-Reference-run 02 0.8000 0.6088 0.3222 0.8954 0.3055 0.8700
p65-UMD SNIPPET RETRIEVAL RUN 1 0.7564 0.5899 0.3342 0.8457 0.2938 0.8335
p65-UMD SNIPPET RETRIEVAL RUN 2 0.7577 0.5865 0.3284 0.8446 0.2900 0.8364
p65-UMD SNIPPET RETRIEVAL RUN 3 0.7726 0.6293 0.4212 0.8373 0.3673 0.8445
p65-UMD SNIPPET RETRIEVAL RUN 4 0.7864 0.6041 0.3305 0.8776 0.3162 0.8573
p72-LDKE-0101 0.7400 0.6328 0.4710 0.7946 0.3678 0.8120
p72-LDKE-0111 0.7567 0.6127 0.4115 0.8139 0.3357 0.8258
p72-LDKE-1001 0.7441 0.6162 0.3999 0.8325 0.3242 0.8202
p72-LDKE-1011 0.7926 0.6254 0.3752 0.8755 0.3466 0.8624
p72-LDKE-1101 0.7582 0.6280 0.4416 0.8144 0.3548 0.8265
p72-LDKE-1110 0.7582 0.6324 0.4635 0.8012 0.3838 0.8114
p72-LDKE-1111 0.7315 0.6370 0.4859 0.7881 0.3634 0.8063
p72-LDKE-1121 0.7925 0.6288 0.4107 0.8469 0.3403 0.8617
p73-PKU 100 0.7838 0.6114 0.3630 0.8597 0.3293 0.8569
p73-PKU 101 0.7744 0.5701 0.2836 0.8566 0.2312 0.8518
p73-PKU 102 0.7482 0.6190 0.4139 0.8240 0.3148 0.8279
p73-PKU 105 0.7782 0.6174 0.3986 0.8362 0.3247 0.8481
p73-PKU 106 0.7900 0.6173 0.3741 0.8606 0.3271 0.8585
p73-PKU 107 0.7946 0.6148 0.3704 0.8593 0.2975 0.8616
p73-PKU ICST REF 11a 0.7634 0.6345 0.4321 0.8369 0.3837 0.8369
p73-PKU ICST REF 11b 0.7821 0.6083 0.3474 0.8693 0.3277 0.8561
p77-PKUSIGMASR01CLOUD 0.7982 0.6389 0.4008 0.8769 0.3717 0.8624
p77-PKUSIGMASR02CLOUD 0.7482 0.6007 0.3866 0.8148 0.3225 0.8151
p77-PKUSIGMASR03CLOUD 0.8163 0.6467 0.3882 0.9052 0.3666 0.8837
p77-PKUSIGMASR04CLOUD 0.7975 0.6278 0.3712 0.8845 0.3428 0.8618
p77-PKUSIGMASR05CLOUD 0.7915 0.6269 0.3799 0.8739 0.3632 0.8632
p77-PKUSIGMASR06CLOUD 0.7949 0.6075 0.3287 0.8863 0.3240 0.8654

236

different subset of the full set of 50 topics. Because of this, and because the
difficulty level of the 50 topics varies substantially, the results presented here
are not completely accurate. They do, however, give a reasonable idea of how
well each run went, and which approaches work best. The final results will be
released at a later date.

Table 2 gives the ranking for all of the runs. The run ID includes the ID
number of the participating organisation; see Table 1 for the name of the organ-
isation. The runs are ranked by geometric mean of recall and negative recall.

The highest ranked run, according to the preliminary results, is ‘p20-QUTFirst300’,
in which the snippet consists of the first 300 characters of the underlying docu-
ment.

Table 3 lists additional metrics for each run, as discussed in Section 2.5. One
statistic worth noting is the fact that no run scored higher than 50% in recall,
with an average of 35%. This indicates that poor snippets are causing users
to miss over 50% of relevant results. Negative recall is high, with 94% of runs
scoring over 80%, meaning that users are easily able to identify most irrelevant
results based on snippets.

5 Conclusion

This paper gave an overview of the INEX 2011 Snippet Retrieval track. The goal
of the track is to provide a common forum for the evaluation of the effectiveness
of snippets. The paper has discussed the setup of the track, and presented the
preliminary results of the track. The preliminary results indicate that in all
submitted runs, poor snippets are causing users to miss over 50% of relevant
results, indicating that there is still substantial work to be done in this area.
The final results will be released at a later date, once all of the assessment has
been completed.

References

1. Schenkel, R., Suchanek, F.M., Kasneci, G.: YAWN: A semantically annotated
Wikipedia XML corpus. In: 12. GI-Fachtagung fr Datenbanksysteme in Business,
Technologie und Web (BTW 2007), pp. 277–291 (2007)

2. Geva, S., Kamps, J., Lehtonen, M., Schenkel, R., Thom, J.A., Trotman, A.:
Overview of the INEX 2009 ad hoc track. In: Geva, S., Kamps, J., Trotman, A. (eds.)
Focused Retrieval and Evaluation. LNCS, pp. 4–25. Springer, Heidelberg (2010)

237

Focused Elements and Snippets

Carolyn J. Crouch, Donald B. Crouch,
Natasha Acquilla, Radhika Banhatti, Reena Narendavarapu

Department of Computer Science
University of Minnesota Duluth

Duluth, MN 55812
(218) 726-7607

ccrouch@d.umn.edu

Abstract. This paper reports the final results of our experiments to pro-
duce competitive (i.e., highly ranked) focused elements in response to
the various tasks of the INEX 2010 Ad Hoc Track. These experiments
are based on an entirely new analysis and indexing of the INEX 2009
Wikipedia collection. Using this indexing and our basic methodology
for dynamic element retrieval [1, 3], described herein, yields highly
competitive results for all the tasks involved. These results are reported
and compared to the top-ranked base runs with respect to significance.
We also report on our current work in snippet production, which is still
in very early stages. Our system is based on the Vector Space Model
[5]; basic functions are performed using Smart [4].

In 2010, our INEX investigations centered on integrating our methodology for the dy-
namic retrieval of XML elements [1, 3] with traditional article retrieval to facilitate in
particular the retrieval of good focused elements—i.e., elements which when evaluated
are competitive with those in the top-ten highest ranked results. Earlier work [2] had
convinced us that our approach was sound, but the scaling up of the document collec-
tion (i.e., moving from the small Wikipedia collection used in earlier INEX competi-
tions to the new, much larger version made available in 2009) clarified an important
point for us. The new (2009) Wiki documents are much more complex in structure
than their predecessors. Because our methodology depends on being able to recreate
the Wiki document at execution time, every tag (of the more than 30,000 possible tags
within the document set) must be maintained during processing in order for the xpath
of a retrieved element to be properly evaluated. (In earlier work, we had omitted some
tags—e.g., those relating to the format rather than structure—for the sake of conven-
ience, but this was no longer possible in the new environment.) Clearly, we needed to
analyze the new collection with respect to the kinds of elements we wanted to retrieve
(most specifically, the terminal nodes of the document tree). We spent some time on
this process and then parsed and indexed the collection based on this analysis. All the
experiments described herein are applied to this data.

In this paper, we describe our methodology for producing good focused elements
for the INEX 2010 Ad Hoc tasks. The experiments performed using this approach are
detailed and their results reported. To retrieve good focused elements in response to a

238

query, we use article retrieval (to identify the articles of interest) combined with dy-
namic element retrieval (to produce the elements) and then apply a focusing strategy
to that element set. Experimental results confirm that this approach produces highly
competitive results for all the specified tasks. We use the focused elements produced
by this methodology as the basis for the snippets required by the INEX 2011 Ad Hoc
Track. The results of these experiments to date are also reported.

References

[1] Crouch, C.: Dynamic element retrieval in a structured environment. ACM TOIS
24(4), 437-454 (2006)

[2] Crouch, C., Crouch, D., Vadlamudi, R., Cherukuri, R., Mahule, A.: A useful
method for producing competitive ad hoc task results. S. Geva, J. Kamps, R.
Schenkel, Trotman, A. (eds.), LNCS 6932, Springer, 63-70 (2011)

[3] Khanna, S.: Design and implementation of a flexible retrieval system. M.S. The-
sis, Department of Computer Science, University of Minnesota Duluth (2005)
http://www.d.umn.edu/cs/thesis/khanna.pdf

[4] Salton, G., ed. The Smart Retrieval System—Experiments in Automatic Document
Processing. Prentice-Hall, Englewood Cliffs (1971)

[5] Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing.
Comm. ACM 18 (11), 613-620 (1975)

239

RMIT at INEX 2011 Snippet Retrieval Track

Lorena Leal, Falk Scholer, James Thom

RMIT University, Melbourne, Australia

Abstract. This report describes our participation in the Snippet re-
trieval track. Snippets were constructed by selecting sentences according
to the occurrence of query terms. We followed a pseudo-relevance feed-
back approach in order to expand the original query. Preliminary results
showed that a large number of extra terms may harm sentence selection
for short summaries.

1 Introduction

In many IR systems the standard answer after submitting a query con-
sists of a ranked list of results. Each one of these results is presented
with three textual key elements: the title, the snippet and the URL. The
retrieved documents are returned by the IR system because they a have
a certain similarity with the users’ query terms. However, not all doc-
uments in the answer list are likely to actually be relevant for a user.
Therefore, users carry out a triage process, selecting which documents
they wish to view in full by scanning these key elements. The snippet is
generally the most indicative component when users need to review mul-
tiple documents for fulfilling their information needs. Snippets are short
fragments extracted from the document, and their aim is to provide a
glimpse of the document content. Common practices for constructing
snippets include the selection of either metadata information, leading
sentences of a document, or sentences containing query terms. Our ap-
proach focuses on the latter method.
In this regard, the INEX initiative launched the Snippet Retrieval Track
to study not only system retrieval, but also snippet generation effective-
ness. We describe the conducted experiments and results for this latter
task.

2 Methodology

Given that we do not participate in the system retrival task, we used
a baseline run distributed by the track organizers. It involved, for each
topic, the first 500 Wikipedia articles retrieved by applying the BM25
similarity function (K1 = 0.7, b = 0.3). The snippet generation task
consists of constructing succint summaries for those documents. Snippets
were limited in terms of length to not exceed 300 characters.
In the following subsection, we briefly describe the collection and topics
for the track. We have divided the conducted experiments in two parts:
query expasion and a snippet generation.

240

2.1 Collection and Topics

Documents for the snippet track are part of the INEX Wikipedia col-
lection. This collection is a snapshot of Wikipedia contructed in 2008 of
English articles which are enriched with semantic annotations (obtained
from YAGO). We did not use those annotations for query expansion or
snippet creation experiments, so all markup was ignored from documents.
We removed stopwords and applied the Porter stemming algorithm [4]
to the remaining terms.

Each topic of the track includes the following fields: title, castitle, phraseti-
tle, description and narrative. For our experiments, we only used the ti-
tle terms as they resemble information requests from typical real users.
Stopping and stemming was also applied to these terms.

2.2 Query Expansion

Query expansion is a technique that attempts to address the potential
vocabulary mismatch between users and authors. That is, users may
choose different terms to describe their information needs than authors
use when creating documents. Query expansion introduces new and pos-
sibly closely related terms to an original query, thus enlarging the set
of results. This technique has been explored in terms of retrieval effec-
tiveness of IR systems [2, 6, 9]. However, we employed query expansion
to source extra terms for extractive summarisation approaches that we
explain later.

We followed Rocchio’s approach [5] for expanding the initial query.

Q1 = α · Q0 +
β

|R|
∑
d∈R

d − γ

|R|

∑
d∈R

d (1)

As can be seen in Equation 1, the influence of the original query (Q0),
relevant (R) and irrelevant (R) documents can be adjusted by the α,
β, γ parameters, respectively. For our experiments the value of α was
set with a low value to only choose terms that were different from the
original query. The value of γ, in contrast, was set to 0 since we did not
have negative feedback (or irrelevant documents) from the ranked list of
results. Consequently, the value of β can be set to any non-zero value as
this will affect the final result in a constant way. Thus, Q1 will contain
a new set of terms.

Given that a reference run was provided, we applied Rocchio’s formula-
tion by using the top ranked documents (R) for each topic. Subsequently,
we selected the leading E tokens as expansion terms. We called this set
as Rocchio terms. Based on previous experiments, we fixed R = 5 and
E = {25, 40}.
The original query was expanded by concatenating the additional Roc-
chio terms. Howerver, some refinements were done to the supplementary
terms. Numbers were discarded, except numbers of exactly four digits,
since we assumed that those may refer to years.

241

2.3 Snippet Generation

It has been shown that the presence of query terms in short summaries
positively influences the finding of relevant documents [7, 8]. If the snip-
pet lacks the key words provided by users, they are generally less able
to detect whether the underlying document is relevant or not.
Previous research on extractive summarisation has explored the selec-
tion of sentences for succint summaries [1, 3]. The advantage of employ-
ing sentences is that they convey simpler ideas. Following this approach,
Wikipedia articles were segmented into sentences. Nevertheless, it was
difficult to properly identify sentence boundaries due to having multiple
contributors with different writing styles. The main exception was de-
tected when a sentence included abbreviations such as “Dr. Smith”. We
did not do an analysis of abbreviations to address this issue in detail.
We processed Wikipedia articles before constructing snippets. Specifi-
cally, information contained inside the <title> and <bdy> was used to
narrow the document content. We suggest that snippets should include
information of the document itself instead of sources pointing to other
articles. Therefore, the Reference section was ignored in our summarisa-
tion approaches. With the remaining text, we scored sentences according
to the occurrence of query terms in them by using Equation 2.

qbi =
(number of unique query terms in sentence i)2

total number of query terms
(2)

For all snippets, the title of the document was concatenated to the first
ranked sentences. It should be noted that snippets should not exceed
300 characters according to the track requirements. Top sentences were
presented in snippets depending on document length. In case an article
contained less than 3 sentences, the snippet algorithm only provided the
first 100 characters of each sentence. In this setting we assumed that the
document was very short and was unlikely to provide any relevant infor-
mation; therefore the summary was reduced. On the contrary, the leading
150 characters (or less) of the first ranked sentence were displayed, when
the document had more than 3 sentences. Subsequent highly scored sen-
tences were cut up to 100 characters. This is done until the summary
length is reached.
Submitted runs employed the query-biased approach for ranking docu-
ment sentences in three different settings. The run labelled as “baseline”
generated snippets given the title words of each topic, that is, no expan-
sion was applied. The runs defined as “expanded-40” and “expanded-25”
used E = 40 and E = 25 respectively, for applying the query-biased
score. Using a newswire collection in a former study, we found that 40
extra terms were sufficient for enlarging the original query. Given the dif-
ferences among collections, we also experimented with another E value
by reducing it to 25.

3 Results

Preliminary results for our runs are shown in Table 1. Of our three sub-
mitted runs, the baseline that used no query expansion performed the

242

Baseline 0.5612
Expanded 25 0.5446
Expanded 40 0.5411

Top run 0.5925
Median run 0.5019

Table 1. Preliminary results.

best, as measured by the geometric mean of recall and negative recall
(GM), the offical track measure. Adding more expansion terms hurt per-
formance on this task. However, all runs were more effective than the
median run, based on the GM measure.

References

1. Brandow, R., Mitze, K., Rau, L.F.: Automatic condensation of elec-
tronic publications by sentence selection. Information Processing &
Management 31(5), 675–685 (1995)

2. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query ex-
pansion using smart: Trec 3. In: Overview of the Third Text REtrieval
Conference (TREC-3). pp. 69–80 (1995)

3. Luhn, H.P.: The automatic creation of literature abstracts. IBM Jour-
nal of Research and Development 2(2), 159–165 (1958)

4. Porter, M.: An algorithm for suffix stripping. Program 14(3), 130–137
(1980)

5. Rocchio, J.J.: Relevance feedback in information retrieval pp. 313–323
(1971)

6. Salton, G., Buckley, C.: Improving retrieval performance by relevance
feedback. Journal of the American Society for Information Science
41(4), 288–297 (1990)

7. Tombros, A., Sanderson, M.: Advantages of query biased summaries in
information retrieval. In: Proceedings of the 21st annual international
ACM SIGIR conference. pp. 2–10. ACM (1998)

8. White, R.W., Jose, J.M., Ruthven, I.: A task-oriented study on the
influencing effects of query-biased summarisation in web searching.
Information Processing & Management 39(5), 707–733 (2003)

9. Xu, J., Croft, W.B.: Query expansion using local and global document
analysis. In: Proceedings of the 19th annual international ACM SIGIR
conference. pp. 4–11. ACM (1996)

243

Topical Language Model
for Snippet Retrieval

Rongmei Li and Theo van der Weide

Radboud University, Nijmegen, The Netherlands

Our previous study found that topical language model improves document
ranking of ad-hoc retrieval. In this work, our attention is paid on snippets that
are extracted and generated from the provided ranked list of documents.

In our experiments of the Snippet Retrieval Track, we hypothesize that the
user recognizes certain combinations of terms in created snippets which are re-
lated to their information needs. We automatically extract snippets using terms
as the minimal unit. Each term is weighted according to their relative occur-
rance in its article and in the entire Wikipedia. The top K scoring terms are
chosen for inclusion in the snippet. The term-extraction based snippets are then
represented differently to the user. One is a cluster of words that indicate the
described topic. Another is a cluster of semi-sentences that contains the topic
information while preserving some language structure.

244

Indian School of Mines,Dhanbad at INEX
2011 Snippet Retrieval Task

Sukomal Pal Preeti Tamrakar
Dept. of CSE, ISM, Dhanbad Dept. of CSE, ISM, Dhanbad
sukomalpal@gmail.com tamrakarpreeti89@gmail.com

Abstract. This paper describes the work that we did
at Indian School of Mines, Dhanbad towards Snippet
retrieval for INEX 2011. We pre-processed the XML-
ified Wikipedia collection first which was fed to a very
simple Snippet Retrieval system that we developed.
We submitted 3 runs to INEX 2011. our performance
was moderate.

1 Introduction

The usual way of interacting with an IR system is to
enter a specific information need expressed as a query.
As a result, the system provides a ranked list of retrieved
documents. For each of these retrieved documents, the
user is typically provided by the system a title and a few
sentences from each of these documents. These few
sentences are called a “snippet” or “excerpt” of the
document and they have the role of helping the user
decide which of the retrieved documents are more likely
to meet his/her information need. Ideally, it should be
possible to make this decision without having to refer to
the full document text.

SNIPPET RETRIEVAL(SR):- Retrieving the snippets
from the whole document is known as “Snippet
Retrieval”. The goal of the snippet retrieval track is to
determine how best to generate informative snippets for
search results. Such snippets should provide sufficient
information to allow the user to determine the relevance
of each document, without needing to view the document
itself. Snippet should be informative enough i.e. a short
summary of the document.

245

In summaries we have two basic kinds of summaries :-

a) Static summary:- These are always the same
regardless of the query. A static summary is generally
comprised of either or both a subset of the document and
metadata associated with the document. The simplest
form of summary takes the first two sentences or 50
words of a document, or extracts particular zones of a
document, such as the title and author.

b) Dynamic summary:- These are customized according
to the user’s information need as deduced from a query.
Dynamic summaries display one or more “windows” on
the document, aiming to present the pieces that have the
most utility to the user in evaluating the document with
respect to their information need. Dynamic summaries are
generally regarded as greatly improving the usability of
IR systems, but they present a complication for IR system
design.

Though summary generation techniques are often used
for snippet retrieval and the problems are seen and
attacked from the same angles. However, the point to
note that is that summaries are always coherent text,
where snippet are not always. Also, snippets can be a set
of meaningful phrases without being complete sentences.

SR in the context of INEX:- INEX has organized
snippet retrieval task from 2002. In this task, INEX
provides three pools, each pool contain 50 topics and
document-run p35-97-ism-snippet-Baseline-Reference-
run_01. Participants are asked to either use their own
system to retrieve a ranked set of snippets. Otherwise,
the participants can use the result of reference run
provided by the organizer as a seed to their snippet
retrieval system.

We took the second approach i.e. we found snippets
from the set of documents returned by the reference run.
We submitted 3 runs (ism-baseline-snippet-inex-2011-
reference-runX.xml, X =0, 1, 2).

The paper is organized as follows. In the next section,
we review the works done in this field. In section 3 we
describe test data followed by our approach. We discuss
results in section 4. Finally we conclude with scope of
future work.

246

2 Related Work

The documents to be summarized are articles of the Wall
Street Journal (WSJ) taken from the TREC collection
(Text REtrieval Conferences) (Harman 1996). In order to
decide which aspects of the articles would provide utility
to generating a summary, their characteristic were
examined in a small scale study. The methodology that
was followed involved examining 50 randomly selected
articles from the collection and attempting to extract
conclusions about the distribution of important
information within them. Their title, headings, leading
paragraph, and their overall structural organization were
studied. This sample collection was used for
experimentation with various system parameters, in order
to approximate the best settings for the summarization
system. Although the sample of the documents was
small, there was a strong uniformity in the characteristics
of the sample that allowed for a generalization of the
conclusions to the entire collection.

Tombros and Sanderson [5] presented the first in-depth
study showing that properly selected query-dependent
snippets are superior to query-independent summaries with
respect to speed, precision, and recall with which users can
judge the relevance of a hit without actually having to
follow the link to the full document. In this work , we take
the usefulness of query-dependent result snippets for
granted.

3 Data

Test data introduced in snippet retrieval are:-

Corpus-wiki:- The INEX Snippet Retrieval Corpus is a part
of the whole Wikipedia XML Collection. Uncompressed, the
corpus size is about 50.7 GB containing images and other
multimedia data.

Queries:- The topic-set contains 50 queries (11-60). Queries
contained topic id, title, castitle, phrasetitle, description and
narrative.

Document-run :- INEX-supplied document-run had 100
documents per query for 50 queries. Some documents were
relevant to the query and some were irrelevant.

247

4 Approaches

a) xml-to-txt conversion:- Corpus-wiki contains XML
collection. The XML files are converted into text files before
snippet generation. For this, a C program is written in which
the XML tags are removed from the XML document. In the
conversion of XML to TXT, XML tags and white space(WS)
are removed and put only TXT tags.

b) Snippet generation:- After converting XML data into
TXT data, snippet is generated by extracting the first 300
characters from the text document and stored into buffer
which was considered as our snippet for the document.

c) Submission:- As a very naive approach considered the first
300 characters as snippets. We inserted snippets within the
INEX submission format containing participant-id, description,
topic-id and snippet. The example is shown below.

<?xml version =”1.0”?>

<!DOCTYPE inex-snippet-submission
SYSTEM”inex-snippet-submission.dtd”>

<inex-snippet-submission participant-id=”35”
run-id=”ism-snippet-Baseline-Reference-
run_02”>

<description>information about Nobel prize
</description>

<topic topic-id=”2011011”>

<snippet rsv=”1564.00” doc-id=”21201”>

Title: List of Nobel laureates in Chemistry. References
General " All Nobel Laureates in Chemistry". Nobelprize.org.
Retrieved on 2008-10-06. " Nobel Prize winners by category
(chemistry)". Encyclopædia Britannica. Retrieved on 2008-
10-06. Specific " Alfred Nobel – The Man Behind the Nobel
Pr </snippet>

<snippet rsv=”1562.00” doc-id=”52502”>
Title: List of Nobel laureates in Physics. References General

" All Nobel Laureates in Physics". Nobelprize.org. Retrieved on
2008-10-08. " Nobel Prize winners by category (physics)".
Encyclopædia Britannica. Retrieved on 2008-10-08. Specific "
The Nobel Prize in Physics 1901". Nobelprize.org. Retr
</snippet>.

248

4 Results
There is only preliminary result for this Snippet
Retrieval track. They gave the result till 50 rank.
And we have submitted total 3 runs. So we got 20,
28 and 39 ranks. The participant who got 1st rank,
has scored 0.5925. Our result is shown below:-

Run-id Score Rank

p35-97-ism-snippet-
Baseline-Reference-run_01

0.5135 20

p35-98-ism-snippet-
Baseline-Reference-run_01

0.4925 28

p35-ism-snippet-Baseline-
Reference-run_02

0.4708 39

5 Conclusion

This is our very naive approach. Our immediate task is
to make the evaluation program run on our system,
reproduce the results reported, analyze the score and try
to better our performance with proper parameter-tuning
using other approaches . It was our first attempt and our
performance is not so satisfactory, but we can say, it was
moderate.There is plenty of work to do, some of which
will definitely be attempted and addressed in the coming
days.

249

References :-

[1] http://www.inex.mmci.uni-saarland.de
[2] http://www.Xmlsoft.org
[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In WWW7, pages 107–
117, 1998.
[4] Schenkel, R., Suchanek, F.M., Kasneci, G.: Yawn: A
semantically annotated wikipedia xml corpus. In: BTW.
(2007) 277-291
[5] Anastasios Tombros and Mark Sanderson. Advantages of
query biased summaries in information retrieval. In 21st
Conference on Research and Development in Information
Retrieval (SIGIR’98), pages 2–10, 1998.
[6] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh
E. Williams. Fast generation of result snippets in web search. In
30th Conference on Research and Development in Information
Retrieval (SIGIR’07), pages 127–134, 2007.
[7] Jade Goldstein, Mark Kantrowitz, Vibhu O. Mittal, and Jaime
G. Carbonell. Summarizing text documents: Sentence selection
and evaluation metrics. In 22nd Conference on Research and
Development in Information Retrieval (SIGIR’99), pages 121–
128, 1999.
[8] Ryen White, Joemon M. Jose, and Ian Ruthven. A task-
oriented study on the influencing effects of query-biased
summarisation in web searching. Information
Processing Management, 39(5):707–733, 2003.
[9] Ryen White, Ian Ruthven, and Joemon M. Jose. Finding
relevant documents using top ranking sentences: an evaluation
of two alternative schemes. In 25th Conference on Research and
Development in Information Retrieval (SIGIR’02), pages 57–64,
2002.

250

PKU at INEX 2011 XML Snippet Track

Songlin Wang, Yihong Hong, and Jianwu Yang

Institute of Computer Sci. & Tech., Peking University,

Beijing 100871, China

{wang_sl05, hongyihong, yangjw}@pku.edu.cn

Abstract. Snippets are used by almost every text search engine to complement

ranking scheme in order to effectively handle user searches, which are

inherently ambiguous and whose relevance semantics are difficult to assess. In

this paper, we present our participation in the INEX 2011 Snippet track. A

efficiently retrieval system has been used, by which the semi-structured of

document has been considered, and present a snippet generate system, which

effectively summarize the query results and document content, according to

which users can quickly assess the relevance of the query results.

 Keywords: XML Retrieval, XML-IR, Snippet, Query

1 Background

Each result in the results list delivered by current WWW search engines contains a

short document snippet, and the snippet gives the user a sneak preview of the

document contents. Accurate snippets allow users to make good decisions about

which results are worth accessing and which can be ignored.

INEX 2011 XML Snippet track contains two parts, XML document retrieval and

snippet generation task. XML retrieval presents different challenges than retrieval in

text documents due to the semi-structured nature of the data, the goal is to take

advantage of the structure of explicitly marked up documents to provide more focused

retrieval results. The goal of the snippet generation is to generate informative snippets

for search results; such snippets should provide sufficient information to allow the

user to determine the relevance of each document, without needing to view the

document itself.

The corpus is a subset of the Wikipedia corpus with 144,625 documents, and the

snippet retrieval track will use the INEX Wikipedia collection. Topics will be

recycled from previous ad hoc tracks. Participating organizations will submit a ranked

list of documents, and corresponding snippets. Each submission should contain 500

snippets per topic, with a maximum of 300 characters per snippet.

 Corresponding author

251

Songlin Wang, Yihong Hong, and Jianwu Yang

This paper is organized as follows. In section 2, we show the retrieval system.

Section 3 describes the approach taken to the snippet task. The paper ends with a

discussion of future research and conclusion in section 4.

2 Retrieval System

In snippet track, we direct two parts, the document retrieval and the snippet

generation. We first retrieve each element of articles using CO queries. The retrieval

model is based on Okapi BM25 scores between the query model and the document

(element) model that is smoothed using Dirichlet and Jelinek-Mercer priors.

2.1 Retrieval model

The Vector Space Model is the basic model of this research. The vector space

model represents each document and query as an n-dimensional vector of unique

terms. The terms are weighted based on their frequency within the document. The

relationship of a document to a query is determined by the distance between the two

vectors in vector space. The closer the two vectors, the more potentially relevant the

document is (cosine similarity is one of the measures used to compute the distance).

Our retrieval engine is based on the Vector Space Model. Inside of use the

vector space model represents each document as an n-dimensional vector of unique

terms, we used a matrix to represent the document, and vector for each element of the

document.

2.2 BM25 Score Formula

Our system is based on the BM25 weights function.

 2-1

 2-2

With:

- : the frequency of keyword jq in element ie .

-N: the number of articles in the collection.

- n q : the number of articles containing the term jq .

-

: the ratio between the length of element ie and the average element

length.

- 1k and b : the classical BM25 parameters.

252

PKU at INEX 2011 XML Snippet Track

Parameter is able to control the term frequency saturation. Parameter b allows

setting the importance of

.

2.3 Score for document(sub-tree)

Each document has lots of elements, and the formula for the document is defined

as follow:

1

iScore Q,() e (,)
m

i

ielementweight Q eD m

 2-3

sin (1)

(1)

gle

multiple

D m

D m

 2-4

With:

- iScore Q,e : the score of element ie in document.

- (,)ielementweight Q e : the weight of element ie in the document.

- ()D m : the reduced via the element decay.

2.4 Weight of the element

We used the INEX2010 croup as a learning set, we split the elements into two part,

relevant elements and irrelevant elements, using information gain, and we can get

each element weight.

2

1
() log ()i ii

P c P c

 2-5

2

1
[(){ (|) log (|)}i ii
P e P c e P c e

2

1
(){ (|) log (|)}]i ii

P e P c e P c e

 2-6

With:

- : relevant or irrelevant classification.

- : the probability of element e belongs to class .

2.5 Pseudo Feedback

In most collections, the same concept may be referred to using different words.

This issue, known as synonymy, has an impact on the recall of most information

retrieval systems. In this track we use Pseudo Feedback method to expand the query

of the topics.

253

Songlin Wang, Yihong Hong, and Jianwu Yang

First a query with the recognized phrase is submitted to the retrieval system, and

the system will do the first run to rank document and pick the top ranked 50

documents. These top ranked documents are assumed to be relevant by the retrieval

system and are combined with the original query through query expansion to do the

second run. The retrieval system presents newly ranked documents to the user. And

the score of the words that expanded form this method is defined as follow:

 (|) () () log
| | 1

i

df
w Q idf w idf q

D

 2-7

 2-8

With:

- : the number of terms in document D.

- : the frequency of term w in document D.

2.6 The Distribution of Keywords

The more of the different keywords, the passage will be more relevant, and so is

the distance of the keywords. We used method of SLCA to get the smallest sub-tree

that satisfies the retrieval (contain all keywords), and in this sub-tree we can calculate

the score of query Q to the position x is defined by:

 2-9

With:

- : the value of keyword in the position j.

Some other case also be considered, one keywords in one element of the sub-tree

and another is belong to its brother element, the keywords in the same element, and so

on. For example,

<sec>

 <st> the mountains in Indian</ st>

 <p> …(list of mountains and their distribute)</p>

</sec>

We can make sure that the content in element <p> is the retriever need, so when

one element contains keywords of the query, its brother node is also important. When

general the snippet of the document, the weight of this kind element (<p> as above

example) should be increased.

254

PKU at INEX 2011 XML Snippet Track

3 Snippet Generation

In the snippet generation system, we use query relevance, significant words,

title/section-title relevance and tag weight to evaluate the relevance between

sentences and a query. The sentences with higher relevance score will be chosen as

the retrieval snippet.

3.1 Query Relevance

The relevance between a query and sentences largely depends on the query terms

in a sentence. Function [3-1] is one example to calculate the relevance.

 3-1

 3-2

With:

- : the number of query terms category in sentence s.

- : the occurrence frequency of query terms in sentence s.

- : the weight of query term .

- : the IDF value of term in the database.

3.2 Significant Words
[3]

The frequency of significant words was used to help evaluate the relevance

between a query and a sentence. A word is defined as a significant word if it is a non-

stop word and its term frequency is larger than a threshold T. T is defined as function

[3-3].

 3-3

With:

- n: the number of sentences in the document.

- L: L is 25 for n < 25 and 40 for n > 40.

- I: I is 0 for 25<=n<=40 and 1 otherwise

The significant words score is based on the function [3-4]

 3-4

Where SW is the number of significant words in the sentence and TSW is the

total number of words in the sentence.

3.3 Title Relevance

Since the title is the best summary of a document, the sentence with more title

terms is highly probably relevant to the query. The title score of the sentence can be

calculated using the function [3-5].

 3-5

255

Songlin Wang, Yihong Hong, and Jianwu Yang

Where T is the number of title words in the sentence s and N is the number of

title words.

3.4 Sentence Score

The function [3-6] is the formula used to calculate the sentence score.

 3-6

Where , , based on the experiment.

Additionally, we use a section-title weight and a tag-weight calculated in the

document retrieval system to help evaluate the sentence relevance. If a sentence is in a

section whose title contains the query words, the sentence may be more relevant to the

query. The function [3-7] synthesizes all the factors mentioned above, and generates

the final sentence relevance score.

 3-7

With

-stW(s): The frequency of query terms in the section-title of the section

containing sentence s.

-tagW(s): The tag weight of the tag containing the sentence s.

4 Conclusions

From the special focus on exploiting structural characteristics of XML document

collections, we retrieve XML documents based on both document structure and

content. We have learned the weight of elements based on the cast of INEX2010 to

enhance the retrieval performance, and we also consider the distribution of the

keywords in the documents and elements. In the snippet generation system, we use

query relevance, significant words, title/section-title relevance and tag weight to

evaluate the relevance between sentences and a query. The sentences with higher

relevance score will be chosen as the retrieval snippet.

5 Acknowledgment

The work reported in this paper was supported by the National Natural science

Foundation of China Grant 60642001 and 60875033.

256

PKU at INEX 2011 XML Snippet Track

References

1. Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, editors.

Advances in XML Information Retrieval and Evaluation, 4th International

Workshop of the Initiative for the Evaluation of XML Retrieval, INEX 2005,

Dagstuhl Castle, Germany, November 28-30, 2005, Revised Selected Papers,

volume 3977 of Lecture Notes in Computer Science. Springer, 2006.

2. Wouter Weerkamp. Optimizing structured document retrieval using focused and

relevant in context strategies. Master’s thesis, Utrecht University, the Netherlands,

2006.

3. Changhu Wang, Feng Jing, Lei Zhang, Hong-Jiang Zhang. Learning Query-Biased

Web Page Summarization. Proceedings of the sixteenth ACM conference on

Conference on information and knowledge management, 2007.

4. Jade Goldsteiny, Mark Kantrowitz, Vibhu Mittal, Jaime Carbonelly. Summarizing

Text Documents: Sentence Selection and Evaluation Metrics. Proceedings of the

22nd annual international ACM SIGIR conference on Research and development

in information retrieval, 1999.

5. Wesley T. Chuang, Jihoon Yang. Extracting Sentence Segments for Text

Summarization: A Machine Learning Approach. SIGIR '00 Proceedings of the

23rd annual international ACM SIGIR conference on Research and development in

information retrieval.

257

258

Author Index

Adriaans, Frans 36
Allan, James . 65

Bellot, Patrice 60, 145, 185
Bogers, Toine . 49
Boughanem, Mohand 107

Cabrera Diego, Luis Adrián 154
Cartright, Marc 65
Castillo, Esteban 127
Chappell, Timothy 215
Chen, Jiajun . 70
Christensen, Kirstine Wilfred49
Crane, Matt . 223
Crouch, Carolyn 238
Crouch, Donald 238
Cunha, Iria Da206

Deveaud, Romain 60
Doucet, Antoine11

Ermakova, Liana 160

Feild, Henry . 65

Gagnon, Michel 196
Gan, Yantao . 136
Geva, Shlomo 215, 228

Hong, Yihong . 251
Huang, Yalou . 70

Janod, Killian .167
Jaruskulchai, Chuleerat 140
Javier, Ramirez 175
Juan-Manuel, . 196

Kamps, Jaap 11, 36, 88
Kazai, Gabriella11
Koolen, Marijn 11, 36

Laitang, Cyril .107
Landoni, Monica 11
Larsen, Birger .49
Laureano Cruces, Ana Lilia 175
León Silverio, Saúl 127
Leal, Lorena . 240
Li, Rongmei . 244
Liu, Caihua . 70
Liu, Jie . 70

Marx, Maarten 88, 124
Mistral, Olivier 167
Molina, Alejandro154
Moriceau, Véronique 145
Mothe, Josiane 145, 160

Nordlie, Ragnar 81

Pinel Sauvagnat, Karen 107
Pinto, David . 127
Preminger, Michael 81

Ramı́rez, Georgina 88, 117

Saggion, Horacio 180
Sanderson, Mark 228
Sanjuan, Eric 60, 145
Scholer, Falk 228, 240
Schuth, Anne . 124
Sierra, Gerardo 154
Sun, Yu . 136

Tamrakar, Preeti 245
Tannier, Xavier 145

Tavernier, Jade 185
Theobald, Martin 88
Thom, James . 240
Tovar Vidal, Mireya127
Trappett, Matthew228
Trotman, Andrew 223, 228

Van Der Weide, Theo 244
Velazquez Morales, Patricia 196
Vilariño Ayala, Darnes 127
Vivaldi, Jorge . 206

Wang, Qiuyue 88, 136
Wang, Songlin 251
Wichaiwong, Tanakorn 140

Yang, Jianwu . 251

Zhang, Xiaofeng 70

4485817890819

ISBN 978-90-814485-8-1
90000 >

